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AN INTRINSIC APPROACH IN THE CURVED n-BODY

PROBLEM. THE POSITIVE CURVATURE CASE

ERNESTO PÉREZ-CHAVELA AND J. GUADALUPE REYES-VICTORIA

Abstract. We consider the gravitational motion of n point particles with
masses m1,m2, . . . ,mn > 0 on surfaces of constant positive Gaussian cur-
vature. Using stereographic projection, we express the equations of motion
defined on the two-dimensional sphere of radius R in terms of the intrinsic
coordinates of the complex plane endowed with a conformal metric. This new
approach allows us to derive the algebraic equations that characterize relative
equilibria. The second part of the paper brings new results about necessary
and sufficient conditions for the existence of relative equilibria in the cases

n = 2 and n = 3.

1. Introduction

The equations of motion for the n–body problem in spaces of nonzero constant
Gaussian curvature, also called the curved n–body problem, were first obtained by
Florin Diacu, Ernesto Pérez-Chavela, and Manuele Santoprete [3]. These authors
used the cotangent potential and studied the Euler-Lagrange equations with the
respective constraints that maintain the particles on the corresponding imbedded
surfaces of constant curvature K (the 2-sphere of radius 1/

√
K in R3 if K > 0, or

the upper sheet of the hyperboloid x2+y2−z2 = K−1 in the Minkowski space R3
1 if

K < 0). The paper [3] is the first work that analyzes the solutions of certain types
of relative equilibria in spaces of constant curvature, that is, solutions for which
the mutual distances among the particles are constant during the motion. Since
any rotation in R3 is around a suitable fixed axis, and since the cotangent potential
is invariant under the whole group of isometries SO(3), the authors of [3] studied,
without loss of generality, some solutions of relative equilibria which are invariant
under the action of the subgroup

(1.1) A(t) =

⎛

⎝

cos t sin t 0
− sin t cos t 0

0 0 1

⎞

⎠ ,

contained in the isometry group SO(3) of the sphere for each t ∈ R.
In the case K > 0, the authors of [3] proved that if three particles are initially at

the vertices of an equilateral triangle, in the plane z = constant, then the bodies
generate a relative equilibrium only if the masses of the particles are equal. They
also proved that if three particles are on the same rotating meridian, with one mass
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M between the other two particles with equal mass m symmetrically located on
the meridian, then this configuration generates a relative equilibrium. In the above
results the authors obtained those periodic orbits by fixing the initial configuration.

Following the ideas of [3], our first approach was to study the solutions q(t)
that are invariant to (1.1), that is, solutions of the equations of motion of the
form Q(t) = A(t)q(t). We thus found conditions to obtain relative equilibria, but

unfortunately the equation in terms of A(t), Ȧ(t), Ä(t) were so complicated that we
could not obtain any additional information.

One of the main obstacles in pursuing a deeper geometric analysis in [3] were the
constraints, so we further tried to obtain equations of motion without constraints.
For this, we used the stereographic projection through the north pole of the sphere
into the plane of the equator, and succeeded in expressing the problem in terms
of coordinates of the curved complex plane endowed with a Riemannian conformal
metric denoted by M2

R.
In this paper we obtain the equations of motion which generalize the (Euclidian

classical) gravitational Newtonian problem by using cotangent potentials and we
analyze solutions which are invariant by the action of one subgroup of isometries of
SU(2)/{±I} of M2

R, the so-called relative equilibria of the curved n–body problem.
We prove that the model studied in [3] and the model studied in this work are
equivalent.

Our paper is organized as follows. In Section 2, using the stereographic pro-
jection and techniques of differential geometry, we translate the problem from the
sphere of radius R to the curved plane M2

R and we introduce complex variables to
facilitate the computations. As is customary for this problem, we will use the cotan-
gent potential (see [4] for more details). We obtain the equations of motion for the
n–body problem by considering the equation of the geodesics in such a space and
curving the gradient of the potential with a convenient conformal factor. The orig-
inal equations for the n–body problem on the sphere are derived using variational
methods, which require the natural extension of the metric and the differential
properties from the embedded sphere to the ambient space R3. The big advan-
tage of the intrinsic approach introduced in this paper is that no such extension
is necessary. We end Section 2 by proving that the new potential and its gradient
are equivalent to the original potential and its gradient. Then we show that the
equations of motion of the n–body problem on M2

R, and the original equations on
the sphere, are equivalent.

In Section 3 we consider a suitable one-dimensional additive subgroup of the Lie
algebra su(2) and, projecting it via the exponential map onto SU(2), we obtain a
one-dimensional subgroup of isometries. When this subgroup is associated to the
corresponding one-dimensional group of Moebius transformations, we show that
with the help of the Principal Axis Theorem the above subgroup generates all the
relative equilibria of the n–body problem in M2

R. We thus obtain several algebraic
equations that characterize all relative equilibria.

In Section 4 we study the relative equilibria of the 2–body problem in M
2
R. The

system describing this problem is not integrable (see [12] and [14] for more details).
Therefore the study of relative equilibria for the 2-body problem onM2

R is of relevant
importance, since they provide families of periodic orbits in a nonintegrable system.
Finally, in Section 5, we study the relative equilibria of the 3–body problem in M

2
R.

We first consider the collinear case, which corresponds to the Eulerian orbits, and
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AN INTRINSIC APPROACH IN THE CURVED n-BODY PROBLEM 3807

obtain the necessary and sufficient conditions for their existence. We end the paper
with a result that gives a necessary and sufficient condition for the existence of the
Lagrangian relative equilibria.

2. Equations of motion

Consider a surface of constant positive curvature K. It is well known (see for
instance [7]) that this surface is locally represented by the two-dimensional sphere

of radius R = 1/
√
K.

Let Π be the stereographic projection through the north pole into the plane of
the equator

Π : S2
R → R

2,

Q → q.(2.1)

If Q = (x, y, z), then q = (u, v), where

u =
Rx

R− z
and v =

Ry

R− z
.

The inverse function is given by

x =
2R2u

u2 + v2 +R2
, y =

2R2v

u2 + v2 + R2
, z =

R(u2 + v2 −R2)

u2 + v2 +R2
.

The metric (distance) of the sphere S2
R is transformed into the metric

(2.2) ds2 =
4R4

(u2 + v2 +R2)2
(du2 + dv2).

Under the above transformations the geodesics of S2
R are mapped as follows:

the equator of S2
R into the geodesic circle of radius R (the unique circle which

is a geodesic in the curved plane), the meridians into straight lines through the
origin, and the other great circles of S2

R into ellipses. The length for all these
geodesics is 2π. In fact, since the metric is conformal with factor of conformity

λ(u, v) =
4R4

(u2 + v2 +R2)2
, the Christoffel symbols associated to such a metric are

given by

− Γ1
22 = Γ1

11 = Γ2
12 =

1

2λ(u, v)

∂λ

∂u
= − 2u

(u2 + v2 +R2)2
,

Γ2
22 = −Γ2

11 = Γ1
12 =

1

2λ(u, v)

∂λ

∂v
= − 2v

(u2 + v2 +R2)2
.(2.3)

Therefore, in these coordinates, the geodesics can also be obtained by solving the
system (see [8] for more details):

ü+ Γ1
11u̇

2 + 2Γ1
12u̇v̇ + Γ1

22v̇
2 = 0,

v̈ + Γ2
11u̇

2 + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0,

which is equivalent to the system of second order differential equations

ü =
2

R2 + u2 + v2
(

uu̇2 + 2vu̇v̇ − uv̇2
)

,

v̈ =
2

R2 + u2 + v2
(

vv̇2 + 2uu̇v̇ − vu̇2
)

.(2.4)
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The plane with the above metric is called a spherical plane, which we denote by
R2

sph. The distance between two points qi, qj ∈ R2
sph takes the form

dkj = d(qk, qj) = d(Qk, Qj) = R arccos
Qk ·Qj

R2

with

Qk ·Qj =
4R4(qk · qj) +R2(||qk||2 −R2)(||qj ||2 −R2)

(||qk||2 +R2)(||qj ||2 +R2)
,

where · denotes the standard dot product. In order to introduce the cotangent
potential, as in [3], we first notice that

(2.5) cotR

(

dkj
R

)

=
4R2(qk · qj) + (||qk||2 − R2)(||qj ||2 − R2)

W
,

where

W =
√

W1 −W2,

W1 = (||qk||2 +R2)2(||qj ||2 +R2)2, and

W2 =
[

4R2(qk · qj) + (||qk||2 −R2)(||qj ||2 −R2)
]2

.

To simplify the computations, we further introduce complex variables, z = u +
iv, z̄ = u− iv. We can thus identify R

2
sph with the complex plane C. The distance

(2.2) and equation (2.5) take the form

ds2 =
4R4 dzdz̄

(R2 + |z|2)2 ,(2.6)

cotR

(

dkj
R

)

=
2(zkz̄j + zj z̄k)R

2 + (|zk|2 −R2)(|zj |2 −R2)
√

Θ1,(k,j)(z, z̄)
,(2.7)

respectively, where

Θ1,(k,j)(z, z̄) = (|zk|2 +R2)2(|zj |2 +R2)2

− [2(zkz̄j + zj z̄k)R
2 + (|zk|2 −R2)(|zj |2 −R2)]2.(2.8)

We denote by M2
R the space C endowed with the metric (2.6).

2.1. The intrinsic approach. Let z = (z1, z2, . . . , zn) ∈ Cn be the position of n
point particles with masses m1,m2, . . . ,mn > 0 in the the space M2

R. We assume
that the particles are moving under the action of the Lagrangian

(2.9) LR(z, ż, z̄, ˙̄z) = TR(z, ż, z̄, ˙̄z) + UR(z, z̄),

where

(2.10) TR(z, ż, z̄, ˙̄z) =
1

2

n
∑

k=1

mkλ(zk, z̄k) |żk|2

is the kinetic energy,

UR(z, z̄) =
1

R

n
∑

1≤k<j≤n

mkmj cotR

(

dkj
R

)

=
1

R

n
∑

1≤k<j≤n

mkmj
2(zkz̄j + zj z̄k)R

2 + (|zk|2 −R2)(|zj |2 −R2)
√

Θ1,(k,j)(z, z̄)
(2.11)
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is the cotangent force function (i.e. the negative of the potential) defined in the set
M2n

R \Δ, where Δ is the set of zeros of Θ1,(k,j)(z, z̄), and

(2.12) λ(zk, z̄k) =
4R4

(R2 + |zk|2)2

is the conformal function for its Riemannian metric.
The following result gives the equations of motion for the mechanical system

defined in M2
R.

Lemma 2.1. Let

L = LR(z, ż, z̄, ˙̄z) =
1

2

n
∑

k=1

mkλ(zk, z̄k) |żk|2 + UR(z, z̄)

be the Lagrangian defined in (2.9) for the given problem. Then the curve solution
of the corresponding Euler-Lagrange equations satisfies the system of second order
ordinary differential equations

(2.13) mkz̈k =
2mkz̄kż

2
k

R2 + |zk|2
+

2

λ(zk, z̄k)

∂UR

∂z̄k
(z, z̄),

where

(2.14)
∂UR

∂z̄k
=

n
∑

j=1,j �=k

2mkmjRP1,(k,j)(z, z̄)

[Θ1,(k,j)(z, z̄)]3/2

and

P1,(k,j)(z, z̄) = (R2 + |zk|2)(|zj |2 +R2)2
[

(|zj |2 − (zkz̄j + zj z̄k)−R2)zk + (|zk|2 +R2)zj
]

= (R2 + |zk|2)(|zj |2 +R2)2(R2 + z̄jzk)(zj − zk).(2.15)

Proof. We recall that in complex variables the Euler-Lagrange equations are

d

dt

(

∂L

∂ ˙̄zk

)

=
∂L

∂z̄k
.

Therefore,

(2.16)
∂L

∂z̄k
=

1

2
mk

∂λ

∂z̄k
(zk, z̄k)|żk|2 +

∂UR

∂z̄k
(zk, z̄k)

and

(2.17)
d

dt

∂L

∂ ˙̄zk
=

1

2
mk

(

∂λ

∂zk
(zk, z̄k)żk +

∂λ

∂z̄k
(zk, z̄k) ˙̄zk

)

żk +
1

2
mkλ(zk, z̄k)z̈k.

If we compare equations (2.16) and (2.17) we obtain

(2.18) mk
∂λ

∂zk
(zk, z̄k)ż

2
k +mkλ(zk, z̄k)z̈k = 2

∂UR

∂z̄k
(zk, z̄k).

From equation (2.18) we obtain

(2.19)
mk

λ(zk, z̄k)

∂λ

∂zk
(zk, z̄k)ż

2
k +mkz̈k =

2

λ(zk, z̄k)

∂UR

∂z̄k
(zk, z̄k).
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A straightforward computation shows that

1

λ(zk, z̄k)

∂λ

∂zk
(zk, z̄k) = − 2z̄k

R2 + |zk|2
.

The substitution of this expression into equation (2.19) ends the proof. �

We can now prove the following result.

Corollary 2.2. If in the space M2
R the potential is zero or is constant in the whole

space, then the particles move freely along geodesics.

Proof. From Lemma 2.1, the equations of motion have the form

(2.20) mkz̈k +mkΓ
k(żk, ˙̄zk) =

2

λ(zk, z̄k)

∂UR

∂z̄k
(z, z̄).

The right hand side of (2.20) is the k–coordinate of the curved gradient UR with the
new metric, and the left hand side is the equation of the geodesics associated to the
Riemannian metric when the right hand side vanishes. Here {Γk(żk, ˙̄zk)} denotes
the associated connection compatible with the corresponding Riemannian metric
when it is applied to the velocity vectors żk, ˙̄zk, which is obtained from equations
(2.4) by computing

z̈k
2

=
(ük + iv̈k)

2

=
1

R2 + u2
k + v2k

(

(uk − ivk)u̇
2
k − 2(vk − iuk)vku̇kv̇k + (−uk + ivk)u̇

2
k

)

=
(uk − ivk)

R2 + u2
k + v2k

(

u̇2
k + 2ivku̇kv̇k − u̇2

k

)

=
(uk − ivk)

R2 + u2
k + v2k

(

u̇2
k + iu̇2

k

)2

=
z̄kż

2
k

R2 + |zk|2
,(2.21)

a fact that proves the result. �

2.2. Equivalence of the models. In [3] the equations of motion for the n-body
problem in spaces of constant curvature K > 0 are given by

(2.22) miq̈i = ∇qi
VK(q)−miK(q̇i · q̇i)qi, qi · qi = K−1, K �= 0,

i = 1, . . . , n,

where we have replaced the original coordinates Qi by qi and Uκ by VK.

VK(q) =
∑

1≤i<j≤n

mimjK
1/2(Kqi · qj)

[(Kqi · qi)(Kqj · qj)− (Kqi · qj)2]
1/2

is the force function, and qi · qi = K−1 are the constraints that maintain the
particles on the sphere of curvature K. Then

∇qi
VK(q) =

n
∑

j=1,j �=i

mimjK
3/2(Kqj · qj) [(Kqi · qi)qj − (Kqi · qj)qi]

[

(Kqi · qi)(Kqj · qj)− (Kqi · qj)
2
]3/2

.

Using the constraint Kqi · qi = 1, it follows that

(2.23) ∇qi
VK(q) =

n
∑

j=1,j �=i

mimjK
3/2[qj − (Kqi · qj)qi]

[1− (Kqi · qj)2]3/2
.
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Equations (2.22) have the total energy integral

(2.24) HK(q,p) = TK(q,p)− VK(q),

where TK(q,p) := 1
2

∑n
i=1 m

−1
i (pi · pi)(Kqi · qi) is the kinetic energy and p

:= (p1, . . . ,pn) denotes the momentum of the n-body system, with pi := miq̇i

representing the momentum of the body of mass mi, i = 1, . . . , n.
Returning to our equations on M

2
R, it is easy to verify that system (2.20) has

the total energy integral

(2.25) HR(z, ż) =
1

2

n
∑

k=1

mkλ(zk, z̄k) |żk|2 − UR(zk, z̄k).

Now we can prove the equivalence between the equations of motion of the n–
body problem defined on the sphere S2

K of curvature K > 0 and the equations we
have obtained on M2

R.

Theorem 2.3. The equations of motion for the n–body problem on M
2
R, given by

system (2.20), and the corresponding equations on the sphere S2
K, given by system

(2.22), are equivalent.

Remark. In [3], the equations of motion were obtained using constrained Lagrangian
dynamics. This variational method required the extension of the metric and the
differential properties from the sphere to the ambient space. Consequently, in the
above form of VK, the expressions Kqi · qi occur explicitly, though each of them
takes the value 1. In our intrinsic approach, however, we don’t need to extend the
force function to any ambient space. In fact this is the big advantage of working
directly in a two-dimensional space instead of embedding the problem in a higher-
dimensional space with constraints, so we can impose the condition Kqi · qi = 1
from the very beginning, i.e. work with

(2.26) VK(q) =
∑

1≤i<j≤n

mimjK
1/2(Kqi · qj)

[1− (Kqi · qj)2]1/2
.

In [3], however, this early substitution would lead to the incorrect gradient

∇qi
VK(q) =

n
∑

j=1
j �=i

mimjK
3/2qj

[1− (Kqi · qj)2]3/2
,

which is not the same as (2.23). Thus the question arises as to whether our ap-
proach, which starts from (2.26), leads to a gradient equivalent to (2.23). This is
why, in the proof below, we will show not only the equivalence of the Hamiltonians
(2.24) and (2.25), but also of the gradients for the corresponding force functions.

Proof of Theorem 2.3. A direct computation shows that the inner product qk · qj

in complex variables takes the form

qk · qj =
2R4(zkz̄j + zj z̄k) +R2(|zk|2 −R2)(|zj |2 −R2)

(|zk|2 +R2)(|zj |2 + R2)
.
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Using this fact and the stereographic projection, we can write the force function
VK(q) in complex coordinates as

VK(q) =

n
∑

j=1,j �=k

mkmjK
1/2(Kqk · qj)

[

1− (Kqk · qj)
2
]1/2

=

n
∑

j=1,j �=k

mkmj
1
R

[

1
R2qk · qj

]

[

1−
(

1
R2qk · qj

)2
]1/2

=
1

R

n
∑

j=1,j �=k

mkmjqk · qj
[

R4 − (qk · qj)
2
]1/2

=
1

R

n
∑

j=1,j �=k

mkmj
2(zkz̄j + zj z̄k)R

2 + (|zk|2 −R2)(|zj |2 −R2)
√

Θ1,(k,j)(z, z̄)

= UR(z, z̄),(2.27)

where Θ1,(k,j)(z, z̄) is defined in (2.8). Thus the force function VK(q) and UR(z, z̄)
are identical.

To show that their gradients are identical, notice that since
∂qj

∂z̄k
vanishes if

j �= k, the gradient (2.23) takes in complex variables the form

∂VK

∂z̄k
(q) =

n
∑

j=1

∇qj
VK(q) · ∂qj

∂z̄k

=

⎛

⎜

⎝

n
∑

j=1,j �=k

mjmk(K)3/2 [qj − (Kqk · qj)qk]
[

1− (Kqk · qj)
2
]3/2

⎞

⎟

⎠
· ∂qk

∂z̄k
.(2.28)

For any j = 1, 2, . . . , n, the position qj on the sphere can be written in complex
coordinates as

(2.29) qj =

(

R2(zj + z̄j)

zj z̄j +R2
,
−iR2(zj − z̄j)

zj z̄j +R2
,
R(zj z̄j −R2)

zj z̄j +R2

)

.

Therefore, for j = k, we obtain

∂qk

∂z̄k
=

R2

(|zk|2 +R2)2
(

−z2k +R2, i(z2k +R2), 2Rzk
)

,

and this implies that

qj ·
∂qk

∂z̄k
=

2R4
(

(|zj |2 − (zkz̄j + zj z̄k)−R2)zk + (|zk|2 +R2)zj
)

(|zj |2 +R2)(|zk|2 +R2)2
.

From the last equality, we have that qk · ∂qk

∂z̄k
= 0. Using this identity in equation

(2.28), we get

∂VK

∂z̄k
(q) =

n
∑

j=1,j �=k

mjmk(K)3/2
[

1− (Kqk · qj)
2
]3/2

[

[qj − (Kqk · qj)qk] ·
∂qk

∂z̄k

]

=

n
∑

j=1,j �=k

mjmk(K)3/2
[

1− (Kqk · qj)
2
]3/2

(

qj ·
∂qk

∂z̄k

)

.(2.30)
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In complex variables, equation (2.30) becomes

∂VK

∂z̄k
(q) =

n
∑

j=1,j �=k

mjmk(K)3/2
[

1− (Kqk · qj)
2
]3/2

(

qj ·
∂qk

∂z̄k

)

=

n
∑

j=1,j �=k

mjmk

2R(|zj |2 +R2)2(|zk|+R2)2L1,(k,j)(z, z̄)

[Θ1,(k,j)(z, z̄)]3/2

=
∂UR

∂z̄k
(z, z̄),(2.31)

where L1,(k,j)(z, z̄) = (|zj |2−(zkz̄j+zj z̄k)−R2)zk+(|zk|2+R2)zj and Θ1,(k,j)(z, z̄)
is defined in (2.8).

Equations (2.27) and (2.31) prove the equivalence of the force functions, on one
hand, and of their gradients, on the other hand. To finish the proof, we still need
to show that the kinetic energies are equivalent.

Since Π is an isometry, it follows that

q̇k · q̇k = λ(zk, z̄k)|żk|2.
From equation (2.29), the coordinates of the velocity q̇k are

R2żk(R
2 − z̄2k) + ˙̄zk(R

2 − z2k)

(zkz̄k + R2)2
,

−iR2(żk(R
2 + z̄2k)− ˙̄zk(R

2 + z2k))

(zkz̄k +R2)2
,

and
R3(żkz̄k + zk ˙̄zk)

(zkz̄k +R2)2
.

By straightforward computations we get

TK(q,p) =
1

2

n
∑

k=1

m−1
i (pk · pk)(Kqk · qk) =

1

2

n
∑

k=1

mkq̇k · q̇k

=
1

2

n
∑

k=1

mk
4R2

(R2 + |żk|2)4
[

(żkR
2 − ˙̄zkz

2
k)( ˙̄zkR

2 − żkz̄
2
k) +R2(żkz̄k + zk ˙̄zk)

2
]

=
1

2

n
∑

k=1

mk
4R2żk ˙̄zk

(R2 + |żk|2)4
[

R4 + 2zkz̄k + z2kz̄
2
k

]

=
1

2

n
∑

k=1

mk
4R2żk ˙̄zk

(R2 + |żk|2)2
|żk|2 =

1

2

n
∑

k=1

mkλ(zk, z̄k)|żk|2 = TR(z, ż, z̄, ˙̄z).

We thus obtain that the expression for the above kinetic energy and the kinetic
energy given in (2.10) are equivalent. Therefore systems (2.20) and (2.22) describe
similar qualitative dynamics. �

3. Relative equilibria

In this section we start the analysis of the dynamics of the particles in M
2
R,

present some general aspects of this problem, and characterize all relative equilibria.

3.1. The singularities in M2
R. The singular set in M2

R for the n–body problem
is the zero set of the equation (2.8):

Θ1,(k,j)(z, z̄) = 0.
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The solution of the above equation gives us the following sets:

(1) The singular collision set given by Δ+ =
⋃

kj Δ+
kj , where

(3.1) Δ+
kj = {zk = zj}.

(2) The singular antipodal set given by Δ− =
⋃

kj Δ−
kj , where

(3.2) Δ−
kj =

{

zk =
−R2

|zj |2
zj

}

.

We define the total singular set of the problem as

(3.3) Δ = Δ+ ∪ Δ−.

The behavior of the motion close to the total singular set for the n–body problem
in spaces of nonzero Gaussian constant curvature has been widely studied by Florin
Diacu [4], who obtained some important results in the intersection Δ = Δ+ ∩ Δ−.
He thus showed that there exist solutions that end in hybrid collision-antipodal
configurations, solutions that can never reach such a configuration, no matter how
close to them the initial conditions are taken, and solutions that remain analytic at
such configurations. Moreover, he generalized to the curved case some results that
Carl Sundman and Paul Painlevé proved for the Euclidean case.

3.2. Relative equilibria in M
2
R. Let Iso(M2

R) be the group of isometries of M2
R,

and let us denote by {G(t)} a one-parametric subgroup of Iso(M2
R), which acts

coordinatewise in M2n
R \Δ and in Δ leaving them invariant.

Definition 3.1. A relative equilibrium of the curved n–body problem is a solution
z(t) of (2.20) which is invariant relative to the subgroup {G(t)}. In other words,
the function obtained by the action denoted by w(t) = G(t)z(t) is also a solution
of (2.20).

Now we give conditions for the existence of relative equilibria on M2
R. Rewriting

the equations of motion (2.20) we obtain

(3.4) mkz̈k =
2mkz̄kż

2
k

R2 + |zk|2
+

(R2 + |zk|2)2
2R4

∂UR

∂z̄k
.

We know that the group of proper isometries of M2
R is the quotient SU(2) / {±I}

of the special unitary subgroup

SU(2) = {A ∈ GL(2,C) | ĀT A = I},
where each matrix A ∈ SU(2) has the form

A =

(

a b
−b̄ ā

)

,

with a, b ∈ C satisfying |a|2 + |b|2 = 1, which makes SU(2) diffeomorphic to one
real three-dimensional sphere in C2 (see for instance Doubrovin et al. [8]).

Every class A ∈ SU(2)/{±I} is associated to a unique Moebius transformation
(fractional linear transformation) fA : M2

R → M2
R,

fA(z) =
az + b

−b̄z + ā
,

because fA = f−A. The Lie algebra of SU(2) is the three-dimensional real linear
space

su(2) = {X ∈ M(2,C) | X̄T = −X, trace (X) = 0}
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spanned by the basis of complex Pauli matrices,
{

h1 =
1

2

(

0 1
−1 0

)

, h2 =
1

2

(

i 0
0 −i

)

, h3 =
1

2

(

0 i
i 0

)}

.

Let us consider the standard exponential map of matrices from the Lie algebra
into its Lie group

exp : su(2) → SU(2),

applied to the one-parametric additive subgroups (straight lines in su(2)) {t h1},
{t h2}, and {t h3}, for obtaining the respective one-parametric subgroups of SU(2):

(1) The subgroup

H1(t) = exp(t h1) =

(

cos(t/2) sin(t/2)
− sin(t/2) cos(t/2)

)

,

which defines the one-parametric family of acting Moebius transformations

fH1
(z) =

z cos(t/2) + sin(t/2)

−z sin(t/2) + cos(t/2)
.

(2) The subgroup

H2(t) = exp(t h2) =

(

eit/2 0
0 e−it/2

)

,

which defines the one-parametric family of acting Moebius transformations

fH2
(z) = eit z.

(3) The subgroup

H3(t) = exp(t h3) =

(

cos(t/2) i sin(t/2)
i sin(t/2) cos(t/2)

)

,

which defines the one-parametric family of acting Moebius transformations

fH3
(z) =

z cos(t/2) + i sin(t/2)

zi sin(t/2) + cos(t/2)
.

We remark that the rotation group matrix A(t) ∈ SO(3) introduced at the
beginning of this paper (equation (1.1)) is the matrix solution (isometric flow) for
the Killing vector field LZ(x, y, z) = (y,−x, 0), which is a rotation around the z–
axis defined in the whole R3 that leaves invariant any sphere S2 centered at the
origin.

Proposition 3.2. If G : SU(2)/ ± I → SO(3) is the isomorphism between the
above groups of isometries of the sphere, then G(H2(t)) = A(t).

Proof. By the stereographic projection

Π(x, y, z) =

(

Rx

R− z
,

Ry

R− z

)

,

we can see that since the rotation tangent vector at (x, y, z) in S2
R is (y,−x, 0),

after the projection we have

(3.5) DΠ(LZ)(x, y, z)
t =

(

R
R−z 0 Rx

(R−z)2

0 R
R−z

Ry
(R−z)2

)

⎛

⎝

y
−x
0

⎞

⎠ =

( Ry
R−z
−Rx
R−z

)

,
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which in complex notation corresponds to

v − iu = −i(u+ iv) = −iz.

We are thus led to the complex differential equation

(3.6) ż = −iz,

which generates the flow ft(z) = e−itz, associated with the one-parametric sub-
group of Moebius transformations fH2

(t). That is G(H2(t)) = A(t). �

Remark. By the Principal Axis Theorem, which states that any rotation in R3 is
around any fixed axis, we can choose without loss of generality the z–axis as the
rotation axis which corresponds under the isomorphism G to the subgroup H2.
Actually the subgroups H1 and H3 represent rotations under G around the x and
y-axis, respectively, which, when are applied in M2

R with the metric derived from
the stereographic projection, become quite complicated. Thanks to the Principal
Axis Theorem, we can ignore them, so from here on we will use only the subgroup
H2.

To obtain all relative equilibria inM2
R, by Proposition 3.2 and the above Remark,

we must analyze just the second class of Moebius transformations {H2(t)} given by

(3.7) wk(t) = eitzk(t),

where z(t) = (z1(t), . . . , zn(t)) is a solution of equation (3.4). So we shall find
conditions which guarantee that the solution z(t) of equation (3.7) is also a solution
of system (3.4). Straightforward computations lead us to

ẇk = (izk + żk)e
it

ẅk = (z̈k + 2iżk − zk)e
it

dz̄k
dw̄k

= eit.(3.8)

Therefore w = w(t) is a solution of equation (3.4) if

mkẅk =
2mkw̄kẇ

2
k

R2 + |wk|2
+

(R2 + |wk|2)2
2R4

∂UR

∂w̄k
.

In terms of zk, this condition can be written as

mk(z̈k + 2iżk − zk)e
it =

2mkz̄k e
−it(izk + żk)

2e2it

R2 + |zk|2

+
(R2 + |zk|2)2

2R4

∂UR

∂z̄k

dz̄k
dw̄k

=
2mkz̄k(izk + żk)

2eit

R2 + |zk|2
+

(R2 + |zk|2)2
2R4

∂UR

∂z̄k
eit.

Since z = z(t) is a solution of (3.4), mk �= 0, and eit �= 0, the last relation becomes

(3.9) 2iżk − zk =
2z̄k(2izkżk − z2k)

R2 + |zk|2
,

which is equivalent to

(3.10) 2i

[

1− 2|zk|2
R2 + |zk|2

]

żk =

[

1− 2|zk|2
R2 + |zk|2

]

zk.
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Equation (3.10) holds if and only if

(3.11) 1− 2|zk|2
R2 + |zk|2

= 0

or

(3.12) 2iżk = zk.

A necessary and sufficient condition for obtaining a relative equilibrium from
one fixed point is that all the particles are located on the geodesic circle. We have
thus recovered the following result, which was first proved in Diacu et al. [3].

Proposition 3.3. If on the geodesic circle we place n particles with arbitrary
masses (avoiding antipodal positions) such that the configuration is a fixed point
of the system, then the orbit generated by the action of H2(t) is a relative equilib-
rium.

Proof. Condition (3.11) is equivalent to |zk(t)| = R, that is, the k–th particle is
moving along the geodesic circle. In fact, if all the particles with arbitrary masses
move along such geodesics, then the left hand side of equation (2.20) vanishes
because it corresponds to a geodesic, so the potential does not act; that is, along
this circle, ∂UR

∂z̄k
(z, z̄) = 0. If additionally the particles form a fixed point, that is, if

the velocities of the particles vanish (żi(t) = 0), then under the action of H2 such
a configuration is a relative equilibrium. �

Remark. In general, the existence of the above relative equilibria generated by fixed
points is an open question.

For n = 3, however, an affirmative answer has been recently given in [6].

Condition (3.12) holds for |zk(t)| = rk, where rk is a positive number with rk �= R
and 0 ≤ rk < πR. We are interested in the study of relative equilibria with at least
one particle not on the geodesic circle.

We have the following result which characterizes, modulo isometries, all relative
equilibria.

Theorem 3.4. Consider n point particles with masses m1,m2, . . . ,mn > 0 moving
in M2

R. A necessary and sufficient condition for the solution

z(t) = (z1(t), z2(t), . . . , zn(t))

of (2.20) to be a relative equilibrium is that the coordinates satisfy the following
system given by the rational functions:

(3.13)
R3(R2 − r2k)zk
4(R2 + r2k)

4
= −

n
∑

j=1,j �=k

mj(r
2
j +R2)2(R2 + zkz̄j)(zj − zk)

[Θ̃1,(k,j)(z, z̄)]3/2
,

where

Θ̃1,(k,j)(z, z̄) = (r2k +R2)2(r2j +R2)2 − [2(zkz̄j + zj z̄k)R
2 + (r2k −R2)(r2j −R2)]2

and |zl(t)| = rl ∈ [0, πR).

Proof. A necessary condition for the existence of a relative equilibrium is that the
bodies are moving along ordinary circles centered at the origin of the coordinate
system in M2

R. In order to find all relative equilibria we derive and use condition
(3.12), getting

(3.14) −4z̈k = zk.
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Therefore, substituting (3.14) into equation (3.4) and again using (3.12), we
obtain that the coordinates of the relative equilibrium z = z(t) must satisfy the
system of fractional algebraic equations

(3.15) mkzk =
2mk|zk|2zk
R2 + |zk|2

− 2(R2 + |zk|2)2
R4

∂UR

∂z̄k
.

Introducing |zl(t)| = rl into equation (3.15) and computing the partial deriva-
tives of the potential UR, we obtain a system of n equations given by the rational
functions (3.13). �

Notice that, in order to provide relative equilibria, equation (3.12) imposes a
condition on the velocities of equation (3.4).

4. The case n = 2

The two-body problem in spaces of positive Gaussian curvature has been widely
studied by several authors; see for instance [1, 2, 10, 11, 13]. The study of this
problem is divided into two cases. The first case, called the Kepler problem in
spaces of positive curvature, assumes that one particle is fixed at the north pole of
the two sphere while the second body is moving; this problem is integrable. In the
second case both bodies move freely on the sphere. Then, since the center of mass
is not a first integral, the problem is not integrable (see [12, 14] for more details).

Therefore the study of relative equilibria for the two-body problem on M2
R, that

is, the orbits invariant by the action of the one-parametric subgroup {H2(t)}t∈R,
is of relevant importance since the set of relative equilibria that we find gives us
families of periodic orbits in a nonintegrable system.

For a system of two point particles on M2
R with masses m1 and m2, the system

of algebraic equations (3.13) becomes

R3(R2 − r21)z1
4(R2 + r21)

4
= −m2(r

2
2 +R2)2(R2 + z1z̄2)(z2 − z1)

[(Q̃1,(1,2)(z, z̄)]3/2
,

R3(R2 − r22)z2
4(R2 + r22)

4
= −m1(r

2
1 +R2)2(R2 + z2z̄1)(z1 − z2)

[Q̃1,(2,1)(z, z̄)]3/2
,(4.1)

where

Θ̃1,(k,j)(z, z̄) = (r21 +R2)2(r22 +R2)2 − [2(z1z̄2 + z2z̄1)R
2 + (r21 −R2)(r22 −R2)]2.

After some algebraic manipulations, system (4.1) takes the form

(R2 − r21)(R
2 + r22)

2m1

(R2 − r22)(R
2 + r21)

2m2
=

z2(R
2 + z1z̄2)(z2 − z1)

z1(R2 + z2z̄1)(z1 − z2)

= − (r22z1 +R2z2)(z1 − z2)

(r21z2 +R2z1)(z1 − z2)
,(4.2)

and, when we avoid the singularities, it turns into the equation

(R2 − r21)(R
2 + r22)

2m1

(R2 − r22)(R
2 + r21)

2m2
= −r22z1 +R2z2

r21z2 +R2z1
,

which can be written as the polynomial equation

0 = [m1(R
2 − r21)(R

2 + r22)
2R2 +m2(R

2 − r22)(R
2 + r21)

2r22]z1

+ [m1(R
2 − r21)(R

2 + r22)
2r21 +m2(R

2 − r22)(R
2 + r21)

2R2]z2.(4.3)
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From (4.3) we can conclude that if one particle is fixed at the origin of the
coordinate system, then the second particle moves along the geodesic circle with
unitary velocity.

4.1. Two particles on the same circle. Since we have proved that for relative
equilibria the bodies move along circles, we first assume that they are in the same
circular orbit with radius r1 = r2 = r. We now have the following result.

Theorem 4.1. For the two-body problem in M
2
R, a necessary and sufficient con-

dition that the particles move along the same circle of radius r �= R and form a
relative equilibrium is that they have equal masses and are located at opposite sides
of the circle.

Proof. Equation (4.3) becomes

(4.4) 0 = (R2 − r2)(R2 + r2)2[(m1R
2 +m2r

2)z1 + (m1r
2 +m2R

2)z2],

which for r �= R is equivalent to

(4.5) 0 = (m1R
2 +m2r

2)z1 + (m1r
2 +m2R

2)z2.

If m1 = m2, then from (4.5) we have

0 = m(R2 + r2)z2 +m(r2 +R2)z1,

which implies that z1 = −z2.
If in equation (4.5) we use the conditions |z1| = |z2| = r, we obtain

r =

∣

∣

∣

∣

m1R
2 +m2r

2

m1r2 +m2R2

∣

∣

∣

∣

r,

which implies that m1 = m2, and therefore, again, that z1 = −z2. It follows that
the particles must be located at opposite sides of the circle of radius r1 = r2 = r. �

Corollary 4.2. There are no relative equilibria for the two body problem such that
one of the particles is located on the geodesic circle of radius R.

Proof. We observe that if one of the particles is on the geodesic circle, then from
equation (4.3) we obtain that

z2 = − r22
R2

z1,

which implies that r2 = R and the particles must be antipodal, which is a forbidden
configuration. �

4.2. The general case. Here we study the more general problem of finding relative
equilibria when the particles move on circles with different radii r1 �= r2 and will
determine the relation between their masses. First we obtain the necessary and
sufficient conditions in order to have nongeneric relative equilibria, which we call
degenerate for short. The above degenerate relative equilibrium corresponds to a
bifurcation for the family of relative equilibria of the two-body problem in M

2
R.

Lemma 4.3. For the two-body problem in M
2
R, a necessary and sufficient condition

for the existence of a degenerate relative equilibrium is that the positions of the
particles are given by

z1 = ±
√

3± 2
√
2 R, z2 = ±

√

3± 2
√
2 R
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and their mass relation is given by one of the equations

m2 = m1, m2 =
(2−

√
2)2

(2 +
√
2)2

m1, m2 =
(2 +

√
2)2

(2−
√
2)2

m1.

Proof. To simplify the computations, but without loss of generality, we can fix the
value of m1 > 0 and take z1 = r1 = α to be determined later. Furthermore, if we
take |z2| = r and z2 = z, then equation (4.3) becomes an algebraic equation in the
variable z,

(4.6) z = −m1(R
2 − α2)(R2 + r2)2R2 +m2(R

2 − r2)(R2 + α2)2r2

m1(R2 − α2)(R2 + r2)2α2 +m2(R2 − r2)(R2 + α2)2R2
α.

Notice that if z1 = α is located on the x–axis (it is a real number), then z2 is also
on the x–axis. Using the condition |z| = r in equation (4.6), it follows that,

0 =
[

m1(R
2 − α2)(R2 + r2)2α−m2(R

2 − r2)(R2 + α2)2r
](

αr ±R2
)

.

Therefore

(4.7) r = ±R2

α
or

(4.8) m1α(R
2 − α2)(R2 + r2)2 −m2(R

2 − r2)(R2 + α2)2 r = 0.

In the first case, when we substitute relation (4.7) into equation (4.6), we obtain

(4.9) z2 = −R2

α
,

which is a singular antipodal point with respect to z1 = α as defined in (3.2), and
therefore cannot be a solution.

To search for real solutions of equation (4.8) and to prove the existence of relative
equilibria, we define the real function of a real variable

(4.10) f(x) = m1α(R
2 − α2)(R2 + x2)2 −m2(R

2 + α2)2(R2x− x3)

and seek its zeros. For simplicity, we begin by studying the important case when
the function f has double roots. The derivative of that function is

(4.11) f
′

(x) = 4m1α(R
2 − α2)(R2 + x2)x−m2(R

2 + α2)3(R2 − 3x2),

and its common zeros with f are the double roots of f . We obtain the double zeros
by solving the system below in terms of x:

m1α(R
2 − α2)(R2 + x2)2 −m2(R

2 + α2)2(R2x− x3) = 0,

4m1α(R
2 − α2)(R2 + x2)x−m2(R

2 + α2)3(R2 − 3x2) = 0.(4.12)

Since x = 0 is never a root of f and x2 +R2 �= 0, the above system is equivalent to

4x f(x) = 0,

(R2 + x2) f
′

(x) = 0.(4.13)

The solutions of this system are x = ±
√

3± 2
√
2 R. They are also conditions for

having nontrivial solutions of the system (4.12) when viewed as a linear system in
the variables m1 and m2. From the symmetry α ↔ x in equation (4.10), we also

obtain the necessary condition for the value of α = ±
√

3± 2
√
2 R.
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Therefore, in the particular case of double roots of f , the values

(4.14) z1 = ±
√

3± 2
√
2 R, z2 = ±

√

3± 2
√
2 R

belonging to the interval (−πR, πR) give us the necessary conditions for the parti-
cles of masses m1 and m2 to form a relative equilibrium.

The mass relation is obtained from the first equation of the system (4.12),

(4.15) m2 =
z1(R

2 − z21)(R
2 + z22)

2

z2(R2 − z22)(R
2 + z21)

2
m1.

When we substitute the solutions (4.14) into (4.15) we obtain

(4.16) m2 =
±
√

3± 2
√
2 (1±

√
2) (−1±

√
2)2

±
√

3± 2
√
2 (1±

√
2) (−1±

√
2)2

m1.

Avoiding the singular points in (4.16) again, considering classes under the action
of the group {H2(t)}, and doing a simple (but tedious) analysis of the choice of signs,
we obtain four possible different relative equilibria in M

2
R for this degenerated case

with the mass relation

(4.17) m2 = m1, m2 =
(2−

√
2)2

(2 +
√
2)2

m1, m2 =
(2 +

√
2)2

(2−
√
2)2

m1.

For two equal masses there are two classes of relative equilibria: when the par-
ticles are inside the geodesic circle and when they are outside it. The last two
relations in equation (4.17) correspond to one particle inside the geodesic circle
and the other outside it. The last relation gives the bifurcation points of problem
(3.4). This step completes the proof. �

We can now state the main result of this section.

Theorem 4.4. Two particles with masses m1 and m2, located respectively at z1 = a
and z2 = b, and close enough to the circle of radius α in M

2
R, form a relative

equilibrium if and only if a and b are roots of (4.10), and the masses hold the
relation

(4.18) m1a(R
2 − a2)(R2 + b2)2 = m2(R

2 − b2)(R2 + a2)2 b.

Moreover, we can have 0, 1, 2, 3 or 4 classes of relative equilibria.

Proof. Using arguments of the theory of singularities and transversality (see
Guillemin et al. [9]), we can perturb a little bit the degenerate case proved in
Lemma 4.3, getting a sufficient condition to have new classes of relative equilibria.
In this way, if we take a suitable perturbation in one of the masses (particularly the
mass m2), then the corresponding function f in (4.10) can preserve one of the two
tangential zeros, or generically, create two new roots in the interval (−πR, πR) for
each previous tangential zero. Each one of these new roots define a nondegenerate
class of relative equilibrium. Now, if we take two of these new roots, say z1 = a
and z2 = b, then in order to have a relative equilibrium it is necessary to have the
mass relation (4.18) obtained directly from (4.8). �
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3822 ERNESTO PÉREZ-CHAVELA AND J. GUADALUPE REYES-VICTORIA

5. The case n = 3

For three particles interacting inM2
R, we obtain the system of algebraic equations

which define the relative equilibria,

R3(R2 − r21)z1
4(R2 + r21)

4
= − m2(r

2

2
+R2)2(R2+z1z̄2)(z2−z1)

{(r2
1
+R2)2(r2

2
+R2)2−[2(z1z̄2+z2z̄1)R2+(r2

1
−R2)(r2

2
−R2)]2}3/2

− m3(r
2

3
+R2)2(R2+z1 z̄3)(z3−z1)

{(r2
1
+R2)2(r2

3
+R2)2−[2(z1z̄3+z3 z̄1)R2+(r2

1
−R2)(r2

3
−R2)]2}3/2

R3(R2 − r22)z2
4(R2 + r22)

4
= − m1(r

2

1
+R2)2(R2+z2z̄1)(z1−z2)

{(r2
1
+R2)2(r2

2
+R2)2−[2(z1z̄2+z2z̄1)R2+(r2

1
−R2)(r2

2
−R2)]2}3/2

− m3(r
2

3
+R2)2(R2+z2 z̄3)(z3−z2)

{(r2
2
+R2)2(r2

3
+R2)2−[2(z2z̄3+z3 z̄2)R2+(r2

3
−R2)(r2

2
−R2)]2}3/2

R3(R2 − r23)z3
4(R2 + r23)

4
= − m1(r

2

1
+R2)2(R2+z3z̄1)(z1−z3)

{(r2
1
+R2)2(r2

3
+R2)2−[2(z1z̄3+z3z̄1)R2+(r2

1
−R2)(r2

3
−R2)]2}3/2

− m2(r
2

2
+R2)2(R2+z3 z̄2)(z2−z3)

{(r2
2
+R2)2(r2

3
+R2)2−[2(z2z̄3+z3z̄2)R2+(r2

2
−R2)(r2

3
−R2)]2}3/2 .(5.1)

5.1. Eulerian relative equilibria. First we study the collinear relative equilibria
for the three-body problem. We consider the case when one particle of mass m1

lies at the origin of coordinates z1 = 0 and the other two particles with masses m2

and m3 are located at positions z2 and z3 on the same geodesic straight line. After
a convenient rotation we can assume, without any loss of generality, that z2 = a
and z3 = −r, with a, r positive constants. In this case, the equations of motions
become

0 = −m2(a
2 +R2)2

a2
+

m3(r
2 +R2)2

r2
,

R3(R2 − a2)a

4(R2 + a2)4
=

m1

8R3a2
+

m3(r
2 +R2)2(R2 − ar)(a+ r)

8R3(r + a)3(ar −R2)3
,

R3(R2 − r2)r

4(R2 + r2)4
= − m1

8R3r2
− m2(a

2 +R2)2(R2 − ar)(a+ r)

8R3(r + a)3(ar −R2)3
.(5.2)

We start our analysis with the isosceles case, that is, we assume that m = m2 =
m3 and m1 = M .

Theorem 5.1. A necessary and sufficient condition that a collinear configuration
of the curved three-body problem in M2

R, with one particle at the origin, is a relative
equilibrium is that the masses of the other two particles are equal and that the
particles are located at opposite sides of the same circle.

Proof. From the first equation of system (5.2) we obtain

(5.3)
(a2 + R2)2

a2
=

(r2 +R2)2

r2
,

which implies that r = a or r = R2

a , and therefore z3 = −a or z3 = −R2

a . We avoid
the last value because it is antipodal to z2 = a and thus generates a singular point.
Since r = a, both particles are on the same circle but at opposite sides.

If we assume that the particles with masses m2 and m3 are located on the
same circle, then, using the fact that a = |z3| = r, we obtain that necessarily
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m2 = m3 = m, which follows from the first equation of system (5.2). That is, both
particles must have equal masses and must be located at opposite sides of the circle.

We recall that any straight line through the origin in M
2
R corresponds to a

meridian geodesic circle in S2R. We assume that the three particles are located on
the same straight line and are rotating under the action of G2(t).

To obtain the condition for the existence of a relative equilibrium in terms of
the masses, we substitute r = a and m1 = M in the second equation of (5.2) (or in
the equivalent third one), and since z2 �= 0, we obtain the relation for the radius r
in terms of the masses,

R3r(R2 − r2)

(R2 + r2)4
=

M

2r2R3
− m(r2 +R2)2

8r2R3(r2 −R2)2
.

This relation is equivalent with the polynomial equation

(5.4) 4M(R2 − r2)2(R2 + r2)4 −m(r2 +R2)6 − 8R6(R2r − r3)3 = 0

with the mass relation

(5.5) M =
(R2 + r2)6m+ 8R6(R2r − r3)3

4(R2 − r2)2(R2 + r2)4
.

As in the case of the two-body problem in S2R, the real solutions r of equation
(5.4) give us the circle where the particles with masses m2 = m3 = m must move
in order to form a relative equilibrium. The relation for these masses with the mass
m1 = M must satisfy equation (5.5). �

We call this kind of orbit an isosceles Eulerian relative equilibria.
Now we will study the general collinear problem, that is, the case where the

three masses are different. We have the following result.

Theorem 5.2. Consider a collinear configuration of the three-body problem in M2
R

with masses m1, m2,m3, and suppose that the first particle with mass m1 is located
at z1 = 0. Then there are two values a∗ and a∗∗ ∈ [0, R] such that for every
a ∈ [0, a∗] and for any a, ∈ [a∗∗, R] there exist two points r and r∗ such that when
we place the particles of masses m2, m3 at z2 = a and z3 = −r or at z2 = a∗

and z3 = −r∗ the corresponding configuration leads to a relative equilibrium if the
masses satisfy the second or third equation of system (5.2).

Proof. From the first equation of system (5.2) we obtain

(5.6)
m2(a

2 + R2)2

a2
=

m3(r
2 +R2)2

r2
,

which is equivalent to

(5.7)
a√

m2(a2 +R2)
=

r√
m3(r2 +R2)

.

We consider a couple of continuous real valued functions of the real variable:

f2(x) =
1√
m2

x

R2 + x2
,

f3(x) =
1√
m3

x

R2 + x2
.
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If m3 < m2, then f2(x) < f3(x) for all x > 0. Both functions reach their maxi-
mum value at x = R; for the function f2(x) this corresponds to f2(R) = 1

2
√
m2R

.

Therefore for any y ∈
(

0, 1
2
√
m2R

)

there are two points r < R and r∗ > R such

that equation (5.7) holds. For a fixed, we solve equation (5.7) for r in terms of a
obtaining

r =

√

m2

m3

(

a2 +R2
)

−
√

m2

m3

(a2 +R2)
2 − 4a2R2

2a
,

r∗ =

√

m2

m3

(

a2 +R2
)

+
√

m2

m3

(a2 +R2)2 − 4a2R2

2a
,(5.8)

which are real numbers because m3 < m2. Therefore the initial coordinates to
obtain a collinear relative equilibrium are (0, a, z3), with z3 = −r or z3 = −r∗ the
values which solve equation (5.7). We observe that z3 is not antipodal with z2 = a

because it is different from −R2

a ; therefore we have found a relative equilibrium with
different masses. In the above reasoning we have fixed the value of a, but it is clear
that not for all z = a is it possible to obtain a relative equilibrium. Therefore, we
must look for the necessary condition on a in order to have a relative equilibrium,
in this way multiplying both sides of the second equation of (5.2) by m2(a

2 +R2)2

and both sides of the third equation by −m3(r
2+R2)2 imposing the relation (5.7).

When we add the resultant equalities we get the relation

(5.9) m2
(R2 − a2)a

(R2 + a2)2
= m3

(R2 − r2)r

(R2 + r2)2
.

As in the previous case we define the following auxiliary functions:

g2(x) = m2
(x2 − R2)x

(R2 + x2)2
,

g3(x) = m3
(x2 − R2)x

(R2 + x2)2
,

and we see that if m3 < m2, then g3(x) < g2(x) for all x ∈ (0, R].
Let Λ∗ be the maximum of the function g3(x) in the interval (0, R]. Then, from

the intermediate value theorem, there exist two points a∗, a∗∗ ∈ (0, R] such that
g2(a

∗) = g2(a
∗∗) = Λ∗. This is because g3[0, R] ⊂ g2[0, R] and both functions

vanish at the ends of the interval. It follows that for any a ∈ [0, a∗] there exists a
unique point r ∈ [0, a∗] such that

(5.10) m2
(a2 − R2)a

(R2 + a2)2
= g2(a) = g3(r) = m3

(r2 −R2)r

(R2 + r2)2
,

which implies that we have found a solution of (5.9). Using the same arguments
we can show that for any a∗ ∈ [a∗∗, R] there exists r∗ ∈ [a∗∗, R] such that g2(a

∗) =
g3(r

∗). Finally, we can obtain the relation for the masses using the second (or third)
equation of (5.2). �

5.2. Lagrangian solutions. In the classical Newtonian planar three-body prob-
lem it is well known that if three arbitrary masses are located at the vertices of an
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equilateral triangle and if suitable initial velocities are chosen, then this configura-
tion generates a relative equilibrium called a Lagrangian solution. In the case of the
three-body problem on the sphere S2 studied in [3], the authors proved that if three
masses are located at the vertices of an equilateral triangle, then they generate a
relative equilibrium only when the masses are equal. Moreover, they showed that
the masses have to rotate on the same circle, whose plane must be orthogonal to
the rotation axis. In [5] there is a complete analysis of the homographic solutions
on the sphere, a class of solutions that include the relative equilibria.

Applying the stereographic projection and, since by Theorem 2.3 the equations
of motion for the three-body problem on S2 and on M2

R are equivalent for the
analysis of the Lagrangian solutions on M

2
R, it is enough to consider the case of

three equal masses moving on the same circle of radius r. We will further show
that this is in fact a necessary and sufficient condition for the existence of relative
equilibrium.

Theorem 5.3. Let us consider a configuration of three equal masses moving on the
same circle of radius r in M2

R. Then a necessary and sufficient condition for the
existence of a relative equilibrium is that the particles form an equilateral triangle
configuration.

Proof. We consider three equal masses located on the same circle of radius r. Taking
z1 = r and z2, z3 on the same circle, the system of equations (5.1) becomes

R3(R2 − r2)r

4m(R2 + r2)6
= − (R2 + rz̄2)(z2 − r)

{(r2 +R2)4 − [2r(z̄2 + z2)R2 + (r2 −R2)2]2}3/2

− (R2 + rz̄3)(z3 − r)

{(r2 +R2)4 − [2r(z̄3 + z3)R2 + (r2 −R2)2]2}3/2 ,

R3(R2 − r2)z2
4m(R2 + r2)6

= − (R2 + rz2)(r − z2)

{(r2 +R2)4 − [2r(z̄2 + z2)R2 + (r2 −R2)2]2}3/2

− (R2 + z2z̄3)(z3 − z2)

{(r2 +R2)4 − [2(z2z̄3 + z3z̄2)R2 + (r2 −R2)2]2}3/2 ,

R3(R2 − r2)z3
4m(R2 + r2)6

= − (R2 + z3r)(r − z3)

{(r2 +R2)4 − [2r(z̄3 + z3)R2 + (r2 −R2)2]2}3/2

− (R2 + z3z̄2)(z2 − z3)

{(r2 +R2)4 − [2(z2z̄3 + z3z̄2)R2 + (r2 −R2)2]2}3/2 .(5.11)

Substitute z2 = reiθ2 and z3 = reiθ3 into equations (5.11), adding the first and
third equation and subtracting from the sum the second equation twice. After
separating the real and imaginary parts of the resulting equation we obtain the
following system of equations:

1− cos θ2
D12

+
1− cos(θ3 − θ2)

D23
=

2(1− cos θ3)

D13
,

sin θ2
D12

+
sin(θ3 − θ2)

D23
= 0,(5.12)
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where

D12 = 83/2R3r3[1− cos θ2]
3/2[R4 + r4 + 2r2R2 cos θ2]

3/2,

D23 = 83/2R3r3[1− cos(θ3 − θ2)]
3/2[R4 + r4 + 2r2R2 cos(θ3 − θ2)]

3/2,

D13 = 83/2R3r3[1− cos θ3]
3/2[R4 + r4 + 2r2R2 cos θ3]

3/2.

If θ2 = 2π
3 and θ3 = 4π

3 , then these values satisfy equations (5.12), and therefore
the configuration corresponds to an equilateral triangle.

Using standard trigonometric identities in the first equation of (5.12), we obtain
[

sin2( θ3−θ2
2 )

sin2( θ22 )

]2 [

(r2 +R2)4 − 4R2r2 sin2( θ3−θ2
2 )

(r2 +R2)4 − 4R2r2 sin2( θ22 )

]3

=
1− sin2( θ3−θ2

2 )

1− sin2( θ22 )
.

Renaming the variables as u = sin2( θ3−θ2
2 ) and v = sin2( θ22 ), the above equation

becomes

u2(1− v)((r2 +R2)4 − 4R2r2u)3 = v2(1− u)((r2 +R2)4 − 4R2r2v)3.

This equation has only the real solution u = v, that is, sin2( θ3−θ2
2 ) = sin2( θ22 ),

or equivalently, θ3 = 2θ2. If we substitute these values in the second equation of
(5.12), we obtain

1− cos θ2
1− cos 2θ2

=
(R4 + r4 + 2r2 cos 2θ2)

3

(R4 + r4 + 2r2 cos θ2)3
.

Taking w = 1− cos θ2 and s = 1− cos 2θ2, we are led to

(1− w)(R4 + r4 + 2r2w)3 = (1− s)(R4 + r4 + 2r2s)3,

which has only the real solution w = s, that is, cos θ2 = cos 2θ2, or equivalently

θ2 = 0,
2π

3
,
4π

3
, 2π.

Since we must avoid singular configurations, we have θ2 = 2π
3 , 4π

3 , which corre-
spond to an equilateral triangle. �
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