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Abstract: Gromov (2001) and Sturm (2003) proved that any four points in a CAT(0) space satisfy a certain

family of inequalities. We call those inequalities the ⊠-inequalities, following the notation used by Gromov.

In this paper, we prove that a metric space X containing at most five points admits an isometric embedding

into a CAT(0) space if and only if any four points in X satisfy the⊠-inequalities. To prove this, we introduce a

new family of necessary conditions for ametric space to admit an isometric embedding into aCAT(0) space by

modifying and generalizing Gromov’s cycle conditions. Furthermore, we prove that if a metric space satisfies

all those necessary conditions, then it admits an isometric embedding into aCAT(0) space. Thiswork presents

a newapproach to characterizing thosemetric spaces that admit an isometric embedding into aCAT(0) space.
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1 Introduction

Under the assumption that a metric space X is geodesic, many simple conditions for X that are equivalent to

the condition that X is a CAT(0) space have been known. For example, Berg and Nikolaev [3] proved that a

metric space (X, dX) is CAT(0) if and only if X is geodesic, and any x, y, z, w ∈ X satisfy

0 ≤ dX(x, y)
2 + dX(y, z)

2 + dX(z, w)
2 + dX(w, x)

2 − dX(x, z)
2 − dX(y, w)

2 (1.1)

(see also Sato [16]). The inequality (1.1) was called the quadrilateral inequality in [3], and the roundness 2

inequality by Enflo [7] in connection with the geometry of Banach spaces.

On the other hand, when we characterize those metric spaces that admit an isometric embedding into a

CAT(0) space, we have to omit such a non-intrinsic assumption that the ambient space is geodesic. Omitting

the assumption that a metric space X is geodesic changes the situation drastically. To see this, we recall the

following family of inequalities.

Definition 1.1. We say that a metric space (X, dX) satisfies the ⊠-inequalities if for any t, s ∈ [0, 1] and any

x, y, z, w ∈ X, we have

0 ≤ (1 − t)(1 − s)dX(x, y)
2 + t(1 − s)dX(y, z)

2 + tsdX(z, w)
2 + (1 − t)sdX(w, x)

2

− t(1 − t)dX(x, z)
2 − s(1 − s)dX(y, w)

2
.

Gromov [10] and Sturm [17] introduced these inequalities independently, and proved that every CAT(0) space

satisfies them. The name “⊠-inequalities" is based on a notation used in [10], and was used in [12] and [18].
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In [17], they were called the weighted quadruple inequalities. When s = t = 1/2, the ⊠-inequality becomes

the quadrilateral inequality (1.1), and therefore a geodesic space satisfies the ⊠-inequalities if and only if it

is CAT(0). The following example shows that there exists even a four-point metric space that satisfies the

quadrilateral inequality (1.1) but does not admit an isometric embedding into any CAT(0) space.

Example 1.2. Let X = {x1, x2, x3, x4}. Define dX : X × X → [0,∞) by

dX(x1, x2) = dX(x2, x3) = dX(x3, x4) = 1,

dX(x4, x1) = dX(x1, x3) = dX(x2, x4) =
√
3.

Then it is easily observed that (X, dX) is a metric space, and satisfies the quadrilateral inequality (1.1). How-

ever, (X, dX)does not satisfy the⊠-inequality for s = t = 1/(1+
√
3), and therefore does not admit an isometric

embedding into any CAT(0) space because every CAT(0) space satisfies the⊠-inequalities.

To find a characterization of those metric spaces that admit an isometric embedding into a CAT(0) space is a

longstanding openproblem stated byGromov in [10, §15] and [9, Section 1.19+] (see also [2, Section 1.4]). Every

metric space containing at most three points admits an isometric embedding into a CAT(0) space because it

admits an isometric embedding into the Euclidean plane. Gromov stated in [10, §7] that a four-point metric

space admits an isometric embedding into a CAT(0) space if and only if it satisfies the ⊠-inequalities (see

Theorem 1.7 below). In this paper, we find, for the first time, a characterization of those five-point metric

spaces that admit an isometric embedding into a CAT(0) space. The following theorem is our main result.

Theorem 1.3. A metric space that contains at most five points admits an isometric embedding into a CAT(0)

space if and only if it satisfies the⊠-inequalities.

Our proof of Theorem 1.3 also gives another proof of Gromov’s characterization of those four-point metric

spaces that admit an isometric embedding into a CAT(0) space whose detailed proof was omitted in [10].

1.1 Gromov’s cycle conditions and their generalizations

To prove Theorem 1.3, we introduce newnecessary conditions for ametric space to admit an isometric embed-

ding into a CAT(0) space by slightly modifying and generalizing Gromov’s cycle conditions defined in [10].

First we briefly recall some definitions and facts established mainly in [10]. In this paper, graphs are always

assumed to be simple and undirected.

Definition 1.4 (Gromov [10]). Fix an integer k ≥ 4. Let G = (V , E) be the k-vertex cycle graph with vertex set

V and edge set E. A metric space (X, dX) is said to satisfy the Cyclk(0) condition if for any map f : V → X,

there exists a map g : V → R
2 such that

{

‖g(u) − g(v)‖ ≤ dX(f (u), f (v)), if {u, v} ∈ E,
‖g(u) − g(v)‖ ≥ dX(f (u), f (v)), if {u, v} ∈ ̸ E

for any u, v ∈ V.

Gromov [10] proved that every CAT(0) space satisfies the Cyclk(0) condition for every integer k ≥ 4. He also

stated the following fact in [10, §7].

Theorem 1.5 (Gromov [10]). A metric space satisfies the Cycl4(0) condition if and only if it satisfies the ⊠-

inequalities.

For a detailed proof of this theorem, see [18, §7]. Because a geodesic space satisfies the⊠-inequalities if and

only if it is CAT(0), it follows from Theorem 1.5 that a geodesic space satisfies the Cycl4(0) condition if and
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only if it is CAT(0). This implies in particular that the Cycl4(0) condition implies the Cyclk(0) conditions for

all integers k ≥ 4 under the assumption that the metric space is geodesic. Recently, the present author [18]

proved that this implication is true even without assuming that the metric space is geodesic.

Theorem 1.6 ([18]). If a metric space X satisfies the Cycl4(0) condition, or equivalently, if X satisfies the ⊠-

inequalities, then X satisfies the Cyclk(0) condition for every integer k ≥ 4.

Moreover, it was also stated in [10, §7] that any four-point metric space embeds isometrically into a three-

dimensional Riemannian space form of constant curvature at most 0 or a metric tree whenever it satisfies the

Cycl4(0) condition. Thus the following theorem holds.

Theorem 1.7 (Gromov [10]). A four-point metric space admits an isometric embedding into a CAT(0) space if

and only if it satisfies the Cycl4(0) condition.

Theorem1.6 andTheorem1.7 tell us that theCycl4(0) condition impliesmanynecessary conditions for ametric

space to admit an isometric embedding into a CAT(0) space. Therefore, it seems natural to ask whether the

Cycl4(0) condition (or the validity of the ⊠-inequalities) implies the isometric embeddability into a CAT(0)

space or not. However, the answer of this question turned out to be false. Recently, Eskenazis, Mendel and

Naor [8] proved that there exists ametric space that does not admit a coarse embedding into anyCAT(0) space.

On the other hand, it was proved in [12, Proposition 3.1] that for any 0 < α ≤ 1/2 and anymetric space (X, dX),

the metric space (X, dαX) satisfies the Cycl4(0) condition. Therefore, if we choose a metric space (Y , dY ) that

does not admit a coarse embedding into any CAT(0) space and a constant 0 < α ≤ 1/2, then the metric space

(Y , dαY ) satisfies the Cycl4(0) condition but does not admit a coarse embedding into any CAT(0) space because

(Y , dαY ) is coarsely equivalent to (Y , dY ).

In this paper, to examine further to what extent the Cycl4(0) condition implies necessary conditions for a

metric space to admit an isometric embedding into a CAT(0) space, we define the following new conditions.

Definition 1.8. Let G = (V , E) be a graph with vertex set V and edge set E. A metric space (X, dX) is said to

satisfy the G(0) condition if for any map f : V → X, there exist a CAT(0) space (Y , dY ) and a map g : V → Y

such that
{

dY (g(u), g(v)) ≤ dX(f (u), f (v)), if {u, v} ∈ E,
dY (g(u), g(v)) ≥ dX(f (u), f (v)), if {u, v} ∈ ̸ E

(1.2)

for any u, v ∈ V.

Recently, Lebedeva, Petrunin and Zolotov [14] also introduced a similar condition. In the definition of their

condition in [14, Section 8], a CAT(0) space Y in Definition 1.8 is replaced with a Hilbert space. It is easily

observed that every CAT(0) space satisfies the G(0) condition for every graph G. Therefore, for every graph

G, the G(0) condition is a necessary condition for a metric space to admit an isometric embedding into a

CAT(0) space. In Section 4, we will prove the following proposition, which states that the G(0) conditions for

all graphs G form a necessary and sufficient condition for a metric space to admit an isometric embedding

into a CAT(0) space.

Proposition 1.9. Fix a positive integer n. An n-pointmetric space admits an isometric embedding into a CAT(0)

space if and only if it satisfies the G(0) condition for every graph G with n vertices.

Clearly, for each integer k ≥ 4, the Cyclk(0) condition implies the G(0) condition for the cycle graph G

with k vertices. Therefore, it follows from Theorem 1.6 that the Cycl4(0) condition (or the validity of the ⊠-

inequalities) implies the G(0) conditions for all cycle graphs G. In Sections 5, 6, 8 and 9, wewill prove that the

Cycl4(0) condition also implies the G(0) conditions for many finite graphs G including all graphs containing

at most five vertices. Together with Proposition 1.9, this proves Theorem 1.3, and also gives another proof of

Theorem 1.7 whose detailed proof was omitted in [10].
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1.2 Quadratic metric inequalities that hold true in every CAT(0) space

Homogeneous linear inequalities on the squares of distances among finite points like the⊠-inequalities were

called quadratic metric inequalities by Andoni, Naor, and Neiman [2]. In this paper, by slightly modifying

their notation, we use the following notation to denote a quadratic metric inequality. For any positive integer

n, we denote [n] = {1, 2, . . . , n}, and for any set V, we denote by
(

V
2

)

the set of all two-element subsets of V.

Definition 1.10. Fix a positive integer n. Let E =
(

[n]
2

)

, and let (aij){i,j}∈E be a family of real numbers indexed

by E. A metric space (X, dX) is said to satisfy the (aij)-quadratic metric inequality if any points x1, . . . , xn ∈ X
satisfy

0 ≤
∑

{i,j}∈E

aijdX
(

xi , xj
)2

.

The following theorem was proved in [2].

Theorem 1.11 (Andoni, Naor, and Neiman [2]). Let n be a positive integer. An n-pointmetric space X admits an

isometric embedding into a CAT(0) space if and only if X satisfies the (aij)-quadratic metric inequality for every

family (aij){i,j}∈E of real numbers indexed by E =
(

[n]
2

)

such that every CAT(0) space satisfies the (aij)-quadratic

metric inequality.

For the original statement of Theorem 1.11 in full generality, see [2, Proposition 3]. Theorem 1.11 tells us that

characterizations of those metric spaces that admit an isometric embedding into a CAT(0) space follow from

characterizations of those quadratic metric inequalities that hold true in every CAT(0) space. We will prove

the following lemma in Section 4.

Lemma 1.12. Fix a positive integer n. Let V = [n], and let E =
(

V
2

)

. Suppose A = (aij){i,j}∈E is a family of real

numbers indexed by E such that everyCAT(0) space satisfies the (aij)-quadraticmetric inequality. Let E+(A) ⊆ E
be the set of all {i, j} ∈ E with aij > 0, and let GA =

(

V , E+(A)
)

be the graph with vertex set V and edge set

E+(A). If a metric space satisfies the GA(0) condition, then it satisfies the (aij)-quadratic metric inequality.

We call the graph GA as in the statement of Lemma 1.12 the graph associated to the (aij)-quadratic metric

inequality. Proposition 1.9 follows immediately fromLemma 1.12 andTheorem 1.11. It also follows fromLemma

1.12 that if every metric space satisfies the GA(0) condition for the graph GA associated to the (aij)-quadratic

metric inequality, then the (aij)-quadraticmetric inequality holds true in everymetric spacewhenever it holds

true in every CAT(0) space. In Section 5, we will prove that every metric space satisfies the G(0) conditions

for many graphs G (including all trees for example).

1.3 Some questions

We pose the following questions.

Question 1.13. Find a graph G such that there exists a metric space X such that X satisfies the Cycl4(0) condi-

tion, but X does not satisfy the G(0) condition.

Question 1.14. Find a quadratic metric inequality I that satisfies the following two conditions:

(i) Every CAT(0) space satisfies I.

(ii) There exists a metric space that satisfies the⊠-inequalities but that does not satisfy I.

Question 1.15. Find a characterization of those graphs G such that every metric space satisfies the G(0) condi-

tion.
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1.4 Organization of the paper

The paper is organized as follows. In Section 2, we recall some definitions and results from metric geometry.

In Section 3, we recall and establish some properties of metric spaces that satisfy the ⊠-inequalities. In Sec-

tion 4, we prove Lemma 1.12 and Proposition 1.9. In Section 5, we prove that the validity of the⊠-inequalities

implies the G(0) condition for every graph G containing at most four vertices. Combining this with Propo-

sition 1.9, we obtain another proof of Theorem 1.7. In Section 5, we also specify several graphs G such that

every metric space satisfies the G(0) condition. Combining this with Lemma 1.12, we obtain a criterion for a

quadratic metric inequality to hold true in every metric space whenever it holds true in every CAT(0) space.

In Section 6, we prove that the validity of the⊠-inequalities implies the G(0) condition for any graph G with

five vertices except two special graphs. In Section 7, we introduce certain concepts concerning the isometric

embeddability of a four-point metric space into a Euclidean space. In Section 8 and Section 9, we prove that

the validity of the ⊠-inequalities implies the G(0) conditions for the remaining two graphs G with five ver-

tices by using the concepts introduced in Section 7. Together with Proposition 1.9, this completes the proof of

Theorem 1.3.

2 Preliminaries

In this section, we set up some notations, and review some definitions and results in metric geometry.

Throughout this paper, for every positive integer n, Rn is always equipped with the Euclidean metric. For

distinct points x, y ∈ R
n, we denote by

←→
xy the straight line through x and y. For x, y, z ∈ R

2 with x ≠ y and

y = ̸ z, we denote by ∠xyz ∈ [0, π] the interior angle measure at y of the (possibly degenerate) triangle with

vertices x, y and z.

A geodesic in ametric space X is an isometric embedding of an interval of the real line into X. For x, y ∈ X,
we call the image of a geodesic γ : [0, dX(x, y)] → X with γ(0) = x and γ(dX(x, y)) = y a geodesic segment

with endpoints x and y. A metric space X is called geodesic if for any x, y ∈ X, there exists a geodesic segment

with endpoints x and y.

Definition 2.1. A metric space (X, dX) is called a CAT(0) space if X is geodesic, and any x, y, z ∈ X and any

geodesic γ : [0, dX(x, y)]→ X with γ(0) = x and γ(dX(x, y)) = y satisfy

dX
(

z, γ(tdX(x, y))
)2

≤ (1 − t)dX(x, z)
2 + tdX(y, z)

2 − t(1 − t)dX(x, y)
2 (2.1)

for any t ∈ [0, 1].

In R
n, the inequality (2.1) always holds with equality. A subset S of a geodesic space X is called convex if any

geodesic segment in X with endpoints x and y is contained in S whenever x, y ∈ S. Clearly, a convex subset
of a CAT(0) space equipped with the induced metric is a CAT(0) space. A geodesic space X is called uniquely

geodesic if for any x, y ∈ X, a geodesic segment in X with endpoints x and y is unique. It is easily observed

that every CAT(0) space is uniquely geodesic. For any points x and y in a uniquely geodesic space, we denote

the geodesic segment with endpoints x and y by [x, y]. We also denote the sets [x, y] \ {x, y}, [x, y] \ {x} and
[x, y] \ {y} by (x, y), (x, y] and [x, y), respectively. For a subset S of a uniquely geodesic space X, the convex
hull of S is the intersection of all convex subsets of X containing S, or equivalently, theminimal convex subset

of X that contains S. We denote the convex hull of S by conv(S).

For a family of metric spaces (Xα , dα)α∈A, we equip the disjoint union
∐

α∈A

Xα =
⋃

α∈A

Xα × {α}

with the metric d defined by

d((x, α), (x′, α′)) =

{

dα(x, x
′) if α = α′,

∞ otherwise.
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We usually identify each set Xα with its image under the natural inclusion into
∐

α∈A Xα.

Suppose (X, dX) is a metric space with possibly infinite metrics, and ∼ is an equivalence relation on X

such that every equivalence class of X by∼ is closed. Let X = X/ ∼ be the set of all equivalence classes by∼.
For x, y ∈ X, we define

d(x, y) = inf

k
∑

i=1

dX(xi , yi),

where the infimum is taken over all sequences x1, y1, x2, y2, . . . , xk , yk in X such that x1 ∈ x, yk ∈ y, and
yi ∼ xi+1 for every i ∈ Z ∩ [1, k − 1]. Then d becomes a metric on X, which is called the quotient metric on X.

Suppose that (X1, d1) and (X2, d2) are metric spaces, and that Z1 and Z2 are closed subsets of X1 and

X2, respectively. Suppose further that Z1 and Z2 are isometric via an isometry f : Z1 → Z2. Define ∼ to be

the equivalence relation on the disjoint union X1 ⊔ X2 generated by the relations z ∼ f (z) for all z ∈ Z1.

Let X0 = (X1 ⊔ X2)/ ∼ be the set of all equivalence classes by the equivalence relation ∼, and let d0 be the

quotient metric on X0. Then (X0, d0) is the metric space called the gluing of X1 and X2 along the isometry f .

We note that the natural inclusions of X1 and X2 into X0 are both isometric embeddings. Assume in addition

that X1 and X2 are complete locally compact CAT(0) spaces, and that Z1 and Z2 are convex subsets of X1 and

X2, respectively. Then by Reshetnyak’s gluing theorem, the gluing of X1 and X2 along f is a CAT(0) space. For

a proof of this fact, see [15] or [5, Theorem 9.1.21]. A more general statement is in [4, Chapter II.11, Theorem

11.1]. When two geodesic segments [a, b] ⊆ X1 and [c, d] ⊆ X2 are isometric, we mean by “the metric space

obtained by gluing X1 and X2 by identifying [a, b] with [c, d]" the gluing of X1 and X2 along the isometry

f : [a, b]→ [c, d] with f (a) = c and f (b) = d.

A large number of important examples of CAT(0) spaces arise as piecewise Euclidean metric simplicial

complexes. For detailed expositions of piecewise Euclidean metric simplicial complexes, see [4, Chapter I.7].

For our purposes, it suffices to keep in mind the following simple example.

Example 2.2. Suppose p1, x1, y1, p2, y2, z2, p3, z3, x3 ∈ R
2 are distinct points such that

‖p1 − y1‖ = ‖p2 − y2‖, ‖p2 − z2‖ = ‖p3 − z3‖, ‖p3 − x3‖ = ‖p1 − x1‖.

Equip the subsets

T1 = conv({p1, x1, y1}), T2 = conv({p2, y2, z2}), T3 = conv({p3, z3, x3})

of R2 with the induced metrics, and regard them as disjoint metric spaces. Suppose

f : [p1, y1]→ [p2, y2], g : [p2, z2]→ [p3, z3], h : [p3, x3]→ [p1, x1]

are the isometries such that

f (p1) = p2, f (y1) = y2, g(p2) = p3, g(z2) = z3, h(p3) = p1, h(x3) = x1.

Let T be the quotient of the disjoint union T1⊔T2⊔T3 by the equivalence relation∼ generated by the relations
a ∼ f (a), b ∼ g(b) and c ∼ h(c) for all a ∈ [p1, y1], b ∈ [p2, z2] and c ∈ [p3, x3], and let dT be the quotient

metric on T. Then (T, dT) is a metric space, and we call it the piecewise Euclidean metric simplicial complex

constructed from T1, T2 and T3 by identifying [p1, y1] ⊆ T1 with [p2, y2] ⊆ T2, [p2, z2] ⊆ T2 with [p3, z3] ⊆ T3,
and [p3, x3] ⊆ T3 with [p1, x1] ⊆ T1. It follows from a general criterion [4, p.207, Lemma 5.6] that T becomes

a CAT(0) space if and only if

2π ≤ ∠x1p1y1 +∠y2p2z2 +∠z3p3x3. (2.2)

We claim that it is easily observed that the above criterion holds true even if T1, T2 or T3 is degenerate, or

equivalently, even if some of the angles in the right-hand side of (2.2) take values in {0, π}. It is also easily
observed that under the condition (2.2), the natural inclusions of T1, T2 and T3 into T are all isometric em-

beddings although a simplex in a metric simplicial complex is generally not embedded isometrically into the

complex.
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Let (X, dX) be a metric space, and let x, y, z ∈ X be points with x ≠ y and y ≠ z. Then there exist x̃, ỹ, z̃ ∈ R
2

such that

‖x̃ − ỹ‖ = dX(x, y), ‖ỹ − z̃‖ = dX(y, z), ‖z̃ − x̃‖ = dX(z, x).

We define the comparison angle measure ∠̃xyz to be ∠x̃ỹz̃ ∈ [0, π]. Clearly the comparison angle measure

∠̃xyz does not depend on the choice of x̃, ỹ, z̃ ∈ R
2.

Definition 2.3. A geodesic space X is said to have nonnegative Alexandrov curvature if, for any p ∈ X, there
exists a neighborhood U ⊆ X of p such that any distinct four points x, y, z, w ∈ U satisfy

∠̃yxz + ∠̃zxw + ∠̃wxy ≤ 2π.

There are many equivalent definitions of metric spaces with nonnegative Alexandrov curvature. We refer [5]

and [6] for detailed expositions of metric spaces with nonnegative Alexandrov curvature. For our purpose, it

suffices to keep in mind the following two examples.

Example 2.4. Let S be the boundary of a convexbounded subset ofR3. Let dS be the induced lengthmetric on

S. In otherwords, for any x, y ∈ S, dS(x, y) coincideswith the infimumof the lengths of all paths γ : [a, b]→ S

such that γ(a) = x and γ(b) = y. It is known that (S, dS) has nonnegative Alexandrov curvature.

Example 2.5. Suppose x, y and z are points inR2 that are not collinear. Let T1 and T2 be two isometric copies

of conv({x, y, z}). We denote the points in T1 corresponding to x, y and z by x1, y1 and z1, respectively, and

the points in T2 corresponding to x, y and z by x2, y2 and z2, respectively. Suppose

f : [x1, y1]→ [x2, y2], g : [y1, z1]→ [y2, z2], h : [z1, x1]→ [z2, x2]

are the isometries such that

f (x1) = x2, f (y1) = y2, g(y1) = y2, g(z1) = z2, h(z1) = z2, h(x1) = x2.

Let T0 be the quotient of the disjoint union T1 ⊔ T2 by the equivalence relation ∼ generated by the relations

a ∼ f (a), b ∼ g(b) and c ∼ h(c) for all a ∈ [x1, y1], b ∈ [y1, z1] and c ∈ [z1, x1], and let dT0 be the quotient

metric on T0. It is known that (T0, dT0 ) is a complete geodesic space with nonnegative Alexandrov curvature.

Clearly the natural inclusions of T1 and T2 into T0 are both isometric embeddings.We call themetric space T0
defined above the piecewise Euclidean simplicial complex obtained by gluing T1 and T2 along their boundaries.

In [13], Lang and Schroeder generalized the classical Kirszbraun’s extension theorem (see also [1]). The fol-

lowing is a part of their result, which we will use in Section 9. For the original statement in full generality,

see [13, Theorem A].

Theorem 2.6 (Lang and Schroeder [13]). Suppose that X is a complete geodesic space with nonnegative

Alexandrov curvature and Y is a complete CAT(0) space. Suppose that S is a subset of X and f : S → Y is

a 1-Lipschitz map. Then there exists a 1-Lipschitz map f̃ : X → Y such that f̃ (x) = f (x) for any x ∈ S.

Fix a positive integer n. Let En =
(

[n]
2

)

be the set of all two-element subsets of [n] = {1, . . . , n}. Define Cn to be
the set of all (dij){i,j}∈En ∈ R

En such that there exist aCAT(0) space (X, dX)andpoints x1, . . . , xn ∈ X such that
dij = dX(xi , xj)

2 for every {i, j} ∈ En. Then Cn is a closed convex cone in R
En . This follows immediately from

the fact that the CAT(0) property is closed under taking Pythagorean product, taking dilation by a positive

constant, and taking ultraproduct (see [17, Lemma 3.9] and [11, Section 2.4]). For completeness, we recall

Andoni, Naor, and Neiman’s proof of Theorem 1.11.

Proof of Theorem 1.11. Fix a positive integer n. The case in which n = 1 is trivial, so we assume that n ≥ 2. If

an n-point metric space X embeds isometrically into a CAT(0) space, then X clearly satisfies every quadratic

metric inequality that holds true in every CAT(0) space. We prove the converse direction by contrapositive.

Assume that an n-pointmetric space X = {x1, . . . , xn}doesnot embed isometrically into aCAT(0) space. Then
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because Cn ⊆ R
En is a closed convex cone, and (dX(xi , xj)

2){i,j}∈En ∈ ̸ Cn, the separation theorem implies that

there exists (hij){i,j}∈En ∈ R
En such that

inf
(dij)∈Cn

∑

{i,j}∈En

hijdij ≥ 0,
∑

{i,j}∈En

hijdX(xi , xj)
2
< 0. (2.3)

The first inequality in (2.3) means that the (hij)-quadratic metric inequality holds true in every CAT(0) space,

and the second inequality means that X does not satisfy the (hij)-quadratic metric inequality, which com-

pletes the proof.

3 Comparison Quadrangles in the Euclidean plane

In this section, we recall and establish some properties of metric spaces that satisfy the⊠-inequalities. First,

we recall the following fact, which was established by Sturm when he proved in [17, Theorem 4.9] that a

geodesic space is CAT(0) whenever it satisfies the⊠-inequalities.

Proposition 3.1. Let (X, dX) be a metric space that satisfies the⊠-inequalities. Suppose x, y, z ∈ X are points
such that x ≠ z, and

dX(x, z) = dX(x, y) + dX(y, z).

Set t = dX(x, y)/dX(x, z). Then we have

dX(y, w)
2 ≤ (1 − t)dX(x, w)

2 + tdX(z, w)
2 − t(1 − t)dX(x, z)

2
.

for any w ∈ X.

For the proof of Proposition 3.1, see [18, Proposition 7.1]. The following two lemmas will be used throughout

this paper.

Lemma 3.2. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose x, y, z, w ∈ X and

x′, y′, z′, w′ ∈ R
2 are points such that

dX(x, y) ≤ ‖x′ − y′‖, dX(y, z) ≤ ‖y′ − z′‖, dX(z, w) ≤ ‖z′ − w′‖,
dX(w, x) ≤ ‖w′ − x′‖, ‖x′ − z′‖ ≤ dX(x, z),

and [x′, z′] ∩ [y′, w′] = ̸ ∅. Then dX(y, w) ≤ ‖y′ − w′‖.

For the proof of Lemma 3.2, see [18, Corollary 5.2, Lemma 7.2].

Lemma 3.3. Let (X, dX) be a metric space that satisfies the ⊠-inequalities, and let (Y , dY ) be a metric space.

Suppose x, y, z, w ∈ X and x′, y′, z′, w′ ∈ Y are points such that

dX(x, y) ≤ dY (x
′
, y′), dX(y, z) ≤ dY (y

′
, z′), dX(z, w) ≤ dY (z

′
, w′),

dX(w, x) ≤ dY (w
′
, x′), dY (x

′
, z′) ≤ dX(x, z).

Assume that there exist subsets S and T of Y that satisfy the following conditions:

(1) S and T are isometric to convex subsets of Euclidean spaces.

(2) {x′, y′, z′} ⊆ S and {x′, w′, z′} ⊆ T.
(3) There exists a geodesic segment Γ1 in Y with endpoints x′ and z′ such that Γ1 ⊆ S ∩ T.
(4) There exists a point p ∈ Γ1 such that dY (y′, w′) = dY (y

′, p) + dY (p, w
′).

Then dX(y, w) ≤ dY (y
′, w′).

For the proof of Lemma 3.3, see [18, Corollary 5.3, Lemma 7.2].
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Remark 3.4. Clearly we may replace the condition (4) in the statement of Lemma 3.3 with the following

condition:

(4′) There exists a geodesic segment Γ2 in Y with endpoints y′ and w′ such that Γ1 ∩ Γ2 = ̸ ∅.

We will also use the following lemma.

Lemma 3.5. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose x, y, z, w ∈ X and

x′, y′, z′, w′ ∈ R
2 are points with z ≠ w such that

dX(y, z) ≤ ‖y′ − z′‖, dX(z, w) ≤ ‖z′ − w′‖, dX(w, x) ≤ ‖w′ − x′‖,
‖x′ − z′‖ ≤ dX(x, z), ‖y′ − w′‖ ≤ dX(y, w),

and [x′, z′] ∩ [y′, w′] = ̸ ∅. Then ‖x′ − y′‖ ≤ dX(x, y).

Proof. We consider three cases.

Case 1: [x′, z′) ∩ [y′, w′) = ̸ ∅. In this case, there exist s ∈ [0, 1) and t ∈ [0, 1) such that

(1 − t)x′ + tz′ = (1 − s)y′ + sw′
.

It follows from this equality and the hypotheses of the lemma that

0 =
∥

∥

(

(1 − t)x′ + tz′
)

−
(

(1 − s)y′ + sw′)
∥

∥

2

=(1 − t)(1 − s)‖x′ − y′‖2 + t(1 − s)‖y′ − z′‖2 + ts‖z′ − w′‖2 + (1 − t)s‖w′ − x′‖2

− t(1 − t)‖x′ − z′‖2 − s(1 − s)‖y′ − w′‖2

≥(1 − t)(1 − s)‖x′ − y′‖2 + t(1 − s)dX(y, z)2 + tsdX(z, w)2 + (1 − t)sdX(w, x)2

− t(1 − t)dX(x, z)
2 − s(1 − s)dX(y, w)

2
.

On the other hand,

0 ≤(1 − t)(1 − s)dX(x, y)
2 + t(1 − s)dX(y, z)

2 + tsdX(z, w)
2 + (1 − t)sdX(w, x)

2

−t(1 − t)dX(x, z)
2 − s(1 − s)dX(y, w)

2

because X satisfies the⊠-inequalities. Comparing these yields

‖x′ − y′‖ ≤ dX(x, y).

Case 2: [x′, z′) ∩ [y′, w′) = ∅, x′ ≠ z′ and y′ ≠ w′. In this case, z′ ∈ [y′, w′] or w′ ∈ [x′, z′] because

[x′, z′] ∩ [y′, w′] = ̸ ∅ by hypothesis. We assume without loss of generality that z′ ∈ [y′, w′]. Then

dX(y, w) ≤ dX(y, z) + dX(z, w) ≤ ‖y′ − z′‖ + ‖z′ − w′‖ = ‖y′ − w′‖ ≤ dX(y, w),

which implies that

dX(y, w) = dX(y, z) + dX(z, w) = ‖y′ − z′‖ + ‖z′ − w′‖ = ‖y′ − w′‖. (3.1)

The second equality in (3.1) implies that

dX(y, z) = ‖y′ − z′‖, dX(z, w) = ‖z′ − w′‖.

Hence we can write

z′ = (1 − c)y′ + cw′
,

where

c =
‖y′ − z′‖
‖y′ − w′‖ =

dX(y, z)

dX(y, w)
. (3.2)
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Because 0 < dX(z, w) ≤ ‖z′ − w′‖ by hypothesis, z′ = ̸ w′ and c ∈ [0, 1). We have

dX(x, z)
2 ≥ ‖x′ − z′‖2

= ‖x′ − (1 − c)y′ − cw′‖2

= (1 − c)‖x′ − y′‖2 + c‖x′ − w′‖2 − c(1 − c)‖y′ − w′‖2

≥ (1 − c)‖x′ − y′‖2 + cdX(x, w)2 − c(1 − c)dX(y, w)2.

On the other hand, (3.1), (3.2) and Proposition 3.1 imply that

dX(x, z)
2 ≤ (1 − c)dX(x, y)

2 + cdX(x, w)
2 − c(1 − c)dX(y, w)

2
.

Comparing these yields

‖x′ − y′‖ ≤ dX(x, y).
Case 3: x′ = z′ or y′ = w′. In this case, we may assume without loss of generality that x′ = z′. Then

x′ ∈ [y′, w′] because [x′, z′] ∩ [y′, w′] = ̸ ∅. Therefore,

‖x′ − y′‖ = ‖y′ − w′‖ − ‖w′ − x′‖ ≤ dX(y, w) − dX(w, x) ≤ dX(x, y).

The above three cases exhaust all possibilities.

Remark 3.6. If we omit the condition that z = ̸ w from the hypothesis of Lemma 3.5, then the statement

becomes false. For example, suppose θ and θ′ are real numbers such that 0 ≤ θ < θ′ ≤ π, and define points

x, y, z, w, x′, y′, z′, w′ ∈ R
2 by

x = (cos θ, sin θ), y = (1, 0), z = w = (0, 0),

x′ = (cos θ′, sin θ′), y′ = (1, 0), z′ = w′ = (0, 0).

Then

‖y′ − z′‖ = ‖y − z‖, ‖z′ − w′‖ = ‖z − w‖, ‖w′ − x′‖ = ‖w − x‖,
‖x′ − z′‖ = ‖x − z‖, ‖y′ − w′‖ = ‖y − w‖, [x′, z′] ∩ [y′, w′] = ̸ ∅.

However,

‖x − y‖ < ‖x′ − y′‖.

4 A criterion for isometric embeddability into a CAT(0) space

In this section, we prove Lemma 1.12 and Proposition 1.9. We first prove Lemma 1.12.

Proof of Lemma 1.12. Let (X, dX) be a metric space that satisfies the GA(0) condition, and let x1, . . . , xn ∈ X.
Then there exist a CAT(0) space (Y , dY ) and points y1, . . . , yn ∈ Y such that

{

dY (yi , yj) ≤ dX(xi , xj), if {i, j} ∈ E+(A),
dY (yi , yj) ≥ dX(xi , xj), if {i, j} ∈ ̸ E+(A)

for any i, j ∈ V. Because Y satisfies the (aij)-quadratic metric inequality by hypothesis, we have

0 ≤
∑

{i,j}∈E

aijdY (yi , yj)
2

=
∑

{i,j}∈E+(A)

|aij|dY (yi , yj)2 −
∑

{i,j}∈E\E+(A)

|aij|dY (yi , yj)2

≤
∑

{i,j}∈E+(A)

|aij|dX(xi , xj)2 −
∑

{i,j}∈E\E+(A)

|aij|dX(xi , xj)2

=
∑

{i,j}∈E

aijdX(xi , xj)
2
,

which proves that X satisfies the (aij)-quadratic metric inequality.
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Proposition 1.9 follows from Lemma 1.12 and Theorem 1.11.

Proof of Proposition 1.9. Let (X, dX) be an n-point metric space. If X admits an isometric embedding into a

CAT(0) space, then X satisfies the G(0) condition for every graph G with n vertices because every CAT(0)

space satisfies the G(0) condition. Conversely, suppose that X satisfies the G(0) condition for every graph G

with n vertices. Let V = [n], and let E =
(

V
2

)

. Fix a family A = (aij){i,j}∈E of real numbers indexed by E such

that every CAT(0) space satisfies the (aij)-quadratic metric inequality. Let E+(A) ⊆ E be the set of all {i, j} ∈ E
such that aij > 0, and let GA = (V , E+(A)) be the graph with vertex set V and edge set E+(A). Then X satisfies

the GA(0) condition, and therefore X satisfies the (aij)-quadratic metric inequality by Lemma 1.12. Thus it

follows from Theorem 1.11 that X admits an isometric embedding into a CAT(0) space.

5 Four points in a CAT(0) space

In this section, we prove that if a metric space satisfies the⊠-inequalities, then it satisfies the G(0) condition

for every graph G with four vertices. Together with Proposition 1.9, this gives another proof of Theorem 1.7.

We first observe that there are many graphs G such that every metric space satisfies the G(0) condition. As we

declared before, graphs are always assumed to be simple and undirected.

Proposition 5.1. Let G = (V , E) be a finite graph. Assume that there exists a vertex v0 ∈ V such that {u, v} ∈ E
for any u, v ∈ V \ {v0} with u = ̸ v. Then every metric space satisfies the G(0) condition.

Proof. Let (X, dX) be a metric space. For each map f : V → X, define a map g : V → R by g(v) =

dX(f (v0), f (v)). Then

|g(u) − g(v)| = |dX(f (v0), f (u)) − dX(f (v0), f (v))| ≤ dX(f (u), f (v))

for any u, v ∈ V, and

|g(v0) − g(v)| = |dX(f (v0), f (v0)) − dX(f (v0), f (v))| = dX(f (v0), f (v))

for any v ∈ V. Therefore,
{

|g(u) − g(v)| ≤ dX(f (u), f (v)), if {u, v} ∈ E,
|g(u) − g(v)| = dX(f (u), f (v)), if {u, v} ∈ ̸ E,

for any u, v ∈ V. Thus X satisfies the G(0) condition.

Proposition 5.1 implies in particular that every metric space satisfies the G(0) condition for every complete

graph G.

Proposition 5.2. Let G1 and G2 be finite graphs, and let G be the graph sum of G1 and G2. In other words, the

vertex and edge sets of G are the disjoint union of the vertex sets of G1 and G2 and that of the edge sets of G1
and G2, respectively. Suppose X is a metric space that satisfies the G1(0) and G2(0) conditions. Then X satisfies

the G(0) condition.

Proof. Suppose G1 = (V1, E1), G2 = (V2, E2) and G = (V , E) are finite graphs such that V is the disjoint union

of V1 and V2, and E is the disjoint union of E1 and E2. Suppose (X, dX) is a metric space that satisfies the

G1(0) and G2(0) conditions. Fix f : V → X. Then for each i ∈ {1, 2}, there exist a CAT(0) space (Yi , dYi ) and
a map gi : Vi → Yi such that

{

dYi (gi(u), gi(v)) ≤ dX(f (u), f (v)), if {u, v} ∈ Ei ,
dYi (gi(u), gi(v)) ≥ dX(f (u), f (v)), if {u, v} ∈ ̸ Ei .

for any u, v ∈ Vi. Choose vertices v1 ∈ V1 and v2 ∈ V2. Let

d = max{dX(f (u), f (v)) | u, v ∈ V}.
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Define (Y ′
1, dY′

1
) to be themetric space obtained by gluing Y1 and the closed interval [0, d] inR by identifying

g1(v1) ∈ Y1 with 0 ∈ [0, d]. Then (Y ′
1, dY′

1
) is a CAT(0) space by Reshetnyak’s gluing theorem. We denote by

g′1(v) the point in Y
′
1 represented by g1(v) ∈ Y1 for each v ∈ V1, and by d′ the point in Y ′

1 represented by

d ∈ [0, d]. Define (Y , dY ) to be the metric space obtained by gluing Y ′
1 and Y2 by identifying d

′ ∈ Y ′
1 with

g2(v2) ∈ Y2. Then (Y , dY ) is a CAT(0) space by Reshetnyak’s gluing theorem. Define a map g : V → Y by

sending each u ∈ V1 to the point in Y represented by g′1(u) ∈ Y ′
1, and each v ∈ V2 the point in Y represented

by g2(v) ∈ Y2. Then
{

dY (g(u), g(u
′)) = dY1 (g1(u), g1(u

′)) ≤ dX(f (u), f (u
′)), if {u, u′} ∈ E1,

dY (g(u), g(u
′)) = dY1 (g1(u), g1(u

′)) ≥ dX(f (u), f (u
′)), if {u, u′} ∈ ̸ E1,

{

dY (g(v), g(v
′)) = dY2 (g2(v), g2(v

′)) ≤ dX(f (v), f (v
′)), if {v, v′} ∈ E2,

dY (g(v), g(v
′)) = dY2 (g2(v), g2(v

′)) ≥ dX(f (v), f (v
′)), if {v, v′} ∉ E2,

dY (g(u), g(v)) = dY1 (g1(u), g1(v1)) + d + dY2 (g2(v2), g2(v))

≥ dX(f (u), f (v))

for any u, u′ ∈ V1 and any v, v′ ∈ V2. It follows that
{

dY (g(u), g(v)) ≤ dX(f (u), f (v)), if {u, v} ∈ E,
dY (g(u), g(v)) ≥ dX(f (u), f (v)), if {u, v} ∈ ̸ E

for any u, v ∈ V. Thus X satisfies the G(0) condition.

Corollary 5.3. Every metric space satisfies the G(0) condition for any disconnected graph G with four vertices.

Proof. Let G be a disconnected graph with four vertices. Then there exist graphs G1 and G2 such that G is the

graph sumofG1 andG2, andGi contains atmost three vertices for each i ∈ {1, 2}. Because everymetric space

that contains at most three points admits an isometric embedding into R
2, every metric space satisfies the

G1(0) and G2(0) conditions clearly. Therefore, it follows from Proposition 5.2 that every metric space satisfies

the G(0) condition.

Proposition 5.4. Let G = (V , E) be a finite graph. Assume that there exist V1, V2 ⊆ V and v0 ∈ V such that

V1 ∪ V2 = V, V1 ∩ V2 = {v0}, and there are no edges {u, v} ∈ E with u ∈ V1 \ {v0} and v ∈ V2 \ {v0}. Suppose
X is a metric space such that every subset S ⊆ X with |S| ≤ max{|V1|, |V2|} admits an isometric embedding into
a CAT(0) space. Then X satisfies the G(0) condition.

Proof. Fix a map f : V → X. By hypothesis, both f (V1) and f (V2) admit isomeric embeddings into CAT(0)

spaces. Hence for each i ∈ {1, 2}, there exist a CAT(0) space (Yi , dYi ) and a map gi : Vi → Yi such that

dYi (gi(u), gi(v)) = dX(f (u), f (v)) for any u, v ∈ Vi. Define (Y , dY ) to be the metric space obtained by gluing Y1
and Y2 by identifying g1(v0) ∈ Y1 with g2(v0) ∈ Y2. Then (Y , dY ) is a CAT(0) space by Reshetnyak’s gluing

theorem. Define a map g : V → Y by sending each u ∈ V1 to the point in Y represented by g1(u) ∈ Y1, and
each v ∈ V2 \ {v0} to the point in Y represented by g2(v) ∈ Y2. Then

dY (g(u), g(u
′)) = dY1 (g1(u), g1(u

′)) = dX(f (u), f (u
′)),

dY (g(v), g(v
′)) = dY2 (g2(v), g2(v

′)) = dX(f (v), f (v
′)),

dY (g(u), g(v)) = dY1 (g1(u), g1(v0)) + dY2 (g2(v0), g2(v))

= dX(f (u), f (v0)) + dX(f (v0), f (v))

≥ dX(f (u), f (v))

for any u, u′ ∈ V1 and v, v′ ∈ V2. It follows that
{

dY (g(u), g(v)) = dX(f (u), f (v)), if {u, v} ∈ E,
dY (g(u), g(v)) ≥ dX(f (u), f (v)), if {u, v} ∉ E
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for any u, v ∈ V. Thus X satisfies the G(0) condition.

For a finite graph G = (V , E) and a vertex v ∈ V, the degree of v, denoted by deg(v), is the number of edges

e ∈ E such that v ∈ e.

Corollary 5.5. Suppose G = (V , E) is a graph such that |V| = 4, and there exists a vertex v1 ∈ V with deg(v1) =

1. Then every metric space satisfies the G(0) condition.

Proof. Let v0 ∈ V be the vertex such that {v0, v1} ∈ E. Let V1 = V \{v1}, and let V2 = {v0, v1}. Then V1∪V2 =
V, V1 ∩ V2 = {v0}, and there are no edges {u, v} ∈ E with u ∈ V1 \ {v0} and v ∈ V2 \ {v0}. Furthermore,

max{|V1|, |V2|} = 3, and every metric space containing at most three points admits an isometric embedding

into R2. Therefore, it follows from Proposition 5.4 that every metric space satisfies the G(0) condition.

Recall that there are eleven simple undirected graphs on four vertices up to graph isomorphism, which are

listed in Figure 5.1. We call them G(4)1 , . . . , G(4)11 , respectively as in Figure 5.1.

✉ ✉

✉✉

G(4)1

✉ ✉

✉✉

G(4)2

✉ ✉

✉✉

G(4)3

✉ ✉

✉✉

G(4)4

✉ ✉

✉✉

�
�
�

G(4)5

✉ ✉

✉✉

�
�
�

G(4)6

✉ ✉

✉✉

❅
❅
❅

G(4)7

✉ ✉

✉✉

G(4)8

✉ ✉

✉✉

❅
❅
❅

G(4)9

✉ ✉

✉✉

❅
❅
❅

G(4)10

✉ ✉

✉✉

❅
❅
❅�

�
�

G(4)11

Figure 5.1: The graphs on four vertices.

All graphs listed in Figure 5.1 except the cycle graph G(4)8 satisfy the hypothesis of Proposition 5.1, Corol-

lary 5.3 or Corollary 5.5. Thus everymetric space satisfies theG(0) conditions for all graphsGwith four vertices

that is not isomorphic to the cycle graph. The following proposition follows from this observation and Lemma

1.12.

Proposition 5.6. Let V = {1, 2, 3, 4}, and let E =
(

V
2

)

. Suppose A = (aij){i,j}∈E is a family of real numbers

indexed by E such that every CAT(0) space satisfies the (aij)-quadratic metric inequality. Define E+(A) ⊆ E to

be the set of all {i, j} ∈ E with aij > 0. If the graph GA =
(

V , E+(A)
)

is not isomorphic to the cycle graph, then

every metric space satisfies the (aij)-quadratic metric inequality.

Proof. If GA is not isomorphic to the cycle graph G(4)8 , then everymetric space satisfies the GA(0) condition as

we observed above. Therefore, it follows from Lemma 1.12 that every metric space satisfies the (aij)-quadratic

metric inequality.

It follows from the above observation and Proposition 1.9 that a four-point metric space admits an isometric

embedding into a CAT(0) space if and only if it satisfies the G(4)8 (0) condition. This implies in particular that

not every metric space satisfies the G(4)8 (0) condition because not every four-point metric space admits an

isometric embedding into a CAT(0) space as we observed in Example 1.2. The following proposition is an

immediate consequence of Theorem 1.6.

Proposition 5.7. If a metric space X satisfies the⊠-inequalities, then X satisfies the G(4)8 (0) condition.

Proof. If a metric space X satisfies the⊠-inequalities, then X satisfies the Cycl4(0) condition by Theorem 1.6,

which clearly implies that X satisfies the G(4)8 (0) condition.
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The facts that we have proved so far give another proof of Theorem 1.7.

Proof of Theorem 1.7. Assume that a four-point metric space X admits an isometric embedding into a CAT(0)

space. Then X satisfies the⊠-inequalities because everyCAT(0) space satisfies the⊠-inequalities. Conversely,

assume that a four-point metric space X satisfies the ⊠-inequalities. Then it follows from Proposition 5.1,

Corollary 5.3, Corollary 5.5 and Proposition 5.7 that X satisfies the G(0) conditions for all graphs G with four

vertices, which implies that X admits an isometric embedding into a CAT(0) space by Proposition 1.9.

The following facts are worth noting although they are not necessary for our purposes.

Proposition 5.8. Every metric space satisfies the G(0) condition for every tree G.

Proof. Let (X, dX) be a metric space and let G = (V , E) be a tree. For any f : V → X, define Y to be the metric

tree obtained by assigning the length dX(f (u), f (v)) to each edge {u, v} ∈ E of G. Then Y becomes a CAT(0)

space, and the triangle inequality for dX ensures that the natural inclusion g : V → Y satisfies that

{

dY (g(u), g(v)) = dX(f (u), f (v)), if {u, v} ∈ E,
dY (g(u), g(v)) ≥ dX(f (u), f (v)), if {u, v} ∈ ̸ E

for any u, v ∈ V. Thus X satisfies the G(0) condition.

The following corollary follows immediately from Proposition 5.8 and Lemma 1.12.

Corollary 5.9. Let n be a positive integer, let V = [n], and let E =
(

V
2

)

. Suppose A = (aij){i,j}∈E is a family of

real numbers indexed by E. Let E+(A) be the set of all {i, j} ∈ E with aij > 0. If every CAT(0) space satisfies

the (aij)-quadratic metric inequality, and if the graph GA = (V , E+(A)) is isomorphic to a tree, then every metric

space satisfies the (aij)-quadratic metric inequality.

6 Five points in a CAT(0) space

In this section, we prove that if a metric space X satisfies the ⊠-inequalities, then X satisfies the G(0) condi-

tions for all graphsGwithfivevertices except two special graphs.We startwith the following twopropositions.

Proposition 6.1. If a metric space X satisfies the ⊠-inequalities, then X satisfies the G(0) condition for every

disconnected graph G with five vertices.

Proof. Let X be a metric space that satisfies the ⊠-inequalities, and let G be a disconnected graph with five

vertices. Then there exist graphs G1 and G2 such that G is the graph sum of G1 and G2, and the number of

vertices of Gi is at most four for each i ∈ {1, 2}. Because every subset S ⊆ X with |S| ≤ 4 admits an isometric

embedding into a CAT(0) space by Theorem 1.7, X satisfies the G1(0) and G2(0) conditions clearly. Thus it

follows from Proposition 5.2 that X satisfies the G(0) condition.

Proposition 6.2. Let X be a metric space that satisfies the⊠-inequalities. Suppose G = (V , E) is a graph such

that |V| = 5, and there exists a vertex v1 ∈ V with deg(v1) = 1. Then X satisfies the G(0) condition.

Proof. Let v0 ∈ V be the vertex with {v0, v1} ∈ E, let V1 = V \ {v1}, and let V2 = {v0, v1}. Then V1 ∪ V2 = V,
V1 ∩ V2 = {v0}, and there are no edges {u, v} ∈ E with u ∈ V1 \ {v0} and v ∈ V2 \ {v0}. Because X satisfies

the ⊠-inequalities, every subset S ⊆ X with |S| ≤ 4 admits an isometric embedding into a CAT(0) space by

Theorem 1.7. Thus it follows from Proposition 5.4 that X satisfies the G(0) condition.

It follows from Proposition 6.1 and Proposition 6.2 that if a five-vertex graph G has a vertex v with deg(v) ≤

1, then a metric space X satisfies the G(0) condition whenever X satisfies the ⊠-inequalities. Up to graph
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isomorphism, there are eleven five-vertex graphs G such that every vertex v of G satisfies deg(v) ≥ 2, which

are listed in Figure 6.1. As in Figure 6.1, we call these graphs G(5)1 , . . . , G(5)11 , respectively.
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G(5)11

Figure 6.1: The five-vertex graphs each of whose vertex satisfies deg ≥ 2.

Proposition 6.3. If a metric space X satisfies the⊠-inequalities, then X satisfies the G(5)1 (0) condition.

Proof. If a metric space X satisfies the⊠-inequalities, then X satisfies the Cycl5(0) condition by Theorem 1.6,

which clearly implies that X satisfies the G(5)1 (0) condition.

Proposition 6.4. Every metric space satisfies the G(5)2 (0) condition.

v3

v2

v1

v4

v5
✉ ✉

✉ ✉

✉

✟✟✟❅
❅��

Figure 6.2

Proof. Let V and E be the vertex set and the edge set of G(5)2 (0), respectively. We set

V = {v1, v2, v3, v4, v5},
E = {{v1, v2}, {v2, v5}, {v5, v1}, {v3, v4}, {v4, v5}, {v5, v3}},

as shown in Figure 6.2. Set

V1 = {v1, v2, v5}, V2 = {v3, v4, v5}.

Then V1 ∪ V2 = V, V1 ∩ V2 = {v5}, and there are no edges {u, v} ∈ E with u ∈ V1 \ {v5} and v ∈ V2 \ {v5}.
Because everymetric space containing atmost three points admits an isometric embedding intoR2, it follows

from Proposition 5.4 that every metric space satisfies the G(5)2 (0) condition.

Before proving that the validity of the ⊠-inequalities implies the G(5)3 (0) condition, we prove the following

lemma.
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Lemma 6.5. Let (X, dX) be a metric space that satisfies the ⊠-inequalities, and let (Y , dY ) be a metric space.

Suppose p, x, y, z, w ∈ X and p′, x′, y′, z′, w′ ∈ Y are points such that

dX(p, x) ≤ dY (p
′
, x′), dX(x, y) ≤ dY (x

′
, y′), dX(y, z) ≤ dY (y

′
, z′),

dX(z, w) ≤ dY (z
′
, w′), dX(w, p) ≤ dY (w

′
, p′),

dX(p, y) = dY (p
′
, y′), dX(p, z) = dY (p

′
, z′).

Assume that there exist subsets T1, T2 and T3 of Y that satisfy the following conditions:

(1) T1, T2 and T3 are isometric to convex subsets of Euclidean spaces.

(2) {p′, x′, y′} ⊆ T1, {p′, y′, z′} ⊆ T2 and {p′, z′, w′} ⊆ T3.
(3) There exists a geodesic segment Γ1 in Y with endpoints p′ and y′ such that

Γ1 ⊆ T1 ∩ T2.

(4) There exists a geodesic segment Γ2 in Y with endpoints p′ and z′ such that

Γ2 ⊆ T2 ∩ T3.

(5) There exist q1 ∈ Γ1 and q2 ∈ Γ2 such that

dY (x
′
, w′) = dY (x

′
, q1) + dY (q1, q2) + dY (q2, w

′).

Then dX(x, w) ≤ dY (x
′, w′).

Proof. Choose p1, x1, y1, p2, y2, z2, p3, z3, w3 ∈ R
2 such that

‖p1 − x1‖ = dY (p′, x′), ‖x1 − y1‖ = dY (x′, y′), ‖y1 − p1‖ = dY (y′, p′),
‖p2 − y2‖ = dY (p′, y′), ‖y2 − z2‖ = dY (y′, z′), ‖z2 − p2‖ = dY (z′, p′),
‖p3 − z3‖ = dY (p′, z′), ‖z3 − w3‖ = dY (z′, w′), ‖w3 − p3‖ = dY (w′

, p′).

Equip the subsets

T′1 = conv({p1, x1, y1}), T′2 = conv({p2, y2, z2}), T′3 = conv({p3, z3, w3}).

of R2 with the induced metrics, and regard them as disjoint metric spaces. Define (Y ′, dY′ ) to be the metric

space obtained by gluing T′1 and T
′
2 by identifying [p1, y1] ⊆ T′1 with [p2, y2] ⊆ T′2. Then Y ′ is a CAT(0) space

by Reshetnyak’s gluing theorem.Wedenote the points in Y ′ represented by p1, x1, y1 ∈ T1 and z2 ∈ T2 by p′′,
x′′, y′′ and z′′, respectively. Define (Ỹ , dỸ ) to be the metric space obtained by gluing Y ′ and T′3 by identifying

[p′′, z′′] ⊆ Y ′ with [p3, z3] ⊆ T3. Then Ỹ is a CAT(0) space by Reshetnyak’s gluing theorem, which is pictured

in Figure 6.3. We denote the points in Ỹ represented by p′′, x′′, y′′, z′′ ∈ Y ′ and w3 ∈ T3 by p̃, x̃, ỹ, z̃ and w̃,

w̃

p̃

x̃

ỹz̃

T̃3
T̃2

T̃1

Figure 6.3: The metric space Ỹ in the proof of Lemma 6.5.

respectively. For each i ∈ {1, 2, 3}, the natural inclusion of T′i into Ỹ is clearly an isometric embedding. Let
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T̃i ⊆ Ỹ be the image of T′i under the natural inclusion for each i ∈ {1, 2, 3}. It is clear from the definition of

Ỹ that T̃1 ∩ T̃2 = [p̃, ỹ], and [p̃, ỹ] ∩ [x̃, z̃] = ̸ ∅. Hence Lemma 3.3 implies that

dX(x, z) ≤ dỸ (x̃, z̃) (6.1)

because it follows from the hypothesis of the lemma and the definition of Ỹ that

dX(p, x) ≤ dY (p
′
, x′) = dỸ (p̃, x̃), dX(x, y) ≤ dY (x

′
, y′) = dỸ (x̃, ỹ),

dX(y, z) ≤ dY (y
′
, z′) = dỸ (ỹ, z̃), dX(z, p) = dY (z

′
, p′) = dỸ (z̃, p̃),

dX(p, y) = dY (p
′
, y′) = dỸ (p̃, ỹ).

Similarly, Lemma 3.3 also implies that

dX(y, w) ≤ dỸ (ỹ, w̃). (6.2)

Next, we will prove that

dX(x, w) ≤ dỸ (x̃, w̃). (6.3)

To prove this, we first observe that (6.3) holds whenever one of the following equalities holds:

p = x, x = y, y = z, z = w, w = p, p = y, p = z. (6.4)

If p = x, then p̃ = x̃ by definition of Ỹ, so

dX(x, w) = dX(p, w) ≤ dY (p
′
, w′) = dỸ (p̃, w̃) = dỸ (x̃, w̃).

If w = p, then we obtain (6.3) similarly. If x = y, then x̃ = ỹ by definition of Ỹ, so it follows from (6.2) that

dX(x, w) = dX(y, w) ≤ dỸ (ỹ, w̃) = dỸ (x̃, w̃).

If z = w, then (6.3) follows from (6.1) similarly. If p = y or p = z, then p̃ ∈ [x̃, w̃] by definition of Ỹ, so

dX(x, w) ≤ dX(x, p) + dX(p, w) ≤ dY (x
′
, p′) + dY (p

′
, w′)

= dỸ (x̃, p̃) + dỸ (p̃, w̃) = dỸ (x̃, w̃).

Finally, if y = z, then

ỹ = z̃, T̃1 ∩ T̃3 = [p̃, ỹ], [p̃, ỹ] ∩ [x̃, w̃] = ̸ ∅,

by definition of Ỹ, so Lemma 3.3 implies (6.3) because it follows from the hypothesis of the lemma and the

definition of Ỹ that

dX(p, x) ≤ dY (p
′
, x′) = dỸ (p̃, x̃), dX(x, y) ≤ dY (x

′
, y′) = dỸ (x̃, ỹ),

dX(y, w) = dX(z, w) ≤ dY (z
′
, w′) = dỸ (z̃, w̃) = dỸ (ỹ, w̃),

dX(w, p) ≤ dY (w
′
, p′) = dỸ (w̃, p̃), dX(p, y) = dY (p

′
, y′) = dỸ (p̃, ỹ).

So henceforth we assume that any equality in (6.4) does not hold. We consider four cases.

Case 1:∠x1y1p1+∠p2y2z2 ≤ π and∠x1p1y1+∠y2p2z2 ≤ π. In this case, the subset T̃1∪T̃2 of Ỹ is isometric

to a convex subset of the Euclidean plane, and it is clear from the definition of Ỹ that (T̃1 ∪ T̃2) ∩ T̃3 = [p̃, z̃]

and [p̃, z̃] ∩ [x̃, w̃] ≠ ∅. Therefore, Lemma 3.3 implies the desired inequality (6.3) because it follows from the

hypothesis of the lemma, the definition of Ỹ and (6.1) that

dX(p, x) ≤ dY (p
′
, x′) = dỸ (p̃, x̃), dX(x, z) ≤ dỸ (x̃, z̃),

dX(z, w) ≤ dY (z
′
, w′) = dỸ (z̃, w̃), dX(w, p) ≤ dY (w

′
, p′) = dỸ (w̃, p̃),

dX(p, z) = dY (p
′
, z′) = dỸ (p̃, z̃).

Case 2:∠y2z2p2 +∠p3z3w3 ≤ π and∠y2p2z2 +∠z3p3w3 ≤ π. In this case, the subset T̃2 ∪ T̃3 is isometric

to a convex subset of the Euclidean plane, and it is clear from the definition of Ỹ that T̃1 ∩ (T̃2 ∪ T̃3) = [p̃, ỹ]

and [p̃, ỹ]∩ [x̃, w̃] = ̸ ∅. Therefore, Lemma 3.3 implies the desired inequality (6.3) in the same way as in Case 1.
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Case 3: ∠x1p1y1 +∠y2p2z2 +∠z3p3w3 ≥ π. In this case, we clearly have

dỸ (x̃, w̃) = ‖x1 − p1‖ + ‖p3 − w3‖,

and hence

dỸ (x̃, w̃) = dY (x
′
, p′) + dY (p

′
, w′) ≥ dX(x, p) + dX(p, w) ≥ dX(x, w).

Case 4: Neither the assumption of Case 1, Case 2 nor Case 3 holds. In this case,

∠x1p1y1 +∠y2p2z2 ≤ π, ∠y2p2z2 +∠z3p3w3 ≤ π (6.5)

because the assumption of Case 3 does not hold. Because neither the assumption of Case 1 nor Case 2 holds,

it follows from (6.5) that

∠x1y1p1 +∠p2y2z2 > π, ∠y2z2p2 +∠p3z3w3 > π (6.6)

It clearly follows from (6.6) that

dỸ (x̃, w̃) = ‖x1 − y1‖ + ‖y2 − z2‖ + ‖z3 − w3‖,

and hence

dỸ (x̃, w̃) = dY (x
′
, y′) + dY (y

′
, z′) + dY (z

′
, w′)

≥ dX(x, y) + dX(y, z) + dX(z, w) ≥ dX(x, w),

which completes the proof of (6.3).

It follows from the conditions (1) and (2) in the statement of the lemma that there exist isometric embed-

dings f1 : T̃1 → T1, f2 : T̃2 → T2 and f3 : T̃3 → T3 such that

f1(p̃) = p
′
, f1(x̃) = x

′
, f1(ỹ) = y

′

f2(p̃) = p
′
, f2(ỹ) = y

′
, f2(z̃) = z

′

f3(p̃) = p
′
, f3(z̃) = z

′
, f3(w̃) = w

′
.

Then f1([p̃, ỹ]) is a geodesic segment with endpoints p′ and y′ contained in T1, and f2([p̃, ỹ]) is a geodesic

segment with endpoints p′ and y′ contained in T2. Since T1 and T2 are both uniquely geodesic, it follows

that f1([p̃, ỹ]) = Γ1 = f2([p̃, ỹ]), and thus f1 and f2 agree on [p̃, ỹ]. Similarly, f2 and f3 agree on [p̃, z̃]. Suppose

q̃1 ∈ [p̃, ỹ] and q̃2 ∈ [p̃, z̃] are the points such that f1(q̃1) = f2(q̃1) = q1 and f2(q̃2) = f3(q̃2) = q2. Then

dY (x
′
, w′) = dY (x

′
, q1) + dY (q1, q2) + dY (q2, w

′)

= dỸ (f
−1
1 (x′), f −11 (q1)) + dỸ (f

−1
2 (q1), f

−1
2 (q2)) + dỸ (f

−1
3 (q2), f

−1
3 (w′))

= dỸ (x̃, q̃1) + dỸ (q̃1, q̃2) + dỸ (q̃2, w̃) ≥ dỸ (x̃, w̃).

Combining this with (6.3) yields dX(x, w) ≤ dY (x
′, w′).

Proposition 6.6. If a metric space X satisfies the⊠-inequalities, then X satisfies the G(5)3 (0) and G(5)5 (0) condi-

tions.

Proof. Let (X, dX) be a metric space that satisfies the⊠-inequalities. Suppose the graphs G(5)3 and G(5)5 have a

common vertex set V, and edge sets E3 and E5, respectively. We set

V = {v1, v2, v3, v4, v5},
E3 = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v1}, {v2, v5}},
E5 = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v1}, {v2, v5}, {v3, v5}},
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Figure 6.4

as shown in Figure 6.4. Fix a map f : V → X, and set

dij = dX(f (vi), f (vj))

for any i, j ∈ {1, 2, 3, 4, 5}. By Theorem 1.7, if dij = 0 for some i, j ∈ {1, 2, 3, 4, 5}with i ≠ j, then there exist
aCAT(0) space (Y0, dY0 ) and amap g0 : V → Y0 such that dY0 (g0(vi), g0(vj)) = dij for any i, j ∈ {1, 2, 3, 4, 5}.
Hence we assume dij > 0 for any i, j ∈ {1, 2, 3, 4, 5} with i = ̸ j.

Choose x1, x2, x5, y2, y3, y5, z3, z4, z5 ∈ R
2 such that

‖x1 − x2‖ = d12, ‖x2 − x5‖ = d25, ‖x5 − x1‖ = d51,
‖y2 − y3‖ = d23, ‖y3 − y5‖ = d35, ‖y5 − y2‖ = d52,
‖z3 − z4‖ = d34, ‖z4 − z5‖ = d45, ‖z5 − z3‖ = d53.

Equip the subsets

T1 = conv({x1, x2, x5}), T2 = conv({y2, y3, y5}), T3 = conv({z3, z4, z5})

of R2 with the induced metrics, and regard them as disjoint metric spaces. Define (Y ′, dY′ ) to be the met-

ric space obtained by gluing T1 and T2 by identifying [x2, x5] ⊆ T1 with [y2, y5] ⊆ T2. Then (Y ′, dY′ ) is a

CAT(0) space by Reshetnyak’s gluing theorem. We denote by pi the point in Y
′ represented by xi ∈ T1 for

each i ∈ {1, 2, 5}, and by p3 the point in Y
′ represented by y3 ∈ T2. Define (Y , dY ) to be the metric space

obtained by gluing Y ′ and T3 by identifying [p3, p5] ⊆ Y ′ with [z3, z5] ⊆ T3. Then (Y , dY ) is a CAT(0) space
by Reshetnyak’s gluing theorem, and for each i ∈ {1, 2, 3}, the natural inclusion of Ti into Y is clearly an

isometric embedding. Let g : V → Y be the map that assigns the point in Y represented by pi ∈ Y ′ to vi ∈ V
for each i ∈ {1, 2, 3, 5}, and the point in Y represented by z4 ∈ T3 to v4 ∈ V. Then Lemma 3.3 implies that

dY (g(v1), g(v3)) ≥ d13, dY (g(v2), g(v4)) ≥ d24, (6.7)

and Lemma 6.5 implies that

dY (g(v1), g(v4)) ≥ d14. (6.8)

It follows from (6.7), (6.8) and the definition of Y that any u, v ∈ V satisfy
{

dY (g(u), g(v)) = dX(f (u), f (v)), if {u, v} ∈ Ei ,
dY (g(u), g(v)) ≥ dX(f (u), f (v)), if {u, v} ∉ Ei

for each i ∈ {3, 5}. Thus X satisfies the G(5)3 (0) and G(5)5 (0) conditions.

Proposition 6.7. If a metric space X satisfies the⊠-inequalities, then X satisfies the G(5)4 (0) and G(5)6 (0) condi-

tions.

Proof. Let (X, dX) be a metric space that satisfies the⊠-inequalities. Suppose the graphs G(5)4 and G(5)6 have a

common vertex set V, and edge sets E4 and E6, respectively. We set

V = {v1, v2, v3, v4, v5},
E4 = {{v1, v2}, {v2, v3}, {v4, v5}, {v5, v1}, {v2, v4}, {v3, v5}},
E6 = {{v1, v2}, {v2, v3}, {v4, v5}, {v5, v1}, {v2, v4}, {v3, v5}, {v5, v2}},
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Figure 6.5

as shown in Figure 6.5. Fix a map f : V → X, and set

dij = dX(f (vi), f (vj))

for any i, j ∈ {1, 2, 3, 4, 5}. By Theorem 1.7, if dij = 0 for some i, j ∈ {1, 2, 3, 4, 5}with i = ̸ j, then there exist
aCAT(0) space (Y0, dY0 ) and amap g0 : V → Y0 such that dY0 (g0(vi), g0(vj)) = dij for any i, j ∈ {1, 2, 3, 4, 5}.
Hence we assume dij > 0 for any i, j ∈ {1, 2, 3, 4, 5} with i ≠ j.

Choose x1, x2, x5, y2, y3, y5, z2, z4, z5 ∈ R
2 such that

‖x1 − x2‖ = d12, ‖x2 − x5‖ = d25, ‖x5 − x1‖ = d51,
‖y2 − y3‖ = d23, ‖y3 − y5‖ = d35, ‖y5 − y2‖ = d52,
‖z2 − z4‖ = d24, ‖z4 − z5‖ = d45, ‖z5 − z2‖ = d52.

Equip the subsets

T1 = conv({x1, x2, x5}), T2 = conv({y2, y3, y5}), T3 = conv({z2, z4, z5})

ofR2 with the inducedmetrics, and regard them as disjointmetric spaces.We define Y ′ to be themetric space

obtained by gluing T1 and T2 by identifying [x2, x5] ⊆ T1 with [y2, y5] ⊆ T2. Then Y
′ is a CAT(0) space by

Reshetnyak’s gluing theorem. We denote by pi the point in Y
′ represented by xi ∈ T1 for each i ∈ {1, 2, 5},

and by p3 the point in Y
′ represented by y3 ∈ T2. Define (Y , dY ) to be the metric space obtained by gluing Y ′

and T3 by identifying [p2, p5] ⊆ Y ′ with [z2, z5] ⊆ T3. Then (Y , dY ) is a CAT(0) space by Reshetnyak’s gluing
theorem, and the natural inclusion of Ti into Y is clearly an isometric embedding for each i ∈ {1, 2, 3}. Let
g : V → Y be the map that assigns the point in Y represented by pi ∈ Y ′ to each vi ∈ {v1, v2, v3, v5}, and the
point in Y represented by z4 ∈ T3 to v4. Then it is clear from the definition of Y that the geodesic segment

[g(v2), g(v5)] ⊆ Y is shared by the images of T1, T2 and T3 under the natural inclusions. Because it is also

clear from the definition of Y that [g(v2), g(v5)] ∩ [g(v1), g(v3)] = ̸ ∅, Lemma 3.3 implies that

dY (g(v1), g(v3)) ≥ d13. (6.9)

Similarly, Lemma 3.3 also implies that

dY (g(v3), g(v4)) ≥ d34, dY (g(v4), g(v1)) ≥ d41. (6.10)

It follows from (6.9), (6.10) and the definition of Y that any u, v ∈ V satisfy

{

dY (g(u), g(v)) = dX(f (u), f (v)), if {u, v} ∈ Ei ,
dY (g(u), g(v)) ≥ dX(f (u), f (v)), if {u, v} ∈ ̸ Ei ,

for each i ∈ {4, 6}. Thus X satisfies the G(5)4 (0) and G(5)6 (0) conditions.

The following proposition follows immediately from Proposition 5.1.

Proposition 6.8. Every metric space satisfies the G(5)8 (0), G(5)10 (0) and G
(5)
11 (0) conditions.

Proof. For each i ∈ {8, 10, 11}, the graph G(5)i = (V , E) has a vertex v0 ∈ V such that {u, v} ∈ E for any

u, v ∈ V \ {v0} with u = ̸ v. Therefore, Proposition 5.1 implies that every metric space satisfies the G(5)i (0)

condition for each i ∈ {8, 10, 11}.
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By Propositions 6.1, 6.2, 6.3, 6.4, 6.6, 6.7 and 6.8, to prove that the validity of the ⊠-inequalities implies the

G(0) condition for every graph G with five vertices, it only remains to prove that it implies the G(5)7 (0) and

G(5)9 (0) conditions.

7 Embeddability of four points into a Euclidean space

In this section, we introduce certain concepts concerning isometric embeddability of four-point subsets of

metric spaces into the three dimensional Euclidean space, and by using those concepts, discuss several prop-

erties of metric spaces that satisfy the⊠-inequalities. Those properties will be used to prove that the validity

of the⊠-inequalities implies the G(5)7 (0) and G(5)9 (0) conditions.

Definition 7.1. Let (X, dX) be a metric space, and let x, y, z, w ∈ X be four distinct points. We say that

{x, y, z, w} is under-distance (resp. over-distance) with respect to {y, w} if any x′, y′, z′, w′ ∈ R
3 satisfy

dX(y, w) < ‖y′ − w′‖ (resp. ‖y′ − w′‖ < dX(y, w)) whenever

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), ‖z′ − x′‖ = dX(z, x),
‖x′ − w′‖ = dX(x, w), ‖w′ − z′‖ = dX(w, z). (7.1)

It is easily observed that for any four distinct points x y, z and w in any metric space X, there exist

x′, y′, z′, w′ ∈ R
3 satisfying (7.1). Therefore, {x, y, z, w} does not become under-distance and over-distance

with respect to {y, w} simultaneously.

Proposition 7.2. Let (X, dX) be ametric space, and let x, y, z, w ∈ X be four distinct points. Then one and only
one of the following conditions holds true.

(a) The subset {x, y, z, w} ⊆ X admits an isometric embedding into R3.

(b) {x, y, z, w} is under-distance with respect to {y, w}.
(c) {x, y, z, w} is over-distance with respect to {y, w}.

Proof. Define x̃, z̃ ∈ R
3 by

x̃ = (0, 0, 0), z̃ = (dX(x, z), 0, 0).

Suppose ỹ = (y(1), y(2), 0) and w̃ = (w(1), w(2), 0) are the points in R
3 such that

‖x̃ − ỹ‖ = dX(x, y), ‖ỹ − z̃‖ = dX(y, z), y(2) ≥ 0,

‖x̃ − w̃‖ = dX(x, w), ‖w̃ − z̃‖ = dX(w, z), w(2) ≥ 0.

Clearly, such ỹ and w̃ exist uniquely. For each θ ∈ [0, π], define w̃(θ) ∈ R
3 by

w̃(θ) = (w(1)
, w(2) cos θ, w(2) sin θ).

Then it is easily seen that

‖x̃ − w̃(θ)‖ = dX(x, w), ‖w̃(θ) − z̃‖ = dX(w, z)

for any θ ∈ [0, π], and the function θ 7→ ‖ỹ − w̃(θ)‖ is non-decreasing on [0, π]. To prove the proposition, it

suffices to prove the following three statements:

(a′) {x, y, z, w} admits an isometric embedding into R3 if and only if

‖ỹ − w̃(0)‖ ≤ dX(y, w) ≤ ‖ỹ − w̃(π)‖. (7.2)

(b′) {x, y, z, w} is under-distance with respect to {y, w} if and only if

dX(y, w) < ‖ỹ − w̃(0)‖.
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(c′) {x, y, z, w} is over-distance with respect to {y, w} if and only if

‖ỹ − w̃(π)‖ < dX(y, w).

Let x′, y′, z′, w′ ∈ R
3 be arbitrary points that satisfy the equalities (7.1) in Definition 7.1. Then there exists

a point w′′ = (α1, α2, α3) ∈ R
3 such that

‖x′ − w′‖ = ‖x̃ − w′′‖, ‖y′ − w′‖ = ‖ỹ − w′′‖, ‖z′ − w′‖ = ‖z̃ − w′′‖

by definition of the points x̃, ỹ and z̃. Then

α21 + α
2
2 + α

2
3 = (w(1))2 + (w(2))2,

(α1 − dX(x, z))
2 + α22 + α

2
3 = (w(1) − dX(x, z))

2 + (w(2))2

because

‖x̃ − w′′‖ = dX(x, w) = ‖x̃ − w̃‖, ‖w′′ − z̃‖ = dX(w, z) = ‖w̃ − z̃‖.

Since dX(x, z) = ̸ 0, these equalities imply that

α1 = w
(1)
, α22 + α

2
3 = (w(2))2. (7.3)

It follows from the second equality in (7.3) that

|α2| ≤ |w(2)|. (7.4)

Using (7.3), we compute that

‖y′ − w′‖2 = ‖ỹ − w′′‖2

= (y(1) − α1)
2 + (y(2) − α2)

2 + α23

= (y(1) − w(1))2 + (y(2))2 − 2α2y
(2) + (w(2))2.

Together with (7.4), this implies that

‖ỹ − w̃(0)‖ ≤ ‖y′ − w′‖ ≤ ‖ỹ − w̃(π)‖ (7.5)

because

‖ỹ − w̃(0)‖2 = (y(1) − w(1))2 + (y(2) − w(2))2, ‖ỹ − w̃(π)‖2 = (y(1) − w(1))2 + (y(2) + w(2))2.

The statements (b′) and (c′) follow immediately from the fact that the inequality (7.5) holds true for ar-

bitrary x′, y′, z′, w′ ∈ R
3 satisfying (7.1). It also follows immediately from this fact that if {x, y, z, w} admits

an isometric embedding into R
3, then (7.2) holds true. If (7.2) holds true, then there exists θ0 ∈ [0, π] that

satisfies

‖ỹ − w̃(θ0)‖ = dX(y, w)

because the function θ 7→ ‖ỹ − w̃(θ)‖ is continuous on [0, π], and therefore the map φ : {x, y, z, w} → R
3

defined by

φ(x) = x̃, φ(y) = ỹ, φ(z) = z̃, φ(w) = w̃(θ0)

is an isometric embedding. Thus (a′) is also true.

Before discussing properties ofmetric spaces that satisfy the⊠-inequalities by using the concepts introduced

above, we recall the following two basic facts. Both of them hold clearly, so we omit their proofs.

Lemma 7.3. Suppose x, y, z, x′, y′, z′ ∈ R
2 are points such that

0 < ‖x − y‖ = ‖x′ − y′‖, 0 < ‖z − y‖ = ‖z′ − y′‖.

Then ‖x− z‖ ≤ ‖x′ − z′‖ if and only if∠xyz ≤ ∠x′y′z′. Moreover, ‖x− z‖ = ‖x′ − z′‖ if and only if∠xyz = ∠x′y′z′.



136 | Tetsu Toyoda, An Intrinsic Characterization of Five Points

Lemma 7.4. Suppose x, y, z, w ∈ R
2 are points such that w ∈ ̸ {x, y, z}. Then

w ∈ conv({x, y, z})

if and only if y and z are not on the same side of
←→
xw, and π ≤ ∠ywx +∠xwz.

In the rest of this section, we discuss several properties of metric spaces that satisfy the ⊠-inequalities by

using the concepts introduced above.

Lemma 7.5. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose x, y, z, w ∈ X are four

distinct points such that {x, y, z, w} is under-distance with respect to {y, w}. Suppose x′, y′, z′, w′ ∈ R
2 are

points such that

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), ‖z′ − x′‖ = dX(z, x)
‖x′ − w′‖ = dX(x, w), ‖w′ − z′‖ = dX(w, z).

Then

[x′, y′] ∩ [z′, w′] = ∅, [x′, w′] ∩ [y′, z′] = ∅,

and the points x′, y′, z′ and w′ are not collinear.

Proof. If we had [x′, y′] ∩ [z′, w′] = ̸ ∅, then Lemma 3.5 would imply that

‖y′ − w′‖ ≤ dX(y, w),

contradicting the hypothesis that {x, y, z, w} is under-distance with respect to {y, w}. Hence we have

[x′, y′] ∩ [z′, w′] = ∅. (7.6)

Similarly, we also have

[x′, w′] ∩ [y′, z′] = ∅. (7.7)

To prove that x′, y′, z′ and w′ are not collinear, suppose to the contrary that there exists a straight line

L ⊂ R
2 containing x′, y′, z′ andw′. Choose an isometric embedding φ : L → R such that φ(x′) < φ(z′). Define

maps γ1 : [0, 2]→ R, γ2 : [0, 2]→ R and f : [0, 2]→ R by

γ1(t) =

{

φ(x′) +
(

φ(y′) − φ(x′)
)

t, t ∈ [0, 1],
φ(y′) +

(

φ(z′) − φ(y′)
)

(t − 1), t ∈ (1, 2],

γ2(t) =

{

φ(z′) +
(

φ(w′) − φ(z′)
)

t, t ∈ [0, 1],
φ(w′) +

(

φ(x′) − φ(w′)
)

(t − 1), t ∈ (1, 2],

f (t) = γ2(t) − γ1(t).

Then

f (0) = φ(z′) − φ(x′) > 0, f (2) = φ(x′) − φ(z′) < 0,

and f is continuous on [0, 2]. Hence there exists t0 ∈ (0, 2) such that f (t0) = 0. In the case in which t0 ≤ 1,

we have

φ−1(γ1(t0)) = φ
−1(γ2(t0)) ∈ [x′, y′] ∩ [z′, w′],

and in the case in which t0 > 1, we have

φ−1(γ1(t0)) = φ
−1(γ2(t0)) ∈ [y′, z′] ∩ [x′, w′].

This contradicts (7.6) or (7.7). Thus x′, y′, z′ and w′ are not collinear.

The following corollary follows immediately from Lemma 7.5.
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Corollary 7.6. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose x, y, z, w ∈ X are four

distinct points such that {x, y, z, w} is under-distance with respect to {y, w}. Suppose x′, y′, z′, w′ ∈ R
2 are

points such that

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), ‖z′ − x′‖ = dX(z, x)
‖x′ − w′‖ = dX(x, w), ‖w′ − z′‖ = dX(w, z),

and w′ is not on the opposite side of
←→
x′z′ from y′. Then

y′ ∈ conv({x′, z′, w′}) (7.8)

or

w′ ∈ conv({x′, z′, y′}). (7.9)

Moreover, (7.8) and (7.9) do not hold simultaneously.

Proof. It follows from Lemma 7.5 that

[x′, y′] ∩ [z′, w′] = ∅, [x′, w′] ∩ [y′, z′] = ∅, (7.10)

and x′, y′, z′ and w′ are not collinear, which clearly implies that (7.8) or (7.9) holds. By (7.10), we have y′ = ̸ w′.

Together with the fact that x′, y′, z′ and w′ are not collinear, this implies that (7.8) and (7.9) do not hold

simultaneously.

Lemma 7.7. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose x, y, z, w ∈ X are four

distinct points such that {x, y, z, w} is over-distance with respect to {y, w}. Then ∠̃yxz + ∠̃zxw > π or ∠̃yzx +

∠̃xzw > π.

Proof. Define x′, z′ ∈ R
2 by

x′ = (dX(x, z), 0), z′ = (0, 0).

Suppose y′ = (y(1), y(2)) and w′ = (w(1), w(2)) are the points in R
2 such that

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), y(2) ≥ 0

‖x′ − w′‖ = dX(x, w), ‖w′ − z′‖ = dX(w, z), w(2) ≤ 0.

Then

‖y′ − w′‖ < dX(y, w)

because {x, y, z, w} is over-distance with respect to {y, w}. It follows that

[x′, z′] ∩ [y′, w′] = ∅, (7.11)

because otherwise Lemma 3.2 would imply that dX(y, w) ≤ ‖y′ − w′‖. We consider four cases.

Case 1: y′ ∈ ̸
←→
x′z′ and w′ ∈ ̸

←→
x′z′. In this case, (7.11) implies that the region determined by the quadrilateral

[x′, y′] ∪ [y′, z′] ∪ [z′, w′] ∪ [w′, x′] is not convex, and therefore at least one of the interior angle measures of

the quadrilateral is greater than π. It follows that

∠̃yxz + ∠̃zxw = ∠y′x′z′ +∠z′x′w′
> π

or

∠̃yzx + ∠̃xzw = ∠y′z′x′ +∠x′z′w′
> π.

Case 2: y′ ∈
←→
x′z′ and w′ ∈ ̸

←→
x′z′. In this case, (7.11) implies that one of the following inequalities holds:

y(1) < 0, dX(x, z) < y
(1)
.
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If y(1) < 0, then

∠̃yzx + ∠̃xzw = ∠y′z′x′ +∠x′z′w′ = π +∠x′z′w′
> π.

If dX(x, z) < y
(1), then

∠̃yxz + ∠̃zxw = ∠y′x′z′ +∠z′x′w′ = π +∠z′x′w′
> π.

Case 3: y′ ∈ ̸
←→
x′z′ and w′ ∈

←→
x′z′. In this case, we can prove that ∠̃yxz + ∠̃zxw > π or ∠̃yzx + ∠̃xzw > π

holds in exactly the same way as in Case 2.

Case 4: y′ ∈
←→
x′z′ and w′ ∈

←→
x′z′. In this case, (7.11) implies that one of the following inequalities holds:

max{y(1), w(1)} < 0, dX(x, z) < min{y(1), w(1)}.

Ifmax{y(1), w(1)} < 0, then
∠̃yzx + ∠̃xzw = ∠y′z′x′ +∠x′z′w′ = 2π > π.

If dX(x, z) < min{y(1), w(1)}, then

∠̃yxz + ∠̃zxw = ∠y′x′z′ +∠z′x′w′ = 2π > π.

The above four cases exhaust all possibilities.

Lemma 7.8. Let (X, dX) be ametric space that satisfies the⊠-inequalities, and let x, y, z, w ∈ X be four distinct
points such that {x, y, z, w} is under-distance with respect to {x, w} and {y, w}. Suppose x′, y′, z′ ∈ R

2 are

points such that

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), ‖z′ − x′‖ = dX(z, x).

Suppose w′ ∈ R
2 is a point such that

‖y′ − w′‖ = dX(y, w), ‖w′ − z′‖ = dX(w, z),

and w′ is not on the opposite side of
←→
y′z′ from x′. Suppose w′′ ∈ R

2 is a point such that

‖x′ − w′′‖ = dX(x, w), ‖w′′ − z′‖ = dX(w, z),

and w′′ is not on the opposite side of
←→
x′z′ from y′. Then

w′ ∈ conv
(

{x′, y′, z′}
)

, w′′ ∈ conv
(

{x′, y′, z′}
)

,

conv
(

{y′, z′, w′}
)

∩ conv
(

{x′, z′, w′′}
)

= {z′}.

x′

z′

w′′ w′

y′

Figure 7.1: The points in R
2 appeared in the statement of Lemma 7.8.

Proof. Because {x, y, z, w} is under-distance with respect to {x, w} and {y, w},

dX(x, w) < ‖x′ − w′‖, dX(y, w) < ‖y′ − w′′‖.
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The first inequality implies that

0 < ‖x′ − w′‖ − dX(x, w) = ‖x′ − w′‖ − ‖x′ − w′′‖ ≤ ‖w′ − w′′‖,

which ensures that w′ ≠ w′′. Let L ⊆ R
2 be the perpendicular bisector of the line segment [w′, w′′]. Then x′

is on the same side of L as w′′, y′ is on the same side of L as w′, and z′ ∈ L because

‖x′ − w′′‖ = dX(x, w) < ‖x′ − w′‖, ‖y′ − w′‖ = dX(y, w) < ‖y′ − w′′‖,
‖z′ − w′‖ = dX(z, w) = ‖z′ − w′′‖.

It follows that

x′ ∈ ̸ conv
(

{y′, z′, w′}
)

, y′ ∈ ̸ conv
(

{x′, z′, w′′}
)

, (7.12)

and

conv
(

{y′, z′, w′}
)

∩ conv
(

{x′, z′, w′′}
)

= {z′}.

Because {x, y, z, w} is under-distance with respect to {x, w} and {y, w}, (7.12) and Corollary 7.6 imply that

w′ ∈ conv
(

{x′, y′, z′}
)

, w′′ ∈ conv
(

{x′, y′, z′}
)

,

which completes the proof.

Corollary 7.9. Let (X, dX) be a metric space that satisfies the ⊠-inequalities, and let x, y, z, w ∈ X be four

distinct points such that {x, y, z, w} is under-distancewith respect to {x, w} and {y, w}. Suppose x′, y′, z′ ∈ R
2

are points such that

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), ‖z′ − x′‖ = dX(z, x).

Then x′, y′ and z′ are not collinear.

Proof. Choose a point w′ ∈ R
2 such that

‖x′ − w′‖ = dX(x, w), ‖w′ − z′‖ = dX(w, z),

and w′ is not on the opposite side of
←→
x′z′ from y′. Then Lemma 7.8 implies that w′ ∈ conv({x′, y′, z′}) because

{x, y, z, w} is under-distance with respect to {x, w} and {y, w}. Therefore, if x′, y′ and z′ were collinear, then
x′, y′ ,z′ and w′ would be collinear, contradicting Lemma 7.5.

Lemma 7.10. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose x, y, z, w ∈ X are four

distinct points such that {x, y, z, w} is over-distance with respect to {x, w} and {y, w}. Then

π < ∠̃xzy + ∠̃yzw, π < ∠̃xzy + ∠̃xzw.

x′

z′

w′′w′

y′

Figure 7.2: The points in R
2 appeared in the proof of Lemma 7.10.
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Proof. Choose x′, y′, z′ ∈ R
2 such that

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), ‖z′ − x′‖ = dX(z, x).

Suppose w′ ∈ R
2 is a point such that

‖y′ − w′‖ = dX(y, w), ‖w′ − z′‖ = dX(w, z),

and w′ is not on the same side of
←→
y′z′ as x′. Suppose w′′ ∈ R

2 is a point such that

‖x′ − w′′‖ = dX(x, w), ‖w′′ − z′‖ = dX(w, z),

and w′′ is not on the same side of
←→
x′z′ as y′. Then because {x, y, z, w} is over-distance with respect to {x, w}

and {y, w},
‖x′ − w′‖ < dX(x, w), ‖y′ − w′′‖ < dX(y, w).

The first inequality implies that

0 < dX(x, w) − ‖x′ − w′‖ = ‖x′ − w′′‖ − ‖x′ − w′‖ ≤ ‖w′′ − w′‖,

which ensures that w′ ≠ w′′. Let L ⊆ R
2 be the perpendicular bisector of the line segment [w′, w′′]. Then x′

is on the same side of L as w′, y′ is on the same side of L as w′′, and z′ ∈ L because

‖x′ − w′‖ < dX(x, w) = ‖x′ − w′′‖, ‖y′ − w′′‖ < dX(y, w) = ‖y′ − w′‖,
‖z′ − w′‖ = dX(z, w) = ‖z′ − w′′‖.

It follows that

x′ ∈ ̸ conv({y′, z′, w′′}), y′ ∈ ̸ conv({x′, z′, w′}). (7.13)

We prove that

π < ∠̃xzy + ∠̃yzw (7.14)

and

π < ∠̃xzy + ∠̃xzw (7.15)

by contradiction. If (7.14) were not true, then Lemma 7.7 would imply that

π < ∠̃xyz + ∠̃zyw = ∠x′y′z′ +∠z′y′w′

because {x, y, z, w} is over-distance with respect to {x, w}, and therefore Lemma 7.4 and the hypothesis that

w′ is not on the same side of
←→
y′z′ as x′ would imply that

y′ ∈ conv({x′, z′, w′}),

contradicting (7.13). Similarly, if (7.15) were not true, then we would obtain

x′ ∈ conv({y′, z′, w′′}),

contradicting (7.13), which completes the proof.

Corollary 7.11. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose x, y, z, w ∈ X are four

distinct points such that {x, y, z, w} is over-distance with respect to {x, w} and {y, w}. Then {x, y, z, w} is not
over-distance with respect to {z, w}.

Proof. Suppose to the contrary that {x, y, z, w} is over-distance with respect to {x, w}, {y, w} and {z, w}.
Then Lemma 7.10 implies that

π < ∠̃xyz + ∠̃zyw, π < ∠̃xzy + ∠̃yzw,

contradicting the fact that

(∠̃xyz + ∠̃zyw) + (∠̃xzy + ∠̃yzw)

≤ (∠̃xyz + ∠̃xzy + ∠̃zxy) + (∠̃zyw + ∠̃yzw + ∠̃zwy) = 2π,

which proves the corollary.
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Lemma 7.12. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose p, x, y, z, w ∈ X are five

distinct points such that {p, x, y, z} is under-distancewith respect to {x, y}and {y, z}, and {p, y, z, w} is under-
distance with respect to {y, z} and {z, w}. Then

∠̃xpy + ∠̃ypw < π, ∠̃xpz + ∠̃zpw < π.

x′

p′

y′′ y′

z′ z′′

w′

Figure 7.3: The points in R
2 appeared in the proof of Lemma 7.12.

Proof. Choose p′, x′, z′ ∈ R
2 such that

‖p′ − x′‖ = dX(p, x), ‖x′ − z′‖ = dX(x, z), ‖z′ − p′‖ = dX(z, p).

Suppose y′ ∈ R
2 is a point such that

‖p′ − y′‖ = dX(p, y), ‖y′ − z′‖ = dX(y, z),

and y′ is not on the opposite side of
←→
p′z′ from x′. Suppose y′′ ∈ R

2 is a point such that

‖p′ − y′′‖ = dX(p, y), ‖y′′ − x′‖ = dX(y, x),

and y′′ is not on the opposite side of
←→
p′x′ from z′. Then because {p, x, y, z} is under-distance with respect to

{x, y} and {y, z}, Lemma 7.8 implies that

y′ ∈ conv({p′, x′, z′}), y′′ ∈ conv({p′, x′, z′}), (7.16)

conv({z′, p′, y′}) ∩ conv({x′, p′, y′′}) = {p′}. (7.17)

Suppose w′ ∈ R
2 is a point such that

‖p′ − w′‖ = dX(p, w), ‖w′ − y′‖ = dX(w, y),

and w′ is not on the opposite side of
←→
p′y′ from z′. Suppose z′′ ∈ R

2 is a point such that

‖p′ − z′′‖ = dX(p, z), ‖z′′ − w′‖ = dX(z, w)

and z′′ is not on the opposite side of
←−→
p′w′ from y′. Then because {p, y, z, w} is under-distance with respect to

{y, z} and {z, w}, Lemma 7.8 implies that

z′ ∈ conv({p′, y′, w′}), z′′ ∈ conv({p′, y′, w′}), (7.18)

conv({y′, p′, z′}) ∩ conv({w′
, p′, z′′}) = {p′}. (7.19)
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We define four vectors x, y, z,w ∈ R
2 by

x = x′ − p′, y = y′ − p′, z = z′ − p′, w = w′ − p′.

Then

‖x‖ = dX(x, p) > 0, ‖y‖ = dX(y, p) > 0,
‖z‖ = dX(z, p) > 0, ‖w‖ = dX(w, p) > 0.

Because {p, x, y, z} is under-distance with respect to {x, y} and {y, z}, Corollary 7.9 implies that p′, x′ and

z′ are not collinear, and therefore x and z are linearly independent. Because {p, y, z, w} is under-distance
with respect to {y, z} and {z, w}, Corollary 7.9 implies that p′, y′ and w′ are not collinear, and therefore y and

w are linearly independent. Because y′ ∈ ̸
←→
p′x′ by (7.16) and (7.17), x and y are linearly independent. Because

z′ ∈ ̸
←−→
p′w′ by (7.18) and (7.19), z and w are also linearly independent. By (7.16), there exist s, t ∈ [0, 1] such

that s + t ≤ 1, and y = sx + tz. Because

‖y′ − z′‖ = dX(y, z) > 0,

we have

t < 1. (7.20)

By (7.18), there exist s′, t′ ∈ [0, 1] such that s′ + t′ ≤ 1, and

z = s′y + t′w = s′(sx + tz) + t′w.

Hence

−ss′x + (1 − ts′)z − t′w = 0, (7.21)

where 0 denotes the zero vector in R
2. By (7.20), we have

1 − ts′ > 0. (7.22)

Because x and z are linearly independent, it follows from (7.21) and (7.22) that

t′ > 0. (7.23)

Because z and w are linearly independent, it follows from (7.21) and (7.22) that

ss′ > 0. (7.24)

We have

w = −
ss′

t′
x +

1 − ts′

t′
z,

1 − ts′

t′
> 0

by (7.21), (7.22) and (7.23), and therefore x and w are linearly independent, which implies in particular that

∠x′p′w′
< π. (7.25)

We also have

z =
ss′

1 − ts′
x +

t′

1 − ts′
w,

ss′

1 − ts′
> 0,

t′

1 − ts′
> 0

by (7.21), (7.22), (7.23) and (7.24), and therefore the ray from p′ through z′ is between that from p′ through x′

and that from p′ through w′. Hence

∠x′p′z′ +∠z′p′w′ = ∠x′p′w′
. (7.26)

Because {p, y, z, w} is under-distance with respect to {z, w}, we have

‖z′′ − p′‖ = ‖z′ − p′‖ = dX(z, p) > 0, ‖z′′ − w′‖ = dX(z, w) < ‖z′ − w′‖,
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and therefore Lemma 7.3 implies that

∠z′′p′w′
< ∠z′p′w′

. (7.27)

Combining (7.25), (7.26) and (7.27) yields

∠̃xpz + ∠̃zpw = ∠x′p′z′ +∠z′′p′w′

< ∠x′p′z′ +∠z′p′w′

= ∠x′p′w′
< π.

Clearly the inequality

∠̃xpy + ∠̃ypw < π

is proved in the same way, which completes the proof.

The following corollary follows from Lemma 7.10 and Lemma 7.12, which will play an important role when we

prove that the validity of the⊠-inequalities implies the G(5)9 (0) condition in Section 9.

Corollary 7.13. Let X be a metric space that satisfies the ⊠-inequalities. Suppose p, x1, x2, x3, x4 ∈ X

are five distinct points such that {p, x1, x2, x3} is under-distance with respect to {x1, x2} and {x2, x3}, and
{p, x3, x4, x1} is over-distance with respect to {x3, x4} and {x4, x1}. Assume that neither {p, x2, x3, x4} nor
{p, x4, x1, x2} admits an isometric embedding into R

3. Then {p, x2, x3, x4} is over-distance with respect to

{x2, x3} or {x3, x4}, and {p, x4, x1, x2} is over-distance with respect to {x4, x1} or {x1, x2}.

Proof. Suppose to the contrary that {p, x2, x3, x4} is neither over-distance with respect to {x2, x3} nor
{x3, x4}, or {p, x4, x1, x2} is neither over-distance with respect to {x4, x1} nor {x1, x2}. We may assume

without loss of generality that {p, x2, x3, x4} is neither over-distance with respect to {x2, x3} nor {x3, x4}.
Then Proposition 7.2 implies that {p, x2, x3, x4} is under-distance with respect to {x2, x3} and {x3, x4} be-
cause {p, x2, x3, x4} does not admit an isometric embedding into R

3. Combining this with the hypothesis

that {p, x1, x2, x3} is under-distance with respect to {x1, x2} and {x2, x3}, Lemma 7.12 implies that

∠̃x1px3 + ∠̃x3px4 < π. (7.28)

On the other hand, because {p, x3, x4, x1} is over-distance with respect to {x3, x4} and {x4, x1}, Lemma 7.10

implies that

π < ∠̃x1px3 + ∠̃x3px4,

contradicting (7.28).

We define some notations, which will be used several times in the next two sections.

Let (X, dX) be a metric space, and let x, y, z, w ∈ X be four distinct points. Choose points

x1, y1, z1, x2, z2, w2, x3, w3, y3 ∈ R
2 such that

‖x1 − y1‖ = dX(x, y), ‖y1 − z1‖ = dX(y, z), ‖z1 − x1‖ = dX(z, x),
‖x2 − z2‖ = dX(x, z), ‖z2 − w2‖ = dX(z, w), ‖w2 − x2‖ = dX(w, x),

‖x3 − w3‖ = dX(x, w), ‖w3 − y3‖ = dX(w, y), ‖y3 − x3‖ = dX(y, x). (7.29)

Equip the subsets

T1 = conv({x1, y1, z1}), T2 = conv({x2, z2, w2}), T3 = conv({x3, w3, y3}) (7.30)

of R2 with the induced metrics, and regard them as disjoint metric spaces. We denote by D(x; y, z, w) the

piecewise Euclidean metric simplicial complex constructed from T1, T2 and T3 by identifying [x1, z1] ⊆ T1
with [x2, z2] ⊆ T2, [x2, w2] ⊆ T2 with [x3, w3] ⊆ T3, and [x3, y3] ⊆ T3 with [x1, y1] ⊆ T1. We denote the

images of T1, T2 and T3 under the natural inclusions intoD(x; y, z, w)by TD(x;y,z,w)(x, y, z), TD(x;y,z,w)(x, z, w)

and TD(x;y,z,w)(x, w, y), respectively. When there is no risk of confusion, we abbreviate these notations by
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T(x, y, z), T(x, z, w) and T(x, w, y), respectively. The map from {x, y, z, w} to D(x; y, z, w) sending x, y ,z
and w to the points in D(x; y, z, w) represented by x1, y1, z1 ∈ T1 and w2 ∈ T2, respectively is called the

natural inclusion of {x, y, z, w} into D(x; y, z, w). Clearly, up to isometry, D(x; y, z, w), T(x, y, z), T(x, z, w),

T(x, w, y)and thenatural inclusionof {x, y, z, w} intoD(x; y, z, w)are independent of the choice of thepoints
x1, y1, z1, x2, z2, w2, x3, w3, y3 ∈ R

2.

Lemma 7.14. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose x, y, z, w ∈ X are four

distinct points such that {x, y, z, w} is over-distance with respect to {y, w}, and

π < ∠̃yxz + ∠̃zxw. (7.31)

Then D(x; y, z, w) is a CAT(0) space, and for each i ∈ {1, 2, 3}, the natural inclusion of a (possibly de-

generate) triangular region Ti ⊆ R
2 as in (7.30) into D(x; y, z, w) is an isometric embedding. In particular,

T(x, y, z), T(x, z, w) and T(x, w, y) are closed convex subsets of D(x; y, z, w). Moreover, the natural inclusion

of {x, y, z, w} into D(x; y, z, w) is an isometric embedding.

x1 = x2z1 = z2

y1

w2

Figure 7.4: Points in R
2 appeared in the proof of Lemma 7.14.

Proof. Suppose x1, y1, z1, x2, z2, w2, x3, w3, y3 ∈ R
2 are points satisfying (7.29). By transforming x2, z2 and

w2 if necessary, we may assume that x1 = x2, z1 = z2, and w2 is not on the same side of
←−→
x1z1 as y1, as shown

in Figure 7.4. By (7.31),

π < ∠y1x1z1 +∠z2x2w2 = ∠y1x1z1 +∠z1x1w2, (7.32)

which implies that

∠y1x1z1 +∠z1x1w2 +∠w2x1y1 = 2π. (7.33)

Because {x, y, z, w} is over-distance with respect to {y, w},

‖y1 − w2‖ < dX(y, w).

Hence we have

‖x1 − y1‖ = dX(x, y) = ‖x3 − y3‖, ‖x1 − w2‖ = dX(x, w) = ‖x3 − w3‖,
‖y1 − w2‖ < dX(y, w) = ‖y3 − w3‖,

and therefore Lemma 7.3 implies that

∠w2x1y1 < ∠w3x3y3.

Combining this with (7.33) yields

2π < ∠y1x1z1 +∠z1x1w2 +∠w3x3y3 = ∠y1x1z1 +∠z2x2w2 +∠w3x3y3. (7.34)

For each i ∈ {1, 2, 3}, let Ti be the (possibly degenerate) triangular region defined by (7.30). As we men-

tioned in Example 2.2, (7.34) ensures that D(x; y, z, w) is a CAT(0) space, and that for each i ∈ {1, 2, 3},
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the natural inclusion of Ti into D(x; y, z, w) is an isometric embedding. In particular, the natural inclusion

φ : {x, y, z, w} → D(x; y, z, w) is an isometric embedding because for any a, b ∈ {x, y, z, w}, both φ(a) and
φ(b) are represented by elements of Ti for some i ∈ {1, 2, 3}.

Remark 7.15. Suppose X is ametric space that satisfies the⊠-inequalities, and x, y, z, w ∈ X are four distinct
points such that {x, y, z, w} is over-distance with respect to {y, w}. Then Lemma 7.7 implies that

π < ∠̃yxz + ∠̃zxw,

or

π < ∠̃yzx + ∠̃xzw.

Thus renaming the points if necessary, the points x, y, z and w always satisfy the condition (7.31), and there-

fore D(x; y, z, w) becomes a CAT(0) space, and the natural inclusion of {x, y, z, w} into D(x; y, z, w) becomes

an isometric embedding by Lemma 7.14.

8 The G(5)
7 (0) condition

In this section, we prove that the validity of the⊠-inequalities implies the G(5)7 (0) condition.We start with the

following three simple facts. All of them hold clearly, so we omit their proofs.

Lemma 8.1 (cf. [4, p.25, 2.16(1)]). Let x, y, z, w ∈ R
2. If w ∈ conv({x, y, z}), then

‖x − w‖ + ‖w − y‖ ≤ ‖x − z‖ + ‖z − y‖. (8.1)

If in addition x, y, z and w are distinct, and ∠yxw < ∠yxz, then strict inequality holds in (8.1).

Lemma 8.2. Let o ∈ R
2. Suppose x, y, z ∈ R

2 \ {o} are points such that y and z are not on opposite sides of
←→
ox, and ∠xoy ≤ ∠xoz. Then x and z are not on the same side of

←→
oy, and ∠xoz = ∠xoy +∠yoz.

Lemma 8.3. Suppose o, x, y ∈ R
2 are points that are not collinear. Suppose p, q ∈ R

2 are points such that

neither p nor q is on the same side of
←→
oy as x, and p is not on the same side of

←→
ox as q. Then∠pxq = ∠pxo+∠oxq.

We use these facts to prove the following lemma, which will play a key role to prove that the validity of the

⊠-inequalities implies the G(5)7 (0) condition.

Lemma 8.4. Suppose x, y, z, w ∈ R
2 are four distinct points such that w ∈ conv({x, y, z}). Suppose

x′, y′, z′, w′ ∈ R
2 are points such that

‖x′ − z′‖ = ‖x − z‖, ‖z′ − y′‖ = ‖z − y‖, ‖x′ − w′‖ = ‖x − w‖, ‖w′ − y′‖ = ‖w − y‖. (8.2)

If ‖z′ − w′‖ ≤ ‖z − w‖, then ‖x′ − y′‖ ≤ ‖x − y‖.

Proof. Suppose x, y, z, w ∈ R
2 are four distinct points such that w ∈ conv({x, y, z}), and x′, y′, z′, w′ ∈ R

2

are points satisfying (8.2). To prove the lemma by contrapositive, we assume that

‖x − y‖ < ‖x′ − y′‖. (8.3)

Then x′ ≠ y′ because 0 < ‖x − y‖. Choose a point z ∈ R
2 such that

‖x′ − z‖ = ‖x′ − z′‖, ‖z − y′‖ = ‖z′ − y′‖, (8.4)

and z is not on the opposite side of
←→
x′y′ from w′. If z′ and w′ are not on opposite sides of

←→
x′y′, we may choose

z = z′. Otherwise, z is the point obtained by reflecting z′ orthogonally across
←→
x′y′. Clearly,

‖z − w′‖ ≤ ‖z′ − w′‖. (8.5)
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Because w ∈ conv({x, y, z}), Lemma 8.1 implies that

‖x′ − w′‖ + ‖w′ − y′‖ = ‖x − w‖ + ‖w − y‖ ≤ ‖x − z‖ + ‖z − y‖ = ‖x′ − z‖ + ‖z − y′‖. (8.6)

If ∠y′x′z were less than ∠y′x′w′, and ∠x′y′z were less than ∠x′y′w′, then z would lie in conv({x′, y′, w′}),
and therefore Lemma 8.1 would imply that

‖x′ − z‖ + ‖z − y′‖ < ‖x′ − w′‖ + ‖w′ − y′‖,

contradicting (8.6). Thus ∠y′x′w′ ≤ ∠y′x′z or ∠x′y′w′ ≤ ∠x′y′z. We may assume without loss of generality

that ∠y′x′w′ ≤ ∠y′x′z. Then Lemma 8.2 implies that

∠y′x′z = ∠y′x′w′ +∠w′x′z (8.7)

because z is not on the opposite side of
←→
x′y′ from w′ by definition. We consider two cases.

Case 1: x, y and w are not collinear. Suppose ỹ ∈ R
2 is the point such that

‖ỹ − w‖ = ‖y − w‖, ∠xwỹ = ∠x′w′y′,

and ỹ is not on the opposite side of
←→
wx from y, as shown in Figure 8.1. Then the triangle with vertices x, ỹ

x y

w

z

ỹ

x′ y′

w′

z

Figure 8.1: Proof of Lemma 8.4.

and w is congruent to that with vertices x′, y′ and w′. Hence

‖x − ỹ‖ = ‖x′ − y′‖, ∠ỹxw = ∠y′x′w′
. (8.8)

Because ‖x − w‖ = ‖x′ − w′‖ and ‖y − w‖ = ‖y′ − w′‖, (8.3) and Lemma 7.3 imply that

∠xwy < ∠x′w′y′ = ∠xwỹ. (8.9)

Because ỹ is not on the opposite side of
←→
wx from y by definition, (8.9) and Lemma 8.2 imply that

∠xwy +∠ywỹ = ∠xwỹ ≤ π. (8.10)

Because w ∈ conv({x, y, z}), Lemma 7.4 implies that

π ≤ ∠xwy +∠ywz.

Combining thiswith (8.10) yields∠ywỹ ≤ ∠ywz. Furthermore, ỹ and z are not on opposite sides of
←→
wy because

neither ỹ nor z is on the same side of
←→
wy as x by Lemma 8.2 and Lemma 7.4, respectively, and x ∈ ̸ ←→wy by the

assumption of Case 1. Therefore, Lemma 8.2 implies that

∠ywz = ∠ywỹ +∠ỹwz.

Because 0 < ∠ywỹ by (8.9) and (8.10), it follows that

∠ỹwz < ∠ywz.
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Because ‖y − w‖ = ‖ỹ − w‖ by definition of ỹ, this implies that

‖ỹ − z‖ < ‖y − z‖ = ‖y′ − z‖ (8.11)

by Lemma 7.3. Because ‖x − z‖ = ‖x′ − z‖, and ‖x − ỹ‖ = ‖x′ − y′‖ by (8.8), it follows from (8.11) and Lemma

7.3 that

∠ỹxz < ∠y′x′z. (8.12)

As we mentioned above, neither ỹ nor z is on the same side of
←→
wy as x. Furthermore, ỹ and z are not on the

same side of
←→
wx because ỹ is not on the opposite side of

←→
wx from y by definition of ỹ, z is not on the same side

of
←→
wx as y by Lemma 7.4, and y ∈ ̸←→wx by the assumption of Case 1. Therefore, Lemma 8.3 implies that

∠ỹxz = ∠ỹxw +∠wxz. (8.13)

By (8.7), (8.8), (8.12) and (8.13),

∠wxz = ∠ỹxz −∠ỹxw

< ∠y′x′z −∠ỹxw

= ∠y′x′z −∠y′x′w′

= ∠w′x′z.

Hence Lemma 7.3 implies that

‖z − w‖ < ‖z − w′‖
because ‖z − x‖ = ‖z − x′‖ and ‖w − x‖ = ‖w′ − x′‖. Combining this with (8.5) yields

‖z − w‖ < ‖z′ − w′‖.

Case 2: x, y and w are collinear. In this case, w ∈ ←→xy \ [x, y], because otherwise we would have

‖x′ − y′‖ ≤ ‖x′ − w′‖ + ‖w′ − y′‖ = ‖x − w‖ + ‖w − y‖ = ‖x − y‖,

contradicting (8.3). Because w ∈ conv({x, y, z}), it follows that

w ∈ [x, z] ∩ [y, z], (8.14)

which implies in particular that

‖z − w‖ = |‖x − z‖ − ‖x − w‖| =
∣

∣‖x′ − z′‖ − ‖x′ − w′‖
∣

∣ ≤ ‖z′ − w′‖. (8.15)

To prove that equality does not hold in the inequality in (8.15), suppose to the contrary that ‖z−w‖ = ‖z′−w′‖.
Then (8.14) implies that

‖x′ − z′‖ = ‖x − z‖ = ‖x − w‖ + ‖w − z‖ = ‖x′ − w′‖ + ‖w′ − z′‖,
‖y′ − z′‖ = ‖y − z‖ = ‖y − w‖ + ‖w − z‖ = ‖y′ − w′‖ + ‖w′ − z′‖,

and thus

w′ ∈ [x′, z′] ∩ [y′, z′]. (8.16)

On the other hand, we have x′ ∈ ̸ [y′, z′] and y′ ∈ ̸ [x′, z′], because otherwise we would have

‖x′ − y′‖ =
∣

∣‖x′ − z′‖ − ‖y′ − z′‖
∣

∣ = |‖x − z‖ − ‖y − z‖| ≤ ‖x − y‖,

contradicting (8.3). Hence

[x′, z′] ∩ [y′, z′] = {z′}.
Combining this with (8.16) yields z′ = w′. Therefore,

‖x − z‖ = ‖x′ − z′‖ = ‖x′ − w′‖ = ‖x − w‖,
‖y − z‖ = ‖y′ − z′‖ = ‖y′ − w′‖ = ‖y − w‖.

Because w ∈ conv({x, y, z}), these equalities imply that z = w, contradicting the hypothesis that z = ̸ w. Thus

equality does not hold in the inequality in (8.15), which completes the proof of the lemma.
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We are ready to prove the following proposition.

Proposition 8.5. If a metric space X satisfies the⊠-inequalities, then X satisfies the G(5)7 (0) condition.

v3

v2

v1

v4

v5
✉ ✉

✉ ✉

✉

✟✟✟
❍❍❍ ❅❅��

Figure 8.2

Proof. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Let V and E be the vertex set and the

edge set of G(5)7 (0), respectively. We set

V = {v1, v2, v3, v4, v5},
E = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v1}, {v2, v4}, {v3, v5}},

as shown in Figure 8.2. Fix a map f : V → X, and set

dij = dX(f (vi), f (vj))

for any i, j ∈ {1, 2, 3, 4, 5}. By Theorem 1.7, if dij = 0 for some i, j ∈ {1, 2, 3, 4, 5}with i ≠ j, then there exist
aCAT(0) space (Y0, dY0 ) and amap g0 : V → Y0 such that dY0 (g0(vi), g0(vj)) = dij for any i, j ∈ {1, 2, 3, 4, 5}.
Therefore, we assume that dij > 0 for any i, j ∈ {1, 2, 3, 4, 5} with i ≠ j. Choose p1, p2, p5 ∈ R

2 such that

‖p1 − p2‖ = d12, ‖p2 − p5‖ = d25, ‖p5 − p1‖ = d51.

Equip the subset P = conv({p1, p2, p5}) of R2 with the induced metric, and regard it as a metric space in its

own right. We consider three cases.

Case 1: The subset {f (v2), f (v3), f (v4), f (v5)} of X admits an isometric embedding into R
3. Let φ :

{f (v2), f (v3), f (v4), f (v5)} → R
3 be an isometric embedding. Define (Y1, dY1 ) to be the metric space obtained

by gluing P andR3 by identifying [p2, p5] ⊆ Pwith [φ(f (v2)), φ(f (v5))] ⊆ R
3. Then (Y1, dY1 ) is aCAT(0) space

by Reshetnyak’s gluing theorem. Define a map g1 : V → Y1 by sending vi to the point in Y1 represented by

φ(f (vi)) ∈ R
3 for each i ∈ {2, 3, 4, 5}, and v1 to the point in Y1 represented by p1 ∈ P. Then

dY1 (g1(v1), g1(vi)) = ‖p1 − pi‖ = d1i , (8.17)

dY1 (g1(vj), g1(vk)) = ‖φ(f (vj)) − φ(f (vk))‖ = djk (8.18)

for any i ∈ {2, 5} and any j, k ∈ {2, 3, 4, 5}. It is clear from the definitions of Y1 and g1 that

[g1(v2), g1(v5)] ∩ [g1(v1), g1(vi)] = ̸ ∅,
conv({g1(v1), g1(v2), g1(v5)}) ∩ conv({g1(vi), g1(v2), g1(v5)}) = [g1(v2), g1(v5)]

for each i ∈ {3, 4}, and conv({g1(vj), g1(v2), g1(v5)}) is isometric to a convex subset of the Euclidean plane

for each j ∈ {1, 3, 4}. Therefore, for each i ∈ {3, 4}, Lemma 3.3 implies that

dY1 (g1(v1), g1(vi)) ≥ d1i (8.19)

because

dY1 (g1(v5), g1(v1)) = d51, dY1 (g1(v1), g1(v2)) = d12, dY1 (g1(v2), g1(vi)) = d2i ,

dY1 (g1(vi), g1(v5)) = di5, dY1 (g1(v2), g1(v5)) = d25
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by (8.17) and (8.18). By (8.17), (8.18) and (8.19),

{

dY1 (g1(vi), g1(vj)) = dij , if {vi , vj} ∈ E,
dY1 (g1(vi), g1(vj)) ≥ dij , if {vi , vj} ∈ ̸ E

for any i, j ∈ {1, 2, 3, 4, 5}. Thus g1 is a map from V to a CAT(0) space with the desired properties.

Case 2: {f (v2), f (v3), f (v4), f (v5)} is under-distance with respect to {f (v2), f (v5)}. Choose x2, x3, x4 ∈ R
2

such that

‖x2 − x3‖ = d23, ‖x3 − x4‖ = d34, ‖x4 − x2‖ = d42.

Suppose x5 ∈ R
2 is a point such that

‖x3 − x5‖ = d35, ‖x5 − x4‖ = d54,

and x5 is not on the opposite side of
←−→
x3x4 from x2. Then the assumption of Case 2 implies that

d25 < ‖x2 − x5‖, (8.20)

and Corollary 7.6 implies that x5 ∈ conv({x3, x4, x2}) or x2 ∈ conv({x3, x4, x5}). By the symmetry of the

graph G(5)7 (0), we may assume without loss of generality that

x5 ∈ conv({x3, x4, x2}). (8.21)

Choose y2, y3, y5 ∈ R
2 such that

‖y2 − y3‖ = d23, ‖y3 − y5‖ = d35, ‖y5 − y2‖ = d52,

and choose y4 ∈ R
2 such that

‖y2 − y4‖ = d24, ‖y4 − y5‖ = d45.

Then because

‖y3 − y2‖ = d32 = ‖x3 − x2‖, ‖y2 − y4‖ = d24 = ‖x2 − x4‖,
‖y3 − y5‖ = d35 = ‖x3 − x5‖, ‖y5 − y4‖ = d54 = ‖x5 − x4‖,
‖y2 − y5‖ = d25 < ‖x2 − x5‖, x5 ∈ conv({x3, x4, x2})

by (8.20) and (8.21), Lemma 8.4 implies that

‖y3 − y4‖ ≤ ‖x3 − x4‖ = d34. (8.22)

Define (Y2, dY2 ) to be the metric space obtained by gluing R
2 and P by identifying [y2, y5] ⊆ R

2 with

[p2, p5] ⊆ P. Then (Y2, dY2 ) is a CAT(0) space by Reshetnyak’s gluing theorem. Define a map g2 : V → Y2
by sending vi to the point in Y2 represented by yi ∈ R

2 for each i ∈ {2, 3, 4, 5}, and v1 to the point in Y2
represented by p1 ∈ P. Then

dY2 (g2(v1), g2(vi)) = ‖p1 − pi‖ = d1i , (8.23)

dY2 (g2(vj), g2(vk)) = ‖yj − yk‖ = djk (8.24)

for any i ∈ {2, 5} and any j, k ∈ {2, 3, 4, 5} with {j, k} ≠ {3, 4}. By (8.22),

dY2 (g2(v3), g2(v4)) = ‖y3 − y4‖ ≤ d34. (8.25)

It is clear from the definitions of Y2 and g2 that

[g2(v2), g2(v5)] ∩ [g2(v1), g2(vi)] = ̸ ∅,
conv({g2(v1), g2(v2), g2(v5)}) ∩ conv({g2(vi), g2(v2), g2(v5)}) = [g2(v2), g2(v5)]
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for each i ∈ {3, 4}, and conv({g2(vj), g2(v2), g2(v5)}) is isometric to a convex subset of the Euclidean plane

for each j ∈ {1, 3, 4}. Therefore, for each i ∈ {3, 4}, Lemma 3.3 implies that

dY2 (g2(v1), g2(vi)) ≥ d1i (8.26)

because

dY2 (g2(v5), g2(v1)) = d51, dY2 (g2(v1), g2(v2)) = d12, dY2 (g2(v2), g2(vi)) = d2i ,

dY2 (g2(vi), g2(v5)) = di5, dY2 (g2(v2), g2(v5)) = d25

by (8.23) and (8.24). By (8.23), (8.24), (8.25) and (8.26),

{

dY2 (g2(vi), g2(vj)) ≤ dij , if {vi , vj} ∈ E,
dY2 (g2(vi), g2(vj)) ≥ dij , if {vi , vj} ∈ ̸ E

for any i, j ∈ {1, 2, 3, 4, 5}. Thus g2 is a map from V to a CAT(0) space with the desired properties.

Case 3: {f (v2), f (v3), f (v4), f (v5)} is over-distance with respect to {f (v2), f (v5)}. In this case, Lemma 7.7

implies that

π < ∠̃f (v2)f (v3)f (v4) + ∠̃f (v4)f (v3)f (v5).

or

π < ∠̃f (v2)f (v4)f (v3) + ∠̃f (v3)f (v4)f (v5),

By the symmetry of the graph G(5)7 , wemay assumewithout loss of generality that the former inequality holds.

Let Y ′
3 = D(f (v3); f (v2), f (v4), f (v5)), and let

ψ : {f (v3), f (v2), f (v4), f (v5)} → Y ′
3

be the natural inclusion. Then Y ′
3 is a CAT(0) space, and ψ is an isometric embedding by Lemma 7.14. It also

follows from Lemma 7.14 that

T(f (v3), f (v2), f (v4)), T(f (v3), f (v4), f (v5)), T(f (v3), f (v5), f (v2))

are closed convex subsets of Y ′
3, all of which are isometric to convex subsets of the Euclidean plane. Define

(Y3, dY3 ) to be the metric space obtained by gluing Y ′
3 and P by identifying [ψ(f (v2)), ψ(f (v5))] ⊆ Y ′

3 with

[p2, p5] ⊆ P. Then (Y3, dY3 ) is a CAT(0) space by Reshetnyak’s gluing theorem. Define a map g3 : V → Y3 by

sending vi to the point in Y3 represented by ψ(f (vi)) ∈ Y ′
3 for each i ∈ {2, 3, 4, 5}, and v1 to the point in Y3

represented by p1 ∈ P. Then

dY3 (g3(v1), g3(vi)) = ‖p1 − pi‖ = d1i , (8.27)

dY3 (g3(vj), g3(vk)) = dY′

3
(ψ(f (vj)), ψ(f (vk))) = djk (8.28)

for any i ∈ {2, 5} and any j, k ∈ {2, 3, 4, 5}. Let T1, T2 and T3 be the images of T(f (v3), f (v2), f (v4)),

T(f (v3), f (v4), f (v5)) and T(f (v3), f (v5), f (v2)), respectively under the natural inclusion of Y ′
3 into Y3, and

let P̃ be the image of P under the natural inclusion of P into Y3. Then it is clear from the definition of Y3 that

T1, T2, T3 and P̃ are all isometric to convex subsets of the Euclidean plane, and

T1 ∩ T3 = [g3(v3), g3(v2)], T2 ∩ T3 = [g3(v3), g3(v5)], T3 ∩ P̃ = [g3(v2), g3(v5)].

It is also clear from the definition of Y3 that there exist q0, q1 ∈ [g3(v2), g3(v5)] such that

dY3 (g3(v1), g3(v3)) = dY3 (g3(v1), q0) + dY3 (q0, g3(v3)), (8.29)

dY3 (g3(v1), g3(v4)) = dY3 (g3(v1), q1) + dY3 (q1, g3(v4)). (8.30)

Therefore, (8.29) and Lemma 3.3 imply that

dY3 (g3(v1), g3(v3)) ≥ d13 (8.31)
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because

dY3 (g3(v2), g3(v1)) = d21, dY3 (g3(v1), g3(v5)) = d15, dY3 (g3(v5), g3(v3)) = d53,

dY3 (g3(v3), g3(v2)) = d32, dY3 (g3(v2), g3(v5)) = d25

by (8.27) and (8.28). Clearly, the point q1 ∈ [g3(v2), g3(v5)] is represented by a point q′1 ∈ [ψ(f (v2)), ψ(f (v5))],
and by definition of Y ′

3 = D(f (v3); f (v2), f (v4), f (v5)), there exists q′2 ∈ [ψ(f (v3)), ψ(f (v2))] ∪
[ψ(f (v3)), ψ(f (v5))] such that

dY3 (q1, g3(v4)) = dY′

3
(q′1, ψ(f (v4))) = dY′

3
(q′1, q

′
2) + dY′

3
(q′2, ψ(f (v4))). (8.32)

It follows from (8.30) and (8.32) that

dY3 (g3(v1), g3(v4)) = dY3 (g3(v1), q1) + dY3 (q1, q2) + dY3 (q2, g3(v4)), (8.33)

where q2 ∈ Y3 is the point represented by q′2 ∈ Y ′
3. If q

′
2 ∈ [ψ(f (v3)), ψ(f (v2))], then clearly q2 ∈

[g3(v3), g3(v2)], and therefore (8.33) and Lemma 6.5 imply that

dY3 (g3(v1), g3(v4)) ≥ d14 (8.34)

because

dY3 (g3(v2), g3(v1)) = d21, dY3 (g3(v1), g3(v5)) = d15, dY3 (g3(v5), g3(v3)) = d53,

dY3 (g3(v3), g3(v4)) = d34, dY3 (g3(v4), g3(v2)) = d42, dY3 (g3(v2), g3(v5)) = d25,

dY3 (g3(v2), g3(v3)) = d23

by (8.27) and (8.28). If q′2 ∈ [ψ(f (v3)), ψ(f (v5))], thenwe obtain (8.34) in the sameway. By (8.27), (8.28), (8.31)

and (8.34),
{

dY3 (g3(vi), g3(vj)) = dij , if {vi , vj} ∈ E,
dY3 (g3(vi), g3(vj)) ≥ dij , if {vi , vj} ∈ ̸ E

for any i, j ∈ {1, 2, 3, 4, 5}. Thus g3 is a map from V to a CAT(0) space with the desired properties.

By Proposition 7.2, Case 1, Case 2 and Case 3 exhaust all possibilities.

9 The G(5)
9 (0) condition

In this section, we prove that the validity of the ⊠-inequalities implies the G(5)9 (0) condition. First we prove

several lemmas.

Lemma 9.1. Let (X, dX) be a metric space that satisfies the ⊠-inequalities, and let p, x, y, z, w ∈ X. Sup-

pose there exist a complete geodesic space with nonnegative Alexandrov curvature (Z, dZ) and a map f :

{p, x, y, z, w} → Z such that

dZ(f (p), f (a)) ≤ dX(p, a), dZ(f (a), f (b)) ≥ dX(a, b)

for any a, b ∈ {x, y, z, w}. Then there exist a CAT(0) space (Y , dY ) and amap g : {p, x, y, z, w} → Y such that

dY (g(p), g(a)) ≤ dX(p, a), dY (g(a), g(b)) = dX(a, b)

for any a, b ∈ {x, y, z, w}.

Proof. Because (X, dX) satisfies the⊠-inequalities, Theorem 1.7 implies that there exist aCAT(0) space (Y , dY )

and an isometric embedding φ : {x, y, z, w} → Y. Define a map ψ : {f (x), f (y), f (z), f (w)} → Y by ψ(f (a)) =

φ(a). Then ψ is 1-Lipschitz because

dY (ψ(f (a)), ψ(f (b))) = dY (φ(a), φ(b)) = dX(a, b) ≤ dZ(f (a), f (b))
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for any a, b ∈ {x, y, z, w}. Hence Theorem 2.6 implies that there exists a 1-Lipschitz map ψ̃ :

{f (p), f (x), f (y), f (z), f (w)} → Y such that ψ̃(f (a)) = ψ(f (a)) for every a ∈ {x, y, z, w}. Define a map

g : {p, x, y, z, w} → Y by g(a) = ψ̃(f (a)). Then

dY (g(a), g(b)) = dY (ψ(f (a)), ψ(f (b))) = dY (φ(a), φ(b)) = dX(a, b),

dY (g(p), g(a)) = dY (ψ̃(f (p)), ψ̃(f (a))) ≤ dZ(f (p), f (a)) ≤ dX(p, a)

for any a, b ∈ {x, y, z, w}, which proves the lemma.

Lemma 9.2. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose p, q, x, y, z ∈ X are five

distinct points such that both {p, x, y, z} and {q, x, y, z} admit isometric embeddings intoR3. Then there exist

a CAT(0) space (Y , dY ) and a map g : {p, q, x, y, z} → Y such that

dY (g(p), g(q)) ≥ dX(p, q), dY (g(x), g(a)) ≤ dX(x, a), dY (g(b), g(c)) = dX(b, c)

for any a, b, c ∈ {p, q, y, z} with {b, c} ≠ {p, q}.

Proof. Let α be the plane in R
3 consisting of all points (t1, t2, t3) ∈ R

3 with t3 = 0. Choose x′, y′, z′ ∈ α such
that

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), ‖z′ − x′‖ = dX(z, x).

Then because both {p, x, y, z} and {q, x, y, z} admit isometric embeddings into R
3, there exist points p′ =

(p(1), p(2), p(3)) and q′ = (q(1), q(2), q(3)) in R
3 such that

‖p′ − x′‖ = dX(p, x), ‖p′ − y′‖ = dX(p, y), ‖p′ − z′‖ = dX(p, z), p(3) ≥ 0,

‖q′ − x′‖ = dX(q, x), ‖q′ − y′‖ = dX(q, y), ‖q′ − z′‖ = dX(q, z), q(3) ≤ 0.

Let R be the convex hull of {x′, y′, z′} in R
3. Then R ⊆ α, and the triangle

R′ = [x′, y′] ∪ [y′, z′] ∪ [z′, x′]

forms the boundary of R as a subset of α. Define P, Q ⊆ R
3 by

P = conv({p′, x′, y′, z′}), Q = conv({q′, x′, y′, z′}).

We consider three cases.

Case 1: [p′, q′] ∩
(

α \ (R \ R′)
)

= ̸ ∅. Choose r0 ∈ [p′, q′] ∩
(

α \ (R \ R′)
)

. Equip the subsets P and Q of

R
3 with the induced metrics, and regard them as disjoint metric spaces. Define (Y1, dY1 ) to be the metric

space obtained by gluing P and Q by identifying R ⊆ P with R ⊆ Q naturally. Then Y1 is a CAT(0) space by

Reshetnyak’s gluing theorem, and the natural inclusions of P and Q into Y1 are isometric embeddings. We

denote by P̃ and Q̃ the images of P and Q, respectively under the natural inclusions into Y1. Define a map

g1 : {p, q, x, y, z} → Y1 by sending x, y, z, p and q to the points in Y1 represented by x
′, y′, z′, p′ ∈ P and

q′ ∈ Q, respectively. Then
dY1 (g1(a), g1(b)) = ‖a

′ − b′‖ = dX(a, b) (9.1)

for any a, b ∈ {p, q, x, y, z} with {a, b} ≠ {p, q}. By definition of Y1, there exists a point r1 ∈ R such that

dY1 (g1(p), g1(q)) = ‖p
′ − r1‖ + ‖r1 − q′‖. (9.2)

Because R′ is the boundary of R as a subset of α, there exists a point r2 ∈ R′ ∩ [r0, r1]. Then r2 ∈
conv({r1, p′, q′}), and therefore Lemma 8.1 implies that

dY1 (g1(p), r̃2) + dY1 (r̃2, g1(q)) = ‖p
′ − r2‖ + ‖r2 − q′‖ ≤ ‖p′ − r1‖ + ‖r1 − q′‖,

where r̃2 is the point in Y1 represented by r2 ∈ P (or r2 ∈ Q). Combining this with (9.2) and the triangle

inequality for Y1 yields

dY1 (g1(p), g1(q)) = dY1 (g1(p), r̃2) + dY1 (r̃2, g1(q)). (9.3)
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If r2 ∈ [x′, y′], then r̃2 clearly lies on the geodesic segment [g1(x), g1(y)] in Y1, and therefore (9.1), (9.3) and

Lemma 3.3 imply that

dY1 (g1(p), g1(q)) ≥ dX(p, q) (9.4)

because [g1(x), g1(y)] ⊆ P̃∪Q̃, and P̃ and Q̃ are isometric to convex subsets of Euclidean spaces. If r2 ∈ [y′, z′]
or r2 ∈ [z′, x′], then we obtain (9.4) in the same way. Thus (9.4) always holds in Case 1. By (9.1) and (9.4), g1
is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.

Case 2: [p′, q′] ∩
(

α \ (R \ R′)
)

= ∅ and {p′, q′} ⊈ α. In this case, [p′, q′] ∩ (R \ R′) ≠ ∅. Hence the subset
P ∪ Q of R3 is not contained in any plane, and [p′, q′] ⊆ P ∪ Q. It follows that P ∪ Q is a convex subset of

R
3, and therefore the boundary S of P ∪ Q in R

3 equipped with the induced length metric dS is a complete

geodesic spacewithnonnegativeAlexandrov curvature aswementioned inExample 2.4. Clearly S is theunion

of six subsets conv({p′, x′, y′}), conv({p′, y′, z′}), conv({p′, z′, x′}), conv({q′, x′, y′}), conv({q′, y′, z′}) and
conv({q′, z′, x′}) of R3. On each of these six subsets, dS coincides with the Euclidean metric on R

3. In par-

ticular, these six subsets are all isometric to convex subsets of the Euclidean plane even as subsets of (S, dS).

Define a map f2 : {p, q, x, y, z} → S by f2(a) = a
′. Then

dS(f2(a), f2(b)) = ‖a′ − b′‖ = dX(a, b) (9.5)

for any a, b ∈ {p, q, x, y, z} with {a, b} ≠ {p, q}. Fix a geodesic segment Γ0 in (S, dS) with endpoints f2(p)

and f2(q). Then Γ0 clearly has a nonempty intersectionwith the union of three line segments [x′, y′]∪[y′, z′]∪
[z′, x′]. If Γ0 has a nonempty intersection with [x′, y′], then (9.5) and Lemma 3.3 imply that

dS(f2(p), f2(q)) ≥ dX(p, q) (9.6)

because [x′, y′] = conv({p′, x′, y′}) ∩ conv({q′, x′, y′}) is a geodesic segment even in (S, dS). If Γ0 has a

nonempty intersection with [y′, z′] or [z′, x′], then we obtain (9.6) in the same way. Thus (9.6) always holds in

Case 2. By (9.5) and (9.6), the map f2 satisfies that

dS(f2(x), f2(a)) = dX(x, a), dS(f2(a), f2(b)) ≥ dX(a, b)

for any a, b ∈ {p, q, y, z}. Therefore, Lemma 9.1 implies that there exist a CAT(0) space (Y2, dY2 ) and a map

g2 : {p, q, x, y, z} → Y2 such that

dY2 (g2(x), g2(a)) ≤ dX(x, a), dY2 (g2(a), g2(b)) = dX(a, b)

for any a, b ∈ {p, q, y, z}. Thus g2 is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
Case 3: [p′, q′] ∩

(

α \ (R \ R′)
)

= ∅ and {p′, q′} ⊆ α. In this case, {p′, q′} ⊆ R \ R′, which ensures in

particular that x′, y′ and z′ are not collinear. Let R1 and R2 be two isometric copies of R. We denote the

points in R1 corresponding to x
′, y′, z′, p′ and q′ by x1, y1, z1, p1 and q1, respectively, and the points in

R2 corresponding to x′, y′, z′, p′ and q′ by x2, y2, z2, p2 and q2, respectively. Define (R0, dR0 ) to be the

piecewise Euclidean simplicial complex constructed from the two simplices R1 and R2 by identifying [x1, y1]

with [x2, y2], [y1, z1] with [y2, z2], and [z1, x1] with [z2, x2]. In other words, R0 is the piecewise Euclidean

simplicial complex obtained by gluing R1 and R2 along their boundaries. Aswementioned in Example 2.5, R0
is a complete geodesic spacewith nonnegative Alexandrov curvature, and the natural inclusions of R1 and R2
into R0 are both isometric embeddings. In particular, for each i ∈ {1, 2}, the image R̃i of Ri under the natural

inclusion into R0 is isometric to a convex subset of the Euclidean plane. Define amap f3 : {p, q, x, y, z} → R0
by sending x, y, z, p and q to the points in R0 represented by x1, y1, z1, p1 ∈ R1 and q2 ∈ R2, respectively.
Then

dR0 (f3(a), f3(b)) = ‖a
′ − b′‖ = dX(a, b) (9.7)

for any a, b ∈ {p, q, x, y, z}with {a, b} = ̸ {p, q}. It follows from the definition of R0 that there exists a point

r3 ∈ R′ such that

dR0 (f3(p), f3(q)) = ‖p
′ − r3‖ + ‖r3 − q′‖.

Hence

dR0 (f3(p), f3(q)) = dR0 (f3(p), r̃3) + dR0 (r̃3, f3(q)), (9.8)
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where r̃3 is the point in R0 represented by the point in R1 (or R2) corresponding to r3. Let Γ1 be the image

of the line segment [x1, y1] ⊆ R1 (or [x2, y2] ⊆ R2) under the natural inclusion into R0. If r3 ∈ [x′, y′], then

r̃3 ∈ Γ1, and therefore (9.7), (9.8) and Lemma 3.3 imply that

dR0 (f3(p), f3(q)) ≥ dX(p, q) (9.9)

because it is clear from the definition of R0 that Γ1 is a geodesic segment in R0 with endpoints f3(x) and f3(y),

and Γ1 ⊆ R̃1 ∪ R̃2. If r3 ∈ [y′, z′] or r3 ∈ [z′, x′], then we obtain (9.9) in the same way. Thus (9.9) always holds

in Case 3. By (9.7) and (9.9),

dR0 (f3(x), f3(a)) = dX(x, a), dR0 (f3(a), f3(b)) ≥ dX(a, b)

for any a, b ∈ {p, q, y, z}. Therefore, Lemma 9.1 implies that there exist a CAT(0) space (Y3, dY3 ) and a map

g3 : {p, q, x, y, z} → Y3 such that

dY3 (g3(x), g3(a)) ≤ dX(x, a), dY3 (g3(a), g3(b)) = dX(a, b)

for any a, b ∈ {p, q, y, z}. Thus g3 is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
Case 1, Case 2 and Case 3 exhaust all possibilities.

Lemma 9.3. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose p, q, x, y, z ∈ X are five

distinct points such that {p, x, y, z} is over-distance with respect to {p, x}, {p, y} or {p, z}, and {q, x, y, z}
is over-distance with respect to {q, x}, {q, y} or {q, z}. Then there exist a CAT(0) space (Y , dY ) and a map

g : {p, q, x, y, z} → Y such that

dY (g(p), g(q)) ≥ dX(p, q), dY (g(a), g(b)) = dX(a, b)

for any a, b ∈ {p, q, x, y, z} with {a, b} = ̸ {p, q}.

Proof. By the hypothesis, we can choose a1, a2, a3, b1, b2, b3 ∈ {x, y, z} with

{a1, a2, a3} = {b1, b2, b3} = {x, y, z} (9.10)

such that {p, x, y, z} is over-distance with respect to {p, a2}, and {q, x, y, z} is over-distance with respect

to {q, b2}. Then Lemma 7.7 implies that π < ∠̃a2a1a3 + ∠̃a3a1p, or π < ∠̃a2a3a1 + ∠̃a1a3p, and that π <

∠̃b2b1b3 + ∠̃b3b1q, or π < ∠̃b2b3b1 + ∠̃b1b3q. Therefore, renaming the points if necessary, we may assume

further that

π < ∠̃a2a1a3 + ∠̃a3a1p, π < ∠̃b2b1b3 + ∠̃b3b1q.

Let Y1 = D(a1; a2, a3, p), and let Y2 = D(b1; b2, b3, q). Suppose φ1 : {p, x, y, z} → Y1 and φ2 :

{q, x, y, z} → Y2 are the natural inclusions. Then Lemma 7.14 implies that Y1 and Y2 are CAT(0) spaces,

and φ1 and φ2 are isometric embeddings. It also follows from Lemma 7.14 that

S1 = TY1 (a1, a2, a3), S2 = TY1 (a1, a3, p), S3 = TY1 (a1, p, a2)

are closed convex subsets of Y1, all of which are isometric to convex subsets of the Euclidean plane. Similarly,

T1 = TY2 (b1, b2, b3), T2 = TY2 (b1, b3, q), T3 = TY2 (b1, q, a2)

are convex subsets of of Y2, all of which are isometric to convex subsets of the Euclidean plane. By (9.10), S1
and T1 are isometric via the isometry h : S1 → T1 such that

h(φ1(x)) = φ2(x), h(φ1(y)) = φ2(y), h(φ1(z)) = φ2(z).

We define a metric space (Y , dY ) to be the gluing of Y1 and Y2 along h. Then Y is a CAT(0) space by Reshet-

nyak’s gluing theorem, and the natural inclusions of Y1 and Y2 into Y are both isometric embeddings. In

particular, the images S̃1, S̃2 and S̃3 of S1, S2 and S3, respectively under the natural inclusion of Y1 into Y,
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and the images T̃1, T̃2 and T̃3 of T1, T2 and T3, respectively under the natural inclusion of Y2 into Y are

all isometric to convex subsets of the Euclidean plane. Define a map g : {p, q, x, y, z} → Y by sending each

a ∈ {p, x, y, z} to the point in Y represented byφ1(a) ∈ Y1, and q to the point in Y represented byφ2(q) ∈ Y2.
Then clearly

dY (g(a), g(b)) = dX(a, b) (9.11)

for any a, b ∈ {p, q, x, y, z} with {a, b} ≠ {p, q}. By definition of Y, there exists c0 ∈ S1 such that

dY (g(p), g(q)) = dY1 (φ1(p), c0) + dY2 (h(c0), φ2(q)). (9.12)

It is clear from the definitions of Y1 = D(a1; a2, a3, p) and Y2 = D(b1; b2, b3, q) that there exist i, j ∈ {2, 3},
c1 ∈ [φ1(a1), φ1(ai)] and c2 ∈ [φ2(b1), φ2(bj)] such that

dY1 (φ1(p), c0) = dY1 (φ1(p), c1) + dY1 (c1, c0), (9.13)

dY2 (h(c0), φ2(q)) = dY2 (h(c0), c2) + dY2 (c2, φ2(q)). (9.14)

It follows from (9.12), (9.13), (9.14) and the triangle inequality for Y that

dY (g(p), g(q)) = dY1 (φ1(p), c1) + dY1 (c1, c0) + dY2 (h(c0), c2) + dY2 (c2, φ2(q))

= dY (g(p), c̃1) + dY (c̃1, c̃0) + dY (c̃0, c̃2) + dY (c̃2, g(q))

= dY (g(p), c̃1) + dY (c̃1, c̃2) + dY (c̃2, g(q)), (9.15)

where c̃0, c̃1 and c̃2 are the points in Y represented by c0, c1 ∈ Y1 and c2 ∈ Y2, respectively. Because the
geodesic segments [g(a1), g(ai)] and [g(b1), g(bj)] in Y are clearly the image of [φ1(a1), φ1(ai)] under the nat-

ural inclusion of Y1 into Y and that of [φ2(b1), φ2(bj)] under the natural inclusion of Y2 into Y, respectively,

c̃1 ∈ [g(a1), g(ai)], c̃2 ∈ [g(b1), g(bj)]. (9.16)

Let

T′ = conv
(

{g(a1), g(ai), g(b1), g(bj)}
)

.

Then T′ is a convex subset of S̃1, and therefore T
′ is isometric to convex subset of the Euclidean plane. Clearly

[g(a1), g(ai)] ⊆ S̃i ∩ T′, [g(b1), g(bj)] ⊆ T′ ∩ T̃j . (9.17)

By (9.10), we have {a1, ai} ∩ {b1, bj} = ̸ ∅. In other words, at least one of the following equalities holds:

a1 = b1, a1 = bj , ai = b1, ai = bj .

If a1 = b1, then (9.15), (9.16), (9.17) and Lemma 6.5 imply that

dY (g(p), g(q)) ≥ dX(p, q) (9.18)

because the subsets S̃i, T
′ and T̃j of Y are all isometric to convex subsets of the Euclidean plane, and

dY (g(a1), g(p)) = dX(a1, p), dY (g(p), g(ai)) = dX(p, ai),

dY (g(ai), g(bj)) = dX(ai , bj), dY (g(bj), g(q)) = dX(bj , q),

dY (g(q), g(a1)) = dX(q, a1), dY (g(a1), g(ai)) = dX(a1, ai),

dY (g(a1), g(bj)) = dX(a1, bj)

by (9.11). If a1 = bj, ai = b1 or ai = bj, then we obtain (9.18) in the same way. Thus (9.18) always holds. By

(9.11) and (9.18), g is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
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Lemma 9.4. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose p, q, x, y, z ∈ X are five

distinct points such that {p, x, y, z} is under-distance with respect to {p, y} or {p, z}, and {q, x, y, z} is under-
distancewith respect to {q, y} or {q, z}. Then there exist a CAT(0) space (Y , dY ) and amap g : {x, y, z, p, q} →
Y such that

dY (g(p), g(q)) ≥ dX(p, q), dY (g(x), g(a)) ≤ dX(x, a), dY (g(b), g(c)) = dY (b, c)

for any a, b, c ∈ {p, q, y, z} with {b, c} ≠ {p, q}.

Proof. Choose x′, y′, z′ ∈ R
2 such that

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), ‖z′ − x′‖ = dX(z, x).

Suppose p′ ∈ R
2 is a point such that

‖x′ − p′‖ = dX(x, p), ‖p′ − z′‖ = dX(p, z),

and p′ is not on the opposite side of
←→
x′z′ from y′. Suppose q′1 ∈ R

2 is a point such that

‖x′ − q′1‖ = dX(x, q), ‖q′1 − z′‖ = dX(q, z),

and q′1 is not on the opposite side of
←→
x′z′ from y′. Suppose q′2 ∈ R

2 is a point such that

‖x′ − q′2‖ = dX(x, q), ‖q′2 − y′‖ = dX(q, y),

and q′2 is not on the opposite side of
←→
x′y′ from z′. Such points p′, q′1 and q

′
2 are uniquely determinedwhenever

x′, y′ and z′ are not collinear. We consider four cases.

Case 1: {p, x, y, z} is under-distance with respect to {p, y}, and {q, x, y, z} is under-distance with respect
to {q, y}. According to Corollary 7.6, we divide Case 1 into the following four subcases.

Subcase 1a: p′ ∈ conv({x′, y′, z′}) and q′1 ∈ conv({x′, y′, z′}). In this subcase, x′, y′ and z′ are not

collinear, because otherwise x′, y′, z′ and p′ would be collinear, contradicting Lemma 7.5. Let T1 and T2 be

two isometric copies of conv({x′, y′, z′}). For each i ∈ {1, 2} and each c ∈ conv({x′, y′, z′}), we denote by
φi(c) the point in Ti corresponding to c. Define (T, dT) to be the piecewise Euclidean simplicial complex con-

structed from the two simplices T1 and T2 by identifying [φ1(x
′), φ1(y

′)]with [φ2(x
′), φ2(y

′)], [φ1(y
′), φ1(z

′)]

with [φ2(y
′), φ2(z

′)], and [φ1(z
′), φ1(x

′)] with [φ2(z
′), φ2(x

′)]. In other words, T is the piecewise Euclidean

simplicial complex obtained by gluing T1 and T2 along their boundaries. As wementioned in Example 2.5, T

is a complete geodesic spacewith nonnegative Alexandrov curvature, and the natural inclusions of T1 and T2
into T are both isometric embeddings. In particular, for each i ∈ {1, 2}, the image T̃i of Ti under the natural

inclusion into T is isometric to a convex subset of the Euclidean plane. Define amap f1 : {p, q, x, y, z} → T by

sending x, y, z, p and q to the points in T represented by φ1(x
′), φ1(y

′), φ1(z
′), φ1(p

′) ∈ T1 and φ2(q
′
1) ∈ T2,

respectively. Then clearly

dT(f1(a), f1(b)) = dX(a, b) (9.19)

for any a, b ∈ {p, q, x, y, z} with {a, b} ∉ {{p, y}, {q, y}, {p, q}}. By the assumption of Case 1,

dT(f1(p), f1(y)) = ‖p′ − y′‖ > dX(p, y), (9.20)

dT(f1(q), f1(y)) = ‖q′1 − y′‖ > dX(q, y). (9.21)

It follows from the definition of T that there exists c0 ∈ [x′, y′] ∪ [y′, z′] ∪ [z′, x′] such that

dT(f1(p), f1(q)) = ‖p′ − c0‖ + ‖c0 − q′1‖.

Hence

dT(f1(p), f1(q)) = dT(f1(p), c̃0) + dT(c̃0, f1(q)), (9.22)

where c̃0 is the point in T represented by φ1(c0) ∈ T1 (or φ2(c0) ∈ T2). Let Γ0 ⊆ T be the image

of [φ1(x
′), φ1(y

′)] under the natural inclusion of T1 into T, which clearly coincides with the image of
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[φ2(x
′), φ2(y

′)] under the natural inclusion of T2 into T. Then it is clear from the definition of T that Γ0 is

a geodesic segment in T with endpoints f1(x) and f1(y), and Γ0 ⊆ T̃1 ∩ T̃2. If c0 ∈ [x′, y′], then c̃0 ∈ Γ0, and
therefore (9.22) and Lemma 3.3 imply that

dT(f1(p), f1(q)) ≥ dX(p, q) (9.23)

because

dT(f1(x), f1(p)) = dX(x, p), dT(f1(p), f1(y)) > dX(p, y),

dT(f1(y), f1(q)) > dX(y, q), dT(f1(q), f1(x)) = dX(q, x),

dT(f1(x), f1(y)) = dX(x, y)

by (9.19), (9.20) and (9.21). If c0 ∈ [y′, z′] or c0 ∈ [z′, x′], then we obtain (9.23) in the same way. Thus (9.23)

always holds in Subcase 1a. By (9.19), (9.20), (9.21) and (9.23),

dT(f1(x), f1(a)) = dX(x, a), dT(f1(a), f1(b)) ≥ dX(a, b).

for any a, b ∈ {p, q, y, z}. Therefore, Lemma 9.1 implies that there exist a CAT(0) space (Y1, dY1 ) and a map

g1 : {p, q, x, y, z} → Y1 such that

dY1 (g1(x), g1(a)) ≤ dX(x, a), dY1 (g1(a), g1(b)) = dX(a, b)

for any a, b ∈ {p, q, y, z}. Thus g1 is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
Subcase 1b: p′ ∈ conv({x′, y′, z′}) and y′ ∈ conv({q′1, x′, z′}). In this subcase, we define a map f2 :

{p, q, x, y, z} → R
2 by

f2(x) = x
′
, f2(y) = y

′
, f2(z) = z

′
, f2(p) = p

′
, f2(q) = q

′
1.

Then

‖f2(a) − f2(b)‖ = dX(a, b) (9.24)

for any a, b ∈ {p, q, x, y, z} with {a, b} ∈ ̸ {{p, y}, {q, y}, {p, q}}. By the assumption of Case 1,

‖f2(p) − f2(y)‖ = ‖p′ − y′‖ > dX(p, y), (9.25)

‖f2(q) − f2(y)‖ = ‖q′1 − y′‖ > dX(q, y). (9.26)

It follows from the assumption of Subcase 1b that the line segment [f2(p), f2(q)] has a nonempty intersection

with [f2(x), f2(y)] or [f2(y), f2(z)]. If [f2(p), f2(q)] has a nonempty intersection with [f2(x), f2(y)], then Lemma

3.2 implies that

‖f2(p) − f2(q)‖ ≥ dX(p, q) (9.27)

because

‖f2(x) − f2(p)‖ = dX(x, p), ‖f2(p) − f2(y)‖ > dX(p, y),
‖f2(y) − f2(q)‖ > dX(y, q), ‖f2(q) − f2(x)‖ = dX(q, x),
‖f2(x) − f2(y)‖ = dX(x, y)

by (9.24), (9.25) and (9.26). If [f2(p), f2(q)]has a nonempty intersectionwith [f2(y), f2(z)], thenwe obtain (9.27)

in the same way. Thus (9.27) always holds in Subcase 1b. By (9.24), (9.25), (9.26) and (9.27),

‖f2(x) − f2(a)‖ = dX(x, a), ‖f2(a) − f2(b)‖ ≥ dX(a, b)

for any a, b ∈ {p, q, y, z}. Therefore, becauseR2 is a complete geodesic space with nonnegative Alexandrov

curvature, Lemma 9.1 implies that there exist a CAT(0) space (Y2, dY2 ) and a map g2 : {p, q, x, y, z} → Y2
such that

dY2 (g2(x), g2(a)) ≤ dX(x, a), dY2 (g2(a), g2(b)) = dX(a, b)
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for any a, b ∈ {p, q, y, z}. Thus g2 is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
Subcase 1c: y′ ∈ conv({p′, x′, z′}) and q′1 ∈ conv({x′, y′, z′}). In this subcase, the existence of a map

from {p, q, x, y, z} to a CAT(0) space with the desired properties is proved in exactly the same way as in

Subcase 1b.

Subcase 1d: y′ ∈ conv({p′, x′, z′}) and y′ ∈ conv({q′1, x′, z′}). In this subcase, Corollary 7.6 implies that

p′ ∈ ̸ conv({x′, y′, z′}). (9.28)

It follows that {p, x, y, z} is not under-distance with respect to {p, x}, because otherwise Lemma 7.8

and the assumption that {p, x, y, z, w} is under-distance with respect to {p, y} would imply that p′ ∈
conv({x′, y′, z′}), contradicting (9.28). Hence {p, x, y, z} is over-distance with respect to {p, x} by Proposi-
tion 7.2. Similarly, {q, x, y, z} is over-distance with respect to {q, x}. Therefore, Lemma 9.3 implies that there

exist a CAT(0) space (Y3, dY3 ) and a map g3 : {p, q, x, y, z} → Y3 such that

dY3 (g3(p), g3(q)) ≥ dX(p, q), dY3 (g3(a), g3(b)) = dX(a, b)

for any a, b ∈ {p, q, x, y, z}with {a, b} = ̸ {p, q}. Thus g3 is a map from {p, q, x, y, z} to a CAT(0) space with
the desired properties.

By Corollary 7.6, the above four subcases exhaust all possibilities in Case 1.

Case 2: {p, x, y, z} is under-distance with respect to {p, y} and {q, x, y, z} is under-distance with respect
to {q, z}. According to Corollary 7.6, we divide Case 2 into the following four subcases.

Subcase 2a: p′ ∈ conv({x′, y′, z′}) and q′2 ∈ conv({x′, y′, z′}). In this subcase, x′, y′ and z′ are not

collinear, because otherwise x′, y′, z′ and p′ would be collinear, contradicting Lemma 7.5. Let T1, T2, φ1,

φ2 and (T, dT) be as in Subcase 1a. Define a map f4 : {p, q, x, y, z} → T by sending x, y, z, p and q to the

points in T represented by φ1(x
′), φ1(y

′), φ1(z
′), φ1(p

′) ∈ T1 and φ2(q
′
2) ∈ T2, respectively. Then a similar

argument as in Subcase 1a yields

dT(f4(x), f4(a)) = dX(x, a), dT(f4(a), f4(b)) ≥ dX(a, b)

for any a, b ∈ {p, q, y, z}. Therefore, because T is a complete geodesic space with nonnegative Alexandrov

curvature, Lemma 9.1 implies that there exist a CAT(0) space (Y4, dY4 ) and a map g4 : {p, q, x, y, z} → Y4
such that

dY4 (g4(x), g4(a)) ≤ dX(x, a), dY4 (g4(a), g4(b)) = dX(a, b)

for any a, b ∈ {p, q, y, z}. Thus g4 is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
Subcase 2b: p′ ∈ conv({x′, y′, z′}) and z′ ∈ conv({q′2, x′, y′}). In this subcase, we define a map f5 :

{p, q, x, y, z} → R
2 by

f5(x) = x
′
, f5(y) = y

′
, f5(z) = z

′
, f5(p) = p

′
, f5(q) = q

′
2.

Then a similar argument as in Subcase 1b implies that

‖f5(x) − f5(a)‖ = dX(x, a), ‖f5(a) − f5(b)‖ ≥ dX(a, b)

for any a, b ∈ {p, q, y, z}. Therefore, becauseR2 is a complete geodesic space with nonnegative Alexandrov

curvature, Lemma 9.1 implies that there exist a CAT(0) space (Y5, dY5 ) and a map g5 : {p, q, x, y, z} → Y5
such that

dY5 (g5(x), g5(a)) ≤ dX(x, a), dY5 (g5(a), g5(b)) = dX(a, b)

for any a, b ∈ {p, q, y, z}. Thus g5 is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
Subcase 2c: y′ ∈ conv({x′, z′, p′}) and q′2 ∈ conv({x′, y′, z′}). In this subcase, the existence of a map

from {p, q, x, y, z} to a CAT(0) space with the desired properties is proved in exactly the same way as in

Subcase 2b.
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Subcase 2d: y′ ∈ conv({p′, x′, z′}) and z′ ∈ conv({q′2, x′, y′}). In this subcase, it follows from the same

argument as in Subcase 1d that {p, x, y, z} is over-distance with respect to {p, x}, and {q, x, y, z} is over-
distance with respect to {q, x}. Therefore, Lemma 9.3 implies that there exist a CAT(0) space (Y6, dY6 ) and a

map g6 : {p, q, x, y, z} → Y6 such that

dY6 (g6(p), g6(q)) ≥ dX(p, q), dY6 (g6(a), g6(b)) = dX(a, b)

for any a, b ∈ {p, q, x, y, z}with {a, b} = ̸ {p, q}. Thus g6 is a map from {p, q, x, y, z} to a CAT(0) space with
the desired properties.

By Corollary 7.6, the above four subcases exhaust all possibilities in Case 2.

Case 3: {p, x, y, z} is under-distance with respect to {p, z}, and {q, x, y, z} is under-distance with respect
to {q, y}. In this case, the existence of a map from {p, q, x, y, z} to a CAT(0) space with the desired properties
is proved in exactly the same way as in Case 2.

Case 4: {p, x, y, z} is under-distance with respect to {p, z}, and {q, x, y, z} is under-distance with respect
to {q, z}. In this case, the existence of a map from {p, q, x, y, z} to a CAT(0) space with the desired properties
is proved in exactly the same way as in Case 1.

Case 1, Case 2, Case 3 and Case 4 exhaust all possibilities.

Lemma 9.5. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Suppose p, q, x, y, z ∈ X are five

distinct points such that {p, x, y, z} admits an isometric embedding intoR3, and {q, x, y, z} does not admit an
isometric embedding into R

3. Then there exist a CAT(0) space (Y , dY ) and a map g : {p, q, x, y, z} → Y such

that

dY (g(p), g(q)) ≥ dX(p, q), dY (g(x), g(a)) ≤ dX(x, a), dY (g(b), g(c)) = dY (b, c)

for any a, b, c ∈ {p, q, y, z} with {b, c} ≠ {p, q}.

Proof. Let φ0 : {p, x, y, z} → R
3 be an isometric embedding, and let

T0 = conv({φ0(x), φ0(y), φ0(z)}).

We consider two cases.

Case 1: {q, x, y, z} is over-distance with respect to {q, y} or {q, z}. In this case, we may assume without

loss of generality that {q, x, y, z} is over-distance with respect to {q, y}. Then Lemma 7.7 implies that π <

∠̃yxz+∠̃zxq or π < ∠̃yzx+∠̃xzq. Wemay assume further without loss of generality that the former inequality

holds. Let Y ′
1 = D(x; y, z, q), and letφ1 : {x, y, z, q} → Y ′

1 be the natural inclusion. Then Y
′
1 is aCAT(0) space,

and φ1 is an isometric embedding by Lemma 7.14. We set

T1 = TY′

1
(x, y, z), T2 = TY′

1
(x, z, q), T2 = TY′

1
(x, q, y)

By Lemma 7.14, T1, T2 and T3 are closed convex subsets of Y
′
1, all of which are isometric to convex subsets of

the Euclidean plane. It also follows from Lemma 7.14 that there exists an isometry h1 : T1 → T0 such that

h1(φ1(x)) = φ0(x), h1(φ1(y)) = φ0(y), h1(φ1(z)) = φ0(z).

Define a metric space (Y1, dY1 ) to be the gluing of Y
′
1 and R

3 along h1. Then Y1 is a CAT(0) space by Reshet-

nyak’s gluing theorem, and the natural inclusions of Y ′
1 and R

3 into Y1 are both isometric embeddings. In

particular, for each i ∈ {1, 2, 3}, the image T̃i of Ti under the natural inclusion of Y
′
1 into Y1 is isometric to

a convex subset of the Euclidean plane. Define a map g1 : {p, q, x, y, z} → Y1 by sending x, y, z, p and q to

the points in Y1 represented by φ0(x), φ0(y), φ0(z), φ0(p) ∈ R
3 and φ1(q) ∈ Y ′

1, respectively. Then

dY1 (g1(q), g1(a)) = dY′

1
(φ1(q), φ1(a)) = dX(q, a) (9.29)

dY1 (g1(b), g1(c)) = ‖φ0(b) − φ0(c)‖ = dX(b, c), (9.30)

for any a ∈ {x, y, z} and any b, c ∈ {p, x, y, z}. It follows from the definition of Y1 that there exists r0 ∈ T1
such that

dY1 (g1(p), g1(q)) = ‖φ0(p) − h1(r0)‖ + dY′

1
(r0, φ1(q)). (9.31)
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It is clear from the definition of Y ′
1 = D(x; y, z, q) that there exists

r1 ∈ [φ1(x), φ1(y)] ∪ [φ1(x), φ1(z)]

such that

dY′

1
(r0, φ1(q)) = dY′

1
(r0, r1) + dY′

1
(r1, φ1(q)). (9.32)

By (9.31), (9.32) and the triangle inequality for Y1,

dY1 (g1(p), g1(q)) = ‖φ0(p) − h1(r0)‖ + dY′

1
(r0, r1) + dY′

1
(r1, φ1(q)) (9.33)

= dY1 (g1(p), r̃0) + dY1 (r̃0, r̃1) + dY1 (r̃1, g1(q))

= dY1 (g1(p), r̃1) + dY1 (r̃1, g1(q)),

where r̃0 and r̃1 are the points in Y1 represented by r0 ∈ Y ′
1 and r1 ∈ Y ′

1, respectively. Let R̃ be the image

of R3 under the natural inclusion of R3 into Y1. If r1 ∈ [φ1(x), φ1(y)], then r̃1 lies on the geodesic segment

[g1(x), g1(y)] in Y1 clearly, and therefore (9.29), (9.30), (9.33) and Lemma 3.3 imply that

dY1 (g1(p), g1(q)) ≥ dX(p, q) (9.34)

because [g1(x), g1(y)] ⊆ R̃ ∩ T̃2. If r1 ∈ [φ1(x), φ1(z)], then we obtain (9.34) in the same way. Thus (9.34)

always holds in Case 1. By (9.29), (9.30), and (9.34), g1 is a map from {p, q, x, y, z} to a CAT(0) space with the
desired properties.

Case 2: {q, x, y, z} is under-distancewith respect to {q, y}and {q, z}. In this case,we choose q′, x′, y′, z′ ∈
R
2 such that

‖x′ − y′‖ = dX(x, y), ‖y′ − z′‖ = dX(y, z), ‖z′ − x′‖ = dX(z, x),
‖x′ − q′‖ = dX(x, q), ‖q′ − z′‖ = dX(q, z),

and q′ is not on the opposite side of
←→
x′z′ from y′. Then Lemma 7.8, Corollary 7.9 and the assumption of Case

2 imply that q′ ∈ conv({x′, y′, z′}), and that x′, y′ and z′ are not collinear. Set T4 = conv({x′, y′, z′}). Then
there exists an isometry h2 : T4 → T0 such that

h2(x
′) = φ0(x), h2(y

′) = φ0(y), h2(z
′) = φ0(z).

We divide Case 2 into three subcases.

Subcase 2a: φ0(p), φ0(x), φ0(y) and φ0(z) are not coplanar. Let S be the boundary of

conv({φ0(p), φ0(x), φ0(y), φ0(z)}) in R
3 equipped with the induced length metric dS. As we mentioned in

Example 2.4, (S, dS) is a complete geodesic space with nonnegative Alexandrov curvature. Clearly S is the

union of four subsets conv({φ0(p), φ0(x), φ0(y)}), conv({φ0(p), φ0(y), φ0(z)}), conv({φ0(p), φ0(z), φ0(x)})
and T0 of R

3. On each of these four subsets, dS coincides with the Euclidean metric on R
3. In particular,

these four subsets are all isometric to convex subsets of the Euclidean plane even as subsets of (S, dS). Define

a map f2 : {p, q, x, y, z} → S by sending each a ∈ {p, x, y, z} to φ0(a), and q to h2(q
′). Then

dS(f2(q), f2(a)) = ‖q′ − a′‖ = dX(q, a) (9.35)

dS(f2(b), f2(c)) = ‖φ0(b) − φ0(c)‖ = dX(b, c) (9.36)

for any a ∈ {x, z} and b, c ∈ {p, x, y, z}. By the assumption of Case 2,

dS(f2(q), f2(y)) = ‖q′ − y′‖ > dX(q, y). (9.37)

Fix a geodesic segment Γ0 in (S, dS) with endpoints f2(p) and f2(q). Clearly Γ0 has a nonempty intersection

with the line segment [φ0(x), φ0(y)], [φ0(y), φ0(z)] or [φ0(z), φ0(x)]. If Γ0 has a nonempty intersection with

[φ0(x), φ0(y)], then Lemma 3.3 implies that

dS(f2(p), f2(q)) ≥ dX(p, q) (9.38)
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because [φ0(x), φ0(y)] = conv({φ0(p), φ0(x), φ0(y)}) ∩ T0 is a geodesic segment even in (S, dS) with end-

points f2(x) and f2(y), and

dS(f2(x), f2(p)) = dX(x, p), dS(f2(p), f2(y)) = dX(p, y),

dS(f2(y), f2(q)) > dX(y, q), dS(f2(q), f2(x)) = dX(q, x),

dS(f2(x), f2(y)) = dX(x, y)

by (9.35), (9.36) and (9.37). If Γ0 has a nonempty intersection with [φ0(y), φ0(z)] or [φ0(z), φ0(x)], then we

obtain (9.38) in the same way. Thus (9.38) always holds in Subcase 2a. By (9.35), (9.36), (9.37) and (9.38), f2
satisfies

dS(f2(x), f2(a)) = dX(x, a), dS(f2(a), f2(b)) ≥ dX(a, b)

for any a, b ∈ {p, q, y, z}. Therefore, Lemma 9.1 implies that there exist a CAT(0) space (Y2, dY2 ) and a map

g2 : {p, q, x, y, z} → Y2 such that

dY2 (g2(x), g2(a)) ≤ dX(x, a), dY2 (g2(a), g2(b)) = dX(a, b)

for any a, b ∈ {p, q, y, z}. Thus g2 is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
Subcase 2b: φ0(p), φ0(x), φ0(y) and φ0(z) are coplanar, and φ0(p) ∈ T0. In this case, we define (T, dT)

to be the piecewise Euclidean simplicial complex constructed from two simplices T0 and T4 by identifying

[φ0(x), φ0(y)] with [x′, y′], [φ0(y), φ0(z)] with [y′, z′], and [φ0(z), φ0(x)] with [z′, x′]. In other words, T is

the piecewise Euclidean simplicial complex obtained by gluing T0 and T4 along their boundaries. As we

mentioned in Example 2.5, T is a complete geodesic space with nonnegative Alexandrov curvature, and the

natural inclusions of T0 and T4 into T are both isometric embeddings. Define a map f3 : {p, q, x, y, z} → T

by sending x, y, z, p and q to the points in T represented by φ0(x), φ0(y), φ0(z), φ0(p) ∈ T0 and q′ ∈ T4,
respectively. Then a similar argument as in Subcase 1a in the proof of Lemma 9.4 yields

dT(f3(x), f3(a)) = dX(x, a), dT(f3(a), f3(b)) ≥ dX(a, b)

for any a, b ∈ {p, q, y, z}. Therefore, Lemma 9.1 implies that there exist a CAT(0) space (Y3, dY3 ) and a map

g3 : {p, q, x, y, z} → Y3 such that

dY3 (g3(x), g3(a)) ≤ dX(x, a), dY3 (g3(a), g3(b)) = dX(a, b)

for any a, b ∈ {p, q, y, z}. Thus g3 is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
Subcase 2c: φ0(p), φ0(x), φ0(y) and φ0(z) are coplanar, and φ0(p) ∈ ̸ T0. Let α be the plane inR

3 through

φ0(x), φ0(y), φ0(z) and φ0(p). Define amap f4 : {p, q, x, y, z} → α by sending each a ∈ {p, x, y, z} to φ0(a),

and q to h2(q
′). Then

‖f4(q) − f4(a)‖ = ‖q′ − a′‖ = dX(q, a) (9.39)

‖f4(b) − f4(c))‖ = ‖φ0(b) − φ0(c)‖ = dX(b, c) (9.40)

for any a ∈ {x, z} and any b, c ∈ {p, x, y, z}. By the assumption of Case 2,

‖f4(q) − f4(y)‖ = ‖q′ − y′‖ > dX(q, y). (9.41)

Because f4(q) ∈ T0 and f4(p) ∈ α \ T0, [f4(p), f4(q)] has a nonempty intersection with [f4(x), f4(y)],

[f4(y), f4(z)] or [f4(z), f4(x)]. If [f4(p), f4(q)] has a nonempty intersection with [f4(x), f4(y)], then Lemma 3.2

implies that

‖f4(p) − f4(q)‖ ≥ dX(p, q) (9.42)

because

‖f4(x) − f4(p)‖ = dX(x, p), ‖f4(p) − f4(y)‖ = dX(p, y),
‖f4(y) − f4(q)‖ > dX(y, q), ‖f4(q) − f4(x)‖ = dX(q, x),
‖f4(x) − f4(y)‖ = dX(x, y)
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by (9.39), (9.40) and (9.41). If [f4(p), f4(q)] has a nonempty intersection with [f4(y), f4(z)] or [f4(z), f4(x)], then

we obtain (9.42) in the same way. Thus (9.42) always holds in Subcase 2c. By (9.39), (9.40), (9.41) and (9.42),

‖f4(x) − f4(a)‖ = dX(x, a), ‖f4(a) − f4(b)‖ ≥ dX(a, b)

for any a, b ∈ {p, q, y, z}. Therefore, because α is a complete geodesic space with nonnegative Alexandrov

curvature, Lemma 9.1 implies that there exist a CAT(0) space (Y4, dY4 ) and a map g4 : {p, q, x, y, z} → Y4
such that

dY4 (g4(x), g4(a)) ≤ dX(x, a), dY4 (g4(a), g4(b)) = dX(a, b)

for any a, b ∈ {p, q, y, z}. Thus g4 is a map from {p, q, x, y, z} to a CAT(0) space with the desired properties.
The above three subcases clearly exhaust all possibilities in Case 2. By Proposition 7.2, Case 1 and Case

2 exhaust all possibilities.

Using the facts that we have proved so far, we now prove the following proposition.

Proposition 9.6. If a metric space X satisfies the⊠-inequalities, then X satisfies the G(5)9 (0) condition.

v3

v2

v1

v4

v5
✉ ✉

✉ ✉

✉

✁
✁
✁

❆
❆
❆❅❅��

Figure 9.1

Proof. Let (X, dX) be a metric space that satisfies the ⊠-inequalities. Let V and E be the vertex set and the

edge set of G(5)9 (0), respectively. We set

V = {v1, v2, v3, v4, v5},
E = {{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v2}},

as shown in Figure 9.1. Fix a map f : V → X, and set

xi = f (vi), dij = dX(f (vi), f (vj))

for any i, j ∈ {1, 2, 3, 4, 5}. By Theorem 1.7, if dij = 0 for some i, j ∈ {1, 2, 3, 4, 5}with i ≠ j, then there exist
a CAT(0) space (Y0, dY0 ) and a map g : V → Y0 such that dY0 (g0(vi), g0(vj)) = dij for any i, j ∈ {1, 2, 3, 4, 5}.
Therefore, we assume that dij > 0 for any i, j ∈ {1, 2, 3, 4, 5} with i ≠ j. We define V ′, V ′

1, V
′
2 ⊆ X by

V ′ = {x1, x2, x3, x4, x5}, V ′
1 = {x2, x1, x3, x5}, V ′

2 = {x4, x1, x3, x5}.

We consider three cases.

Case 1: Both V ′
1 and V

′
2 admit isometric embeddings into R

3. In this case, Lemma 9.2 implies that there

exist a CAT(0) space (Y1, dY1 ) and a map g′1 : V
′ → Y1 such that

dY1 (g
′
1(x2), g

′
1(x4)) ≥ d24, dY1 (g

′
1(x1), g

′
1(xi)) ≤ d1i , dY1 (g

′
1(xj), g

′
1(xk)) = djk

for any i, j, k ∈ {2, 3, 4, 5} with {j, k} = ̸ {2, 4}. Define a map g1 : V → Y1 by

g1(vi) = g
′
1(xi)

for each i ∈ {1, 2, 3, 4, 5}. Then
{

dY1 (g1(vi), g1(vj)) ≤ dij , if {vi , vj} ∈ E,
dY1 (g1(vi), g1(vj)) ≥ dij , if {vi , vj} ∈ ̸ E
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for any i, j ∈ {1, 2, 3, 4, 5}. Thus g1 is a map from V to a CAT(0) space with the desired properties.

Case 2: V ′
1 admits an isometric embedding intoR

3, and V ′
2 does not, or vice versa. In this case, Lemma 9.5

implies that there exist a CAT(0) space (Y2, dY2 ) and a map g′2 : V
′ → Y2 such that

dY2 (g
′
2(x2), g

′
2(x4)) ≥ d24, dY2 (g

′
2(x1), g

′
2(xi)) ≤ d1i , dY2 (g

′
2(xj), g

′
2(xk)) = djk

for any i, j, k ∈ {2, 3, 4, 5} with {j, k} ≠ {2, 4}. Define g2 : V → Y2 by

g2(vi) = g
′
2(xi)

for each i ∈ {1, 2, 3, 4, 5}. Then
{

dY2 (g2(vi), g2(vj)) ≤ dij , if {vi , vj} ∈ E,
dY2 (g2(vi), g2(vj)) ≥ dij , if {vi , vj} ∉ E

for any i, j ∈ {1, 2, 3, 4, 5}. Thus g2 is a map from V to a CAT(0) space with the desired properties.

Case 3: Neither V ′
1 nor V

′
2 admits an isometric embedding into R

3.We divide Case 3 into four subcases.

Subcase 3a: V ′
1 is over-distance with respect to {x2, x3} or {x2, x5}, and V ′

2 is over-distance with respect

to {x4, x3} or {x4, x5}. In this case, Lemma 9.3 implies that there exist a CAT(0) space (Y3, dY3 ) and a map

g′3 : V
′ → Y3 such that

dY3 (g
′
3(x2), g

′
3(x4)) ≥ d24, dY3 (g

′
3(xi), g

′
3(xj)) = dij

for any i, j ∈ {1, 2, 3, 4, 5} with {i, j} = ̸ {2, 4}. Define g3 : V → Y3 by

g3(vi) = g
′
3(xi)

for each i ∈ {1, 2, 3, 4, 5}. Then
{

dY3 (g3(vi), g3(vj)) = dij , if {vi , vj} ∈ E,
dY3 (g3(vi), g3(vj)) ≥ dij , if {vi , vj} ∈ ̸ E

for any i, j ∈ {1, 2, 3, 4, 5}. Thus g3 is a map from V to a CAT(0) space with the desired properties.

Subcase 3b:V ′
1 is under-distancewith respect to {x2, x3} or {x2, x5}, andV ′

2 is under-distancewith respect

to {x4, x3} or {x4, x5}. In this case, Lemma 9.4 implies that there exist a CAT(0) space (Y4, dY4 ) and a map

g′4 : V
′ → Y4 such that

dY4 (g
′
4(x2), g

′
4(x4)) ≥ d24, dY4 (g

′
4(x1), g

′
4(xi)) ≤ d1i , dY4 (g

′
4(xj), g

′
4(xk)) = djk

for any i, j, k ∈ {2, 3, 4, 5} with {j, k} ≠ {2, 4}. Define g4 : V → Y4 by

g4(vi) = g
′
4(xi)

for each i ∈ {1, 2, 3, 4, 5}. Then
{

dY4 (g4(vi), g4(vj)) ≤ dij , if {vi , vj} ∈ E,
dY4 (g4(vi), g4(vj)) ≥ dij , if {vi , vj} ∉ E

for any i, j ∈ {1, 2, 3, 4, 5}. Thus g4 is a map from V to a CAT(0) space with the desired properties.

Subcase 3c: V ′
1 is under-distance with respect to {x2, x3} and {x2, x5}, and V ′

2 is over-distance with re-

spect to {x4, x3} and {x4, x5}. In this case, if neither {x3, x1, x2, x4} nor {x5, x1, x2, x4} admits an isometric

embedding into R
3, then Corollary 7.13 implies that {x3, x1, x2, x4} is over-distance with respect to {x3, x2}

or {x3, x4}, and {x5, x1, x2, x4} is over-distance with respect to {x5, x2} or {x5, x4}, and therefore the exis-
tence of a map from V to a CAT(0) space with the desired properties is proved in exactly the same way as in

Subcase 3a. If {x3, x1, x2, x4} or {x5, x1, x2, x4} embeds isometrically into R
3, then the existence of a map

from V to a CAT(0) space with the desired properties is proved in exactly the same way as in Case 1 and Case

2.
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Subcase 3d: V ′
1 is over-distance with respect to {x2, x3} and {x2, x5}, and V ′

2 is under-distance with re-

spect to {x4, x3} and {x4, x5}. In this case, the existence of a map from V to a CAT(0) space with the desired

properties is proved in exactly the same way as in Subcase 3c.

By Proposition 7.2, the above four subcases exhaust all possibilities in Case 3. Case 1, Case 2 and Case 3

exhaust all possibilities.

We have proved that a metric space X satisfies the G(0) condition for every graph G containing at most five

vertices whenever X satisfies the⊠-inequalities, which implies Theorem 1.3 by Proposition 1.9.

Proof of Theorem 1.3. It follows from Propositions 6.1, 6.2, 6.3, 6.4, 6.6, 6.7, 6.8 8.5 and 9.6 that a metric space

X satisfies the G(0) condition for every graph G that contains at most five vertices whenever X satisfies the

⊠-inequalities. Therefore, Proposition 1.9 implies that a metric space X containing at most five points admits

an isometric embedding into a CAT(0) space whenever X satisfies the ⊠-inequalities. Conversely, if a metric

space X containing at most five points admits an isometric embedding into a CAT(0) space, then X satisfies

the⊠-inequalities because every CAT(0) space satisfies the⊠-inequalities.
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