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AN INTRINSIC FIBRE METRIC ON THE n-ΎH SYMMETRIC

TENSOR POWER OP THE TANGENT BUNDLE

BY KAZUO AZUKAWA

0. Introduction. Let H(M) be the Hubert space consisting of all square-
integrable holomorphic m-forms on an m-dimensional complex manifold M. The
Bergman form K is defined as a specific holomorphic 2m-form on the product
manifold MxM, where M is the conjugate complex manifold of M. Let z—
(z1, •••, zm) be a coordinate system with defining domain UZJ and kz be the Berg-
man function relative to z, i.e. K(p, p)=kz{p){dzxΛ Λdz^pΛidz1 Λ Λdzm)p,
p^Uz. In general, kz^0. In Kobayashi [4], the following conditions are con-
sidered :

(A.I) For every p^M, there exists a^H(M) such that a(p)Φθ.

(A.2) For every non-zero tangent vector X at p^M, there exists a^H(M)
such that a(p)=0 and X.a(p)Φθ.

Suppose (A.I) holds. Then kz>0 for every z, and the Bergman pseudo-metric

g, with components gab—3α96.log kz, is defined. Furthermore, the following is

known ([4]):

(Ki) g is a metric if and only if (A. 2) holds.

If M satisfies (A.I) and (A.2), and if Rated are the components of the hermitian
curvature tensor of the Bergman metric, then the following are known ([4]):

(K2) Set RaCbd=Rabcd+gabgcd+gadgcb- Then ΣRacbdVavcvbϋd^ for every

{V\ - , Vm)EΞCm.

(K3) RacM=k-\kacba~k-1kackM)--k-2Yig
U{kacl-- k^k ack{){k sM-k^kuk s),

where k = kz, kac=dadc.k, etc., and (gts)=(gab)~1>

In the preceding joint paper [2] with Burbea, conditions (C J are defined so that
(Co) (resp. (CO) coincides with (A.I) (resp. (A.2)). Furthermore, under assump-
tion (Co), non-negative functions μOιn, which are biholomorphic invariants, on
the tangent bundle are introduced.

In the present paper, we first note (Proposition 1.2) that the functions μQi7l

on the tangent bundle are, in general, upper semi-continuous, and show (Theo-
rem 2.1) that when M satisfies condition (Co) there exists a unique fibre pseudo-
metric g(n) on the n-th symmetric tensor power SnT(M) of the tangent bundle
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T(M) for n^N such that

(n\)-*μo>n(X)=g^(Xn, Xn), X^T(M);

in particular, the pseudo-metric ga) coincides with the Bergman one stated before.
In addition, if Msatisfies also (d), •••, (dι-i), then g(n) is differentiate (Theorem
2.5), and assertion (Kx) is generalized as follows (Theorem 2.6): g(n) is a metric
if and only if (CJ holds. Finally, we consider the curvature of the hermitian
connection of the hermitian vector bundle (SnT(M), g(n)) in the sense of
Kobayashi and Nomizu [6]. In view of Fuks [3], the component gTbcd coincides
with Rab^ά/A given in (K2), and (K2) gives a relationship between the curvature
of gω and the metric g(2). We generalize this relationship to the one between
the curvature of gin) and the metric g(n+1) (Theorem 3.1). The proof of Theo-
rem 3.1 is done by observing formula (K8) and by the use of a recurrence
formula (Proposition 3.5) for the components of g{n).

1. Preliminaries. Throughout this paper, we are concerned with a fixed
paracompact connected complex manifold M of dimension m. The term " coordi-
nate z" stands for a local holomorphic coordinate system z—{zx, •••, zm) of M
with defining domain Uz. For simplicity, we set dz

a=d/dza ( α = l , •••, m), and
dz=dz1Λ-~Λdzm. For a multi-index Λ=(aly •••, α n)eMI(n)={l, •••, m)n, set
SzA=dz

ai ••• dzan. In particular, MI(0)={$4}, and dφ means the identity operator
acting on functions on Uz. For a constant vector v=(v1, •••, vm) in Cm, set
dzv=Σ,ΐ=ιVadza. The powers (dz

v)
n (n=0, 1, •••) are naturally defined. We denote

by M the conjugate complex manifold of M, and denote by p: M^p^-^p^M the
conjugation. For a coordinate z with defining domain Uz, we denote by z the
conjugate coordinate of z with defining domain Uz, i.e. z(p)=z(p) for p^Uz.

We denote by H{M) the separable Hubert space consisting of all holomorphic

m-forms a on M which satisfy \\a\\2=(VZIϊm2/2m)\ α Λ ά < + o o , and denote by

(,) the hermitian inner product on H(M) corresponding to the norm || ||. There
exists a unique (2m, 0)-form K, called the Bergman form, on the product manifold
MxM such that K( , p)/dzp<=H(M) and a(p)/dzp=(a, K( , p)/dzp) for every
p^M and a^H(M), where z is a coordinate around p (cf., e.g., [2; Corollary
2.6]). Thus, (ljf, /θ)*iίΓ is an (m, ?n)-form on M. For every coordinate z, we
call the function kz={lM, ρ)*K/dz/\d~z on Uz the Bergman function of Mrelative
to 2τ. That is

K(p, p)=kz(p)dzpΛdzp , ί (ΞUZ .

The Bergman functions are non-negative (cf., e.g., [2; Proposition 2.7]). It
holds (cf., e.g., [2; Proposition 2.5]) that for every multi-index A, the m-form
Kχ(p)=dΈ

A.K(-, p)/dzp belongs to H{M), and that for every a^H(M),

(1.1) 3i.α(/0=(α, Kl(p))dzp.
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In particular, if A and B are multi-indices, then

(1.2) ( Ώ ( ί ) , Ai(ί))=3£9Ϊ.fe,(ί).

Let n e Z + be a non-negative integer. For every p^M, set

where z is a coordinate around £. The subspace Hn(p) does not depend on the
choice of z. Let X<ΞTP(M) be a tangent vector at p. For a coordinate z
around p, represent X as (d$)p for some v^Cm. Then (3|)π is a differential
operator on U-Z=TΓZ, and Kz

vn{p)^{d^n.K(-, p)/dzp belongs to H(M). Set

^ n ( * ) = m a x { | (#{„(/>), tf)|2; a^Hn(p), \\a\\=l}(dzΛdϊ)p.

Then the (m, m)-form μn(X) does not depend on the representation of X—(dz

v)p

in terms of z ([2; Proposition 3.7]).
We recall a lemma on a pre-Hilbert space // over C. We denote by

G(xlt -" xn) the Gramian of a system (#1, •••, xn) in //" (especially G(φ) — l).

LEMMA 1.1 ([2; Lemma 3.9]). Let (xu •••, %w) ( n e Z J ^ α linearly inde-
pendent system in H, and let xn+1^H. Then the maximum of the set
{\(y, ^τz+i)l2; y^ {xi, •••, Xn}2-, II:v 11=1} coincides with G{xu •••, xn+1)/G(xlt •••, xn).

Set MII(n)={(α1, •••, αJeMI(n) a1Sa2^ ••• ^ β j . We denote by ^TO—

( ) the cardinality of the set \J?=oMΠ(/), and fix a numbering Φ of

UΓ«oMΠ(/) such that MΠ(n)={Φ(^n_1+l), •••, Φ(<pn)} For a sequence (jlf •••,
yu, s, 0 of positive integers, set

(1.3)

By (1.2), -Cz(ji, •••, ju)(p) is the transpose of the Gram matrix of the system
(Kz

ΦUl)(p), •••, Kz

φ{ju){p)), and L2(;Ί, •••, ytt)(^) is its Gramian.
Now, let / „ , , be the function on U2xCm defined by

j"n(@ί)p)=/».,(/>, v)(dzΛlz)p, {p, v)<ΞUzxCm.

If {KΦ(Jl)(p), •••, Kzφ(ju)(p)} is a maximal linearly independent subset of
{ Ώ ( ί ) ; ^e\JjWMΠ(y)}, then Lemma 1.1, together with (1.2), implies that

(1.4)
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H e r e CΛ=n \ / n , ! ••• n m ! a n d vA=vaι ••• va* (A=(au - , fl»)eMII(n), v=(v\ •••, vm)
< = C m ) , w h e r e n v is t h e c a r d i n a l i t y of t h e s e t { / e {1, •••, n} a.y=-v\ {v—\, •••, m).

PROPOSITION 1.2. 77z<? function fn>z is upper semi-continuous on UzxCm.

Proof. The proof is reduced to the following lemma.

LEMMA 1.3. Let f be the function on the power Hn+1 of a pre-Hilbert space
H over C given by

• , *n + 1)=max{|(;y, xn+i)\2; y^{Xi, — , Xn)L, 11̂ 11=1}•

Then f is upper semi-continuous on Hn+1.

Proof. Let x°=(x°lf •••, x°n+1)^Hn+1 be fixed, a n d let {xj ( 1 ), — , *J ( t t ) } be a
m a x i m a l l inearly i n d e p e n d e n t subset of {x\f •••, x°n}. T h e n G U f f ( i ) , •••, x <,(«))
is posit ive in a neighborhood of x°. So, by L e m m a 1.1 w e h a v e

l i m s u p / ( x ) r g l i m s u p m a x { | ( ^ , xn+i)\2', y^ {xσω, •••, ^σcw)}1, 11̂ 11 — 1}
x->x° x-*x°

= l i m s u p G ( x σ a ) , •••, x σ ( U ) , Λ : n + i ) / G ( Λ : σ α ) , •••, * a ( t t ) )

=/U°).
as desired.

2. An intrinsic fibre pseudo-metric on the holomorphic vector bundle
SnT(M). For n^Z+ and p<=M, we consider the following condition:

(Cn)p For every non-zero vector (ζΛ)A&Miun) of dimension ί J, there

exists a^Hn(p) such that Σ ^ d ί ί

Condition (Cn) stands for that (Cn)p hold for all p^M. From (1.1), we reduce
the following ([2; Lemma 3.4]):

ί Conditions (Cj)p (;=0, •••, n) hold if and only if the

(2.1) I set {KA(p); A^\J^0Mll(j)} is linearly independent,

[ or -Γ2(l, •••, ψn){p) is positive definite.

Now, suppose M satisfies condition (Co). Then (1.4) implies that μo(X) —
kz(p)(dzΛdz)p for every X<ΞTP(M), and that kz>0 on ί/β. So, [0, +oo)-valued
functions μo>n—μn/μo (neiV) on the holomorphic tangent bundle T(M) are well
defined. Every function μ0>n is upper semi-continuous on T{M) (by Proposition
1.2) and satisfies the following: μo>n(ξX)=\ξ\2nμo,n(X) for Z G T ( M ) and £e=C;
therefore (μo>n)

1/2n is an upper semi-continuous Finsler pseudo-metric on M.
Moreover, μ0>n are biholomorphic invariants, i.e. μo,n(X)=μo,n(f*X), X^T(M)
for every biholomorphic mapping / from M onto another complex manifold ([2;
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Proposition 3.2]).
We denote by SnTp(M) (resp. SnT(M)) the n-th symmetric tensor power of

TP(M) (resp. T(M)). SnT(M) is a holomorphic vector bundle over M, and
{3^; ^4eMII(tt)} forms its local frame on Uz.

We shall show the following assertion.

THEOREM 2.1. // a complex manifold M satisfies condition (Co), then for
every n^N and p^M there exists a unique hermitian pseudo-inner-product
g(n)(-,~) on the space SnTp(M) such that

(2.2) (n\)-*μθ!n(X)=g<n\Xn, IP), Xt=Tp{M),

where Xx — X, XJ=X-XJ~1 (the symmetric tensor product). Furthermore, the
fibre pseudo-metric g(n) on SnT(M) is biholomorphic invariant, i.e. gin)(Y, Y) —
g{n)(f*Y, f*Y) for Y^SnT(M) and for any biholomorphic mapping f from M
onto another complex manifold.

Remark 2.2. The constant (n !)~2 in the formula (2.2) is chosen so that when
M is the unit disk {$ΪΞC \ξ\ <1} in C the inner product £ ( n ) ( , τ) on SnT0(M)
at the origin O e M h a s the simplest form, gw{Xn, T")=n + 1 for X=(d/dξ)oζΞ
T0(M) (cf. [1]).

Proof of Theorem 2.1 (Existence). Let {Kφ{Jl)(p), •••, Kφ(Ju)(p)} be a maxi-
mal linearly independent subset of {Kz

A(p); A^\J?=?Mϊl(j)}. By (1.4) we have

So, the function g{n){ , τ ) defined by sesqui-bilinearity and by the requirement

(2.3) g(n)((dΦω)p, (dΦa))p)

=(τi \)-2L2(ju ..., jJipr'k^pr'L^u •- , Ju s, t)(p)

has the desired property. Thus, the existence is proved.
To complete the proof, we prepare two lemmas.

L E M M A 2.3. Let R=*Σn=oRn be a commutative, associative, graded algebra
over C. For every n^N, there exists a linear form Fn(t0, tlf •••, t3n-i) on C3n

such that
(xn, yn)n=Fn(f(l), f(p), •.., fip*"-1))

for x, y^Ri and for any sesqui-bilinear form (,)non Rn, where p=ze

2π^/-1^n

 anc[
) n , (χ+ξy)n)n,

Proof. Since
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and since

for every

n, n j

0 , n X j

, it follows that

where η=(xn, yn)n, ζ = Σ ? - o ( y ) V " ' : y ' , xn'JyJ)n. So, if F(<)ft>, - , *s»-i)=

ΣF-o^ί+z 0=0, 1, 2), and ω = i o
n = e 2 ί c v r r ϊ / 8 , then the form Fn^(Fm+ωF(1)+ω2Fί2))

βn has the desired property.
Given n, / e JV with j^n, denote by P7} the linear operator from C[tlf •••, ί,]

i n t o C p ! , •••, ί n ] , g i v e n b y PJ(f(ti, ~ ,tj))=Έσ<=Σv.n)f(taω,'~ ,tσ(j)), f(h, ~ ,tj)
^C[tlf ••• , ί j , where 2Ό', n) means the family of all strictly increasing mappings
from {1, •••, /} into {1, •••, n}.

LEMMA 2.4. For every n^N it holds that

n ! U -• tn=Σ?-i(-DJPϊ-Mt1+ ••• +tn-j)n).

Proof. Let f(tlf •••, tn) be the right hand side of the desired formula, and

set
J j\h> '" > tn)z=^jLjσGΣ(n-j,n)\tσa)~T~ '" ~T~tσ(n-j))

for 7=0, 1, •••, ?2-l; thus /=Σ?=o 1 (-l) 7Λ For every /,

fj(O, t2, - , t n ) = g j ( t 2 , •••, t n ) + h j ( U , •••, t n ) ,
where

'" , tn) — jLjσGΣ(n-j,n),σ(i)=i{tσ(2)i '" ~Ί~tσ(n-j))n

" , tn)
:=2-Jσ^Σ(n--j, TO), <r (1)^2(^0- (1) "f" **' " H ^ σ C π - j ) ) 7 1 '

It is easily seen that ^TO-I=0, Λ O = 0 , and gj—hj+ί (/=0, 1, •••, n—2). From these
we get /(0, ί2, •••, ί n ) = 0 ; therefore, the symmetry of / implies f(tlf •••, tj-u 0,
ί; +1, •••, ί n )=0 for any /. It follows from the remainder theorem that f(tu •••, tn)
=ct1- tn for some constant c. Among expansions of f3 into monomials the
term tλ ••• tn appears only in /0=(ίiH \-tn)

n, for which the coefficient of tλ ••• tn

is 72!. So, the above constant must be n!, as desired.

Proof of Theorem 2.1 (Uniqueness). Lemmas 2.3 and 2.4 imply that every

g{n\ΦzA)p, (3β)p) (Λ βeMI(n)) can be written as a linear combination of terms
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g{n)(Xn, Xn) (XΪΞTP(M)). From this we obtain the uniqueness of £ U ) . The

invariant property of g{n) follows from the uniqueness and the invariant prop-

erty of μQtU stated before. The proof is now complete.

T H E O R E M 2.5. Suppose Msatisfies conditions (Co), •••, ( C ^ ) with nΞ>l. Then

g(n) is a differential pseudo-metric, and its components gi^AS—g{n) {dz

A, dz

B) ( A 5 G

MI(n)) relative to a coordinate z satisfy

gί?ΦωΦΰJ=Lz(l - , ψn-i s, t)/{(n\)2kzLz(l, •••, φ^)}

on Uz for s, t^{φn-1+l9 •••, φn). In particular, gϊιXι—dz

ad
z

bΛog kz, i.e. gω is

the usual Bergman pseudo-metric on M ( [4; pp. 271-272]).

Proof. By (2.1) the hypothesis implies that the system {Kz

Φω(p),•••,

Kφ{ψn_l){p)} itself is linearly independent for every p^Uz. So, all the assertions

follow from (2.3).

T H E O R E M 2.6. Suppose Msatisfies conditions (Co), •••, (Cn-2) with n^l. Then

the pseudo-inner-product g{n){-, τ ) on SnTp(M) is an inner product if and only if

condition {Cn)p holds. In particular, the fibre pseudo-metric gin) is a metric if

and only if condition (Cn) holds.

Proof. Let z be a coordinate around p. It follows from Theorem 2.5 that

gin)(', τ ) is an inner product if and only if the following holds:

( 2 4 ) ί The matrix [L,(l , •••, <pn-x s, ί)3S-ί?S=ϊίϊ:">?S(/>) is

I positive definite.

If J G Z with j>φn-u applying Sylvester's theorem to the (/, y)-matrix «Γβ(l, •••,

ψn-u '" > j) and its minnor determinants L2{1, •••, ψn-i) s, t) (<pn-i<s, t^j), we

have
det[L,( l , -,φn-i;s, t)Yr4ι-Λχ\,pι

Thereby, employing (2.1), one can see that the following four statements are

mutually equivalent:

( i ) Condition (Cn)p holds.

(ii) L2(l, •••, j)(p)>0 for any JZΞZ with ψn-i<jSψw

(iii) det[L2(l, ••• ,φn-i\ s,0]?=^:1

1ίϊ:":;Kί)>0 f o r a nY J - z with ψn^Kj^φn.

(iv) Condition (2.4) holds.

This completes the proof of Theorem 2.6.

3. Connection of the hermitian vector bundle (SnT(M), g(n)). If M satis-

fies conditions (Co), •••, ( C J for some n^N, then, as we have seen in Theorems

2.5 and 2.6, g(n) is a usual hermitian fibre metric on the holomorphic vector
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bundle SnT(M). We shall investigate the curvature of the hermitian connection
of the hermitian vector bundle (SnT(M), g(n)) in the sense of Kobayashi and
Nomizu [6; pp. 178-185] (also cf. [5; pp. 37-39]). Let z be a coordinate in
UzdM. We denote by (gln)BA)A,B&Mmn) the inverse matrix of (gΆs) A. B&AII™
in the sense that

(3.1) ΣBeMii(n)gίri^«(n)iϊ(7=3S, A CeMII(n).

Let R{n) be the curvature of the hermitian connection of (SnT(M), g(n)), and let

RΆB\cs=g™(R™(β*, ¥d)ΨB9 dz

A) for A, B ε M I ( n ) and c, ί ε {1, •••, m} =MI(1). It

is known ([5, 6, 7]) that

(3.2) # ^ ^ = 3 ^ . ^ ^

We shall show the following.

T H E O R E M 3.1. Suppose M satisfies conditions (Co), •••, (Cn) u fί/z neTV.

^•z,AB\cd~\n-rl) gZtAcB~d~~gz>cdgz,AB

on Uz for A, ^GMI(n) and c, deMI(l), u/Λeπ? £<0>** = l.

Taking n — \ in the above theorem we obtain the following result of Fuks
[3; p. 525].

COROLLARY 3.2. Suppose M satisfies conditions (Co) and (d). Let HSC(X)
be the holomorphic sectional curvature of the Bergman metric ga) on M in the
direction I G T P ( M ) - ( 0 } , i.e.

where z is a coordinate around p and X=(dl)p. Then it holds that

μo>2 = {2-HSC){μo>iγ on T{M)-{the zero section).

Remark 3.3. Theorem 3.1, combined with (3.2), says that when M satisfies
conditions (Co), •••, (Cn) with n^N every component of the fibre (pseudo-) metrics
g(2), ••*, g{n+1) is written as a rational function of the derivatives of the compo-
nents of the Bergman metric g{1).

The remainder of this section is devoted to prove Theorem 3.1. From now
on, we suppose that M satisfies conditions (Co), •••, (Cn) for some fixed neiV.
We also fix a coordinate z in UcM, and suppress the dependence on z, i.e.

dA=dA, k=k2, LUu -', ju)=Lzϋi, •••> Ju)> gΆnB=gΆB, e t c .
For every pair of multi-indices A and B, we shall inductively define func-

tions L(β on U 0 = 0 , 1, •••, 72 + 1) as follows:
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where (LU)5c) is the inverse matrix of (L{Jl)AtB<EMn{j) in the same sense as in

(3.1). Non-singularity of the latter matrix is guaranteed by Lemma 3.4 below.

Notice that

(3.3) LAB1)=0 when A or B belongs to MI(;).

For a sequence (ju •••, j u , s, t) of positive integers, set

u - , y«)=det

where Φ is the numbering of UΓ=oMΠ(y) given in § 1. By (1.3) we have

(3.4)

j l f •••, j u s , t ) = L ( j l f •••, j u \ s , t ) .

LEMMA 3.4. // / e {1, •••, n + 1} s, ί e {c^-i+1, •••, ψι) and ψ-ι—0, the nthe
following hold:

( i ) X^iψj-x+l, "-, ψj) is positive-definite for every j ^ {0, ••• , 1—1}.
(ii) 1(1, 2, .- , ^ - ! ) = Π } = J i ( J ) ( ^ - i + l , - , Ψs\
(iii) L(l, 2, •••, φl-1 5, t) = L(l, 2, •••, ψi

Proof. We first recall the following well-known fact: If A B, C, and Z>
are complex matrices of type (ι, ϊ), (ιf j), (j, i), and ( , ), respectively, and if
A is non-singular, then it holds that

(3.5) det^ ^]=det A άetiD-CA-'B).

By induction on J E (0, 1, •••, /—I}, we can show the triple assertions

(3.6), I ( i ) f e - i + l , •••, r ) > 0 for every r e { p ^ + l, •••, ψι-x},

(3.7), L(l, 2, - . , ^ . ^ L ^ ^ - i + 1 , •- , soί-i)

Xffi=ίL w (^-i-}-l, •••, ψv), and

(3.8), L(l, 2, .- , ψι-λ s, ί) = i ( Λ ( ^ - i + l , - , p t - i s, ί)

In fact, assertions (3.6)0, (3.7)0, and (3.8)0 follow from (3.4). Next, assume (3.6),,
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(3.7),, and (3.8), hold for some / e {0, •••, 1—2}. Assumption (3.6), implies that
L^iψj-ί+l, •••, ψj)>0; therefore L ^ 1 } can be defined. So, by (3.5) we have

L^iφj-i + h »',r) = L<Hφj-i+l, -,φj)L^(φj+l, - , r ) .

Thus, (3.6) i+i and (3.7) i + 1 hold. Furthermore, if we apply (3.5) to the first

matrix in the right hand side of (3.8),, we obtain (3.8), +i. The assertion ( i ) of

Lemma 3.4 follows from (3.6), for ; = 0 , 1, •••, / — I , while the assertion (ii) coin-

cides with (3.7)z-i. Since La~1)(φ[-2+l, •••, <^-i)>0, the assertion (iii) follows

from (3.8)1-! and (3.5).

PROPOSITION 3.5. For ; e { l , 2, •••, n + 1}, and A, S e M I ( / ) , it holds that

Proof. Lemma 3.4 (iii) and Theorem 2.5 imply the assertion.

L E M M A 3.6. // / e {1, •••, n}, A, B are multi-indices, and ^eMI( l ) , then the

following identities hold:

(i) d^^^

(ii) Bc. L%= L& -ΣP. eeMiio-υ L «-

Proof. Identity ( i ) is easily shown by the definition and by induction on j .
By taking the complex conjugation of ( i), we get (ii).

Proof of Theorem 3.1. Let A, ΰ e M I ( n ) and c, d e M I ( l ) . By applying Prop-

osition 3.5 to the right hand side of (3.2), we get

Lemma 3.6, together with (3.3), implies that the term in the braces coincides
with

J (n+i) v* r (n-i)QP T (re) Tin)
^Ac'Bd ZJP.QGMIUΠ-I)-^ l^AQΊL,Fcβ.

So, the desired formula follows again from Proposition 3.5.
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