
Master Thesis
Software Engineering
Thesis no: MSE-2010-21
May 2010

An Introduction and Evaluation of a Lossless

Fuzzy Binary AND/OR Compressor

 Philip Baback Alipour and Muhammad Ali

School of Computing
Blekinge Institute of
Technology Box 520
SE – 372 25 Ronneby
Sweden

This thesis is submitted to the School of Engineering at Blekinge Institute of Technology in partial
fulfillment of the requirements for the degrees of Master of Science in Computer Science and Software
Engineering. The thesis is equivalent to 20 weeks of full time studies.

Contact Information:

Author(s): Philip B. Alipour
Email: philipbaback_orbsix@msn.com

Muhammad Ali
Email: moh.ali@live.se

University advisor(s): Dr. Niklas Lavesson
School of Computing, BTH

School of Computing Internet : www.bth.se/com
Blekinge Institute of Technology Phone : +46 457 38 50 00
Box 520 Fax : +46 457 271 25
SE – 372 25 Ronneby
Sweden

mailto:philipbaback_orbsix@msn.com
mailto:moh.ali@live.se
http://www.bth.se/tek

ABSTRACT

Context. The currently known compression coding algorithms on x86 machines do not include techniques for
generating fixed values of compression ratios as reliable as possible for maximum lossless data compressions (LDCs).
However, a „4-dimensional self-embedded bit flag model‟ is evaluated to serve multidimensional LDCs with fixed
value generations, contrasting the popular methods used in probabilistic LDCs, such as Shannon entropy. In context,
we use this model to implement a new way of predictably-fixed compression values compared to other algorithms.

Objectives. We investigate a new type of logic in design and concept, governing issues directed to one LDC
algorithm. The main objectives were: the applicability of FBAR logic on data structures for a new LDC; design and
requirements of the algorithm parallel to limitations versus strong points of the implementation; tackling the
limitations mostly observed on x86 compilers compared to the simulated version of quantum compilers; the
evaluation of the algorithm based on output data, once logic is applied; investigating whether the algorithm is lossless
or not. Finally, comparing its performance with other LDCs used today. We introduce this logic in its respective
model via implementation and simulation for general use on x86 machines, and its future use on quantum computers.

Methods. We implement the FBAR algorithm in form of a prototype using certain software development
environments and program code samples in C language. The prototype presents the encoding/decoding techniques for
low-level compressions. From there, a high-level compression is conducted. It compressed data as expected by
loading a document sample using a memory grid file which is a portable file containing single bit flags in 65,536 rows
or addresses. The translation of addresses for original characters is given in a translation table with a static size
8MB, for any amount of input data. By the program‟s interpreter, once flags are compared with the compression
result, we begin decompression. The decompression uses these flags to manipulate the compressed data to reconstruct
new data identical to the contents once loaded to the program i.e. the original document.

Results. We covered spatial results as minimally as 37.5% data compression, and a maximum of roughly 87.5% on
x86 machines. The algorithm‟s compression and decompression simulation grade, performed bitrates averaging 475
kBps, to encode and decode data, respectively. Based on our analysis, we ranked the topmost algorithms used today,
to have the lowest ranks in memory usage compared to FBAR, such as WinRK, on their dictionary coders. We also
deduced by result that, FBAR performance at any level is uniformly fixed due to its logic and design implementation.
We further used a nonparametric statistical test to compare our algorithm with other LDCs with mean rank sums,
showing a significant difference between results. Results were realistically 50% for the fuzzy binary (FBAR) version,
proving double-efficiency of 16 bit transmission via 8 quantum bits, and roughly 87.5% for the strongly fuzzy
quantum (FQAR) type on x86 machines, which gives double-efficient hypothetical values 87.5% compression.

Conclusions. We observed that the current version of FBAR compresses data with fixed compression ratios, where
other compressors do not. Almost every lossless compressor uses probabilistic Shannon entropy as its „logic base‟ in
conducting LDCs. FBAR achieves higher space savings, above 50% as estimated, simulated and discussed in theory
from its quantum state protocol. The LDD simulation, allowed us to study FBAR products from our experiment,
yielding a double-efficient data compression > 87.5% or a negentropy < 0 bits/byte. We thus conclude that, our
algorithm contains predictable values for every double-character input. The predictable fixed value, allows a user to
know how much physical space is available within a reasonable time, before and after compression. This confidence
in predictability makes FBAR a reliable version compared to the probabilistic LDCs available on the market.

Keywords: Fuzzy Binary AND/OR, data compression/
decompression, pairwise bits, double efficiency.

CONTENTS

Paper

Abstract ... 8
1. Introduction... 8
2. Background ... 9

2.1. Notations and terminology .. 9
2.2. Logic and Data Type ... 9
2.3. Lossless data compression algorithms ... 10

3. FBAR structure and test .. 11
3.1. FBAR logic, process and model .. 11
3.1.1 Layers of lossless data compression .. 12
3.1.2 Layers of lossless data decompression .. 14
3.1.3 Layers of encryption and decryption ... 15
3.2. Contribution .. 16

4. Related work ... 17
5. Experimental setup and application .. 17

5.1. Test data generation for input data .. 17
5.2. Test data generation for input data .. 18
5.3. The FBAR prototype ... 18

6. The LDC comparisons experiment .. 19
6.1. Nonparametric comparisons test ... 19

7. Results .. 19
8. Discussion ... 21
9. Conclusion .. 22
References .. 22

Appendix A

A.1 Algorithm structure .. 25

A.1.1 the FBAR architecture and technical expressions .. 26
A.1.1.1 Aims and objectives... 26
A.1.1.2 Research Methodology .. 27
A.1.1.3 Methods and components .. 28
A.1.2 Lossless Data Processing .. 33
A.1.2.1 Function calls and arguments .. 35
A.1.2 The grid model, static versus dynamic allocations ... 38
A.1.2.1 A robust static solution to LDDs ... 38
A.1.2.2 A dynamic allocation to LDDs .. 39
A.1.2.3 Maximum FBAR LDC ratios and their respective LDDs.. 41
A.1.3 Dynamic and static results returned by the algorithm .. 44

A.2 Data Compression .. 50
A.2.1 Characteristics of a Lossless Data Compressor .. 50
A.2.2 Defining problem-specific losslessness of a data compression .. 51
A.2.3 FBAR Compressor compared to Standard Data Compressors ... 51

A.3 Data Decompression .. 53
A.4 Test Cases .. 56

Appendix B

B.1 LDC Comparisons Experiment .. 59
B.2 Test samples ... 59

B.2.1 Strings and binary ... 59
B.2.2 Documents .. 60

B.3 Results and Discussion ... 60
B.3.1 Test cases and algorithmic characteristics .. 60

B.3.2 Nonparametric comparison test cases ... 62
B.3.2.1 FBAR and other lossless data compressors ... 65
B.3.2.2 Evaluation of packages or LDC algorithms ... 65
B.3.3 Evaluation of packages or LDC algorithms .. 65

B.3.3.2.1 Usability: .. 66
B.3.3.2.2 Functionality: .. 66
B.3.3.2.3 Reliability: .. 66
B.3.3.2.4 Robustness: ... 67
B.3.3.2.5 Efficiency: .. 68
B.3.3.2.6 Completeness relative to efficiency: ... 69
B.3.3.2.7 Portability: .. 69
B.3.3.2.8 Validity threats: .. 69
B.3.3.2.9 Risks in summary: .. 70

Appendix C

C.1 Discussion .. 72
C.2 The future of FBAR‟s ultimate compressions .. 73

C.2.1. New memory architecture for future FBAR LDCs with sub-bit handling ... 74
C.2.2. The extended grid model for ultimate LDCs ... 75

C.3 Conclusion ... 76
References .. 76

ACKNOWLEGMENTS

We would like to thank our supervisor Dr. Niklas
Lavesson for his support, guidance and insightful ideas
throughout this work. This thesis would not have been
possible without his valuable time and input. We are
thankful for the constructive meetings and discussions
that we had, which were a great inspiration and helped us
to focus on the subject and most important issues.

HMT FORMAT

The thesis is structured according to the „Hybrid
Master Thesis‟ (HMT) format, which was proposed in
the summer 2007 by members of BTH. The idea of the
HMT format, is to have a hybrid form between an
IEEE/ACM paper and a traditional master thesis. In the
current version, we combined two disciplines of
Computer Science and Software Engineering relevant to
the characteristics of the current topic which mostly rely
on Computer Science experimentations, thus entailing
aspects of Software Engineering, such as risk analyses
and software marketing issues for the topic‟s technique
when demonstrated under a set of directive criteria. The
directive criteria anchors into the implementation of
hypotheses and thereby their conduction relative to the
performance of technology, introduced earlier, in form
of a thesis proposal. One of the reasons behind the HMT
format is to increase the number of theses that can be
published as papers. A further reason is to help students
focus their writing and express themselves clearly.

According to the HMT format, the document should
be divided into two major parts. The former part (Part A)
follows the IEEE/ACM format and focuses on the most
relevant areas of the thesis project. It should comprise a
maximum of 15 pages. The latter part (Part B) consists
of a number of Appendices that cover in detail different
aspects, such as methodology, validation and
experiment. Part B should typically have a length of
15-40 pages, whereas it can grow upwards if necessary.

An Introduction and Evaluation of a Lossless

Fuzzy Binary AND/OR Compressor

Philip Baback Alipour and Muhammad Ali
School of Computing,

Blekinge Institute of Technology
SE-372 25 Ronneby, Sweden

Emails: philipbaback_orbsix@msn.com and moh.ali@live.se

Abstract

We report a new lossless data compression
algorithm (LDC) for implementing predictably-fixed
compression values. The fuzzy binary and-or algorithm
(FBAR), primarily aims to introduce a new model for
regular and superdense coding in classical and
quantum information theory. Classical coding on x86
machines would not suffice techniques for maximum
LDCs generating fixed values of Cr 2:1. However, the
current model is evaluated to serve multidimensional
LDCs with fixed value generations, contrasting the
popular methods used in probabilistic LDCs, such as
Shannon entropy. The currently introduced entropy is of
‘fuzzy binary’ in a 4D hypercube bit flag model, with a
product value of at least 50% compression. We have
implemented the compression and simulated the
decompression phase for lossless versions of FBAR
logic. We further compared our algorithm with the
results obtained by other compressors. Our statistical
test shows that, the presented algorithm mutably and
significantly competes with other LDC algorithms on
both, temporal and spatial factors of compression. The
current algorithm is a steppingstone to quantum
information models solving complex negative entropies,
giving double-efficient LDCs > 87.5% space savings.

1. Introduction

In the world and market of data compressors,
developing a lossless data compression (LDC)
algorithm satisfying compression values much greater
than 50% compression, even greater than 98%, would
itself be a novel approach. Why this is important, is
answered in how we perceive data compressors today.
Imagine the amount of space savings and bitrate
savings performed by some new algorithm in a
consistent manner, i.e., predictable data compression
values regardless of content size and input. The LDC
techniques used today are for compressing commonly
available documents, and are reported as probabilistic-
dependence compression techniques only. There are a
number of LDC algorithms to choose from, and they

vary in methodology, code size and complexity. Which
one is chosen, depends primarily on the specific
structure of the data, as well as the objectives of the
particular application. Most applications are compatible
with popular compression standards, such as PKZip,
GZip, WinZip, 7Zip, or UNIX‟s compress programs.
Whichever compression standard is chosen, chances
are it will require a large amount of RAM. For
example, the WinRK with different compression
profiles, if set for a slow and maximum LDC, uses 800

MB of RAM to encode a 10 MB data. (See also [29].)
Furthermore, the complexity and size of software

systems have increased in recent years especially when
it comes to LDCs. There are diverse techniques that
perform LDC based on the mere-chance probability as
random process. In principle, these techniques benefit
from e.g., Shannon entropy [12, 13, 15], to compute
similarities between data objects and their recursive
pattern recognitions. More specifically, the compression
is based on repeated patterns of input data to bit
sequences (frequently encountered), [13, 24], restricted
to random variables. Therefore, the algorithm loading
different types of information with the same size, its
compressed output, based on these random variables,
would vary in output size and content (an uncertainty).

In order not to fail on the market, it is important to
also achieve a high quality with intact data integrity
when studying the output data. Such a quality
expectation could be realized from probabilistic
techniques that calculate distances between strings of x
and y, for similarity comparisons, such as algorithmic
complexity (Kolmogorov). For instance, GZip by
default uses Lempel-Ziv coding (LZ77). Such
compressors are used to foremost increase space
savings, and in general, via e.g., algorithmic complexity,
increase quality and quantity, data integrity, clustering,
inheritance and grouping for their redundancy checks.
In view of such factors, we evaluate a data compressor
by its compression rate, and thereby decompression
(LDD) based on char identification and address checks.
The question is, whether a technique exists in using a
new combinatorial logic that performs LDC with the
least probabilistic factors. In other words, we search for

mailto:philipbaback_orbsix@msn.com
mailto:moh.ali@live.se

a technique which contrasts symbol frequency and its
firm dependency on Shannon entropy for repeated
patterns of characters.

In the new technique, however, AND/OR logic is
used to operate on bit pairs promoted from one data
compression level to another. The logic is explicit and
empowered by mathematical rules of mapping and
abstraction levels of logic bits, prior to their data type.
The data type is given in terms of strings and chars with
integer limits. The logical choice of strings is in being a
very common input data for texts, and is frequently used
in e.g., WinZip, GZip, WinRK and LZW with embedded
compression switches, to perform arbitrary LDCs.

We report a set of data compression test cases used
for maximum data compression ratios, and evaluated
the losslessness of data when decompressed. In the
presented study, we mainly focus on three aspects:

 How can FBAR logic be applied onto a data
structure for a data compression?

 How does the output data from the algorithm
evaluated for its losslessness and integrity?

 How different would be the performance of the
algorithm, compared to other compressors?

This paper is structured as follows: Sect. 2 gives
background information on FBAR and other
compression algorithms. It also gives details on their
implementation differences. Sect. 3 focuses on FBAR
test and structure. Sect. 4 presents related work. Sect. 5
introduces the FBAR test data generation and its
components. Sect. 6 describes the experiment, while
Sect. 7 contains the results. Sects. 8-9, end the paper
with discussion and conclusion, respectively.

2. Background

The motive of finding FBAR came about in its logic
which gave the author a sense of unifying different
types of logic, proving their interrelatedness of logic
states in information theory. The relatedness for each
character entry on binary construct is presented by the
principles of the completeness theory [1] and logical
consequence [3] from different models, e.g., fuzzy logic
[3, 4, 7, 8, 9], quantum cryptography [2], binary, and
quantum binary logic [17, 18]. By making this
uniformity, FBAR logic is emerged. This logic is
possible when packets of Boolean values per character
are normalized (bit insertion and update), and abstracted
into relative states of fuzzy and quantum logic.

The FBAR algorithm, primarily aims to introduce a
model for regular and superdense coding. In coding
theory and cryptography [2], superdense coding is used
to attempt a 2-bit transmission via 1 quantum bit (qubit).
Formally, it is barely achievable to transmit double-
efficient binary via quantum states between two points.
However, this issue is resolved in FBAR, since it gives
absolute predictable states in its model structure for 2n
bits via n fuzzy qubits. The logical interrelatedness and
its consequence, as such, are given later by Eq. (1).

2.1. Notations and terminology

Notation Short definition Example

Cr Data compression ratio. 2:1 compression

C Compressed data; compression. 1 , nC C n

C Decompressed data; decompression. out refC C

H Entropy rate in e.g., Shannon systems.
 bH H

m String size e.g., English alphabet size. m = 26 + 1space
chi A character, where i . {ch1ch2ch3…}

x Array dimension for the residing bits
in memory.

if xi = 0 then
x = [000…0]

y Array dimension for projected bits
from upper memory to lower layers.

if yi = ⌐ xi , xi = 0

then y = [111…1] Bits from horizontal plane projected
vertically onto a compressed binary.

if yi = 1 and xi = 0
then y = [0101...]

 Variable lengths function on e.g.,
string, char, time or binary.

x

C x
t

 Infinity; undefined, subject to removal
via e.g., new characters.

2ch – = 2ch Fuzzy state leaned to low level logic. 1 0 = {0 , 0}≡0 Fuzzy state leaned to high level logic. 0 1 = {1 , 1}≡1 Right bit-to-left bit selector. Left bit-to-right bit selector.
 Binary vale or sequence, where = = b

 =, if = 0, =1, = 0001 Logical AND otherwise, bitwise AND 0 1=0, 1 1 = 1 Logical OR otherwise, bitwise OR 0 1=1, 0 0 = 0 Bidirectional between states or logic x y ≡ x y x
≡ Equivalence; identical to … 2 chars ≡ 16 bits Logical deduction; therefore … {ch1ch2}= {$%} ch1 = $, ch2 =%

2.2. Logic and Data Type

This study is focused on the presentation and
evaluation of an FBAR LDC technique. Especially, the
focus is on the FBAR data compression, and thereby, its
successful lossless decompression. By implementing
certain functions in a programming language, like C, with
more efficiency, the FBAR logic and its LDC product is
achievable. The motive to perform LDC with the least
probabilistic frequency occurrence of characters, such
as, from the English alphabet, is to conceive the logic
behind each character-entry denoting a spatial size limit
occupation. In modern machines, each standard ASCII
character entry, excluding the extended type or, an entry
 27-bit code = 128 decimal, occupies 8 bits or more of
space, in which each bit is either, a low-state or
high-state logic. A set of logic states, in combination,
according to ASCII 7-bit code pattern match, build up a
character information or its corresponding symbol.

To perform the least probability of logic operations,
there must be a definite relatedness between binary
logic and its in-between states of low and high, relative
to their corresponding characters for each 8-bit block. In
FBAR logic, this could be recognized at the lowest
levels of binary logic between AND and OR operations.

As we relate characters in their binary construct,
fuzzy logic comes to our attention to include more states
for further LDCs on the same char entry without losing
the initial 0 and 1 binary. As we progress, fuzzy logic is
too connected and related to quantum logic, no matter

how many states of compressed data, still, 8 bits of 0‟s
and 1‟s could be transmitted via minimally 4 fuzzy bits,
and thereby, 2 quantum bits, interrelatedly; or

 binary states fuzzy states quantum states

 {0,1} {1 0, 0 1} {00, 01,10,11} (1)

2.3. Lossless data compression algorithms

Lossy and lossless data compression algorithms
both have one purpose i.e. to compress data. However,
there is a great difference in their specialty which entails
both quality and quantity on a given I/O data. Lossy
compressors do not concern the conservation of data in
quantity, and it is just how to present data to the point of
delivery without losing significant details i.e.
decompression with acceptable quality or readably
recognizable data. For example, in video technology, it
suffices for a user to receive images with even low
quality as far as details are not lost in the picture.

Lossless algorithms, however, maintain all details
between the two points of data source and sink. It is
extremely crucial for textual data I/O, e.g., a dictionary,
to maintain no data loss on a single character throughout
the compression process, whatever LDC method is used.

Fig. 1. Flowchart of a lossless type algorithm

Fig. 1 shows the flowchart of a simple lossless data
compression algorithm [35]. As shown in this flowchart,
the LDC algorithm is designed to input data, accumulate
it, generate a dictionary that assigns tokens, and outputs
them into a compressed format. An example of this is
Lempel “Ziv” (LZW), a lossless data compression
technique as an improvement to the popular LZ77
compression algorithm [4, 5]. We study current LDCs
in their structure with the newcomer FBAR LDC
algorithm, and thus highlight their explicit differences
in logic, method, design and performance with FBAR.

Fig. 2, however, is a circular process representing
FBAR. Both LDC algorithms must possess similar
properties like LZ compressors that avoid string

character misplacements, distance redundancy or token
confusions on erroneous data reconstruction during the
decompression phase. Similarly, anticipating character
misplacements or symbol confusions in a document
during decompression have been considered in the
FBAR algorithm from a variant size to fixed size limits
of memory space. Whichever compression standard is
chosen, chances are, it will require RAM space. The
more space dedicated to the compression program, the
higher the compression ratio [29]. This yields in larger
reference tables built by the LDC program.

The current challenge is to find some software that
can achieve acceptable efficiencies within a small
memory footprint. This article describes a lossless
compression algorithm based on FBAR with a premise
of a 2n-dimensional dictionary of „bit fields‟, strictly
avoiding the concept of „bit array‟ usage in its
implementation. The reason is that in the latter, we
would just encode rather than compress data, since bit
arrays consume at least 1 full byte of memory for a
single Boolean variable, i.e., a1-bit flag.

With appropriate bit-flag referencing upon
compressed characters, FBAR achieves respectable
fixed size compression ratios, typically on the order of
34-to-50%, while consuming about 64K of RAM. By
extending the size of its flag reference table (Table 1),
n two-dimensionally, the dictionary constructed out of
it permits the order of 87.5% LDCs, and with future
quantum inclusions, 98% LDCs are achievable i.e. an
order of 2n:1 ratios, where n is the number of bits. These
LDC ratios are Eqs. (1) and (5) dependent, which solely
means fuzzy quantum binary computation, rather than
char frequency pattern match and occurrence.

On the other hand, LZW is capable of achieving
respectable compression ratios, typically, on the order
of 50 to 60%, while consuming about 2K of RAM. In
larger RAM memory sizes, 8K or 16K, it is possible to
achieve 80% efficiency or more [29].

As we shall later illustrate, an FBAR dictionary
consists of a translation table and a reference table,
both building a static size of flag information, later used
by the program‟s interpreter for char comparisons. Fig.
2, shows a circular process of an FBAR LDC with
dictionary, a combination of the algorithmic design and
program‟s process model. The process comprises of
program design and memory transactions with the usage
of relevant functions and methods coded in C.

To conduct a successful data decompression, we
renounce bit values based on a predictive pattern of bits
in memory. This occurs subsequent to the double-
dashed circle component in Fig. 2.

We constructed a „char and binary‟ LDC reference
table to satisfy these conditions during the compression
phase of the algorithm. The conditional output per input
char, subsists on relevant bit-flags and extended bits that
are allocated in the memory. The allocation, read/write
and reference process is shown in Fig. 3, denoting three
major procedures to reconstruct data during an LDD.
This makes compression values predictable regardless
of content size and input, since a reference table is
already constructed with unique bit values for every
compression layer, starting with the 4th layer, upwards.
The reference table is based on binary decisions, and is

More bytes

to input?

Input 1st Byte in String

Input next Byte in Char

Output token for String

Add string entry for

String + Char

HALT

 Is String + Char

in Dictionary?

String = String + Char

START

Y

N

Output token, or

contents, for String

String = Char
Y

N

the core component of the FBAR algorithm aiming to
reconstruct data at the decompression phase.

Fig. 2. The circular process of an FBAR LDC

We further introduce the algorithm structure and test it
for each single bit entry as follows:

3. FBAR structure and test

FBAR structure is a direct measure of test quantity,
preparing the grounds to indirectly measure test quality.
Its structure is used to identify areas of code that cover
test case scenarios related to FBAR logic and the
implementation for a unique LDC. These algorithmic
properties are examined in the following sections:

3.1. FBAR logic, process and model

 To fully implement an algorithm, one must
understand how it works in terms of its testable structure
and model representation. Therefore, the current set of
test cases should be minimized, and thus tested in the
small. Once implementation is resolved on this scale,
test cases are maximized or extended to the large, in
number, and in scale of I/O data integration. This would
to some extent guarantee the correctness of the code on
FBAR logic requirements.

For example, constructing an abstracted release of a
reference table based on standard keyboard characters‟
input, including SPACE, would not exceed 96 entries:
95 printable ASCII characters (decimal # 32 to 127),
and 1 control character. The use of the latter is to create
a block or jump between every 96 bit chunk of memory
dedicated to our table char entries. Each char entry
consists of 8 bits or a byte, ready for a data compression.
The data compression is performed and mapped per bit,
allocated in memory for each identified char.

In Fig. 4, the encoded character corresponds to a
unique compressed value as an enclosed form (bit
closure) of AND and OR pairs, e.g., the columns having
impure bits 01 and 10. A bit closure for 10, is 0, and for
01, is 1 in binary, which inclusively infer to fuzzy
transitive closure pairing of bits [30] or shortest path for
our binary set. The allocation of the raised single bits for

the minimum LDC phase of FBAR is also shown in the
same figure. The AND and ORed columns, each stand
as a nibble, in total, giving 8 bits per character, which
means, the character has been encoded on this level.

The process design and the development of the
algorithm, however, are illustrated in Fig. 3.

Fig. 3. Basic process design of FBAR binary I/Os

Fig. 4. Basic structure of FBAR binary projections

The encoding is unique and builds up our Fundamental
Sequence (FS) encoding, to some extent contrasts to the
„entropy coder‟ and DCL model reported by CCSDS‟s
green book [28]. Pairwise selection of bits according to
bitwise projections of bits, after converting each
character in the input sequence are picked and converted
in parallel, one in ANDed, and the other in the ORed
column. After this encoding process, high state and low
state fuzzy binary conversions occur for compression.
By now, every AND/ORed „lesser significant bit‟ (LSB)
pair is projected to the next levels of compression. The
remaining bits are thus ignored. Each level of
progressive projection from a lower layer to its upper,
has its own 1-bit flag augment in aim of identifying
impure 01, 10, and pure states of 11 and 00 for each
converted data byte. In return, for a lossless
decompression, the AND and OR columns could be
paired according to Fig. 3 by tracing its sequential
bitmap pattern to reconstruct data. This is done via a

C

product

Register LSBs of
AND/ORed pairs

AND/OR each bit pair and
register new binary result

Input chars and register them as binary

Original

Document

Source code

Decompressed

File

Compressed

File

 Chars
In

Compressed Chars
Out

Grid File

Compile + Execute

LDD

Raise Flags for
Compressed Chars
Out

Chars
Out

Compression and

Decompression

Subroutines

Access;
Compare

Size
is static

Read

FBAR

Dictionary

Scan char
index

Compile + Execute

LDC

 Start Halt

Compressed product
 1-bit flags

Encoded
 product

Compressing

L.1

L.2

L.3

L.4

Cr: 34% ~87.5%

Cr: 0%

Original
Data

AND/OR
Application

Fuzzy
Decision on

Encoded
Data

Compressed
Data

Raise Flags in
Memory/Grid

Reference
Flags in

Dictionary

Construct
Bitwise

Conditions

Decoded
Data

LDD

(Original

Data)

grid file as our portable memory grid on single bit flags
to decompress data into its initial form.

3.1.1. Layers of lossless data compression

Highest layers of compression: Let grid file G, be a
four-dimensional cube (hypercube) of pure and impure
bit pairs with negation combinations, denoting a „fuzzy
transitive closure pairing of bit flags‟ [30], as follows:

ip: impure or pure pairwise bits‟ dimension:

iiii iiip iipi ipii piii iipp ippi ppii pipi ipip piip ippp

pipp ppip pppi

zn: zero or negate pairwise bits‟ dimension:

zzzz zzzn zznz znzz nzzz zznn znnz nnzz nznz znzn

nzzn znnn nnnz nznn nnzn nnnn

The key to either dynamic or static memory approach is
in applying impure (i), pure (p) and fuzzy transitive
closures to bit pairs (pairwising FBAR logic), where p
as a custom bit-flag operator is either 11 or 00. The
closure of this is simple to predict: it is 1 for 11 since
AND/OR of 11 is 1, and 0 for 00 is similar. On the other
hand, i is either 01 or 10. Based on the transitive closure,
the latter bit pair-product of i, is the major problem,
since it closes with either 1 for 01, or 0 for 10, which
coincides with p conditions of 11 and 00 in bit products.

Solution: We first consider a pure sequence of bits, e.g.,
„11111111‟, and manipulate it with ip, then its result by
zn combinations to reach the char-equivalent output in
ASCII, e.g., ≡ . So, let z stand for zero
or ignore, e.g., z(01) = 01, z(10) = 10, and n for negate
e.g., n(01) = 10, n(11) = 00, etc. This is a static solution.
For the dynamic solution we literary raise single bit z, n,
i, p flags. We use znip to reconstruct data. But each
occupies a single bit: z as 0, n as 1, i as 1, and p as 0. So,
we raise them in a static object (in a grid/portable
memory) to occupy 1 static byte per combination only.

Now we have successfully constructed four
dimensions in a cube, embodying 4-bit flags/zn or ip
combination. The motive for choosing this hypercube is
anchored within the implementation of chars, being
converted to binary, thereby generating self-contained
flags within an input char of the G grid. This results in
50% pure compression, covering 2chars per entry, since
each char is shared between 1ip and 1zn dimension,
thus in total, 2chars 2ip + 2zn = 4 dimensions. More
specifically, we put all of our emerging 1-bit znip flags
in unique combinations for double-efficiency. We
intersect them with other znip‟s representing a second
char input:

C(2chars) = 2znip = (4 bits | 4 bits) x (4 bits | 4 bits) 8 bits
(dynamic approach)

C(2chars)= 2znip = (4 bits x 4 bits) x (4 bits x 4 bits) = 8 bits in
1x1x1x1 to 16x16x16x16 address (static approach)

The latter approach literary creates 4 dimensions in the

given address range. The notation „x‟ or „‟, here,
denotes just intersection of the values without bit
manipulations (the occupying bit flags) between zn and
ip dimensions, each independent of the other. This

approach proves absolute double-efficiency. The former
approach, however, ORs values in bitwise terms, hard
but possible for an optimized version after the static
version due to resulting in 8 bits for each 2char input.

Example: Consider the following levels of compression
conducted by our program P, relevant to Fig. 4

in

in

in

in

in

in

in

in

01110010 0100 1101

01100101 0000 1111

01110011 0101 1101

01101111 0011 1111

01101100 0010 1110

01110110 0100 1111

01100101 0000 1111

01100100 0000 1110

P

P

P

P

P

P

P

P

r

e

s

o

l

v

e

d

10 11 0 1 1

00 11 0 1 1

11 11 1 1 1

01 11 1 1 1
 11110110 o

00 10 0 0 0

10 11 0 1 1

00 11 0 1 1

00 10 0 0 0

Then we store the „F6h‟ char, ö, from the ASCII table to
the compressed file C. From there, when a binary value
recalled by the decompression subroutine, the program
then interprets the last layer of compression (rightmost
column) for „each enclosing bit‟, the following:

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

0

0 0

0 0 0 0

0 0 0 0 0 0 0 0

Therefore, the usage of these polarity combinations
(impure/pure) and their counterpart states (negation n or

⌐), would be given in the following column matrices for

a data reconstruction. The right-hand side matrix from
the G file, its binary, represents the actual bit flags, and
its right column is the interpretation of those bits when
ORed between zn and ip dimensions. This is a dynamic
memory approach using „bit fields‟ in C programming.

In continue, consider the letter „r‟ from the top row,
its corresponding bit from the last column before
reaching the compressed char ö representing a
compressed string called „resolved‟.

6 1011

5 1111
5

1010
5

1100

1110
6

1011 5

1111 5

6 1110

i p ¬p ¬i

i ¬i i i

i p ¬p p

i ¬i p p
G

¬i i ¬p p

i p i ¬i

i ¬i i i

¬i i ¬i p

We then decode via LDD subprogram comparator from
the G file as follows:

 this is the interpreted sequence

pure reconstruction ?
1 11111111 01110010 C r ,

while „ r ‟ being inputted to P ,

out
11111111 1011 10111010 ¬i p ¬i ¬i º, is false,

max compression layer of an ASCII character (byte sequencer)

 Primary base binary decompressed layer

 zzzz
 zzzn
 zznz
 znzz
 nzzz
 zznn
 znnz
 nnzz
 nzzn
 nznz
 znzn
 znnn
 nnnz
 nznn
 nnzn
 nnnn

 iiii iiip iipi ipii piii iipp ippi ppii pipi ipip piip ippp pipp ppip pppi pppp

iiii

iiip

iipi

ipii

piii

iipp

ippi

ppii

pipi

ipip

piip

ippp

pipp

ppip

pppi

pppp

read 1001| 0011
iff ,1011 , then

1011

ippi zznn
i p ¬p ¬i G

Interpretation by LDD‟s „if-else‟ comparator: [do not negate the 1st
impure pair; do not negate the 2nd pure pair; negate the 3rd pure pair;

negate the 4th impure pair] of the sequence.

From the above two data points, we then deduce

 if 01110101 11111111 then output 01110010 1011 11 r

To code the interpreter within the comparator, one
should assert in terms of the previous if-statement. Each
two nibbles from the top-down of the G file (column
matrices) represent one compressed character in the C
file, in this case “ö”. Since this char is of Unicode type,
and to avoid nonprintable or an extended byte, which is
 2-byte allocation, we replace this char with a singleton
{„1‟} derived from its most significant bit (MSB). The
compressed character in C has now got one single bit or
byte representative. Let this be a byte sequencer, if
beginning with a 1, we put the „1‟ char in the C file,
otherwise, the „0‟ char. Therefore, the interpreter
interprets this as „11111111‟, which means the bits of 0
Boolean value from the matrix are now altered into

1110 1101 ¬i i ¬p p i ¬i p ¬p , 1111 1110 i ¬i i ¬p ¬i i ¬i p

Thus, the compressed characters in average, from the
left matrix, build up 5.375 bits/char. To conduct the
above statement, we thus code a packed_struct to
pack flags as a structure definition to a non
self-embedded flag approach (dynamic). For example,
we code f1:1 to f4:1 for the ip dimensions of the G
file. The right-hand side denotes the bit length of the
flag variable on the left. For the zn dimensions, we code
f5:1 to f8:1, correspondingly. Now, to access a
particular flag in zn or ip, we code, e.g., pack.type =
6, to access flag # 6. Here, the packed_struct
contains eight members: four 1 bit flags f1…f4 for
probable ip combinations, the remaining flags, for a
negation possibility upon the previous flags if, and only
if, raised per combination. The G file could be
considered as a low-level memory map assisting bit
field compactions, even lesser than six 1-bit flags
required for the „r‟ char in the “resolved‟‟ sample. The
further compacted version of the previous statement is

 if 01110101 1 then output 01110010 1011 r

The general version of this if-statement is embedded
within the following pseudocode of the algorithm:

Pseudocode sample I: a lossless data compression

WHILE there are still input characters DO
 CHARACTER = get input character
 CONVERT CHARACTER to BIN CHARACTERS
 PACK 1-bit FLAGS from any conversion level
 IF PACK + CHARACTER is in the Reference Table
 THEN
 PACK = PACK + CHARACTER in the G file
 ELSE
 OUTPUT the code for PACK as NEW STRING
 ADD NEW STRING + BIN CHARACTER to the C file
 NEW STRING = CHARACTER
 END of IF
END of WHILE

OUTPUT the code for PACK in G file
OUTPUT the code for NEW STRING in C file

The conversion sample on any input string, as shown
above, are propagated via the intersection of the znip
combinations established within the 4D G space. This is
stored by occupant chars in the G file during the early
stages of the FBAR compression process (see, „method‟
below). This is a static approach and double-efficient,
storing string values in the G file in terms of

 in

2

m
C m G G , G 64 K, (2)

where m is the number of string characters inputted to
the program for a compression. Once compressed, the
length of the grid file G is summed with the
compressed m, equal to m/2. The default value of 64K
comes from the three dimensions representing a char
representative for each combination set of ip and zn.
This default value is computed based on the possible
number of grid outcomes, Eq. (2). This number is quite
convenient for a 16-bit microprocessor to directly
access and process the G file via a set of hardcoded
„if-else statements‟ on flags‟ subroutine in our code.

As we shall later observe, to conduct an FBAR
LDD, data access of the compressed file is in 65,536
rows, denoting a 64K limit. The expectancy of lower
sub-layers of the 4th layer would decrease the number of
possible combinations of 14-bit flags, making the cube
denser than the current version.

Fig. 5. The 4D logic constructor grid with input

This is due to having more bits available to
decompress from those sub-layers of the algorithm. But
in this case, the total number of possible combinations
per dimension is fixed, or

 1 1i i i ich ch ch ch xyG ip zn (3)

4 4 162 2 65,536 possible grid outcomes

 b

Sequencer

a

7 12

11
13

 a
re

1

b

6

14

so

row addr =12x14x6x13
returns „so‟

row addr =7x11x1x13
returns „re‟

zn

ip

ip

One character „b‟ in entanglement, regenerates two original characters
„so‟ stored in one row address of the compressed message.

Compacted znip flags

where the grid model is hereby shown in Fig. 5.
Perceivably, in Eq. (3), out of the two xy bit flag field
dimensions, we create a four-dimensional hypercube.
This model could be considered as the G file‟s
dictionary for a row number to its 41-bit flag
translation. So, for every arbitrary input document, half
of the size of that document is created between the four
fixed dimensions of ip x vector for char chi , ip y vector
for its neighboring char chi+1, and zn xy vector for both
chars respectively. The zn and ip vector dimensions,
each, are presented in separate rows in a list, mounting
16 indexed 4-bit flag sets correspondingly. The coverage
of the grid is to concurrently cover all Unicode chars,
even non-printable char scenarios for any data type. To
verify the possible outcomes from Eq. (3), ASCII is, 256
 256 = 65,536 for a 50% double-efficient compression.

A self-embedded flag set method: The cross-section,
of which the compressed characters are recognized in
the G file, is read by the „decompression subprogram‟,
thereby compared with the table contents for a
successful data reconstruction. The entries are of the
reference table, building up 95 standard ASCII chars.
When the scanning of the G file entries reiterates for the
next 96 char block, considering char # 96 as a block
double byte (BDB), the program then counts from 97 up
to 191 and so on, traversing all 65,536 rows, “flag sets”,
for an LDD.

Fig. 6. The GC file with an 8B to 5B~4B compression

We use the BDB as an indicator, e.g., a two-char „/a‟
representing the 1st full 96 byte allocation, „/b‟ for the
2nd, and … The BDBs are standard chars elicited from
the ASCII table. The „if and for loop‟ on the LDD, for
65,536 possibilities, is the key to this process. This is
later explicated in pseudocode at the LDD phase. The
rows are in matrix form, denoting at least two original
chars held by a position char with a 1, otherwise, a 0
sequencer. The „position char‟ as illustrated in Fig. 5, is
an „occupant char‟ stored in the G file, during

compression (static), starting with an „a‟ to the last
ASCII 95 characters, representing in total, 952 = 190
char entries, or 95 compressed chars denoted by the
C(char) column in Table 1. For example, the elements in
{a, b, c, d, …, /a}, are respectively interpreted by the
program‟s interpreter as: the {1st 2chars, 2nd 2chars, 3rd
2chars, 4th 2chars, … end of the 95th 2chars [of the
original file]}.

Table 1. I/O character process and occupation

Row address C(char) #; Cr Original

chars; total

Occupant

char

Size in

bits

7x11x1x13 1; 2:1=50% re 2 a 8
12x14x6x13 2; 2:1=50% so 4 b 8
 6x6x4x15 3; 2:1=50% lv 6 c 8

 1x13x2x7
 13x1x1x6
6x13x7x11

the same as last
8x12x8x12
8x12x11x2

4; 2:1=50%
5; 2:1=50%
6; 2:1=50%

48; 1:1=0%
49; 2:1=50%
50; 2:1=50%

ed 8
 f 10
or 12

 96
55 98
5$ 100

d
e
f

/a
a
b

8
8
8

16
8
8

This alleviates char interpretation over binary when
presented by char position through standard ASCII
chars: a, b, …,. To override memory overrun(s) during
the vast access of files in read/writing data, we organize
the „G with C‟ files into one single file, merging the
targeted components of Fig. 3 into GC. A structural
sample of GC is illustrated in Fig. 6. This approach
makes the algorithm quite portable, thus no need to be
concerned about memory allocation and management
issues in this regard. The corresponding table to the
grid, following bitmap pattern reconstruction for any
character per impure and pure flag preference “arose in
bit field as necessary, is to hold a unique identity for that
particular char,” is given in Table 1. The previous
output of the pseudocode sample I, thus complies with

OUTPUT code for CHARACTER + BIN CHARACTER in GC file

3.1.2 Layers of lossless data decompression

Now, by having all compression data established in the
GC file, and having a portable translation table (always
static in size 8MB with Unicode), we could decompress
data according to the following pseudocode:

Pseudocode sample II: a lossless data decompression

READ the GC file row-by-row from end-of-file
OUTPUT temporary ROW_CHARACTERS
OUTPUT temporary (ROW_NUMBER == ROW_ADDRESS)
CHARACTER = ROW_CHARCTER
WHILE reading CHARACTER by CHARCTER DO
 READ ROW_NUMBER
 IF CHARCTER is not in the (ROW_ADDRESS AND
CHARACTER) of translation table with BIN CHARACTER
THEN
 STRING = get translation of OLD_CODE
 STRING = STRING + CHARACTER
 ELSE
 STRING = get translation of NEW_CODE
 END of IF
 OUTPUT STRING
 CHARACTER = 1st or 2nd or … or nth 2 characters in
 STRING
 REPLACE CHARACTER with 2 new characters from the
 translation table
 OLD_CODE = NEW_CODE
 DELETE temporary ROW_NUMBER and ROW_CHARACTERS

Row addr. in

dictionary is:
1

d

c

a

b

C File G File

This is the full
compression product

(size = original size/2)

5B ~ 4B

1x13x2x7

6x6x4x15

7x11x1x13

12x14x6x13

Maximally-compressed string
sequencer in a C file zone

The G file zone: dynamic in length scope,
static in total number of rows = 65,536

Content and
Structure

Occupant chars are spread orderly
between rows representing specific
self-embedded flag address

64K

&&

&&

&&

&&

Translation

Table

1B

Content:
resolved

Program

GC File
8MB

Chars In

then delete document

Compressed Out
 Chars

64K
+ 5B

Read
+
Interpret

64K
+ 4B

8B

END of WHILE

The expectancy to reconstruct data, indicating a pure
50% LDC, requires a minimum of 9696 = 9,216
„if-else‟ lines of code. The reason to that is, according to
Table 1, we need to recover 2 original standard chars per
1 compressed char (see original chars and their occupant
columns), just like the „constructor process‟ illustrated
in Fig. 6. So, one could say that the current grade of
FBAR LDD is a simulation, and the LDC layout is just a
tangible illustration of what is happening underneath the
prototype. Ergo, the fully-implementable pseudocode
covering char flag-set combinations is given below:

WHILE reading CHARACTER by CHARCTER AND compressed
BIN CHARACTER is ‘1’ DO
READ CHARACTER as last block character
IF CHARACTER is a block character THEN
READ CHARACTER prepositioned to block character
READ ROW_NUMBER
GET ROW_ADDRESS from translation table
IF (CHARCTER =‘d’ AND ROW_ADDRESS = ‘1x13x2x7’)
 OUTPUT STRING =‘ed’
ELSEIF (CHARCTER = ‘c’ AND ROW_ADDRESS = ‘6x6x4x15’)
 OUTPUT STRING =‘lv’+‘ed’ = ‘lved’
ELSEIF (CHARCTER = ‘b’ AND ROW_ADDRESS = ‘12x14x6x13’)
 OUTPUT STRING =‘so’+‘lved’ = ‘solved’
ELSEIF (CHARCTER =‘a’ AND ROW_ADDRESS = ‘7x11x1x13’)
 OUTPUT STRING =‘re’+‘solved’ = ‘resolved’
ELSE
PRINT no data or null compressed
END of IF
ELSE
PRINT no block character in range
End of IF
END of WHILE

The incremental concatenation of the „OUTPUT STRING‟
in the latter, corroborates with „STRING = STRING +
CHARACTER‟ from the former pseudocode. The LDD
interpreter, uses the scanf()tool to scan old data from
the last block chars, i.e. from end-of-file (EOF) to its
heading, subsequently, chars from end-of-line (EOL)
after each BDB-read. These block chars as defined
previously, could be lined-up after each 95 char
accumulation, as e.g., {/a, /b, … / , $a, $b, … $, @a,
@b, …, @ ...}, alternatively, {€, , ‚ , ƒ, … ÿ} as ASCII
8-bit or larger block chars. Once scanned, the interpreter
reaffirms char occupants with their corresponding
self-embedded flags (the related G row) from the
translation table, and outputs data, reconstructibly. The
“translation table is the main component of the
dictionary”, focusing on occupant chars and row
address columns (see Table 1, columns colored in grey).

3.1.3 Layers of encryption and decryption

Lowest layers of compression: The flags raised in the
„reference table‟ dynamically, for encoding data, comply
with the flag and polarity settings in Table 2. The main
flags are # 0 to 6 polarity flags. The remaining flags are
concatenated and thus raised in the grid file.
Programmatically, one could select relevant bit pairs
based on these tables to reconstruct data for lower levels
of compression inclusive of maximum LDCs. Once
bitwise combinations of the reference table are
confronted within the LDD program code, bit access for
reconstruction between the grid field and compressed
file is enabled.

Table 2. Bit flag polarity combinations on bit pairs

and nibbles during compression

Type no. Polarity set Implies to 1-bit flag

0 ↓↑↑↓ most chars f0=1bit
1 ↓↓↓↑ letters f1=1bit
2 ↓↑↓↓ letters f2=1bit
3
4
5
6
7
8

↓↑↓↑

↓↑↑↑

↓↓↑↑

↓↓↓↑, ↓↑↑↓, …

letters
letters
few letters
dual chars
all 2bit binary 10
all 2bit binary 01

f3=1bit
f4=1bit
f5=1bit
f6=1bit
f7=1bit
f8=1bit

The above grid, however, is used and customized for
any level of compression, either of lower layers of 4th up
to its topmost possible LDC product.

A lower level encoding: For example, to reconstruct a
character with decimal # 64, as “@”, based on a raised
flag, say, flag # 0 (neutral or ignorable), the equivalent
of the character‟s binary would also be 01000000. The
character‟s compressed version through FBAR using its
flow (Fig. 4), or its model (Fig. 3), is “00 0”, denoting
that the first two zeroes are pure and give 0000, whereas
the second pair “ 0” is indeed impure. The latter‟s true
face is “10 0”, indicating flag # 7. Thus, the bit flag
dereferences noise as 10 during decompression, and for
the remaining 0 in “ 0”, becomes 00. In total, we then
have, 0000 1000 = 2 nibbles = 8 bits ≡ 1 character. Now,
we establish the pattern based on flag # 0 i.e. its polarity
set, since we code our algorithm that every nibble is of a
previously-ANDed type, and next to it, from left-to-
right of a binary sequence, the ORed type (consider
them as odd and even nibbles in a full binary sequence
with a length > 8 bits). Hence, the ANDed version sits
above as the North Pole, and the ORed version sits
below as the South Pole:

 0000
↓↑↑↓ = ≡ ,

 1000

Programmatically, one could conceive this in terms of
an equivalent pairwise selection from memory in a
sequential manner.

Consider an accustomed byte to some char in terms of

ANDed 0000 1000 ORed ,

Equivalently, pairing the bits in terms of ≡

The pairwise mask function, shifting bits to the right
otherwise to the left, could do this encoding, i.e. a “bit
registry process‟ implemented in terms of the following
portion of the pseudocode

Pseudocode sample III: a lossless data encoder

CREATE a FILE POINTER for READ_WRITE operations
WHILE reading CHARACTER by CHARACTER DO
OUTPUT CHARACTER as temporary BIN CHARACTERS
 READ BIN CHARACTERS
 NEW STRING = BIN CHARACTERS
BITWISE AND(1st2 CHARACTERS of STRING from MSB to LSB)
BITWISE OR (2nd2 CHARACTERS of STRING from MSB to LSB)
BITWISE AND(3rd2 CHARACTERS of STRING from MSB to LSB)
BITWISE OR (4th2 CHARACTERS of STRING from MSB to LSB)
 IF 1st2 CHARACTERS in STRING is ‘01’ THEN
 OUTPUT rightmost CHARACTER of this pair = ‘1’
 ELSEIF 1st2 CHARACTERS in STRING is ‘10’ THEN

 OUTPUT rightmost CHARACTER of this pair = ‘0’
 ELSEIF 1st2 CHARACTERS in STRING is ‘00’ THEN
 OUTPUT rightmost CHARACTER of this pair = ‘0’
 ELSE
 OUTPUT rightmost CHARACTER of this pair = ‘1’
 END of IF
CONTINUE SORTING 2nd2 CHARACTERS, 3rd2 CHARACTERS,
 4th2 CHARACTERS in STRING like before
OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN

 CHARACTERS = 1 ASCII CHARACTER
END of WHILE

As we can see, we simply compress data by selecting
the least significant bit (LSB) of the pairs per nibble
denoting closure points. This could be registered after
applying bitwise and-or, and from there, after
converting from compressed binary to compressed char,
written to the G and C files in parallel. The simplified
form of the „if statement‟ with its „continuing course on
sorting binary chars‟ in the pseudocode, would be

...
SHIFT from MSB to 2nd rightmost CHARACTER in (

1st2 CHARACTERS, 2nd2 CHARACTERS,
3rd2 CHARACTERS, 4th2 CHARACTERS)

OUTPUT 2nd rightmost CHARACTER from (1st2 CHARACTERS,
2nd2 CHARACTERS, 3rd2 CHARACTERS, 4th2 CHARACTERS)

...

This results in, for every 8 bits, a 4-bit output, and from
there, 2 bits, and finally, a 1bit output char. We pack
each 81-bit output into 1 ASCII equivalent char as our
compressed version. The subsequent pseudocode
represents what is necessary to code for an LDD, as a
subroutine to the above code, recalling compressed
values stored in char:

Pseudocode sample IV: a lossless data decoder

WHILE maksing BIN CHARACTERS from BITWISE AND and
BITWISE OR results DO
STRING = 8 BIN CHARACTERS
ASSIGN ‘0’ to a DOWN variable
ASSIGN ‘1’ to an UP variable
FLAG_STRING = UP + DOWN CHARACTERS
 IF FLAG_STRING = (DOWN + UP + UP + DOWN)
 CHARACTERS THEN
 STRING = (MSB BIN CHARACTER + 5th BIT
 CHARACTER) + (6th BIT CHARACTER + 2nd BIT
 CHARACTER) + (7th BIT CHARACTER + 3rd BIT
 CHARACTER) + (LSB BIN CHARACTER +
 4th BIT CHARACTER)
 OUTPUT STRING = OLD 8 BIN CHARACTERS
 ELSEIF CONTINUE CONCATINATE for other
 FLAG_STRING UP + DOWN combinations
...
END of IF
OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN
 CHARACTERS = 1 ASCII CHARACTER
END of WHILE

So, considering the „@‟ char, we reconstruct 0001 0000
via bit concatenation from the „8 BIN CHARACTERS‟ or
„2 NIBBLE CHARACTERS‟, denoted by a „+‟ in the code.
Hence, during the decompression phase, having a set of
up and down flags available, makes the algorithm to
reconstruct data by tracing the arrows‟ directions in the
polarities set. Interestingly, the “@” char is also a dual
character (it behaves as such), and could be raised by
flag # 6 due to giving the same result for its
decompressed version with different polarity
combinations. But for reasons needed to occupy fewer
bits, even in form of 1-bit flags, we reconstruct data by
reciprocating with the grid file, cross-referencing with
distinct bit groups, and building up Cr values 2:1

compression. The main focus for reconstructing data, is
considering negation flags # 1 to 4, pure and impure
flags # 1 to 4, ORed in combination for each compressed
character in the C file. A comparator as the FBAR
program subroutine compares results between the static
table as a point of reference with the dynamic
component, C file, and the semi-dynamic component,
the G file. The process relationships have been
illustrated in Fig. 3. From there, a compression of 4-bits
per compressed chars in the final layers as a 1-bit
representative is stored. In total, 5 bits for each string
entry identified for a decompression. To every unique
combination of pairs made by the comparator, a specific
1-bit flag is allocated in the fixed size memory chunk
with a specific address like from the portable
compressed file C. This phase of LDC denotes a 5-6 bit
compression, giving an average anticipation of 34 to
46% space savings for a 95 random string entries. The
allocation of single bits raised in the memory, and from
there, to the G file for each character per memory chunk
is computed by the following equation:

 5
64 K

2 8

m m
C m G C (4)

where m is the number of string characters inputted to
the program for a compression. Once compressed, the
length of the grid file G is summed with the length of
the compressed file C, for any quantity of chars
measured by m in bits and bytes on each read for an
LDD. Thus, the total is a value of (64 + m/2 bytes) + (m
bits or m/8 bytes) compressed. The remainder bits added
“m/8 bytes” come from the measure on the last layer of
the LDC product. This makes any customized fixed
table as a reference table to identify the initial character
entries during the LDD phase of the algorithm.

Successful char identifications via „for‟ and its
nested „if loops‟, makes a lossless compression absolute
in all angles of bitwise operations. Identical chars, are
created by these loop calls on different reference points
between GC and translation table contents. The main
rule for each row of entry is to always maintain a 24
and-or bit encoding, and a < 8-bit data compression.

3.2. Contribution

The main contribution in this paper is presenting a
new model on self-embedded flags from Sect. 3.1.1. It
allows an LDC algorithm to conduct superdense coding
i.e., doubling the efficiency between two points of data
transmission. This established a key difference in
techniques, observed between the FBAR algorithm and
other LDC algorithms. According to the “theory of data
compression” [12, 13, 15], we conclude that almost
every LDC uses Shannon entropy as its „logic base‟ in
conducting a lossless compression. In fact, repetition of
characters in a certain frequency based on the theory of
probability is embedded in such LDCs. In layman‟s
terms, information entropy is the same as
“randomness”. A string of random letters and numbers
along the lines of “5f78HJ2Z2Xp4V7Vb6” can be said
to have high information entropy, or, large amounts of
entropy, while the complete works of Shakespeare can

be said to have low information entropy. Their LDC
products are quite variant, which depend on content
pattern probability or character rate of recurrence.
FBAR‟s LDC, however, deals with the computation of
binary logic regardless of content size and type, whereas
other techniques are not bothered about. Binary logic in
FBAR, deals with individual bits, their combination,
repetition, cubic conservation, regardless of character
repetition or content type. This means, based on a fixed
size character reference table, Table 1, we derive a new
more certain equation (least zero order H values), which
is logarithmically the least probabilistic with discrete
entropy (bits per character), compared to Shannon‟s
entropy rate on English alphabet given by

 2
log 4.75 bits/charH m , (5)

and for higher orders of H , for a given text source made
up of English alphabet letters, becomes 4.07, 3.36, 2.77
and 2.3 bits/char, respectively. In FABR, however,
fixed values of C for every order remain

 log 0,2.4 bits/bytebb
H , (6)

and for a binary sequence , the binary probability of
two states, b = 2, constructing 1 char, entropy H
becomes 2, 1 and 0 bits/byte, regardless of source for a
given fixed size LDC binary reference code. This makes
the algorithm to compute information reliably based on
fuzzy binary, rather than string characters.

The process in Eq. (6) evaluates every character by
using and-or, pure and impure logic, and from there,
further LDC‟s between bits of information. Eq. (5),
however, deals with the random process to evaluate the
whole sequence of characters using probability theory
for an LDC result. Eq. (6), by comparison, improves
less dependency on symbolic representations, and
mainly, dependency on binary logic, thereby, fuzzy, and
finally, quantum logic. The latter, however, remains
quite intact with higher orders of probability equations
promoting Shannon zero-order through third-order and
general models, in simplistic sizes of LDC.

The reason is that, quantum logic by itself is based
on probability behavior over bit states. To assist these
relationships between logical events of the FBAR
algorithm, we define them as LDC causality in form of
supreme states of compression. For any data type at a
quantum level, the current model (Fig. 5) holds good for
superdense coding operators [27]. In our next report, we
improve our model design, reconfiguring znip flags in
an extended translation table, in aim of
super-compressing an encoded message, thereby
decode and decompress. The FBAR logic would then be
called as FQAR or qubinary (quantum binary) and-or in
its ultimate performance of LDC. Hence, a negentropy <
0 bits/byte of Eq. (6), denoting double efficiencies
above 87.5% compression, for a universal
predictability, is not farfetched in reality (see, e.g. [31]).

4. Related work

This section gives an overview of other works
assisted in the FBAR algorithm for its prototypic design

(Fig. 8) rather than implementation. Related work
mainly constitutes the separated versions of the
combinatorial logic synthesis of FBAR, i.e. {F, B,
AND/OR} by well-known scholars, e.g., G. Boole, C.
Shannon and L. Zadeh [33, 34, 3], chronologically.
These works made it easier to distinguish our
combinatorial logic by Eq. (1), from other LDC
algorithms over various test cases as input strings and
documents. Our logic is not of other LDCs that rely on
randomness based on repeated symbols in content. In
our implementation, satisfying a set of systematic
hypotheses is indeed recognizable in Sect. 5.1.

The LZ77 and LZ78, are two LDC algorithms
published in papers by Lempel and Ziv in 1977 and
1978 [4, 5]. The Lempel-Ziv algorithm is a
variable-to-fixed length code. They are both dictionary
coders, unlike minimum redundancy coders. However,
they are only equivalent when the entire data is
decompressed, as long as the entire dictionary is
available. As of 2008, the LZ77-based compression
method is by combining LZ77 with Huffman coding.
Literals, lengths, and a symbol to indicate the end of the
current block of data, are all placed together into one
alphabet. This is often the specialty of LDCs used today
for compressing common documents, which are
reported as considerably probabilistic-dependence
compression techniques only: e.g., XML model, DAG
-compression [25], and lossless entropy coding [26].

To our knowledge, when FBAR is executed by an
x86 compiler, it is evident how this LDC performs with
fixed sized Cr‟s, regardless of what document or data
type. The grid file, or compressed file, and the decoder
in FBAR, do not act as same as the LDC packages
mentioned above. However, apart from FBAR logic,
design and implementation, the strategy in assimilating
the components of the program into an LDC and LDD
structure, like Fig. 8, their evaluation is of definite
resemblance with these packages. To validate such
issues in practice, we needed to test data from the input
level to its corresponding output according to our
componential model, Fig. 3. This led us to further verify
our cyclic model from Fig. 2: which one of our
hypotheses is valid, and which one disqualified on
current machines. We reject their null hypotheses based
on the implementation of each pseudocode (dynamic/
static, from Sect. 3.1), step-by-step, as a successful
approach in evaluating the I/O products of the algorithm.

5. Experimental setup and application

The following addresses the preliminary conduction of
the FBAR experiment in terms of, applicability and
implementation of logic relative to performance,
discussed as follows:

5.1. Test data generation for input data

Let us put hypotheses H.1 to H.4 into discussion
before showing or discussing the prototype. These
hypotheses were formulated in our thesis proposal as a
systematic implementation satisfying our research
questions in Sect. 1, whereby, each hypothesis constitutes
the aims and objectives of our work. In virtue of our

design process, the following hypotheses have been
verified for data generation test cases, as „true‟,
otherwise „false‟:

Table 3. Hypotheses and their „true‟ or „false‟ states

Hypotheses x86 fqubit Tested OS

H.1- Input of any data type to the FBAR‟s
1st layer, results in binary representing
the same original content.

H.10 - The conversion of any data type to
binary is impractical.

True

False

True

False

Unix;

Windows

H.2- A sequence of pairwise selection of
bits to the FBAR‟s 2nd layer, when a
parallel and-or applied, results in an
encoded binary message in the 3rd layer.

H.20 -The pairwise selection and and-or
operation on a binary sequence, is firstly
H.1 dependent, and secondly, irreversible
for data reconstruction. (Or, backtracking
to the original message is impractical.)

True

False

True

False

Unix;

Windows

H.3- A sequence of pure and impure
pairwise selection of bits to the FBAR‟s
3rd layer, once detected and replaced
with single bits, results in a compressed
message in layer 4.

H.30- The pure and impure pairwise
selection and compression to single bits
on a binary, is firstly H.1 and H.2
dependent, and secondly, irreversible for
data reconstruction.

True

False

True

False

Unix;

Windows

H.4- A sequence of single bit flags
representing compressed data in FBAR‟s
4th layer, once reused adjacent to other
purely compressed 1-bit data, results in a
decompressed message from layer 4.

H.40- The sequential recall and reuse of
bit flags from memory/grid, is firstly H.1,
H.2 and H.3 dependent, and secondly,
unachievable for an identical data
reconstruction.

True

False

True

False

Unix;

Windows

H.5- A sequence of compressed data in
form of H.3, when equipartitioned and
paged into memory or confined signals in
information space/grid, results in a
maximum compression possible > 87.5%
in layer 4.

H.50- The compression of any data length
into one single bit is firstly H.1, H.2 and
H.3 dependent, and secondly,
unmanageable and irreversible for data
reconstruction like H.4.

False

True

True

False

N/A

The „false‟ verdict indicates that the expected
hypothesis, either null or else, is rejected, ergo, the
„true‟ verdict indicates otherwise. We set up our
experiment under UNIX and Windows for each step of
our systematic hypotheses. For comparisons‟ reasons,
we study our LDC products coming from H.1 to H.4
under different platforms. We develop our prototype in
C due to having efficient tools e.g., pointers, for our
dynamic and static approach (see Sect. 3.1.1, and „bit
array‟ in Sect. 2.3). The implementation in our
prototype led us to focus extensively on H.4, since it
required more coding methods to supply the dictionary
coder frame at the LDD phase of the algorithm. The H.4
constructed a grey line between higher levels of
compression to maximum levels of compression
expected in an auxiliary hypothesis H.5. Frankly, the
four hypotheses are within the territorial abilities of the
prototype on x86 machines satisfying C‟s 87.5%.
Hypothesis H.5, however, is to be tested independently
and promises double-efficient LDC ratios with negative
entropy benefiting fuzzy quantum binary (fqubit). Ergo,
the foreground of the H.1 to H.4 products is satisfactory
to test input data according to our circular process

presented in Fig. 2, Sect. 2.3. The column on fqubit in
Table 3, under simulation conditions is applicable, yet
untested for practical use. The current tests have been
conducted in the small and in the large as follows:

5.2. Test data generation for input data

Small input data allows accurate comparisons
between original chars during the input phase,
compression and decompression. To see whether data is
reconstructed successfully, the output is therefore
compared with its original. From there, it is logical to
make test-runs on large input data or file(s), since data
integrity evaluations are conducted during small sample
runs.

Fig. 7. Input data types used for a set of test-runs

Working with large samples on the first runs would be
extremely complicated and almost impossible to
manage per input document. Once char integrity
evaluated on the smallest scales possible with certain
buffer limit, assigning string size to the counter variable,
building up the sample, would result in manageable
flows, and easy validation on data results. The „long
int‟ limit, is integrated within „code loops‟ to store
occupant chars in the G file, as 4-bit flag
representatives. In case of an LDD with any size input,
through proper access and comparisons of values from
the translation table (Table 1), with the occupant chars
within the grid, an evolution of different versions
starting with textual type to any data type is achievable.
This is shown in Fig. 7. The current FBAR subsists on
the three, upper-right, lower-left and lower-right
(starting point) of the matrix, evolving toward the last
version of any document type beyond the level of chars.

5.3. The FBAR prototype

In this subsection, we introduce the FBAR
prototype, as an LDC based on a fuzzy binary and-or
logic. The current FBAR prototype is written in C with
source code. Fig. 8 shows the basic structure and the
main components of this prototype. In Fig. 8, the system
starts by receiving an input string for preliminary
conversions as specified in Sect. 3, starting with and-or
logic. The starting point is by choosing the relevant
„menu option‟ executing one or more of the hypotheses
H.1-H.4: 1- the pairwise selection of bits after
converting each character in sequence, as the encoding
of AND/OR process, 2- high state and low state fuzzy

Any

Document

IN:

buffer limit

long int

Any Char IN:

buffer limit

long int

Text

Document

IN:

buffer limit

long int

Standard

Char IN:

buffer limit

[402]

4x1-bit flags

4x1-bit flags

Greater built-up
reference in
code

Topmost
evolved
version

Conveniently
-evolved

version

Start of data
generation

4x1-bit flags

4x1-bit flags

1

2

3

4

binary conversions, and 3- the G file commitment over
compressed bits for an LDC by raising 41-bit znip
flags, are the main tasks of this prototype.

These tasks are outlined as „conversion tools‟ in
Fig. 8. Normal conversions like char-to-bin are classed
as LDC routines. Reverse conversions for
reconstructing data are classed as LDD. Having these
prerequisites implemented for this logic, the program, at
the LDD phase, loads a sequence of chars, and the
prototype produces a set of mathematical compressed
values of the same chars into the GC file (see, Fig. 6).

Fig. 8. Structural components of FBAR prototype

The prototype tests hypotheses H.1-H.4, as a
representative of a „dry run‟ for the algorithmic first
time implementation. The prototype, by referring to the
self-embedded flags in a translation table, dereferences
char values with feedback based on „if‟ and „for loop‟
conditions. It uses a deRef() function conditioned in
pseudocode sample II. The dereferencing function, once
it finds a match between the GC file and dictionary,
returns char values in a new file as reconstructed
characters, just like before, as it is suppose to be in the
original file. Once the decompression goal is achieved,
the tool delivers a set of string characters identical to
those characters that were initially inputted.

6. The LDC comparisons experiment

We have, by now, tested the FBAR‟s applicability.
Now, we examine its code results. Therefore, a number
of different LDC test packages are selected that vary in
their code complexity and structure, as well as the
complexity of input data they require. They range from
classical code snippets, to more complex methods taken
from the LDC Standard Dictionary Coder, and
similarly, programmed compression switches. The
compression test packages are listed in Table 4.

The outcome of this experiment is compared with
the results obtained by probability distribution testing
over a set of documents chosen by random. Three
lossless compression packages are selected based on
their ranks relative to FBAR prototype over input
documents. The ranking is given on the basis of the
three criteria, later given in Sect. 7. A sample document
is tested several times, to obtain a good estimated result
and, to make sure that the data is consistent and

satisfactory to hypothesis H.6. The test run terminates
when document is loaded and dealt with systematically,
from one function call to another. Once the closure of
these functions within the method construct is met with,
then an exit or termination loop is called for the next
document-load. These functions are pseudocode
dependent and specified in Sects. 3.1.1 and 3.1.2.

6.1. Nonparametric comparisons test

This test gives LDC package comparisons‟ results
based on ranks irrespective to the encoded, decoded and
decompressed data. In fact, the focus is on the results of
how long the computation lasts per sample, its spatial
consumption i.e. the percentage of compression relative
to sample‟s rank. The main motive for using
nonparametric Freidman test is that, we cannot assume
normality of the distribution we draw our samples from.
Thus, one of the primary assumptions of parametric
tests like t-test and ANOVA are not valid. Furthermore,
since our number of samples is small (n < 20), we use
Freidman test to analyze the data, and thus test its
hypothesis, given below. Also, the FBAR case is
confined to the distribution of repeated observations on
LDC I/O samples like many non-parametric tests, based
on the ranks of the data, rather than their raw values to
calculate the statistic. In the following sections, we aim
to follow this test to evaluate our algorithm compared to
other LDCs. Therefore, we wanted to make sure that its
results were statistically significant and not obtained by
chance. Thus, we considered the following null
hypothesis:

Let X contain our FBAR technique as well as a
selection of state-of-the-art compression techniques.
Furthermore, let Y contain a representative sample of
documents of different type. Therefore,

H.6- A difference exists in the performances of the
techniques in X as measured on Y by computation rate
and space savings.

H.60- The difference in performances of the techniques
in X as measured on Y by computation rate and space
savings is zero.

7. Results

By referring to relevant sources giving details on
LDC packages [19], one could outline the basis of the
statistical test for results. Table 4 contains these
packages with their respective ranks reflected in Table
5. We run our statistical test for comparing three or
more related LDCs, as a result of their space savings,
which makes no assumptions about the underlying
distribution of the Cr data. The data is set out in a table
comprising n rows by k columns. The data is then
ranked across the rows and the mean rank for each
column is compared. Bitrate ranking is statistically
compared between the highest and lowest ranked
algorithms, further constituting our null hypothesis. The
comparisons data is given in Fig. 9.

The selection of an LDC algorithm depends on the
following criteria applicable to all LDCs:

FBAR LDC Prototype System

Menu
Options

LDC/LDD
Methods

LDC Subprogram

Reading
Functions

Char
Conversion

Tools

Wrirting
Functions

LDD Subprogram

Reading
Functions

Reverse
Conversion

Tools

Writing
Functions

1

4
Reconstruct original document

Compressed document

Load document

3

2

1. The ability to compress input data losslessly,
regardless of type, content size and complexity.

2. Use memory for data access and management
issues efficiently, e.g., data rate and spatial
occupation of bits during compression when
encoded/decoded, and referenced upon.

3. Must have a dictionary coder for validating data,
referencing and dereferencing them during the
reconstruction phase of data, i.e., decompression.

Based on the above characteristics, the ranking of the
algorithm is given through percentages of Cr for each
package. The Cr is not fixed for each algorithm and
merely based on probability and character letter counts
or, frequent reoccurrence to conduct a lossless
compression. The only algorithm that differs from this
behavior is FBAR, which exhibits predictable Cr ratios
regardless of content size and complexity. Its fuzzy
quantum version is FQAR, an expected outcome based
on FBAR‟s current cipher properties. The selected
packages in Table 4, were on the basis of best case
probable scenarios in compressing data above 90% as a
maximum LDC, 50% as a convenient LDC, and below
50% > 0% as a classic LDC, with reasonable bitrates.

Table 4. Test case LDCs based on space saving values

Document # WinZip GZip WinRK FBAR FQAR *

text 1 70.00% 85.70% 87.87% 50.00% 87.5%

book1 2 70.80% 69.00% 80.04% 49.47% 86.57%

book2 3 65.40% 63.80% 77.11% 48.95% 85.66%

paper1 4 65.60% 64.70% 73.58% 50.00% 87.5%

paper2 5 62.80% 61.60% 69.00% 50.00% 87.5%

paper3 6 60.00% 59.50% 68.25% 50.00% 87.5%

web1 7 72.20% 71.40% 75.37% 48.95% 85.66%

web2 8 53.80% 53.60% 54.57% 49.47% 86.57%

log 9 95.59% 95.37% 96.43% 48.95% 85.66%

cipher 10 73.30% 70.30% 77.82% 48.95% 85.66%

latex1 11 70.00% 69.00% 78.28% 50.00% 87.5%

latex2 12 66.52% 66.53% 75.70% 50.00% 87.5%

* FQAR is the fuzzy quantum version of FBAR, whereas the latter
as fuzzy binary, is the predecessor to FQAR, displaying 87.5% Cr‟s.

Contradictorily, for the fixed Cr generated by
FBAR, is conveniently more reliable in predicting Cr
ratios compared to the probabilistic Cr‟s by PKZip,
GZip, WinRK LDC packages. The ranking is further
evaluated when package evidence of random sample
inputs are measured non-parametrically. The rank of
„1st‟ on FQAR, whilst as a column count is dismissed
from experimental reality, is a dilemma between the
ranks on definite techniques, unless implemented for an
observation. The inclusion of FQAR is intricately
significant due to the facts presented earlier on i.e. „the
4D grid‟ in its expandable 4-bit flag combinatorial
dimensions from Sect. 3.1.1. It gives 50% now, 87.5%
later, on the same x86 machines. According to Eq. (6),

for binary 20=1 bits/char cases, an 8 to 1-bit compression
is evident. If 8 bits is 100% quantity, thus, 1-bit is
12.5%, giving a space saving of 100 – 12.5 = 87.5%
relative to „bitrate performance‟.

The translation table results for maximum LDCs: By
recalling Table 1, the focus on 87.5% LDC is that, the

column with 96 occupant chars in the dictionary will not
change in content translations. However, the grid‟s row
address column in configuration „1x1x1x1‟, becomes
„1x1x1x1 1x1x1x1‟, and the column with 2 original
chars, becomes 8 chars to reconstruct. Thus, the
representation of the „1st 1x1x1x1‟ with the „2nd
1x1x1x1‟ for its cube has a second non-commutative

symmetry: „2nd 1x1x1x1‟ with the „1st 1x1x1x1‟,
altogether, giving four distinct double char addresses
simultaneously i.e., an 8:1 LDC. This satisfies 65,5364

TTables = 1.84 1019 unique combinations, or, 16 exa-
bytes (EB) of grid rows. In case of columnar symmetry
in two translation tables, 65,5362 = 4.1GB, handles the
16 EBs when column values are co-intersected by a
comparator matrix in our code (residing in the LDD
subprogram comparator). So, four 64K grid row
combinations, handle the same EB values in four
parallel tables. This requires complex matrix coding on
an x86 machine. A 64-bit microprocessor, in principle,
handles at most, 18 EBs of space [32], if based solely on
1 table. So, we program 4 tables to just have 32MB
tables with our FBAR package. So beyond this limit, we
run the FQAR model combined with the Bloch sphere
[36] on a quantum computer, easing the complex matrix
programming, to superdense the EBs down to the 64K
limits of grid rows for incoming occupant chars.

Nowadays, compressors accumulate much more
memory space, even more than 250 MBs for the highly
ranked compressor (see Fig. 9). This is significant when
overhead information and memory caching issues are
studied from the usability aspect of the algorithm. The
translation table, using memory cache, could be loaded
into memory and accumulate much lesser space, which
is significantly important for huge data transmissions,
above TB limits on network and elsewhere, satisfying
EB limits explained above.

The statistical test: The test involved the ranking of the
data in the rows based on the selection criteria (former
section), then comparing the mean rank in each column.
Thus, the values of LDC would be ranked across each
row as shown below. We derived these rankings
collaboratively based on Fig. 9, Tables 4, 6-7 results.

Table 5. Current test case LDCs with ranks

Document # WinZip GZip WinRK FBAR FQAR

text 1 4; 3 3; 2 1; 1 5; 4 2

book1 2 3; 2 4; 3 2; 1 5; 4 1

book2 3 3; 2 4; 3 2; 1 5; 4 1

paper1 4 3; 2 4; 3 2; 1 5; 4 1

paper2 5 3; 2 4; 3 2; 1 5; 4 1

paper3 6 3; 2 4; 3 2; 1 5; 4 1

web1 7 3; 2 4; 3 2; 1 5; 4 1

web2 8 3; 2 4; 3 2; 1 5; 4 1

log 9 2; 2 3; 3 1; 1 5; 4 4

cipher 10 3; 2 4; 3 2; 1 5; 4 1

latex1 11 3; 2 4; 3 2; 1 5; 4 1

latex2 12 4; 3 3; 2 2; 1 5; 4 1

In Table 5, we consider the rankings to be valid relative
to the fuzzy quantum version (the FQAR column),
while if dismissed, we consider the ranks to be
distributed between 1-to-4 instead of 1-to-5. This is

applied to observe the four first columns from the left
relative to FBAR, in bold values. Now we start testing

Decision rule: Reject H.60 if rF critical value at =

0.05 or 0.01, corresponding to 5% or 1% probability P.
Otherwise, stay consistent with null hypothesis H.60.

Calculation method: The differences between the
sum of the ranks is evaluated by calculating the
Friedman test statistic from the formula

 2

1

12
3 1

1

k

i
i

F R n k
nk k

r

,

where k is the number of columns („performance of
algorithms‟), n is the number of rows, and Ri is the sum
of the ranks from columns. In compliance with our
decision rule, the results on Fr which rejects H.60, are
given in Table 7, since p-value < . The critical p-value
of Fr for {4 observed columns + 1 hypothetical column}
and 12 rows at = 0.05 or 0.01, is 0.0001. The
distribution of the Fr(4) statistic is chi-square with k–1
degrees of freedom (df) or, df = 4. The test statistic Fr
for all versions was 39.22. Without the FQAR, the result
on Fr was 34. The p-value for the Freidman test is
P(Fr(df) Fr observed), the probability of observing a value
at least as extreme as the test statistic for a chi-square
distribution with df = 4.

Fig. 9. Bitrate comparisons and memory usage

We thus conclude that, the bitrate and space saving
performances have had a significant result on the LDCs
for the randomly loaded documents compared to FBAR.
By conventional criteria, the P-value = 0.0001 < 0.01

rejects H.60, since this difference is considered to be
extremely statistically significant. Although, dismissing
the column on FQAR results-in rank change on
algorithms, we still observe P = 0.0001 < 0.01 rejecting
H.60. Fig. 9 shows the bitrate and memory performance
on 12 test documents, with their critical and optimal
trends. The results are elicited from Table 6. The bitrate
relative to memory usage was observed between the
high and low ranked algorithms on „space savings‟
(Table 4): WinRK vs. FBAR. As we can see, for higher
bitrate performances, WinRK has a critical usage of
memory per input sample. In some cases, even having
10 kBps for encoding and decoding data, required 800
MB memory on a 2GHz Athlon CPU. This ranks
WinRK‟s memory performance lower than expected, as
4th, compared to FBAR. When we associate values of
the upper chart with the lower chart, it is evident that the
empirical data relative to memory usage on FBAR is
optimal, and uniformly correlated except, the jump of
bitrate on sample # 10. This is due to the excessive
repetition of characters within the sample grid. The
original input chars were ignored due to their pattern
simplicity, forming simplistic forms of storable data.
Therefore, the algorithm is not submissive for taking in
too much information and thus its computation. The
average base of bitrate was estimated 475 kBps for
FBAR, and 925 kBps for WinRK on the 12 samples.

From the bar charts, it is possible to see that in some
cases, there is already, right at the beginning, a major
difference between the two results. There is also a dif-
ference observable at the end, where the mean coverage
achieved by FBAR over memory usage is least critical
than the mean coverage of the other compressor. This
shows that there are significant differences between
algorithms on their performances.

8. Discussion

The FBAR was tested in an experiment in which the
outcome was compared with the results of other LDC
algorithms. The string values were treated as binary
during the encoding and lossless compression
procedures. The strings were compressed into
equivalent characters from the ASCII table into file C,
thereby to a 4D grid file G. The grid file dimensions,
each comprises of 16 fixed length code combinations,
making 65,536 possible outcomes. From there, the
translation table of the 95 printable and 1 nonprintable
character block was used to make comparisons when the
resultant document was converted back to binary for
decompression. Table 6, shows the difference between
all layers being implemented from the lowest layer(s) of
lossless compression (LLLC) to the highest (HLLC).

The LDC time parameter is the result of (LLLC +
HLLC) time tL, measured in seconds. On the other hand,
having the highest layer with only „1 byte sequencer‟
equal to „1‟, according to the example given on
pseudocode sample II, gives optimum performance. In
other words, in total, C = „1‟ in content, makes the
interpreter to interpret „11111111‟ for the whole
document, otherwise, „00000000‟ on the first char input
encounter. From there, applying self-embedded flags,
altogether performs good bitrates by comparison.

0 500 1000 1500 2000 2500 3000

1
2
3
4
5
6
7
8
9

10
11
12

Bitrate comparsion

WinRK

Sample

kBps

0 50 100 150 200 250 300

1
2
3
4
5
6
7
8
9

10
11
12

Memory usage

FBAR

Sample

Critical

trend

MB

Table 6. Estimates on compression with rate performance on FBAR‟s LDC and LDD

 tL = CPU time/s Compressed size (bytes) bits/char

File Size (bytes) LLLC HLLC LDC LDD
(C+G files) – 64 K
LLLC vs. HLLC

LLLC vs. HLLC

text 61608 0.18 0.02 0.2 0.24 31124.8+1: 7701.00 [2.1,2.4] : [0,2]
book1 678244 1.31 0.14 1.45 1.40 342654.5 + 1: 84780.50 [2.1,2.4] : [0,2]
book2 1772074 3.2 0.75 3.95 3.43 895266.5+ 1: 221509.25 [2.1,2.4] : [0,2]
paper1 52516 0.13 0.01 0.14 0.20 26531.5+ 1: 6564.50 [2.1,2.4] : [0,2]
paper2 117493 0.26 0.115 0.375 0.32 59358.4+ 1: 14686.63 [2.1,2.4] : [0,2]
paper3 10262 0.05 0.01 0.06 0.10 5184.4+ 1: 1282.75 [2.1,2.4] : [0,2]
web1 747766 1.63 0.22 1.85 1.71 377777.6+ 1: 93470.75 [2.1,2.4] : [0,2]
web2 598125 1.29 0.2 1.49 1.36 302177.7+ 1: 74765.63 [2.1,2.4] : [0,2]
log 1840924 3.43 0.27 3.7 3.58 930050.1+ 1: 230115.50 [2.1,2.4] : [0,2]
cipher 777654 0.25 0.04 0.29 0.32 392877.28+ 1: 97206.75 [2.1,2.4] : [0,2]

latex1 209212 0.43 0.03 0.46 0.49 105695.6+ 1: 26151.50 [2.1,2.4] : [0,2]

latex2 155641 0.42 0.03 0.45 0.92 78631.1+ 1: 19455.13 [2.1,2.4] : [0,2]

translator 8 MB N/A N/A N/A N/A N/A 2 bits/char read
Total 7021519 12.58 1.835 14.415 14.07 3547342: 877689.88 Avg. 2.25:1

Table 7. Rank sum and mean ranks via Freidman‟s test on the observed data

Document WinZip GZip WinRK FBAR FQAR

sum of ranks 35 43 22 60 14
(sum of ranks)2 1225 1849 484 3600 196

This is given by the additional byte (in bold) added to
the HLLC column of the table.

We determine the limits of the application to be
mostly on hardware constraints in design, rather than
FBAR logic per se. To tackle this, we eliminated issues
related to single bit usage of flags, considering their
unique combination in G file is indeed avoiding „bit
array‟ models in programming. In fact, hard-coding
65,536 grid units via „if loop statements‟, reading
line-by-line with 95 printable char replacements, is
more useful than the currently-available tools utilized
for an x86 compiler. This enabled us to have all flags
embedded in our marked-grid units by a standard char.

After verifying the theoretical estimates of 37.5%,
50% and 87.5% fixed size compressions, we began to
compute the bitrate factor of our FBAR LDC. The result
on randomly chosen documents for performing an LDD
is listed in Table 6. The bitrate for both LDC and LDD
relative to CPU time/s are computed and listed in the
same table. We then included specific test results in
form of Freidman‟s mean ranks and rank sum in
recognition of hypothesis H.6 of this paper (Table 7).

According to the sequencer approach mentioned
above, it takes 5 to 6 levels of conversions with a CPU
time tL = {long + short + shorter + shortest} session to
conduct all four FBAR LDC layers. Therefore, the
HLLC version would practically engross one layer
involvement during data computation. Hence, the
logical results would give tL on HLLC LLLC. This
occurs relative to accessing the „translation table‟ on
41-bit flags identity on each G row for an LDD.

9. Conclusion

In this study, we introduced and implemented
FBAR logic, thereby evaluated its lossless compression
ability compared to other known compressors.

We observed that almost every LDC uses
probabilistic Shannon entropy as its „logic base‟ in
conducting lossless compression. However, we have
also observed that our LDC performs fixed compression
ratios, contrasting probabilistic standards of a typical

LDC algorithm. Our LDC does not use Shannon
codeword, and performs compression based on the new
logic, FBAR. We thus conclude that, our algorithm
contains predictable values due to a self-embedded flag
structure for every double-character input.

The LDD FBAR simulation was tested on an x86
machine, under both UNIX and Windows platforms.
Test samples as char-based documents, e.g., HTML,
LaTeX and plain text, were examined for our prototype
and compared with other compressors, varying from
low, average to high ranks. FBAR achieves higher space
saving percentages, above 50% as estimated, simulated
and discussed in theory from its quantum state protocol.
In the context of quantum information theory, the 50%
compression is significant, proving double-efficiency
on 16 bits transmitted via 8 quantum bits by our model.
Similar percentages from other compressors never
prove this efficiency regardless of their rank number.

Future generation computers, by using this model,
e.g., combining the 4D grid model with the famous
Bloch sphere in quantum information, could sustain a
great deal of space and bitrate savings. We conclude
that, this model could be considered as a solution to
complex negentropy problems in information theory.
This specifically concludes double-efficient values
estimated greater than 87.5% e.g., 93.75% compression.

In terms of usage, a user would be able to know
how much physical space is available within a
reasonable time, before and after compression. This
confidence in predictability makes FBAR a reliable
version compared to the probabilistic LDCs available on
the market. We finally conclude that this algorithm
could be used in most aspects such as encryption,
binary, fuzzy and quantum information technologies.

References

[1] K. Gödel, Über die Vollständigkeit des Logikkalküls.
Doctoral dissertation. University Of Vienna. The first
proof of the completeness theorem, 1929.

[2] D. Joiner (Ed.), „Coding Theory and Cryptography‟,
Springer, pp. 151-228, 2000.

[3] “Fuzzy Logic”. Stanford Encyclopedia of Philosophy.
Terms: i- Fuzzy logic, ii- Logical consequence. Retrieved
in 2008.

[4] J. Ziv and A. Lempel, “A Universal Algorithm for
Sequential Data Compression,” IEEE Transactions on
Information Theory, Vol. 23, pp. 337–342, 1977.

[5] J. Ziv and A. Lempel, “Compression of Individual
Sequences Via Variable-Rate Coding,” IEEE
Transactions on Information Theory, Vol. 24, pp.
530–536, 1978.

[6] T. A. Welch, “A Technique for High-Performance Data
Compression,” Computer, pp. 8–18, 1984.

[7] L. A. Zadeh et al., Fuzzy Sets, Fuzzy Logic, Fuzzy
Systems, World Scientific Press, 1996.

[8] L. A. Zadeh, “Fuzzy algorithms”. Information and
Control 12 (2): 94–102, 1968.

[9] L. A. Zadeh, “Fuzzy sets”. Information and Control 8 (3):
338-353, 1965.

[10] M. R. Titchener, “Compression Performance,
Absolutely!”, Proceeding of the Data Compression
Conference, pp. 474, IEEE Comp. Soci., Washington,
DC, USA, 2002.

[11] V. Engelson, D. Fritzson, and P. Fritzson. Lossless
Compression of High-volume Numerical Data from
Simulations. In Proceedings of the Conference on Data
Compression. DCC. IEEE Comp. Soci., USA, 574, 2000.

[12] C. E. Shannon, The Mathematical Theory of Comm-
unication, Univ. of Illinois Press, Champaign, 1998.

[13] C. E. Shannon, “A Mathematical Theory of Commun-
ication”. Bell System Technical Journal, Vol. 27, pp.
379-423, pp. 623-656, 1948.

[14] J. A. Patel, B. Cho, I. Gupta, Confluence: A System for
Lossless Multi-Source Single-Sink Data Collection,
Distributed Systems & Computer Networks, Dept. of
Comp. Sci., University of Illinois, USA, pp. 1-3, 2009.

[15] C. E. Shannon, Redirected from EFF: Electronic
Foundation Frontier group, Home database at:
http://www.data-compression.com/index.shtml
Accessed June, 2009.

[16] P. Viana, A. Gordon-Ross, E. Barros, and F. Vahid, A
table-based method for single-pass cache optimization.
In Proceedings of the 18th ACM Great Lakes Symposium
on VLSI, Cat. Cryptography and Architecture, ACM,
New York, NY, pp. 71-76, 2008.

[17] M. Czachor, “Notes on nonlinear quantum algorithms”,
Report No. quant-arXiv.org: ph/9802051v2, 1998.

[18] D. S. Abrams and S. Lloyd, “Nonlinear quantum
mechanics implies polynomial-time solution for
NP-complete and #P problems”, arXiv.org: Report No.
quantph/9801041, 1998.

[19] English text, 1995 CIA World Fact Book, Lossless data
compression software benchmarks/comparisons,
Maximum Compression, at:
http://www.maximumcompression.com/data/text.php,
Accessed September, 2009.

[20] S. Zhang, Z. Li, Y. Liu, R. Geldenhuys, H. Ju, M.T. Hill,
D. Lenstra, G.D. Khoe and H.J.S. Dorren, “Optical shift

register based on an optical flip-flop with a single active
element”, Proceedings Symposium IEEE/LEOS Benelux
Chapter, Ghent, 2004.

[21] C. D. Meyer, “Matrix Analysis and Applied Linear
Algebra”, Soc. for Industrial and Applied Math., 2000.

[22] D. Schrader, I. Dotsenko, M. Khudaverdyan, Y.
Miroshnychenko, A. Rauschenbeutel & D. Meshede,
“Neutral Atom Quantum Register”. Phys. Rev. Lett., 93,
150501, 2004.

[23] P. A. M. Dirac. The principles of quantum mechanics
(Fourth Edition ed.). Oxford UK: Oxford University
Press. p. 18 ff, 1982.

[24] F. Pistono, “Open Source implementations of encoding
algorithms for video distribution in the HTML5 era”
(thesis project, 2009), Dept. of Comp. Sci., University of
Verona, Italy, p. 2, 2010.

[25] I. Veldman, A. de Keijzer and M. van Keulen,
Compression of Probabilistic XML Documents, Vol.
5785/2009, Cat. Comp. Sci., Springer Berlin/
Heidelberg, pp. 255-267, 2009.

[26] X. Xie and Q. Qin, Fast Lossless Compression of Seismic
Floating-Point Data, IEEE Comp. Soci., pp. 235-238,
2009.

[27] C. Bennett and S. J. Wiesner. Communication via one-
and two-particle operators on Einstein-Podolsky-Rosen
states. Phys. Rev. Lett., 69:2881, 1992.

[28] CCSDS Green Book. Informational Report Concerning
Space Data System Standards, Lossless Data
Compression, CCSDS 120.0-G-2, Sect. 3.1, 42 pp, 2006.

[29] R. Guastella, Lossless Data Compression for Embedded
Systems, at: http://www.embedded.com/opensource
/217800397 , Accessed April, 2010.

[30] J. Jacas and L. Valverde, On fuzzy relations, metrics and
cluster analysis, at:
http://dmi.uib.es/~valverde/gran1/GRAN1.html
Accessed May, 2010.

[31] A. Hyvärinen and E. Oja, Independent Component
Analysis: A Tutorial, node14: Negentropy, Helsinki
University of Technology, Laboratory of Computer and
Information Science, 1999.

[32] IBM, A brief history of virtual storage and 64-bit
addressability, at:
http://publib.boulder.ibm.com/infocenter/zos/basics/topi
c/com.ibm.zos.zconcepts/zconcepts_102.htm.
Retrieved in May, 2010.

[33] G. Boole, Cambridge and Dublin Mathematical
Journal, Vol. III, pp. 183-98, 1848.

[34] C. E. Shannon, A symbolic analysis of relay and
switching circuits, Massachusetts Institute of
Technology, Dept. of Electrical Engineering, 1940.

[35] S. W. Smith, The Scientist & Engineer‟s Guide to
Digital Signal Processing, California Technical Pub.,
1st Ed., Chap. 27, 1997.

[36] D. Chruściński, “Geometric Aspect of Quantum
Mechanics and Quantum Entanglement”, Journal of
Physics Conference Series, Vol. 39, pp. 9-16, 2006.

http://www.data-compression.com/index.shtml
http://www.maximumcompression.com/data/text.php
http://www.embedded.com/design/opensource/217800397
http://www.embedded.com/design/opensource/217800397
http://www.embedded.com/design/opensource/217800397
http://dmi.uib.es/~valverde/gran1/GRAN1.html
http://publib.boulder.ibm.com/infocenter/zos/basics/topic/com.ibm.zos.zconcepts/zconcepts_102.htm
http://publib.boulder.ibm.com/infocenter/zos/basics/topic/com.ibm.zos.zconcepts/zconcepts_102.htm

Appendix A

Appendix A gives a detailed description of the main
components of FBAR, which were briefly introduced in
the paper. These components are separated in
Algorithm‟s structure (Section A.1), Data Compression
(Section A.2), Data Decompression (Section A.3), Test
Cases (Section A.4).

A.1 Algorithm structure

The Algorithm‟s structure comprises of program code, logic and process model. The algorithm itself
could be viewed as Algorithm = logic + control by Kowalski in 1979 [35]. The logic component
expresses the axioms that may be used in the computation, and the control component determines the
way in which deduction is applied to the axioms. The axioms used for an FBAR compression are
firstly classed as AND/OR Boolean logic, secondly, fuzzy logic, and finally, quantum logic. This
combinatorial logic constructs the compression algorithm with control.

The combinatorial logic synthesis to retain FBAR was found by the current author, Alipour [2] in
2009. When {F, B, AND/OR} are conceived separately, each as a different field of calculus would
have its own founder, i.e., chronologically, G. Boole, C. Shannon and L. Zadeh [44, 45, 5]. In 1938,
Claude Shannon showed how electric circuits with relays were a model for Boolean logic. Hence, a
sequence of 0‟s and 1‟s, constitute binary [45]. Therefore, in contrast, the current author questions
that: why not this binary is to be united with the highly probable states of quantum via fuzzy logic? In
fact, is there a way to assimilate the discrete version F, B, A/R, into one unified version of all, FBAR?

The combinatorial version, uniting binary via fuzzy with quantum logic, in this thesis report, is to
prove the relatedness of these logical representations satisfying the posed question given as follows:

To maintain the „control‟ aspect (first paragraph), the structure must include a process model, a model
in which the logic is conducted cohesively and correctly through a program code. A slight change in
the logical axioms in implementation would change the algorithm, making it irresponsive to its true
logic conditions. This is the very characteristic required for a permissible entity to exist in the universe
of discourse, either of being true or false in its logical consequence, outlining its structure. The FABR
structure is cohesive in its states of logic and must be deductive (infer to a logical axiom) thus
partitioned into finite forms of binary bits, no matter where we define them on a scale of time. In fact,
we take every state to be reciprocal to its predecessor and its counterpart, firmly related in value and its
quantifier: usually denoted by , in this case, quantified with „and‟ , and, „or‟ operators.

The FBAR deductive system indicates that its logical consequences are validly true on FBAR‟s
very structure when quantifiers are used in its language of the first-order AND/OR formulae (compare
with Gödel‟s completeness theorem). We need to know this because of the relatedness of logic states,
their combinatorial logic synthesis, when such logic is applied, rather than propositional calculus
which returns such combinatorial logic as two unrelated propositions. The combinatorial logic with a
true relatedness for at least two states is founded in the following reciprocal relation
 {0,1} {1 0, 0 1} {00, 01,10,11} (1)

A finite state representation for units of binary (a single bit) could be of use to present, not only its
process model, in the major, its data transmission architecture when binary values are projected from
one layer to another. Obviously, these states of binary are conditioned as 0 or 1, indicating a circuitry
power level of some logic gate. The layers receiving binary states with respect to time to process them
could be envisaged as memory layers where data abstraction and bitwise projections are handled.
These issues are categorized as memory management over data relative to CPU usage (process time).

Fig. A.1: Basic structure of FBAR binary projections

The logic sates‟ relationships in the above model (Fig. A.1), are demonstrated in form of an
experiment, which obeys the bit mapping procedure in a bitwise AND/OR processing system (Fig.
A.2). In coding theory and cryptography [3], superdense coding is used to attempt an 2n-bit binary
transmission via 2n/2 quantum bits. In the FBAR model, however, we demonstrate just that with
absolute predictable states at its basic levels of LDC (or 50% compression). The confrontation of

C

product

Register LSBs of
AND/ORed pairs

AND/OR each bit pair and
register new binary result

Input chars and register them as binary

Compressed product
 1-bit flags

Encoded
 product

Compressing

L.1

L.2

L.3

L.4

Cr: 34% ~87.5%

Cr: 0%

Boolean logic with Fuzzy logic and Quantum logic in Rel. (1) is progressive between four
compression layers (L.1-L4), i.e., a lower data layer of a certain encoded type is compressed to its
upper through binary projections. In fact, „fuzzy logic‟ reciprocally connects „binary‟ with „quantum
logic‟ due to being a midpoint of the quantum version representing 8 probable entangled states {00,
01, 10, 11}, against the 2 probable binary states of {0, 1}. All of which, represent data as true or false
depending where (in what space?) and when (what bitrate or frequency?) data is being processed. In
this context, „fuzzy logic‟ represents 4 states of logic, denoting the extremes and their middle points.
The link between logical projections is established by simultaneously, „in parallel‟, applying AND and
OR to every paired set of bits from a binary sequence. We further elaborate on bitwise projections in
the following subsections, relative to application design and resultants returned by the algorithm:

A.1.1 the FBAR architecture and technical expressions

FRBAR technical details rely on the following constituting terminology in terms of specific notations
with definitions and related examples:

With regard to these notations and their definitions, we must also familiarize ourselves with the
conceptual aspects of FBAR in detail prior to implementation, since both aspects are in conjugation
with delivering an FBAR compression product to its user.

A.1.1.1 Aims and objectives

The aim of this study is to find out how FBAR compression is applied to current and future generation
computers. We shall chronologically establish our new technique as follows:

In our design and development:

 Develop the compressor in form of a prototype with the FBAR technique into four layers. We

reflect these layers as FBAR logic set, projecting one logic state to another.
 Develop the prototype by a programming language like C, due to its better memory management

addressing efficiency, such as the bit field usage over bit arrays, customized in other languages.
 Develop the prototype complying with the descriptions presented in Table A.4.
 Develop the prototype following the Table A.1 flow in sequence during implementation.
 Make relevant ASCII and binary conversions from one another as we encode data and compress

them through FBAR logic, generating predictable data compression ratios.

Notation Short definition Example

Cr Data compression ratio. 2:1 compression

C Compressed data; compression. 1 , nC C n

C Decompressed data; decompression. out refC C

H Entropy rate in e.g., Shannon systems.
 bH H

m String size e.g., English alphabet size. m = 26 + 1space
chi A character, where i . {ch1ch2ch3…}

x Array dimension for the residing bits in memory. if xi = 0 then x = [000…0]
y Array dimension for projected bits from upper memory to

lower layers.
if yi = ⌐ xi , xi = 0 then y = [111…1] Bits from horizontal plane projected vertically onto a

compressed binary.
if yi = 1 and xi = 0 then y = [0101...]

 Variable lengths function on e.g., string, time or binary length.

x

C x
t

 Infinity; undefined, subject to removal via e.g., new characters. 2ch – = 2ch Fuzzy state leaned to low level logic. 1 0 = {0 , 0}≡0 Fuzzy state leaned to high level logic. 0 1 = {1 , 1}≡1 Right bit-to-left bit selector. Left bit-to-right bit selector.

 Binary vale or sequence, where = = b
 =, if = 0, =1, = 0001

 Change of… ; difference m = m2 – m1 , & Logical AND otherwise, bitwise AND 0 1=0, 1 1 = 1 , | Logical OR otherwise, bitwise OR 0 1=1, 0 0 = 0 Bidirectional between states or logic x y ≡ x y x
≡ Equivalence; identical to … 2 chars ≡ 16 bits Logical deduction; therefore … {ch1ch2}= {$%} ch1 = $, ch2 =%

 Implement single bit flags on memory attributes, representing the compressed bit address and its
polarity for data compression layers. (This is our main focus.)

 Retain the retrieved data from memory to reconstruct ASCII characters (decompression).
 Generate lossless Cr values based on FBAR logic only, contrasting frequent Shannon entropy or

probabilistic methods used today. (An example on Shannon is given by Ref. [18]).

In our analysis:

 Compare the algorithm‟s data compression ratio with others known in the market such as: GZip,

WinZip, WinRK , etc. These lossless compressors [22] present an ideal maximum compression
value, which can vary from data-to-data and from file-to-file.

 Elaborate upon the obtained Cr results and compare them with the results coming from other
compressors no matter how variant. (For our metric comparisons, we use the direction stated on
our hypothesis H.6 in the upcoming section.)

 Compare results, and apply their deduction to the evaluation phase of the algorithm.

For product evaluation:

 Validate whether FBAR is of a reliable type of algorithm (lossless?), where the input data after

compression must be as same as the output data when decompressed.
 Run a set of testing protocols on every step of the design i.e. the “entropic” analysis of the FBAR

closed system. This is vital for our quantitative measurements on the layers, assuring no data loss
or deterioration during algorithmic data transformations.

 Count the exact bytes of information, where each byte consists of 8 bits ≡ 1 character.
 Validate byte count results by collecting samples of different types of data (in which other

compressors vary in producing compression values).
 Build the empirically-executable tests on the conceptual aspect of FBAR, addressing the

compressor‟s data I/O products from background.
 Identify the binary, fuzzy and quantum forms of data (as qubits or bit constituents) for either

compression or decompression phase of the algorithm. The decompression phase should perform
the exact amount of data with quality via these forms of logic.

 Check whether the resulted data, no matter its level of compression from input A to output B over
time, relative to complements A and B decompression outputs, is lossless.

A.1.1.2 Research Methodology

Our research mainly focuses on experiment based on current affordable techniques, both hardware and
software, i.e., how the data is obtained and compressed losslessly, using relevant tools of
experimentation. However, for evaluating the algorithm‟s data compression and performance, we
compare it with other data compression tools based on comparison statistical methods. In this regard,
we have sectionalized our research approach as follows:

 Experimental setup by having relevant programming packages installed on a computer, thereby
coding, compiling and testing our software on an operating system. We follow our design
platform, functions and algorithmic flow from Tables A.1-4. For a progressive experiment, we
then run a metric software analysis for data compression comparisons.

 Implementing the designed algorithmic technique and test it in practice.
Description: This is done through prototyping, coding and simulation, satisfying hypotheses
H.1-to-H.6 from the upcoming section: The coding is used for building our prototype, testing
FBAR logic for current computers. Its successful presentation would be a steppingstone to
establish superdense coding [34], achieving FQAR standards.

 Analysis of different methods and introducing the utilized solution for the algorithm through
spreadsheet, mathematical and „software evaluation‟ packages. We further, through statistical
analysis of compression ratios, collect values that come from our experiment. These values are
expected to come from different data samples i.e. arbitrary documents in which other compressors
vary in producing compression values.

 Validating the fixed data compression ratio for our samples relative to data integrity. We conduct
experiments with different data samples on such parameters.

 Evaluating and comparing the results obtained from the experiment i.e. FBAR-output products
over data compression-decompression relative to data rate (further analysis).

The FBAR architecture and pairwise AND/OR relationships

Fig. A.2: The FBAR architecture and pairwise AND/OR relationships (an expansion to Fig. A.1)

Foremost, we must conceive how „bits and bytes‟ are in correlation with each other in terms of their
logical consequence, coefficients between their rise and fall of states, previously explicated for Eq.
(1). Their consequences of “logic states” are mainly understood in their relationships within the FBAR
architecture. The FBAR architecture consists of a memory system which could be portable in form of
„reference tables‟ or a „dictionary‟ per input information. The “input information” is the valuable data
that we input to the FBAR program before a lossless data compression (LDC). From there, the
valuable data by its substitutes, later known as „character occupants‟, reconstructing the original
information from the availably-compressed data becomes plausible in practice. This latter phase of
FBAR operations is called a lossless data decompression (LDD). It is evaluated in terms of
information entropy, assuring that whether data during the levels of LDC and LDD, has been lost
otherwise successful per compression session. In recognition of Fig. A.1, its expanded version, Fig.
A.2, gives an overview of the four-layer algorithm from bottom-to-top with an input string. When
attaining levels of output at the top, the original string is compressed into 1 signal length, or, a value of
1-bit. (Extracted and adapted from Alipour [2]). The main operators during paired bitwise (pairwise)
conversions are „+‟ for concatenating chars or their string(s), „&&‟ for logical AND, „||‟ for logical OR
conditions. However, one must not confuse the latter two with bitwise AND/OR.

We convey with the logical AND/OR on the basis of input data “which could be of integer type
conditions converted from two or more, number of chars in a variable,” returning integer values which
are zero (false) and nonzero (true). However, focusing on single bit chars compared to integers from
one layer of bitwise-paired projection to another, requires the use of bitwise operators „&‟ for AND,
„|‟ for OR, in bit fields as low level operators for 1-bit flags, retiring 1 or 0 Boolean values. The „&&‟
and „||‟ usage for both logical and bitwise operations are applicable, since in this case, we are
pairwising the bit chars, or, „&, &‟ing „|, |‟ing them, depending on, in which programming language
we implement the algorithm, thus evaluating their converted input sequences of data. To implement
these bitwise projections per logical input condition i.e., “pairs of bits are ORed and ANDed, thereby
evaluated for a concatenation procedure according to Fig. A.2,” we follow the steps from our
contextual algorithmic flow. This flow targets on an efficient and fixed size compression product for
x86 machines. The flow constitutes FBAR methods and its algorithmic components as follows:

A.1.1.3 Methods and components

The definition of FBAR methods can be distinguished into the Fuzzy Binary AND/OR constituents‟
methods (or logic constructor methods), and memory flag methods for components addressing data
reconstruction:

Memory System

Convert string character to binary select bit pairs from head to tail of the binary sequence apply AND-OR logic to each
pair, thus an encoded message is generated select bit pairs from head to tail of the encoded message raise 1-bit flags for
those that are impure and those with unique polarities (from table A.5) compress impure and pure pairs in form of single
bits, thus a minimum compression based on FBAR achieved further compression requires complex memory mappings
and sub-bit projections ultimate compression requires sub-bit projections onto refreshable signals in a fuzzy qubit register
 decompress data by dereferencing flags plus 1-bit insertion per compressed bit reverse sequence from the stack for
proper binary sequence equivalent to ASCII characters decode message by recalling bit position and polarities between
the previously ANDed and ORed data (based on Table A.5 and memory contents) or, a static recall of bits based on the bit flag
hypercube model (like Table A.6) decompress data by converting binary to ASCII obtaining the original message.

Legend: stands for “revert back to previous state” otherwise, precede the next step; stands for “continue with the next step”

Table A.1: A finite flow table on the FBAR algorithmic implementation.

For our step-by-step experiment addressing the above flow, we devised a set of alternative hypotheses
with their null hypotheses testing our algorithm as specified in the following table. For conducting
each of them, a question was also formulated:

H.1- Input of any data type to the FBAR‟s 1st layer, results in binary representing the same original content.
H.10- The conversion of any data type to binary is impractical.
Directionality over H.1- Input of ASCII data to the FBAR algorithm, results in binary representing the same original
content.
Q.1- Is the conversion of any FBAR input data to binary possible?

H.2- A sequence of pairwise selection of binary to the FBAR‟s 2nd layer, when a parallel and-or applied, results in an
encoded binary message in the 3rd layer.
H.20- The pairwise selection and and-or operation on a binary sequence, is firstly H.1 dependent, and secondly,
irreversible for data reconstruction even in case of implementation. (Or, backtracking to the original message is
impractical.)
Directionality over H.2- A pairwise selection of bits from a binary sequence and applying and-or logic on every pair,
results in a definitive encoded message.
Q.2- Is it possible to conduct the pairwise selection and and-or application on a converted data? If conducted, is the
process reversible?

H.3- A sequence of pure and impure pairwise selection of binary to the FBAR‟s 3rd layer, once detected and replaced
with single bits, results in a compressed message in layer 4.
H.30- The pure and impure pairwise selection and compression to single bits on a binary, is firstly H.1 and H.2
dependent, and secondly, irreversible for data reconstruction even in case of implementation.
Directionality over H.3- A pure and impure pairwise selection of bits from a binary sequence and compressing every
pair to either 0 or 1 logic, considering impure pairs with single bit flags, results in a compressed message.
Q.3- Is it possible to conduct a pure and impure pairwise selection, thereby its compression into single bits on an
encoded data from the previous layer? If conducted, is the process reversible?

H.4- A sequence of single bit flags representing compressed data in FBAR‟s 4th layer, once reused adjacent to other
purely compressed 1-bit data, results in a decompressed message from layer 4.
H.40- The sequential recall and reuse of bit flags from memory/grid, is firstly H.1, H.2 and H.3 dependent, and
secondly, unachievable for an identical data reconstruction even in case of implementation.
Directionality over H.4- Proper setup and storage of 1-bit flags before reaching layer 4 compression in memory.
Q.4- Is it possible to conduct a pure and impure bit sequence reconstruction, thereby a decompression of multiple bits
from the final compression layer? If conducted, is the output data identical to its original?

H.5- A sequence of compressed data in form of H.3, when equipartitioned and paged into memory or confined signals
in information space/grid, results in a maximum compression possible > 87.5% in layer 4.
H.50- The compression of any data length into one single bit is firstly H.1, H.2 and H.3 dependent, and secondly,
unmanageable and irreversible for data reconstruction like H.4, even in case of implementation.
Directionality over H.5- A simulation or minimum conduction of this model by introducing the upper limits of FBAR
as FQAR via signal processing and quantum memory architecture.
Q.5- Is it possible to integrate in scale the algorithm to an ultimate single-bit compression? If implemented/ simulated,
is the process manageable and reversible for data reconstruction?

 Table A.2: The FBAR systematic hypotheses

We tested hypotheses H.1-H.4 with a „dry run‟ for the algorithmic implementation. So this experiment
would examine the algorithm‟s code with mathematical compression values. Hypothesis H.5,
however, holds good in upgrading the technique for future quantum computers. Apart from H.5, all the
above hypotheses are testable through feasible experimentation, since they contain a testable logic in
binary, fuzzy and quantum according to Rel. (1) and Table A.1 flow.

Let X contain our FBAR technique as well as a selection of state-of-the-art compression techniques. Furthermore, let Y
contain a representative sample of documents of different type. Therefore,

H.6- A difference exists in the performances of the techniques in X as measured on Y by computation rate and space
savings.
Directionality over H.6- Perform the test using (non-)parametric methods, and compare the difference.
H.60- The difference in performances of the techniques in X as measured on Y by computation rate and space savings is
zero.

We have further addressed the following hypothesis using Freidman‟s test to evaluate our algorithm
compared to other LDC algorithms used today, by extending Table A.2 to a final hypothesis for LDC
comparisons (H.6). Hypothesis H.6 has been covered in Appdx. B, with a relevant preamble given to it
in §A.4. To implement the flow from Table A.1, we had to implement the hypotheses relative to their
nulls, putting each null into perspective of our implementation. As we can see, each hypothesis
supports its subsequent, and thus consistent with the implementation to reject its null. If a null
hypothesis is not rejected or tackled with, the algorithm is of an unsuccessful application.

Of course, this was a risk that we needed to take into consideration for our implementation. Since
we have had noticed that FBAR logic is unequivocally solid in its representation(s), we thereby
simulated its objectives for an LDD implementation. The reason is it required an extensive number of
lines of code to program, converting its 4D grid model „if-else‟ conditions, to a fully-correct readable
memory grid (a file), which is static in size, and portable from one computer to another.

Obviously, planning this risk in its infancy is totally eliminated from the list of risks, since FBAR
is provable, not only on its conceptual, also, on its implemental level, whereas the latter requires more
time and manpower to fully implement the algorithm covering LDCs of 87.5 % compression on x86
machines. The current version, however, guarantees 50% pure compression with a default sequencer
of „1‟, to manipulate its values through a grid file (the portable memory grid), containing
self-embedded 1-bit flags. This sequencer is later known as e.g., 1 = „1111…1‟ pure binary for the
whole number of available characters of the original file, before its compression (discussed in §
A.1.2.3). We first begin with the improved version of Table A.1‟s flow, presented in form of a short
flow pseudocode as follows:

Pseudocode main sample: an FBAR lossless data compression and decompression

1. WHILE reading INPUT CHARACTERS from STRING DO
2. STRING = 8 BIN CHARACTERS
3. BITWISE AND 1st 2 BIN CHARACTERS, 3rd 2 BIN CHARACTERS
4. BITWISE OR 2nd 2 BIN CHARACTERS, 4th 2 BIN CHARACTERS
5. OUTPUT STRING = 4 BIN CHARACTERS for AND + 4 BIN CHARACTERS for OR
6. IF STRING OUTPUT = impure ‘01’ OR ‘10’ THEN
7. STORE 1-bit flag for ‘01’
8. STORE 1-bit flag for ‘10’
9. ELSE
10. STORE 1-bit flag for ‘00’
11. STORE 1-bit flag for ‘11’
12. END of IF
13. CLOSE 1st pair of BIN CHARACTERS = rightmost CHARACTER of the pair
14. GOTO IF for this new condition
15. OUTPUT STRING = rightmost 1st BIN CHARACTER
16. CLOSE 2nd pair of BIN CHARACTERS = rightmost CHARACTER of the pair
17. GOTO IF for this new condition
18. OUTPUT STRING = rightmost 2nd BIN CHARACTER
19. CLOSE 3rd pair of BIN CHARACTERS = rightmost CHARACTER of the pair
20. GOTO IF for this new condition
21. OUTPUT STRING = rightmost 3rd BIN CHARACTER
22. CLOSE 4th pair of BIN CHARACTERS = rightmost CHARACTER of the pair
23. GOTO IF for this new condition
24. OUTPUT STRING = rightmost 4th BIN CHARACTER
25. CONCATINATE STRINGS = 1st + 2nd + 3rd + 4th single BIN CHARACTERS
26. OUTPUT STRING = 2 BIN CHARACETRS for AND + 2 BIN CHARACTERS for OR
27. CONTINUE CLOSE on 4 BIN CHARACTERS
28. ...
29. OUTPUT STRING = 1 BIN CHARACTER
30. STORE STRING in FILE as COMPRESSED RESULT
31. STORE 8x1-bit FLAGS as single ASCII CHARACTERS representing STRING COMPRESSED RESULT

in FILE
32. END of WHILE
33. WHILE reading COMPRESSED FILE for DECOMPRESSION DO
34. COMPARE 1-bit FLAGS from FILE with 1-bit FLAGS in translation table or DICTIONARY
35. RETURN 2 4x1 bit FLAGS from DICTIONARY as 2 or more NEW CHARACTERS
36. NEW CHARACTER = OLD CHARACTER of ORIGINAL FILE
37. OUTPUT STRING = STRING + NEW CHARACTER
38. OUTPUT STRING = ORIGINAL CHARACTER
39. END of WHILE

As we can see, the main pseudocode begins with compressing data by ANDing and ORing while
raising 1-bit flags in a bit-field, which aims to avoid extraneous memory space allocation(s). As we
shall see later, this falls into bit fields vs. bit arrays category, whereby the author, beyond the both
coding concepts, discovered a self-embedded 41-bit flags approach in a new grid model (later
discussed in § A.1.2). The grid model is part of the compressed file, a product to be compared with the
„dictionary coder/decoder‟ for lossless decompression purposes. The program compares the flags
within a set of rows as self-embedded flag addresses with the ones in the translation table as the main
component of the dictionary. Once a flag comparison is done, then data reconstruction in the new file
begins by writing character-by-character for each newly-constructed row into it, identical to the

original file which is now unavailable. These relevant functions are defined within the
„DECOMPRESSION‟ subroutine as an interpreter of the program for the growing string i.e. „OUTPUT
STRING = STRING + NEW CHARACTER‟ from line # 37 of the pseudocode. The implementation of the
latter is pointed out in the range of line # 33 to 39. Gradually, the bitwise conversions over unsigned
characters as „BIN CHARACTERS‟ (in case of programming in C), are compressed when packing the
characters in terms of their closures i.e. the ending state of fuzzy or logic within each pair of impure
10, or 01, and pure 11, or 00. Meaning that, the CLOSE of a pair 01 results in high state logic or „1‟, and
„10‟ results in low state „0‟, for 11, a „1‟, and for „00‟ a „0‟. In C, this could be done by using the
mask() function, shifting characters as our „BIN CHARACTERS‟ from right to left „<<‟ and from left to
right „>>‟ for a specific character. Once we attain the right character as the rightmost character for each
pair, we output „STRING = rightmost BIN CHARACTER‟. In continue, once we reiterate the if condition
by visitng and revisitng its conditions after each CLOSE made on „BIN CHARACTERS‟ for each LDC
layer (line # 13 to 28), we then could say, a compression prior to the encoding levels (line # 2 to 12)
has occurred. In the following subsections, we show the collapsed versions of the current pseudocode:

 The basic collapsed version: Methods as the overall structure of the code (current section).
 The expanded collapsed version: Functions and arguments as the modular structure of the

code (§ A.1.2.1).
 The specialized collapsed version: Specific conditions as the nodal structure of the code (§§

A.2 and A.3).

The “basic collapsed version” highlights the methods like the above pseudocode; the “expanded
collapsed version”, highlights functions and arguments; finally, the “specific conditions of the
collapsed version” or “specialized collapsed version”, highlights if-else and counting conditions on
loops and nested loops in the program, coded in terms of e.g. If, For, Switch Cases, functions calls in
the code for an LDC and LDD subroutines. Showing this part later as other pseudocode versions is due
to establishing the facts of the returned lossless compression results by the algorithm in §§ A.2, A.3
and Appdx B. For achieving these results, we implemented the relevant mathematical operations via
loops, conditioning memory data transactions and management elements over user‟s I/O data.

In continue, by recalling the revertive states coming from Table A.1‟s flow (denoted by a), is
subjective to simulate the quantum hardware for future applications that supports maximum
compressions of FBAR, via signal processing and quantum information techniques (Appdx. C).
However, this is not essential when we focus on the basic four layers of FBAR, producing a
compression ratio of fixed values below and greater than 2:1. The current experiment focuses on the
functionality of the technique itself i.e., the FBAR‟s logic model.

Main function(s) Helper operator: Comment Operates on… : Comment Specific task

Len() For Loop: Demarcate a series limit for
function‟s iteration by an integer

txt: this is a text as string;
bin: this is a binary sequence

Returns the precise length of a
string or binary

Mid(),
Left(),
Right()

For Loop: Demarcate a series limit for
function‟s iteration by an integer

txt: this is a text as string;
bin: this is a binary sequence

Locates a specific nth
character of the string or
binary from head or tail
sequence for encoding
purposes.

LongToBinary() Asc(strChar): this is a helper function with
a conversion operation over a string
character

strChar: this is a string character
equivalent is Chr$(#), where # is a
decimal number.

Converts long value into a
binary string.

BinaryPair(),
Cat()

& or +: Concatenation bin: this is a binary sequence Displays binary pairs or duals
when necessary

BinaryAND(),
BinaryOR()

Bitwise AND: And logic,
Bitwise OR: And logic

bin: this is a binary sequence AND/OR two binary values
or bits

Replace()

& or +: Concatenation;
/: high level polarity or 1 closure, or,

impure 01 logic;
\: low level polarity or 0 closure, or, impure

10 logic

strChar: this is a string character
bin: this is a binary sequence

Replaces a non-binary or
binary character with an
ASCII otherwise binary
character

Rev() /: high level polarity or 1 closure, or,
impure 01 logic becomes

\: low level polarity or 0 closure, or, impure
10 logic becomes the former

txt: this is a text as string;
bin: this is a binary sequence

Reverses a sequence of string
or binary for special
projections (mostly binary in
form of pairs and nibbles)

varPtr() Addr: Memory address in form of e.g. base
address 0x0 flag paging

regA, regB: memory register A
contains bit position and binary (key
identifier); memory register B is for
bit polarity and bit address

A variable pointer gets a
pointer to memory variable
that allocated position for a
char or a single bit if any

DeRef() Case flag #: Apply case for a function‟s
specific polarity flag (#: 0-to-8 possible

polarities or a total of 9 cases)

varPtr(regA) and varPtr(regB)
Dereferences data to allow
memory content read for
decompression

Table A.3: The main functions in .Net or VB for an FBAR algorithmic simulation.

We have elicited from the findings on FBAR [1], the above and thereby the following programmable
functions in coding theory, adaptive to the data structure of FBAR for basic to maximal compressions.

The transformation of FBAR to its highest levels of compression within its four-layer encodings
is done via qubit registers. In this regard, a seclusive proposal in § 3.5.1 [2], is given for their new
hardware design principles. The design in theory, with its practical aspects of an n-fqubit register, is
briefly outlined in Appx. C. In the classical version on current computers (x86 machines), however,
the „main challenge‟ is to implement the FBAR‟s 4th layer projections commencing with an 8-bit to
5-bit iterative compression, which yields a 37.5% compression. It is evident with a fixed sequencer of
either 1 or 0, representing 11111111, and 0000000 respectively. Therefore, it would generate an 8-bit
to 4-bit compression on x86 machines, denoting a 50% pure „space savings‟. This fact is already
elucidated, when properly programmed according to FBAR pseudocodes. Further challenges meet
those compression values generated from 2n:1 ratios for n > 3 hypothetical values.

Coded function(s) Helper operator: Comment Operates on… : Comment Specific task

length() For Loop: In the loop, limit for function‟s
iteration by a length variable as Integer

txt: this is a text as string;
bin: this is a binary chars length

Returns the precise length of a
string or binary chars

mask() For Loop: In the loop, limit input string
iteration by a left shift „<<‟ or right shift
„>>‟ mask from one bit char to another.

Gives also: Ascii to BinChar: this is a
helper function with a conversion
operation over a string character

txt: this is a text as string;
bin: this is a binary char

Locates a specific nth
character of the string or
binary from head or tail
sequence for encoding
purposes or Char-to-BinChar
conversions

gridWrite() Addr: Memory grid address in form of e.g.
a base address 1x1x1x1 flag paging in a

portable file called “grid”
txt: this is a text string data
reconstructed as such in a new file

A file pointer writes the
matched characters for each
grid read (grid file), now
written to a new fie.

gridRead(),
deRef()

Case flag #: Apply case for a function‟s
specific 1x1x1x1 flag location in a

dictionary file called “dic”

Pointer *a and *b : dic file contains
bit position and binary (key
identifier); pointer is used for
similarities if spotted in grid row #
char pattern checks, between grid
file and dic contents.

Dereferences double or more
original chars from the
hardcoded 4x1-bit flag data
representing occupant chars
(position) to allow the right
char reconstruction.

Table A.4: Main functions coded in C for an x86 implementation or simulation.

The FBAR methods, arguments and function calls, as a whole, must obey the following pseudocode,
as presented earlier, which is the basic collapsed version. Here goes the basic version enabling the
execution of a fuzzyFlag constructor

1. WHILE maksing BIN CHARACTERS from BITWISE AND and BITWISE OR results DO
2. STRING = 8 BIN CHARACTERS
3. ASSIGN ‘0’ to a DOWN variable
4. ASSIGN ‘1’ to an UP variable
5. FLAG_STRING = UP + DOWN CHARACTERS
6. IF FLAG_STRING = (DOWN + UP + UP + DOWN)
7. CHARACTERS THEN
8. STRING = (MSB BIN CHARACTER + 5th BIT
9. CHARACTER) + (6th BIT CHARACTER + 2nd BIT
10. CHARACTER) + (7th BIT CHARACTER + 3rd BIT
11. CHARACTER) + (LSB BIN CHARACTER +
12. 4th BIT CHARACTER)
13. OUTPUT STRING = OLD 8 BIN CHARACTERS
14. ELSEIF CONTINUE CONCATINATE for other
15. FLAG_STRING UP + DOWN combinations
16. ...
17. END of IF
18. OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN
19. CHARACTERS = 1 ASCII CHARACTER
20. END of WHILE

Fig. A.3, shows the basic structure and the main components of the FBAR prototype. In this figure, the
system starts by receiving an input string for preliminary conversions as illustrated in Fig. A.2, starting
with and-or logic.

Fig. A.3: Structural components of the FBAR prototype with simplistic process states

The starting point is by choosing the relevant „menu option‟ executing one or more of the hypotheses
H.1-H.4:

1- the pairwise selection of bits after converting each character in sequence, the encoding of
AND/OR process,

2- high state and low state fuzzy binary conversions, and
3- the G file (grid file) commitment over compressed bits for an LDC by raising 41-bit znip (zero,

negate, impure and pure) flags,

are the main tasks of this prototype. These tasks are outlined as „conversion tools‟ in Fig. A.3, which
all is clearly explained in the following sections.

A.1.2 Lossless Data Processing

From the previous section we have studied the algorithmic components, logic and its architecture in
aim of proving the possibility of its implementation grounds on LDC and LDD inclusively. In this
section, we study FBAR‟s LDC process. The following figure (Fig. A.4) shows a „circular process‟ of
an FBAR LDC, a combination of the algorithmic design and program‟s process model, whereas the
latter comprises of functions, methods , etc. as propounded previously.

Fig A.4: The circular process of an FBAR LDC comprised of program design and memory

Fig. A.4 represents a „circular process‟ of an FBAR LDC with dictionary, a combination of the
algorithmic design and program‟s process model. The process comprises of program design and
memory transactions with the usage of relevant functions and methods coded in C.

FBAR LDC Prototype System

Menu
Options

LDC/LDD
Methods

LDC Subprogram

Reading
Functions

Char
Conversion

Tools

Wrirting
Functions

LDD Subprogram

Reading
Functions

Reverse
Conversion

Tools

Writing
Functions

Load document

Compressed document

Reconstruct original document

Original Data

AND/OR
Application

Fuzzy Decision
on Encoded

Data

Compressed
Data

Raise Flags in
Memory/Grid

Reference Flags
in Dictionary

Construct
Bitwise

Conditions

Decoded
Data

LDD

(Original Data)

Out

In

1

2

3

4

Fig. A.5. Basic process design of FBAR binary I/Os

To conduct a successful data decompression, we renounce bit values based on a predictive pattern of
bits in a memory structure. This occurs subsequent to the double-dashed circle process component in
Fig. A.4. We constructed a „char and binary‟ LDC reference table to satisfy these conditions during the
compression phase of the algorithm. The conditional output per character input subsists on relevant
bit-flags and extended bits that are allocated in the memory.

Fig A.6: The FBAR data compression and decompression model for two characters „a‟ and „b‟.

The allocation, read/write and reference process is shown in Fig. A.5, representing three major
procedures to reconstruct data during an LDD. The process design and the development of the
algorithm are illustrated in Fig. A.5. As illustrated in this figure, an FBAR dictionary consists of a
translation table (later inducted as Table A.7), and a reference table (later inducted as Table A.8), both
building a static size of flag information, later used by the program‟s interpreter for char comparisons.
The allocation of the raised single bits for the minimum compression phase of FBAR is shown in Fig.
A.4, which corresponds to Fig. A.6 for an encoding phase of the algorithm with raised flags to the

0000

1011

After LIFO, a
reversed form of
character is obtained

01100010

ANDed

ORed

We reverse the
reversed result via
StrReverse function
over binary...

0000

1101

0000

1101

00

1/

IN

OUT

IN OUT

0000

1011

ANDed

ORed

IN OUT
00

1/

Pattern match dependency giving out the
expected original data for Decompression

OUT

IN

01100001

Data Compression Zone

Data Compression Zone

Simplified encode

0000 1111+

AND OR
Polarity

orientation
identifier

ASCII # 15 not printable, we encode as
e.g. Arial, Char # 166 or ¦ and store this
as a 0-Byte filename

Rev(bin)= (b')'

Rev(bin)= (a')'
a'

b'

a

b

ab

f (/\,\/)

≡

≡

f (/\,\/)

Original

Document

Source code

Decompressed

File

Compressed

File

 Chars
In

Compressed Chars
Out

Grid File

Compile + Execute

LDD

Raise Flags for
Compressed Chars
Out

Chars
Out

Compression and

Decompression

Subroutines

Access;
Compare

Size
is static

Read

FBAR

Dictionary

Scan char
index

Compile + Execute

LDC

 Start Halt

ASCII # 15 is not printable; we encode it
as e.g. Arial, Char # 166 or | and hardcode
this in the program‟s body.

The rightmost ORed pure pair „11‟ is the
result of impure /‟s closing state, which is
1 logic indicating a pure „11‟ when
decompressed. It is the flag that makes the
program to recall that the left bit of the
pair is in fact 0 building „01‟ or „/‟.

input binary sequences on chars „a‟ and „b‟. This process basically implies to the lowest layers of
FBAR compression as exemplified and discussed as follows:

Lowest layers of compression: As we see, certain 1-bitflags raised in a „reference table‟ (§ A.1.2), for
encoding data, Fig. 7‟s I/O products, will comply with the following flag and polarity settings table:

Type no. Polarity set Implies to 1-bit flag

0 ↓↑↑↓ most chars f0=1bit
1 ↓↓↓↑ letters f1=1bit
2 ↓↑↓↓ letters f2=1bit
3
4
5
6
7
8

↓↑↓↑

↓↑↑↑

↓↓↑↑

↓↓↓↑, ↓↑↑↓, …

letters
letters
few letters
dual chars
all 2bit binary 10
all 2bit binary 01

f3=1bit
f4=1bit
f5=1bit
f6=1bit
f7=1bit
f8=1bit

Table A.5. Bit flag polarity combinations on bit pairs and nibbles during compression

The main flags are # 0 to 6 polarity flags. The remaining flags are concatenated and thus raised in the
grid file. Programmatically, one could select relevant bit pairs based on these tables to reconstruct data
for lower levels of compression inclusive of maximum LDCs. Once bitwise combinations of the
reference table (A.7) are confronted within LDD program code, bit access for reconstruction between
the grid field and compressed file is enabled. The above grid, however, is used and customized for any
level of compression, either of lower layers of 4th up to its topmost possible LDC product.

A lower level encoding: For example, to reconstruct a character with decimal # 64, as “@”, based on
a raised flag, say, flag # 0 (neutral or ignorable), the equivalent of the character‟s binary would also be
01000000. The character‟s compressed version through FBAR using its flow Table A.1, or its model
(Fig. A.6), is “00 0”, denoting that the first two zeroes are pure and give 0000, whereas the second
pair “ 0” is indeed impure. The latter‟s true face is “10 0”, indicating flag # 7. Thus, the flag bit
dereferences noise as 10 during decompression, and for the remaining 0 in “ 0”, becomes 00. In total,
we then have, 0000 1000 = 2 nibbles = 8 bits ≡ 1 character. Now we establish the pattern based on flag
0 i.e. its polarity set, since we code our algorithm that every nibble is of a previously-ANDed type,
and next to it, from left to right of a binary sequence, the ORed type (consider them as odd and even
nibbles in a full binary sequence with a length > 8 bits). Hence, the ANDed version sits above as the
North Pole, and the ORed version sits below as the South Pole:

 0000
↓↑↑↓ = ≡ ,

 1000

Programmatically, one could conceive in terms of an equivalent pairwise selection from memory in a
sequential manner. Consider an accustomed byte to some char in terms of

ANDed 0000 1000 ORed ,

Equivalently, pairing the bits in terms of ≡

How to select and pair bits like above, is further elaborated in the following subsections

A.1.2.1 Function calls and arguments

So far, we have seen how FBAR method is defined in terms of logic constructs and their relevant
components. Now we want to find the argument list assigned to each method. Arguments are
presented in the same way for logic constructors and memory flag methods. The leading node element
for arguments is the fuzzyFlag() function, and thus those arguments that register „bin chars‟
inclusive of reading the contents of the constructive grid file with its „1-bit flag set comparator‟ for
their reconstruction at the LDD phase of the algorithm.

1. int fuzzyflag(void) {
2. packed_struct1.flag = 1;
3. packed_struct1.status = 3;
4. if(packed_struct1.flag == 1){
5. printf(" 1-bit; ");

6. }
7. return 0;
8. }

As we shall see by the end of this section, flags could be packed into efficient forms in terms of bit
fields (explanations given after Eq. (4)). More interestingly, such flags are also self-embedded when
we discover the right combinations of bits to manipulate pure data out of 1‟s as „1111…1‟ otherwise,
0‟s as „000…00‟, in terms of „original data‟, when we devise some „single bit combinatorial flag
tables‟ akin to the periodic table with unique identity per a set of char entries.

So far, we know how to assign conditions and extract relevant data for the algorithm‟s logic. The
combinations of bits to reconstruct the original characters, not only on the encryption level, on a
compression level perceptively unique in representations i.e. a 4D cube or hypercube model of flags,
makes all bitwise conversions from one layer of LDC to another reliably precise prior to any
probabilistic pattern behavior. To further engage with our low-level conversions leaning toward
high-level conversions, we implement certain functions defining our problem specific issues on LDC
representations in our code. For instance, the pairwise mask function, shifting bits to the right “>>”
otherwise to the left “<<”, could do this encoding, i.e. a “bit registry process‟ implemented in terms of
the following portion of the pseudocode

1. #include <stdio.h>
2. #include <string.h>
3. #include <stdlib.h>

4. #include <limits.h>
5. //...
6. void showBits(unsigned char ch, int width)
7. {
8. unsigned char mask;;
9. for (mask = 1 << (width-1); mask; mask >>=1){
10. putchar(ch & mask ? '1' : '0');
11. }
12. }
13. void foo(const char *str)
14. {
15. FILE *fp, *gp; /* a file pointer when I/O read_write operations are used */
16. int i, j;
17. fp=fopen("C.txt","w");
18. gp=fopen("G.txt","w");
19. for (i = 0; str[i]; ++i)
20. {
21. unsigned char bit_and = 0;
22. unsigned char bit_or = 0;
23. printf("str[%2d] = '%c' %02X ", i, str[i], (unsigned)str[i]);
24. showBits(str[i], CHAR_BIT);
25. printf(" ; ");
26. for (j = 0; j < CHAR_BIT / 2; ++j){
27. int m = CHAR_BIT-2*j; /* {8, 6, 4, 2} */
28. int n = CHAR_BIT/2-j–1; /* {3, 2, 1, 0} */
29. unsigned char x =((unsigned char)str[i]>>(m-1)) & 1;
30. unsigned char y =((unsigned char)str[i]>>(m-2)) & 1;
31. bit_or |= (x | y) << n; /* apply bitwise AND */
32. bit_and |= (x & y) << n; /* apply bitwise OR */
33. }
34. }

Then we simply compress data by selecting the least significant bit (LSB) of the pairs per nibble,
denoting closure points. This could be registered by the fprintf() and putchar() for the
simulation grade, otherwise, str[i], which is an array of chars instantiated for the implementation,
during the bitwise AND/OR operation on variables bit_or and bit_and of the code (see „for loop‟,
line # 19, 31 and 32). From there, after converting the compressed binary to the compressed char,
thereby written to the grid, we thus compress both G and C files in parallel. To view the results of
these conversions, resulting in a compression, we type the following lines of code:

1. showBits(bit_and, 2); /* show bits in a total length of two from the ANDed column:
an LSB selection */

2. showBits(bit_and, 1); /* show bits in a total length of two from the ANDed column:
an LSB selection */

3. putchar('\n');
4. fprintf(fp,"\n");

One could, however, comment out or omit the lines of code that merely show bits indeed via
showBits() function. The reason in using the function putchar and the argument stdout, are for
simulation purposes only, displaying results on the screen to the user/programmer. These are coded for
testing small samples only, such as countable strings with a custom buffer limit = 402 in the program.
Therefore, stdout in showing the process for large tests is inappropriate and overly time consuming.
Hence, without it, permits the program for its implementation to conduct relevant computations and

processing with acceptable CPU time scenarios. The subsequent pseudocode represents the equivalent
version of the actual code programmed above as an encoding solution in our algorithm:

Pseudocode sample I: a lossless data encoder

1. CREATE a FILE POINTER for READ_WRITE operations
2. WHILE reading CHARACTER by CHARACTER DO
3. OUTPUT CHARACTER as temporary BIN CHARACTERS
4. READ BIN CHARACTERS
5. NEW STRING = BIN CHARACTERS
6. BITWISE AND(1st2 CHARACTERS of STRING from MSB to LSB)
7. BITWISE OR (2nd2 CHARACTERS of STRING from MSB to LSB)
8. BITWISE AND(3rd2 CHARACTERS of STRING from MSB to LSB)
9. BITWISE OR (4th2 CHARACTERS of STRING from MSB to LSB)
10. IF 1st2 CHARACTERS in STRING is ‘01’ THEN
11. OUTPUT rightmost CHARACTER of this pair = ‘1’
12. ELSEIF 1st2 CHARACTERS in STRING is ‘10’ THEN
13. OUTPUT rightmost CHARACTER of this pair = ‘0’
14. ELSEIF 1st2 CHARACTERS in STRING is ‘00’ THEN
15. OUTPUT rightmost CHARACTER of this pair = ‘0’
16. ELSE
17. OUTPUT rightmost CHARACTER of this pair = ‘1’
18. END of IF
19. CONTINUE SORTING 2nd2 CHARACTERS, 3rd2 CHARACTERS,
20. 4th2 CHARACTERS in STRING like before
21. OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN
22. CHARACTERS = 1 ASCII CHARACTER
23. END of WHILE

As we can see, we simply compress data by selecting the least significant bit (LSB) of the pairs per
nibble denoting closure points. This could be registered after applying bitwise and-or, and from there,
after converting from compressed binary to compressed char, written to the G and C files in parallel.
The simplified form of the „if statement‟ with its „continuing course on sorting binary chars‟ in the
pseudocode, would be

1. ...
2. SHIFT from MSB to 2nd rightmost CHARACTER in (
3. 1st2 CHARACTERS, 2nd2 CHARACTERS,
4. 3rd2 CHARACTERS, 4th2 CHARACTERS)
5. OUTPUT 2nd rightmost CHARACTER from (1st2 CHARACTERS, 2nd2 CHARACTERS, 3rd2
6. CHARACTERS, 4th2 CHARACTERS)
7. ...

This results in, for every 8 bits, a 4bit output, and from there, 2bits, and finally, a 1bit output char. We
pack each 81bit output into 1 ASCII char equivalent as our compressed version. The subsequent
pseudocode represents what is necessary to code for an LDD, as a subroutine to the above code,
recalling compressed values stored in char:

Pseudocode sample II: a lossless data decoder

21. WHILE maksing BIN CHARACTERS from BITWISE AND and BITWISE OR results DO
22. STRING = 8 BIN CHARACTERS
23. ASSIGN ‘0’ to a DOWN variable
24. ASSIGN ‘1’ to an UP variable
25. FLAG_STRING = UP + DOWN CHARACTERS
26. IF FLAG_STRING = (DOWN + UP + UP + DOWN)
27. CHARACTERS THEN
28. STRING = (MSB BIN CHARACTER + 5th BIT
29. CHARACTER) + (6th BIT CHARACTER + 2nd BIT
30. CHARACTER) + (7th BIT CHARACTER + 3rd BIT
31. CHARACTER) + (LSB BIN CHARACTER +
32. 4th BIT CHARACTER)
33. OUTPUT STRING = OLD 8 BIN CHARACTERS
34. ELSEIF CONTINUE CONCATINATE for other
35. FLAG_STRING UP + DOWN combinations
36. ...
37. END of IF
38. OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN
39. CHARACTERS = 1 ASCII CHARACTER
40. END of WHILE

So, for „@‟ we reconstruct 0001 0000. Hence, during the decompression phase, having this flag
available makes the algorithm to reconstruct data by tracing the arrows‟ directions in the polarities set.
Interestingly, the “@” char is also a dual character (it behaves as such), and could be raised by flag #
6 due to giving the same result for its decompressed version with different polarity combinations. But
for reasons needed to occupy fewer bits, even in form of 1-bit flags, we reconstruct data by
reciprocating with the grid file, cross-referencing with distinct bit groups, building up Cr values 2:1
compression.

A.1.2 The grid model, static versus dynamic allocations

Fig. A.7: The 4D logic constructor grid with input proving a successful superdense technique.

A.1.2.1 A robust static solution to LDDs

The main focus for reconstructing data, is considering negation flags # 1 to 4, pure and impure flags 1
to 4, ORed in combination for each compressed character in the C file. A comparator as the FBAR
program subroutine compares results between the static table as a point of reference with the dynamic
component, C file, and the semi-dynamic component, the G file. The process relationships have been
illustrated in Figs. A.4, A.5. From there, a compression of 4-bits per compressed chars in the final
layers as a 1-bit representative is performed. In total, 5 bits for each string entry identified for a
decompression. To every unique combination of pairs made by the comparator, a specific 1 bit flag is
allocated in the fixed size memory chunk with a specific address like from the portable compressed
file, C. This phase of LDC denotes a 5-6 bit compression, giving an average anticipation of 34 to 36%
space savings for a 95 random string entries. The allocation of single bits raised in the memory, and
from there, to the G file for each character per memory chunk is computed by the following equation:

 in

2

m
C m G G , G 64 K, (2)

where m is the number of string characters inputted to the program for a compression. Once
compressed, the length of the grid file G is summed with the compressed m, equal to m/2. The
default value of 64K comes from the three dimensions representing a char representative for each
combination set of ip and zn as specified above. This default value is computed based on the possible
number of grid outcomes, Eq. (2), quite convenient for a 16-bit microprocessor to directly access and
process the G file via a set of hardcoded „if else statements‟ on flags subroutine in our code. As we
shall later observe, to conduct an FBAR LDD, data access of the compressed file is in 65,536 rows,
which is compatible with Excel 97-2003‟s maximum number of spreadsheet rows. The expectancy of
lower sub-layers of the 4th layer would decrease the number of possible combinations of 14-bit flags,
making the cube denser than the current version.

The expectancy of lower sub-layers of the 4th layer would decrease the number of possible
combinations of 14-bit flags, making the cube denser than the current version. This is due to having
more bits available to decompress from those sub-layers of the algorithm. But in this case, the total
number of possible combinations per dimension is fixed, or

 4 4

1 1 2i i i ich ch ch ch
 xyG ip zn =216= 65,536

possible grid outcomes (3)

Reference to Tables
A.6 and A.7

A 4-byte string sample

A 2-byte output

A 4-byte identical output

where the grid model is hereby shown in Fig. A.7. Perceivably, in Eq. (3), out of the two xy bit flag
field dimensions, we create a four dimensional hypercube. So, for every arbitrary input document, half
of the size of that document is created between the four fixed dimensions of ip x vector for char chi , ip
y vector for its neighboring char chi+1, and zn xy vector for both chars respectively. The zn and ip
vector dimensions, each, are presented in separate rows in a list, mounting 16 indexed 4-bit flag sets
correspondingly. The coverage of the grid is to concurrently cover all Unicode chars, even
non-printable char scenarios for any data type.

The main rule for each row of entry is to always maintain a 24 and-or bit encoding, and a < 8 bit
data compression. In addition, memory transactions are abstracted in Figure 7, as double line circles of
the process. The middle phase of the algorithm is shown as a double-dashed circle process component.
This component should eventually substantiate that, Compressed Data <, , …< Original Data.
The main contribution of this process is in two parts: the first part is where AND/OR logic is applied to
the input data, thereby fuzzy decisions i.e. closure points of logic on the pair products 01, 11, 10, 00,
leading to 1, 1, 0 and 0 state logic, respectively. The second part, however, is where flags are raised
and memory transactions occur after dictionary index establishment of data, reference point and
bitwise data comparisons. The comparisons are executed through „if and else‟ statement conditions for
every combination of single bits, identified in terms of: bits of original data, flag bits denoting bit
position and array index. Subsequently, the radical phase of processing data coincides with parallel
reconstruction of data from the dictionary coder per data sequence. This is the decoding phase of the
process, leading to a lossless data decompression (LDD). The LDD holds values identical to the
original data, i.e. a fully-reconstructed data, which denotes an LDC cyclic behavior. It is now obvious
to substantiate the cycle in terms of

At t1, (Original Data) = (C) = LDD = Original Data,

At t2 static/dynamic, (LDD) = (C) = Original Data, applicable to ti cyclically, where i > 1. (4)

The function result in Eq. (4), is a compressed data C as an FBAR compression conducted at an
initial time session t1, such that t1 > a subsequent time session t2 , performing an FBAR LDC. The
primed function , engages data decompression to the extent of time sessions‟ difference t = t2 – t1,
for all static and dynamic memory accesses. The conversions of functions from one data form to
another, preserves this cycle by engaging the use of 1-bit flags. The use of a flag, or sentinel, in FBAR
cases, is a customized type of flag, set to either true or false i.e., Boolean data type for any variable. Its
sole purpose is to indicate when a key point in the LDC processing has been reached. This includes
things like breaking out of a loop, satisfying a pairwise data compression, being able to access a
resource or the G file, its if-else decision tree by the interpreter for a char reconstruction, sharing
between threads, and string entry binary combination according to FBAR‟s LDC Tables A.7 and A.8.

A.1.2.2 A dynamic allocation to LDDs

In C/C++, Boolean variables consume 1 byte of memory. But all that is really needed is 1 bit: 0 means
false, 1 means true. Many times, especially when dealing with graphics, rather than consuming a
whole byte of memory for each Boolean, several Booleans are combined into a single byte of memory,
where each Boolean uses a different bit in the byte. These are then referred to as bit flags, or bit fields.

A customized version of a bit flag is –1, and when set to true, indicates that this bit flag negates all
possible combinations in terms of „down down down down‟ polarity set, compared to flag # 0 to 6,
which each have at least two opposing directions between AND and OR poles of the double nibble
binary. In Table A.8, one could substitute flags with extended bits for –1 to have more compressed bits
referenced in a 1x96 memory block.

Fig. A.8: The corresponding 96-bit-block memory in use for the fixed-size reference table.

Char Addr.

1
2
3
4
5
6
7
8

…
94
95
96

Flag 1 Flag 2

0 8
4 8
3
3 7
2 2
3 3
3 8
0 7

…
2
6
0

1 1 1 … 1 1

Flags 0 and 8
raised by a 1-bit
flag at address # 1

The polarity set has its own two unique flags as a customized type: a post-flag 9 and –1, whereas the
latter is user customized since the negation of other types physical space (memory) is the extension of
their polarities. Hence, ~{1,2,3,4,5,6,7,8} = {–1, 9}, where for a given combination, the remaining
polarity combinations become a subset of type 6. In this case, this analogy of preset and extended bit
combinations, makes {–1, 9} 6 a tautology. Thus, ~ {9} = {1, 2, 3, 4, 5, 6, 7, 8} – {↓↓↑↓} and ~{–1}
= {1, 2, 3, 4, 5, 6, 7, 8} – {↓↓↓↓}, from the memory chunk. Contemplatively, as if ~ {1} and ~ {9} are
symmetric, and are the complements to the whole byte enumeration value closing with the 8th bit.
Now, the 9th bit extension, or its symmetry, the –1st preset upon {1, 2, 3, 4, 5, 6, 7, 8}, is the
complement to a possible byte closing with the 8th bit, and starting with the 1st bit, without
enumeration substitutes. This is how we envisage the location of flags –1 and 9 after a full byte
allocation for a total set of flag combinations.

The 0 bit case not included in the set is the 0 flag type, and one could conceive this as an easy bit
or a preset flag occupying no space. The reason is that the table‟s attribute (the Flag 1 and 2 columns),
gives us a range of possible combinations‟ representative for polarity indicators i.e. 1 to 6 inclusive of
probable impure flag conditions to be raised when deemed necessary. These flags are 7 and 8, and are
unique flags adjacent to –1 and 9, respectively. If we leave any space of the full attribute empty, in this
case, flag # 0, then without worrying about how much space is allocated in the 96 memory addresses,
we ignore it as a space occupier since this is the only row that when not present compared to the
remaining, denotes the excluded flag type amongst other flags. So, the pre-setup of this flag is obvious
in bit count during loops defining possible combinations of the 1-bit flags and char address attributes.

The following is an example, using an 8-bit unsigned integer to store 8 flags which relay to the

„bit filed‟ of „bit flag‟ concept in C language. Our approach, if used in terms of „bit arrays‟, we would

just encode rather than compress data since bit arrays consume at least 1 full byte of memory for a

single Boolean variable. We shall later state that a bit field approach, however, is necessary to preserve

total bits allocated for char entries in Table A.8. A bit field is distinguished from a bit array, in that, the

latter is used to store a large set of bits indexed by integers and is often wider than any integral type

supported by the language. Bit fields, on the other hand, typically fit within a machine word, and the

denotation of bits is independent of their numerical index. Now, let‟s try the bit field approach and

thereby, bit array for the sake of its usefulness to a set of encodings in aim of simulating the

correctness of FBAR table LDC I/Os:

 unsigned char options;

The possible options, that can be turned on or off independently are declared in an enum like this e.g.,
just using some arbitrary identifiers on the left, but exact identifiers for FBAR polarities set on the right:

Note how each option is given a specific value. These values are carefully picked to match each bit in
the 8-bit variable:

1
2
3
4
5
6
7
8

// 0x01 == 1 == "00000001"
// 0x02 == 2 == "00000010"
// 0x04 == 4 == "00000100"
// 0x08 == 8 == "00001000"
// 0x10 == 16 == "00010000"
// 0x20 == 32 == "00100000"
// 0x40 == 64 == "01000000"
// 0x80 == 128 == "10000000"

Now, each flag can be set independently, by using the bitwise OR operator:

1
2

options = f1 | f4 | f7;
// options == 0x01 | 0x08 | 0x40 == "01001001"

And can be tested using the bitwise AND operator:

1
2
3
4
5
6
7
8
9

enum Options {
 f1 = 0x01,
 f2 = 0x02,
 f3 = 0x04,
 f4 = 0x08,
 f5 = 0x10,
 f6 = 0x20
 // ...
};

1
2

if (options & f1) {} // true
if (options & f4) {} // false

However, it is imperative to have further flag representative based on the fixed reference table, which
also comprises of extended if statements covering not only flags, representing compressed resultants
in a unique manner. Hence, we could hide the possible flag options and have just one raised bit value
within the nx96 memory blocks representing Table A.8 for a text input, column Input, via columns
Flag 1 and Flag 2, as follows:

1
2
3
4
5
6
7

// 0x96x01 == 1 == "00
// 0011"
// 0x96x02 == 2 == "00
// 000101"
// 0x96x03 == 3 == "00
// 001001"
// ... == ... == ...

wherein continue, supposing that all standard ASCII characters raised in the first count, we then get

1
2
3
4
5
6
7

// 0x96x01 == 1 == "11
// 11"
// 0x96x02 == 2 == "00
// 00"
// 0x96x03 == 3 == "00
// 00"
// ... == ... == ...

whereas its subsequent counts for other char combinations is inefficient for compressing data. This
approach solely relies on bit array lengths of minimally 8-bit lengths and maximally n8-bit blocks.

A.1.2.3 Maximum FBAR LDC ratios and their respective LDDs

In connection with the last presented maximal length ASCII memory block occupation, a definite
question pops into our minds is,

Q. Why not we create a pure bit-byte sequencer representing a whole block instead of occupying it
like the above code for the interpreter, before any char conversions?

A. When characters formulate words in, e.g., text, the distance gap between array indices increases
and thus filled up with 0‟s. This would be merely useful when characters are lined up in a certain
repetitive order, as laid out in the ASCII table in an ordered fashion of decimal. So, the mapping of our
flags into a plausible data compression using the „bit field‟ approach lays out in the memory fixed size
blocks of 96 bits partitioned into 8 bit words, with a cross pattern intersection bits looks as follows:

0 max compression layer of an ASCII character

0 0

0 0 0 0

0 0 0 0 0 0 0 0 primary base binary decompressed layer

1

1 1

1 1 1 1

1 1 1 1 1 1 1 1

In this tree, each block exhibits at least a set of flag combinations in terms of 1-bit flag representatives
without considering a full 8-bit word, in form of binary packets in memory. The packets preclude
fuzzy logic conditions for an LDD, retaining bits in a logic constructor grid for each primary binary
result. The primary result is in form of a pure base binary „00000000, otherwise 11111111‟. The
combinations of the grid obey impure and pure pairwise bit combinations, intersecting with negated
bit pairs relevant to each decompressed pure sequence, „00000000‟, otherwise, „11111111‟. This
contrasts with the version that investigates bits in form of a bit array, allocating a full 8-bit length
representation. The „bit array‟ approach is merely useful to check FBAR table for an LDD based on
equivalent encoded characters, „printable‟, when attaining the final levels of decompression. The
possible combinations of negation, impure and pure bit grid from Fig. A.7, are as follows:

ip: impure or pure pairwise bits‟
dimension:

where all combinations are presented after we logically AND them in our comparator when an LDD

zn: zero or negate pairwise
bits‟ dimension:

zzzz zzzn zznz znzz nzzz zznn znnz

nnzz nznz znzn

nzzn znnn nnnz nznn nnzn nnnn

iiii iiip iipi ipii piii iipp ippi ppii pipi

ipip piip ippp

pipp ppip pppi

phase is initiated. This gives us the idea of representing all occupying information in terms of a
sequencer of „1‟ representing 111…1 blocks by default to manipulate based on pure and impure flag
combinations. For instance, if we have a pure, pure, impure and pure set with 1 leftmost bit to negate,
a sequencer for a byte 11111111 generates 11110111 for the impure pure dimensions and after
negation, 00110111 which is equivalent to char „7‟ decoded in ASCII. This approach solely relying on
the grid file with a default sequencer of „1‟ for the whole data, gives a pure 50% LDC.

A self-embedded flag set method: The cross-section, of which the compressed characters are
recognized in the G file, is read by the „decompression subprogram‟, thereby compared with the C file
content and table for a successful data reconstruction. The entries are of the reference table, building
up to 95 standard ASCII chars. When the scanning of the G file entries reiterates for the next 96 char
block, considering char # 96 as a block double byte (BDB), the program then counts from 97 up to 191
and so on, traversing all 65,536 rows, “flag sets”, for an LDD. We use the BDB as an indicator, e.g., a
two-char „/a‟ representing the 1st full 96 byte allocation, „/b‟ for the 2nd and … The BDBs are
standard chars elicited from the ASCII table. The „if and for loop‟ on the LDD, for 65,536
possibilities, is the key to this process. This is later explicated in pseudocode at the LDD phase. The
rows are in matrix form, denoting at least two original chars held by a „position char‟ with a 1,
otherwise, a 0 sequencer. The position char as illustrated in Fig. 5, is an „occupant char‟ in the G file,

starting with an „a‟ to the last ASCII 95 characters, representing in total, 952 = 190 char entries, or 95
compressed chars denoted by the C(char) column in Table A.6.

Fig. A.9: The GC file with an 8B to 5B~4B compression

For example, the elements in {a, b, c, d, …, /a}, are respectively interpreted by the program‟s
interpreter as: the {1st 2chars, 2nd 2chars, 3rd 2chars, 4th 2chars, … end of the 95th 2chars [of the original
file]}.

Row address C(char) #; Cr Original

chars; total

Occupant

char

Size in

bits

7x11x1x13 1; 2:1=50% re 2 a 8
12x14x6x13 2; 2:1=50% so 4 b 8
 6x6x4x15 3; 2:1=50% lv 6 c 8

 1x13x2x7
 13x1x1x6
6x13x7x11

the same as last
8x12x8x12
8x12x11x2

4; 2:1=50%
5; 2:1=50%
6; 2:1=50%

48; 1:1=0%
49; 2:1=50%
50; 2:1=50%

ed 8
 f 10
or 12

 96
55 98
5$ 100

d
e
f

/a
a
b

8
8
8

16
8
8

Table A.6: I/O character process and occupation

Row addr. in

dictionary is:
1

d

c

a

b

C File G File

This is the full
compression product

(size = original size/2)

5B ~ 4B

1x13x2x7

6x6x4x15

7x11x1x13

12x14x6x13

Maximally-compressed string
sequencer in a C file zone

The G file zone: dynamic in length scope,
static in total number of rows = 65,536

Content and
Structure

Occupant chars are spread orderly
between rows representing specific
self-embedded flag address

64K

&&

&&

&&

&&

Translation

Table

1B

Content:
resolved

Program

GC File
8MB

Chars In

then delete document

Compressed Out
 Chars

64K
+ 5B

Read
+
Interpret

64K
+ 4B

8B

This alleviates char interpretation over binary when presented by char position through standard
ASCII chars: a, b, …, . To override memory overrun(s) during the vast access of files in read/writing
data, we organize the „G with C‟ files into one single file, merging the targeted components of Fig. 3
into GC. A structural sample of GC is illustrated in Fig. 6. This approach makes the algorithm quite
portable, thus no need to be concerned about memory allocation and management issues in this regard.
The corresponding table to the grid, following bitmap pattern reconstruction for any character per
impure and pure flag preference “arose in bit field as necessary, is to hold a unique identity for that
particular char,” and is given in Table A.6.

The chiefly-key exponent to all of this, is the following expanded table to the latter translation
table exemplar on the 4x1-bit flags, which indicates the very notion of any reconstructible character
(Org. as original character from the 4th column). To reconstruct multiple characters from the 4th
column, the comparator reads data located on the 3rd column representing the original character
position as specified for Table A.7. The 1st column is just an index to the 41-bit flag combination
address. This address is no needed to be traced, and thus, just by the comparator‟s „if-else‟ functions of
the subprogram, it affirms „occupant chars‟ (3rd column) of the compressed file, with the address
representing „impure‟ and „pure‟ bitwise operations on the sequencer. The sequencer is either a
sequence of 11111111 via char „1‟ or „00000000‟ via char „0‟, as specified.

The column of 96 characters in Table A.7, is of standard printable ASCII characters, revealing the
position of the „first to 96th 2-chars (double) of the original file‟. The column on the address part
„1x1x1x1‟ is the actual row being occupied by a character (the address) in the compressed file. Once
the program reads this dictionary parallel to the compressed file, returns the original character
according to the corresponded row (last column containing 2 characters). This version indicates a 50%
LDC.

Table A.7: The actual translation table contents for an LDD access and management

For an 87.5%, obviously, the column with 96 characters will not change, however, the „1x1x1x1‟
column in its configuration would become „1x1x1x1 1x1x1x1‟ , and the last column with 2 characters,
becomes 8 characters, since the cubic representation of the „1st 1x1x1x1‟ with the „2nd 1x1x1x1‟ has a
second non-commutative symmetric format: „2nd 1x1x1x1‟ with the „1st 1x1x1x1‟, giving four distinct
addresses simultaneously. So, for the former, this means, 2-original characters results in 1-character in
compression (2:1 or 50%), and for the latter, 8 original characters results in 1 compressed character
(100% – 12.5% = 87.5% or 8:1) as an „occupant character‟ (see Table A.6), occupying a row in the
compressed file GC. This is how the process of the new lossless data compression occurs. The
following is the magnified version of the contents of the dictionary (translation table above) for a 50%
compression. The symmetry, altogether, gives four distinct double char addresses simultaneously i.e.,
an 8:1 LDC. This satisfies 65,536 4 = 1.84 1019 unique combinations, or, 16 exabytes (EB) of grid
rows. In case of columnar symmetry in two translation tables, 65,5362= 4.1GB, handles the 16 EBs
when column values are intersected by a comparator matrix in our code. So, four 64K grid row
combinations, handles the same EB values in four parallel tables. This requires complex matrix coding
on an x86 machine. A 64-bit microprocessor, in principle, handles at most, 18 EBs of space. So,
beyond this limit, we run the FQAR model combined with the Bloch sphere on a quantum computer,
easing the complex matrix programming, to superdense the EBs down to the 64K limits of grid rows.

Row # Bit flag add. 95 ASCII Chars as Occupant Chars representing the “Org.” column via the “4x1-bit flag Addr.” column Org. char

1 1x1x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ª ª
2 1x2x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ¥ ª
3 1x3x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< • ª
4 1x4x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< © ª
… … … …
65534 16x16x16x14 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ÿó
65535 16x16x16x15 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ÿü
65536 16x16x16x16 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ÿÿ

1 1x1x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1
234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,<

ª ª

2 1x2x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1
234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,<

¥ ª

3 1x3x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1
234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,<

• ª

4 1x4x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1
234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,<

© ª

… … … …
65534 16x16x16x14 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,<
ÿó

65535 16x16x16x15 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,<

ÿü

65536 16x16x16x16 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,<

ÿÿ

For highest doubled-efficiencies, we extend the number of znip columnar combinations from the
previous translation table in terms of

 Table 1 Table 2 Table 3 Table 4

 1x1x1x1 1x1x1x1 1x1x1x1 1x1x1x1
 … … … …
 16x16x16x16 16x16x16x16 16x16x16x16 16x16x16x16

This is called FQAR, or, a strongly quantum oriented algorithm: It delivers double
doubled-efficiencies, and thereby quadrupled efficiencies as well. We described this in terms of
fulfilling 4.1 GB and 15.61 EB combinations in the above paragraphs, respectively. In other words, we
simply say, for all occasions, the program‟s interpreter/comparator matrix must be able to handle 1, 2
and 4 translation tables for all intersections between them, needing just 8, 16 and 32 MB static size on
the x86 version instead of the EB barrier denoting no columnar interactions whatsoever. For example,
an intersection of {1x1x1x1} with {1x2x1x1} with {16x16x16x15} with {1x4x1x1}, from translation
tables 1-to-4, will thus return, {ªª¥ªÿü©ª} original chars, hence the considerable length of 64 bits, is thus
self-contained by the program‟s comparator efficiently (using just 8 bits, out of the 32MB of the
traversed tabular space, denoting an 87.5% LDC).

A.1.3 Dynamic and static results returned by the algorithm

We continue to associate this relevantly-customized 4D-grid with the sequencer „1‟ or „0‟ to
eventually decode and reconstruct data when attaining levels of LDD. The grid as a „logic constructor‟
is pretty useful for maximum state of FBAR LDCs. With the polarity flags for lower levels of
compression, useful to the 1st through 3rd levels of FBAR‟s 4th layer, the grid could be thus mapped to
the memory efficiently, especially when quantum technology is involved. However, the main purpose
is first to use fuzzy logic on an x86 machine, thereby applying it to quantum forms in the future,
pertinent to the merits of logic states presented in Eq. (1). Once data validated on its integrity, a step
further for an actual LDC is prioritized. Hence, the concept of „bit fields‟ using low level operators in
C, is well-structured as an advanced tool in programming, no matter the complexity of the bits of the
compressed information. One could interpret a bit field as integral type, compacting multiple bits in
partitioned fields of array. Bit fields allow integer members to be stored into memory spaces smaller
than the compiler would ordinarily allow. Hence, the usage of two-dimensional stack allocation of bits
becomes the most privileged in the FBAR LDC process model design. Fig. A.10 is the representation
of such stacked allocations, assuring lossless compression as a dictionary to be reused during
decompression. This is a crucial subject to normalize data, securing no loss of data integrity through
bit insertion rather than character or integer insertions, thereby linking data objects via database keys.
Further than insertion is, updating data and deletion anomalies. The optimized form of memory under
its „area integral‟ denoting data accumulation and thus allocation, using the Pythagoras theorem,
generates the stacked line chart (Fig. A.11) based on Table A.8 values. The following equation, is
computed to construct this stack for a set of raised flags to the corresponding bit allocation per char
entry

 2 2

memory 1 total bits allocated 1bit flag 1bit flagx (5)

where memory is the memory gap function, and x is the changing total bits in the memory from the

original input string, whereby its values fall into both complex and real numbers categories. The
imaginary part is visually contained within the stack, and here, not shown in Fig. A.11. The complex

numbers on their imaginary part consisting with imaginary unit , denote the memory space
(matrix) allocated for MSB values, inclusive of the range above the 4th bit occupied by a single bit flag
for each char entry. This memory equation comes from the way an observation is made on memory
gap(s). We elaborate on how it would be possible to make data compaction more efficient than the
static approach during compression by calculating the imaginary number for each gap distance. The
equation, however, geometrically benefits from the Pythagorean relation, which mainly focuses on the
spatial limit per process time unit (spatial and temporal for addressing efficiency, inclusively). Of
course, the static approach undoubtedly demonstrates double-efficiency as a robust solution in all
circumstances with the aid of the 4D grid and translation table. It is, however, on the other hand,
well-defined to make it further efficient per double-efficient occurrences for each double, quadruple
and ...-chars handled by 1 compressed char, as a dynamic way to solve the problem further. The
equation shows a gap is always existent in the memory in terms of unnecessary extra bits occupying
that space. The gap is where an expert programmer does not want to see extra 0‟s and 1‟s prior to the
raised flags or byte information. Imagine, for a 1bit flag, we really need a 1bit segment, and in return,

based on „bit array‟ standards in C or any other programming language supporting this data structure,
allocates a full byte for that single bit. So, in time, we experience an exponential growth of this
occupation of bits in memory, forming a gap i.e., computable by Eq. (5). Therefore, this equation is
essential to compute highly efficient compression in any layer of the algorithm (encoding layers
upwards). It is necessary, before reaching this equation, to recall the previous subsections on the bit
array solution in terms of “bit field” usage (see the 1st paragraph after our pseudocode main sample,
Appdx. A; or see §A.1.2.2 which all leads to the discovery of the 4x1 bit flag model), in aim of
understanding the memory gap problem via this equation. In layman‟s terms, just consider the gap area
being filled up with a bunch of e.g. unnecessary 0‟s relative to those bits that we want to physically
allocate. The following table contains the values computed for the allocated bits for this memory gap

Mem_gap result Char Addr.

6.2449979983984i 1
10.3923048454133i 2
4 3
8i 4
5.656854249 5
0 6
9.21954445729289i 7
4.89897948556636i 8
… …
3.3166247903554i 94
4 95
1 96

Fig. A.10: The address of characters and their raised 1-bit flags with respect to their i values

The values are elicited from Table A.8. The columns „Flag 1‟ raised for the ANDed pair of bin

characters or 1bit flag , and „Flag 2‟ raised for the ORed pair of „bin characters‟ or1bit flag , and the

column on either „Total Bits‟ is for „total bits allocated‟ from the equation. The „Char Addr.‟ column,
indicates the character position or its actual address from the original file, that is currently being
compressed e.g., index # 1 for the 1st character, index # 2 for the 2nd character, index # 8 for the 8th
character and so on. By other means, a selected or input char is now in session for an LDC. As we
follow the progressive finite steps of the conversions algorithm from layers 1 to 4, during the perpetual
conversions of the „char‟ into „binary chars‟ based on the main pseudocode procedures, the binary char
results are thus returned for a memory gap computation, whilst the compressed are returned relative
total bits allocation columns. The listed values on the left table denoting imaginary and real numbers,
correspond to the left column on the Total Bits table, giving a 34% compression. A different scenario
for efficient compression, gives a 59% compression while contemplating that there are/were memory
gap issues to tackle with.

The above information is very useful when revolutions of space for every periodic frequency are
occupied in quantum forms rather than Boolean forms of logic. This is subject to future generation
computers relying upon quantum information technology. The projection of gaps in form of complex
numbers could be listed by the following matrix:

0 1 0 1

 {0, 1},{{{ 1}, {{{ 1}, {{{ 1}, { 1} }}}}}, 1 0 1 0

 {{{{0}, {0}}}, {{{0}, {0} }}}}

1 1 1 1

i jx y

This is the remaining matrix solution for a proper flag configuration, and it obviously denotes the
spatial occupation for the range below the 4th bit to the LSB position. Both MSB and LSB flag
conditions, build up a supplementary module (auxiliary bits) to dereference bits via pointers once their
address is recalled at the decompression phase. All entry points as chars are defined with certain flag
type combinations for „pattern match opportunities‟ on every pair of bits constructing a character. The
range, as previously specified, is literally {–1, 1, 2, 3, 4, 5, 6, 7, 8, 9} distributed across the 9612
memory scope per 1 to 96 char entries. Hence, contemplating this table with its extending dimensions
to the memory‟s upper and lower bounds (data accumulation or stack integral), marks each token or
symbol entry as an FBAR dictionary coder /decoder, pertinent to any LDC standards in a temporal and
spatial feedback course.

Total Bits Total Bits

5 3
5 3
6 4
5 3
6 4
4 2
4 2
5 3
… …
5 3
4 2
1 1
5.27 3.29
34% 59%

Flag 1 Flag 2

0 8
4 8
3
3 7
2 2
3 3
3 8
0 7
…
2
6
0

Null

1
2

3

The first procedure during decompression, is observing the feedback loop to all encoded data
instances between „if and else‟ statements per char entry, makes pattern match of each char entry to its
binary form possible. The pattern match from one bit of the binary sequence representing a text unit (a
char entry) to another is the main method of the FBAR coder algorithm. Referencing to the bit‟s
position (rather than the string or entry position), is spotted in the 2D representation of the dictionary.
A perceptive partitioning of the memory for the raised flags is of importance in terms of 96/12 = 8 bit
size partition (tree view above). This type of partitioning resembles with the „greatest common
devisor‟ (GCD) concept on numerical analysis for abstracting data structures. Ergo, the present “data
structure” is reused to eventually decode with respect to the bit‟s reference point. Therefore, a map of
all reference points of compressed data is generated. The next procedure is to rematch mapping points
or bits with other bits relative to their memory location, position and polarity type. Once re-matched in
the decoded pattern match technique, once again, recalls polarities between ANDed and ORed
versions of the product, assuring an LDD.

Input Binary AND Out OR Out Out1 Out1 Out2 Out2 Out3 Flag1 Flag2 Addr. Total Bits

A 01100001 0000 1101 00 11 0 1 1 0 8 1 5 3

B 01100010 0000 1101 00 11 0 1 1 4 8 2 6 4

C 01100011 0001 1101 01 11 1 1 1 3 3 5 3

D 01100100 0000 1110 00 10 0 0 0 3 7 4 6 4

E 01100101 0000 1111 00 11 0 1 1 2 2 5 6 4

F 01100110 0000 1111 00 11 0 1 1 3 3 6 6 4

G 01100111 0001 1111 01 11 1 1 1 3 8 7 6 4

h 01101000 0000 1110 00 10 0 0 0 0 7 8 5 3

i 01101001 0000 1111 00 11 0 1 1 0 9 4 2

j 01101010 0000 1111 00 11 0 1 1 4 10 5 3

k 01101011 0001 1111 01 11 1 1 1 4 8 11 6 4

l 01101100 0010 1110 00 10 0 0 0 4 12 5 3

m 01101101 0010 1111 00 11 0 1 1 0 7 13 5 3

n 01101110 0010 1111 00 11 0 1 1 3 7 14 6 4

o 01101111 0011 1111 01 11 1 1 1 2 15 5 3

p 01110000 0100 1100 10 10 0 0 0 6 8 16 6 4

q 01110001 0100 1101 10 11 0 1 1 2 8 17 6 4

r 01110010 0100 1101 10 11 0 1 1 1 8 18 6 4

s 01110011 0101 1101 11 11 1 1 1 6 19 5 3

t 01110100 0100 1110 10 10 0 0 0 1 20 5 3

u 01110101 0100 1111 10 11 0 1 1 2 21 5 3

v 01110110 0100 1111 10 11 0 1 1 3 8 22 6 4

w 01110111 0101 1111 11 11 1 1 1 3 23 5 3

x 01111000 0100 1110 10 10 0 0 1 5 24 5 3

y 01111001 0100 1111 10 11 0 1 1 0 8 25 5 3

z 01111010 0100 1111 10 11 0 1 1 5 26 5 3

A 01000001 0000 1001 00 01 0 1 1 0 27 5 3

B 01000010 0000 1001 00 01 0 1 1 5 28 5 3

C 01000011 0001 1001 01 01 1 1 1 0 29 5 3

D 01000100 0000 1010 00 00 0 0 0 3 30 5 3

E 01000101 0000 1011 00 01 0 1 1 2 31 5 3

F 01000110 0000 1011 00 01 0 1 1 3 32 5 3

G 01000111 0001 1011 01 01 1 1 1 3 33 5 3

H 01001000 0000 1010 00 00 0 0 0 0 34 4 2

I 01001001 0000 1011 00 01 0 1 1 0 7 35 5 3

J 01001010 0000 1011 00 01 0 1 1 4 36 5 3

K 01001011 0001 1011 01 01 1 1 1 4 37 5 3

L 01001100 0010 1010 00 00 0 0 0 6 38 5 3

M 01001101 0010 1011 00 01 0 1 1 2 7 39 6 4

N 01001110 0010 1011 00 01 0 1 1 1 40 5 3

O 01001111 0011 1011 01 01 1 1 1 6 41 5 3

P 01010000 0000 1100 00 10 0 0 0 1 42 5 3

Q 01010001 0000 1101 00 11 0 1 1 -1 8 43 7 5

R 01010010 0000 1101 00 11 0 1 1 5 8 44 6 4

S 01010011 0001 1101 01 11 1 1 1 5 8 45 6 4

T 01010100 0000 1110 00 10 0 0 0 1 7 46 6 4

U 01010101 0000 1111 00 11 0 1 1 -1 47 6 4

V 01010110 0000 1111 00 11 0 1 1 1 1 48 6 4

W 01010111 0001 1111 01 11 1 1 1 1 49 5 3

X 01011000 0000 1110 00 10 0 0 0 5 7 50 6 4

Y 01011001 0000 1111 00 11 0 1 1 9 51 6 4

Z 01011010 0000 1111 00 11 0 1 1 5 52 5 3

1 00110001 0100 0101 10 11 0 1 1 9 53 6 4

2 00110010 0100 0101 10 11 0 1 1 4 4 54 6 4

3 00110011 0101 0101 11 11 1 1 1 0 8 55 5 3

4 00110100 0100 0110 10 10 0 0 0 3 56 5 3

5 00110101 0100 0111 10 11 0 1 1 -1 57 6 4

6 00110110 0100 0111 10 11 0 1 1 3 58 5 3

7 00110111 0101 0111 11 11 1 1 1 1 8 59 6 4

8 00111000 0100 0110 10 10 0 0 0 0 60 4 2

9 00111001 0100 0111 10 11 0 1 1 0 61 4 2

0 00110000 0100 0100 10 10 0 0 0 2 62 5 3

` 01100000 0000 1100 00 10 0 0 0 2 2 63 6 4

~ 01111110 0110 1111 10 11 0 1 1 3 7 64 6 4

! 00100001 0000 0101 00 11 0 1 1 2 8 65 6 4

@ 01000000 0000 1000 00 00 0 0 0 6 66 5 3

00100011 0001 0101 01 11 1 1 1 0 67 4 2

$ 00100100 0000 0110 00 10 0 0 0 3 68 5 3

% 00100101 0000 0111 00 11 0 1 1 2 2 69 6 4

^ 01011110 0010 1111 00 11 0 1 1 1 70 5 3

& 00100110 0000 0111 00 11 0 1 1 3 8 71 6 4

* 00101010 0000 0111 00 11 0 1 1 4 4 72 6 4

(00101000 0000 0110 00 10 0 0 0 0 8 73 5 3

) 00101001 0000 0111 00 11 0 1 1 0 0 74 5 3

- 00101101 0010 0111 00 11 0 1 1 2 75 5 3

= 00111101 0110 0111 00 11 0 1 1 0 7 76 5 3

_ 01011111 0011 1111 01 11 1 1 1 5 5 77 6 4

+ 00101011 0001 0111 01 11 1 1 1 4 78 5 3

[01011011 0001 1111 01 11 1 1 1 5 79 5 3

] 01011101 0010 1111 00 11 0 1 1 9 7 80 7 5

{ 01111011 0101 1111 11 11 1 1 1 1 81 5 3

} 01111101 0110 1111 10 11 0 1 1 0 7 82 5 3

\ 01011100 0010 1110 00 10 0 0 0 5 83 5 3

| 01111100 0110 1110 10 10 0 0 0 0 7 84 5 3

; 00111011 0101 0111 11 11 1 1 1 0 85 4 2

: 00111010 0100 0111 10 11 0 1 1 4 86 5 3

‘ 00100111 0001 0111 01 11 1 1 1 3 3 87 6 4

“ 00100010 0000 0101 00 11 0 1 1 3 88 5 3

/ 00101111 0011 0111 01 11 1 1 1 4 4 89 6 4

? 00111111 0111 0111 11 11 1 1 1 5 90 5 3

. 00101110 0010 0111 00 11 0 1 1 3 4 91 6 4

> 00111110 0110 0111 10 11 0 1 1 1 92 5 3

, 00101100 0010 0110 00 10 0 0 0 2 93 5 3

< 00111100 0110 0110 10 10 0 0 0 6 94 5 3

SPACE 00100000 0000 0100 00 10 0 0 0 0 95 4 2

 00001010 0000 0011 00 01 0 1 1 96 1 1

Table A.8: The LDC reference table: String to binary conversions, compression and logic.

Stack-based memory allocation

Fig. A.11: The memory gap for every erected stack of 96 chars, filled up with 0 bit values

-20

0

20

40

60

80

100

120

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Memory Gap

Imaginary values memory
space, indicating stacked up
bits for 95 occupant chars >
142.5 original char entries,
or, > 33.33% compression

The C99 standard requires the allowable data types for a bit field to include qualified and unqualified
bool, signed int, and unsigned int [37]. In addition, this implementation supports the following types

 int

 short, signed short, unsigned short

 char, signed char, unsigned char

 long, signed long , unsigned long

 long long, signed long long, unsigned long long

In all implementations, the default integer type for a bit field is unsigned. Considering these data types
are very important to handle data allocation and information size issues for validating LDC and LDD
of the algorithm. For properly conducting this, we mostly used „int‟ and „unsigned char‟ data
types (as boxed-in), to properly shift the targeted bits in compacted forms of integrity. The operators
for conducting a compaction technique on the 1-bit flags, incorporate bitwise AND and OR operators
as previously above, in our code written in C. This emphasizes on the powerful ability in using
AND/OR combinatorial logic, as the main motive supporting middleware logic of fuzzy and in
special, quantum logic handling 8-bit states simultaneously.

The C compiler automatically packs the above bit fields from Table A.8 (Flag 1 and 2 columns),
as compactly as possible, provided that the maximum length of the field is less than or equal to the
integer word length of the computer. If this is not the case, then some compilers may allow memory
overlap for the fields whilst other would store the next field in the next word. This further concerns the
„portability‟ issue of bits depending on memory architecture. In C, the polarity structure could be
specified per string char entry, and thus the numbers of bits representing each entry occupy values less
than 8 bits binary, can be specified. This permits the code to access from a particular memory address
by assigning a pointer of the above flag structure to later access the memory. In other words, each field
is accessed and manipulated, as if it were an ordinary member of a structure. The keywords signed and
unsigned mean what you would expect, except that it is interesting to note that a 1-bit signed field on a
two‟s complement machine can only take the values 0 or –1.

Flag type exception handling: Let flag type 9 be a post-setting possible for a customized 1-bit flag
due to possible memory access, then we customize possible attribute combinations prior to
{1,2,3,4,5,6,7,8}, with either of them in the set. Similarly, this infers to –1 as a presetting for a
customized bit combination without repetitions of values within the rows or bits tuples set. For
compression purposes, we eliminate the ones which have identical bit pairs (nibbles) output, to avoid
allocating an extended 1-bit flag on bit pair impurity, unless needed otherwise. There are at least three
ways to manage our flags if not treated self-embedded in our memory system:

Fig. A.12: The memory gap for every erected stack of 96 chars, filled up with 0-bit values

a) Static access: Large memory gap between 0 and 1 results of maximum compression (the

figure on the left).
b) Partitioned access: Optimized gap allocation on flags for 0 and 1 results of maximum

compression (the figure on the right).
c) Static, partitioned and dynamic access of a GC file: Reliably confident access due to

predicted combinatorial access of self-embedded flags in the GC flags for all impure, pure
and their complement on every pair of bits. Self-embedded flag access (or even non
self-embedded), by this method, gives highest efficiencies possible for the hardcoded flags
returning original chars in dictionary.

A highly-efficient method for accessing GC flags: The structure for the c) solution, is a hypercube
(grid‟s model) with fuzzy quantum complex number relationships. For example, the non
self-embedded flags dynamic access is already shown in Fig. A.10. Fig A.9 however, is a good
example on self-embedded flags. The latter is more resilient for memory management. Furthermore, it
is quite efficient and more advantageous in memory access methods, since all 1-bit flags are
hardcoded in a translation table (dictionary) for the GC file contents, in terms of a unique identity for

0%

20%

40%

60%

80%

100%

1 7 1319253137434955616773798591

Problematic memory gap

0%

20%

40%

60%

80%

100%

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

Decreased Memory Gap
(moderatey controlled)

input chars. This makes address access quite precise and the least complicated for the interpreter
during row address to address comparisons. In addition, the uniqueness of the translation table is that
one could standardize the data compression output by establishing combinations of „bits and flags‟ in
„if loops‟ within a „for loop‟ integration for each 96 single bit spaces of memory.

To avoid repetition of flag combinations, we refer to the table‟s set theory elements. Possible
combinations are given in these sets with a maximum cardinality of 10, and a minimum cardinality of
1 in practice. So, once a flag number, gives an identical combination of the previous rows, we, as the
role of LDC flag combinator or fixed point analyzer e.g., use the anonymous recursion (fixed point
combinator) concept to choose another flag number from its set, based on non-combinatory preference
of bits. Here is an example:

Once again, let‟s have a look at Table A.6. By paying more attention to the input string sample

„resolved‟, we realize that the grid row address, is partly repeated for those chars that are recurring
in occupation (Fig. A.13). Of course, we can leave the program (its interpreter) to do the extensive
top-to-bottom comparisons for all 95 chars iteratively per end-of-each char-block for the row range # 1
to 65,536. But it is undoubtedly very efficient if a pointer spots and tags all of the recurring static
addresses, in this case, the ones spotted are underlined based on the restricted commutative rule for all
founded 41-bit flags. Therefore, the pointer p for this order returns a set of repeated flags by
reference:

{(7x11, 1) p (7x11, 6)}, {(1x13,1)p(1x13,4)}, {(6x13, 2)p(6x13, 6)}, {(8x12, 49)p(8x12, 50)},

{(8x12, 49)p(…)}

representing chars: {(r, 1) p (r, 6)}, {(e, 1)p(e, 4)}, {(o, 2)p(0, 6)} , {(5,49)p(5, 50)}, {5, 49}p{…},
correspondingly.

Once tagged, the „pointer flags‟ in a total of np = 5, are packed up for five respectively-distinct
addresses in the memory, while the remaining identities are being checked during original char
reconstruction process. Once data reconstructed, the flags that are packed and residing temporarily in
memory, are appended to the reconstructed data lines according to record. This however, requires one
further issue to consider, and that is, keeping the record on data reconstruction intact until the packed
data is recalled from the memory. From there, temporary records are deleted and thus, the
decompression phase is said to be completed.

7x11x1x13 1; 2:1=50% re 2 a 8

12x14x6x13 2; 2:1=50% so 4 b 8
 6x6x4x15 3; 2:1=50% lv 6 c 8

 1x13x2x7
 13x1x1x6
6x13x7x11

the same as last
8x12x8x12
8x12x11x2

4; 2:1=50%
5; 2:1=50%
6; 2:1=50%

48; 1:1=0%
49; 2:1=50%
50; 2:1=50%

ed 8
 f 10
or 12

 96
55 98
5$ 100

d
e
f

/a
a
b

8
8
8

16
8
8

Fig. A.13: A dynamic pointer for an efficient self-embedded 4-bit flag static address allocation

Further compression, of course, as the columns attain the topmost highest layers of the algorithm,

indicates that quantum information and computation is in place. The convolution of quantum design
and technology is already illustrated and briefly explained in Appdx. C. FBAR‟s LDC, in context,
deals with the computation of binary logic regardless of content size and type, whereas other
techniques are not bothered about. Binary logic in FBAR, deals with individual bits, their
combination, repetition and their conservation of information, regardless of character repetition or
content type. This means, based on a fixed size character reference table, Table A.7, we derive a new,
and a more certain equation (least zero order H values), which is logarithmically the least probabilistic
with discrete entropy (bits per character), compared to Shannon‟s entropy rate on English alphabet as
follows:

 2
log 4.75 bits/charH m , (6)

and for higher orders of H for a given text source made up of English alphabet letters, becomes 4.07,
3.36, 2.77 and 2.3 bits/char, respectively. In contrast, the entropy rate for possible versions of FBAR
based on the Cr columns in Fig. A.13 (or Table A.7), is computable by the following equation

p Pointer a
pointing to b

 log 0,2.4 bits/bytebb
H (7)

where H is the entropy devoted to binary b probability over two 0 and 1 states within the context of
and-or fuzzy binary logic. The entropy is computed on a binary sequence , e.g. =0001 with a
cardinality of a proximate of a positive integer number. In this example, || = 4 or, a nibble equivalent.
Thus, for a binary sequence , the binary probability of two states, b = 2, constructing 1 char, higher
orders of H as we see within the resulted interval, becomes 2, 1 and 0 bits/byte, regardless of source for
a given fixed size LDC binary reference code.

The upcoming section shows how to retain necessary data based on the bit flag reference table
(Table A.6 for high level compression, Table A.8, for the lower levels), hence making a lossless data
decompression possible during the experiment.

The prototype after code compilation creates a grid object (a portable file on driver) which
contains information about the flag-set class under test. In addition, this object could be stored as a
grid file G, a compressed version of all possible combinations on 4-bit flags per input char. The G file
uses the compressed file C to decode, and thereby decompress data, losslessly.

in

in

in

in

in

in

in

in

01110010 0100 1101

01100101 0000 1111

01110011 0101 1101

01101111 0011 1111

01101100 0010 1110

01110110 0100 1111

01100101 0000 1111

01100100 0000 1110

P

P

P

P

P

P

P

P

r

e

s

o

l

v

e

d

store to

10 11 0 1 1

00 11 0 1 1

11 11 1 1 1

01 11 1 1 1
 11110110 F6h o

00 10 0 0 0

10 11 0 1 1

00 11 0 1 1

00 10 0 0 0

C

Fig. A.14: An example of the generated outcome delivered by the FBAR prototype

Consequently, further compression values within a certain range of the grid between memory grid row
address # 1x1x1x1 and 16x16x16x16, from Table A.7, give predictable reference values on original
char combinations prior to the ANDed and ORed columns via 4-bit flags set. This memory row
number is static, and each address is self-embedded for at least 41-bit flag representative. Each char
representative gives a 2-Char output as a reconstructed data to the original. However, the grid file size
is dynamic when it comes to occupying space (size), as explained for grid file specifications in §
A.1.2. This makes data quite portable between machines, and program access during compressions
from layers 1 to 4 of the FBAR algorithm. In continue, the closures of Boolean states of 01 and 10 as 1
and 0 for the 2nd product of the 4th layer, respectively, alleviate dictionary index complications upon
recalling the memory address to reconstruct data during the decompression phase of the algorithm. For
explicit recall of values on this level of compression, for the lower bound of the table on the memory
address, between index # 47 and 95, requires a pointer to the relevant index of the grid file raising the
particular relevant bit that once was a pair of either, 00, 01,10, or 11, before the further-generated
closure states. The result, according to Eq. (7), at this stage is between, 1-to-2 bit/byte, expectably.

A.2 Data Compression

Data Compressors produce compressed input values for their input chars from a targeted document
loaded to the program. The set of possible input types is large, ranging from simple data types such a
numbers, to more complex data such as a combination of numbers, strings and binary. Also the
domain of input values for a specific type can be quite large. Finding appropriate values, is a very
important although, a difficult task. In this section we present a possible approach for the compression
of input string serving FBAR logic for a lossless compression.

A.2.1 Characteristics of a Lossless Data Compressor

A Lossless Data Compressor has to cover a large domain of types and input values. It must compress
data and decompress successfully in terms of no data loss during bitwise conversions. One could say:
a lossless main characteristic is to preserve well-defined entropies between data I/O points. It is
probably too much for a single prototype to cover all these different possibilities. Therefore, a major
design decision was to have different functions programmed for specific problems e.g., data
conversion, memory allocation, encoding , etc. to fulfill a final step of a lossless data compression.
The responsibility lies with each single bit generated or inputted as our quantitative input/output (I/O)
values. Since

 , 216 thus 7.755 bits/byte
b

b H m H (8)

The English alphabet letters in total possess a length of 216 bytes, its entropy rate of probability
concentration is thus 7.755 bits/bytes when dealt with binary b values only. This measurement is
inappropriate to some extent for a full sequence of letters within Shannon standards, and not the
plausibility of each character that subsist on its combinatorial binary AND/OR logic. However, if the
x86 machines were to be a quantum machine, this scenario would have changed dramatically,
handling impure 01 and 10, and pure 11 and 00 states simultaneously i.e. 8 different probable states on
sequences of binary per byte. In other words,

 b
H

 as
qH would give 2.585 for a base 8,

convenient to apply the FBAR model with least order of probability in counting bits compared to
chars. So, by applying FBAR, we can say that the probability of binary b, decreases its entropy H
significantly, giving last orders of 0 bits/byte for each reconstructible character, according to Eq. (7).
Therefore, to tackle such drastic odds, like the one given in Eq. (8), performed on an x86 machine, we
define the problem specific losslessness of a data compression in terms of having a comparator, and a
compressed grid file as the main components of our process design.

A.2.2 Defining problem-specific losslessness of a data compression

When writing a new lossless compressor, there a few things that a developer must consider. Every
lossless compressor must include the compaction technique of single flag bits. For our grid G file,
during compression, in C, we leave the compiler to compact our possible bit fields, pertinent to ip and
zn dimensions of G for every corresponding compressed char in it, prior to the dynamic C file.

1
2
3
4
5
6
7
8
9
10

Struct packed_struct {
 unsigned int f1:1; // for ip dimensions of the G file
 unsigned int f2:1; // ...
 unsigned int f3:1; // ...
 unsigned int f4:1; // ...
 unsigned int f5:1; // for zn dimensions of the G file
 unsigned int f6:1; // ...
 unsigned int f7:1; // ...
 unsigned int f8:1; // ...
} pack;

Here, the packed_struct contains 8 members: four 1 bit flags f1…f4, for probable ip combinations,
the remaining flags for a negation possibility upon the previous flags if, and only if, raised per
combination. The total bit resultant is usually 5 to 6 bits, and maximally, considering the C file char
constituents, 7 bits. The average score of bits normally corroborates with our spatial LDC estimate of
37.5%. The C compiler automatically packs the above bit fields as compactly as possible, provided
that the maximum length of the field is less than or equal to the integer word length of the computer. If
this is not the case then some compilers may allow memory overlap for the fields whilst other would
store the next field in the next word (see comments on bit files portability below). Access members as
usual via:

1 pack.type = 6; // access member no.6

Note: Only n lower bits will be assigned to an n bit number. So type cannot take values larger than
15 (4 bits long). Bit fields are always converted to integer type for computation. We are allowed to mix
“normal'” types with bit fields. The unsigned definition is important - ensures that no bits are used as a
 flag.

A.2.3 FBAR Compressor compared to Standard Data Compressors

The FBAR algorithm broadly comprises of two major components: 1- the dictionary, and 2- the
compressed grid file or GC. The dictionary on its own, consists of 4x1-bit flag addresses, and is the
key to the grid‟s file content‟s identity. Once this identity is compared and linked with the right
identity in the dictionary, original data is reconstructed at the LDD phase of the algorithm. Other
lossless compressors don‟t have this feature available, and thus act differently based on probabilistic
factors for character detection and identification.

.

Fig. A.15: Flowchart of an LZW algorithm for an LDC. (Courtesy of [40] and [47])

As shown in this flowchart, Fig. A.15, the LZW compression algorithm is designed to input data,
accumulate it, generate a dictionary that assigns tokens and outputs them into a compressed format.
Lempel “Ziv” Welch (LZW) [6, 7], is a lossless data compression technique that was created back in
1984 by Terry Welsh [8], as an improvement to the popular LZ77 compression algorithm. The
following is a pseudocode extracted from the LZW fundamentals. A quick examination of the
algorithm shows that LZW is always trying to output codes for strings that are already known, and
each time a new code is output, a new string is added to the string table [46]:

1. STRING = get input character
2. WHILE there are still input characters DO
3. CHARACTER = get input character
4. IF STRING + CHARACTER is in the string table then
5. STRING = STRING + character
6. ELSE
7. output the code for STRING
8. ADD STRING + CHARACTER to the string table
9. STRING = CHARACTER
10. END of IF
11. END of WHILE
12. output the code for STRING

A sample string used to demonstrate the algorithm is shown in Table A.9. The input string is a short
list of English words separated by the „/‟ character. Stepping through the start of the algorithm for this
string, you can see that the first pass through the loop, a check is performed to see if the string “/W” is
in the table. Since it isn't, the code for „/‟ is output, and the string “/W” is added to the table. Since we
have 256 characters already defined for codes 0-255, the first string definition can be assigned to code
256. After the third letter, „E‟, has been read in, the second string code, “WE” is added to the table, and
the code for letter „W‟ is output. This continues until in the second word, the characters „/‟ and „W‟ are
read in, matching string number 256. In this case, the code 256 is output, and a three character string is
added to the string table.

Input String = /WED/WE/WEE/WEB/WET

Character Input Code Output New code value New String

/W / 256 /W

E W 257 WE

D E 258 ED

/ D 259 D/

WE 256 260 /WE

/ E 261 E/

WEE 260 262 /WEE

/W 261 263 E/W

EB 257 264 WEB

/ B 265 B/

WET 260 266 /WET

EOF T

Table A.9: The LZW compression process. (Extracted from [46])

More bytes

to input?

Input 1st Byte in String

Input next Byte in Char

Output token for String

Add string entry for

String + Char

HALT

 Is String + Char

in Dictionary?

String = String + Char

START

Y

N

Output token, or

contents, for String

String = Char
Y

N

The process continues until the string is exhausted and all of the codes have been outputted. The
sample output for the string is shown in Table A.9 along with the resulting string table. As can be seen,
the string table fills up rapidly, since a new string is added to the table each time a code is output. In
this highly redundant input, 5 code substitutions were outputted, along with 7 characters. If we were
using 9 bit codes for output, the 19 character input string would be reduced to a 13.5 byte output string.
Of course, this example was carefully chosen to demonstrate code substitution. In real world
examples, “compression usually doesn’t begin until a sizable table has been built, usually after at
least one hundred or so bytes have been read in.” On the other hand, the FBAR does not construct a
new table for each new file load execution. The fact is, since values are prefixed as self embedded
1-bit flags, hence it would not necessary to reconstruct data according to new dictionary versions to
the grid code. The pseudocode for an FBAR LDC is given in terms of:

1. WHILE there are still input characters DO
2. CHARACTER = get input character
3. CONVERT CHARACTER to BIN CHARACTERS
4. PACK 1-bit FLAGS from any conversion level
5. IF PACK + CHARACTER is in the Reference Table
6. THEN
7. PACK = PACK + CHARACTER in the G file
8. ELSE
9. OUTPUT the code for PACK as NEW STRING
10. ADD NEW STRING + BIN CHARACTER to the C file
11. NEW STRING = CHARACTER
12. END of IF
13. END of WHILE
14. OUTPUT the code for PACK in G file
15. OUTPUT the code for NEW STRING in C file

This delivers characters irrespective to any repetition of them in a given input string to the program. A
simple glance at the pseudocodes, one could realize that the FBAR approach is in contrast with LZW
and operates autonomous from LDC predecessors. The main difference is in the abstraction of the
code in binary with respect to input string, rather than chars as string constituents. The building of a
table is not as same as LZW, and as illustrated in Fig. A.9, is compressing the logic states of input
string into a 4D logic constructor grid for each occupant char related to occupant chars in Table A.7.

A.3 Data Decompression

To reconstruct information from the prototype, we dereference data by program‟s LDD subroutine.
The subroutine comprises of an interpreter filled with essential if-else statements, comparing the
stored data in the GC file with the dictionary file containing the translation table (Table A.7). The
dereferencing function within the program, once finds a match between the two files, returns char
values in a new file as reconstructed characters, just like before as it‟s suppose to be in the original file.

As shown in Fig. A.16 below, through the use of an iterative process, the decompression
algorithm is responsible for reading in the compressed data and converting it back to its original form
by dynamically replicating the compression program‟s dictionary. In contrast, the static approach
from LDC to LDD is later given in four steps after Fig. A.16, below. The decompression program
starts with the first entries of its dictionary initialized to all the characters in the original data. It then
reads each character from the compressed data, which are merely pointers to the dictionary, and uses
each pointer to retrieve uncompressed character strings from its dictionary and writes them to a
decoded output buffer. It also builds its dictionary in the same way as the compression program.

The lossless FBAR decompression model for an x86 machine upon pure „unitary states‟ to
reconstruct data, i.e. the 0 state building 00, the 1 state building 11, considering that at least we have
the FBAR impure states 01 and 10, is pursued upon recalling 1-bit flags according to the following
program and matrix relationships:

To reconstruct data, three procedures are taken consecutively. Each procedure comes from a
separate constructor associated with the dictionary. The first constructor representing the first
procedure is the „logic constructor grid‟ G, which during the LDC timeframe recorded the impure and
pure state logic with respect to the closure states of 1 and 0 during compression. This timeframe
should have covered in its recorded data, the AND/OR conversions, which are columns 4 to 6 of the
above matrix flow. The basics of the “constructor grid” in conducting a „triangular logical operation‟,
has already been explained in § A.1.2. Nevertheless, a logic constructor grid excerpt on the string
„resolved‟ gives about an experienced release over LDD according to the dereferencing procedure
(denoted by an “*” in C-like languages) on data. The 8-char word, „resolved‟, is now compressed
into an 8-bit binary, equivalent to a single length character ö, from the 8-bit extended ASCII table, so
we expect the FBAR logical procedures have already been carried out before decompression.

in

in

in

in

in

in

in

in

01110010 0100 1101

01100101 0000 1111

01110011 0101 1101

01101111 0011 1111

01101100 0010 1110

01110110 0100 1111

01100101 0000 1111

01100100 0000 1110

P

P

P

P

P

P

P

P

r

e

s

o

l

v

e

d

store to

10 11 0 1 1

00 11 0 1 1

11 11 1 1 1

01 11 1 1 1
 11110110 o

00 10 0 0 0

10 11 0 1 1

00 11 0 1 1

00 10 0 0 0

C

out

out

out

out

out

out

out

out

01110010 11111111

01100101 11111111

01110011 11111111

01101111 11111111

01101100 00000000

01110110 11111111

01100101 11111111

01100100 00000000

decomp

P

P

P

P

P

P

P

P

r

e

s

o

l

v

e

d

 11110110 oress purely

1011

1111

1010

1100

1110

1011

1111

1110

i p ¬p ¬i

i ¬i i i

i p ¬p p

i ¬i p p
G

¬i i ¬p p

i p i ¬i

i ¬i i i

¬i i ¬i p

Fig. A.16. An FBAR LDD conducted by the program‟s interpreter, here as a comparator

The memory grid file for each bit of the 8 char entries, gave us a 4-bit length algorithmic product
to decode and decompress data. Hence, for the sample, a total of 5 bits per char entry, denoting a
37.5% space savings reserved. The comparator of the source file deals with the last procedure,
checking the logic between the compressed file and the grid address to decompress data as a
subroutine of the program. An example of this could be given by the following pseudocode:

1. READ the GC file row-by-row from end-of-file
2. OUTPUT temporary ROW_CHARACTERS
3. OUTPUT temporary (ROW_NUMBER == ROW_ADDRESS)
4. CHARACTER = ROW_CHARCTER
5. WHILE reading CHARACTER by CHARCTER DO
6. READ ROW_NUMBER
7. IF CHARCTER is not in the (ROW_ADDRESS AND CHARACTER) of translation table with BIN
8. CHARACTER
9. THEN
10. STRING = get translation of OLD_CODE
11. STRING = STRING + CHARACTER
12. ELSE
13. STRING = get translation of NEW_CODE
14. END of IF
15. OUTPUT STRING
16. CHARACTER = 1st or 2nd or … or nth 2 characters in
17. STRING
18. REPLACE CHARACTER with 2 new characters from the
19. translation table
20. OLD_CODE = NEW_CODE
21. DELETE temporary ROW_NUMBER and ROW_CHARACTERS
22. END of WHILE

FBAR LDC Program

Subroutine
(decompression codes)

Comparator
‘if-else’
Conditions

dynamic allocation

In reality, each dimension of the grid solely requires 4 bits per char entry and intersects with the other
dimensions as other char entries. With the compressed char in the compressed file C, 1 bit is allocated.
Therefore, 5 bits per character denoting a 37.5% space savings is required. To avoid occupying an 8 bit
full occupation, it suffices to put two neighboring compressed chars, each with 4 bits in the grid file G,
into one byte character, thus for 2chars giving 1byte + 2bits = 1char + ¼ char. A more efficient
programming would even reduce this dependency of a single bit allocation for every char in the GC
version (Fig. A.9). That is, to make the G file totally independent of the dynamic version (C file) when
the comparator is engaged during decompression. So, by condensing the nested „if loop‟ conditions of
the comparator, e.g., coding 0000000 as 0 and 11111111 as 1, with better flag combinations to create
the original char, would create a self-embedded dictionary as a robust reference point of reduced packs
of bits and nibbles. Interpedently, the more self-embedded references conditioned in the comparator,
the more flags are managed, and thus higher states of LDC values. However, this must not hamper the
way in which the temporal behavior on memory management issues is handled due to hardware
architecture and instructions limit. In fact, for a quantum model, compared to the current 4D model on
an x86 machine, combined with a 360o Bloch sphere [42] satisfies any state of logic in pairwise forms.
Meaning that, the newly-emerging nD-model becomes very useful to compute data for a
decompression. In other words, the compressed file, with the dismissed bits of the tabs and spaces of
the grid, occupying 8 bits per se, is embedded into the extra information space (the grid) required to
reconstruct the original data, is thus guaranteed with a quantum CPU followed by its instructions unit.
We have considered this in our design for maximum LDCs of the algorithm. The simplistic steps of
data reconstruction (a successful LDD), by setting a default value in the dynamic compressed file (or
source code), at the LDC phase, for the sequencer achieving double-efficient C‟s 50%, is given as
follows:

1. The following is a pure sequence for the input chars. We set this always as default in the FBAR

program
 11111111 (LDC upwards)

2. Suppose the original input char is
@

3. In binary, according to ASCII is
01000000

 (the goal is to manipulate 11111111, to obtain 01000000)

4. So the combination in terms of znip relative to pure sequence closures on each pair from MSB
to LSB, is

 i p p p (11 11 11 11) → 01 11 11 11 → then (static allocation)
 z n n n (01 11 11 11) → 01 00 00 00 → @ (LDD, achieved)

Therefore, we say, the key for an LDD is having the unique combination ippp znnn to return the @
character. One could decipher this flag combination in terms of address xxy (two dimensions out of
four dimensions) by referring to the 4D bit-flag model (Fig. A.7). Of course, the @ example must be
followed with another original input char to have a pure double-efficiency at the LDD phase of FBAR.
This of course is detected by the program‟s interpreter/comparator once a translation table (Table A.7)
read is made by the program. The collapsed version of the previous pseudocode, obeying the
double-efficient four steps, on the string „resolved‟, would be

1. WHILE reading CHARACTER by CHARCTER AND compressed BIN CHARACTER is ‘1’ DO
2. READ CHARACTER as last block character
3. IF CHARACTER is a block character THEN
4. READ CHARACTER prepositioned to block character
5. READ ROW_NUMBER
6. GET ROW_ADDRESS from translation table
7. IF (CHARCTER =‘d’ AND ROW_ADDRESS = ‘1x13x2x7’)
8. OUTPUT STRING =‘ed’
9. ELSEIF (CHARCTER = ‘c’ AND ROW_ADDRESS = ‘6x6x4x15’)
10. OUTPUT STRING =‘lv’+‘ed’ = ‘lved’
11. ELSEIF (CHARCTER = ‘b’ AND ROW_ADDRESS = ‘12x14x6x13’)
12. OUTPUT STRING =‘so’+‘lved’ = ‘solved’
13. ELSEIF (CHARCTER =‘a’ AND ROW_ADDRESS = ‘7x11x1x13’)
14. OUTPUT STRING =‘re’+‘solved’ = ‘resolved’
15. ELSE
16. PRINT no data or null compressed
17. END of IF
18. ELSE
19. PRINT no block character in range
20. End of IF
21. END of WHILE

The same comparison of an inclusion technique via negation, pure, impure logic is consistent to the
previous sub-layers of the FBAR compression for the encodings, when the program attains layer # 4 of
the LDC. So, we use the „bit field‟ approach rather than „bit array‟, lees than 8 bit space occupation.
The hypothetical outline of these relationships between the increase of complexity of the comparator
on x86 machines with memory allocation limits, leading to hybrid versions of FBAR as FBAR/FQAR
and pure FQAR are given in § B.3, Appdx. B. Of course, for either the hybrid or pure version, we had
to contemplate the impure pairs 01 and 10 in terms of a quantum encoding procedure for an arbitrary
future-state quantum computer (QC), constructing quantum trees on logic states and their
relationships. The rationale to this structuring of data is in with accordance to Eq. (1)‟s interrelatedness
behavior of states, and the prime objective is in achieving values of Eq. (7) on x86 machines.

A.4 Test Cases

The test case generator is the core of conducting comparison experiments. It first collects
information from the universe of discourse on information input observed to an LDC algorithm,
irrespective to the encoded, decoded and decompressed data. It could be done manually by selecting
random documents, thereby conducting LDC by a relevant package of choice. The results of
comparisons are ranked afterwards, through Freidman‟s test as a nonparametric comparisons method
(Appdx. B). However, an automated version of package selector as a comparator could be coded for
accurate test case generators on sample documents.

We have selected those documents that were compatible with the evolutionary pattern of our
algorithm. Basically, we needed to reconstruct char-based data at first (Table A.10), so to investigate
character reconstruction possibility within the context of FBAR logic. Of course, after fulfilling this
feature of the algorithm, it is possible to advance the algorithm for its reception on any data type even
compatible with the machine language and its respective compiler. In Appdx. B, we report our results
on small and large input data for our statistical test. Small input data allows accurate comparisons
between original chars during the input phase, compression and decompression. The following were
our selective choice of samples (twelve in total), pertinent to the algorithmic evolutionary
requirements:

No File Type Size (bytes)
1 text .txt 61608
2 book1 .txt 678244
3 book2 .txt 1772074
4 paper1 .txt 52516
5 paper2 .txt 117493
6 paper3 .txt 10262
7 web1 .htm 747766
8 web2 .htm 598125
9 log .txt 1840924

10 cipher .txt 777654
11 latex1 .tex 209212

12 latex2 .tex 155641

Table A.10: Relevant sample documents for LDC algorithmic comparisons

To see whether data is reconstructed successfully, the output is therefore compared with its original.
From there, it is logical to make test-runs on large input data or file(s), since data integrity evaluations
are conducted during small sample runs.

Fig. A.17: Input data types used for a set of test-runs

Working with large samples on the first runs would be extremely complicated and almost impossible
to manage per input document. Once char integrity evaluated on the smallest scales possible with

Any

Document

IN:

buffer limit

long int

Any Char IN:

buffer limit

long int

Text

Document

IN:

buffer limit

long int

Standard

Char IN:

buffer limit

[402]
Start of data
generation

4x1-bit flags

4x1-bit flags
Greater built-up
reference in
code

Topmost
evolved
version

Conveniently
-evolved

version

4x1-bit flags

4x1-bit flags

1

2

3

4

certain buffer limit, assigning string size to the counter variable, building up the sample, would result
in manageable flows, and easy validation on data results. The „long int‟ limit in Fig. A.17, is
integrated within „code loops‟ to store occupant chars in the G file, as 4-bit flag representatives. In
case of an LDD with any size input, through proper access and comparisons of values from the
translation table (Table A.7), with the occupant chars within the grid, an evolution of different
versions starting with textual type to any data type is achievable. The current FBAR subsists on the
three, upper-right, lower-left and lower-right (starting point) of the matrix, evolving toward the last
version of any document type beyond the level of chars.

Appendix B

Appendix B describes the steps of the comparisons
experiment with FBAR and presents the results. Section
B.1 introduces the experiment. The test samples are
presented in Section B.2. The results are presented,
evaluated and discussed in Section B.3.

*** The FBAR Data Compression/Decompression MENU ***

 [1] 1 char-->2 digit-->8 bits...String to Hex/Binary Conversion Display: YES
 [2] 8 bits-->4 parallel bits...Bitwise AND/OR Encoding Product: YES
 [3] 4 parallel bits-->2 parallel bits...A Compression Product: YES
 [4] 2 parallel bits-->1 compressed parallel bit...A Compression Product: YES
 [5] 1 compressed parallel bit-->1 compressed bit...A Compression Product: YES
 [6] Compressed bits-->(n)decompressed bits...A Decompression Product: YES

*** The FBAR File Compression/Decompression MENU ***

 [7] 1 file-->1 compressed file ...A Compression Product: YES
 [8] 1 compressed file--> 1 initial file...A Decompression Product: YES
 [9] (n)files--> 1 compressed file...A Compression Product: NO
 [10] 1 compressed file--> (n)initial files...A Decompression Product: NO

Enter your choice on one of the programmed hypotheses:

B.1 LDC Comparisons Experiment

In this experiment, we test the developed tool (prototype) from Appdx. A, on a number of different test
compressors. The design, method and implementation have been all discussed in the previous sections
of Appdx. A, which further led to the current LDC comparisons experiment. According to our
methods from § A.1.1.2, we want to see whether the presented approach has difference when
compared with other compressors used today. The experiment should show, if the tool is applicable
and in which achieve a rank. The test samples have been given in Table A.10. The outcome of this
experiment is compared with the results obtained by statistical test, and each test sample is tested
multiple times. We tested samples in the small and in the large, inclusively.

B.2 Test samples

Test samples are selected to cover certain requirements of our prototype. These requirements are
function-based in program code. These functions conduct FBAR logic and must maintain consistency
in performance and data conversion factors. Once these factors are being dealt with per program
execution, the integrity of input sample is tested for assurance at the point of delivery. In this case, the
reconstruction point or where decompression occurs. Test samples could be presented in two forms: 1-

strings and binary, and 2- documents; each having their own purpose of usage by the program. These
test samples are already listed within the test cases context, or see, Table A.10.

B.2.1 Strings and binary

The string sample is a short representation for a good testing strategy carried out by a software
prototype. String samples consist of characters, whereby convertible to other data types in
programming. A code snippet used in many applications for string and binary conversions could assist
in coding the FBAR hypotheses H.1 to H.5, from § A.1.1, once we adapt the code to FBAR encoding
standards, and thereby the static dictionary coder indices quantifying binary results back to 8-bit chars.
The FBAR prototype satisfied compression products when a user investigates LDC products from its
menu options. The enabled/available options are denoted by a YES, otherwise, a NO in Fig. B.1.
These options were programmed to satisfy certain objectives of the FBAR algorithm as follows:

Fig. B.1: FBAR prototype menu options supporting implementation and simulation versions

The stateful flow representation (denoted by an arrow -->) for each menu option (ranging from 1 to
10) is explicit, and the prototypic implementation followed certain empirical rules of logic to
compress data losslessly on a standard x86 machine. The upper section of the menu comprises of
conditions assigned to an input string, and thereby after necessary data conversions, its compression
product. The lower section of the menu, however, comprises of conditions assigned to an input
document, and thus its compression product. Samples of the latter form are the result of carful
implementation on the former type, maintaining the integrity of the bit‟s position and its state
dependent on the FBAR static dictionary coder. Of course, this is done on a much larger scale and

further explicated in §§ B.2.2 and B.3. One could rephrase this as testing our FBAR compression
technique in the large indeed (recall, the last paragraph of § A.4).

The reason for using a string as the input in the former type, is to initially demonstrate our
compression technique in the small, observing data integrity and quantitative constructs, addressing
bits, thus verifying their FBAR logic according to our hypotheses before reaching H.6. It is at the
later stage(s), or, lower frames of the menu, we then load a file (the code would be followed with slight
changes containing duplicate calls and method invocations of relevant functions within), as we convert
the contents to binary via textualization or batch filing e.g., concrete text format which for processing
(compression and decompression) taken in as a set of strings. A very good example is the I/O string,
„resolved‟, previously validated in § A.1.2.3. To compose other strings, we simply refer to the
ASCII input chars in Table A.8, and expect low-level conversions (encoding) to high-level LDCs,
occur in our prototype. These expectations are performed by prototype‟s menu options 1 through 5.

B.2.2 Documents

Common documents, is an overly large but simple application to test a compression technique‟s
eligibility for delivering data as either lossy or lossless. The lossy type, of course, is never appropriate
for textual documents, since information is lost or less detailed in case of converting text to a lossy
image, saving more space. This results in more steps of data computation during data conversions
resulting significant latency for a successful data delivery in such compressors. Lossless compressors,
on the other hand, focus on data integrity and information entropy during any data conversion states.
Once the “in the small” samples are tested for each portion and step of program code, then loading
documents in the large becomes imminent. One could then investigate the integrity and entropy
factors of I/O data with respect to bitrate performance and memory usage.

B.3 Results and Discussion

B.3.1 Test cases and algorithmic characteristics

Table B.1, compares our implementation of algorithm with three other compressors, chosen for their
wide availability and their ranked compression ability. The same twelve files were compressed
individually with each algorithm, and the results totaled. The bits per character values are the means of
the values for the individual files. This metric was chosen to allow easy comparison with figures given
via a nonparametric test technique. The choice of this technique is justified as we further explain the
test in § B.3.2.

Document # WinZip GZip WinRK FBAR FQAR *

text 1 70.00% 85.70% 87.87% 50.00% 87.5%

book1 2 70.80% 69.00% 80.04% 49.47% 86.57%

book2 3 65.40% 63.80% 77.11% 48.95% 85.66%

paper1 4 65.60% 64.70% 73.58% 50.00% 87.5%

paper2 5 62.80% 61.60% 69.00% 50.00% 87.5%

paper3 6 60.00% 59.50% 68.25% 50.00% 87.5%

web1 7 72.20% 71.40% 75.37% 48.95% 85.66%

web2 8 53.80% 53.60% 54.57% 49.47% 86.57%

log 9 95.59% 95.37% 96.43% 48.95% 85.66%

cipher 10 73.30% 70.30% 77.82% 48.95% 85.66%

latex1 11 70.00% 69.00% 78.28% 50.00% 87.5%

latex2 12 66.52% 66.53% 75.70% 50.00% 87.5%

Table B.1: Test case LDCs based on space saving values

* FQAR is the fuzzy quantum version of FBAR, whereas the latter as fuzzy binary,
is the predecessor to FQAR, displaying 87.5% Cr‟s.

The equivalent form to Table B.1, is the following bar chart giving a clearer compression ratio
comparisons picture for our chosen algorithms. As we can see, we could distinguish the FBAR and
FQAR versions from others, as the most aligned and correlated versions of Cr‟s. By comparison, this
makes the new algorithm more reliable in LDC results, consistence and thus its spatial efficiency
factors on compression.

Fig. B.1: LDC ratio comparisons between FBAR/FQAR and other algorithms

The selection of an LDC package depends on the following criteria as applicable characteristics to all
LDCs:

1. The ability to compress input data losslessly regardless of type, content size and complexity. If
data type matters, e.g. being of textual type or otherwise, must compress textual information
losslessly i.e. the decompressed data after compression must be identical to the original data.

2. Use memory for data access and management issues efficiently, e.g., data rate and spatial
occupation of bits during compression i.e. when encoded, and referenced upon…

3. Must have a dictionary coder for validating data, referencing and dereferencing them during
the reconstruction phase of data i.e. decompression.

As we can see, from Fig. B.2, based on the above characteristics, the selection of FBAR (fuzzy binary
type) is oriented to FQAR (fuzzy quantum binary type) during implementation. Its simulation grade
on x86 machines, reaches 87.5% LDC scenarios which are all fixed. The zone indicating x86 limits for
the hybrid version (denoted as FABR~FQAR), inclusive of the ordinary FBAR versions, continues to
expand within the purely-FQAR territory. This means, the structural integrity of the FBAR dictionary
(or the 4D grid model) at H = 0 bits/byte final version on x86, is significantly changed in favor of
FQAR before entering the quantum machine territory. In one word, FBAR mutates from version to
version with uniformly-fixed values on space savings. In FQAR, negative entropy denoting universal
predictably giving values 93.75% compression is estimated. This model could be considered as a
solution to complex negentropy problems [43] in Signal Processing and Information Theory indeed.

Fig. B.2: The pure FBAR mutating to a pure FQAR via its hybrid version on x86 machines

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12

WinZip

GZip

WinRK

FBAR

FQAR

0

1

2

3

4

5

6

7

8

0% 20% 40% 60% 80% 100%

FBAR

x86

F
Q

A
R

FBAR~FQAR

(hybrid version)

Bits/byte

Space

Savings

qubit machines

negentropy

leading to

universal

predictability

An evident randomness

or uncertainty

An evident double-

efficiency with reliably-

predictable results

The EB barrier

Twelve documents were given to four different LD compressors (in random order), relative to their
bitrate performance for each LDC execution. Process time to a test and percentages of compression
were measured. The resulted data are listed and discussed in the following section. For the EB barrier
in Fig. B.2, refer to the explanations provided after Table A.7, which concern C‟s > 87.5% scenarios.

B.3.2 Nonparametric comparison test cases

Our motive using Freidman test: Ordinal data (countable data) gathered from repeated organization
of LDC algorithms, i.e., repeated measures, employing a rating scale are commonly deployed in field
and laboratory studies. If there are a large number of subjects (e.g., n>30), the assumptions of
parametric approach, namely, normality and homogeneity of variance are usually met. Therefore,
parametric analysis of variance (ANOVA) methods are frequently adopted to analyze these data.
However, in field and laboratory trials conducted, situations frequently encounter in which small
number of subjects, e.g., n < 15, are tested in repeated measure experiments. The more measures
conducted relative to a growing number of samples, the more encountering of probable miscarriage of
accuracy in the generated scores. In such cases, due to the relatively small sample size, the violation of
assumptions of an ANOVA is usually inevitable. In FBAR, however, the sample size varied from, as
small as 10,000 bytes, to much larger sizes 1.8 MBs, as char-based documents. In fact, the focus is on
the results of how long the computation lasts per sample, its spatial consumption i.e. the percentage of
compression relative to sample‟s rank. The main motive of using nonparametric comparison test cases
is in contradicting the quality and quantity assessments done in t-test scenarios. The latter subsists on
assumptions that form T = Z/s, where Z and s are functions of the data: Typically, Z is designed to be
sensitive to the alternative hypothesis (i.e. its magnitude tends to be larger when the alternative
hypothesis is true), whereas s is a scaling parameter that allows the distribution of T to be determined.

In the FBAR case, the assumption is severed from any sensitivity to alternative hypothesis or data
distribution (e.g., normality). It is confined to the distribution of repeated observations on LDC I/O
samples like many non-parametric tests, based on the ranks of the data rather than their raw values to
calculate the statistic. In summary, we reason that this nonparametric choice was due to

a) The number of samples were < 20;
b) The data type was knows as char-based, hence the number of data types was limited (no extra

assumptions like parametric methods were made.)
c) Not subject to normality measurements, unlike parametric and t-test cases.

In the following sections, we aim to use this method to evaluate our algorithm compared to other
LDCs. Therefore, we wanted to make sure that its results were statistically significant and not obtained
by chance. Thus, we considered the following null hypothesis:

Let X contain our FBAR technique as well as a selection of state-of-the-art compression techniques. Furthermore, let Y
contain a representative sample of documents of different type. Therefore,

H.6- A difference exists in the performances of the techniques in X as measured on Y by computation rate and space
savings.
H.60- The difference in performances of the techniques in X as measured on Y by computation rate and space savings is
zero.

In continue, since our number of samples is small and (n < 20), we use Freidman test to analyze the
data and test the hypothesis (reference to Table A.10). The statistical test, involved the ranking of the
data in the rows, then comparing the mean rank in each column. Thus the values of LDC would be
ranked across each row as shown below. We derived these rankings collaboratively based on Fig. B.3,
Tables B.1, B3-B4 results.

Document # WinZip GZip WinRK FBAR FQAR

text 1 4; 3 3; 2 1; 1 5; 4 2

book1 2 3; 2 4; 3 2; 1 5; 4 1

book2 3 3; 2 4; 3 2; 1 5; 4 1

paper1 4 3; 2 4; 3 2; 1 5; 4 1

paper2 5 3; 2 4; 3 2; 1 5; 4 1

paper3 6 3; 2 4; 3 2; 1 5; 4 1

web1 7 3; 2 4; 3 2; 1 5; 4 1

web2 8 3; 2 4; 3 2; 1 5; 4 1

log 9 2; 2 3; 3 1; 1 5; 4 4

cipher 10 3; 2 4; 3 2; 1 5; 4 1

latex1 11 3; 2 4; 3 2; 1 5; 4 1

latex2 12 4; 3 3; 2 2; 1 5; 4 1

 Table B.2. Current test case LDC ranks on space savings

In Table B.2, we consider the rankings to be valid relative to the fuzzy quantum version (the FQAR
column), while if dismissed, we consider the ranks to be distributed between 1-to-4 instead of 1-to-5.
This is applied to observe the four first columns from the left relative to FBAR, in bold values. Now
we start testing

Decision rule: Reject H.60 if rF critical value at = 0.05 or 0.01, corresponding to 5% or 1%

probability P. Otherwise, stay consistent with null hypothesis H.60.

Calculation method: The differences between the sum of the ranks is evaluated by calculating the
Friedman test statistic from the formula

 2

1

12
3 1

1

k

i
i

F R n k
nk k

r

,

where k is the number of columns („performance of algorithms‟), n is the number of rows, and Ri is the
sum of the ranks from columns. In compliance with our decision rule, the results on Fr which rejects
H.60, are given in Table B.4, since p-value < . The critical p-value of Fr for {4 observed columns + 1
hypothetical column} and 12 rows at = 0.05 or 0.01, is 0.0001. The distribution of the Fr(4) statistic is
chi-square with k–1 degrees of freedom (df) or, df = 4. The p-value for the Freidman test is P(Fr(df) Fr

observed), the probability of observing a value at least as extreme as the test statistic for a chi-square
distribution with df = 4. We thus conclude that the bitrate and space saving performances have had a
significant result on the LDCs for the randomly loaded documents compared to FBAR. By
conventional criteria, the P-value = 0.0001 < 0.01 rejects H.60, since this difference is considered to be
extremely statistically significant. Although, dismissing the hypothetical column on FQAR results-in
rank change on algorithms, we still observe P = 0.0001 < 0.01 rejecting H.60.

Fig. B.3. Bitrate comparisons and memory usage

Fig. B.3 shows the bitrate and memory performance on 12 test documents, with their critical and
optimal trends. The results are elicited from Table B.3. The bitrate relative to memory usage was
observed between the high and low ranked algorithms on „space savings‟ (Table B.2): WinRK vs.
FBAR. As we can see, for higher bitrate performances, WinRK has a critical usage of memory per
input sample. In some cases, even having 10 kBps for encoding and decoding data, required 800 MB
memory on a 2GHz Athlon CPU. This ranks WinRK‟s memory performance lower than expected, as
4th, compared to FBAR. When we associate values of the upper chart with the lower chart, it is evident
that the empirical data relative to memory usage on FBAR is optimal, and uniformly correlated except,

0 500 1000 1500 2000 2500 3000

1
2
3
4
5
6
7
8
9

10
11
12

Bitrate comparsion

WinRK

Sample

kBps

0 50 100 150 200 250 300

1
2
3
4
5
6
7
8
9

10
11
12

Memory usage

FBAR

Sample

Critical

trend

MB

the jump of bitrate on sample # 10 called “cipher” (contents of some ciphered text). This is due to the
excessive repetition of characters within the sample grid. The original input chars were ignored due to
their pattern simplicity, forming simplistic forms of storable data. Therefore, the algorithm is not
submissive for taking in too much information and thus its computation. The average base of bitrate
was estimated 475 kBps for FBAR, and 925 kBps for WinRK on the 12 samples.

From the bar charts, it is possible to see that in some cases, there is already, right at the beginning,
a major difference between the two results. There is also a difference observable at the end, where the
mean coverage achieved by FBAR over memory usage is least critical than the mean coverage of the
other compressor. This shows that there are significant differences between algorithms on their
performances.

 tL = CPU time/s Compressed size (bytes) bits/char

File Size (bytes) LLLC HLLC LDC LDD
(C+G files) – 64 K
LLLC vs. HLLC

LLLC vs. HLLC

text 61608 0.18 0.02 0.2 0.24 31124.8+1: 7701.00 [2.1,2.4] : [0,2]
book1 678244 1.31 0.14 1.45 1.40 342654.5 + 1: 84780.50 [2.1,2.4] : [0,2]
book2 1772074 3.2 0.75 3.95 3.43 895266.5+ 1: 221509.25 [2.1,2.4] : [0,2]
paper1 52516 0.13 0.01 0.14 0.20 26531.5+ 1: 6564.50 [2.1,2.4] : [0,2]
paper2 117493 0.26 0.115 0.375 0.32 59358.4+ 1: 14686.63 [2.1,2.4] : [0,2]
paper3 10262 0.05 0.01 0.06 0.10 5184.4+ 1: 1282.75 [2.1,2.4] : [0,2]
web1 747766 1.63 0.22 1.85 1.71 377777.6+ 1: 93470.75 [2.1,2.4] : [0,2]
web2 598125 1.29 0.2 1.49 1.36 302177.7+ 1: 74765.63 [2.1,2.4] : [0,2]
log 1840924 3.43 0.27 3.7 3.58 930050.1+ 1: 230115.50 [2.1,2.4] : [0,2]
cipher 777654 0.25 0.04 0.29 0.32 392877.28+ 1: 97206.75 [2.1,2.4] : [0,2]

latex1 209212 0.43 0.03 0.46 0.49 105695.6+ 1: 26151.50 [2.1,2.4] : [0,2]

latex2 155641 0.42 0.03 0.45 0.92 78631.1+ 1: 19455.13 [2.1,2.4] : [0,2]
translator 8 MB N/A N/A N/A N/A N/A 2 bits/char read
Total 7021519 12.58 1.835 14.415 14.07 3547342: 877689.88 Avg. 2.25:1

Table B.3: Estimates on compression with rate performance on FBAR‟s LDC and LDD

Friedman‟s test for repeated measures:

Document WinZip GZip WinRK FBAR FQAR

sum of ranks 35 43 22 60 14
(sum of ranks)2 1225 1849 484 3600 196
#of columns, k (4real + 1hypothetical) = 5
of rows, n 12
 R2 formulaic calculation : 1225 + 1849 + 484 + 3600 + 196 = 7734
12/nk(k+1) formulaic calculation : 12/(1256) = 0.033
3n(k+1) formulaic calculation : 3126 = 216
Test statistic Fr formulaic calculation : 0.033 7734 – 216 = 39.22, df = 4 P=0.0001 < 0.01
Fr without FQAR formulaic calculation : 0.05 4280 – 180 = 34, df = 3 P=0.0001 < 0.01

 Table B.4: Rank sum and mean ranks via Freidman‟s test on hypothetical and real observed

data with P-values

Relevant to the algorithmic computation process, the results in Tables B.3 and B.4 for an
FBAR/FQAR LDC, were all GC file and dictionary coder-dependent. The grid file dimensions, each
comprised of 16 fixed length code combinations, making 65,536 possible outcomes. From there, the
translation table of the 95 printable and 1 nonprintable character block was used to make comparisons
when the resultant document was converted back to binary for decompression. Table B.3, shows the
difference between all layers being implemented from the lowest layer(s) of lossless compression
(LLLC) to the highest (HLLC).

Interestingly, the lowest layers perform logic with expected bitrate. The LDC time parameter is
the result of (LLLC + HLLC) time tL, measured in seconds. On the other hand, having the highest layer
with only „1 byte sequencer‟ equal to „1‟, according to the example given on pseudocode sample II,
gives optimum performance. In other words, in total, C = „1‟ in content, makes the interpreter to
interpret „11111111‟ for the whole document, otherwise, „00000000‟ on the first char input encounter.
From there, applying self-embedded flags, altogether performs good bitrates by comparison. This is
given by the additional byte (in bold) added to the HLLC column of the table.

We determine the limits of the application to be mostly on hardware constraints in design, rather
than FBAR logic per se. To tackle this, we eliminated issues related to single bit usage of flags,
considering their unique combination in G file is indeed avoiding „bit array‟ models in programming.
In fact, hard-coding 65,536 grid units via „if loop statements‟, reading line-by-line with 95 printable
char replacements, is more useful than the currently-available tools utilized for an x86 compiler. This
enabled us to have all flags embedded in our marked-grid units by a standard char.

After verifying the theoretical estimates of 37.5%, 50%, 75% and 87.5% fixed size compressions,
we began to compute the bitrate factor of our FBAR LDC. The result on randomly chosen documents
for performing an LDD is listed in Table B.3. The bitrate for both LDC and LDD relative to CPU
time/s are computed and listed in the same table. We then included specific test results in form of
Freidman‟s mean ranks and rank sum in recognition of hypothesis H.6 of this paper.

According to the sequencer approach mentioned above, it takes 5 to 6 levels of conversions with a
CPU time tL = {long + short + shorter + shortest} session to conduct all four FBAR LDC layers.
Therefore, the HLLC version would practically engross one layer involvement during data
computation. Hence, the logical results would give tL on HLLC LLLC. This occurs relative to
accessing the „translation table‟ on 41-bit flags identity on each G row for an LDD. Typically giving
tL on LDD > LLLC intervals, due to data access, read and write operations during data reconstruction
from the GC file and translation table.

B.3.2.1 FBAR and other lossless data compressors

The number of documents builds up the test case and comparisons attribute of our nonparametric test.
On the one hand, the number of arbitrary documents relative to packages is proportional to the random
increase and decrease of percentages of LDCs, spatially. Moreover, the temporal state on the
computation and processing of bits with their dictionary codes to decode, remains consistent with the
dimensional expansion on spatial occupation of bits in the memory matrix, proportional to the
accumulation factor of the bits number. If this factor increases exponentially, the temporal state
prolongs i.e., latency in compressing data, otherwise, efficient bitrate computation is recognized in the
LDC‟s data analysis records. Any LDC must appreciate this behavior regardless of quantity and
complexity with respect to RAM usage, CPU and LDC package switches returning values with
reference to dictionary. FBAR, in addition to all of these expectations, must maintain logic prior to the
leading closures of 0 and 1 states, attaining levels of efficiency within the LDC processing.

B.3.2.2 Evaluation of packages or LDC algorithms

The evaluation of packages strictly depend on the LDC selection criteria outlined in § B.3.1. Once,
each algorithm is evaluated for all characteristics, we rank it according to its space savings, memory
usage and bitrate performances.

By referring to relevant sources giving details on LDC packages [22], one could outline the basis
of the statistical test for results. Table B.1 contains these packages with their respective ranks,
reflected in Table B.2. We run our statistical test for comparing three or more related LDCs, as a result
of their space savings, which makes no assumptions about the underlying distribution of the Cr data.
The data is set out in a table comprising n rows by k columns. The data is then ranked across the rows
and the mean rank for each column is compared. Bitrate ranking is statistically compared between the
highest and lowest ranked algorithms, further constituting our null hypothesis. The comparisons data
is given in Fig. 9.

Based on the characteristics from § B.3.1, the ranking of the package is given through percentages
of Cr for each package. The Cr is not fixed for each package and merely based on probability and
character letter counts or frequent reoccurrence for the Shannon entropy, used to conduct a lossless
compression. The only package that deviates from this behavior is FBAR, which exhibits predictable
Cr ratios regardless of content size and complexity. The selected packages were on the bases of best
case probable scenarios in compressing data above 90% as a maximum LDC, 50% as an intermediate
LDC, and below 50% > 0, as a classic LDC (the ordinary well-known LDC techniques embedded in
such packages). Contradictorily, for the fixed Cr generated by the FBAR package, is conveniently
more reliable in predicting Cr ratios compared to the probabilistic Cr‟s by WinZip, GZip, WinRK and
LZW LDC packages. The ranking is further evaluated when package evidence of random sample
inputs are measured non-parametrically.

B.3.3 Evaluation of packages or LDC algorithms

The following subsections, shall address issues related to Software Engineering, which aims at the
performance-related issues, risks, confidence, usability, etc., based upon the resulting products of the
FBAR algorithm:

Introductorily, the potentials of the algorithmic/package evaluation, lie-in the way the compressor

compresses data in form of fixed sizes and predictable ranges of compression output. This makes it
more reliable to compress all sorts of document size, regardless of content type. The testability for
performing such characteristics remains iteratively correct under different testing criteria, or,

applications. An FBAR evaluation of a data compression, has already been motivated throughout the
previous sections, and therefore, comparison tests were made with other compression algorithms.
Now we shall discuss the evaluation thematic results of the FBAR algorithm as follows.

B.3.3.2.1 Usability:

We discuss the uniqueness of the FBAR data compressor compared to other remaining compressors
used today. We also point out the potentials for demanding this product as follows:

The potentials lie in the way the compressor compresses data in form of fixed sizes and predictable
ranges of compression output. Unlike other LDCs, a fixed table forming a fixed size dictionary is
always in store for the FBAR compressor, others, however, build a different one during data type
conversions, every one-time execution. This makes FBAR more reliable to compress all sorts of
document sizes regardless of content type. The testability for performing such characteristics remains
iteratively correct under different testing criteria or applications. An FBAR evaluation of data
compression has already been motivated throughout the previous sections, and comparison tests were
made with other compression algorithms.

In addition, based on our performance comparisons, we deduce that overhead information in
FBAR is unlikely to happen due to dependency of the program-read on the translation table as a static
portable object between different driver/network locations (see also, robustness in § B.3.3.2.4).
Furthermore, FBAR would not create overly occupied tasks in queues and overwhelm memory against
user‟s will. This is evident according to our performance comparisons made in e.g., Fig. B.3.
Therefore, multiple API‟s or k-thread executions for process management engaging the user, is none
of our concern during FBAR I/O operations. Reasoning that, the FBAR functionality plays a key role
in demarcating the usability aspects of the algorithm from its interface core to surface, for each
one-time application run.

B.3.3.2.2 Functionality:

The development of new data compression software is a competitive activity and the time available to
bring a product to market is often limited. Furthermore, the complexity and size of software systems
have increased in recent years especially when it comes to lossless data compressions. There are
diverse techniques to perform compression based on mere probabilities. In principle, they benefit from
e.g., Shannon entropy [15, 16, 18] to compute similarities in data objects and their recursive pattern
recognitions. More specifically, they base their compression on repeated patterns of input data to bit
sequences (frequently encountered), [32]; hence their frequency varies in their compressed version (an
uncertainty). In order not to fail on the market, it is important to also achieve a high quality with intact
data integrity when studying the output data. The usability of FBAR is due to its logic as almost being
independent of an uncertainty, thus its potential demandability on the market side increases in number
of its users in the future. The main reason is that, satisfactory compressions with predictable
compression ratios, gives the user (customer) more assurance in compressing his/her data right on the
spot without being concerned about his/her machine‟s spatial management issues. For example, how
much RAM is required; how much space is needed on this HDD for this particular compressed version
of the original file; will there be enough space after compression on this driver after compression, or so
to speak, will we be free to store more records on the driver, etc. Having fixed values, gives a definite
answer on such spatial limitations to its user.

B.3.3.2.3 Reliability:

Mostly, on complex systems, FBAR generates fixed value identities, compression results and
reference points. Hence, the FBAR design for x86 machines, performs with the purpose of reliability
testing based on its firm logic with confidence to produce fixed values with finite number of lines of
code in structure. In aim of discovering potential problems within the design, as early as possible and,
ultimately, provide confidence that the system meets its reliability requirements, the less confidence is
not an issue to bargain with, in FBAR. The rationale to this is, since handling all states of logic
inclusive of fuzzy is quite complex in current applications, and when reaching levels of quantum states
parallel to binary logic is virtually continuous, the weak point in confidence would therefore abort to
exist. In fact, the latter factor becomes unsustainable due to the sustainability of the confidence itself
within the representations of impure and pure logic, keeping product resultants intact with one
another, in data structure, efficiency and logical consequence in design. The limitations in the circuitry
design of the hardware system and its corresponding components, of course have an influence (affect)
on performance and confidence factors from the lowest LDCs (37.5% and 50%) to the highest LDCs
(87.5%) on x86 machines. The FBAR components, in context, are a set of conversion functions as

useful tools that mainly rely on a comparator component (see Fig. A.3), which itself is an „interpreting
function‟ possessing a series of „if and else‟ statements to compare data from one another. Its job is to
compare the logical combinations and their consequences for decompressing data, losslessly. These
functions are incorporated in the subprograms of the algorithm, and their layout is already given in
Fig. A.3, Appdx. A. In summary, we rate FBAR algorithmic product confidence, as „quite high‟ in our
evaluation method. The reasons behind this evaluation are:

A. Because FBAR values are predictable, and the confidence is rated based on the

predictability of spatial and temporal rates, displaying reliably-fixed bitrate results per
lossless data compression (recall, Fig. B.3). In other words, this confidence is proportional
to the growth of predictability. The more predictable, the grater the confidence or,
 (10)

where 2n comes from the double-efficiency property of the algorithm, obeying the natural
numbers‟ interval result set, from Eq. (7), for each predictable state of compression,
according to Fig. B.2. Therefore, in time, confidence grows double-efficiently for each
progressive version of FABAR.

B. Thus, FBAR is least likely to fail at all, in logic, design and principle.
C. We have done this with the new 4D bit flag model, and its algorithmic representation

(pseudocodes).
D. Why? Well, FBAR is here to perform maximal and thus ultimate LDCs, prior to the LDC

algorithms we know today.

The mean time to failure (MTTF), and other factors, such as, confidence interval (CI) estimates, which
we have not conducted in the FBAR project, are deemed important when our algorithm is tested in the
large, and not in the small, or, under its prototypic release (§ B.2.1). However, the reliability analysis
by running surveys, when the package is tested in the future, gives concrete results to compute such CI
estimates, relevant to algorithmic space savings‟ products. The only potential problem that we could
point out from is, handling the logic package between x86 machines and those of which are strongly
dependent on quantum encryption methods in information theory, e.g., „superdense coding‟ [34], in
their instructions set and algorithmic responses. The latter, however, is available under laboratorial
conditions aiming for future technological developments done by organizations such as IBM, like the
qcl quantum computer simulator and similar algorithms testing quantum computation at large [41].

B.3.3.2.4 Robustness:

In cryptography, according to Kerckhoffs‟ principle (assumption, axiom or law) [48], a cryptosystem
should be secure even if everything about the system, except the key, is public knowledge. Throughout
this thesis, we have introduced and discussed FBAR, both on its encryption and decryption properties
for an arbitrary data I/O. FABR has its own cryptographic translations as specified in the paper
section, in terms of a translation table inclusive of [2] as a reference table employed for the lowest
layer of dynamic data conversions. The public key as either the translation table for the static approach,
or the reference table for the dynamic approach, abides by the encryption design principles inclusive
of a mirror technique for fundamental exclusions of data corruption. This is how we apply this new
mirror technique to FBAR during e.g., peer-to-peer transmissions in Fig. B.4:

Foremost, since we know what specific occupant chars (e.g., Table A.6), are occupying the
compressed file contents, it is evident with a fuzz testing e.g., giving invalid and valid I/O, the program
could thus detect and exclude error chars from the compressed version, allowing it to return the
original chars at the decompression phase. It is further evident, that even some of the error chars, if
they fall in the range of our 95 standardized occupant char range, the zone that gives an additional size
expectancy of the file, would thus indicate an error has been occurred. Reason that: based on FBAR
I/O conversions, we totally expect the compressed version (the GC file) if done through 50%
compression, must only carry half of the original file size excluding the 64KB size of the grid file. If
this varies significantly, the program on the other side (point B), would know that there has been an
error occurrence during transmission. To mimic these kinds of scenarios, we purposely input random
characters to the compressed version offline as part of our experiment. We conduct our robustness in
terms of manipulating data as the corrupt version of GC whilst creating a mirror file, which contains
characters that are not in the scale of our standard occupant-chars of the GC file. The mirror file is
always 0 bytes in content, unless error occurs during transmission, and thus in complement with the
GC file, increases in size. A self-generating recheck char loop algorithm (in structure, inherits
FBAR‟s comparator subroutine statements), for error detection during transmission (a real-time

patch), which rechecks the GC file periodically is anticipated along the mirror file generation. Bear in
mind, mirror file is only generated, once an error occurs, thus detected by the real-time transmission
loop algorithm. Further, we convert the corrupted zone of the GC file to certain out of occupant char
range i.e. 95 printable chars, (or recall Table A.6) and store it in the mirror file. The mirror file could
be deemed as a complementary object to the GC file, reflecting error chars outside the pristine
boundary of data (the zone where data must not be of corrupted type), where at the end, gets deleted
once all corrupt data are detected, extracted and compared with the FBAR dictionary (reference table,
translation table and ASCII). If there are any remaining errors i.e. in case of the mirror file is received
with a size > 0 bytes, a further error detection is executed when an LDD is run by user # 2. This
detection is done via program‟s interpreter/comparator. Then, at the point of LDD delivery, we expect
the decompressed version, of course after the use of the translation table, to return the expected
original file identically without corrupted chars in it i.e. the error version. Ergo, we say that FBAR,
due to its uniqueness in char deliveries and translation table comparisons technique, makes it quite
robust compared to the probabilistic versions where many patches are designed for particular set of
errors, making user to depend on many other factors when such issues are confronted on his/her
machine.

Fig. B.4. An example to examine the level of FBAR robustness between transmission points

The algorithm, during its transmission protocol on e.g., a network, from point A to point B might be
tampered with its compressed result or LDC product. One could, based on different observations or
experience, class this as overhead information within the communications system.

Fig. B.4, above, shows how robust the algorithm performs under such circumstances when an
FBAR sender, sends the compressed data to the recipient, while a network error or some intrusion
casing corrupts user‟s data. Of course, a physical error like connection problems, etc., could be tackled
with certain additional software programs (patches) that maintain data transmission between lines
until connection is fixed to resume the delayed data transmission.

Regarding the integrity being altered in the compression content, it is evident by creating a
mirror of the compressed file along the way (previous paragraphs), the encrypted message i.e. the
contents of the GC file in terms of occupant chars (Table A.6), are strictly dependent on the contents
of the translation table on both sides, sender A, and receiver B. Thus, whatever returned at the
decompression phase, if the initial file before compression in any shape, with error or not, is to be
returned as it is. Meaning that, the program‟s interpreter/comparator installed at point B, works on
returning the original chars and exclude chars of error type, coming from either file content zone,
within the transmission layers, or, right after source before destination (point x in A-B).

Of course, further technical discussions relating to this extension of the algorithm is out of the
current thesis scope, and requires a separate work in progress parallel to the current topic.

B.3.3.2.5 Efficiency:

Table B.3 efficiency ranks on memory usage, is the result of expressing the ranking of FBAR or even
FQAR as quite consistent with uniform efficiency factors compared to other LDCs. Despite of FBAR
suffering on space savings, but since it is performing uniformly, even on the lowest standards, the
structure of logical consequence mutates from one version to another (Fig. B.2). Ergo, the performance
is also mutable for every upgraded version from FBAR to FQAR, either on bitrate, space saving or
memory usage factors. Therefore, we deduce that the efficiency of FBAR is of a reliable type on any
versions of it, since the structure is strongly grid content-dependent, and the reconstruction of data,
stands firm on its combinatorial logic (impure and pure states of binary).

Send GC file Error Chars In Receive GC File

Program Program

GC File

Corrupted

A

FBAR

Dictionary

User # 1

GC File

Run
Compression

Out FBAR

Dictionary

Run
Decompression

User # 2

B

In

Errors

(extracted)

Mirror

File

Get (Decompressed

Document) – (Error)
Load Original

Document

GC File

A Real-time Loop Patch

Document # WinRK FBAR

text 1 2 1

book1 2 1 2

book2 3 2 1

paper1 4 2 1

paper2 5 2 1

paper3 6 2 1

web1 7 2 1

web2 8 2 1

log 9 2 1

cipher 10 2 1

latex1 11 2 1

latex2 12 2 1

 Table B.3. Current test cases between FBAR and WinRK LDC ranks on memory usage

B.3.3.2.6 Completeness relative to efficiency:

For current x86 machines, the FBAR model design suffices to generate 37.5% to 50%, and potentially,
87.5%, if indeed grid file-dependent with a comparator. The 50% case, proving an absolute
superdense coding technique [34] in Coding Theory and Cryptography [3], is also complete with
confidence, since the grid file could be recalibrated to exponentially act on behalf of a compressed file.
This file contains the position number of the representative char entry akin to an actual compressed file
generated by the program. Furthermore, contrary to the attempts being made in quantum information
theory for compressing 2bits via 1 qubit during data transmissions, the 50% reduces probable quantum
states as self-contained in the grid file with no state probability (0 state probabilities). Ergo, the
confidence rate for doubling the efficiency (superdense) in reconstructing chars is absolute and
self-explanatory. Extending the grid file addresses in format, of course, as described in §A.1.2, Appdx.
A, results in 87.5% compression. Once the logic constructor grid acknowledges the results by the
comparator relative to the compressed file, such fixed size estimates are realized during
decompression. Furthermore, the application could be executed under Windows and UNIX platforms
despite of memory efficiency factor or rate differences and hardware constraint problems handling
FBAR logic, i.e. application‟s data computation performance on spatial and temporal localities.

B.3.3.2.7 Portability:

The FBAR logic could be implemented under different platforms, even programming languages.
Generally, the application could be implemented in C, .Net or any equivalent programming language
using the right functions to perform FBAR logic. However, there are a number of customized
functions that are required for implementation as specified within the context of FBAR logic, in case
of not benefiting from a programming language standardized functions per release. Furthermore, the
application could be executed under Windows and UNIX platforms despite of memory efficiency or
rate differences e.g., application‟s data computation performance on spatial and temporal factors. It is
also important to connote that the algorithm contains portable components such as GC and dictionary
files, making it portable from one compiler to another. The execution of commands and translation,
from one computation level to another, is standardized and manageable on different machines.

Also, the cumulative results in terms of a compressed file in context are in accordance with an
expected size performed by the algorithm. It is based on the firm self-embedded flags, packed into
4-bits per reconstructible char. This shows us that all results are at least, half of the original input size
of some random document. Ergo, portability in form of compressed files, such as GC type, with its
decompression package, simply, by choosing the relevant option, on the user‟s side, reconstructs data
expectably. Portability of the algorithm, its components and executables, e.g., “file-faces upon new
and old data during LDC and LDD phases”, within this context, is evident, and thus easy to envisage
from a developer‟s side delivered to the customer-client side, on nowadays machines.

B.3.3.2.8 Validity threats:

Due to the evident nature of Shannon entropy, practiced within the four packages of our choice, and
thence justified, “in the choice itself,” based on their ability of compression according to their global
rankings [22], and logic, e.g., [18], we thus deem all-LDC package selections to be indeed universal.
Hence, the ASCII representation for all data conversions is too universal including other LDCs‟ cause
and effect of the internal systems, as an internal validity threat due to extreme variance or randomness
of logic, i.e., their implementation of logic. Therefore, the selection comes about based on these

evident logical conversions, whilst we conduct our version of logic, FBAR, for its provability aspect in
being different, i.e., not being based on repeated patterns of symbols, makes this threat to be evidently
reduced due to internal functions, operation of logic. So the speak, due to FBAR design being merely
based on pure circuitry logic in a combinatorial manner i.e., Fuzzy Binary AND/OR with certain
universal operators, as newly-defined in terms of znip operators, makes this algorithm in pre-test
conditions to confine threats in its context of universality relative to post-test conditions where
generality of the application is conducted on e.g., computers, networks, etc. (values are, herein,
self-embedded or, self-contained). We could even see this for higher degrees of FBAR
experimentations within the external validity context, which engulfs threats relative to users using
FBAR. For example, we map such participation of users to real-world relationships, such as discussing
the robustness of the algorithm in § B.3.3.2.4. Ergo, the selections, based on the available data from
[22], inclusive of our own extensive analyses on the encoding/decoding layers, before the algorithm‟s
universal translation table, are all „universal‟ indeed. This made the selection imminent prior to logic
during sampling of the char-based type documents, which further maps to our version in terms of
data-type, and NOT THE LOGIC per se.

Since our logic is mathematically self-contained (impregnable) for single and groups of bit
values, each potential threat is thus self-contained. Therefore, we admit by contrast that, the remaining
LDCs are practicing some „discrete logic‟ without a combinatorial extension to it, with loosen threats
spread all over the e.g., network. This makes developers frustrated in designing package extensions,
and thereby multiple applications to tackle each problem occurring for each probabilistic LDC,
compared to FBAR. On the one hand, FBAR does not claim to possess an independent variable, yet all
validity threats remain intact with it. On the other hand, in FBAR, since the logic itself results in one
universal variable, it self-contains all dependent variables, regardless of complexity and uncertainty
factors within its qualitative and quantitative relationships. This means that, the former situation is not
in effect (self-contained) for all transmissions, majoring the predictability aspect with respect to
participants and groups of LDCs.

B.3.3.2.9 Risks in summary:

FBAR only fails if the program functions and their subroutines are not implemented according to the
4D-read/write bit-flag model. In other words, debugging and validation issues, is always the case
during implementation. Moreover, the EB barrier, illustrated in Fig. B.2, and explicated earlier in the
ending parts of § A.1.2.3, handled by the 64-bit microprocessor for Cr > 87.5%, (hypothesis H.5), must
abide by the rules of complex matrix computation (the comparator matrix) for the 4-distributed tables,
in reality. Meaning that, the very first translation table representing the double-efficiency of 50%
compression, is the ultimate solution of the intersection of the values with those values associated in
its identical tables from the program code (LDC/LDD subroutines). This has been illustrated in the
later parts of § A.1.2.3. Ergo, no matter how variant the LDC result in other compressors, FBAR
remains relatively fixed, due to its universal translation table being intact with its package supporting
double-efficiency for each release. The translation table respectively is 1, 2, and 4 in quantity,
supporting the simplistic to complex orders of Eq. (7) for the hybrid and non-hybrid versions of
FBAR/FQAR.

Appendix C

Appendix C concludes the thesis with the discussion
(Section C.1) of the key findings with respect to the
central research question, highlights the strengths and
limitation of the study, and presents some possible
direction of future work following its expected
applications (Sections C.2 and C.3).

C.1 Discussion

Data compression is all around us. We see it in a variety of products, such as, high definition
televisions, DVDs, MP3 players, cell phones, digital cameras, fax machines, automobiles, etc. When
we look at all the embedded products out there, we will quickly see that data compression is an integral
part of their operation [40]. In this study, we presented FBAR logic, prototype, performance, usability
and its applications. The FBAR was tested in an experiment in which the outcome was compared with
the results of other LDC algorithms.

In this study, the prototype was built to perform a lossless data compression, and necessary
comparisons were made with other lossless data compressors. The results respectively concluded that
the FBAR compression regardless of file content, type and size, generated fixed size compression
ratios with double-efficiency, a factor in which other compressors are incapable of performing in
practice. This precludes the fact that other compressors rely on certain fixed ratios for their space
savings on a computer system. They embark on uncertainty over fixed file sizes. When file content or
type changes, the data compression ratio also changes with respect to the compression technique
incorporated, mainly performing probability pattern checks of recurring characters within that file. So,
FBAR logic poses to call-in the „logic‟ itself rather than taking in recurrences of the same character to
compress data in a limited space and timeframe.

The compressible space however, could be unequally partitioned in a discrete manner which itself
generates an uncertain loci of compressed bits i.e. where and what size are there in the compressed
pattern. One case though, rarely plausible to occur for a 99% compression, and that is, assuming all
file content is built-up of one recurring character, e.g., aaaaaaaaaa …. a, resulting in k[a] = 3 + x
characters in the compressed version; where k is the size in bytes, each byte represents 1 reoccurring
character, and x depends on how k is presented for the new length e.g., if k = 10 then x = 2, if k = 1000,
x = 4 bytes and …, spatially occupied. On the other hand, FBAR by contrast, makes all data
compressed, irrespective of content and type, based on a single combinatorial logic. This is the
strength of FBAR, its universal applicability to any information object, regardless of size, type and
structure.

The string values in FBAR contrary to the string exemplified in the previous paragraph, were
treated as binary during the encoding and lossless compression procedures. The strings were
compressed into equivalent characters from the ASCII table into file C, thereby to a 4D grid file G.
From there, the translation table of the 95 printable and 1 nonprintable character block was used to
make comparisons when the resultant document was converted back to binary for decompression. We
evaluated the difference between all layers that were being implemented from the lowest layer(s) of
lossless compression (LLLC) to the highest (HLLC).

We determine the limits of the application to be mostly on hardware constraints in design, rather
than FBAR logic per se. To tackle this, we eliminated issues related to single bit usage of flags,
considering their unique combination in G file, is indeed avoiding „bit array‟ models in programming.

After verifying the theoretical estimates of 37.5%, 50%, 75% and 87.5% fixed size compressions,
we began to compute the bitrate factor of our FBAR LDC.

The bitrate for both LDC and LDD relative to CPU time/s were computed and listed in Table B.3.
We then included specific test results in form of Freidman‟s mean ranks and rank sum in recognition
of hypothesis H.6 of this paper.

We point out a possible threat to external validity which could be the selection of test samples,
since there are LDC packages under development and those that are yet unknown to general public,
not labeled as the most popular ones like WinRK, GZip, etc. This makes the selection of packages less
absolute in algorithmic evaluations and comparisons made upon their performance.

This also entailed other risks related to performance factors such as memory usage, discussed
earlier as resolutely intact for any versions of FBAR compared to other algorithms. For example, not
all embedded systems support large blocks of RAM memory that can be allocated to a striving
compression algorithm as well as WinRK for giving high Cr‟s yet requires lots of memory space to
encode/decode data. For embedded designs with limited RAM memory, the challenge is to find
software that can achieve acceptable efficiencies within a small memory footprint. We propose FBAR
operates in a more reasonable boundary of memory usage compared to other LDCs.

This thesis described a lossless compression algorithm based on the popular LZW compression
standard and its opponents such as FBAR/FQAR. Broadly, the well-known LDCs suffer in
consistency in acting less probabilistic, thus depending on many random factors and redundancies
when it comes to data types, finding a char match within the context of LDC.

Concerning memory size management and thus its efficiency, there are ways to reconfigure data
access and allocation through compression techniques as explained in the previous chapters, e.g.
§A.1.2, through a dynamic versus static approach.

The current version of FBAR compresses data up to 87.5% in a unique manner, whereas other
compressors do not, since they generate random values depending on data content. FBAR is

independent of data content, since it follows one and only one concrete rule of logic, applicable to data
content itself. This logic is combinatorial, and defined as fuzzy with binary and-or logic promotive
into quantum logic and vice versa. That is why this attribute of FBAR ranks it as the
highly-information conversive to all logical standards discovered today. In other words, a new way of
compressing data losslessly amongst other compressors, is itself a novel approach. The most efficient
FBAR compression would be to implement its quantum application with fuzzy, inclusive of binary for
performing robust calculations between the absolute discrete state boundaries (purely binary), and
dual state boundaries (quantum like) applications. This would allow decision making systems to
compute data efficiently, with all of its complexity intact within the information object.

FBAR future applications lie onto implementing its quantum logic through signal processing and
physical applications i.e. a new hardware design and organization, briefly explained as follows:

C.2 The future of FBAR‟s ultimate compressions

Simulating a quantum computer (QC) on a traditional classical computer, e.g., an x86 machine is
a hard problem. The resources required increase exponentially with the amount of quantum memory
under simulation, to the point at which simulating a QC with even a few dozen quantum bits (qubits) is
well beyond the capability of any computer made today [41]. Maneuvering with FBAR combinatorial
logic, reversing ANDed and ORed results inclusive of their in-detailed threshold states of fuzzy type,
allows future interpreters and dictionary coders, act most efficient in shortest signals possible. Despite
of hypothesizing now on the primitive grounds of this compressor on current computers, its future
would promulgate possible advances in quantum technology to handle extreme complexities of logic
compared to nowadays LDCs. The reason that LDCs today, consume space, and thus clumsy in
delivering data in shortest time possible compared to lossy types, which is apparent in their
management of converting multidimensional limits of space in the shortest forms possible.

Strong dependency on probabilities rather than entangling them in terms of 1-with-0 and
0-with-1, rather than treating them totally discrete in their representation, demands to create more
reference points and uncertainties in data reconstruction and calculations. Ergo, having an FBAR
model in possession, makes computation from the most discrete states to the most continuous, and in
overall, connected time frames retrievable from one information content to another

Fig. C.1. An overview of two co-local parallel signals, in total forming 1-bit revolution whilst a

set of equipartitioned fragments of signal occupied by binary bits of data. (Extracted from [2])

The transformation of FBAR to its highest levels of compression within its four-layer encodings is
done via qubit registers. In this regard, a seclusive proposal in § 3.5.1 [2], is given for their new
hardware design principles. The design in theory, with its practical aspects of an n-fqubit register, is
briefly outlined as follows:

C.2.1. New memory architecture for future FBAR LDCs with sub-bit handling

As we know by now, a number of entangled qubits taken together is a qubit register. Quantum
computers perform calculations by manipulating qubits within a register. A qubyte is a collection of
eight entangled qubits. It was first demonstrated by a team at the Institute of Quantum Optics and
Quantum Information at the University of Innsbruck in Austria, in December 2005.

Fig. C.2. (a) An n-fqubit register system with overcoming latency options between clocked

quantized signals; (b) A 2n-fqubit multiplexer generator taking in signals from the upper image

for data decompression purposes. (Extracted from [2])

By referring to our new 4D grid model from Appdx. A, a superposing character representing at least
two characters, indicating a 50% pure LDC on an x86 machine is itself a significant catch for a
quantum machine. By combining the famous Bloch sphere model [42] representing multiple quibit
states with the 4D hypercube grid, the building of universal chars would grow exponentially, since all
bit flags are self-embedded within the hypercube grid structure. Therefore, extracting flags based on
„char priority‟ in entanglement would be super-condensed into half a signal of a wave, containing the
FBAR total code information with intact length into shortest forms possible. This new model
incorporation in terms of concatenated addresses from base into the signal is illustrated in Fig. C.1.

Fig. C.1 extracted from Ref. [2], illustrates the concept of having signals refreshed for the
fragmented data in form of storable data dots via fuzzy qubit lattice sites. Every dot represents a
Boolean bit value memory address, bit polarity or bit position (see Fig. C.1) governing the possibility
of having information so compressed beyond the classical limits of data computation.

Possessing memory address, bit location and polarity, permits the algorithm‟s later stages to
decompress data successfully, without losing 1-bit of information. Data retrieval at the extreme
compression level becomes imminent despite of having the two co-local parallel signals
„asynchronous‟ in behavior. The main reason is that the new bi-lattice sites refresh the signal by
having necessary „off and on‟ bits of information at upper lattice site‟s disposal. Once the signal, either
of two being delayed, the refreshing process (an iterative loop) compensates signals in data integrity
with equal fragments of data, adjacent to one another.

The principle aspect in theory obeys „Bose-Einstein condensation‟ and „photonic projection‟ from
one upper linear layer to lower layer(s) of qubit registers with a necessary design alteration (upgrade)
in the lattice site [23]. The practical aspect of presenting FQAR becomes quite feasible akin to
Phillips‟ research team [24, 25], once we satisfy the design principles of the fqubit registers for an
ultimate compression. Once the new design is implemented, the grand scale of its work could be
applied to server architectures addressing memory organization, its management and communications.
Optimum loads (based on bitrate) of maximally-self-compressed data in memory cells, fixates reliable
paths in data access and transactions between databases and their applications.

In our next reports, we suggest physical methods of the hardware design (Figs. C.1, C.2), which
uses optical projection of bits [23] and matter condensation [37] in form of atomic shift registers, like
Whitlock et al. [38]. In our design, we commit znip bits (Appdx. A) to memory/grid according to
FBAR projections, simplifying Alice and Bob entanglement concept by super-compressing an
encoded message, thereby decode and decompress. The FBAR logic would then be called as FQAR or
quantum and-or in its maximum performance of LDC. Hence, a negative entropy < 0 bits/byte of Eq.
(6), denoting double efficiency above 87.5%, for a universal predictability, is not farfetched in reality.

C.2.2. The extended grid model for ultimate LDCs

In the classical version of bit computation on current computers, however, the „current challenge‟
was to implement the FBAR‟s 4th layer projections commencing with an 8-bit to 5-bit iterative
compression, which yielded an estimate of 37.5% compression. From there, condensed techniques
were applicable in form of a 4D hypercube model, practically satisfying 8-bit to 4-bit sequential
compressions, which yielded as estimate of 50% compression. Further challenges meet those
compression values generated from 2n:1 ratios. The 50% compression is significant to prove the
possibility of a guaranteed superdense coding technique [3, 34] in quantum information theory.

Future extreme compressions obeying this model deliver highest possible percentages of LDCs
without worrying about quality loss and data integrity variations. Self-embedded efficient space and
temporal limits of computation shall be granted as a result of the FBAR/FQAR models, yielding future
advances in information technology. We aim to publish our next report in some quantum information
and computation journal for the extended 4D model, whereby the current abstract is reformulated as
follows (subject to change before publication):

Abstract – We report a new lossless data compression (LDC) algorithm for implementing predictably-fixed compression values
on quantum computers. The fuzzy qubinary and-or (FQAR) algorithm, primarily aims to introduce a new model for superdense
coding in quantum information theory. Classical coding on x86 machines would not suffice techniques for maximum LDCs,
generating fixed values of Cr 2:1. We have previously implemented the compression and simulated the decompression phase
using fuzzy binary and-or (FBAR) logic. This compression was done through a 4D hypercube consisting of self-embedded
41-bit flags, for at least a 2-original character input, resulting in 1 character (a superposing char) representing the original. This
resulted in a 50% compression proving a superdense transmission on 16 classical bits via 8 qubits (doubled efficiency) with a
pure superposition of both 0 and 1 logic. In contrast with probabilistic LDCs that use Shannon entropy, the current model with
`fuzzy qubinary' entropy, is presented in form of a combinatorial Bloch sphere hypercube (hyper-sphericube). This model is a
stateful improvement on its predecessor to reconstruct 8 original chars via 1 compressed char, yielding a Cr= 8:1 or 87.5%
compression. The current fuzzy qubit model shows an exponential compression growth for 2n-char:1 input scenarios, denoting
universal predictability with a negentropy < 0 bits/byte. We conclude that this model is a steppingstone to quantum information
models solving complex negative entropies, giving LDCs > 87.5% space savings for an ultimate LDC.

C.3 Conclusion

In this study, we introduced and implemented FBAR logic, thereby evaluated its lossless
compression ability compared to other known compressors.

We conclude that almost every LDC uses probabilistic Shannon entropy as its „logic base‟ in
conducting lossless compression. However, we conclude that our LDC performs fixed compression
ratios, contrasting probabilistic standards of a typical LDC algorithm. We thus conclude that, our
algorithm contains predictable values due to a self-embedded 41-bit flag structure for each
two-character input.

We finally claim that this algorithm is novel in most aspects such as encryption, binary, fuzzy and
quantum information methods. To this account, the fields of interest encompass the newly-born FBAR
models useful to quantum information theory mathematicians, as well as computer scientists for its
logic, and software engineers for its applications.

FBAR can be used for different kinds of input values. The system was tested on an x86 machine,
under both UNIX and Windows platforms.

Test samples as char-based documents, e.g., HTML, LaTeX and plain text, were examined for our
prototype and compared with other compressors, varying from low-average to high ranks.

FBAR could achieve higher space saving percentages, above 50% as estimated, simulated and
discussed in theory from its quantum state protocol, once linked reciprocally with fuzzy and classical
binary. Future generation computers, by using this model, e.g., combining the 4D grid model with the
famous Bloch sphere in quantum information, could sustain a great deal of space and bitrate savings.

The “LDD simulation”, on the other hand, allowed us to study FBAR products from our
experiment‟s future challenges. Its implemental state performed a maximum possible compression
based on FBAR logic orienting to FQAR, approximating a 0 space memory occupation, yielding a
data compression greater or equal to 87.5%. FBAR is independent of data content, since it follows one,
and only one, concrete rule of logic: the AND/OR logic, impure-pure pairwise states applicable to
data content itself. In FQAR, negative entropy denoting universal predictably giving values 93.75%
compression is estimated. We conclude that, this model could be considered as a solution to complex
negentropy problems in signal processing and information theory. That is why this attribute of FBAR
to FQAR, ranks it as a fresh way to compress data losslessly amongst other compressors used today.

References

[1] K. Gödel, Über die Vollständigkeit des Logikkalküls. Doctoral dissertation. University Of Vienna.
The first proof of the completeness theorem, 1929.

[2] P. B. Alipour, „A Fuzzy Binary AND/OR Compressor‟, arXiv:0910.2066, Comp. Sci. and Math.,
Info. Theo., pre-print v.2, pp. 1-44, Oct 2009.

[3] D. Joiner (Ed.), „Coding Theory and Cryptography‟, Springer, pp. 151-228, 2000.
[4] J. S. Walker, „A Primer on Wavelets and Their Scientific Applications‟, 2nd ed., 2008.
[5] “Fuzzy Logic”. Stanford Encyclopedia of Philosophy. Stanford University. 2006.

http://plato.stanford.edu/entries/logic-fuzzy. Retrieved in 2008.
[6] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE Transactions

on Information Theory, Vol. 23, pp. 337–342, 1977.
[7] J. Ziv and A. Lempel, “Compression of Individual Sequences Via Variable-Rate Coding,” IEEE

Transactions on Information Theory, Vol. 24, pp. 530–536, 1978.
[8] T. A. Welch, “A Technique for High-Performance Data Compression,” Computer, pp. 8-18, 1984.
[9] L. A. Zadeh et al., Fuzzy Sets, Fuzzy Logic, Fuzzy Systems, World Scientific Press 1996.
[10] L. A. Zadeh, “Fuzzy algorithms”. Information and Control 12 (2): 94–102, 1968.
[11] L. A. Zadeh, “Fuzzy sets”. Information and Control 8 (3): 338-353, 1965.
[12] J. Miller, P. Flor, G. Berg, and J. G. Cabill´, on the “Pigeonhole principle”. In Jeff Miller (ed.) Earliest

Known Uses of Some of the Words of Mathematics. Electronic document, retrieved in 2006.
[13] V. Engelson, D. Fritzson, and P. Fritzson. Lossless Compression of High-volume Numerical Data

from Simulations. In Proceedings of the Conference on Data Compression (March 28 - 30, 2000).
DCC. IEEE Comp. Soci., USA, 574, 2000.

[14] S. W. Smith, “Digital Signal Processing: A Practical Guide for Engineers and Scientists”, Chap. 27,
Newnes/Elsevier., 2007.

[15] C. E. Shannon, “The Mathematical Theory of Communication,” Univ. of Illinois Press, Champaign.
1998.

[16] C. E. Shannon, “A Mathematical Theory of Communication”. Bell System Technical Journal, Vol.
27, pp. 379-423, 623-656, 1948.

[17] J. A. Patel, B. Cho, I. Gupta, Confluence: A System for Lossless Multi-Source Single-Sink Data
Collection, Distributed Systems & Computer Networks, Dept. of Comp. Sci., University of Illinois,
USA, pp. 1-3. http://hdl.handle.net/2142/13158 Accessed Jun 2009

http://plato.stanford.edu/entries/logic-fuzzy
http://hdl.handle.net/2142/13158

[18] C. E. Shannon, Redirected from EFF: Electronic Foundation Frontier group, Home database:
http://www.data-compression.com/index.shtml Accessed Jun 2009.

[19] P. Viana, A. Gordon-Ross, E. Barros, and F. Vahid, A table-based method for single-pass cache
optimization. In Proceedings of the 18th ACM Great Lakes Symposium on VLSI, Cat. Cryptography
and Architecture. GLSVLSI ‟08. ACM, New York, NY, pp. 71-76, 2008

[20] M. Czachor, “Notes on nonlinear quantum algorithms”, Report No. quant- arXiv.org: ph/9802051v2.
1998.

[21] D. S. Abrams and S. Lloyd, “Nonlinear quantum mechanics implies polynomial-time solution for
NP-complete and #P problems”, arXiv.org: Report No. quantph/9801041, 1998.

[22] English text, CIA World Fact Book, Lossless data compression software benchmarks/comparisons,
Maximum Compression, http://www.maximumcompression.com/data/text.php, Accessed Sep. 2009.

[23] S. Zhang, Z. Li, Y. Liu, R. Geldenhuys, H. Ju, M.T. Hill, D. Lenstra, G.D. Khoe and H.J.S. Dorren,
“Optical shift register based on an optical flip-flop with a single active element”, Proceedings
Symposium IEEE/LEOS Benelux Chapter, Ghent, 2004.

[24] E. Arimondo, I. Bloch and D. Meschede, Atomic q-bits and optical lattices, Retrieved from
ftp://ftp.cordis.europa.eu/pub/ist/docs/fet/qip2-eu-28.pdf, Sep. 29, 2009.

[25] B. Phillips, Talk from 10/6/2003, “Neutral Atoms as Qubits”, Fujitsu Lectures, University of
Cambridge, 2003, at: http://sms.cam.ac.uk/media/650257 Accessed Jun 2009

[26] C. D. Meyer, “Matrix Analysis and Applied Linear Algebra”, Society for Industrial and Applied
Mathematics, 2000.

[27] D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeutel & D. Meshede
(2004) Neutral Atom Quantum Register. Phys. Rev. Lett., 93, 150501.

[28] P. A. M. Dirac. The principles of quantum mechanics (Fourth Edition ed.). Oxford UK: Oxford
University Press. p. 18 ff, 1982.

[29] Entisoft Developers, String Insertion, dedicated to Microsoft Visual Basic and Office development
tools 1996-1999, at http://www.entisoft.com/estools/StringManipulations, Accessed Oct. 2009.

[30] L. Debnath, „Wavelets and signal processing ‟, Springer, pp. 177-217, 2003.
[31] F. Pistono, “Open Source implementations of encoding algorithms for video distribution in the

HTML5 era”, Dept. of Comp. Sci., University of Verona, Italy, 2010.
[32] I. Veldman, A. Keijzer and M. van Keulen, Compression of Probabilistic XML Documents, Cat.

Comp. Sci., Springer Berlin/ Heidelberg, Vol. 5785/2009, pp. 255-267, 2009.
[33] X. Xie and Q. Qin, Fast Lossless Compression of Seismic Floating-Point Data, IEEE Comp. Soci., pp.

235-238, 2009.
[34] C. Bennett and S. J. Wiesner. Communication via one- and two-particle operators on Einstein-

Podolsky-Rosen states. Phys. Rev. Lett., 69:2881, 1992.
[35] R. R. Kowalski, “Algorithm = Logic + Control”. Communications of the ACM 22 (7): 424–436, 1979.
[36] CCSDS Green Book. Informational Report Concerning Space Data System Standards, Lossless Data

Compression, CCSDS 120.0-G-2, Section 3.1, 42 pages, 2006.
[37] S. Peil, J. V. Porto, and W. D. Phillips et al., Patterned loading of a Bose–Einstein condensate into an

optical lattice, Phys. Rev. A 67 051603, 2003.
[38] S Whitlock1, R Gerritsma2, T Fernholz3 and R J C Spreeuw. Two-dimensional array of microtraps

with atomic shift register on a chip, New J. Phys. 11 023021, 2009.
[39] IBM Corporation, Structure, Declaring and Using Bit Fields in Structures

http://publib.boulder.ibm.com/infocenter/lnxpcomp/v7v91/index.jsp?topic=/com.ibm.vacpp7l.doc/la
nguage/ref/clrc03defbitf.htm Accessed Feb. 2010

[40] R. Guastella, Lossless Data Compression for Embedded Systems, Courtesy of Embedded.com , at
http://www.embedded.com/opensource/217800397Accessed Apr. 2010

[41] B. Huntting and DavidMertz, „A guide to solving intractable problems simply‟, Introduction to
Quantum Computing, IBM, Brad Hunting University of Colorado and Gnosis Software, Inc., at:
http://www.ibm.com/developerworks/linux/library/l-quant.html Accessed Oct. 2009.

[42] D. Chruściński, “Geometric Aspect of Quantum Mechanics and Quantum Entanglement”, Journal of
Physics Conference Series, 39, pp.9-16, 2006.

[43] A. Hyvärinen and E. Oja, Independent Component Analysis: A Tutorial, node14: Negentropy,
Helsinki University of Technology Laboratory of Computer and Information Science, 1999.

[44] G. Boole, Cambridge and Dublin Mathematical Journal, Vol. III, pp. 183-98, 1848.
[45] C. E. Shannon, A symbolic analysis of relay and switching circuits, Massachusetts Institute of

Technology, Dept. of Electrical Engineering, 1940.
[46] M. Nelson, LZW Data Compression, DJJ journal, 1989, or see for instance:

http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/lzw/lzw_docs/LZW_Dat
a_Compression.htm , Accessed Apr. 2010.

[47] S. W. Smith, The Scientist & Engineer‟s Guide to Digital Signal Processing, California Technical
Pub. 1st Ed., Chap. 27, 1997.

[48] A. Kerckhoffs, “La cryptographie militaire,” Journal des sciences militaires, vol. IX, pp. 5–83, Jan.
1883, pp. 161–191, Feb. 1883. (http://petitcolas.net/fabien/kerckhoffs/)

http://www.data-compression.com/index.shtml
http://www.maximumcompression.com/data/text.php
ftp://ftp.cordis.europa.eu/pub/ist/docs/fet/qip2-eu-28.pdf
http://sms.cam.ac.uk/media/650257
http://www.entisoft.com/estools/StringManipulations
http://en.wikipedia.org/wiki/Robert_Kowalski
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://publib.boulder.ibm.com/infocenter/lnxpcomp/v7v91/index.jsp?topic=/com.ibm.vacpp7l.doc/language/ref/clrc03defbitf.htm
http://publib.boulder.ibm.com/infocenter/lnxpcomp/v7v91/index.jsp?topic=/com.ibm.vacpp7l.doc/language/ref/clrc03defbitf.htm
http://www.embedded.com/design/opensource/217800397
http://www.embedded.com/design/opensource/217800397
http://www.embedded.com/design/opensource/217800397
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/lzw/lzw_docs/LZW_Data_Compression.htm
http://www.cs.cf.ac.uk/Dave/Multimedia/Lecture_Examples/Compression/lzw/lzw_docs/LZW_Data_Compression.htm
http://petitcolas.net/fabien/kerckhoffs/

