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ABSTRACT  

Context. The currently known compression coding algorithms on x86 machines do not include techniques for 
generating fixed values of compression ratios as reliable as possible for maximum lossless data compressions (LDCs). 
However, a „4-dimensional self-embedded bit flag model‟ is evaluated to serve multidimensional LDCs with fixed 
value generations, contrasting the popular methods used in probabilistic LDCs, such as Shannon entropy. In context, 
we use this model to implement a new way of predictably-fixed compression values compared to other algorithms.  

Objectives. We investigate a new type of logic in design and concept, governing issues directed to one LDC 
algorithm. The main objectives were: the applicability of FBAR logic on data structures for a new LDC; design and 
requirements of the algorithm parallel to limitations versus strong points of the implementation; tackling the 
limitations mostly observed on x86 compilers compared to the simulated version of quantum compilers; the 
evaluation of the algorithm based on output data, once logic is applied; investigating whether the algorithm is lossless 
or not. Finally, comparing its performance with other LDCs used today. We introduce this logic in its respective 
model via implementation and simulation for general use on x86 machines, and its future use on quantum computers.   

Methods. We implement the FBAR algorithm in form of a prototype using certain software development 
environments and program code samples in C language. The prototype presents the encoding/decoding techniques for 
low-level compressions. From there, a high-level compression is conducted. It compressed data as expected by 
loading a document sample using a memory grid file which is a portable file containing single bit flags in 65,536 rows 
or addresses. The translation of addresses for original characters is given in a translation table with a static size  
8MB, for any amount of input data. By the program‟s interpreter, once flags are compared with the compression 
result, we begin decompression. The decompression uses these flags to manipulate the compressed data to reconstruct 
new data identical to the contents once loaded to the program i.e. the original document.  

Results. We covered spatial results as minimally as 37.5% data compression, and a maximum of roughly 87.5% on 
x86 machines. The algorithm‟s compression and decompression simulation grade, performed bitrates averaging 475 
kBps, to encode and decode data, respectively. Based on our analysis, we ranked the topmost algorithms used today, 
to have the lowest ranks in memory usage compared to FBAR, such as WinRK, on their dictionary coders. We also 
deduced by result that, FBAR performance at any level is uniformly fixed due to its logic and design implementation. 
We further used a nonparametric statistical test to compare our algorithm with other LDCs with mean rank sums, 
showing a significant difference between results. Results were realistically 50% for the fuzzy binary (FBAR) version, 
proving double-efficiency of 16 bit transmission via 8 quantum bits, and roughly 87.5% for the strongly fuzzy 
quantum (FQAR) type on x86 machines, which gives double-efficient hypothetical values  87.5% compression.  

Conclusions. We observed that the current version of FBAR compresses data with fixed compression ratios, where 
other compressors do not. Almost every lossless compressor uses probabilistic Shannon entropy as its „logic base‟ in 
conducting LDCs. FBAR achieves higher space savings, above 50% as estimated, simulated and discussed in theory 
from its quantum state protocol. The LDD simulation, allowed us to study FBAR products from our experiment, 
yielding a double-efficient data compression > 87.5% or a negentropy < 0 bits/byte. We thus conclude that, our 
algorithm contains predictable values for every double-character input. The predictable fixed value, allows a user to 
know how much physical space is available within a reasonable time, before and after compression. This confidence 
in predictability makes FBAR a reliable version compared to the probabilistic LDCs available on the market.    

Keywords: Fuzzy Binary AND/OR, data compression/ 
decompression, pairwise bits, double efficiency.  
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Abstract 

We report a new lossless data compression 
algorithm (LDC) for implementing predictably-fixed 
compression values. The fuzzy binary and-or algorithm 
(FBAR), primarily aims to introduce a new model for 
regular and superdense coding in classical and 
quantum information theory. Classical coding on x86 
machines would not suffice techniques for maximum 
LDCs generating fixed values of Cr  2:1. However, the 
current model is evaluated to serve multidimensional 
LDCs with fixed value generations, contrasting the 
popular methods used in probabilistic LDCs, such as 
Shannon entropy. The currently introduced entropy is of 
‘fuzzy binary’ in a 4D hypercube bit flag model, with a 
product value of at least 50% compression. We have 
implemented the compression and simulated the 
decompression phase for lossless versions of FBAR 
logic. We further compared our algorithm with the 
results obtained by other compressors. Our statistical 
test shows that, the presented algorithm mutably and 
significantly competes with other LDC algorithms on 
both, temporal and spatial factors of compression. The 
current algorithm is a steppingstone to quantum 
information models solving complex negative entropies, 
giving double-efficient LDCs > 87.5% space savings.  

1. Introduction  

In the world and market of data compressors, 
developing a lossless data compression (LDC) 
algorithm satisfying compression values much greater 
than 50% compression, even greater than 98%, would 
itself be a novel approach. Why this is important, is 
answered in how we perceive data compressors today. 
Imagine the amount of space savings and bitrate 
savings performed by some new algorithm in a 
consistent manner, i.e., predictable data compression 
values regardless of content size and input. The LDC 
techniques used today are for compressing commonly 
available documents, and are reported as probabilistic-
dependence compression techniques only. There are a 
number of LDC algorithms to choose from, and they 

vary in methodology, code size and complexity. Which 
one is chosen, depends primarily on the specific 
structure of the data, as well as the objectives of the 
particular application. Most applications are compatible 
with popular compression standards, such as PKZip, 
GZip, WinZip, 7Zip, or UNIX‟s compress programs. 
Whichever compression standard is chosen, chances 
are it will require a large amount of RAM. For 
example, the WinRK with different compression 
profiles, if set for a slow and maximum LDC, uses 800 

MB of RAM to encode a 10 MB data. (See also [29].) 
Furthermore, the complexity and size of software 

systems have increased in recent years especially when 
it comes to LDCs. There are diverse techniques that 
perform LDC based on the mere-chance probability as 
random process. In principle, these techniques benefit 
from e.g., Shannon entropy [12, 13, 15], to compute 
similarities between data objects and their recursive 
pattern recognitions. More specifically, the compression 
is based on repeated patterns of input data to bit 
sequences (frequently encountered), [13, 24], restricted 
to random variables. Therefore, the algorithm loading 
different types of information with the same size, its 
compressed output, based on these random variables, 
would vary in output size and content (an uncertainty).  

In order not to fail on the market, it is important to 
also achieve a high quality with intact data integrity 
when studying the output data. Such a quality 
expectation could be realized from probabilistic 
techniques that calculate distances between strings of x 
and y, for similarity comparisons, such as algorithmic 
complexity (Kolmogorov). For instance, GZip by 
default uses Lempel-Ziv coding (LZ77). Such 
compressors are used to foremost increase space 
savings, and in general, via e.g., algorithmic complexity, 
increase quality and quantity, data integrity, clustering, 
inheritance and grouping for their redundancy checks. 
In view of such factors, we evaluate a data compressor 
by its compression rate, and thereby decompression 
(LDD) based on char identification and address checks. 
The question is, whether a technique exists in using a 
new combinatorial logic that performs LDC with the 
least probabilistic factors. In other words, we search for 
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a technique which contrasts symbol frequency and its 
firm dependency on Shannon entropy for repeated 
patterns of characters.  

In the new technique, however, AND/OR logic is 
used to operate on bit pairs promoted from one data 
compression level to another. The logic is explicit and 
empowered by mathematical rules of mapping and 
abstraction levels of logic bits, prior to their data type. 
The data type is given in terms of strings and chars with 
integer limits. The logical choice of strings is in being a 
very common input data for texts, and is frequently used 
in e.g., WinZip, GZip, WinRK and LZW with embedded 
compression switches, to perform arbitrary LDCs. 

We report a set of data compression test cases used 
for maximum data compression ratios, and evaluated 
the losslessness of data when decompressed. In the 
presented study, we mainly focus on three aspects:  

 How can FBAR logic be applied onto a data 
structure for a data compression? 

 How does the output data from the algorithm 
evaluated for its losslessness and integrity?  

 How different would be the performance of the 
algorithm, compared to other compressors?  

This paper is structured as follows: Sect. 2 gives 
background information on FBAR and other 
compression algorithms. It also gives details on their 
implementation differences. Sect. 3 focuses on FBAR 
test and structure. Sect. 4 presents related work. Sect. 5 
introduces the FBAR test data generation and its 
components. Sect. 6 describes the experiment, while 
Sect. 7 contains the results. Sects. 8-9, end the paper 
with discussion and conclusion, respectively.  

2. Background  

The motive of finding FBAR came about in its logic 
which gave the author a sense of unifying different 
types of logic, proving their interrelatedness of logic 
states in information theory. The relatedness for each 
character entry on binary construct is presented by the 
principles of the completeness theory [1] and logical 
consequence [3] from different models, e.g., fuzzy logic 
[3, 4, 7, 8, 9], quantum cryptography [2], binary, and 
quantum binary logic [17, 18]. By making this 
uniformity, FBAR logic is emerged. This logic is 
possible when packets of Boolean values per character 
are normalized (bit insertion and update), and abstracted 
into relative states of fuzzy and quantum logic.  

The FBAR algorithm, primarily aims to introduce a 
model for regular and superdense coding. In coding 
theory and cryptography [2], superdense coding is used 
to attempt a 2-bit transmission via 1 quantum bit (qubit). 
Formally, it is barely achievable to transmit double- 
efficient binary via quantum states between two points. 
However, this issue is resolved in FBAR, since it gives 
absolute predictable states in its model structure for 2n 
bits via n fuzzy qubits. The logical interrelatedness and 
its consequence, as such, are given later by Eq. (1).  

2.1. Notations and terminology 

Notation Short definition  Example 

Cr   Data compression ratio. 2:1 compression  

C Compressed data; compression. 1  ,  nC C n    

C  Decompressed data; decompression. out refC C
   

H Entropy rate in e.g., Shannon systems.  
 bH H  

m String size e.g., English alphabet size. m = 26 + 1space  
chi A character, where i .  {ch1ch2ch3…} 

x Array dimension for the residing bits 
in memory. 

if  xi = 0 then  
x = [000…0] 

y Array dimension for projected bits 
from upper memory to lower layers.  

if yi = ⌐ xi  , xi = 0 

then y = [111…1]     Bits from horizontal plane projected 
vertically onto a compressed binary.   

if yi = 1 and xi = 0 
then y = [0101...] 

 Variable lengths function on e.g., 
string, char, time or binary.    

 
x

C x
t




  

 Infinity; undefined, subject to removal 
via e.g., new characters.     

2ch –  = 2ch   Fuzzy state leaned to low level logic.  1 0 = {0 , 0}≡0   Fuzzy state leaned to high level logic. 0 1 = {1 , 1}≡1   Right bit-to-left bit selector.         Left bit-to-right bit selector.       
 Binary vale or sequence, where          =     = b   

          =, if    = 0,   =1,    = 0001       Logical AND otherwise, bitwise AND  0 1=0,  1 1 = 1      Logical OR otherwise, bitwise OR 0 1=1,  0 0 = 0   Bidirectional between states or logic x y ≡ x   y   x 
≡ Equivalence; identical to …  2 chars ≡ 16 bits   Logical deduction; therefore … {ch1ch2}= {$%}   ch1 = $, ch2 =%  

2.2. Logic and Data Type 

This study is focused on the presentation and 
evaluation of an FBAR LDC technique. Especially, the 
focus is on the FBAR data compression, and thereby, its 
successful lossless decompression. By implementing 
certain functions in a programming language, like C, with 
more efficiency, the FBAR logic and its LDC product is 
achievable. The motive to perform LDC with the least 
probabilistic frequency occurrence of characters, such 
as, from the English alphabet, is to conceive the logic 
behind each character-entry denoting a spatial size limit 
occupation. In modern machines, each standard ASCII 
character entry, excluding the extended type or, an entry 
 27-bit code = 128 decimal, occupies 8 bits or more of 
space, in which each bit is either, a low-state or 
high-state logic. A set of logic states, in combination, 
according to ASCII 7-bit code pattern match, build up a 
character information or its corresponding symbol.  

To perform the least probability of logic operations, 
there must be a definite relatedness between binary 
logic and its in-between states of low and high, relative 
to their corresponding characters for each 8-bit block. In 
FBAR logic, this could be recognized at the lowest 
levels of binary logic between AND and OR operations.  

As we relate characters in their binary construct, 
fuzzy logic comes to our attention to include more states 
for further LDCs on the same char entry without losing 
the initial 0 and 1 binary. As we progress, fuzzy logic is 
too connected and related to quantum logic, no matter 



how many states of compressed data, still, 8 bits of 0‟s 
and 1‟s could be transmitted via minimally 4 fuzzy bits, 
and thereby, 2 quantum bits, interrelatedly; or    

   binary states fuzzy states quantum states   

  {0,1} {1 0, 0 1} {00, 01,10,11}        (1) 

 
2.3. Lossless data compression algorithms  

Lossy and lossless data compression algorithms 
both have one purpose i.e. to compress data. However, 
there is a great difference in their specialty which entails 
both quality and quantity on a given I/O data. Lossy 
compressors do not concern the conservation of data in 
quantity, and it is just how to present data to the point of 
delivery without losing significant details i.e. 
decompression with acceptable quality or readably 
recognizable data. For example, in video technology, it 
suffices for a user to receive images with even low 
quality as far as details are not lost in the picture.  

Lossless algorithms, however, maintain all details 
between the two points of data source and sink. It is 
extremely crucial for textual data I/O, e.g., a dictionary, 
to maintain no data loss on a single character throughout 
the compression process, whatever LDC method is used.     

  

Fig. 1. Flowchart of a lossless type algorithm  

Fig. 1 shows the flowchart of a simple lossless data 
compression algorithm [35]. As shown in this flowchart, 
the LDC algorithm is designed to input data, accumulate 
it, generate a dictionary that assigns tokens, and outputs 
them into a compressed format. An example of this is 
Lempel “Ziv” (LZW), a lossless data compression 
technique as an improvement to the popular LZ77 
compression algorithm [4, 5]. We study current LDCs 
in their structure with the newcomer FBAR LDC 
algorithm, and thus highlight their explicit differences 
in logic, method, design and performance with FBAR.    

Fig. 2, however, is a circular process representing 
FBAR. Both LDC algorithms must possess similar 
properties like LZ compressors that avoid string 

character misplacements, distance redundancy or token 
confusions on erroneous data reconstruction during the 
decompression phase. Similarly, anticipating character 
misplacements or symbol confusions in a document 
during decompression have been considered in the 
FBAR algorithm from a variant size to fixed size limits 
of memory space. Whichever compression standard is 
chosen, chances are, it will require RAM space. The 
more space dedicated to the compression program, the 
higher the compression ratio [29]. This yields in larger 
reference tables built by the LDC program.  

The current challenge is to find some software that 
can achieve acceptable efficiencies within a small 
memory footprint. This article describes a lossless 
compression algorithm based on FBAR with a premise 
of a 2n-dimensional dictionary of „bit fields‟, strictly 
avoiding the concept of „bit array‟ usage in its 
implementation. The reason is that in the latter, we 
would just encode rather than compress data, since bit 
arrays consume at least 1 full byte of memory for a 
single Boolean variable, i.e., a1-bit flag.  

With appropriate bit-flag referencing upon 
compressed characters, FBAR achieves respectable 
fixed size compression ratios, typically on the order of 
34-to-50%, while consuming about 64K of RAM. By 
extending the size of its flag reference table (Table 1), 
n two-dimensionally, the dictionary constructed out of 
it permits the order of 87.5% LDCs, and with future 
quantum inclusions, 98% LDCs are achievable i.e. an 
order of 2n:1 ratios, where n is the number of bits. These 
LDC ratios are Eqs. (1) and (5) dependent, which solely 
means fuzzy quantum binary computation, rather than 
char frequency pattern match and occurrence.  

On the other hand, LZW is capable of achieving 
respectable compression ratios, typically, on the order 
of 50 to 60%, while consuming about 2K of RAM. In 
larger RAM memory sizes, 8K or 16K, it is possible to 
achieve 80% efficiency or more [29].    

As we shall later illustrate, an FBAR dictionary 
consists of a translation table and a reference table, 
both building a static size of flag information, later used 
by the program‟s interpreter for char comparisons. Fig. 
2, shows a circular process of an FBAR LDC with 
dictionary, a combination of the algorithmic design and 
program‟s process model. The process comprises of 
program design and memory transactions with the usage 
of relevant functions and methods coded in C.  

To conduct a successful data decompression, we 
renounce bit values based on a predictive pattern of bits 
in memory. This occurs subsequent to the double- 
dashed circle component in Fig. 2.  

We constructed a „char and binary‟ LDC reference 
table to satisfy these conditions during the compression 
phase of the algorithm. The conditional output per input 
char, subsists on relevant bit-flags and extended bits that 
are allocated in the memory. The allocation, read/write 
and reference process is shown in Fig. 3, denoting three 
major procedures to reconstruct data during an LDD. 
This makes compression values predictable regardless 
of content size and input, since a reference table is 
already constructed with unique bit values for every 
compression layer, starting with the 4th layer, upwards. 
The reference table is based on binary decisions, and is 

More bytes 

to input? 

Input 1st Byte in String 

Input next Byte in Char 

Output token for String 

Add string entry for  

String + Char 

HALT 

 Is String + Char 

in Dictionary? 

 

String = String + Char 

START 

Y 

N 

Output token, or 

contents, for String 

String = Char 
Y 

N 



the core component of the FBAR algorithm aiming to 
reconstruct data at the decompression phase. 

Fig. 2. The circular process of an FBAR LDC 
 

We further introduce the algorithm structure and test it 
for each single bit entry as follows:  

3. FBAR structure and test 

FBAR structure is a direct measure of test quantity, 
preparing the grounds to indirectly measure test quality. 
Its structure is used to identify areas of code that cover 
test case scenarios related to FBAR logic and the 
implementation for a unique LDC. These algorithmic 
properties are examined in the following sections:  

3.1. FBAR logic, process and model  

 To fully implement an algorithm, one must 
understand how it works in terms of its testable structure 
and model representation. Therefore, the current set of 
test cases should be minimized, and thus tested in the 
small. Once implementation is resolved on this scale, 
test cases are maximized or extended to the large, in 
number, and in scale of I/O data integration. This would 
to some extent guarantee the correctness of the code on 
FBAR logic requirements.   

For example, constructing an abstracted release of a 
reference table based on standard keyboard characters‟ 
input, including SPACE, would not exceed 96 entries: 
95 printable ASCII characters (decimal # 32 to 127), 
and 1 control character. The use of the latter is to create 
a block or jump between every 96 bit chunk of memory 
dedicated to our table char entries. Each char entry 
consists of 8 bits or a byte, ready for a data compression. 
The data compression is performed and mapped per bit, 
allocated in memory for each identified char.  

In Fig. 4, the encoded character corresponds to a 
unique compressed value as an enclosed form (bit 
closure) of AND and OR pairs, e.g., the columns having 
impure bits 01 and 10. A bit closure for 10, is 0, and for 
01, is 1 in binary, which inclusively infer to fuzzy 
transitive closure pairing of bits [30] or shortest path for 
our binary set. The allocation of the raised single bits for 

the minimum LDC phase of FBAR is also shown in the 
same figure. The AND and ORed columns, each stand 
as a nibble, in total, giving 8 bits per character, which 
means, the character has been encoded on this level.  

The process design and the development of the 
algorithm, however, are illustrated in Fig. 3.  

 
 

Fig. 3. Basic process design of FBAR binary I/Os 

 

 
 
Fig. 4. Basic structure of FBAR binary projections 

The encoding is unique and builds up our Fundamental 
Sequence (FS) encoding, to some extent contrasts to the 
„entropy coder‟ and DCL model reported by CCSDS‟s 
green book [28]. Pairwise selection of bits according to 
bitwise projections of bits, after converting each 
character in the input sequence are picked and converted 
in parallel, one in ANDed, and the other in the ORed 
column. After this encoding process, high state and low 
state fuzzy binary conversions occur for compression. 
By now, every AND/ORed „lesser significant bit‟ (LSB) 
pair is projected to the next levels of compression. The 
remaining bits are thus ignored. Each level of 
progressive projection from a lower layer to its upper, 
has its own 1-bit flag augment in aim of identifying 
impure 01, 10, and pure states of 11 and 00 for each 
converted data byte. In return, for a lossless 
decompression, the AND and OR columns could be 
paired according to Fig. 3 by tracing its sequential 
bitmap pattern to reconstruct data. This is done via a 
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grid file as our portable memory grid on single bit flags 
to decompress data into its initial form.  

3.1.1. Layers of lossless data compression  

Highest layers of compression: Let grid file G, be a 
four-dimensional cube (hypercube) of pure and impure 
bit pairs with negation combinations, denoting a „fuzzy 
transitive closure pairing of bit flags‟ [30], as follows: 

ip: impure or pure pairwise bits‟ dimension: 

iiii iiip iipi ipii piii iipp ippi ppii pipi ipip piip ippp 

pipp ppip pppi 

 
zn: zero or negate pairwise bits‟ dimension: 

zzzz zzzn zznz znzz nzzz zznn znnz nnzz nznz znzn  

nzzn znnn nnnz nznn nnzn nnnn 

The key to either dynamic or static memory approach is 
in applying impure (i), pure (p) and fuzzy transitive 
closures to bit pairs (pairwising FBAR logic), where p 
as a custom bit-flag operator is either 11 or 00. The 
closure of this is simple to predict: it is 1 for 11 since 
AND/OR of 11 is 1, and 0 for 00 is similar. On the other 
hand, i is either 01 or 10. Based on the transitive closure, 
the latter bit pair-product of i, is the major problem, 
since it closes with either 1 for 01, or 0 for 10, which 
coincides with p conditions of 11 and 00 in bit products. 
 
Solution: We first consider a pure sequence of bits, e.g., 
„11111111‟, and manipulate it with ip, then its result by 
zn combinations to reach the char-equivalent output in 
ASCII, e.g.,   ≡            . So, let z stand for zero 
or ignore, e.g., z(01) = 01, z(10) = 10, and n for negate 
e.g., n(01) = 10, n(11) = 00, etc. This is a static solution. 
For the dynamic solution we literary raise single bit z, n, 
i, p flags. We use znip to reconstruct data. But each 
occupies a single bit: z as 0, n as 1, i as 1, and p as 0. So, 
we raise them in a static object (in a grid/portable 
memory) to occupy 1 static byte per combination only.  

Now we have successfully constructed four 
dimensions in a cube, embodying 4-bit flags/zn or ip 
combination. The motive for choosing this hypercube is 
anchored within the implementation of chars, being 
converted to binary, thereby generating self-contained 
flags within an input char of the G grid. This results in 
50% pure compression, covering 2chars per entry, since 
each char is shared between 1ip and 1zn dimension, 
thus in total, 2chars   2ip + 2zn = 4 dimensions. More 
specifically, we put all of our emerging 1-bit znip flags 
in unique combinations for double-efficiency. We 
intersect them with other znip‟s representing a second 
char input: 
    

C(2chars) = 2znip = (4 bits | 4 bits) x (4 bits | 4 bits)  8 bits   
(dynamic approach) 

 

C(2chars )= 2znip = (4 bits x 4 bits) x (4 bits x 4 bits) = 8 bits in 
1x1x1x1 to 16x16x16x16 address (static approach) 

 

The latter approach literary creates 4 dimensions in the 

given address range. The notation „x‟ or „‟, here, 
denotes just intersection of the values without bit 
manipulations (the occupying bit flags) between zn and 
ip dimensions, each independent of the other. This 

approach proves absolute double-efficiency. The former 
approach, however, ORs values in bitwise terms, hard 
but possible for an optimized version after the static 
version due to resulting in  8 bits for each 2char input.    

Example: Consider the following levels of compression 
conducted by our program P, relevant to Fig. 4 
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Then we store the „F6h‟ char, ö, from the ASCII table to 
the compressed file C. From there, when a binary value 
recalled by the decompression subroutine, the program 
then interprets the last layer of compression (rightmost 
column) for „each enclosing bit‟, the following: 

 

 

     

1

1 1

1 1 1 1

1 1 1  1   1 1 1  1

 

0  

0 0

0 0 0 0

0 0 0 0    0 0 0 0
 

Therefore, the usage of these polarity combinations 
(impure/pure) and their counterpart states (negation n or 

⌐), would be given in the following column matrices for 

a data reconstruction. The right-hand side matrix from 
the G file, its binary, represents the actual bit flags, and 
its right column is the interpretation of those bits when 
ORed between zn and ip dimensions. This is a dynamic 
memory approach using „bit fields‟ in C programming.   

In continue, consider the letter „r‟ from the top row, 
its corresponding bit from the last column before 
reaching the compressed char ö representing a 
compressed string called „resolved‟.  
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We then decode via LDD subprogram comparator from 
the G file as follows: 
 
  this is the interpreted sequence  
  

pure reconstruction ?
1 11111111 01110010   C r , 

while „ r ‟ being inputted to P , 
 

out
11111111 1011  10111010   ¬i p ¬i ¬i º, is false,

  

max compression layer of an ASCII character (byte sequencer) 
 

  Primary base binary decompressed layer  

 



                  zzzz  
                 zzzn  
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         nzzn  
        nznz  
      znzn  
     znnn  
    nnnz  
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 nnnn 

   iiii iiip iipi ipii piii iipp ippi ppii pipi ipip piip ippp pipp ppip pppi pppp 
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read 1001| 0011
iff ,1011   , then

1011

    
 

ippi  zznn
i p ¬p ¬i G

Interpretation by LDD‟s „if-else‟ comparator: [do not negate the 1st 
impure pair; do not negate the 2nd pure pair; negate the 3rd pure pair; 

negate the 4th impure pair] of the sequence. 
 

From the above two data points, we then deduce  
 

  if  01110101 11111111  then output 01110010   1011 11 r  
 

To code the interpreter within the comparator, one 
should assert in terms of the previous if-statement. Each 
two nibbles from the top-down of the G file (column 
matrices) represent one compressed character in the C 
file, in this case “ö”. Since this char is of Unicode type, 
and to avoid nonprintable or an extended byte, which is 
 2-byte allocation, we replace this char with a singleton 
{„1‟} derived from its most significant bit (MSB). The 
compressed character in C has now got one single bit or 
byte representative. Let this be a byte sequencer, if 
beginning with a 1, we put the „1‟ char in the C file, 
otherwise, the „0‟ char. Therefore, the interpreter 
interprets this as „11111111‟, which means the bits of 0 
Boolean value from the matrix are now altered into 
 

1110  1101  ¬i i ¬p p i ¬i p ¬p  , 1111  1110  i ¬i i ¬p ¬i i ¬i p  

 

Thus, the compressed characters in average, from the 
left matrix, build up 5.375 bits/char. To conduct the 
above statement, we thus code a packed_struct to 
pack flags as a structure definition to a non 
self-embedded flag approach (dynamic). For example, 
we code f1:1 to f4:1 for the ip dimensions of the G 
file. The right-hand side denotes the bit length of the 
flag variable on the left. For the zn dimensions, we code 
f5:1 to f8:1, correspondingly. Now, to access a 
particular flag in zn or ip, we code, e.g., pack.type = 
6, to access flag # 6. Here, the packed_struct 
contains eight members: four 1 bit flags f1…f4 for 
probable ip combinations, the remaining flags, for a 
negation possibility upon the previous flags if, and only 
if, raised per combination. The G file could be 
considered as a low-level memory map assisting bit 
field compactions, even lesser than six 1-bit flags 
required for the „r‟ char in the “resolved‟‟ sample. The 
further compacted version of the previous statement is  
 

 

   if  01110101 1  then output 01110010  1011 r  
 

The general version of this if-statement is embedded 
within the following pseudocode of the algorithm: 
   

Pseudocode sample I: a lossless data compression    

WHILE there are still input characters DO  
  CHARACTER = get input character 
      CONVERT CHARACTER to BIN CHARACTERS  
      PACK 1-bit FLAGS from any conversion level       
  IF PACK + CHARACTER is in the Reference Table  
  THEN 
         PACK = PACK + CHARACTER in the G file 
    ELSE 
        OUTPUT the code for PACK as NEW STRING 
        ADD NEW STRING + BIN CHARACTER to the C file 
        NEW STRING = CHARACTER 
    END of IF 
END of WHILE 

OUTPUT the code for PACK in G file 
OUTPUT the code for NEW STRING in C file  

The conversion sample on any input string, as shown 
above, are propagated via the intersection of the znip 
combinations established within the 4D G space. This is 
stored by occupant chars in the G file during the early 
stages of the FBAR compression process (see, „method‟ 
below). This is a static approach and double-efficient, 
storing string values in the G file in terms of    

  
     in

2

m
C m     G G ,  G  64 K,    (2) 

where m is the number of string characters inputted to 
the program for a compression. Once compressed, the 
length  of the grid file G is summed with the 
compressed m, equal to m/2. The default value of 64K 
comes from the three dimensions representing a char 
representative for each combination set of ip and zn. 
This default value is computed based on the possible 
number of grid outcomes, Eq. (2). This number is quite 
convenient for a 16-bit microprocessor to directly 
access and process the G file via a set of hardcoded 
„if-else statements‟ on flags‟ subroutine in our code.  

As we shall later observe, to conduct an FBAR 
LDD, data access of the compressed file is in 65,536 
rows, denoting a 64K limit. The expectancy of lower 
sub-layers of the 4th layer would decrease the number of 
possible combinations of 14-bit flags, making the cube 
denser than the current version.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The 4D logic constructor grid with input  

This is due to having more bits available to 
decompress from those sub-layers of the algorithm. But 
in this case, the total number of possible combinations 
per dimension is fixed, or   
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where the grid model is hereby shown in Fig. 5. 
Perceivably, in Eq. (3), out of the two xy bit flag field 
dimensions, we create a four-dimensional hypercube. 
This model could be considered as the G file‟s 
dictionary for a row number to its 41-bit flag 
translation. So, for every arbitrary input document, half 
of the size of that document is created between the four 
fixed dimensions of ip x vector for char chi , ip y vector 
for its neighboring char chi+1, and zn xy vector for both 
chars respectively. The zn and ip vector dimensions, 
each, are presented in separate rows in a list, mounting 
16 indexed 4-bit flag sets correspondingly. The coverage 
of the grid is to concurrently cover all Unicode chars, 
even non-printable char scenarios for any data type. To 
verify the possible outcomes from Eq. (3), ASCII is, 256  
 256 = 65,536 for a 50% double-efficient compression.  

 
A self-embedded flag set method: The cross-section, 
of which the compressed characters are recognized in 
the G file, is read by the „decompression subprogram‟, 
thereby compared with the table contents for a 
successful data reconstruction. The entries are of the 
reference table, building up 95 standard ASCII chars. 
When the scanning of the G file entries reiterates for the 
next 96 char block, considering char # 96 as a block 
double byte (BDB), the program then counts from 97 up 
to 191 and so on, traversing all 65,536 rows, “flag sets”, 
for an LDD.  

 
Fig. 6. The GC file with an 8B to 5B~4B compression  

We use the BDB as an indicator, e.g., a two-char „/a‟ 
representing the 1st full 96 byte allocation, „/b‟ for the 
2nd, and … The BDBs are standard chars elicited from 
the ASCII table. The „if and for loop‟ on the LDD, for 
65,536 possibilities, is the key to this process. This is 
later explicated in pseudocode at the LDD phase. The 
rows are in matrix form, denoting at least two original 
chars held by a position char with a 1, otherwise, a 0 
sequencer. The „position char‟ as illustrated in Fig. 5, is 
an „occupant char‟ stored in the G file, during 

compression (static), starting with an „a‟ to the last 
ASCII 95 characters, representing in total, 952 = 190 
char entries, or 95 compressed chars denoted by the 
C(char) column in Table 1. For example, the elements in 
{a, b, c, d, …, /a}, are respectively interpreted by the 
program‟s interpreter as: the {1st 2chars, 2nd 2chars, 3rd 
2chars, 4th 2chars, … end of the 95th 2chars [of the 
original file]}.   

Table 1. I/O character process and occupation  

Row address C(char) #; Cr Original 

chars; total  

Occupant 

char  

Size in 

bits 

7x11x1x13 1; 2:1=50% re     2 a 8 
12x14x6x13 2; 2:1=50% so     4   b 8 
 6x6x4x15 3; 2:1=50% lv     6 c 8 
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This alleviates char interpretation over binary when 
presented by char position through standard ASCII 
chars: a, b, …,. To override memory overrun(s) during 
the vast access of files in read/writing data, we organize 
the „G with C‟ files into one single file, merging the 
targeted components of Fig. 3 into GC. A structural 
sample of GC is illustrated in Fig. 6. This approach 
makes the algorithm quite portable, thus no need to be 
concerned about memory allocation and management 
issues in this regard. The corresponding table to the 
grid, following bitmap pattern reconstruction for any 
character per impure and pure flag preference “arose in 
bit field as necessary, is to hold a unique identity for that 
particular char,” is given in Table 1. The previous 
output of the pseudocode sample I, thus complies with 

OUTPUT code for CHARACTER + BIN CHARACTER in GC file 

3.1.2 Layers of lossless data decompression  

Now, by having all compression data established in the 
GC file, and having a portable translation table (always 
static in size  8MB with Unicode), we could decompress 
data according to the following pseudocode:  

Pseudocode sample II: a lossless data decompression    

READ the GC file row-by-row from end-of-file 
OUTPUT temporary ROW_CHARACTERS  
OUTPUT temporary (ROW_NUMBER == ROW_ADDRESS) 
CHARACTER = ROW_CHARCTER 
WHILE reading CHARACTER by CHARCTER DO 
   READ ROW_NUMBER 
   IF CHARCTER is not in the (ROW_ADDRESS AND 
CHARACTER) of translation table with BIN CHARACTER  
THEN 
        STRING = get translation of OLD_CODE 
        STRING = STRING + CHARACTER 
 ELSE 
        STRING = get translation of NEW_CODE 
    END of IF 
    OUTPUT STRING 
    CHARACTER = 1st or 2nd or … or nth 2 characters in  
               STRING 
    REPLACE CHARACTER with 2 new characters from the    
    translation table 
    OLD_CODE = NEW_CODE 
    DELETE temporary ROW_NUMBER and ROW_CHARACTERS 

Row addr. in 
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END of WHILE  

The expectancy to reconstruct data, indicating a pure 
50% LDC, requires a minimum of 9696 = 9,216 
„if-else‟ lines of code. The reason to that is, according to 
Table 1, we need to recover 2 original standard chars per 
1 compressed char (see original chars and their occupant 
columns), just like the „constructor process‟ illustrated 
in Fig. 6. So, one could say that the current grade of 
FBAR LDD is a simulation, and the LDC layout is just a 
tangible illustration of what is happening underneath the 
prototype. Ergo, the fully-implementable pseudocode 
covering char flag-set combinations is given below: 

WHILE reading CHARACTER by CHARCTER AND compressed 
BIN CHARACTER is ‘1’ DO 
READ CHARACTER as last block character 
IF CHARACTER is a block character THEN  
READ CHARACTER prepositioned to block character 
READ ROW_NUMBER 
GET ROW_ADDRESS from translation table 
IF (CHARCTER =‘d’ AND ROW_ADDRESS = ‘1x13x2x7’)  
   OUTPUT STRING =‘ed’   
ELSEIF (CHARCTER = ‘c’ AND ROW_ADDRESS = ‘6x6x4x15’)  
   OUTPUT STRING =‘lv’+‘ed’ = ‘lved’ 
ELSEIF (CHARCTER = ‘b’ AND ROW_ADDRESS = ‘12x14x6x13’)  
   OUTPUT STRING =‘so’+‘lved’ = ‘solved’ 
ELSEIF (CHARCTER =‘a’ AND ROW_ADDRESS = ‘7x11x1x13’)  
   OUTPUT STRING =‘re’+‘solved’ = ‘resolved’ 
ELSE 
PRINT no data or null compressed  
END of IF 
ELSE 
PRINT no block character in range 
End of IF 
END of WHILE  

The incremental concatenation of the „OUTPUT STRING‟ 
in the latter, corroborates with „STRING = STRING + 
CHARACTER‟ from the former pseudocode. The LDD 
interpreter, uses the scanf()tool to scan old data from 
the last block chars, i.e. from end-of-file (EOF) to its 
heading, subsequently, chars from end-of-line (EOL) 
after each BDB-read. These block chars as defined 
previously, could be lined-up after each 95 char 
accumulation, as e.g., {/a, /b, … / , $a, $b, … $ , @a, 
@b, …, @ ...}, alternatively, {€, , ‚ , ƒ, … ÿ} as ASCII 
8-bit or larger block chars. Once scanned, the interpreter 
reaffirms char occupants with their corresponding 
self-embedded flags (the related G row) from the 
translation table, and outputs data, reconstructibly. The 
“translation table is the main component of the 
dictionary”, focusing on occupant chars and row 
address columns (see Table 1, columns colored in grey).  

3.1.3 Layers of encryption and decryption  

Lowest layers of compression: The flags raised in the 
„reference table‟ dynamically, for encoding data, comply 
with the flag and polarity settings in Table 2. The main 
flags are # 0 to 6 polarity flags. The remaining flags are 
concatenated and thus raised in the grid file. 
Programmatically, one could select relevant bit pairs 
based on these tables to reconstruct data for lower levels 
of compression inclusive of maximum LDCs. Once 
bitwise combinations of the reference table are 
confronted within the LDD program code, bit access for 
reconstruction between the grid field and compressed 
file is enabled. 

Table 2. Bit flag polarity combinations on bit pairs 

and nibbles during compression 

Type no. Polarity set Implies to  1-bit flag  

0 ↓↑↑↓ most chars f0=1bit 
1 ↓↓↓↑ letters   f1=1bit 
2 ↓↑↓↓ letters f2=1bit 
3 
4 
5 
6 
7 
8 

↓↑↓↑ 

↓↑↑↑ 

↓↓↑↑ 

↓↓↓↑, ↓↑↑↓, …  
  
 

letters 
letters 
few letters 
dual chars 
all 2bit binary 10 
all 2bit binary 01 

f3=1bit 
f4=1bit 
f5=1bit 
f6=1bit 
f7=1bit 
f8=1bit  

The above grid, however, is used and customized for 
any level of compression, either of lower layers of 4th up 
to its topmost possible LDC product.  

 

A lower level encoding: For example, to reconstruct a 
character with decimal # 64, as “@”, based on a raised 
flag, say, flag # 0 (neutral or ignorable), the equivalent 
of the character‟s binary would also be 01000000. The 
character‟s compressed version through FBAR using its 
flow (Fig. 4), or its model (Fig. 3), is “00 0”, denoting 
that the first two zeroes are pure and give 0000, whereas 
the second pair “ 0” is indeed impure. The latter‟s true 
face is “10 0”, indicating flag # 7. Thus, the bit flag 
dereferences noise as 10 during decompression, and for 
the remaining 0 in “ 0”, becomes 00. In total, we then 
have, 0000 1000 = 2 nibbles = 8 bits ≡ 1 character. Now, 
we establish the pattern based on flag # 0 i.e. its polarity 
set, since we code our algorithm that every nibble is of a 
previously-ANDed type, and next to it, from left-to- 
right of a binary sequence, the ORed type (consider 
them as odd and even nibbles in a full binary sequence 
with a length > 8 bits). Hence, the ANDed version sits 
above as the North Pole, and the ORed version sits 
below as the South Pole:  
   

              0000     
↓↑↑↓ =             ≡   , 

              1000 

Programmatically, one could conceive this in terms of 
an equivalent pairwise selection from memory in a 
sequential manner.   

Consider an accustomed byte to some char in terms of  

ANDed  0000 1000  ORed , 
 

Equivalently, pairing the bits in terms of                                 ≡   

The pairwise mask function, shifting bits to the right 
otherwise to the left, could do this encoding, i.e. a “bit 
registry process‟ implemented in terms of the following 
portion of the pseudocode 

Pseudocode sample III: a lossless data encoder   

CREATE a FILE POINTER for READ_WRITE operations 
WHILE reading CHARACTER by CHARACTER DO 
OUTPUT CHARACTER as temporary BIN CHARACTERS 
   READ BIN CHARACTERS 
   NEW STRING = BIN CHARACTERS 
BITWISE AND(1st2 CHARACTERS of STRING from MSB to LSB) 
BITWISE OR (2nd2 CHARACTERS of STRING from MSB to LSB) 
BITWISE AND(3rd2 CHARACTERS of STRING from MSB to LSB) 
BITWISE OR (4th2 CHARACTERS of STRING from MSB to LSB) 
  IF 1st2 CHARACTERS in STRING is ‘01’ THEN  
     OUTPUT rightmost CHARACTER of this pair = ‘1’ 
  ELSEIF 1st2 CHARACTERS in STRING is ‘10’ THEN 



     OUTPUT rightmost CHARACTER of this pair = ‘0’ 
  ELSEIF 1st2 CHARACTERS in STRING is ‘00’ THEN 
     OUTPUT rightmost CHARACTER of this pair = ‘0’ 
  ELSE 
     OUTPUT rightmost CHARACTER of this pair = ‘1’ 
  END of IF 
CONTINUE SORTING 2nd2 CHARACTERS, 3rd2 CHARACTERS,   
             4th2 CHARACTERS in STRING like before 
OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN  

              CHARACTERS = 1 ASCII CHARACTER   
END of WHILE  

As we can see, we simply compress data by selecting 
the least significant bit (LSB) of the pairs per nibble 
denoting closure points. This could be registered after 
applying bitwise and-or, and from there, after 
converting from compressed binary to compressed char, 
written to the G and C files in parallel. The simplified 
form of the „if statement‟ with its „continuing course on 
sorting binary chars‟ in the pseudocode, would be   

... 
SHIFT from MSB to 2nd rightmost CHARACTER in ( 

1st2 CHARACTERS, 2nd2 CHARACTERS,  
3rd2 CHARACTERS, 4th2 CHARACTERS) 

OUTPUT 2nd rightmost CHARACTER from (1st2 CHARACTERS, 
2nd2 CHARACTERS, 3rd2 CHARACTERS, 4th2 CHARACTERS) 

... 

This results in, for every 8 bits, a 4-bit output, and from 
there, 2 bits, and finally, a 1bit output char. We pack 
each 81-bit output into 1 ASCII equivalent char as our 
compressed version. The subsequent pseudocode 
represents what is necessary to code for an LDD, as a 
subroutine to the above code, recalling compressed 
values stored in char:   

Pseudocode sample IV: a lossless data decoder   

WHILE maksing BIN CHARACTERS from BITWISE AND and 
BITWISE OR results DO 
STRING = 8 BIN CHARACTERS 
ASSIGN ‘0’ to a DOWN variable   
ASSIGN ‘1’ to an UP variable 
FLAG_STRING = UP + DOWN CHARACTERS     
    IF FLAG_STRING = (DOWN + UP + UP + DOWN)    
    CHARACTERS THEN 
        STRING = (MSB BIN CHARACTER + 5th BIT  
        CHARACTER) + (6th BIT CHARACTER + 2nd BIT  
        CHARACTER) + (7th BIT CHARACTER + 3rd BIT  
        CHARACTER) + (LSB BIN CHARACTER +  
                      4th BIT CHARACTER) 
        OUTPUT STRING = OLD 8 BIN CHARACTERS 
    ELSEIF CONTINUE CONCATINATE for other  
    FLAG_STRING UP + DOWN combinations  
... 
END of IF 
OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN  
              CHARACTERS = 1 ASCII CHARACTER  
END of WHILE  

So, considering the „@‟ char, we reconstruct 0001 0000 
via bit concatenation from the „8 BIN CHARACTERS‟ or 
„2 NIBBLE CHARACTERS‟, denoted by a „+‟ in the code. 
Hence, during the decompression phase, having a set of 
up and down flags available, makes the algorithm to 
reconstruct data by tracing the arrows‟ directions in the 
polarities set. Interestingly,  the “@” char is also a dual 
character (it behaves as such), and could be raised by 
flag # 6 due to giving the same result for its 
decompressed version with different polarity 
combinations. But for reasons needed to occupy fewer 
bits, even in form of 1-bit flags, we reconstruct data by 
reciprocating with the grid file, cross-referencing with 
distinct bit groups, and building up Cr values  2:1 

compression. The main focus for reconstructing data, is 
considering negation flags # 1 to 4, pure and impure 
flags # 1 to 4, ORed in combination for each compressed 
character in the C file. A comparator as the FBAR 
program subroutine compares results between the static 
table as a point of reference with the dynamic 
component, C file, and the semi-dynamic component, 
the G file. The process relationships have been 
illustrated in Fig. 3. From there, a compression of 4-bits 
per compressed chars in the final layers as a 1-bit 
representative is stored. In total, 5 bits for each string 
entry identified for a decompression. To every unique 
combination of pairs made by the comparator, a specific 
1-bit flag is allocated in the fixed size memory chunk 
with a specific address like from the portable 
compressed file C. This phase of LDC denotes a 5-6 bit 
compression, giving an average anticipation of 34 to 
46% space savings for a 95 random string entries. The 
allocation of single bits raised in the memory, and from 
there, to the G file for each character per memory chunk 
is computed by the following equation: 

             5
64 K

2 8

m m
C m        G C      (4) 

 

where m is the number of string characters inputted to 
the program for a compression. Once compressed, the 
length  of the grid file G is summed with the length of 
the compressed file C, for any quantity of chars 
measured by m in bits and bytes on each read for an 
LDD. Thus, the total is a value of (64 + m/2 bytes) + (m 
bits or m/8 bytes) compressed. The remainder bits added 
“m/8 bytes” come from the measure on the last layer of 
the LDC product. This makes any customized fixed 
table as a reference table to identify the initial character 
entries during the LDD phase of the algorithm.  

Successful char identifications via „for‟ and its 
nested „if loops‟, makes a lossless compression absolute 
in all angles of bitwise operations. Identical chars, are 
created by these loop calls on different reference points 
between GC and translation table contents. The main 
rule for each row of entry is to always maintain a 24 
and-or bit encoding, and a < 8-bit data compression.     

3.2. Contribution 

The main contribution in this paper is presenting a 
new model on self-embedded flags from Sect. 3.1.1. It 
allows an LDC algorithm to conduct superdense coding 
i.e., doubling the efficiency between two points of data 
transmission. This established a key difference in 
techniques, observed between the FBAR algorithm and 
other LDC algorithms. According to the “theory of data 
compression” [12, 13, 15], we conclude that almost 
every LDC uses Shannon entropy as its „logic base‟ in 
conducting a lossless compression. In fact, repetition of 
characters in a certain frequency based on the theory of 
probability is embedded in such LDCs. In layman‟s 
terms, information entropy is the same as 
“randomness”. A string of random letters and numbers 
along the lines of “5f78HJ2Z2Xp4V7Vb6” can be said 
to have high information entropy, or, large amounts of 
entropy, while the complete works of Shakespeare can 



be said to have low information entropy. Their LDC 
products are quite variant, which depend on content 
pattern probability or character rate of recurrence. 
FBAR‟s LDC, however, deals with the computation of 
binary logic regardless of content size and type, whereas 
other techniques are not bothered about. Binary logic in 
FBAR, deals with individual bits, their combination, 
repetition, cubic conservation, regardless of character 
repetition or content type. This means, based on a fixed 
size character reference table, Table 1, we derive a new 
more certain equation (least zero order H values), which 
is logarithmically the least probabilistic with discrete 
entropy (bits per character), compared to Shannon‟s 
entropy rate on English alphabet given by  
 

          2
log 4.75 bits/charH m    ,          (5) 

 

and for higher orders of H , for a given text source made 
up of English alphabet letters, becomes 4.07, 3.36, 2.77 
and 2.3 bits/char, respectively. In FABR, however, 
fixed values of C for every order remain 
   

           log 0,2.4  bits/bytebb
H     ,       (6) 

and for a binary sequence , the binary probability of 
two states, b = 2, constructing 1 char, entropy H 
becomes 2, 1 and 0 bits/byte, regardless of source for a 
given fixed size LDC binary reference code. This makes 
the algorithm to compute information reliably based on 
fuzzy binary, rather than string characters.  

The process in Eq. (6) evaluates every character by 
using and-or, pure and impure logic, and from there, 
further LDC‟s between bits of information. Eq. (5), 
however, deals with the random process to evaluate the 
whole sequence of characters using probability theory 
for an LDC result. Eq. (6), by comparison, improves 
less dependency on symbolic representations, and 
mainly, dependency on binary logic, thereby, fuzzy, and 
finally, quantum logic. The latter, however, remains 
quite intact with higher orders of probability equations 
promoting Shannon zero-order through third-order and 
general models, in simplistic sizes of LDC.  

The reason is that, quantum logic by itself is based 
on probability behavior over bit states. To assist these 
relationships between logical events of the FBAR 
algorithm, we define them as LDC causality in form of 
supreme states of compression. For any data type at a 
quantum level, the current model (Fig. 5) holds good for 
superdense coding operators [27]. In our next report, we 
improve our model design, reconfiguring znip flags in 
an extended translation table, in aim of 
super-compressing an encoded message, thereby 
decode and decompress. The FBAR logic would then be 
called as FQAR or qubinary (quantum binary) and-or in 
its ultimate performance of LDC. Hence, a negentropy < 
0 bits/byte of Eq. (6), denoting double efficiencies 
above 87.5% compression, for a universal 
predictability, is not farfetched in reality (see, e.g. [31]).  

4. Related work  

This section gives an overview of other works 
assisted in the FBAR algorithm for its prototypic design 

(Fig. 8) rather than implementation. Related work 
mainly constitutes the separated versions of the 
combinatorial logic synthesis of FBAR, i.e. {F, B, 
AND/OR} by well-known scholars, e.g., G. Boole, C. 
Shannon and L. Zadeh [33, 34, 3], chronologically. 
These works made it easier to distinguish our 
combinatorial logic by Eq. (1), from other LDC 
algorithms over various test cases as input strings and 
documents. Our logic is not of other LDCs that rely on 
randomness based on repeated symbols in content. In 
our implementation, satisfying a set of systematic 
hypotheses is indeed recognizable in Sect. 5.1.  

The LZ77 and LZ78, are two LDC algorithms 
published in papers by Lempel and Ziv in 1977 and 
1978 [4, 5]. The Lempel-Ziv algorithm is a 
variable-to-fixed length code. They are both dictionary 
coders, unlike minimum redundancy coders. However, 
they are only equivalent when the entire data is 
decompressed, as long as the entire dictionary is 
available. As of 2008, the LZ77-based compression 
method is by combining LZ77 with Huffman coding. 
Literals, lengths, and a symbol to indicate the end of the 
current block of data, are all placed together into one 
alphabet. This is often the specialty of LDCs used today 
for compressing common documents, which are 
reported as considerably probabilistic-dependence 
compression techniques only: e.g., XML model, DAG 
-compression [25], and lossless entropy coding [26].  

To our knowledge, when FBAR is executed by an 
x86 compiler, it is evident how this LDC performs with 
fixed sized Cr‟s, regardless of what document or data 
type. The grid file, or compressed file, and the decoder 
in FBAR, do not act as same as the LDC packages 
mentioned above. However, apart from FBAR logic, 
design and implementation, the strategy in assimilating 
the components of the program into an LDC and LDD 
structure, like Fig. 8, their evaluation is of definite 
resemblance with these packages. To validate such 
issues in practice, we needed to test data from the input 
level to its corresponding output according to our 
componential model, Fig. 3. This led us to further verify 
our cyclic model from Fig. 2: which one of our 
hypotheses is valid, and which one disqualified on 
current machines. We reject their null hypotheses based 
on the implementation of each pseudocode (dynamic/ 
static, from Sect. 3.1), step-by-step, as a successful 
approach in evaluating the I/O products of the algorithm.  

5. Experimental setup and application  

The following addresses the preliminary conduction of 
the FBAR experiment in terms of, applicability and 
implementation of logic relative to performance, 
discussed as follows:  

5.1. Test data generation for input data  

Let us put hypotheses H.1 to H.4 into discussion 
before showing or discussing the prototype. These 
hypotheses were formulated in our thesis proposal as a 
systematic implementation satisfying our research 
questions in Sect. 1, whereby, each hypothesis constitutes 
the aims and objectives of our work. In virtue of our 



design process, the following hypotheses have been 
verified for data generation test cases, as „true‟, 
otherwise „false‟: 

Table 3. Hypotheses and their „true‟ or „false‟ states 

Hypotheses x86 fqubit Tested OS 

H.1- Input of any data type to the FBAR‟s 
1st layer, results in binary representing 
the same original content.  

H.10 - The conversion of any data type to 
binary is impractical.  

True 

 

 

False 

True 

 

 

False 

Unix; 

Windows 

H.2- A sequence of pairwise selection of 
bits to the FBAR‟s 2nd layer, when a 
parallel and-or applied, results in an 
encoded binary message in the 3rd layer.  

H.20 -The pairwise selection and and-or 
operation on a binary sequence, is firstly 
H.1 dependent, and secondly, irreversible 
for data reconstruction. (Or, backtracking 
to the original message is impractical.)   

True 

 

 

 

 

 

False 

True 

 

 

 

 

 

False 

Unix; 

Windows 

H.3- A sequence of pure and impure 
pairwise selection of bits to the FBAR‟s 
3rd layer, once detected and replaced 
with single bits, results in a compressed 
message in layer 4.  

H.30- The pure and impure pairwise 
selection and compression to single bits 
on a binary, is firstly H.1 and H.2 
dependent, and secondly, irreversible for 
data reconstruction. 

True 

 

 

 

 

False 

True 

 

 

 

 

False 

Unix; 

Windows 

H.4- A sequence of single bit flags 
representing compressed data in FBAR‟s 
4th layer, once reused adjacent to other 
purely compressed 1-bit data, results in a 
decompressed message from layer 4.  

H.40- The sequential recall and reuse of 
bit flags from memory/grid, is firstly H.1, 
H.2 and H.3 dependent, and secondly, 
unachievable for an identical data 
reconstruction. 

True 

 

 

 

 

False 

True 

 

 

 

 

False 

Unix; 

Windows 

H.5- A sequence of compressed data in 
form of H.3, when equipartitioned and 
paged into memory or confined signals in 
information space/grid, results in a 
maximum compression possible > 87.5% 
in layer 4.  

H.50- The compression of any data length 
into one single bit is firstly H.1, H.2 and 
H.3 dependent, and secondly, 
unmanageable and irreversible for data 
reconstruction like H.4. 

False 

 

 

 

 

True 

True 

 

 

 

 

False 

N/A 

The „false‟ verdict indicates that the expected 
hypothesis, either null or else, is rejected, ergo, the 
„true‟ verdict indicates otherwise. We set up our 
experiment under UNIX and Windows for each step of 
our systematic hypotheses. For comparisons‟ reasons, 
we study our LDC products coming from H.1 to H.4 
under different platforms. We develop our prototype in 
C due to having efficient tools e.g., pointers, for our 
dynamic and static approach (see Sect. 3.1.1, and „bit 
array‟ in Sect. 2.3). The implementation in our 
prototype led us to focus extensively on H.4, since it 
required more coding methods to supply the dictionary 
coder frame at the LDD phase of the algorithm. The H.4 
constructed a grey line between higher levels of 
compression to maximum levels of compression 
expected in an auxiliary hypothesis H.5. Frankly, the 
four hypotheses are within the territorial abilities of the 
prototype on x86 machines satisfying C‟s  87.5%. 
Hypothesis H.5, however, is to be tested independently 
and promises double-efficient LDC ratios with negative 
entropy benefiting fuzzy quantum binary (fqubit). Ergo, 
the foreground of the H.1 to H.4 products is satisfactory 
to test input data according to our circular process 

presented in Fig. 2, Sect. 2.3. The column on fqubit in 
Table 3, under simulation conditions is applicable, yet 
untested for practical use. The current tests have been 
conducted in the small and in the large as follows:      

5.2. Test data generation for input data  

Small input data allows accurate comparisons 
between original chars during the input phase, 
compression and decompression. To see whether data is 
reconstructed successfully, the output is therefore 
compared with its original. From there, it is logical to 
make test-runs on large input data or file(s), since data 
integrity evaluations are conducted during small sample 
runs. 
 
 

   

Fig. 7. Input data types used for a set of test-runs 

Working with large samples on the first runs would be 
extremely complicated and almost impossible to 
manage per input document. Once char integrity 
evaluated on the smallest scales possible with certain 
buffer limit, assigning string size to the counter variable, 
building up the sample, would result in manageable 
flows, and easy validation on data results. The „long 
int‟ limit, is integrated within „code loops‟ to store 
occupant chars in the G file, as 4-bit flag 
representatives. In case of an LDD with any size input, 
through proper access and comparisons of values from 
the translation table (Table 1), with the occupant chars 
within the grid, an evolution of different versions 
starting with textual type to any data type is achievable. 
This is shown in Fig. 7. The current FBAR subsists on 
the three, upper-right, lower-left and lower-right 
(starting point) of the matrix, evolving toward the last 
version of any document type beyond the level of chars.       

5.3. The FBAR prototype  

In this subsection, we introduce the FBAR 
prototype, as an LDC based on a fuzzy binary and-or 
logic. The current FBAR prototype is written in C with 
source code. Fig. 8 shows the basic structure and the 
main components of this prototype. In Fig. 8, the system 
starts by receiving an input string for preliminary 
conversions as specified in Sect. 3, starting with and-or 
logic. The starting point is by choosing the relevant 
„menu option‟ executing one or more of the hypotheses 
H.1-H.4: 1- the pairwise selection of bits after 
converting each character in sequence, as the encoding 
of AND/OR process, 2- high state and low state fuzzy 
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binary conversions, and 3- the G file commitment over 
compressed bits for an LDC by raising 41-bit znip 
flags, are the main tasks of this prototype.  

These tasks are outlined as „conversion tools‟ in 
Fig. 8. Normal conversions like char-to-bin are classed 
as LDC routines. Reverse conversions for 
reconstructing data are classed as LDD. Having these 
prerequisites implemented for this logic, the program, at 
the LDD phase, loads a sequence of chars, and the 
prototype produces a set of mathematical compressed 
values of the same chars into the GC file (see, Fig. 6). 

     

 
 

Fig. 8. Structural components of FBAR prototype 

The prototype tests hypotheses H.1-H.4, as a 
representative of a „dry run‟ for the algorithmic first 
time implementation. The prototype, by referring to the 
self-embedded flags in a translation table, dereferences 
char values with feedback based on „if‟ and „for loop‟ 
conditions. It uses a deRef() function conditioned in 
pseudocode sample II. The dereferencing function, once 
it finds a match between the GC file and dictionary, 
returns char values in a new file as reconstructed 
characters, just like before, as it is suppose to be in the 
original file. Once the decompression goal is achieved, 
the tool delivers a set of string characters identical to 
those characters that were initially inputted.     

6. The LDC comparisons experiment  

We have, by now, tested the FBAR‟s applicability. 
Now, we examine its code results. Therefore, a number 
of different LDC test packages are selected that vary in 
their code complexity and structure, as well as the 
complexity of input data they require. They range from 
classical code snippets, to more complex methods taken 
from the LDC Standard Dictionary Coder, and 
similarly, programmed compression switches. The 
compression test packages are listed in Table 4.  

The outcome of this experiment is compared with 
the results obtained by probability distribution testing 
over a set of documents chosen by random. Three 
lossless compression packages are selected based on 
their ranks relative to FBAR prototype over input 
documents. The ranking is given on the basis of the 
three criteria, later given in Sect. 7. A sample document 
is tested several times, to obtain a good estimated result 
and, to make sure that the data is consistent and 

satisfactory to hypothesis H.6. The test run terminates 
when document is loaded and dealt with systematically, 
from one function call to another. Once the closure of 
these functions within the method construct is met with, 
then an exit or termination loop is called for the next 
document-load. These functions are pseudocode 
dependent and specified in Sects. 3.1.1 and 3.1.2.  

6.1. Nonparametric comparisons test  

This test gives LDC package comparisons‟ results 
based on ranks irrespective to the encoded, decoded and 
decompressed data. In fact, the focus is on the results of 
how long the computation lasts per sample, its spatial 
consumption i.e. the percentage of compression relative 
to sample‟s rank. The main motive for using 
nonparametric Freidman test is that, we cannot assume 
normality of the distribution we draw our samples from. 
Thus, one of the primary assumptions of parametric 
tests like t-test and ANOVA are not valid. Furthermore, 
since our number of samples is small (n < 20), we use 
Freidman test to analyze the data, and thus test its 
hypothesis, given below. Also, the FBAR case is 
confined to the distribution of repeated observations on 
LDC I/O samples like many non-parametric tests, based 
on the ranks of the data, rather than their raw values to 
calculate the statistic. In the following sections, we aim 
to follow this test to evaluate our algorithm compared to 
other LDCs. Therefore, we wanted to make sure that its 
results were statistically significant and not obtained by 
chance. Thus, we considered the following null 
hypothesis:  

Let X contain our FBAR technique as well as a 
selection of state-of-the-art compression techniques. 
Furthermore, let Y contain a representative sample of 
documents of different type. Therefore, 

H.6- A difference exists in the performances of the 
techniques in X as measured on Y by computation rate 
and space savings.  

H.60- The difference in performances of the techniques 
in X as measured on Y by computation rate and space 
savings is zero. 

7. Results  

By referring to relevant sources giving details on 
LDC packages [19], one could outline the basis of the 
statistical test for results. Table 4 contains these 
packages with their respective ranks reflected in Table 
5. We run our statistical test for comparing three or 
more related LDCs, as a result of their space savings, 
which makes no assumptions about the underlying 
distribution of the Cr data. The data is set out in a table 
comprising n rows by k columns. The data is then 
ranked across the rows and the mean rank for each 
column is compared. Bitrate ranking is statistically 
compared between the highest and lowest ranked 
algorithms, further constituting our null hypothesis. The 
comparisons data is given in Fig. 9. 

The selection of an LDC algorithm depends on the 
following criteria applicable to all LDCs:   
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1. The ability to compress input data losslessly, 
regardless of type, content size and complexity.  

2. Use memory for data access and management 
issues efficiently, e.g., data rate and spatial 
occupation of bits during compression when 
encoded/decoded, and referenced upon. 

3. Must have a dictionary coder for validating data, 
referencing and dereferencing them during the 
reconstruction phase of data, i.e., decompression. 

Based on the above characteristics, the ranking of the 
algorithm is given through percentages of Cr for each 
package. The Cr is not fixed for each algorithm and 
merely based on probability and character letter counts 
or, frequent reoccurrence to conduct a lossless 
compression. The only algorithm that differs from this 
behavior is FBAR, which exhibits predictable Cr ratios 
regardless of content size and complexity. Its fuzzy 
quantum version is FQAR, an expected outcome based 
on FBAR‟s current cipher properties. The selected 
packages in Table 4, were on the basis of best case 
probable scenarios in compressing data above 90% as a 
maximum LDC, 50% as a convenient LDC, and below 
50% > 0% as a classic LDC, with reasonable bitrates.  

Table 4. Test case LDCs based on space saving values 

Document # WinZip GZip WinRK FBAR FQAR * 

text  1 70.00% 85.70% 87.87% 50.00% 87.5% 

book1  2 70.80% 69.00% 80.04% 49.47% 86.57% 

book2  3 65.40% 63.80% 77.11% 48.95% 85.66% 

paper1  4 65.60% 64.70% 73.58% 50.00% 87.5% 

paper2  5 62.80% 61.60% 69.00% 50.00% 87.5% 

paper3  6 60.00% 59.50% 68.25% 50.00% 87.5% 

web1  7 72.20% 71.40% 75.37% 48.95% 85.66% 

web2  8 53.80% 53.60% 54.57% 49.47% 86.57% 

log  9 95.59% 95.37% 96.43% 48.95% 85.66% 

cipher 10 73.30% 70.30% 77.82% 48.95% 85.66% 

latex1 11 70.00% 69.00% 78.28% 50.00% 87.5% 

latex2 12 66.52% 66.53% 75.70% 50.00% 87.5% 

* FQAR is the fuzzy quantum version of FBAR, whereas the latter 
as fuzzy binary, is the predecessor to FQAR, displaying 87.5% Cr‟s.  

Contradictorily, for the fixed Cr generated by 
FBAR, is conveniently more reliable in predicting Cr 
ratios compared to the probabilistic Cr‟s by PKZip, 
GZip, WinRK LDC packages. The ranking is further 
evaluated when package evidence of random sample 
inputs are measured non-parametrically. The rank of 
„1st‟ on FQAR, whilst as a column count is dismissed 
from experimental reality, is a dilemma between the 
ranks on definite techniques, unless implemented for an 
observation. The inclusion of FQAR is intricately 
significant due to the facts presented earlier on i.e. „the 
4D grid‟ in its expandable 4-bit flag combinatorial 
dimensions from Sect. 3.1.1. It gives 50% now, 87.5% 
later, on the same x86 machines. According to Eq. (6), 

for binary 20=1 bits/char cases, an 8 to 1-bit compression 
is evident. If 8 bits is 100% quantity, thus, 1-bit is 
12.5%, giving a space saving of 100 – 12.5 = 87.5% 
relative to „bitrate performance‟.  

 
The translation table results for maximum LDCs: By 
recalling Table 1, the focus on 87.5% LDC is that, the 

column with 96 occupant chars in the dictionary will not 
change in content translations. However, the grid‟s row 
address column in configuration „1x1x1x1‟, becomes 
„1x1x1x1 1x1x1x1‟, and the column with 2 original 
chars, becomes 8 chars to reconstruct. Thus, the 
representation of the „1st 1x1x1x1‟ with the „2nd 
1x1x1x1‟ for its cube has a second non-commutative 

symmetry: „2nd 1x1x1x1‟ with the „1st 1x1x1x1‟, 
altogether, giving four distinct double char addresses 
simultaneously i.e., an 8:1 LDC. This satisfies 65,5364 

TTables = 1.84  1019 unique combinations, or, 16 exa- 
bytes (EB) of grid rows. In case of columnar symmetry 
in two translation tables, 65,5362 = 4.1GB, handles the 
16 EBs when column values are co-intersected by a 
comparator matrix in our code (residing in the LDD 
subprogram comparator). So, four 64K grid row 
combinations, handle the same EB values in four 
parallel tables. This requires complex matrix coding on 
an x86 machine. A 64-bit microprocessor, in principle, 
handles at most, 18 EBs of space [32], if based solely on 
1 table. So, we program 4 tables to just have 32MB 
tables with our FBAR package. So beyond this limit, we 
run the FQAR model combined with the Bloch sphere 
[36] on a quantum computer, easing the complex matrix 
programming, to superdense the EBs down to the 64K 
limits of grid rows for incoming occupant chars.  

Nowadays, compressors accumulate much more 
memory space, even more than 250 MBs for the highly 
ranked compressor (see Fig. 9). This is significant when 
overhead information and memory caching issues are 
studied from the usability aspect of the algorithm. The 
translation table, using memory cache, could be loaded 
into memory and accumulate much lesser space, which 
is significantly important for huge data transmissions, 
above TB limits on network and elsewhere, satisfying 
EB limits explained above.    

 
The statistical test: The test involved the ranking of the 
data in the rows based on the selection criteria (former 
section), then comparing the mean rank in each column. 
Thus, the values of LDC would be ranked across each 
row as shown below. We derived these rankings 
collaboratively based on Fig. 9, Tables 4, 6-7 results. 

Table 5. Current test case LDCs with ranks  

Document # WinZip GZip WinRK FBAR FQAR 

text  1 4; 3 3; 2 1; 1 5; 4 2 

book1  2 3; 2 4; 3 2; 1 5; 4 1 

book2  3 3; 2 4; 3 2; 1 5; 4 1 

paper1  4 3; 2 4; 3 2; 1 5; 4 1 

paper2  5 3; 2 4; 3 2; 1 5; 4 1 

paper3  6 3; 2 4; 3 2; 1 5; 4 1 

web1  7 3; 2 4; 3 2; 1 5; 4 1 

web2  8 3; 2 4; 3 2; 1 5; 4 1 

log  9 2; 2 3; 3 1; 1 5; 4 4 

cipher 10 3; 2 4; 3 2; 1 5; 4 1 

latex1 11 3; 2 4; 3 2; 1 5; 4 1 

latex2 12 4; 3 3; 2 2; 1 5; 4 1 
        

In Table 5, we consider the rankings to be valid relative 
to the fuzzy quantum version (the FQAR column), 
while if dismissed, we consider the ranks to be 
distributed between 1-to-4 instead of 1-to-5. This is 



applied to observe the four first columns from the left 
relative to FBAR, in bold values. Now we start testing  

Decision rule: Reject H.60 if rF  critical value at  = 

0.05 or 0.01, corresponding to 5% or 1% probability P. 
Otherwise, stay consistent with null hypothesis H.60.    

Calculation method: The differences between the 
sum of the ranks is evaluated by calculating the 
Friedman test statistic from the formula 
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where k is the number of columns („performance of 
algorithms‟), n is the number of rows, and Ri is the sum 
of the ranks from columns. In compliance with our 
decision rule, the results on Fr which rejects H.60, are 
given in Table 7, since p-value < . The critical p-value 
of Fr for {4 observed columns + 1 hypothetical column} 
and 12 rows at  = 0.05 or 0.01, is 0.0001. The 
distribution of the Fr(4) statistic is chi-square with k–1 
degrees of freedom (df) or, df = 4. The test statistic Fr 
for all versions was 39.22. Without the FQAR, the result 
on Fr was 34. The p-value for the Freidman test is 
P(Fr(df)  Fr observed), the probability of observing a value 
at least as extreme as the test statistic for a chi-square 
distribution with df = 4.  

 

Fig. 9. Bitrate comparisons and memory usage  

We thus conclude that, the bitrate and space saving 
performances have had a significant result on the LDCs 
for the randomly loaded documents compared to FBAR. 
By conventional criteria, the P-value = 0.0001 < 0.01 

rejects H.60, since this difference is considered to be 
extremely statistically significant. Although, dismissing 
the column on FQAR results-in rank change on 
algorithms, we still observe P = 0.0001 < 0.01 rejecting 
H.60. Fig. 9 shows the bitrate and memory performance 
on 12 test documents, with their critical and optimal 
trends. The results are elicited from Table 6. The bitrate 
relative to memory usage was observed between the 
high and low ranked algorithms on „space savings‟ 
(Table 4): WinRK vs. FBAR. As we can see, for higher 
bitrate performances, WinRK has a critical usage of 
memory per input sample. In some cases, even having 
10 kBps for encoding and decoding data, required 800 
MB memory on a 2GHz Athlon CPU. This ranks 
WinRK‟s memory performance lower than expected, as 
4th, compared to FBAR. When we associate values of 
the upper chart with the lower chart, it is evident that the 
empirical data relative to memory usage on FBAR is 
optimal, and uniformly correlated except, the jump of 
bitrate on sample # 10. This is due to the excessive 
repetition of characters within the sample grid. The 
original input chars were ignored due to their pattern 
simplicity, forming simplistic forms of storable data. 
Therefore, the algorithm is not submissive for taking in 
too much information and thus its computation. The 
average base of bitrate was estimated 475 kBps for 
FBAR, and 925 kBps for WinRK on the 12 samples.   

From the bar charts, it is possible to see that in some 
cases, there is already, right at the beginning, a major 
difference between the two results. There is also a dif-
ference observable at the end, where the mean coverage 
achieved by FBAR over memory usage is least critical 
than the mean coverage of the other compressor. This 
shows that there are significant differences between 
algorithms on their performances.  

8. Discussion  

The FBAR was tested in an experiment in which the 
outcome was compared with the results of other LDC 
algorithms. The string values were treated as binary 
during the encoding and lossless compression 
procedures. The strings were compressed into 
equivalent characters from the ASCII table into file C, 
thereby to a 4D grid file G. The grid file dimensions, 
each comprises of 16 fixed length code combinations, 
making 65,536 possible outcomes. From there, the 
translation table of the 95 printable and 1 nonprintable 
character block was used to make comparisons when the 
resultant document was converted back to binary for 
decompression. Table 6, shows the difference between 
all layers being implemented from the lowest layer(s) of 
lossless compression (LLLC) to the highest (HLLC).  

The LDC time parameter is the result of (LLLC + 
HLLC) time tL, measured in seconds. On the other hand, 
having the highest layer with only „1 byte sequencer‟ 
equal to „1‟, according to the example given on 
pseudocode sample II, gives optimum performance. In 
other words, in total, C = „1‟ in content, makes the 
interpreter to interpret „11111111‟ for the whole 
document, otherwise, „00000000‟ on the first char input 
encounter. From there, applying self-embedded flags, 
altogether performs good bitrates by comparison.  
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Table 6. Estimates on compression with rate performance on FBAR‟s LDC and LDD 

               tL = CPU time/s Compressed size (bytes)  bits/char 

File  Size (bytes)      LLLC      HLLC    LDC      LDD 
(C+G files) – 64 K  
LLLC vs. HLLC 

LLLC vs. HLLC 

text  61608  0.18  0.02  0.2 0.24 31124.8+1: 7701.00 [2.1,2.4] : [0,2] 
book1  678244  1.31  0.14 1.45 1.40  342654.5 + 1: 84780.50 [2.1,2.4] : [0,2] 
book2  1772074 3.2  0.75 3.95 3.43 895266.5+ 1: 221509.25 [2.1,2.4] : [0,2] 
paper1  52516 0.13 0.01 0.14 0.20 26531.5+ 1: 6564.50 [2.1,2.4] : [0,2] 
paper2  117493 0.26 0.115 0.375 0.32 59358.4+ 1: 14686.63 [2.1,2.4] : [0,2] 
paper3  10262 0.05 0.01 0.06 0.10 5184.4+ 1: 1282.75 [2.1,2.4] : [0,2] 
web1  747766 1.63 0.22 1.85 1.71 377777.6+ 1: 93470.75 [2.1,2.4] : [0,2] 
web2  598125 1.29 0.2 1.49 1.36 302177.7+ 1: 74765.63 [2.1,2.4] : [0,2] 
log  1840924 3.43 0.27 3.7 3.58 930050.1+ 1: 230115.50 [2.1,2.4] : [0,2] 
cipher 777654 0.25 0.04 0.29 0.32 392877.28+ 1: 97206.75 [2.1,2.4] : [0,2] 

latex1 209212 0.43 0.03 0.46 0.49 105695.6+ 1: 26151.50 [2.1,2.4] : [0,2] 

latex2 155641 0.42 0.03 0.45 0.92 78631.1+ 1: 19455.13 [2.1,2.4] : [0,2] 

translator  8 MB N/A N/A N/A    N/A N/A 2 bits/char read 
Total  7021519  12.58      1.835    14.415     14.07 3547342: 877689.88 Avg. 2.25:1 

Table 7. Rank sum and mean ranks via Freidman‟s test on the observed data  

Document WinZip GZip WinRK FBAR FQAR 

sum of ranks 35 43 22 60 14 
(sum of ranks)2 1225 1849 484 3600 196 

 

This is given by the additional byte (in bold) added to 
the HLLC column of the table.  

We determine the limits of the application to be 
mostly on hardware constraints in design, rather than 
FBAR logic per se. To tackle this, we eliminated issues 
related to single bit usage of flags, considering their 
unique combination in G file is indeed avoiding „bit 
array‟ models in programming. In fact, hard-coding 
65,536 grid units via „if loop statements‟, reading 
line-by-line with 95 printable char replacements, is 
more useful than the currently-available tools utilized 
for an x86 compiler. This enabled us to have all flags 
embedded in our marked-grid units by a standard char.  

After verifying the theoretical estimates of 37.5%, 
50% and 87.5% fixed size compressions, we began to 
compute the bitrate factor of our FBAR LDC. The result 
on randomly chosen documents for performing an LDD 
is listed in Table 6. The bitrate for both LDC and LDD 
relative to CPU time/s are computed and listed in the 
same table. We then included specific test results in 
form of Freidman‟s mean ranks and rank sum in 
recognition of hypothesis H.6 of this paper (Table 7).  

According to the sequencer approach mentioned 
above, it takes 5 to 6 levels of conversions with a CPU 
time tL = {long + short + shorter + shortest} session to 
conduct all four FBAR LDC layers. Therefore, the 
HLLC version would practically engross one layer 
involvement during data computation. Hence, the 
logical results would give tL on HLLC LLLC. This 
occurs relative to accessing the „translation table‟ on 
41-bit flags identity on each G row for an LDD.  

9. Conclusion  

In this study, we introduced and implemented 
FBAR logic, thereby evaluated its lossless compression 
ability compared to other known compressors.  

We observed that almost every LDC uses 
probabilistic Shannon entropy as its „logic base‟ in 
conducting lossless compression. However, we have 
also observed that our LDC performs fixed compression 
ratios, contrasting probabilistic standards of a typical 

LDC algorithm. Our LDC does not use Shannon 
codeword, and performs compression based on the new 
logic, FBAR. We thus conclude that, our algorithm 
contains predictable values due to a self-embedded flag 
structure for every double-character input.  

The LDD FBAR simulation was tested on an x86 
machine, under both UNIX and Windows platforms. 
Test samples as char-based documents, e.g., HTML, 
LaTeX and plain text, were examined for our prototype 
and compared with other compressors, varying from 
low, average to high ranks. FBAR achieves higher space 
saving percentages, above 50% as estimated, simulated 
and discussed in theory from its quantum state protocol. 
In the context of quantum information theory, the 50% 
compression is significant, proving double-efficiency 
on 16 bits transmitted via 8 quantum bits by our model. 
Similar percentages from other compressors never 
prove this efficiency regardless of their rank number.   

Future generation computers, by using this model, 
e.g., combining the 4D grid model with the famous 
Bloch sphere in quantum information, could sustain a 
great deal of space and bitrate savings. We conclude 
that, this model could be considered as a solution to 
complex negentropy problems in information theory. 
This specifically concludes double-efficient values 
estimated greater than 87.5% e.g., 93.75% compression.  

In terms of usage, a user would be able to know 
how much physical space is available within a 
reasonable time, before and after compression. This 
confidence in predictability makes FBAR a reliable 
version compared to the probabilistic LDCs available on 
the market. We finally conclude that this algorithm 
could be used in most aspects such as encryption, 
binary, fuzzy and quantum information technologies.   
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Appendix A 

Appendix A gives a detailed description of the main 
components of FBAR, which were briefly introduced in 
the paper. These components are separated in 
Algorithm‟s structure (Section A.1), Data Compression 
(Section A.2), Data Decompression (Section A.3), Test 
Cases (Section A.4).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A.1 Algorithm structure  

The Algorithm‟s structure comprises of program code, logic and process model. The algorithm itself 
could be viewed as Algorithm = logic + control by Kowalski in 1979 [35]. The logic component 
expresses the axioms that may be used in the computation, and the control component determines the 
way in which deduction is applied to the axioms. The axioms used for an FBAR compression are 
firstly classed as AND/OR Boolean logic, secondly, fuzzy logic, and finally, quantum logic. This 
combinatorial logic constructs the compression algorithm with control.  

The combinatorial logic synthesis to retain FBAR was found by the current author, Alipour [2] in 
2009. When {F, B, AND/OR} are conceived separately, each as a different field of calculus would 
have its own founder, i.e., chronologically, G. Boole, C. Shannon and L. Zadeh [44, 45, 5]. In 1938, 
Claude Shannon showed how electric circuits with relays were a model for Boolean logic. Hence, a 
sequence of 0‟s and 1‟s, constitute binary [45]. Therefore, in contrast, the current author questions 
that: why not this binary is to be united with the highly probable states of quantum via fuzzy logic? In 
fact, is there a way to assimilate the discrete version F, B, A/R, into one unified version of all, FBAR?   

The combinatorial version, uniting binary via fuzzy with quantum logic, in this thesis report, is to 
prove the relatedness of these logical representations satisfying the posed question given as follows:   
 
To maintain the „control‟ aspect (first paragraph), the structure must include a process model, a model 
in which the logic is conducted cohesively and correctly through a program code. A slight change in 
the logical axioms in implementation would change the algorithm, making it irresponsive to its true 
logic conditions. This is the very characteristic required for a permissible entity to exist in the universe 
of discourse, either of being true or false in its logical consequence, outlining its structure. The FABR 
structure is cohesive in its states of logic and must be deductive (infer to a logical axiom) thus 
partitioned into finite forms of binary bits, no matter where we define them on a scale of time. In fact, 
we take every state to be reciprocal to its predecessor and its counterpart, firmly related in value and its 
quantifier: usually denoted by     , in this case, quantified with „and‟   , and, „or‟   operators.  

The FBAR deductive system indicates that its logical consequences are validly true on FBAR‟s 
very structure when quantifiers are used in its language of the first-order AND/OR formulae (compare 
with Gödel‟s completeness theorem). We need to know this because of the relatedness of logic states, 
their combinatorial logic synthesis, when such logic is applied, rather than propositional calculus 
which returns such combinatorial logic as two unrelated propositions. The combinatorial logic with a 
true relatedness for at least two states is founded in the following reciprocal relation 
                                             {0,1} {1 0, 0 1} {00, 01,10,11}    (1) 

A finite state representation for units of binary (a single bit) could be of use to present, not only its 
process model, in the major, its data transmission architecture when binary values are projected from 
one layer to another. Obviously, these states of binary are conditioned as 0 or 1, indicating a circuitry 
power level of some logic gate. The layers receiving binary states with respect to time to process them 
could be envisaged as memory layers where data abstraction and bitwise projections are handled. 
These issues are categorized as memory management over data relative to CPU usage (process time).  

 

 
 

Fig. A.1: Basic structure of FBAR binary projections 

The logic sates‟ relationships in the above model (Fig. A.1), are demonstrated in form of an 
experiment, which obeys the bit mapping procedure in a bitwise AND/OR processing system (Fig. 
A.2). In coding theory and cryptography [3], superdense coding is used to attempt an 2n-bit binary 
transmission via 2n/2 quantum bits. In the FBAR model, however, we demonstrate just that with 
absolute predictable states at its basic levels of LDC (or 50% compression). The confrontation of 
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Boolean logic with Fuzzy logic and Quantum logic in Rel. (1) is progressive between four 
compression layers (L.1-L4), i.e., a lower data layer of a certain encoded type is compressed to its 
upper through binary projections. In fact, „fuzzy logic‟ reciprocally connects „binary‟ with „quantum 
logic‟ due to being a midpoint of the quantum version representing 8 probable entangled states {00, 
01, 10, 11}, against the 2 probable binary states of {0, 1}. All of which, represent data as true or false 
depending where (in what space?) and when (what bitrate or frequency?) data is being processed. In 
this context, „fuzzy logic‟ represents 4 states of logic, denoting the extremes and their middle points. 
The link between logical projections is established by simultaneously, „in parallel‟, applying AND and 
OR to every paired set of bits from a binary sequence. We further elaborate on bitwise projections in 
the following subsections, relative to application design and resultants returned by the algorithm:  

A.1.1 the FBAR architecture and technical expressions 

FRBAR technical details rely on the following constituting terminology in terms of specific notations 
with definitions and related examples: 

 

 
 
 

 

 

 

 

 

 

 

With regard to these notations and their definitions, we must also familiarize ourselves with the 
conceptual aspects of FBAR in detail prior to implementation, since both aspects are in conjugation 
with delivering an FBAR compression product to its user.  

A.1.1.1 Aims and objectives 

The aim of this study is to find out how FBAR compression is applied to current and future generation 
computers. We shall chronologically establish our new technique as follows: 
 
In our design and development:  

 
 Develop the compressor in form of a prototype with the FBAR technique into four layers. We 

reflect these layers as FBAR logic set, projecting one logic state to another. 
 Develop the prototype by a programming language like C, due to its better memory management 

addressing efficiency, such as the bit field usage over bit arrays, customized in other languages.  
 Develop the prototype complying with the descriptions presented in Table A.4. 
 Develop the prototype following the Table A.1 flow in sequence during implementation.      
 Make relevant ASCII and binary conversions from one another as we encode data and compress 

them through FBAR logic, generating predictable data compression ratios.  

Notation Short definition  Example 

Cr   Data compression ratio. 2:1 compression  

C Compressed data; compression. 1  ,  nC C n    

C   Decompressed data; decompression. out refC C
   

H Entropy rate in e.g., Shannon systems.  
 bH H   

m String size e.g., English alphabet size. m = 26 + 1space  
chi A character, where i  .  {ch1ch2ch3…} 

x Array dimension for the residing bits in memory. if xi = 0 then  x = [000…0] 
y Array dimension for projected bits from upper memory to 

lower layers.  
if yi = ⌐ xi  , xi = 0 then y = [111…1]     Bits from horizontal plane projected vertically onto a 

compressed binary.   
if yi = 1 and xi = 0 then y = [0101...] 

 Variable lengths function on e.g., string, time or binary length. 
   

 
x

C x
t




  

 Infinity; undefined, subject to removal via e.g., new characters.   2ch –  = 2ch   Fuzzy state leaned to low level logic.  1 0 = {0 , 0}≡0   Fuzzy state leaned to high level logic. 0 1 = {1 , 1}≡1   Right bit-to-left bit selector.         Left bit-to-right bit selector.       

 Binary vale or sequence, where          =     = b   
          =, if    = 0,   =1,    = 0001 

 Change of… ; difference  m = m2 – m1       , & Logical AND otherwise, bitwise AND  0 1=0,  1 1 = 1   , | Logical OR otherwise, bitwise OR  0 1=1,  0 0 = 0   Bidirectional between states or logic x y ≡ x   y   x 
≡ Equivalence; identical to …  2 chars ≡ 16 bits   Logical deduction; therefore … {ch1ch2}= {$%}   ch1 = $, ch2 =%  



 Implement single bit flags on memory attributes, representing the compressed bit address and its 
polarity for data compression layers. (This is our main focus.) 

 Retain the retrieved data from memory to reconstruct ASCII characters (decompression).  
 Generate lossless Cr values based on FBAR logic only, contrasting frequent Shannon entropy or 

probabilistic methods used today. (An example on Shannon is given by Ref. [18]).  
 
In our analysis:  

 
 Compare the algorithm‟s data compression ratio with others known in the market such as: GZip, 

WinZip, WinRK , etc. These lossless compressors [22] present an ideal maximum compression 
value, which can vary from data-to-data and from file-to-file.  

 Elaborate upon the obtained Cr results and compare them with the results coming from other 
compressors no matter how variant. (For our metric comparisons, we use the direction stated on 
our hypothesis H.6 in the upcoming section.)   

 Compare results, and apply their deduction to the evaluation phase of the algorithm. 
 
For product evaluation: 

 
 Validate whether FBAR is of a reliable type of algorithm (lossless?), where the input data after 

compression must be as same as the output data when decompressed.  
 Run a set of testing protocols on every step of the design i.e. the “entropic” analysis of the FBAR 

closed system. This is vital for our quantitative measurements on the layers, assuring no data loss 
or deterioration during algorithmic data transformations.  

 Count the exact bytes of information, where each byte consists of 8 bits ≡ 1 character. 
 Validate byte count results by collecting samples of different types of data (in which other 

compressors vary in producing compression values).     
 Build the empirically-executable tests on the conceptual aspect of FBAR, addressing the 

compressor‟s data I/O products from background.  
 Identify the binary, fuzzy and quantum forms of data (as qubits or bit constituents) for either 

compression or decompression phase of the algorithm. The decompression phase should perform 
the exact amount of data with quality via these forms of logic.  

 Check whether the resulted data, no matter its level of compression from input A to output B over 
time, relative to complements A and B decompression outputs, is lossless. 

A.1.1.2 Research Methodology 
 

Our research mainly focuses on experiment based on current affordable techniques, both hardware and 
software, i.e., how the data is obtained and compressed losslessly, using relevant tools of 
experimentation. However, for evaluating the algorithm‟s data compression and performance, we 
compare it with other data compression tools based on comparison statistical methods. In this regard, 
we have sectionalized our research approach as follows: 

 Experimental setup by having relevant programming packages installed on a computer, thereby 
coding, compiling and testing our software on an operating system. We follow our design 
platform, functions and algorithmic flow from Tables A.1-4. For a progressive experiment, we 
then run a metric software analysis for data compression comparisons.      

 Implementing the designed algorithmic technique and test it in practice.  
Description: This is done through prototyping, coding and simulation, satisfying hypotheses 
H.1-to-H.6 from the upcoming section: The coding is used for building our prototype, testing 
FBAR logic for current computers. Its successful presentation would be a steppingstone to 
establish superdense coding [34], achieving FQAR standards.  

 Analysis of different methods and introducing the utilized solution for the algorithm through 
spreadsheet, mathematical and „software evaluation‟ packages. We further, through statistical 
analysis of compression ratios, collect values that come from our experiment. These values are 
expected to come from different data samples i.e. arbitrary documents in which other compressors 
vary in producing compression values. 

 Validating the fixed data compression ratio for our samples relative to data integrity. We conduct 
experiments with different data samples on such parameters.        

 Evaluating and comparing the results obtained from the experiment i.e. FBAR-output products 
over data compression-decompression relative to data rate (further analysis).  
 
 



The FBAR architecture and pairwise AND/OR relationships 

 

 
 

 

Fig. A.2: The FBAR architecture and pairwise AND/OR relationships (an expansion to Fig. A.1) 

Foremost, we must conceive how „bits and bytes‟ are in correlation with each other in terms of their 
logical consequence, coefficients between their rise and fall of states, previously explicated for Eq. 
(1). Their consequences of “logic states” are mainly understood in their relationships within the FBAR 
architecture. The FBAR architecture consists of a memory system which could be portable in form of 
„reference tables‟ or a „dictionary‟ per input information. The “input information” is the valuable data 
that we input to the FBAR program before a lossless data compression (LDC). From there, the 
valuable data by its substitutes, later known as „character occupants‟, reconstructing the original 
information from the availably-compressed data becomes plausible in practice. This latter phase of 
FBAR operations is called a lossless data decompression (LDD). It is evaluated in terms of 
information entropy, assuring that whether data during the levels of LDC and LDD, has been lost 
otherwise successful per compression session. In recognition of Fig. A.1, its expanded version, Fig. 
A.2, gives an overview of the four-layer algorithm from bottom-to-top with an input string. When 
attaining levels of output at the top, the original string is compressed into 1 signal length, or, a value of 
1-bit. (Extracted and adapted from Alipour [2]). The main operators during paired bitwise (pairwise) 
conversions are „+‟ for concatenating chars or their string(s), „&&‟ for logical AND, „||‟ for logical OR 
conditions. However, one must not confuse the latter two with bitwise AND/OR.  

We convey with the logical AND/OR on the basis of input data “which could be of integer type 
conditions converted from two or more, number of chars in a variable,” returning integer values which 
are zero (false) and nonzero (true). However, focusing on single bit chars compared to integers from 
one layer of bitwise-paired projection to another, requires the use of bitwise operators „&‟ for AND,  
„|‟ for OR, in bit fields as low level operators for 1-bit flags, retiring 1 or 0 Boolean values. The „&&‟ 
and „||‟ usage for both logical and bitwise operations are applicable, since in this case, we are 
pairwising the bit chars, or, „&, &‟ing „|, |‟ing them, depending on, in which programming language 
we implement the algorithm, thus evaluating their converted input sequences of data. To implement 
these bitwise projections per logical input condition i.e., “pairs of bits are ORed and ANDed, thereby 
evaluated for a concatenation procedure according to Fig. A.2,” we follow the steps from our 
contextual algorithmic flow. This flow targets on an efficient and fixed size compression product for 
x86 machines. The flow constitutes FBAR methods and its algorithmic components as follows:  

 

A.1.1.3 Methods and components  

The definition of FBAR methods can be distinguished into the Fuzzy Binary AND/OR constituents‟ 
methods (or logic constructor methods), and memory flag methods for components addressing data 
reconstruction:    

Memory System 



Convert string character to binary  select bit pairs from head to tail of the binary sequence  apply AND-OR logic to each 
pair, thus an encoded message is generated  select bit pairs from head to tail of the encoded message  raise 1-bit flags for 
those that are impure and those with unique polarities (from table A.5)  compress impure and pure pairs in form of single 
bits, thus a minimum compression based on FBAR achieved   further compression requires complex memory mappings 
and sub-bit projections  ultimate compression requires sub-bit projections onto refreshable signals in a fuzzy qubit register 
 decompress data by dereferencing flags plus 1-bit insertion per compressed bit  reverse sequence from the stack for 
proper binary sequence equivalent to ASCII characters  decode message by recalling bit position and polarities between 
the previously ANDed and ORed data (based on Table A.5 and memory contents) or, a static recall of bits based on the bit flag 
hypercube model (like Table A.6)  decompress data by converting binary to ASCII obtaining the original message.      

Legend:   stands for “revert back to previous state” otherwise, precede the next step;  stands for “continue with the next step” 

 

Table A.1: A finite flow table on the FBAR algorithmic implementation.   

For our step-by-step experiment addressing the above flow, we devised a set of alternative hypotheses 
with their null hypotheses testing our algorithm as specified in the following table. For conducting 
each of them, a question was also formulated: 

 

H.1- Input of any data type to the FBAR‟s 1st layer, results in binary representing the same original content. 
H.10- The conversion of any data type to binary is impractical.   
Directionality over H.1- Input of ASCII data to the FBAR algorithm, results in binary representing the same original 
content. 
Q.1- Is the conversion of any FBAR input data to binary possible?    
 
H.2- A sequence of pairwise selection of binary to the FBAR‟s 2nd layer, when a parallel and-or applied, results in an 
encoded binary message in the 3rd layer. 
H.20- The pairwise selection and and-or operation on a binary sequence, is firstly H.1 dependent, and secondly, 
irreversible for data reconstruction even in case of implementation. (Or, backtracking to the original message is 
impractical.)   
Directionality over H.2- A pairwise selection of bits from a binary sequence and applying and-or logic on every pair, 
results in a definitive encoded message.  
Q.2- Is it possible to conduct the pairwise selection and and-or application on a converted data? If conducted, is the 
process reversible?    
 
H.3- A sequence of pure and impure pairwise selection of binary to the FBAR‟s 3rd layer, once detected and replaced 
with single bits, results in a compressed message in layer 4. 
H.30- The pure and impure pairwise selection and compression to single bits on a binary, is firstly H.1 and H.2 
dependent, and secondly, irreversible for data reconstruction even in case of implementation.  
Directionality over H.3- A pure and impure pairwise selection of bits from a binary sequence and compressing every 
pair to either 0 or 1 logic, considering impure pairs with single bit flags, results in a compressed message.  
Q.3- Is it possible to conduct a pure and impure pairwise selection, thereby its compression into single bits on an 
encoded data from the previous layer? If conducted, is the process reversible?    
 
H.4- A sequence of single bit flags representing compressed data in FBAR‟s 4th layer, once reused adjacent to other 
purely compressed 1-bit data, results in a decompressed message from layer 4. 
H.40- The sequential recall and reuse of bit flags from memory/grid, is firstly H.1, H.2 and H.3 dependent, and 
secondly, unachievable for an identical data reconstruction even in case of implementation.  
Directionality over H.4- Proper setup and storage of 1-bit flags before reaching layer 4 compression in memory.  
Q.4- Is it possible to conduct a pure and impure bit sequence reconstruction, thereby a decompression of multiple bits 
from the final compression layer? If conducted, is the output data identical to its original? 

H.5- A sequence of compressed data in form of H.3, when equipartitioned and paged into memory or confined signals 
in information space/grid, results in a maximum compression possible > 87.5% in layer 4. 
H.50- The compression of any data length into one single bit is firstly H.1, H.2 and H.3 dependent, and secondly, 
unmanageable and irreversible for data reconstruction like H.4, even in case of implementation.  
Directionality over H.5- A simulation or minimum conduction of this model by introducing the upper limits of FBAR 
as FQAR via signal processing and quantum memory architecture.  
Q.5- Is it possible to integrate in scale the algorithm to an ultimate single-bit compression? If implemented/ simulated, 
is the process manageable and reversible for data reconstruction?  

     Table A.2: The FBAR systematic hypotheses 

We tested hypotheses H.1-H.4 with a „dry run‟ for the algorithmic implementation. So this experiment 
would examine the algorithm‟s code with mathematical compression values. Hypothesis H.5, 
however, holds good in upgrading the technique for future quantum computers. Apart from H.5, all the 
above hypotheses are testable through feasible experimentation, since they contain a testable logic in 
binary, fuzzy and quantum according to Rel. (1) and Table A.1 flow.  
 

Let X contain our FBAR technique as well as a selection of state-of-the-art compression techniques. Furthermore, let Y 
contain a representative sample of documents of different type. Therefore, 

 
H.6- A difference exists in the performances of the techniques in X as measured on Y by computation rate and space 
savings.  
Directionality over H.6- Perform the test using (non-)parametric methods, and compare the difference. 
H.60- The difference in performances of the techniques in X as measured on Y by computation rate and space savings is 
zero. 



We have further addressed the following hypothesis using Freidman‟s test to evaluate our algorithm 
compared to other LDC algorithms used today, by extending Table A.2 to a final hypothesis for LDC 
comparisons (H.6). Hypothesis H.6 has been covered in Appdx. B, with a relevant preamble given to it 
in §A.4. To implement the flow from Table A.1, we had to implement the hypotheses relative to their 
nulls, putting each null into perspective of our implementation. As we can see, each hypothesis 
supports its subsequent, and thus consistent with the implementation to reject its null. If a null 
hypothesis is not rejected or tackled with, the algorithm is of an unsuccessful application.  

Of course, this was a risk that we needed to take into consideration for our implementation. Since 
we have had noticed that FBAR logic is unequivocally solid in its representation(s), we thereby 
simulated its objectives for an LDD implementation. The reason is it required an extensive number of 
lines of code to program, converting its 4D grid model „if-else‟ conditions, to a fully-correct readable 
memory grid (a file), which is static in size, and portable from one computer to another.  

Obviously, planning this risk in its infancy is totally eliminated from the list of risks, since FBAR 
is provable, not only on its conceptual, also, on its implemental level, whereas the latter requires more 
time and manpower to fully implement the algorithm covering LDCs of 87.5 % compression on x86 
machines. The current version, however, guarantees 50% pure compression with a default sequencer 
of „1‟, to manipulate its values through a grid file (the portable memory grid), containing 
self-embedded 1-bit flags. This sequencer is later known as e.g., 1 = „1111…1‟ pure binary for the 
whole number of available characters of the original file, before its compression (discussed in § 
A.1.2.3). We first begin with the improved version of Table A.1‟s flow, presented in form of a short 
flow pseudocode as follows: 

Pseudocode main sample: an FBAR lossless data compression and decompression   

1. WHILE reading INPUT CHARACTERS from STRING DO 
2. STRING = 8 BIN CHARACTERS 
3. BITWISE AND 1st 2 BIN CHARACTERS, 3rd 2 BIN CHARACTERS 
4. BITWISE OR 2nd 2 BIN CHARACTERS, 4th 2 BIN CHARACTERS 
5. OUTPUT STRING = 4 BIN CHARACTERS for AND + 4 BIN CHARACTERS for OR  
6. IF STRING OUTPUT = impure ‘01’ OR ‘10’ THEN 
7. STORE 1-bit flag for ‘01’ 
8. STORE 1-bit flag for ‘10’ 
9. ELSE 
10. STORE 1-bit flag for ‘00’ 
11. STORE 1-bit flag for ‘11’ 
12. END of IF 
13. CLOSE 1st pair of BIN CHARACTERS = rightmost CHARACTER of the pair 
14. GOTO IF for this new condition  
15. OUTPUT STRING = rightmost 1st BIN CHARACTER 
16. CLOSE 2nd pair of BIN CHARACTERS = rightmost CHARACTER of the pair 
17. GOTO IF for this new condition  
18. OUTPUT STRING = rightmost 2nd BIN CHARACTER 
19. CLOSE 3rd pair of BIN CHARACTERS = rightmost CHARACTER of the pair 
20. GOTO IF for this new condition  
21. OUTPUT STRING = rightmost 3rd BIN CHARACTER 
22. CLOSE 4th pair of BIN CHARACTERS = rightmost CHARACTER of the pair 
23. GOTO IF for this new condition  
24. OUTPUT STRING = rightmost 4th BIN CHARACTER 
25. CONCATINATE STRINGS = 1st + 2nd + 3rd + 4th single BIN CHARACTERS 
26. OUTPUT STRING = 2 BIN CHARACETRS for AND + 2 BIN CHARACTERS for OR   
27. CONTINUE CLOSE on 4 BIN CHARACTERS  
28. ...  
29. OUTPUT STRING = 1 BIN CHARACTER 
30. STORE STRING in FILE as COMPRESSED RESULT 
31. STORE 8x1-bit FLAGS as single ASCII CHARACTERS representing STRING COMPRESSED RESULT 

in FILE 
32. END of WHILE 
33. WHILE reading COMPRESSED FILE for DECOMPRESSION DO 
34. COMPARE 1-bit FLAGS from FILE with 1-bit FLAGS in translation table or DICTIONARY 
35. RETURN 2 4x1 bit FLAGS from DICTIONARY as 2 or more NEW CHARACTERS   
36. NEW CHARACTER = OLD CHARACTER of ORIGINAL FILE 
37. OUTPUT STRING = STRING + NEW CHARACTER 
38. OUTPUT STRING = ORIGINAL CHARACTER   
39. END of WHILE 

As we can see, the main pseudocode begins with compressing data by ANDing and ORing while 
raising 1-bit flags in a bit-field, which aims to avoid extraneous memory space allocation(s). As we 
shall see later, this falls into bit fields vs. bit arrays category, whereby the author, beyond the both 
coding concepts, discovered a self-embedded 41-bit flags approach in a new grid model (later 
discussed in § A.1.2). The grid model is part of the compressed file, a product to be compared with the 
„dictionary coder/decoder‟ for lossless decompression purposes. The program compares the flags 
within a set of rows as self-embedded flag addresses with the ones in the translation table as the main 
component of the dictionary. Once a flag comparison is done, then data reconstruction in the new file 
begins by writing character-by-character for each newly-constructed row into it, identical to the 



original file which is now unavailable. These relevant functions are defined within the 
„DECOMPRESSION‟ subroutine as an interpreter of the program for the growing string i.e. „OUTPUT 
STRING = STRING + NEW CHARACTER‟ from line # 37 of the pseudocode. The implementation of the 
latter is pointed out in the range of line # 33 to 39. Gradually, the bitwise conversions over unsigned 
characters as „BIN CHARACTERS‟ (in case of programming in C), are compressed when packing the 
characters in terms of their closures i.e. the ending state of fuzzy or logic within each pair of impure 
10, or 01, and pure 11, or 00. Meaning that, the CLOSE of a pair 01 results in high state logic or „1‟, and 
„10‟ results in low state „0‟, for 11, a „1‟, and for „00‟ a „0‟. In C, this could be done by using the 
mask() function, shifting characters as our „BIN CHARACTERS‟ from right to left „<<‟ and from left to 
right „>>‟ for a specific character. Once we attain the right character as the rightmost character for each 
pair, we output „STRING = rightmost BIN CHARACTER‟. In continue, once we reiterate the if condition 
by visitng and revisitng its conditions after each CLOSE made on „BIN CHARACTERS‟ for each LDC 
layer (line # 13 to 28), we then could say, a compression prior to the encoding levels (line # 2 to 12) 
has occurred. In the following subsections, we show the collapsed versions of the current pseudocode:  

 The basic collapsed version: Methods as the overall structure of the code (current section). 
 The expanded collapsed version: Functions and arguments as the modular structure of the 

code (§ A.1.2.1). 
 The specialized collapsed version: Specific conditions as the nodal structure of the code (§§ 

A.2 and A.3).   

The “basic collapsed version” highlights the methods like the above pseudocode; the “expanded 
collapsed version”, highlights functions and arguments; finally, the “specific conditions of the 
collapsed version” or “specialized collapsed version”, highlights if-else and counting conditions on 
loops and nested loops in the program, coded in terms of e.g. If, For, Switch Cases, functions calls in 
the code for an LDC and LDD subroutines. Showing this part later as other pseudocode versions is due 
to establishing the facts of the returned lossless compression results by the algorithm in §§ A.2, A.3 
and Appdx B. For achieving these results, we implemented the relevant mathematical operations via 
loops, conditioning memory data transactions and management elements over user‟s I/O data.  

In continue, by recalling the revertive states coming from Table A.1‟s flow (denoted by a ), is 
subjective to simulate the quantum hardware for future applications that supports maximum 
compressions of FBAR, via signal processing and quantum information techniques (Appdx. C). 
However, this is not essential when we focus on the basic four layers of FBAR, producing a 
compression ratio of fixed values below and greater than 2:1. The current experiment focuses on the 
functionality of the technique itself i.e., the FBAR‟s logic model.  

Main function(s) Helper operator: Comment Operates on… : Comment Specific task  

Len() For Loop: Demarcate a series limit for 
function‟s iteration by an integer 

txt: this is a text as string;           
bin: this is a binary sequence  

Returns the precise length of a 
string or binary  

Mid(),             
Left(),            
Right() 

For Loop: Demarcate a series limit for 
function‟s iteration by an integer  

txt: this is a text as string;            
bin: this is a binary sequence  

Locates a specific nth 
character of the string or 
binary from head or tail 
sequence for encoding 
purposes.  

LongToBinary() Asc(strChar): this is a helper function with 
a conversion operation over a string 
character 

strChar: this is a string character  
equivalent is Chr$(#), where # is a 
decimal number. 

Converts long value into a 
binary string. 

BinaryPair(),     
Cat() 

& or +: Concatenation bin: this is a binary sequence  Displays binary pairs or duals 
when necessary 

BinaryAND(),  
BinaryOR() 

Bitwise AND: And logic,           
Bitwise OR: And logic 

bin: this is a binary sequence AND/OR two binary values 
or bits 

Replace() 

& or +: Concatenation;             
/: high level polarity or 1 closure, or, 

impure 01 logic;                
\: low level polarity or 0 closure, or, impure 

10  logic 

strChar: this is a string character     
bin: this is a binary sequence  

Replaces a non-binary or 
binary character with an 
ASCII otherwise binary 
character   

Rev() /: high level polarity or 1 closure, or, 
impure 01 logic becomes            

\: low level polarity or 0 closure, or, impure 
10  logic becomes the former 

txt: this is a text as string;            
bin: this is a binary sequence  

Reverses a sequence of string 
or binary for special 
projections (mostly binary in 
form of pairs and nibbles) 

varPtr() Addr: Memory address in form of e.g. base 
address 0x0 flag paging 

regA, regB: memory register A 
contains bit position and binary (key 
identifier); memory register B is for 
bit polarity and bit address  

A variable pointer gets a 
pointer to memory variable 
that allocated position for a 
char or a single bit if any 

DeRef() Case flag #: Apply case for a function‟s 
specific polarity flag (#: 0-to-8 possible 

polarities or a total of 9 cases) 

varPtr(regA) and varPtr(regB) 
Dereferences data to allow 
memory content read for 
decompression 

Table A.3: The main functions in .Net or VB for an FBAR algorithmic simulation.   



We have elicited from the findings on FBAR [1], the above and thereby the following programmable 
functions in coding theory, adaptive to the data structure of FBAR for basic to maximal compressions.  

The transformation of FBAR to its highest levels of compression within its four-layer encodings 
is done via qubit registers. In this regard, a seclusive proposal in § 3.5.1 [2], is given for their new 
hardware design principles. The design in theory, with its practical aspects of an n-fqubit register, is 
briefly outlined in Appx. C. In the classical version on current computers (x86 machines), however, 
the „main challenge‟ is to implement the FBAR‟s 4th layer projections commencing with an 8-bit to 
5-bit iterative compression, which yields a 37.5% compression. It is evident with a fixed sequencer of 
either 1 or 0, representing 11111111, and 0000000 respectively. Therefore, it would generate an 8-bit 
to 4-bit compression on x86 machines, denoting a 50% pure „space savings‟. This fact is already 
elucidated, when properly programmed according to FBAR pseudocodes. Further challenges meet 
those compression values generated from 2n:1 ratios for n > 3 hypothetical values.    

 
Coded function(s) Helper operator: Comment Operates on… : Comment Specific task  

length() For Loop: In the loop, limit for function‟s 
iteration by a length variable as Integer 

txt: this is a text as string;           
bin: this is a binary chars length  

Returns the precise length of a 
string or binary chars  

mask() For Loop: In the loop, limit input string 
iteration by a left shift „<<‟ or right shift 
„>>‟ mask from one bit char to another.  

Gives also: Ascii to BinChar: this is a 
helper function with a conversion 
operation over a string character 

txt: this is a text as string;            
bin: this is a binary char  

 

 

Locates a specific nth 
character of the string or 
binary from head or tail 
sequence for encoding 
purposes or Char-to-BinChar 
conversions  

gridWrite() Addr: Memory grid address in form of e.g. 
a base address 1x1x1x1 flag paging in a 

portable file called “grid” 
txt: this is a text string data 
reconstructed as such in a new file 

A file pointer writes the 
matched characters for each 
grid read (grid file), now 
written to a new fie. 

gridRead(), 
deRef() 

 

 

Case flag #: Apply case for a function‟s 
specific 1x1x1x1 flag location in a 

dictionary file called “dic” 

Pointer *a and *b : dic file contains 
bit position and binary (key 
identifier); pointer is used for 
similarities if spotted in grid row # 
char pattern checks, between grid 
file and dic contents. 

Dereferences double or more 
original chars from the 
hardcoded 4x1-bit flag data 
representing occupant chars 
(position) to allow the right 
char reconstruction. 

Table A.4: Main functions coded in C for an x86 implementation or simulation.  

The FBAR methods, arguments and function calls, as a whole, must obey the following pseudocode, 
as presented earlier, which is the basic collapsed version. Here goes the basic version enabling the 
execution of a fuzzyFlag constructor 

1. WHILE maksing BIN CHARACTERS from BITWISE AND and BITWISE OR results DO 
2. STRING = 8 BIN CHARACTERS 
3. ASSIGN ‘0’ to a DOWN variable   
4. ASSIGN ‘1’ to an UP variable 
5. FLAG_STRING = UP + DOWN CHARACTERS     
6. IF FLAG_STRING = (DOWN + UP + UP + DOWN)    
7. CHARACTERS THEN 
8. STRING = (MSB BIN CHARACTER + 5th BIT  
9. CHARACTER) + (6th BIT CHARACTER + 2nd BIT  
10. CHARACTER) + (7th BIT CHARACTER + 3rd BIT  
11. CHARACTER) + (LSB BIN CHARACTER +  
12. 4th BIT CHARACTER) 
13. OUTPUT STRING = OLD 8 BIN CHARACTERS 
14. ELSEIF CONTINUE CONCATINATE for other  
15. FLAG_STRING UP + DOWN combinations  
16. ... 
17. END of IF 
18. OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN  
19. CHARACTERS = 1 ASCII CHARACTER  
20. END of WHILE  

 
Fig. A.3, shows the basic structure and the main components of the FBAR prototype. In this figure, the 
system starts by receiving an input string for preliminary conversions as illustrated in Fig. A.2, starting 
with and-or logic. 



  
 
 
 

Fig. A.3: Structural components of the FBAR prototype with simplistic process states 

The starting point is by choosing the relevant „menu option‟ executing one or more of the hypotheses 
H.1-H.4:  
 

1- the pairwise selection of bits after converting each character in sequence, the encoding of 
AND/OR process,  

2- high state and low state fuzzy binary conversions, and  
3- the G file (grid file) commitment over compressed bits for an LDC by raising 41-bit znip (zero, 

negate, impure and pure) flags,  
 

are the main tasks of this prototype. These tasks are outlined as „conversion tools‟ in Fig. A.3, which 
all is clearly explained in the following sections.  
  

A.1.2 Lossless Data Processing  

From the previous section we have studied the algorithmic components, logic and its architecture in 
aim of proving the possibility of its implementation grounds on LDC and LDD inclusively. In this 
section, we study FBAR‟s LDC process. The following figure (Fig. A.4) shows a „circular process‟ of 
an FBAR LDC, a combination of the algorithmic design and program‟s process model, whereas the 
latter comprises of functions, methods , etc. as propounded previously. 

Fig A.4: The circular process of an FBAR LDC comprised of program design and memory 

 
Fig. A.4 represents a „circular process‟ of an FBAR LDC with dictionary, a combination of the 
algorithmic design and program‟s process model. The process comprises of program design and 
memory transactions with the usage of relevant functions and methods coded in C.  
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Fig. A.5. Basic process design of FBAR binary I/Os 

To conduct a successful data decompression, we renounce bit values based on a predictive pattern of 
bits in a memory structure. This occurs subsequent to the double-dashed circle process component in 
Fig. A.4. We constructed a „char and binary‟ LDC reference table to satisfy these conditions during the 
compression phase of the algorithm. The conditional output per character input subsists on relevant 
bit-flags and extended bits that are allocated in the memory.  

 

     

Fig A.6: The FBAR data compression and decompression model for two characters „a‟ and „b‟. 
   

The allocation, read/write and reference process is shown in Fig. A.5, representing three major 
procedures to reconstruct data during an LDD.  The process design and the development of the 
algorithm are illustrated in Fig. A.5. As illustrated in this figure, an FBAR dictionary consists of a 
translation table (later inducted as Table A.7), and a reference table (later inducted as Table A.8), both 
building a static size of flag information, later used by the program‟s interpreter for char comparisons. 
The allocation of the raised single bits for the minimum compression phase of FBAR is shown in Fig. 
A.4, which corresponds to Fig. A.6 for an encoding phase of the algorithm with raised flags to the 
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Compressed Chars  
Out 

Chars  
Out 

Compression and 

Decompression 

Subroutines 

Access; 
Compare 

Size  
is static 

Read 

FBAR 

Dictionary 

Scan char 
index 

Compile + Execute 

LDC 

 Start  Halt 

ASCII # 15 is not printable; we encode it 
as e.g. Arial, Char # 166 or | and hardcode 
this in the program‟s body.  
 
The rightmost ORed pure pair „11‟ is the 
result of impure /‟s closing state, which is 
1 logic indicating a pure „11‟ when 
decompressed. It is the flag that makes the 
program to recall that the left bit of the 
pair is in fact 0 building „01‟ or „/‟.    



input binary sequences on chars „a‟ and „b‟. This process basically implies to the lowest layers of 
FBAR compression as exemplified and discussed as follows: 
 
Lowest layers of compression: As we see, certain 1-bitflags raised in a „reference table‟ (§ A.1.2), for 
encoding data, Fig. 7‟s I/O products, will comply with the following flag and polarity settings table: 
 

Type no. Polarity set Implies to  1-bit flag  

0 ↓↑↑↓ most chars f0=1bit 
1 ↓↓↓↑ letters   f1=1bit 
2 ↓↑↓↓ letters f2=1bit 
3 
4 
5 
6 
7 
8 

↓↑↓↑ 

↓↑↑↑ 

↓↓↑↑ 

↓↓↓↑, ↓↑↑↓, …  
  
 

letters 
letters 
few letters 
dual chars 
all 2bit binary 10 
all 2bit binary 01 

f3=1bit 
f4=1bit 
f5=1bit 
f6=1bit 
f7=1bit 
f8=1bit  

Table A.5. Bit flag polarity combinations on bit pairs and nibbles during compression 

The main flags are # 0 to 6 polarity flags. The remaining flags are concatenated and thus raised in the 
grid file. Programmatically, one could select relevant bit pairs based on these tables to reconstruct data 
for lower levels of compression inclusive of maximum LDCs. Once bitwise combinations of the 
reference table (A.7) are confronted within LDD program code, bit access for reconstruction between 
the grid field and compressed file is enabled. The above grid, however, is used and customized for any 
level of compression, either of lower layers of 4th up to its topmost possible LDC product.  

 
A lower level encoding: For example, to reconstruct a character with decimal # 64, as “@”, based on 
a raised flag, say, flag # 0 (neutral or ignorable), the equivalent of the character‟s binary would also be 
01000000. The character‟s compressed version through FBAR using its flow Table A.1, or its model 
(Fig. A.6), is “00 0”, denoting that the first two zeroes are pure and give 0000, whereas the second 
pair “ 0” is indeed impure. The latter‟s true face is “10 0”, indicating flag # 7. Thus, the flag bit 
dereferences noise as 10 during decompression, and for the remaining 0 in “ 0”, becomes 00. In total, 
we then have, 0000 1000 = 2 nibbles = 8 bits ≡ 1 character. Now we establish the pattern based on flag 
# 0 i.e. its polarity set, since we code our algorithm that every nibble is of a previously-ANDed type, 
and next to it, from left to right of a binary sequence, the ORed type (consider them as odd and even 
nibbles in a full binary sequence with a length > 8 bits). Hence, the ANDed version sits above as the 
North Pole, and the ORed version sits below as the South Pole:      

                                                0000 
↓↑↑↓ =             ≡   , 

                                                1000 

Programmatically, one could conceive in terms of an equivalent pairwise selection from memory in a 
sequential manner. Consider an accustomed byte to some char in terms of  

ANDed  0000 1000  ORed , 
 

Equivalently, pairing the bits in terms of                                 ≡   
 

How to select and pair bits like above, is further elaborated in the following subsections  

A.1.2.1 Function calls and arguments  

So far, we have seen how FBAR method is defined in terms of logic constructs and their relevant 
components. Now we want to find the argument list assigned to each method. Arguments are 
presented in the same way for logic constructors and memory flag methods. The leading node element 
for arguments is the fuzzyFlag() function, and thus those arguments that register „bin chars‟ 
inclusive of reading the contents of the constructive grid file with its „1-bit flag set comparator‟ for 
their reconstruction at the LDD phase of the algorithm.   
 

1. int fuzzyflag(void) { 
2. packed_struct1.flag = 1; 
3. packed_struct1.status = 3; 
4. if( packed_struct1.flag == 1 ){ 
5. printf(" 1-bit; "); 



6. } 
7. return 0; 
8. } 

 
As we shall see by the end of this section, flags could be packed into efficient forms in terms of bit 
fields (explanations given after Eq. (4)). More interestingly, such flags are also self-embedded when 
we discover the right combinations of bits to manipulate pure data out of 1‟s as „1111…1‟ otherwise, 
0‟s as „000…00‟, in terms of „original data‟, when we devise some „single bit combinatorial flag 
tables‟ akin to the periodic table with unique identity per a set of char entries.  

So far, we know how to assign conditions and extract relevant data for the algorithm‟s logic. The 
combinations of bits to reconstruct the original characters, not only on the encryption level, on a 
compression level perceptively unique in representations i.e. a 4D cube or hypercube model of flags, 
makes all bitwise conversions from one layer of LDC to another reliably precise prior to any 
probabilistic pattern behavior. To further engage with our low-level conversions leaning toward 
high-level conversions, we implement certain functions defining our problem specific issues on LDC 
representations in our code. For instance, the pairwise mask function, shifting bits to the right “>>” 
otherwise to the left “<<”, could do this encoding, i.e. a “bit registry process‟ implemented in terms of 
the following portion of the pseudocode 

 
1. #include <stdio.h> 
2. #include <string.h> 
3. #include <stdlib.h> 

4. #include <limits.h> 
5. //...                                       
6. void showBits(unsigned char ch, int width) 
7. { 
8. unsigned char mask;; 
9. for (mask = 1 << (width-1); mask; mask >>=1){ 
10. putchar(ch & mask ? '1' : '0'); 
11. } 
12. } 
13. void foo(const char *str) 
14. { 
15. FILE *fp, *gp;  /* a file pointer when I/O read_write operations are used */ 
16. int i, j; 
17. fp=fopen("C.txt","w");  
18. gp=fopen("G.txt","w");   
19. for ( i = 0; str[i]; ++i ) 
20. { 
21. unsigned char bit_and = 0; 
22. unsigned char bit_or  = 0; 
23. printf("str[%2d] = '%c' %02X ", i, str[i], (unsigned)str[i]); 
24. showBits(str[i], CHAR_BIT); 
25. printf(" ; "); 
26. for (j = 0; j < CHAR_BIT / 2; ++j){ 
27. int m = CHAR_BIT-2*j;  /* {8, 6, 4, 2} */ 
28. int n = CHAR_BIT/2-j–1; /* {3, 2, 1, 0} */ 
29. unsigned char x =((unsigned  char)str[i]>>(m-1)) & 1; 
30. unsigned char y =((unsigned char)str[i]>>(m-2)) & 1; 
31. bit_or  |= (x | y) << n; /* apply bitwise AND */                                           
32. bit_and |= (x & y) << n; /* apply bitwise OR */                                     
33. } 
34. } 

Then we simply compress data by selecting the least significant bit (LSB) of the pairs per nibble, 
denoting closure points. This could be registered by the fprintf() and putchar() for the 
simulation grade, otherwise, str[i], which is an array of chars instantiated for the implementation, 
during the bitwise AND/OR operation on variables bit_or and bit_and of the code (see „for loop‟, 
line # 19, 31 and 32). From there, after converting the compressed binary to the compressed char, 
thereby written to the grid, we thus compress both G and C files in parallel. To view the results of 
these conversions, resulting in a compression, we type the following lines of code:  

1. showBits(bit_and, 2); /* show bits in a total length of two from the ANDed column: 
an LSB selection */   

2. showBits(bit_and, 1); /* show bits in a total length of two from the ANDed column: 
an LSB selection */   

3. putchar('\n'); 
4. fprintf(fp,"\n");      

 

One could, however, comment out or omit the lines of code that merely show bits indeed via 
showBits() function. The reason in using the function putchar and the argument stdout, are for 
simulation purposes only, displaying results on the screen to the user/programmer. These are coded for 
testing small samples only, such as countable strings with a custom buffer limit = 402 in the program. 
Therefore, stdout in showing the process for large tests is inappropriate and overly time consuming. 
Hence, without it, permits the program for its implementation to conduct relevant computations and 



processing with acceptable CPU time scenarios. The subsequent pseudocode represents the equivalent 
version of the actual code programmed above as an encoding solution in our algorithm: 
 
Pseudocode sample I: a lossless data encoder   

1. CREATE a FILE POINTER for READ_WRITE operations 
2. WHILE reading CHARACTER by CHARACTER DO 
3. OUTPUT CHARACTER as temporary BIN CHARACTERS 
4. READ BIN CHARACTERS 
5. NEW STRING = BIN CHARACTERS 
6. BITWISE AND(1st2 CHARACTERS of STRING from MSB to LSB) 
7. BITWISE OR (2nd2 CHARACTERS of STRING from MSB to LSB) 
8. BITWISE AND(3rd2 CHARACTERS of STRING from MSB to LSB) 
9. BITWISE OR (4th2 CHARACTERS of STRING from MSB to LSB) 
10. IF 1st2 CHARACTERS in STRING is ‘01’ THEN  
11. OUTPUT rightmost CHARACTER of this pair = ‘1’ 
12. ELSEIF 1st2 CHARACTERS in STRING is ‘10’ THEN 
13. OUTPUT rightmost CHARACTER of this pair = ‘0’ 
14. ELSEIF 1st2 CHARACTERS in STRING is ‘00’ THEN 
15. OUTPUT rightmost CHARACTER of this pair = ‘0’ 
16. ELSE 
17. OUTPUT rightmost CHARACTER of this pair = ‘1’ 
18. END of IF 
19. CONTINUE SORTING 2nd2 CHARACTERS, 3rd2 CHARACTERS,   
20. 4th2 CHARACTERS in STRING like before 
21. OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN  
22. CHARACTERS = 1 ASCII CHARACTER   
23. END of WHILE  

As we can see, we simply compress data by selecting the least significant bit (LSB) of the pairs per 
nibble denoting closure points. This could be registered after applying bitwise and-or, and from there, 
after converting from compressed binary to compressed char, written to the G and C files in parallel. 
The simplified form of the „if statement‟ with its „continuing course on sorting binary chars‟ in the 
pseudocode, would be   

1. ... 
2. SHIFT from MSB to 2nd rightmost CHARACTER in ( 
3. 1st2 CHARACTERS, 2nd2 CHARACTERS,  
4. 3rd2 CHARACTERS, 4th2 CHARACTERS) 
5. OUTPUT 2nd rightmost CHARACTER from (1st2 CHARACTERS, 2nd2 CHARACTERS, 3rd2 
6. CHARACTERS, 4th2 CHARACTERS) 
7. ... 

This results in, for every 8 bits, a 4bit output, and from there, 2bits, and finally, a 1bit output char. We 
pack each 81bit output into 1 ASCII char equivalent as our compressed version. The subsequent 
pseudocode represents what is necessary to code for an LDD, as a subroutine to the above code, 
recalling compressed values stored in char:   

Pseudocode sample II: a lossless data decoder   

21. WHILE maksing BIN CHARACTERS from BITWISE AND and BITWISE OR results DO 
22. STRING = 8 BIN CHARACTERS 
23. ASSIGN ‘0’ to a DOWN variable   
24. ASSIGN ‘1’ to an UP variable 
25. FLAG_STRING = UP + DOWN CHARACTERS     
26. IF FLAG_STRING = (DOWN + UP + UP + DOWN)    
27. CHARACTERS THEN 
28. STRING = (MSB BIN CHARACTER + 5th BIT  
29. CHARACTER) + (6th BIT CHARACTER + 2nd BIT  
30. CHARACTER) + (7th BIT CHARACTER + 3rd BIT  
31. CHARACTER) + (LSB BIN CHARACTER +  
32. 4th BIT CHARACTER) 
33. OUTPUT STRING = OLD 8 BIN CHARACTERS 
34. ELSEIF CONTINUE CONCATINATE for other  
35. FLAG_STRING UP + DOWN combinations  
36. ... 
37. END of IF 
38. OUTPUT RESULTS from BIN CHARACTERS to ASCII as 8 BIN  
39. CHARACTERS = 1 ASCII CHARACTER  
40. END of WHILE  

 

So, for „@‟ we reconstruct 0001 0000. Hence, during the decompression phase, having this flag 
available makes the algorithm to reconstruct data by tracing the arrows‟ directions in the polarities set. 
Interestingly,  the “@” char is also a dual character (it behaves as such), and could be raised by flag # 
6 due to giving the same result for its decompressed version with different polarity combinations. But 
for reasons needed to occupy fewer bits, even in form of 1-bit flags, we reconstruct data by 
reciprocating with the grid file, cross-referencing with distinct bit groups, building up Cr values  2:1 
compression.  



A.1.2 The grid model, static versus dynamic allocations 

 

Fig. A.7: The 4D logic constructor grid with input proving a successful superdense technique. 

A.1.2.1 A robust static solution to LDDs 

The main focus for reconstructing data, is considering negation flags # 1 to 4, pure and impure flags 1 
to 4, ORed in combination for each compressed character in the C file. A comparator as the FBAR 
program subroutine compares results between the static table as a point of reference with the dynamic 
component, C file, and the semi-dynamic component, the G file. The process relationships have been 
illustrated in Figs. A.4, A.5. From there, a compression of 4-bits per compressed chars in the final 
layers as a 1-bit representative is performed. In total, 5 bits for each string entry identified for a 
decompression. To every unique combination of pairs made by the comparator, a specific 1 bit flag is 
allocated in the fixed size memory chunk with a specific address like from the portable compressed 
file, C. This phase of LDC denotes a 5-6 bit compression, giving an average anticipation of 34 to 36% 
space savings for a 95 random string entries. The allocation of single bits raised in the memory, and 
from there, to the G file for each character per memory chunk is computed by the following equation: 

                      
  

     in

2

m
C m     G G ,  G  64 K,                    (2) 

where m is the number of string characters inputted to the program for a compression. Once 
compressed, the length  of the grid file G is summed with the compressed m, equal to m/2. The 
default value of 64K comes from the three dimensions representing a char representative for each 
combination set of ip and zn as specified above. This default value is computed based on the possible 
number of grid outcomes, Eq. (2), quite convenient for a 16-bit microprocessor to directly access and 
process the G file via a set of hardcoded „if else statements‟ on flags subroutine in our code. As we 
shall later observe, to conduct an FBAR LDD, data access of the compressed file is in 65,536 rows, 
which is compatible with Excel 97-2003‟s maximum number of spreadsheet rows. The expectancy of 
lower sub-layers of the 4th layer would decrease the number of possible combinations of 14-bit flags, 
making the cube denser than the current version. 

The expectancy of lower sub-layers of the 4th layer would decrease the number of possible 
combinations of 14-bit flags, making the cube denser than the current version. This is due to having 
more bits available to decompress from those sub-layers of the algorithm. But in this case, the total 
number of possible combinations per dimension is fixed, or   
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possible grid outcomes         (3)   

Reference to Tables 
A.6 and A.7  

A 4-byte string sample 

A 2-byte output 

A 4-byte identical output 



where the grid model is hereby shown in Fig. A.7. Perceivably, in Eq. (3), out of the two xy bit flag 
field dimensions, we create a four dimensional hypercube. So, for every arbitrary input document, half 
of the size of that document is created between the four fixed dimensions of ip x vector for char chi , ip 
y vector for its neighboring char chi+1, and zn xy vector for both chars respectively. The zn and ip 
vector dimensions, each, are presented in separate rows in a list, mounting 16 indexed 4-bit flag sets 
correspondingly. The coverage of the grid is to concurrently cover all Unicode chars, even 
non-printable char scenarios for any data type. 

The main rule for each row of entry is to always maintain a 24 and-or bit encoding, and a < 8 bit 
data compression. In addition, memory transactions are abstracted in Figure 7, as double line circles of 
the process. The middle phase of the algorithm is shown as a double-dashed circle process component. 
This component should eventually substantiate that, Compressed Data <, , …< Original Data. 
The main contribution of this process is in two parts: the first part is where AND/OR logic is applied to 
the input data, thereby fuzzy decisions i.e. closure points of logic on the pair products 01, 11, 10, 00, 
leading to 1, 1, 0 and 0 state logic, respectively. The second part, however, is where flags are raised 
and memory transactions occur after dictionary index establishment of data, reference point and 
bitwise data comparisons. The comparisons are executed through „if and else‟ statement conditions for 
every combination of single bits, identified in terms of: bits of original data, flag bits denoting bit 
position and array index. Subsequently, the radical phase of processing data coincides with parallel 
reconstruction of data from the dictionary coder per data sequence. This is the decoding phase of the 
process, leading to a lossless data decompression (LDD). The LDD holds values identical to the 
original data, i.e. a fully-reconstructed data, which denotes an LDC cyclic behavior. It is now obvious 
to substantiate the cycle in terms of  

At t1,  (Original Data) =   (C) = LDD = Original Data,  

At t2 static/dynamic,  (LDD) =   (C) = Original Data,  applicable to ti cyclically, where i > 1.   (4) 

The function   result in Eq. (4), is a compressed data C as an FBAR compression conducted at an 
initial time session t1, such that t1 > a subsequent time session t2 , performing an FBAR LDC. The 
primed function   , engages data decompression to the extent of time sessions‟ difference t = t2 – t1, 
for all static and dynamic memory accesses. The conversions of functions from one data form to 
another, preserves this cycle by engaging the use of 1-bit flags. The use of a flag, or sentinel, in FBAR 
cases, is a customized type of flag, set to either true or false i.e., Boolean data type for any variable. Its 
sole purpose is to indicate when a key point in the LDC processing has been reached. This includes 
things like breaking out of a loop, satisfying a pairwise data compression, being able to access a 
resource or the G file, its if-else decision tree by the interpreter for a char reconstruction, sharing 
between threads, and string entry binary combination according to FBAR‟s LDC Tables A.7 and A.8.  

A.1.2.2 A dynamic allocation to LDDs 

In C/C++, Boolean variables consume 1 byte of memory. But all that is really needed is 1 bit: 0 means 
false, 1 means true. Many times, especially when dealing with graphics, rather than consuming a 
whole byte of memory for each Boolean, several Booleans are combined into a single byte of memory, 
where each Boolean uses a different bit in the byte. These are then referred to as bit flags, or bit fields.  

A customized version of a bit flag is –1, and when set to true, indicates that this bit flag negates all 
possible combinations in terms of „down down down down‟ polarity set, compared to flag # 0 to 6, 
which each have at least two opposing directions between AND and OR poles of the double nibble 
binary. In Table A.8, one could substitute flags with extended bits for –1 to have more compressed bits 
referenced in a 1x96 memory block.  

 

 

 

 

 

 
 
 

Fig. A.8: The corresponding 96-bit-block memory in use for the fixed-size reference table.  
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flag at address # 1 

 

 



The polarity set has its own two unique flags as a customized type: a post-flag 9 and –1, whereas the 
latter is user customized since the negation of other types physical space (memory) is the extension of 
their polarities. Hence, ~{1,2,3,4,5,6,7,8} = {–1, 9}, where for a given combination, the remaining 
polarity combinations become a subset of type 6. In this case, this analogy of preset and extended bit 
combinations, makes {–1, 9}  6 a tautology. Thus, ~ {9} = {1, 2, 3, 4, 5, 6, 7, 8} – {↓↓↑↓} and ~{–1} 
= {1, 2, 3, 4, 5, 6, 7, 8} – {↓↓↓↓}, from the memory chunk. Contemplatively, as if ~ {1} and ~ {9} are 
symmetric, and are the complements to the whole byte enumeration value closing with the 8th bit. 
Now, the 9th bit extension, or its symmetry, the –1st preset upon {1, 2, 3, 4, 5, 6, 7, 8}, is the 
complement to a possible byte closing with the 8th bit, and starting with the 1st bit, without 
enumeration substitutes. This is how we envisage the location of flags –1 and 9 after a full byte 
allocation for a total set of flag combinations. 

The 0 bit case not included in the set is the 0 flag type, and one could conceive this as an easy bit 
or a preset flag occupying no space. The reason is that the table‟s attribute (the Flag 1 and 2 columns), 
gives us a range of possible combinations‟ representative for polarity indicators i.e. 1 to 6 inclusive of 
probable impure flag conditions to be raised when deemed necessary. These flags are 7 and 8, and are 
unique flags adjacent to –1 and 9, respectively. If we leave any space of the full attribute empty, in this 
case, flag # 0, then without worrying about how much space is allocated in the 96 memory addresses, 
we ignore it as a space occupier since this is the only row that when not present compared to the 
remaining, denotes the excluded flag type amongst other flags. So, the pre-setup of this flag is obvious 
in bit count during loops defining possible combinations of the 1-bit flags and char address attributes.  

The following is an example, using an 8-bit unsigned integer to store 8 flags which relay to the 

„bit filed‟ of „bit flag‟ concept in C language. Our approach, if used in terms of „bit arrays‟, we would 

just encode rather than compress data since bit arrays consume at least 1 full byte of memory for a 

single Boolean variable. We shall later state that a bit field approach, however, is necessary to preserve 

total bits allocated for char entries in Table A.8. A bit field is distinguished from a bit array, in that, the 

latter is used to store a large set of bits indexed by integers and is often wider than any integral type 

supported by the language. Bit fields, on the other hand, typically fit within a machine word, and the 

denotation of bits is independent of their numerical index. Now, let‟s try the bit field approach and 

thereby, bit array for the sake of its usefulness to a set of encodings in aim of simulating the 

correctness of FBAR table LDC I/Os:  

  unsigned char options; 

The possible options, that can be turned on or off independently are declared in an enum like this e.g., 
just using some arbitrary identifiers on the left, but exact identifiers for FBAR polarities set on the right: 

 

 

 

 

 

 

 
 

Note how each option is given a specific value. These values are carefully picked to match each bit in 
the 8-bit variable: 

 

1 
2 
3 
4 
5 
6 
7 
8 

// 0x01 ==   1 == "00000001" 
// 0x02 ==   2 == "00000010" 
// 0x04 ==   4 == "00000100" 
// 0x08 ==   8 == "00001000" 
// 0x10 ==  16 == "00010000" 
// 0x20 ==  32 == "00100000" 
// 0x40 ==  64 == "01000000" 
// 0x80 == 128 == "10000000" 

 

Now, each flag can be set independently, by using the bitwise OR operator: 
 

1 
2 

options = f1 | f4 | f7; 
// options == 0x01 | 0x08 | 0x40 == "01001001" 

 

And can be tested using the bitwise AND operator:  
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

enum Options { 
  f1      = 0x01, 
  f2      = 0x02, 
  f3      = 0x04, 
  f4      = 0x08, 
  f5      = 0x10, 
  f6      = 0x20 
  // ... 
}; 



1 
2 

if (options & f1) {} // true 
if (options & f4) {} // false 

 

However, it is imperative to have further flag representative based on the fixed reference table, which 
also comprises of extended if statements covering not only flags, representing compressed resultants 
in a unique manner. Hence, we could hide the possible flag options and have just one raised bit value 
within the nx96 memory blocks representing Table A.8 for a text input, column Input, via columns 
Flag 1 and Flag 2, as follows: 

1 
2 
3 
4 
5 
6 
7 

// 0x96x01 == 1 == "0000000000000000000000000000000000000000000000000000 
//                  00000000000000000000000000000000000000000011" 
// 0x96x02 == 2 == "0000000000000000000000000000000000000000000000000000 
//                  00000000000000000000000000000000000000000101" 
// 0x96x03 == 3 == "0000000000000000000000000000000000000000000000000000 
//                  00000000000000000000000000000000000000001001" 
// ... ==   ... == ... 

wherein continue, supposing that all standard ASCII characters raised in the first count, we then get 

1 
2 
3 
4 
5 
6 
7 

// 0x96x01 == 1 == "1111111111111111111111111111111111111111111111111111 
//                  11111111111111111111111111111111111111111111" 
// 0x96x02 == 2 == "0000000000000000000000000000000000000000000000000000 
//                  00000000000000000000000000000000000000000000" 
// 0x96x03 == 3 == "0000000000000000000000000000000000000000000000000000 
//                  00000000000000000000000000000000000000000000" 
// ... ==   ... == ... 

 

whereas its subsequent counts for other char combinations is inefficient for compressing data. This 
approach solely relies on bit array lengths of minimally 8-bit lengths and maximally n8-bit blocks. 

A.1.2.3 Maximum FBAR LDC ratios and their respective LDDs 

In connection with the last presented maximal length ASCII memory block occupation, a definite 
question pops into our minds is,  

Q. Why not we create a pure bit-byte sequencer representing a whole block instead of occupying it 
like the above code for the interpreter, before any char conversions? 

A. When characters formulate words in, e.g., text, the distance gap between array indices increases 
and thus filled up with 0‟s. This would be merely useful when characters are lined up in a certain 
repetitive order, as laid out in the ASCII table in an ordered fashion of decimal. So, the mapping of our 
flags into a plausible data compression using the „bit field‟ approach lays out in the memory fixed size 
blocks of 96 bits partitioned into 8 bit words, with a cross pattern intersection bits looks as follows:  

0               max compression layer of an ASCII character

0 0

0 0 0 0

0 0 0 0    0 0 0 0 primary base binary decompressed layer

1

1 1

1 1 1 1

1 1 1  1   1 1 1  1

 

 
In this tree, each block exhibits at least a set of flag combinations in terms of 1-bit flag representatives 
without considering a full 8-bit word, in form of binary packets in memory. The packets preclude 
fuzzy logic conditions for an LDD, retaining bits in a logic constructor grid for each primary binary 
result. The primary result is in form of a pure base binary „00000000, otherwise 11111111‟. The 
combinations of the grid obey impure and pure pairwise bit combinations, intersecting with negated 
bit pairs relevant to each decompressed pure sequence, „00000000‟, otherwise, „11111111‟. This 
contrasts with the version that investigates bits in form of a bit array, allocating a full 8-bit length 
representation. The „bit array‟ approach is merely useful to check FBAR table for an LDD based on 
equivalent encoded characters, „printable‟, when attaining the final levels of decompression. The 
possible combinations of negation, impure and pure bit grid from Fig. A.7, are as follows: 
 
ip: impure or pure pairwise bits‟ 
dimension: 

 

 
 
 

where all combinations are presented after we logically AND them in our comparator when an LDD 

zn: zero or negate pairwise 
bits‟ dimension: 

 

zzzz zzzn zznz znzz nzzz zznn znnz 
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iiii iiip iipi ipii piii iipp ippi ppii pipi 

ipip piip ippp 

pipp ppip pppi 



phase is initiated. This gives us the idea of representing all occupying information in terms of a 
sequencer of „1‟ representing 111…1 blocks by default to manipulate based on pure and impure flag 
combinations. For instance, if we have a pure, pure, impure and pure set with 1 leftmost bit to negate, 
a sequencer for a byte 11111111 generates 11110111 for the impure pure dimensions and after 
negation, 00110111 which is equivalent to char „7‟ decoded in ASCII. This approach solely relying on 
the grid file with a default sequencer of „1‟ for the whole data, gives a pure 50% LDC.  

 
A self-embedded flag set method: The cross-section, of which the compressed characters are 
recognized in the G file, is read by the „decompression subprogram‟, thereby compared with the C file 
content and table for a successful data reconstruction. The entries are of the reference table, building 
up to 95 standard ASCII chars. When the scanning of the G file entries reiterates for the next 96 char 
block, considering char # 96 as a block double byte (BDB), the program then counts from 97 up to 191 
and so on, traversing all 65,536 rows, “flag sets”, for an LDD. We use the BDB as an indicator, e.g., a 
two-char „/a‟ representing the 1st full 96 byte allocation, „/b‟ for the 2nd and … The BDBs are 
standard chars elicited from the ASCII table. The „if and for loop‟ on the LDD, for 65,536 
possibilities, is the key to this process. This is later explicated in pseudocode at the LDD phase. The 
rows are in matrix form, denoting at least two original chars held by a „position char‟ with a 1, 
otherwise, a 0 sequencer. The position char as illustrated in Fig. 5, is an „occupant char‟ in the G file, 

starting with an „a‟ to the last ASCII 95 characters, representing in total, 952 = 190 char entries, or 95 
compressed chars denoted by the C(char) column in Table A.6.  

 
 

Fig. A.9: The GC file with an 8B to 5B~4B compression 

For example, the elements in {a, b, c, d, …, /a}, are respectively interpreted by the program‟s 
interpreter as: the {1st 2chars, 2nd 2chars, 3rd 2chars, 4th 2chars, … end of the 95th 2chars [of the original 
file]}.   
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This alleviates char interpretation over binary when presented by char position through standard 
ASCII chars: a, b, …, . To override memory overrun(s) during the vast access of files in read/writing 
data, we organize the „G with C‟ files into one single file, merging the targeted components of Fig. 3 
into GC. A structural sample of GC is illustrated in Fig. 6. This approach makes the algorithm quite 
portable, thus no need to be concerned about memory allocation and management issues in this regard. 
The corresponding table to the grid, following bitmap pattern reconstruction for any character per 
impure and pure flag preference “arose in bit field as necessary, is to hold a unique identity for that 
particular char,” and is given in Table A.6. 

The chiefly-key exponent to all of this, is the following expanded table to the latter translation 
table exemplar on the 4x1-bit flags, which indicates the very notion of any reconstructible character 
(Org. as original character from the 4th column). To reconstruct multiple characters from the 4th 
column, the comparator reads data located on the 3rd column representing the original character 
position as specified for Table A.7. The 1st column is just an index to the 41-bit flag combination 
address. This address is no needed to be traced, and thus, just by the comparator‟s „if-else‟ functions of 
the subprogram, it affirms „occupant chars‟ (3rd column) of the compressed file, with the address 
representing „impure‟ and „pure‟ bitwise operations on the sequencer. The sequencer is either a 
sequence of 11111111 via char „1‟ or „00000000‟ via char „0‟, as specified.   

The column of 96 characters in Table A.7, is of standard printable ASCII characters, revealing the 
position of the „first to 96th 2-chars (double) of the original file‟. The column on the address part 
„1x1x1x1‟ is the actual row being occupied by a character (the address) in the compressed file. Once 
the program reads this dictionary parallel to the compressed file, returns the original character 
according to the corresponded row (last column containing 2 characters). This version indicates a 50% 
LDC.   

 

 

 

Table A.7: The actual translation table contents for an LDD access and management 

For an 87.5%, obviously, the column with 96 characters will not change, however, the „1x1x1x1‟ 
column in its configuration would become „1x1x1x1 1x1x1x1‟ , and the last column with 2 characters, 
becomes 8 characters, since the cubic representation of the „1st 1x1x1x1‟ with the „2nd 1x1x1x1‟ has a 
second non-commutative symmetric format: „2nd 1x1x1x1‟ with the „1st 1x1x1x1‟, giving four distinct 
addresses simultaneously. So, for the former, this means, 2-original characters results in 1-character in 
compression (2:1 or 50%), and for the latter, 8 original characters results in 1 compressed character 
(100% – 12.5% = 87.5% or 8:1) as an „occupant character‟ (see Table A.6), occupying a row in the 
compressed file GC. This is how the process of the new lossless data compression occurs. The 
following is the magnified version of the contents of the dictionary (translation table above) for a 50% 
compression. The symmetry, altogether, gives four distinct double char addresses simultaneously i.e., 
an 8:1 LDC. This satisfies 65,536 4 = 1.84  1019 unique combinations, or, 16 exabytes (EB) of grid 
rows. In case of columnar symmetry in two translation tables, 65,5362= 4.1GB, handles the  16 EBs 
when column values are intersected by a comparator matrix in our code. So, four 64K grid row 
combinations, handles the same EB values in four parallel tables. This requires complex matrix coding 
on an x86 machine. A 64-bit microprocessor, in principle, handles at most, 18 EBs of space. So, 
beyond this limit, we run the FQAR model combined with the Bloch sphere on a quantum computer, 
easing the complex matrix programming, to superdense the EBs down to the 64K limits of grid rows.  

 
 
 

 

 

 
 
 
 
 
 

Row # Bit flag add. 95 ASCII Chars as Occupant Chars representing the “Org.” column via the “4x1-bit flag Addr.” column Org. char 

1 1x1x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ª ª 
2 1x2x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ¥ ª 
3 1x3x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< • ª 
4 1x4x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< © ª 
… … … … 
65534 16x16x16x14 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ÿó 
65535 16x16x16x15 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ÿü 
65536 16x16x16x16 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< ÿÿ 

1 1x1x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1
234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< 

ª ª 

2 1x2x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1
234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< 

¥ ª 

3 1x3x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1
234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< 

• ª 

4 1x4x1x1 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1
234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< 

© ª 

… … … … 
65534 16x16x16x14 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< 
ÿó 

65535 16x16x16x15 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< 

ÿü 

65536 16x16x16x16 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890`~!@#$%^&*()-=_+[]{}\|;:'"/?.>,< 

ÿÿ 



For highest doubled-efficiencies, we extend the number of znip columnar combinations from the 
previous translation table in terms of 

  
                  Table 1         Table 2        Table 3         Table 4 

                           1x1x1x1        1x1x1x1       1x1x1x1        1x1x1x1 
                           …              …              …                   … 
                           16x16x16x16   16x16x16x16  16x16x16x16   16x16x16x16 

 
This is called FQAR, or, a strongly quantum oriented algorithm: It delivers double 
doubled-efficiencies, and thereby quadrupled efficiencies as well. We described this in terms of 
fulfilling 4.1 GB and 15.61 EB combinations in the above paragraphs, respectively. In other words, we 
simply say, for all occasions, the program‟s interpreter/comparator matrix must be able to handle 1, 2 
and 4 translation tables for all intersections between them, needing just 8, 16 and 32 MB static size on 
the x86 version instead of the EB barrier denoting no columnar interactions whatsoever. For example, 
an intersection of {1x1x1x1} with {1x2x1x1} with {16x16x16x15} with {1x4x1x1}, from translation 
tables 1-to-4, will thus return, {ªª¥ªÿü©ª} original chars, hence the considerable length of 64 bits, is thus 
self-contained by the program‟s comparator efficiently (using just 8 bits, out of the 32MB of the 
traversed tabular space, denoting an 87.5% LDC).    

A.1.3 Dynamic and static results returned by the algorithm 

We continue to associate this relevantly-customized 4D-grid with the sequencer „1‟ or „0‟ to 
eventually decode and reconstruct data when attaining levels of LDD. The grid as a „logic constructor‟ 
is pretty useful for maximum state of FBAR LDCs. With the polarity flags for lower levels of 
compression, useful to the 1st through 3rd levels of FBAR‟s 4th layer, the grid could be thus mapped to 
the memory efficiently, especially when quantum technology is involved. However, the main purpose 
is first to use fuzzy logic on an x86 machine, thereby applying it to quantum forms in the future, 
pertinent to the merits of logic states presented in Eq. (1). Once data validated on its integrity, a step 
further for an actual LDC is prioritized. Hence, the concept of „bit fields‟ using low level operators in 
C, is well-structured as an advanced tool in programming, no matter the complexity of the bits of the 
compressed information. One could interpret a bit field as integral type, compacting multiple bits in 
partitioned fields of array. Bit fields allow integer members to be stored into memory spaces smaller 
than the compiler would ordinarily allow. Hence, the usage of two-dimensional stack allocation of bits 
becomes the most privileged in the FBAR LDC process model design. Fig. A.10 is the representation 
of such stacked allocations, assuring lossless compression as a dictionary to be reused during 
decompression. This is a crucial subject to normalize data, securing no loss of data integrity through 
bit insertion rather than character or integer insertions, thereby linking data objects via database keys. 
Further than insertion is, updating data and deletion anomalies. The optimized form of memory under 
its „area integral‟ denoting data accumulation and thus allocation, using the Pythagoras theorem, 
generates the stacked line chart (Fig. A.11) based on Table A.8 values. The following equation, is 
computed to construct this stack for a set of raised flags to the corresponding bit allocation per char 
entry 

               2 2

memory 1 total bits allocated 1bit flag 1bit flagx                       (5) 

where memory  is the memory gap function, and x is the changing total bits in the memory from the 

original input string, whereby its values fall into both complex and real numbers categories. The 
imaginary part is visually contained within the stack, and here, not shown in Fig. A.11. The complex 

numbers on their imaginary part consisting with imaginary unit      , denote the memory space 
(matrix) allocated for MSB values, inclusive of the range above the 4th bit occupied by a single bit flag 
for each char entry. This memory equation comes from the way an observation is made on memory 
gap(s). We elaborate on how it would be possible to make data compaction more efficient than the 
static approach during compression by calculating the imaginary number for each gap distance. The 
equation, however, geometrically benefits from the Pythagorean relation, which mainly focuses on the 
spatial limit per process time unit (spatial and temporal for addressing efficiency, inclusively). Of 
course, the static approach undoubtedly demonstrates double-efficiency as a robust solution in all 
circumstances with the aid of the 4D grid and translation table. It is, however, on the other hand, 
well-defined to make it further efficient per double-efficient occurrences for each double, quadruple 
and ...-chars handled by 1 compressed char, as a dynamic way to solve the problem further. The 
equation shows a gap is always existent in the memory in terms of unnecessary extra bits occupying 
that space. The gap is where an expert programmer does not want to see extra 0‟s and 1‟s prior to the 
raised flags or byte information. Imagine, for a 1bit flag, we really need a 1bit segment, and in return, 



based on „bit array‟ standards in C or any other programming language supporting this data structure, 
allocates a full byte for that single bit. So, in time, we experience an exponential growth of this 
occupation of bits in memory, forming a gap i.e., computable by Eq. (5). Therefore, this equation is 
essential to compute highly efficient compression in any layer of the algorithm (encoding layers 
upwards). It is necessary, before reaching this equation, to recall the previous subsections on the bit 
array solution in terms of “bit field” usage (see the 1st paragraph after our pseudocode main sample, 
Appdx. A; or see §A.1.2.2 which all leads to the discovery of the 4x1 bit flag model), in aim of 
understanding the memory gap problem via this equation. In layman‟s terms, just consider the gap area 
being filled up with a bunch of e.g. unnecessary 0‟s relative to those bits that we want to physically 
allocate. The following table contains the values computed for the allocated bits for this memory gap  
 

Mem_gap result  Char Addr. 

6.2449979983984i 1 
10.3923048454133i 2 
4 3 
8i 4 
5.656854249 5 
0 6 
9.21954445729289i 7 
4.89897948556636i 8 
… … 
3.3166247903554i 94 
4 95 
1 96 

 
 
 

 

Fig. A.10: The address of characters and their raised 1-bit flags with respect to their i values 

The values are elicited from Table A.8. The columns „Flag 1‟ raised for the ANDed pair of bin 

characters or 1bit flag , and „Flag 2‟ raised for the ORed pair of „bin characters‟ or1bit flag , and the 

column on either „Total Bits‟ is for „total bits allocated‟ from the equation. The „Char Addr.‟ column, 
indicates the character position or its actual address from the original file, that is currently being 
compressed e.g., index # 1 for the 1st character, index # 2 for the 2nd character, index # 8 for the 8th 
character and so on. By other means, a selected or input char is now in session for an LDC. As we 
follow the progressive finite steps of the conversions algorithm from layers 1 to 4, during the perpetual 
conversions of the „char‟ into „binary chars‟ based on the main pseudocode procedures, the binary char 
results are thus returned for a memory gap computation, whilst the compressed are returned relative 
total bits allocation columns. The listed values on the left table denoting imaginary and real numbers, 
correspond to the left column on the Total Bits table, giving a 34% compression. A different scenario 
for efficient compression, gives a 59% compression while contemplating that there are/were memory 
gap issues to tackle with.  

The above information is very useful when revolutions of space for every periodic frequency are 
occupied in quantum forms rather than Boolean forms of logic. This is subject to future generation 
computers relying upon quantum information technology. The projection of gaps in form of complex 
numbers could be listed by the following matrix:    




0 1 0 1

 {0, 1},{{{ 1},  {{{ 1},  {{{ 1},  { 1} }}}}},  1 0 1 0

 {{{{0},  {0}}},  {{{0},  {0} }}}}

1 1 1 1

i jx y

   
                           

   

 

This is the remaining matrix solution for a proper flag configuration, and it obviously denotes the 
spatial occupation for the range below the 4th bit to the LSB position. Both MSB and LSB flag 
conditions, build up a supplementary module (auxiliary bits) to dereference bits via pointers once their 
address is recalled at the decompression phase. All entry points as chars are defined with certain flag 
type combinations for „pattern match opportunities‟ on every pair of bits constructing a character. The 
range, as previously specified, is literally {–1, 1, 2, 3, 4, 5, 6, 7, 8, 9} distributed across the 9612 
memory scope per 1 to 96 char entries. Hence, contemplating this table with its extending dimensions 
to the memory‟s upper and lower bounds (data accumulation or stack integral), marks each token or 
symbol entry as an FBAR dictionary coder /decoder, pertinent to any LDC standards in a temporal and 
spatial feedback course.  

Total Bits Total Bits 

5 3 
5 3 
6 4 
5 3 
6 4 
4 2 
4 2 
5 3 
… … 
5 3 
4 2 
1 1 
5.27 3.29 
34% 59% 

Flag 1 Flag 2 

0 8 
4 8 
3  
3 7 
2 2 
3 3 
3 8 
0 7 
…  
2  
6  
0  

Null 

1 
2 

3 



The first procedure during decompression, is observing the feedback loop to all encoded data 
instances between „if and else‟ statements per char entry, makes pattern match of each char entry to its 
binary form possible. The pattern match from one bit of the binary sequence representing a text unit (a 
char entry) to another is the main method of the FBAR coder algorithm. Referencing to the bit‟s 
position (rather than the string or entry position), is spotted in the 2D representation of the dictionary. 
A perceptive partitioning of the memory for the raised flags is of importance in terms of 96/12 = 8 bit 
size partition (tree view above). This type of partitioning resembles with the „greatest common 
devisor‟ (GCD) concept on numerical analysis for abstracting data structures. Ergo, the present “data 
structure” is reused to eventually decode with respect to the bit‟s reference point. Therefore, a map of 
all reference points of compressed data is generated. The next procedure is to rematch mapping points 
or bits with other bits relative to their memory location, position and polarity type. Once re-matched in 
the decoded pattern match technique, once again, recalls polarities between ANDed and ORed 
versions of the product, assuring an LDD.      

Input Binary AND Out  OR Out Out1   Out1 Out2 Out2 Out3 Flag1  Flag2 Addr. Total Bits  

A 01100001 0000 1101 00 11 0 1 1 0 8 1 5 3 

B 01100010 0000 1101 00 11 0 1 1 4 8 2 6 4 

C 01100011 0001 1101 01 11 1 1 1 3  3 5 3 

D 01100100 0000 1110 00 10 0 0 0 3 7 4 6 4 

E 01100101 0000 1111 00 11 0 1 1 2 2 5 6 4 

F 01100110 0000 1111 00 11 0 1 1 3 3 6 6 4 

G 01100111 0001 1111 01 11 1 1 1 3 8 7 6 4 

h 01101000 0000 1110 00 10 0 0 0 0 7 8 5 3 

i 01101001 0000 1111 00 11 0 1 1 0  9 4 2 

j 01101010 0000 1111 00 11 0 1 1 4  10 5 3 

k 01101011 0001 1111 01 11 1 1 1 4 8 11 6 4 

l 01101100 0010 1110 00 10 0 0 0 4  12 5 3 

m 01101101 0010 1111 00 11 0 1 1 0 7 13 5 3 

n 01101110 0010 1111 00 11 0 1 1 3 7 14 6 4 

o 01101111 0011 1111 01 11 1 1 1 2  15 5 3 

p 01110000 0100 1100 10 10 0 0 0 6 8 16 6 4 

q 01110001 0100 1101 10 11 0 1 1 2 8 17 6 4 

r 01110010 0100 1101 10 11 0 1 1 1 8 18 6 4 

s 01110011 0101 1101 11 11 1 1 1 6  19 5 3 

t 01110100 0100 1110 10 10 0 0 0 1  20 5 3 

u 01110101 0100 1111 10 11 0 1 1 2  21 5 3 

v 01110110 0100 1111 10 11 0 1 1 3 8 22 6 4 

w 01110111 0101 1111 11 11 1 1 1 3  23 5 3 

x 01111000 0100 1110 10 10 0 0 1 5  24 5 3 

y 01111001 0100 1111 10 11 0 1 1 0 8 25 5 3 

z 01111010 0100 1111 10 11 0 1 1 5  26 5 3 

A 01000001 0000 1001 00 01 0 1 1 0  27 5 3 

B 01000010 0000 1001 00 01 0 1 1 5  28 5 3 

C 01000011 0001 1001 01 01 1 1 1 0  29 5 3 

D 01000100 0000 1010 00 00 0 0 0 3  30 5 3 

E 01000101 0000 1011 00 01 0 1 1 2  31 5 3 

F 01000110 0000 1011 00 01 0 1 1 3  32 5 3 

G 01000111 0001 1011 01 01 1 1 1 3  33 5 3 

H 01001000 0000 1010 00 00 0 0 0 0  34 4 2 

I 01001001 0000 1011 00 01 0 1 1 0 7 35 5 3 

J 01001010 0000 1011 00 01 0 1 1 4  36 5 3 

K 01001011 0001 1011 01 01 1 1 1 4  37 5 3 

L 01001100 0010 1010 00 00 0 0 0 6  38 5 3 

M 01001101 0010 1011 00 01 0 1 1 2 7 39 6 4 

N 01001110 0010 1011 00 01 0 1 1 1  40 5 3 

O 01001111 0011 1011 01 01 1 1 1 6  41 5 3 

P 01010000 0000 1100 00 10 0 0 0 1  42 5 3 

Q 01010001 0000 1101 00 11 0 1 1 -1 8 43 7 5 

R 01010010 0000 1101 00 11 0 1 1 5 8 44 6 4 

S 01010011 0001 1101 01 11 1 1 1 5 8 45 6 4 

T 01010100 0000 1110 00 10 0 0 0 1 7 46 6 4 

U 01010101 0000 1111 00 11 0 1 1 -1  47 6 4 

V 01010110 0000 1111 00 11 0 1 1 1 1 48 6 4 

W 01010111 0001 1111 01 11 1 1 1 1  49 5 3 

X 01011000 0000 1110 00 10 0 0 0 5 7 50 6 4 

Y 01011001 0000 1111 00 11 0 1 1 9  51 6 4 

Z 01011010 0000 1111 00 11 0 1 1 5  52 5 3 



1 00110001 0100 0101 10 11 0 1 1 9  53 6 4 

2 00110010 0100 0101 10 11 0 1 1 4 4 54 6 4 

3 00110011 0101 0101 11 11 1 1 1 0 8 55 5 3 

4 00110100 0100 0110 10 10 0 0 0 3  56 5 3 

5 00110101 0100 0111 10 11 0 1 1 -1  57 6 4 

6 00110110 0100 0111 10 11 0 1 1 3  58 5 3 

7 00110111 0101 0111 11 11 1 1 1 1 8 59 6 4 

8 00111000 0100 0110 10 10 0 0 0 0  60 4 2 

9 00111001 0100 0111 10 11 0 1 1 0  61 4 2 

0 00110000 0100 0100 10 10 0 0 0 2  62 5 3 

` 01100000 0000 1100 00 10 0 0 0 2 2 63 6 4 

~ 01111110 0110 1111 10 11 0 1 1 3 7 64 6 4 

! 00100001 0000 0101 00 11 0 1 1 2 8 65 6 4 

@ 01000000 0000 1000 00 00 0 0 0 6  66 5 3 

# 00100011 0001 0101 01 11 1 1 1 0  67 4 2 

$ 00100100 0000 0110 00 10 0 0 0 3  68 5 3 

% 00100101 0000 0111 00 11 0 1 1 2 2 69 6 4 

^ 01011110 0010 1111 00 11 0 1 1 1  70 5 3 

& 00100110 0000 0111 00 11 0 1 1 3 8 71 6 4 

* 00101010 0000 0111 00 11 0 1 1 4 4 72 6 4 

( 00101000 0000 0110 00 10 0 0 0 0 8 73 5 3 

) 00101001 0000 0111 00 11 0 1 1 0 0 74 5 3 

- 00101101 0010 0111 00 11 0 1 1 2  75 5 3 

= 00111101 0110 0111 00 11 0 1 1 0 7 76 5 3 

_ 01011111 0011 1111 01 11 1 1 1 5 5 77 6 4 

+ 00101011 0001 0111 01 11 1 1 1 4  78 5 3 

[ 01011011 0001 1111 01 11 1 1 1 5  79 5 3 

] 01011101 0010 1111 00 11 0 1 1 9 7 80 7 5 

{ 01111011 0101 1111 11 11 1 1 1 1  81 5 3 

} 01111101 0110 1111 10 11 0 1 1 0 7 82 5 3 

\ 01011100 0010 1110 00 10 0 0 0 5  83 5 3 

| 01111100 0110 1110 10 10 0 0 0 0 7 84 5 3 

; 00111011 0101 0111 11 11 1 1 1 0  85 4 2 

: 00111010 0100 0111 10 11 0 1 1 4  86 5 3 

‘ 00100111 0001 0111 01 11 1 1 1 3 3 87 6 4 

“ 00100010 0000 0101 00 11 0 1 1 3  88 5 3 

/ 00101111 0011 0111 01 11 1 1 1 4 4 89 6 4 

? 00111111 0111 0111 11 11 1 1 1 5  90 5 3 

. 00101110 0010 0111 00 11 0 1 1 3 4 91 6 4 

> 00111110 0110 0111 10 11 0 1 1 1  92 5 3 

, 00101100 0010 0110 00 10 0 0 0 2  93 5 3 

< 00111100 0110 0110 10 10 0 0 0 6  94 5 3 

SPACE 00100000 0000 0100 00 10 0 0 0 0  95 4 2 

 00001010 0000 0011 00 01 0 1 1   96 1 1 
 

Table A.8: The LDC reference table: String to binary conversions, compression and logic. 

 

Stack-based memory allocation 

 

Fig. A.11: The memory gap for every erected stack of 96 chars, filled up with 0 bit values   
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The C99 standard requires the allowable data types for a bit field to include qualified and unqualified 
bool, signed int, and unsigned int [37]. In addition, this implementation supports the following types  
 
 int  

 short, signed short, unsigned short  

 char, signed char,  unsigned char  

 long, signed long ,  unsigned long  

 long long, signed long long, unsigned long long  

In all implementations, the default integer type for a bit field is unsigned. Considering these data types 
are very important to handle data allocation and information size issues for validating LDC and LDD 
of the algorithm. For properly conducting this, we mostly used „int‟ and „unsigned char‟ data 
types (as boxed-in), to properly shift the targeted bits in compacted forms of integrity. The operators 
for conducting a compaction technique on the 1-bit flags, incorporate bitwise AND and OR operators 
as previously above, in our code written in C. This emphasizes on the powerful ability in using 
AND/OR combinatorial logic, as the main motive supporting middleware logic of fuzzy and in 
special, quantum logic handling 8-bit states simultaneously.  

The C compiler automatically packs the above bit fields from Table A.8 (Flag 1 and 2 columns), 
as compactly as possible, provided that the maximum length of the field is less than or equal to the 
integer word length of the computer. If this is not the case, then some compilers may allow memory 
overlap for the fields whilst other would store the next field in the next word. This further concerns the 
„portability‟ issue of bits depending on memory architecture. In C, the polarity structure could be 
specified per string char entry, and thus the numbers of bits representing each entry occupy values less 
than 8 bits binary, can be specified. This permits the code to access from a particular memory address 
by assigning a pointer of the above flag structure to later access the memory. In other words, each field 
is accessed and manipulated, as if it were an ordinary member of a structure. The keywords signed and 
unsigned mean what you would expect, except that it is interesting to note that a 1-bit signed field on a 
two‟s complement machine can only take the values 0 or –1.    

Flag type exception handling: Let flag type 9 be a post-setting possible for a customized 1-bit flag 
due to possible memory access, then we customize possible attribute combinations prior to 
{1,2,3,4,5,6,7,8}, with either of them in the set. Similarly, this infers to –1 as a presetting for a 
customized bit combination without repetitions of values within the rows or bits tuples set. For 
compression purposes, we eliminate the ones which have identical bit pairs (nibbles) output, to avoid 
allocating an extended 1-bit flag on bit pair impurity, unless needed otherwise. There are at least three 
ways to manage our flags if not treated self-embedded in our memory system:   

 
Fig. A.12: The memory gap for every erected stack of 96 chars, filled up with 0-bit values 

 
a) Static access: Large memory gap between 0 and 1 results of maximum compression (the 

figure on the left). 
b) Partitioned access: Optimized gap allocation on flags for 0 and 1 results of maximum 

compression (the figure on the right).  
c) Static, partitioned and dynamic access of a GC file: Reliably confident access due to 

predicted combinatorial access of self-embedded flags in the GC flags for all impure, pure 
and their complement on every pair of bits. Self-embedded flag access (or even non 
self-embedded), by this method, gives highest efficiencies possible for the hardcoded flags 
returning original chars in dictionary.  

  
A highly-efficient method for accessing GC flags: The structure for the c) solution, is a hypercube 
(grid‟s model) with fuzzy quantum complex number relationships. For example, the non 
self-embedded flags dynamic access is already shown in Fig. A.10. Fig A.9 however, is a good 
example on self-embedded flags. The latter is more resilient for memory management. Furthermore, it 
is quite efficient and more advantageous in memory access methods, since all 1-bit flags are 
hardcoded in a translation table (dictionary) for the GC file contents, in terms of a unique identity for 
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input chars. This makes address access quite precise and the least complicated for the interpreter 
during row address to address comparisons. In addition, the uniqueness of the translation table is that 
one could standardize the data compression output by establishing combinations of „bits and flags‟ in 
„if loops‟ within a „for loop‟ integration for each 96 single bit spaces of memory. 

To avoid repetition of flag combinations, we refer to the table‟s set theory elements. Possible 
combinations are given in these sets with a maximum cardinality of 10, and a minimum cardinality of 
1 in practice. So, once a flag number, gives an identical combination of the previous rows, we, as the 
role of LDC flag combinator or fixed point analyzer e.g., use the anonymous recursion (fixed point 
combinator) concept to choose another flag number from its set, based on non-combinatory preference 
of bits. Here is an example:  

 
Once again, let‟s have a look at Table A.6. By paying more attention to the input string sample 

„resolved‟, we realize that the grid row address, is partly repeated for those chars that are recurring 
in occupation (Fig. A.13). Of course, we can leave the program (its interpreter) to do the extensive 
top-to-bottom comparisons for all 95 chars iteratively per end-of-each char-block for the row range # 1 
to 65,536. But it is undoubtedly very efficient if a pointer spots and tags all of the recurring static 
addresses, in this case, the ones spotted are underlined based on the restricted commutative rule for all 
founded 41-bit flags. Therefore, the pointer p for this order returns a set of repeated flags by 
reference:  

 
{(7x11, 1) p (7x11, 6)}, {(1x13,1)p(1x13,4)}, {(6x13, 2)p(6x13, 6)}, {(8x12, 49)p(8x12, 50)}, 

{(8x12, 49)p(…)} 
 

representing chars: {(r, 1) p (r, 6)}, {(e, 1)p(e, 4)}, {(o, 2)p(0, 6)} , {(5,49)p(5, 50)}, {5, 49}p{…}, 
correspondingly.  

 
Once tagged, the „pointer flags‟ in a total of np = 5, are packed up for five respectively-distinct 
addresses in the memory, while the remaining identities are being checked during original char 
reconstruction process. Once data reconstructed, the flags that are packed and residing temporarily in 
memory, are appended to the reconstructed data lines according to record. This however, requires one 
further issue to consider, and that is, keeping the record on data reconstruction intact until the packed 
data is recalled from the memory. From there, temporary records are deleted and thus, the 
decompression phase is said to be completed.     
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Fig. A.13: A dynamic pointer for an efficient self-embedded 4-bit flag static address allocation  

 
Further compression, of course, as the columns attain the topmost highest layers of the algorithm, 

indicates that quantum information and computation is in place. The convolution of quantum design 
and technology is already illustrated and briefly explained in Appdx. C. FBAR‟s LDC, in context, 
deals with the computation of binary logic regardless of content size and type, whereas other 
techniques are not bothered about. Binary logic in FBAR, deals with individual bits, their 
combination, repetition and their conservation of information, regardless of character repetition or 
content type. This means, based on a fixed size character reference table, Table A.7, we derive a new, 
and a more certain equation (least zero order H values), which is logarithmically the least probabilistic 
with discrete entropy (bits per character), compared to Shannon‟s entropy rate on English alphabet as 
follows: 

          2
log 4.75 bits/charH m    ,                               (6) 

and for higher orders of H for a given text source made up of English alphabet letters, becomes 4.07, 
3.36, 2.77 and 2.3 bits/char, respectively. In contrast, the entropy rate for possible versions of FBAR 
based on the Cr columns in Fig. A.13 (or Table A.7), is computable by the following equation  

p Pointer a 
pointing to b 



                     log 0,2.4  bits/bytebb
H                                 (7) 

where H is the entropy devoted to binary b probability over two 0 and 1 states within the context of 
and-or fuzzy binary logic. The entropy is computed on a binary sequence , e.g.  =0001  with a 
cardinality of a proximate of a positive integer number. In this example, || = 4 or, a nibble equivalent. 
Thus, for a binary sequence , the binary probability of two states, b = 2, constructing 1 char, higher 
orders of H as we see within the resulted interval, becomes 2, 1 and 0 bits/byte, regardless of source for 
a given fixed size LDC binary reference code.  

The upcoming section shows how to retain necessary data based on the bit flag reference table 
(Table A.6 for high level compression, Table A.8, for the lower levels), hence making a lossless data 
decompression possible during the experiment.       

The prototype after code compilation creates a grid object (a portable file on driver) which 
contains information about the flag-set class under test. In addition, this object could be stored as a 
grid file G, a compressed version of all possible combinations on 4-bit flags per input char. The G file 
uses the compressed file C to decode, and thereby decompress data, losslessly. 
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Fig. A.14: An example of the generated outcome delivered by the FBAR prototype 

Consequently, further compression values within a certain range of the grid between memory grid row 
address # 1x1x1x1 and 16x16x16x16, from Table A.7, give predictable reference values on original 
char combinations prior to the ANDed and ORed columns via 4-bit flags set. This memory row 
number is static, and each address is self-embedded for at least 41-bit flag representative. Each char 
representative gives a 2-Char output as a reconstructed data to the original. However, the grid file size 
is dynamic when it comes to occupying space (size), as explained for grid file specifications in § 
A.1.2. This makes data quite portable between machines, and program access during compressions 
from layers 1 to 4 of the FBAR algorithm. In continue, the closures of Boolean states of 01 and 10 as 1 
and 0 for the 2nd product of the 4th layer, respectively, alleviate dictionary index complications upon 
recalling the memory address to reconstruct data during the decompression phase of the algorithm. For 
explicit recall of values on this level of compression, for the lower bound of the table on the memory 
address, between index # 47 and 95, requires a pointer to the relevant index of the grid file raising the 
particular relevant bit that once was a pair of either, 00, 01,10, or 11, before the further-generated 
closure states. The result, according to Eq. (7), at this stage is between, 1-to-2 bit/byte, expectably.    

A.2 Data Compression 

Data Compressors produce compressed input values for their input chars from a targeted document 
loaded to the program. The set of possible input types is large, ranging from simple data types such a 
numbers, to more complex data such as a combination of numbers, strings and binary. Also the 
domain of input values for a specific type can be quite large. Finding appropriate values, is a very 
important although, a difficult task. In this section we present a possible approach for the compression 
of input string serving FBAR logic for a lossless compression.  

A.2.1 Characteristics of a Lossless Data Compressor 

A Lossless Data Compressor has to cover a large domain of types and input values. It must compress 
data and decompress successfully in terms of no data loss during bitwise conversions. One could say: 
a lossless main characteristic is to preserve well-defined entropies between data I/O points. It is 
probably too much for a single prototype to cover all these different possibilities. Therefore, a major 
design decision was to have different functions programmed for specific problems e.g., data 
conversion, memory allocation, encoding , etc. to fulfill a final step of a lossless data compression. 
The responsibility lies with each single bit generated or inputted as our quantitative input/output (I/O) 
values. Since  



                , 216 thus  7.755 bits/byte
b

b H m H                            (8) 

The English alphabet letters in total possess a length of 216 bytes, its entropy rate of probability 
concentration is thus 7.755 bits/bytes when dealt with binary b values only. This measurement is 
inappropriate to some extent for a full sequence of letters within Shannon standards, and not the 
plausibility of each character that subsist on its combinatorial binary AND/OR logic. However, if the 
x86 machines were to be a quantum machine, this scenario would have changed dramatically, 
handling impure 01 and 10, and pure 11 and 00 states simultaneously i.e. 8 different probable states on 
sequences of binary per byte. In other words, 

 b
H 

 as 
qH  would give 2.585 for a base 8, 

convenient to apply the FBAR model with least order of probability in counting bits compared to 
chars. So, by applying FBAR, we can say that the probability of binary b, decreases its entropy H 
significantly, giving last orders of 0 bits/byte for each reconstructible character, according to Eq. (7). 
Therefore, to tackle such drastic odds, like the one given in Eq. (8), performed on an x86 machine, we 
define the problem specific losslessness of a data compression in terms of having a comparator, and a 
compressed grid file as the main components of our process design.    

A.2.2 Defining problem-specific losslessness of a data compression 

When writing a new lossless compressor, there a few things that a developer must consider. Every 
lossless compressor must include the compaction technique of single flag bits. For our grid G file, 
during compression, in C, we leave the compiler to compact our possible bit fields, pertinent to ip and 
zn dimensions of G for every corresponding compressed char in it, prior to the dynamic C file.      

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Struct packed_struct { 
   unsigned int f1:1; // for ip dimensions of the G file  
   unsigned int f2:1; // ...  
   unsigned int f3:1; // ...  
   unsigned int f4:1; // ...  
               unsigned int f5:1; // for zn dimensions of the G file  
               unsigned int f6:1; // ... 
               unsigned int f7:1; // ... 
               unsigned int f8:1; // ... 
} pack; 
 

 
Here, the packed_struct contains 8 members: four 1 bit flags f1…f4, for probable ip combinations, 
the remaining flags for a negation possibility upon the previous flags if, and only if, raised per 
combination. The total bit resultant is usually 5 to 6 bits, and maximally, considering the C file char 
constituents, 7 bits. The average score of bits normally corroborates with our spatial LDC estimate of 
37.5%. The C compiler automatically packs the above bit fields as compactly as possible, provided 
that the maximum length of the field is less than or equal to the integer word length of the computer. If 
this is not the case then some compilers may allow memory overlap for the fields whilst other would 
store the next field in the next word (see comments on bit files portability below). Access members as 
usual via: 

1 pack.type = 6; // access member no.6 

Note: Only n lower bits will be assigned to an n bit number. So type cannot take values larger than 
15 (4 bits long). Bit fields are always converted to integer type for computation. We are allowed to mix 
“normal'” types with bit fields. The unsigned definition is important - ensures that no bits are used as a 
 flag.  

A.2.3 FBAR Compressor compared to Standard Data Compressors 

The FBAR algorithm broadly comprises of two major components: 1- the dictionary, and 2- the 
compressed grid file or GC. The dictionary on its own, consists of 4x1-bit flag addresses, and is the 
key to the grid‟s file content‟s identity. Once this identity is compared and linked with the right 
identity in the dictionary, original data is reconstructed at the LDD phase of the algorithm. Other 
lossless compressors don‟t have this feature available, and thus act differently based on probabilistic 
factors for character detection and identification.  

.     



  

Fig. A.15: Flowchart of an LZW algorithm for an LDC. (Courtesy of [40] and [47]) 

As shown in this flowchart, Fig. A.15, the LZW compression algorithm is designed to input data, 
accumulate it, generate a dictionary that assigns tokens and outputs them into a compressed format. 
Lempel “Ziv” Welch (LZW) [6, 7], is a lossless data compression technique that was created back in 
1984 by Terry Welsh [8], as an improvement to the popular LZ77 compression algorithm. The 
following is a pseudocode extracted from the LZW fundamentals. A quick examination of the 
algorithm shows that LZW is always trying to output codes for strings that are already known, and 
each time a new code is output, a new string is added to the string table [46]:   

1. STRING = get input character  
2. WHILE there are still input characters DO 
3.     CHARACTER = get input character 
4.     IF STRING + CHARACTER is in the string table then 
5.         STRING = STRING + character 
6.     ELSE 
7.         output the code for STRING 
8.         ADD STRING + CHARACTER to the string table 
9.         STRING = CHARACTER 
10.     END of IF 
11. END of WHILE 
12. output the code for STRING  

 
A sample string used to demonstrate the algorithm is shown in Table A.9. The input string is a short 
list of English words separated by the „/‟ character. Stepping through the start of the algorithm for this 
string, you can see that the first pass through the loop, a check is performed to see if the string “/W” is 
in the table. Since it isn't, the code for „/‟ is output, and the string “/W” is added to the table. Since we 
have 256 characters already defined for codes 0-255, the first string definition can be assigned to code 
256. After the third letter, „E‟, has been read in, the second string code, “WE” is added to the table, and 
the code for letter „W‟ is output. This continues until in the second word, the characters „/‟ and „W‟ are 
read in, matching string number 256. In this case, the code 256 is output, and a three character string is 
added to the string table.  

Input String = /WED/WE/WEE/WEB/WET 

Character Input Code Output New code value New String 

/W / 256 /W 

E W 257 WE 

D E 258 ED 

/ D 259 D/ 

WE 256 260 /WE 

/ E 261 E/ 

WEE 260 262 /WEE 

/W 261 263 E/W 

EB 257 264 WEB 

/ B 265 B/ 

WET 260 266 /WET 

EOF T 
  

Table A.9: The LZW compression process. (Extracted from [46]) 
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The process continues until the string is exhausted and all of the codes have been outputted. The 
sample output for the string is shown in Table A.9 along with the resulting string table. As can be seen, 
the string table fills up rapidly, since a new string is added to the table each time a code is output. In 
this highly redundant input, 5 code substitutions were outputted, along with 7 characters. If we were 
using 9 bit codes for output, the 19 character input string would be reduced to a 13.5 byte output string. 
Of course, this example was carefully chosen to demonstrate code substitution. In real world 
examples, “compression usually doesn’t begin until a sizable table has been built, usually after at 
least one hundred or so bytes have been read in.” On the other hand, the FBAR does not construct a 
new table for each new file load execution. The fact is, since values are prefixed as self embedded 
1-bit flags, hence it would not necessary to reconstruct data according to new dictionary versions to 
the grid code. The pseudocode for an FBAR LDC is given in terms of: 

1. WHILE there are still input characters DO  
2. CHARACTER = get input character 
3. CONVERT CHARACTER to BIN CHARACTERS  
4. PACK 1-bit FLAGS from any conversion level       
5. IF PACK + CHARACTER is in the Reference Table  
6. THEN 
7. PACK = PACK + CHARACTER in the G file 
8. ELSE 
9. OUTPUT the code for PACK as NEW STRING 
10. ADD NEW STRING + BIN CHARACTER to the C file 
11. NEW STRING = CHARACTER 
12. END of IF 
13. END of WHILE 
14. OUTPUT the code for PACK in G file 
15. OUTPUT the code for NEW STRING in C file  

 
This delivers characters irrespective to any repetition of them in a given input string to the program. A 
simple glance at the pseudocodes, one could realize that the FBAR approach is in contrast with LZW 
and operates autonomous from LDC predecessors. The main difference is in the abstraction of the 
code in binary with respect to input string, rather than chars as string constituents. The building of a 
table is not as same as LZW, and as illustrated in Fig. A.9, is compressing the logic states of input 
string into a 4D logic constructor grid for each occupant char related to occupant chars in Table A.7.  

A.3 Data Decompression  

To reconstruct information from the prototype, we dereference data by program‟s LDD subroutine. 
The subroutine comprises of an interpreter filled with essential if-else statements, comparing the 
stored data in the GC file with the dictionary file containing the translation table (Table A.7). The 
dereferencing function within the program, once finds a match between the two files, returns char 
values in a new file as reconstructed characters, just like before as it‟s suppose to be in the original file.  

As shown in Fig. A.16 below, through the use of an iterative process, the decompression 
algorithm is responsible for reading in the compressed data and converting it back to its original form 
by dynamically replicating the compression program‟s dictionary. In contrast, the static approach 
from LDC to LDD is later given in four steps after Fig. A.16, below. The decompression program 
starts with the first entries of its dictionary initialized to all the characters in the original data. It then 
reads each character from the compressed data, which are merely pointers to the dictionary, and uses 
each pointer to retrieve uncompressed character strings from its dictionary and writes them to a 
decoded output buffer. It also builds its dictionary in the same way as the compression program. 

The lossless FBAR decompression model for an x86 machine upon pure „unitary states‟ to 
reconstruct data, i.e. the 0 state building 00, the 1 state building 11, considering that at least we have 
the FBAR impure states 01 and 10, is pursued upon recalling 1-bit flags according to the following 
program and matrix relationships:   

To reconstruct data, three procedures are taken consecutively. Each procedure comes from a 
separate constructor associated with the dictionary. The first constructor representing the first 
procedure is the „logic constructor grid‟ G, which during the LDC timeframe recorded the impure and 
pure state logic with respect to the closure states of 1 and 0 during compression. This timeframe 
should have covered in its recorded data, the AND/OR conversions, which are columns 4 to 6 of the 
above matrix flow. The basics of the “constructor grid” in conducting a „triangular logical operation‟, 
has already been explained in § A.1.2. Nevertheless, a logic constructor grid excerpt on the string 
„resolved‟ gives about an experienced release over LDD according to the dereferencing procedure 
(denoted by an “*” in C-like languages) on data. The 8-char word, „resolved‟, is now compressed 
into an 8-bit binary, equivalent to a single length character ö, from the 8-bit extended ASCII table, so 
we expect the FBAR logical procedures have already been carried out before decompression. 
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Fig. A.16. An FBAR LDD conducted by the program‟s interpreter, here as a comparator 

The memory grid file for each bit of the 8 char entries, gave us a 4-bit length algorithmic product 
to decode and decompress data. Hence, for the sample, a total of 5 bits per char entry, denoting a 
37.5% space savings reserved. The comparator of the source file deals with the last procedure, 
checking the logic between the compressed file and the grid address to decompress data as a 
subroutine of the program. An example of this could be given by the following pseudocode: 

1. READ the GC file row-by-row from end-of-file 
2. OUTPUT temporary ROW_CHARACTERS  
3. OUTPUT temporary (ROW_NUMBER == ROW_ADDRESS) 
4. CHARACTER = ROW_CHARCTER 
5. WHILE reading CHARACTER by CHARCTER DO 
6. READ ROW_NUMBER 
7. IF CHARCTER is not in the (ROW_ADDRESS AND CHARACTER) of translation table with BIN  
8. CHARACTER  
9. THEN 
10. STRING = get translation of OLD_CODE 
11. STRING = STRING + CHARACTER 
12. ELSE 
13. STRING = get translation of NEW_CODE 
14. END of IF 
15. OUTPUT STRING 
16. CHARACTER = 1st or 2nd or … or nth 2 characters in  
17. STRING 
18. REPLACE CHARACTER with 2 new characters from the    
19. translation table 
20. OLD_CODE = NEW_CODE 
21. DELETE temporary ROW_NUMBER and ROW_CHARACTERS 
22. END of WHILE  
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In reality, each dimension of the grid solely requires 4 bits per char entry and intersects with the other 
dimensions as other char entries. With the compressed char in the compressed file C, 1 bit is allocated. 
Therefore, 5 bits per character denoting a 37.5% space savings is required. To avoid occupying an 8 bit 
full occupation, it suffices to put two neighboring compressed chars, each with 4 bits in the grid file G, 
into one byte character, thus for 2chars giving 1byte + 2bits = 1char + ¼ char. A more efficient 
programming would even reduce this dependency of a single bit allocation for every char in the GC 
version (Fig. A.9). That is, to make the G file totally independent of the dynamic version (C file) when 
the comparator is engaged during decompression. So, by condensing the nested „if loop‟ conditions of 
the comparator, e.g., coding 0000000 as 0 and 11111111 as 1, with better flag combinations to create 
the original char, would create a self-embedded dictionary as a robust reference point of reduced packs 
of bits and nibbles. Interpedently, the more self-embedded references conditioned in the comparator, 
the more flags are managed, and thus higher states of LDC values. However, this must not hamper the 
way in which the temporal behavior on memory management issues is handled due to hardware 
architecture and instructions limit. In fact, for a quantum model, compared to the current 4D model on 
an x86 machine, combined with a 360o Bloch sphere [42] satisfies any state of logic in pairwise forms. 
Meaning that, the newly-emerging nD-model becomes very useful to compute data for a 
decompression. In other words, the compressed file, with the dismissed bits of the tabs and spaces of 
the grid, occupying 8 bits per se, is embedded into the extra information space (the grid) required to 
reconstruct the original data, is thus guaranteed with a quantum CPU followed by its instructions unit. 
We have considered this in our design for maximum LDCs of the algorithm. The simplistic steps of 
data reconstruction (a successful LDD), by setting a default value in the dynamic compressed file (or 
source code), at the LDC phase, for the sequencer achieving double-efficient C‟s  50%, is given as 
follows:  

 
1. The following is a pure sequence for the input chars. We set this always as default in the FBAR 

program 
                                        11111111                          (LDC upwards) 

2. Suppose the original input char is   
@ 

3. In binary, according to ASCII is 
01000000 

    (the goal is to manipulate 11111111, to obtain 01000000) 

4. So the combination in terms of znip relative to pure sequence closures on each pair from MSB 
to LSB, is 

                        i p p p (11 11 11 11) → 01 11 11 11 → then        (static allocation)   
                        z n n n (01 11 11 11) → 01 00 00 00 → @             (LDD, achieved) 

 
Therefore, we say, the key for an LDD is having the unique combination ippp znnn to return the @ 
character. One could decipher this flag combination in terms of address xxy (two dimensions out of 
four dimensions) by referring to the 4D bit-flag model (Fig. A.7). Of course, the @ example must be 
followed with another original input char to have a pure double-efficiency at the LDD phase of FBAR. 
This of course is detected by the program‟s interpreter/comparator once a translation table (Table A.7) 
read is made by the program. The collapsed version of the previous pseudocode, obeying the 
double-efficient four steps, on the string „resolved‟, would be 
 

1. WHILE reading CHARACTER by CHARCTER AND compressed BIN CHARACTER is ‘1’ DO 
2. READ CHARACTER as last block character 
3. IF CHARACTER is a block character THEN  
4. READ CHARACTER prepositioned to block character 
5. READ ROW_NUMBER 
6. GET ROW_ADDRESS from translation table 
7. IF (CHARCTER =‘d’ AND ROW_ADDRESS = ‘1x13x2x7’)  
8. OUTPUT STRING =‘ed’   
9. ELSEIF (CHARCTER = ‘c’ AND ROW_ADDRESS = ‘6x6x4x15’)  
10. OUTPUT STRING =‘lv’+‘ed’ = ‘lved’ 
11. ELSEIF (CHARCTER = ‘b’ AND ROW_ADDRESS = ‘12x14x6x13’)  
12. OUTPUT STRING =‘so’+‘lved’ = ‘solved’ 
13. ELSEIF (CHARCTER =‘a’ AND ROW_ADDRESS = ‘7x11x1x13’)  
14. OUTPUT STRING =‘re’+‘solved’ = ‘resolved’ 
15. ELSE 
16. PRINT no data or null compressed  
17. END of IF 
18. ELSE 
19. PRINT no block character in range 
20. End of IF 
21. END of WHILE  

 



The same comparison of an inclusion technique via negation, pure, impure logic is consistent to the 
previous sub-layers of the FBAR compression for the encodings, when the program attains layer # 4 of 
the LDC. So, we use the „bit field‟ approach rather than „bit array‟, lees than 8 bit space occupation. 
The hypothetical outline of these relationships between the increase of complexity of the comparator 
on x86 machines with memory allocation limits, leading to hybrid versions of FBAR as FBAR/FQAR 
and pure FQAR are given in § B.3, Appdx. B. Of course, for either the hybrid or pure version, we had 
to contemplate the impure pairs 01 and 10 in terms of a quantum encoding procedure for an arbitrary 
future-state quantum computer (QC), constructing quantum trees on logic states and their 
relationships. The rationale to this structuring of data is in with accordance to Eq. (1)‟s interrelatedness 
behavior of states, and the prime objective is in achieving values of Eq. (7) on x86 machines.    

A.4 Test Cases  

The test case generator is the core of conducting comparison experiments. It first collects 
information from the universe of discourse on information input observed to an LDC algorithm, 
irrespective to the encoded, decoded and decompressed data. It could be done manually by selecting 
random documents, thereby conducting LDC by a relevant package of choice. The results of 
comparisons are ranked afterwards, through Freidman‟s test as a nonparametric comparisons method 
(Appdx. B). However, an automated version of package selector as a comparator could be coded for 
accurate test case generators on sample documents.  

We have selected those documents that were compatible with the evolutionary pattern of our 
algorithm. Basically, we needed to reconstruct char-based data at first (Table A.10), so to investigate 
character reconstruction possibility within the context of FBAR logic. Of course, after fulfilling this 
feature of the algorithm, it is possible to advance the algorithm for its reception on any data type even 
compatible with the machine language and its respective compiler. In Appdx. B, we report our results 
on small and large input data for our statistical test. Small input data allows accurate comparisons 
between original chars during the input phase, compression and decompression. The following were 
our selective choice of samples (twelve in total), pertinent to the algorithmic evolutionary 
requirements: 

No File  Type Size (bytes)  
1 text  .txt 61608  
2 book1  .txt 678244  
3 book2  .txt 1772074 
4 paper1  .txt 52516 
5 paper2  .txt 117493 
6 paper3  .txt 10262 
7 web1  .htm 747766 
8 web2  .htm 598125 
9 log  .txt 1840924 

10 cipher .txt 777654 
11 latex1 .tex 209212 

12 latex2 .tex 155641 

Table A.10: Relevant sample documents for LDC algorithmic comparisons  
 

To see whether data is reconstructed successfully, the output is therefore compared with its original. 
From there, it is logical to make test-runs on large input data or file(s), since data integrity evaluations 
are conducted during small sample runs. 

 
 

 

Fig. A.17: Input data types used for a set of test-runs 

Working with large samples on the first runs would be extremely complicated and almost impossible 
to manage per input document. Once char integrity evaluated on the smallest scales possible with 
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certain buffer limit, assigning string size to the counter variable, building up the sample, would result 
in manageable flows, and easy validation on data results. The „long int‟ limit in Fig. A.17, is 
integrated within „code loops‟ to store occupant chars in the G file, as 4-bit flag representatives. In 
case of an LDD with any size input, through proper access and comparisons of values from the 
translation table (Table A.7), with the occupant chars within the grid, an evolution of different 
versions starting with textual type to any data type is achievable. The current FBAR subsists on the 
three, upper-right, lower-left and lower-right (starting point) of the matrix, evolving toward the last 
version of any document type beyond the level of chars. 

 
 

    



Appendix B  

Appendix B describes the steps of the comparisons 
experiment with FBAR and presents the results. Section 
B.1 introduces the experiment. The test samples are 
presented in Section B.2. The results are presented, 
evaluated and discussed in Section B.3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



***************************************************************************** 
*** The FBAR Data Compression/Decompression MENU *** 
***************************************************************************** 
 [1] 1 char-->2 digit-->8 bits...String to Hex/Binary Conversion Display: YES 
 [2] 8 bits-->4 parallel bits...Bitwise AND/OR Encoding Product: YES 
 [3] 4 parallel bits-->2 parallel bits...A Compression Product: YES 
 [4] 2 parallel bits-->1 compressed parallel bit...A Compression Product: YES 
 [5] 1 compressed parallel bit-->1 compressed bit...A Compression Product: YES 
 [6] Compressed bits-->(n)decompressed bits...A Decompression Product: YES 
 
***************************************************************************** 
*** The FBAR File Compression/Decompression MENU *** 
***************************************************************************** 
 [7] 1 file-->1 compressed file ...A Compression Product: YES 
 [8] 1 compressed file--> 1 initial file...A Decompression Product: YES 
 [9] (n)files--> 1 compressed file...A Compression Product: NO 
 [10] 1 compressed file--> (n)initial files...A Decompression Product: NO 
 
***************************************************************************** 
Enter your choice on one of the programmed hypotheses: 

B.1 LDC Comparisons Experiment  

In this experiment, we test the developed tool (prototype) from Appdx. A, on a number of different test 
compressors. The design, method and implementation have been all discussed in the previous sections 
of Appdx. A, which further led to the current LDC comparisons experiment. According to our 
methods from § A.1.1.2, we want to see whether the presented approach has difference when 
compared with other compressors used today. The experiment should show, if the tool is applicable 
and in which achieve a rank. The test samples have been given in Table A.10. The outcome of this 
experiment is compared with the results obtained by statistical test, and each test sample is tested 
multiple times. We tested samples in the small and in the large, inclusively.  

B.2 Test samples  

Test samples are selected to cover certain requirements of our prototype. These requirements are 
function-based in program code. These functions conduct FBAR logic and must maintain consistency 
in performance and data conversion factors. Once these factors are being dealt with per program 
execution, the integrity of input sample is tested for assurance at the point of delivery. In this case, the 
reconstruction point or where decompression occurs. Test samples could be presented in two forms: 1- 

strings and binary, and 2- documents; each having their own purpose of usage by the program. These 
test samples are already listed within the test cases context, or see, Table A.10.   

B.2.1 Strings and binary 

The string sample is a short representation for a good testing strategy carried out by a software 
prototype. String samples consist of characters, whereby convertible to other data types in 
programming. A code snippet used in many applications for string and binary conversions could assist 
in coding the FBAR hypotheses H.1 to H.5, from § A.1.1, once we adapt the code to FBAR encoding 
standards, and thereby the static dictionary coder indices quantifying binary results back to 8-bit chars. 
The FBAR prototype satisfied compression products when a user investigates LDC products from its 
menu options. The enabled/available options are denoted by a YES, otherwise, a NO in Fig. B.1. 
These options were programmed to satisfy certain objectives of the FBAR algorithm as follows: 
 

 

 

 

 

 

 

 

Fig. B.1: FBAR prototype menu options supporting implementation and simulation versions 

The stateful flow representation (denoted by an arrow -->) for each menu option (ranging from 1 to 
10) is explicit, and the prototypic implementation followed certain empirical rules of logic to 
compress data losslessly on a standard x86 machine. The upper section of the menu comprises of 
conditions assigned to an input string, and thereby after necessary data conversions, its compression 
product. The lower section of the menu, however, comprises of conditions assigned to an input 
document, and thus its compression product. Samples of the latter form are the result of carful 
implementation on the former type, maintaining the integrity of the bit‟s position and its state 
dependent on the FBAR static dictionary coder. Of course, this is done on a much larger scale and 



further explicated in §§ B.2.2 and B.3. One could rephrase this as testing our FBAR compression 
technique in the large indeed (recall, the last paragraph of § A.4).       

The reason for using a string as the input in the former type, is to initially demonstrate our 
compression technique in the small, observing data integrity and quantitative constructs, addressing 
bits, thus verifying their FBAR logic according to our hypotheses before reaching H.6. It is at the 
later stage(s), or, lower frames of the menu, we then load a file (the code would be followed with slight 
changes containing duplicate calls and method invocations of relevant functions within), as we convert 
the contents to binary via textualization or batch filing e.g., concrete text format which for processing 
(compression and decompression) taken in as a set of strings. A very good example is the I/O string, 
„resolved‟, previously validated in § A.1.2.3. To compose other strings, we simply refer to the 
ASCII input chars in Table A.8, and expect low-level conversions (encoding) to high-level LDCs, 
occur in our prototype. These expectations are performed by prototype‟s menu options 1 through 5.    

B.2.2 Documents  

Common documents, is an overly large but simple application to test a compression technique‟s 
eligibility for delivering data as either lossy or lossless. The lossy type, of course, is never appropriate 
for textual documents, since information is lost or less detailed in case of converting text to a lossy 
image, saving more space. This results in more steps of data computation during data conversions 
resulting significant latency for a successful data delivery in such compressors. Lossless compressors, 
on the other hand, focus on data integrity and information entropy during any data conversion states. 
Once the “in the small” samples are tested for each portion and step of program code, then loading 
documents in the large becomes imminent. One could then investigate the integrity and entropy 
factors of I/O data with respect to bitrate performance and memory usage.   

B.3 Results and Discussion  

B.3.1 Test cases and algorithmic characteristics  

Table B.1, compares our implementation of algorithm with three other compressors, chosen for their 
wide availability and their ranked compression ability. The same twelve files were compressed 
individually with each algorithm, and the results totaled. The bits per character values are the means of 
the values for the individual files. This metric was chosen to allow easy comparison with figures given 
via a nonparametric test technique. The choice of this technique is justified as we further explain the 
test in § B.3.2.  

Document # WinZip GZip WinRK FBAR FQAR * 

text  1 70.00% 85.70% 87.87% 50.00% 87.5% 

book1  2 70.80% 69.00% 80.04% 49.47% 86.57% 

book2  3 65.40% 63.80% 77.11% 48.95% 85.66% 

paper1  4 65.60% 64.70% 73.58% 50.00% 87.5% 

paper2  5 62.80% 61.60% 69.00% 50.00% 87.5% 

paper3  6 60.00% 59.50% 68.25% 50.00% 87.5% 

web1  7 72.20% 71.40% 75.37% 48.95% 85.66% 

web2  8 53.80% 53.60% 54.57% 49.47% 86.57% 

log  9 95.59% 95.37% 96.43% 48.95% 85.66% 

cipher 10 73.30% 70.30% 77.82% 48.95% 85.66% 

latex1 11 70.00% 69.00% 78.28% 50.00% 87.5% 

latex2 12 66.52% 66.53% 75.70% 50.00% 87.5% 

Table B.1: Test case LDCs based on space saving values 

* FQAR is the fuzzy quantum version of FBAR, whereas the latter as fuzzy binary, 
is the predecessor to FQAR, displaying 87.5% Cr‟s.  

The equivalent form to Table B.1, is the following bar chart giving a clearer compression ratio 
comparisons picture for our chosen algorithms. As we can see, we could distinguish the FBAR and 
FQAR versions from others, as the most aligned and correlated versions of Cr‟s. By comparison, this 
makes the new algorithm more reliable in LDC results, consistence and thus its spatial efficiency 
factors on compression.    



 

Fig. B.1: LDC ratio comparisons between FBAR/FQAR and other algorithms  

The selection of an LDC package depends on the following criteria as applicable characteristics to all 
LDCs:   
  

1. The ability to compress input data losslessly regardless of type, content size and complexity. If 
data type matters, e.g. being of textual type or otherwise, must compress textual information 
losslessly i.e. the decompressed data after compression must be identical to the original data.   

2. Use memory for data access and management issues efficiently, e.g., data rate and spatial 
occupation of bits during compression i.e. when encoded, and referenced upon… 

3. Must have a dictionary coder for validating data, referencing and dereferencing them during 
the reconstruction phase of data i.e. decompression. 

As we can see, from Fig. B.2, based on the above characteristics, the selection of FBAR (fuzzy binary 
type) is oriented to FQAR (fuzzy quantum binary type) during implementation. Its simulation grade 
on x86 machines, reaches 87.5% LDC scenarios which are all fixed. The zone indicating x86 limits for 
the hybrid version (denoted as FABR~FQAR), inclusive of the ordinary FBAR versions, continues to 
expand within the purely-FQAR territory. This means, the structural integrity of the FBAR dictionary 
(or the 4D grid model) at H = 0 bits/byte final version on x86, is significantly changed in favor of 
FQAR before entering the quantum machine territory. In one word, FBAR mutates from version to 
version with uniformly-fixed values on space savings. In FQAR, negative entropy denoting universal 
predictably giving values  93.75% compression is estimated. This model could be considered as a 
solution to complex negentropy problems [43] in Signal Processing and Information Theory indeed.  

 
 

 
Fig. B.2: The pure FBAR mutating to a pure FQAR via its hybrid version on x86 machines  
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Twelve documents were given to four different LD compressors (in random order), relative to their 
bitrate performance for each LDC execution. Process time to a test and percentages of compression 
were measured. The resulted data are listed and discussed in the following section. For the EB barrier 
in Fig. B.2, refer to the explanations provided after Table A.7, which concern C‟s > 87.5% scenarios.     

B.3.2 Nonparametric comparison test cases  

Our motive using Freidman test: Ordinal data (countable data) gathered from repeated organization 
of LDC algorithms, i.e., repeated measures, employing a rating scale are commonly deployed in field 
and laboratory studies. If there are a large number of subjects (e.g., n>30), the assumptions of 
parametric approach, namely, normality and homogeneity of variance are usually met. Therefore, 
parametric analysis of variance (ANOVA) methods are frequently adopted to analyze these data. 
However, in field and laboratory trials conducted, situations frequently encounter in which small 
number of subjects, e.g., n < 15, are tested in repeated measure experiments. The more measures 
conducted relative to a growing number of samples, the more encountering of probable miscarriage of 
accuracy in the generated scores. In such cases, due to the relatively small sample size, the violation of 
assumptions of an ANOVA is usually inevitable. In FBAR, however, the sample size varied from, as 
small as 10,000 bytes, to much larger sizes 1.8 MBs, as char-based documents. In fact, the focus is on 
the results of how long the computation lasts per sample, its spatial consumption i.e. the percentage of 
compression relative to sample‟s rank. The main motive of using nonparametric comparison test cases 
is in contradicting the quality and quantity assessments done in t-test scenarios. The latter subsists on 
assumptions that form T = Z/s, where Z and s are functions of the data: Typically, Z is designed to be 
sensitive to the alternative hypothesis (i.e. its magnitude tends to be larger when the alternative 
hypothesis is true), whereas s is a scaling parameter that allows the distribution of T to be determined.  

In the FBAR case, the assumption is severed from any sensitivity to alternative hypothesis or data 
distribution (e.g., normality). It is confined to the distribution of repeated observations on LDC I/O 
samples like many non-parametric tests, based on the ranks of the data rather than their raw values to 
calculate the statistic. In summary, we reason that this nonparametric choice was due to  

 

a) The number of samples were < 20;  
b) The data type was knows as char-based, hence the number of data types was limited (no extra 

assumptions like parametric methods were made.) 
c) Not subject to normality measurements, unlike parametric and t-test cases.  
  

In the following sections, we aim to use this method to evaluate our algorithm compared to other 
LDCs. Therefore, we wanted to make sure that its results were statistically significant and not obtained 
by chance. Thus, we considered the following null hypothesis:  
 

Let X contain our FBAR technique as well as a selection of state-of-the-art compression techniques. Furthermore, let Y 
contain a representative sample of documents of different type. Therefore, 

 
H.6- A difference exists in the performances of the techniques in X as measured on Y by computation rate and space 
savings.  
H.60- The difference in performances of the techniques in X as measured on Y by computation rate and space savings is 
zero. 

 

In continue, since our number of samples is small and (n < 20), we use Freidman test to analyze the 
data and test the hypothesis (reference to Table A.10). The statistical test, involved the ranking of the 
data in the rows, then comparing the mean rank in each column. Thus the values of LDC would be 
ranked across each row as shown below. We derived these rankings collaboratively based on Fig. B.3, 
Tables B.1, B3-B4 results. 

Document # WinZip GZip WinRK FBAR FQAR 

text  1 4; 3 3; 2 1; 1 5; 4 2 

book1  2 3; 2 4; 3 2; 1 5; 4 1 

book2  3 3; 2 4; 3 2; 1 5; 4 1 

paper1  4 3; 2 4; 3 2; 1 5; 4 1 

paper2  5 3; 2 4; 3 2; 1 5; 4 1 

paper3  6 3; 2 4; 3 2; 1 5; 4 1 

web1  7 3; 2 4; 3 2; 1 5; 4 1 

web2  8 3; 2 4; 3 2; 1 5; 4 1 

log  9 2; 2 3; 3 1; 1 5; 4 4 

cipher 10 3; 2 4; 3 2; 1 5; 4 1 

latex1 11 3; 2 4; 3 2; 1 5; 4 1 

latex2 12 4; 3 3; 2 2; 1 5; 4 1 

       Table B.2. Current test case LDC ranks on space savings  



In Table B.2, we consider the rankings to be valid relative to the fuzzy quantum version (the FQAR 
column), while if dismissed, we consider the ranks to be distributed between 1-to-4 instead of 1-to-5. 
This is applied to observe the four first columns from the left relative to FBAR, in bold values. Now 
we start testing  

Decision rule: Reject H.60 if rF  critical value at  = 0.05 or 0.01, corresponding to 5% or 1% 

probability P. Otherwise, stay consistent with null hypothesis H.60.    

Calculation method: The differences between the sum of the ranks is evaluated by calculating the 
Friedman test statistic from the formula 
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where k is the number of columns („performance of algorithms‟), n is the number of rows, and Ri is the 
sum of the ranks from columns. In compliance with our decision rule, the results on Fr which rejects 
H.60, are given in Table B.4, since p-value < . The critical p-value of Fr for {4 observed columns + 1 
hypothetical column} and 12 rows at  = 0.05 or 0.01, is 0.0001. The distribution of the Fr(4) statistic is 
chi-square with k–1 degrees of freedom (df) or, df = 4. The p-value for the Freidman test is P(Fr(df)  Fr 

observed), the probability of observing a value at least as extreme as the test statistic for a chi-square 
distribution with df = 4. We thus conclude that the bitrate and space saving performances have had a 
significant result on the LDCs for the randomly loaded documents compared to FBAR. By 
conventional criteria, the P-value = 0.0001 < 0.01 rejects H.60, since this difference is considered to be 
extremely statistically significant. Although, dismissing the hypothetical column on FQAR results-in 
rank change on algorithms, we still observe P = 0.0001 < 0.01 rejecting H.60.     

 
Fig. B.3. Bitrate comparisons and memory usage  

Fig. B.3 shows the bitrate and memory performance on 12 test documents, with their critical and 
optimal trends. The results are elicited from Table B.3. The bitrate relative to memory usage was 
observed between the high and low ranked algorithms on „space savings‟ (Table B.2): WinRK vs. 
FBAR. As we can see, for higher bitrate performances, WinRK has a critical usage of memory per 
input sample. In some cases, even having 10 kBps for encoding and decoding data, required 800 MB 
memory on a 2GHz Athlon CPU. This ranks WinRK‟s memory performance lower than expected, as 
4th, compared to FBAR. When we associate values of the upper chart with the lower chart, it is evident 
that the empirical data relative to memory usage on FBAR is optimal, and uniformly correlated except, 
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the jump of bitrate on sample # 10 called “cipher” (contents of some ciphered text). This is due to the 
excessive repetition of characters within the sample grid. The original input chars were ignored due to 
their pattern simplicity, forming simplistic forms of storable data. Therefore, the algorithm is not 
submissive for taking in too much information and thus its computation. The average base of bitrate 
was estimated 475 kBps for FBAR, and 925 kBps for WinRK on the 12 samples.   

From the bar charts, it is possible to see that in some cases, there is already, right at the beginning, 
a major difference between the two results. There is also a difference observable at the end, where the 
mean coverage achieved by FBAR over memory usage is least critical than the mean coverage of the 
other compressor. This shows that there are significant differences between algorithms on their 
performances.  
 

               tL = CPU time/s Compressed size (bytes)  bits/char 

File  Size (bytes)      LLLC      HLLC    LDC     LDD 
(C+G files) – 64 K  
LLLC vs. HLLC 

LLLC vs. HLLC 

text  61608  0.18  0.02  0.2 0.24 31124.8+1: 7701.00 [2.1,2.4] : [0,2] 
book1  678244  1.31  0.14 1.45 1.40  342654.5 + 1: 84780.50 [2.1,2.4] : [0,2] 
book2  1772074 3.2  0.75 3.95 3.43 895266.5+ 1: 221509.25 [2.1,2.4] : [0,2] 
paper1  52516 0.13 0.01 0.14 0.20 26531.5+ 1: 6564.50 [2.1,2.4] : [0,2] 
paper2  117493 0.26 0.115 0.375 0.32 59358.4+ 1: 14686.63 [2.1,2.4] : [0,2] 
paper3  10262 0.05 0.01 0.06 0.10 5184.4+ 1: 1282.75 [2.1,2.4] : [0,2] 
web1  747766 1.63 0.22 1.85 1.71 377777.6+ 1: 93470.75 [2.1,2.4] : [0,2] 
web2  598125 1.29 0.2 1.49 1.36 302177.7+ 1: 74765.63 [2.1,2.4] : [0,2] 
log  1840924 3.43 0.27 3.7 3.58 930050.1+ 1: 230115.50 [2.1,2.4] : [0,2] 
cipher 777654 0.25 0.04 0.29 0.32 392877.28+ 1: 97206.75 [2.1,2.4] : [0,2] 

latex1 209212 0.43 0.03 0.46 0.49 105695.6+ 1: 26151.50 [2.1,2.4] : [0,2] 

latex2 155641 0.42 0.03 0.45 0.92 78631.1+ 1: 19455.13 [2.1,2.4] : [0,2] 
translator  8 MB N/A N/A N/A   N/A N/A 2 bits/char read 
Total  7021519  12.58     1.835    14.415    14.07 3547342: 877689.88 Avg. 2.25:1 

Table B.3: Estimates on compression with rate performance on FBAR‟s LDC and LDD 
 

Friedman‟s test for repeated measures: 

Document WinZip GZip WinRK FBAR FQAR 

sum of ranks 35 43 22 60 14 
(sum of ranks)2 1225 1849 484 3600 196 
#of columns, k (4real + 1hypothetical) = 5 
# of rows, n 12 
 R2 formulaic calculation :  1225 + 1849 + 484 + 3600 + 196 = 7734    
12/nk(k+1) formulaic calculation : 12/(1256) = 0.033 
3n(k+1) formulaic calculation : 3126 = 216 
Test statistic Fr formulaic calculation : 0.033  7734 – 216 = 39.22,     df = 4 P=0.0001 < 0.01 
Fr without FQAR  formulaic calculation : 0.05  4280 – 180 = 34,          df = 3 P=0.0001 < 0.01 

 Table B.4: Rank sum and mean ranks via Freidman‟s test on hypothetical and real observed 

data with P-values 

Relevant to the algorithmic computation process, the results in Tables B.3 and B.4 for an 
FBAR/FQAR LDC, were all GC file and dictionary coder-dependent. The grid file dimensions, each 
comprised of 16 fixed length code combinations, making 65,536 possible outcomes. From there, the 
translation table of the 95 printable and 1 nonprintable character block was used to make comparisons 
when the resultant document was converted back to binary for decompression. Table B.3, shows the 
difference between all layers being implemented from the lowest layer(s) of lossless compression 
(LLLC) to the highest (HLLC).  

Interestingly, the lowest layers perform logic with expected bitrate. The LDC time parameter is 
the result of (LLLC + HLLC) time tL, measured in seconds. On the other hand, having the highest layer 
with only „1 byte sequencer‟ equal to „1‟, according to the example given on pseudocode sample II, 
gives optimum performance. In other words, in total, C = „1‟ in content, makes the interpreter to 
interpret „11111111‟ for the whole document, otherwise, „00000000‟ on the first char input encounter. 
From there, applying self-embedded flags, altogether performs good bitrates by comparison. This is 
given by the additional byte (in bold) added to the HLLC column of the table.  

We determine the limits of the application to be mostly on hardware constraints in design, rather 
than FBAR logic per se. To tackle this, we eliminated issues related to single bit usage of flags, 
considering their unique combination in G file is indeed avoiding „bit array‟ models in programming. 
In fact, hard-coding 65,536 grid units via „if loop statements‟, reading line-by-line with 95 printable 
char replacements, is more useful than the currently-available tools utilized for an x86 compiler. This 
enabled us to have all flags embedded in our marked-grid units by a standard char.  



After verifying the theoretical estimates of 37.5%, 50%, 75% and 87.5% fixed size compressions, 
we began to compute the bitrate factor of our FBAR LDC. The result on randomly chosen documents 
for performing an LDD is listed in Table B.3. The bitrate for both LDC and LDD relative to CPU 
time/s are computed and listed in the same table. We then included specific test results in form of 
Freidman‟s mean ranks and rank sum in recognition of hypothesis H.6 of this paper.  

According to the sequencer approach mentioned above, it takes 5 to 6 levels of conversions with a 
CPU time tL = {long + short + shorter + shortest} session to conduct all four FBAR LDC layers. 
Therefore, the HLLC version would practically engross one layer involvement during data 
computation. Hence, the logical results would give tL on HLLC  LLLC. This occurs relative to 
accessing the „translation table‟ on 41-bit flags identity on each G row for an LDD. Typically giving 
tL on LDD > LLLC intervals, due to data access, read and write operations during data reconstruction 
from the GC file and translation table.  

B.3.2.1 FBAR and other lossless data compressors 

The number of documents builds up the test case and comparisons attribute of our nonparametric test. 
On the one hand, the number of arbitrary documents relative to packages is proportional to the random 
increase and decrease of percentages of LDCs, spatially. Moreover, the temporal state on the 
computation and processing of bits with their dictionary codes to decode, remains consistent with the 
dimensional expansion on spatial occupation of bits in the memory matrix, proportional to the 
accumulation factor of the bits number. If this factor increases exponentially, the temporal state 
prolongs i.e., latency in compressing data, otherwise, efficient bitrate computation is recognized in the 
LDC‟s data analysis records. Any LDC must appreciate this behavior regardless of quantity and 
complexity with respect to RAM usage, CPU and LDC package switches returning values with 
reference to dictionary. FBAR, in addition to all of these expectations, must maintain logic prior to the 
leading closures of 0 and 1 states, attaining levels of efficiency within the LDC processing.      
 

B.3.2.2 Evaluation of packages or LDC algorithms  

The evaluation of packages strictly depend on the LDC selection criteria outlined in § B.3.1. Once, 
each algorithm is evaluated for all characteristics, we rank it according to its space savings, memory 
usage and bitrate performances.   

By referring to relevant sources giving details on LDC packages [22], one could outline the basis 
of the statistical test for results. Table B.1 contains these packages with their respective ranks, 
reflected in Table B.2. We run our statistical test for comparing three or more related LDCs, as a result 
of their space savings, which makes no assumptions about the underlying distribution of the Cr data. 
The data is set out in a table comprising n rows by k columns. The data is then ranked across the rows 
and the mean rank for each column is compared. Bitrate ranking is statistically compared between the 
highest and lowest ranked algorithms, further constituting our null hypothesis. The comparisons data 
is given in Fig. 9.   

Based on the characteristics from § B.3.1, the ranking of the package is given through percentages 
of Cr for each package. The Cr is not fixed for each package and merely based on probability and 
character letter counts or frequent reoccurrence for the Shannon entropy, used to conduct a lossless 
compression. The only package that deviates from this behavior is FBAR, which exhibits predictable 
Cr ratios regardless of content size and complexity. The selected packages were on the bases of best 
case probable scenarios in compressing data above 90% as a maximum LDC, 50% as an intermediate 
LDC, and below 50% > 0, as a classic LDC (the ordinary well-known LDC techniques embedded in 
such packages). Contradictorily, for the fixed Cr generated by the FBAR package, is conveniently 
more reliable in predicting Cr ratios compared to the probabilistic Cr‟s by WinZip, GZip, WinRK and 
LZW LDC packages.  The ranking is further evaluated when package evidence of random sample 
inputs are measured non-parametrically.   

B.3.3 Evaluation of packages or LDC algorithms  

The following subsections, shall address issues related to Software Engineering, which aims at the 
performance-related issues, risks, confidence, usability, etc., based upon the resulting products of the 
FBAR algorithm:  

 
Introductorily, the potentials of the algorithmic/package evaluation, lie-in the way the compressor 

compresses data in form of fixed sizes and predictable ranges of compression output. This makes it 
more reliable to compress all sorts of document size, regardless of content type. The testability for 
performing such characteristics remains iteratively correct under different testing criteria, or, 



applications. An FBAR evaluation of a data compression, has already been motivated throughout the 
previous sections, and therefore, comparison tests were made with other compression algorithms. 
Now we shall discuss the evaluation thematic results of the FBAR algorithm as follows.   

B.3.3.2.1 Usability: 

We discuss the uniqueness of the FBAR data compressor compared to other remaining compressors 
used today. We also point out the potentials for demanding this product as follows: 
 
The potentials lie in the way the compressor compresses data in form of fixed sizes and predictable 
ranges of compression output. Unlike other LDCs, a fixed table forming a fixed size dictionary is 
always in store for the FBAR compressor, others, however, build a different one during data type 
conversions, every one-time execution. This makes FBAR more reliable to compress all sorts of 
document sizes regardless of content type. The testability for performing such characteristics remains 
iteratively correct under different testing criteria or applications. An FBAR evaluation of data 
compression has already been motivated throughout the previous sections, and comparison tests were 
made with other compression algorithms.   

In addition, based on our performance comparisons, we deduce that overhead information in 
FBAR is unlikely to happen due to dependency of the program-read on the translation table as a static 
portable object between different driver/network locations (see also, robustness in § B.3.3.2.4). 
Furthermore, FBAR would not create overly occupied tasks in queues and overwhelm memory against 
user‟s will. This is evident according to our performance comparisons made in e.g., Fig. B.3. 
Therefore, multiple API‟s or k-thread executions for process management engaging the user, is none 
of our concern during FBAR I/O operations. Reasoning that, the FBAR functionality plays a key role 
in demarcating the usability aspects of the algorithm from its interface core to surface, for each 
one-time application run.          

B.3.3.2.2 Functionality:   

The development of new data compression software is a competitive activity and the time available to 
bring a product to market is often limited. Furthermore, the complexity and size of software systems 
have increased in recent years especially when it comes to lossless data compressions. There are 
diverse techniques to perform compression based on mere probabilities. In principle, they benefit from 
e.g., Shannon entropy [15, 16, 18] to compute similarities in data objects and their recursive pattern 
recognitions. More specifically, they base their compression on repeated patterns of input data to bit 
sequences (frequently encountered), [32]; hence their frequency varies in their compressed version (an 
uncertainty). In order not to fail on the market, it is important to also achieve a high quality with intact 
data integrity when studying the output data. The usability of FBAR is due to its logic as almost being 
independent of an uncertainty, thus its potential demandability on the market side increases in number 
of its users in the future. The main reason is that, satisfactory compressions with predictable 
compression ratios, gives the user (customer) more assurance in compressing his/her data right on the 
spot without being concerned about his/her machine‟s spatial management issues. For example, how 
much RAM is required; how much space is needed on this HDD for this particular compressed version 
of the original file; will there be enough space after compression on this driver after compression, or so 
to speak, will we be free to store more records on the driver, etc. Having fixed values, gives a definite 
answer on such spatial limitations to its user.  

B.3.3.2.3 Reliability: 

Mostly, on complex systems, FBAR generates fixed value identities, compression results and 
reference points. Hence, the FBAR design for x86 machines, performs with the purpose of reliability 
testing based on its firm logic with confidence to produce fixed values with finite number of lines of 
code in structure. In aim of discovering potential problems within the design, as early as possible and, 
ultimately, provide confidence that the system meets its reliability requirements, the less confidence is 
not an issue to bargain with, in FBAR. The rationale to this is, since handling all states of logic 
inclusive of fuzzy is quite complex in current applications, and when reaching levels of quantum states 
parallel to binary logic is virtually continuous, the weak point in confidence would therefore abort to 
exist. In fact, the latter factor becomes unsustainable due to the sustainability of the confidence itself 
within the representations of impure and pure logic, keeping product resultants intact with one 
another, in data structure, efficiency and logical consequence in design. The limitations in the circuitry 
design of the hardware system and its corresponding components, of course have an influence (affect) 
on performance and confidence factors from the lowest LDCs (37.5% and 50%) to the highest LDCs 
(87.5%) on x86 machines. The FBAR components, in context, are a set of conversion functions as 



useful tools that mainly rely on a comparator component (see Fig. A.3), which itself is an „interpreting 
function‟ possessing a series of „if and else‟ statements to compare data from one another. Its job is to 
compare the logical combinations and their consequences for decompressing data, losslessly. These 
functions are incorporated in the subprograms of the algorithm, and their layout is already given in 
Fig. A.3, Appdx. A. In summary, we rate FBAR algorithmic product confidence, as „quite high‟ in our 
evaluation method. The reasons behind this evaluation are:  

 
A. Because FBAR values are predictable, and the confidence is rated based on the 

predictability of spatial and temporal rates, displaying reliably-fixed bitrate results per 
lossless data compression (recall, Fig. B.3). In other words, this confidence is proportional 
to the growth of predictability. The more predictable, the grater the confidence or,  
                                                    (10) 

        
where 2n comes from the double-efficiency property of the algorithm, obeying the natural 
numbers‟ interval result set, from Eq. (7), for each predictable state of compression, 
according to Fig. B.2. Therefore, in time, confidence grows double-efficiently for each 
progressive version of FABAR.     

B. Thus, FBAR is least likely to fail at all, in logic, design and principle. 
C. We have done this with the new 4D bit flag model, and its algorithmic representation 

(pseudocodes).   
D. Why? Well, FBAR is here to perform maximal and thus ultimate LDCs, prior to the LDC 

algorithms we know today. 
 
The mean time to failure (MTTF), and other factors, such as, confidence interval (CI) estimates, which 
we have not conducted in the FBAR project, are deemed important when our algorithm is tested in the 
large, and not in the small, or, under its prototypic release (§ B.2.1). However, the reliability analysis 
by running surveys, when the package is tested in the future, gives concrete results to compute such CI 
estimates, relevant to algorithmic space savings‟ products. The only potential problem that we could 
point out from is, handling the logic package between x86 machines and those of which are strongly 
dependent on quantum encryption methods in information theory, e.g., „superdense coding‟ [34], in 
their instructions set and algorithmic responses. The latter, however, is available under laboratorial 
conditions aiming for future technological developments done by organizations such as IBM, like the 
qcl quantum computer simulator and similar algorithms testing quantum computation at large [41].  
 

B.3.3.2.4 Robustness: 

In cryptography, according to Kerckhoffs‟ principle (assumption, axiom or law) [48], a cryptosystem 
should be secure even if everything about the system, except the key, is public knowledge. Throughout 
this thesis, we have introduced and discussed FBAR, both on its encryption and decryption properties 
for an arbitrary data I/O. FABR has its own cryptographic translations as specified in the paper 
section, in terms of a translation table inclusive of [2] as a reference table employed for the lowest 
layer of dynamic data conversions. The public key as either the translation table for the static approach, 
or the reference table for the dynamic approach, abides by the encryption design principles inclusive 
of a mirror technique for fundamental exclusions of data corruption. This is how we apply this new 
mirror technique to FBAR during e.g., peer-to-peer transmissions in Fig. B.4:  
 

Foremost, since we know what specific occupant chars (e.g., Table A.6), are occupying the 
compressed file contents, it is evident with a fuzz testing e.g., giving invalid and valid I/O, the program 
could thus detect and exclude error chars from the compressed version, allowing it to return the 
original chars at the decompression phase. It is further evident, that even some of the error chars, if 
they fall in the range of our 95 standardized occupant char range, the zone that gives an additional size 
expectancy of the file, would thus indicate an error has been occurred. Reason that: based on FBAR 
I/O conversions, we totally expect the compressed version (the GC file) if done through 50% 
compression, must only carry half of the original file size excluding the 64KB size of the grid file. If 
this varies significantly, the program on the other side (point B), would know that there has been an 
error occurrence during transmission. To mimic these kinds of scenarios, we purposely input random 
characters to the compressed version offline as part of our experiment. We conduct our robustness in 
terms of manipulating data as the corrupt version of GC whilst creating a mirror file, which contains 
characters that are not in the scale of our standard occupant-chars of the GC file. The mirror file is 
always 0 bytes in content, unless error occurs during transmission, and thus in complement with the 
GC file, increases in size. A self-generating recheck char loop algorithm (in structure, inherits 
FBAR‟s comparator subroutine statements), for error detection during transmission (a real-time 



patch), which rechecks the GC file periodically is anticipated along the mirror file generation. Bear in 
mind, mirror file is only generated, once an error occurs, thus detected by the real-time transmission 
loop algorithm. Further, we convert the corrupted zone of the GC file to certain out of occupant char 
range i.e. 95 printable chars, (or recall Table A.6) and store it in the mirror file. The mirror file could 
be deemed as a complementary object to the GC file, reflecting error chars outside the pristine 
boundary of data (the zone where data must not be of corrupted type), where at the end, gets deleted 
once all corrupt data are detected, extracted and compared with the FBAR dictionary (reference table, 
translation table and ASCII). If there are any remaining errors i.e. in case of the mirror file is received 
with a size > 0 bytes, a further error detection is executed when an LDD is run by user # 2. This 
detection is done via program‟s interpreter/comparator. Then, at the point of LDD delivery, we expect 
the decompressed version, of course after the use of the translation table, to return the expected 
original file identically without corrupted chars in it i.e. the error version. Ergo, we say that FBAR, 
due to its uniqueness in char deliveries and translation table comparisons technique, makes it quite 
robust compared to the probabilistic versions where many patches are designed for particular set of 
errors, making user to depend on many other factors when such issues are confronted on his/her 
machine. 

 
    

 
 
 
 
 

 
 
 
 
 
 

Fig. B.4. An example to examine the level of FBAR robustness between transmission points 

The algorithm, during its transmission protocol on e.g., a network, from point A to point B might be 
tampered with its compressed result or LDC product. One could, based on different observations or 
experience, class this as overhead information within the communications system.  

Fig. B.4, above, shows how robust the algorithm performs under such circumstances when an 
FBAR sender, sends the compressed data to the recipient, while a network error or some intrusion 
casing corrupts user‟s data. Of course, a physical error like connection problems, etc., could be tackled 
with certain additional software programs (patches) that maintain data transmission between lines 
until connection is fixed to resume the delayed data transmission.  

Regarding the integrity being altered in the compression content, it is evident by creating a 
mirror of the compressed file along the way (previous paragraphs), the encrypted message i.e. the 
contents of the GC file in terms of occupant chars (Table A.6), are strictly dependent on the contents 
of the translation table on both sides, sender A, and receiver B. Thus, whatever returned at the 
decompression phase, if the initial file before compression in any shape, with error or not, is to be 
returned as it is. Meaning that, the program‟s interpreter/comparator installed at point B, works on 
returning the original chars and exclude chars of error type, coming from either file content zone, 
within the transmission layers, or, right after source before destination (point x in A-B).  

Of course, further technical discussions relating to this extension of the algorithm is out of the 
current thesis scope, and requires a separate work in progress parallel to the current topic.        

B.3.3.2.5 Efficiency: 

Table B.3 efficiency ranks on memory usage, is the result of expressing the ranking of FBAR or even 
FQAR as quite consistent with uniform efficiency factors compared to other LDCs. Despite of FBAR 
suffering on space savings, but since it is performing uniformly, even on the lowest standards, the 
structure of logical consequence mutates from one version to another (Fig.  B.2). Ergo, the performance 
is also mutable for every upgraded version from FBAR to FQAR, either on bitrate, space saving or 
memory usage factors. Therefore, we deduce that the efficiency of FBAR is of a reliable type on any 
versions of it, since the structure is strongly grid content-dependent, and the reconstruction of data, 
stands firm on its combinatorial logic (impure and pure states of binary).       
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Document # WinRK FBAR 

text  1 2 1 

book1  2 1 2 

book2  3 2 1 

paper1  4 2 1 

paper2  5 2 1 

paper3  6 2 1 

web1  7 2 1 

web2  8 2 1 

log  9 2 1 

cipher 10 2 1 

latex1 11 2 1 

latex2 12 2 1 

       Table B.3. Current test cases between FBAR and WinRK LDC ranks on memory usage  

B.3.3.2.6 Completeness relative to efficiency: 

For current x86 machines, the FBAR model design suffices to generate 37.5% to 50%, and potentially, 
87.5%, if indeed grid file-dependent with a comparator. The 50% case, proving an absolute 
superdense coding technique [34] in Coding Theory and Cryptography [3], is also complete with 
confidence, since the grid file could be recalibrated to exponentially act on behalf of a compressed file. 
This file contains the position number of the representative char entry akin to an actual compressed file 
generated by the program. Furthermore, contrary to the attempts being made in quantum information 
theory for compressing 2bits via 1 qubit during data transmissions, the 50% reduces probable quantum 
states as self-contained in the grid file with no state probability (0 state probabilities). Ergo, the 
confidence rate for doubling the efficiency (superdense) in reconstructing chars is absolute and 
self-explanatory. Extending the grid file addresses in format, of course, as described in §A.1.2, Appdx. 
A, results in 87.5% compression. Once the logic constructor grid acknowledges the results by the 
comparator relative to the compressed file, such fixed size estimates are realized during 
decompression. Furthermore, the application could be executed under Windows and UNIX platforms 
despite of memory efficiency factor or rate differences and hardware constraint problems handling 
FBAR logic, i.e. application‟s data computation performance on spatial and temporal localities.     

B.3.3.2.7 Portability: 

The FBAR logic could be implemented under different platforms, even programming languages. 
Generally, the application could be implemented in C, .Net or any equivalent programming language 
using the right functions to perform FBAR logic. However, there are a number of customized 
functions that are required for implementation as specified within the context of FBAR logic, in case 
of not benefiting from a programming language standardized functions per release. Furthermore, the 
application could be executed under Windows and UNIX platforms despite of memory efficiency or 
rate differences e.g., application‟s data computation performance on spatial and temporal factors. It is 
also important to connote that the algorithm contains portable components such as GC and dictionary 
files, making it portable from one compiler to another. The execution of commands and translation, 
from one computation level to another, is standardized and manageable on different machines.      

Also, the cumulative results in terms of a compressed file in context are in accordance with an 
expected size performed by the algorithm. It is based on the firm self-embedded flags, packed into 
4-bits per reconstructible char. This shows us that all results are at least, half of the original input size 
of some random document. Ergo, portability in form of compressed files, such as GC type, with its 
decompression package, simply, by choosing the relevant option, on the user‟s side, reconstructs data 
expectably. Portability of the algorithm, its components and executables, e.g., “file-faces upon new 
and old data during LDC and LDD phases”, within this context, is evident, and thus easy to envisage 
from a developer‟s side delivered to the customer-client side, on nowadays machines.  

B.3.3.2.8 Validity threats: 

Due to the evident nature of Shannon entropy, practiced within the four packages of our choice, and 
thence justified, “in the choice itself,” based on their ability of compression according to their global 
rankings [22], and logic, e.g., [18], we thus deem all-LDC package selections to be indeed universal. 
Hence, the ASCII representation for all data conversions is too universal including other LDCs‟ cause 
and effect of the internal systems, as an internal validity threat due to extreme variance or randomness 
of logic, i.e., their implementation of logic. Therefore, the selection comes about based on these 



evident logical conversions, whilst we conduct our version of logic, FBAR, for its provability aspect in 
being different, i.e., not being based on repeated patterns of symbols, makes this threat to be evidently 
reduced due to internal functions, operation of logic. So the speak, due to FBAR design being merely 
based on pure circuitry logic in a combinatorial manner i.e., Fuzzy Binary AND/OR with certain 
universal operators, as newly-defined in terms of znip operators, makes this algorithm in pre-test 
conditions to confine threats in its context of universality relative to post-test conditions where 
generality of the application is conducted on e.g., computers, networks, etc. (values are, herein, 
self-embedded or, self-contained). We could even see this for higher degrees of FBAR 
experimentations within the external validity context, which engulfs threats relative to users using 
FBAR. For example, we map such participation of users to real-world relationships, such as discussing 
the robustness of the algorithm in § B.3.3.2.4. Ergo, the selections, based on the available data from 
[22], inclusive of our own extensive analyses on the encoding/decoding layers, before the algorithm‟s 
universal translation table, are all „universal‟ indeed. This made the selection imminent prior to logic 
during sampling of the char-based type documents, which further maps to our version in terms of 
data-type, and NOT THE LOGIC per se.  

Since our logic is mathematically self-contained (impregnable) for single and groups of bit 
values, each potential threat is thus self-contained. Therefore, we admit by contrast that, the remaining 
LDCs are practicing some „discrete logic‟ without a combinatorial extension to it, with loosen threats 
spread all over the e.g., network. This makes developers frustrated in designing package extensions, 
and thereby multiple applications to tackle each problem occurring for each probabilistic LDC, 
compared to FBAR. On the one hand, FBAR does not claim to possess an independent variable, yet all 
validity threats remain intact with it. On the other hand, in FBAR, since the logic itself results in one 
universal variable, it self-contains all dependent variables, regardless of complexity and uncertainty 
factors within its qualitative and quantitative relationships. This means that, the former situation is not 
in effect (self-contained) for all transmissions, majoring the predictability aspect with respect to 
participants and groups of LDCs.         

B.3.3.2.9 Risks in summary: 

FBAR only fails if the program functions and their subroutines are not implemented according to the 
4D-read/write bit-flag model. In other words, debugging and validation issues, is always the case 
during implementation. Moreover, the EB barrier, illustrated in Fig. B.2, and explicated earlier in the 
ending parts of § A.1.2.3, handled by the 64-bit microprocessor for Cr > 87.5%, (hypothesis H.5), must 
abide by the rules of complex matrix computation (the comparator matrix) for the 4-distributed tables, 
in reality. Meaning that, the very first translation table representing the double-efficiency of 50% 
compression, is the ultimate solution of the intersection of the values with those values associated in 
its identical tables from the program code (LDC/LDD subroutines). This has been illustrated in the 
later parts of § A.1.2.3. Ergo, no matter how variant the LDC result in other compressors, FBAR 
remains relatively fixed, due to its universal translation table being intact with its package supporting 
double-efficiency for each release. The translation table respectively is 1, 2, and 4 in quantity, 
supporting the simplistic to complex orders of Eq. (7) for the hybrid and non-hybrid versions of 
FBAR/FQAR.    



Appendix C  

Appendix C concludes the thesis with the discussion 
(Section C.1) of the key findings with respect to the 
central research question, highlights the strengths and 
limitation of the study, and presents some possible 
direction of future work following its expected 
applications (Sections C.2 and C.3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



C.1 Discussion  

Data compression is all around us. We see it in a variety of products, such as, high definition 
televisions, DVDs, MP3 players, cell phones, digital cameras, fax machines, automobiles, etc. When 
we look at all the embedded products out there, we will quickly see that data compression is an integral 
part of their operation [40]. In this study, we presented FBAR logic, prototype, performance, usability 
and its applications. The FBAR was tested in an experiment in which the outcome was compared with 
the results of other LDC algorithms.  

In this study, the prototype was built to perform a lossless data compression, and necessary 
comparisons were made with other lossless data compressors. The results respectively concluded that 
the FBAR compression regardless of file content, type and size, generated fixed size compression 
ratios with double-efficiency, a factor in which other compressors are incapable of performing in 
practice. This precludes the fact that other compressors rely on certain fixed ratios for their space 
savings on a computer system. They embark on uncertainty over fixed file sizes. When file content or 
type changes, the data compression ratio also changes with respect to the compression technique 
incorporated, mainly performing probability pattern checks of recurring characters within that file. So, 
FBAR logic poses to call-in the „logic‟ itself rather than taking in recurrences of the same character to 
compress data in a limited space and timeframe.  

The compressible space however, could be unequally partitioned in a discrete manner which itself 
generates an uncertain loci of compressed bits i.e. where and what size are there in the compressed 
pattern. One case though, rarely plausible to occur for a 99% compression, and that is, assuming all 
file content is built-up of one recurring character, e.g., aaaaaaaaaa …. a, resulting in k[a] = 3 + x 
characters in the compressed version; where k is the size in bytes, each byte represents 1 reoccurring 
character, and x depends on how k is presented for the new length e.g., if k = 10 then x = 2, if k = 1000,  
x = 4 bytes and …, spatially occupied. On the other hand, FBAR by contrast, makes all data 
compressed, irrespective of content and type, based on a single combinatorial logic. This is the 
strength of FBAR, its universal applicability to any information object, regardless of size, type and 
structure.    

The string values in FBAR contrary to the string exemplified in the previous paragraph, were 
treated as binary during the encoding and lossless compression procedures. The strings were 
compressed into equivalent characters from the ASCII table into file C, thereby to a 4D grid file G. 
From there, the translation table of the 95 printable and 1 nonprintable character block was used to 
make comparisons when the resultant document was converted back to binary for decompression. We 
evaluated the difference between all layers that were being implemented from the lowest layer(s) of 
lossless compression (LLLC) to the highest (HLLC).  

We determine the limits of the application to be mostly on hardware constraints in design, rather 
than FBAR logic per se. To tackle this, we eliminated issues related to single bit usage of flags, 
considering their unique combination in G file, is indeed avoiding „bit array‟ models in programming. 

After verifying the theoretical estimates of 37.5%, 50%, 75% and 87.5% fixed size compressions, 
we began to compute the bitrate factor of our FBAR LDC.  

The bitrate for both LDC and LDD relative to CPU time/s were computed and listed in Table B.3. 
We then included specific test results in form of Freidman‟s mean ranks and rank sum in recognition 
of hypothesis H.6 of this paper.  

We point out a possible threat to external validity which could be the selection of test samples, 
since there are LDC packages under development and those that are yet unknown to general public, 
not labeled as the most popular ones like WinRK, GZip, etc. This makes the selection of packages less 
absolute in algorithmic evaluations and comparisons made upon their performance.  

This also entailed other risks related to performance factors such as memory usage, discussed 
earlier as resolutely intact for any versions of FBAR compared to other algorithms. For example, not 
all embedded systems support large blocks of RAM memory that can be allocated to a striving 
compression algorithm as well as WinRK for giving high Cr‟s yet requires lots of memory space to 
encode/decode data. For embedded designs with limited RAM memory, the challenge is to find 
software that can achieve acceptable efficiencies within a small memory footprint. We propose FBAR 
operates in a more reasonable boundary of memory usage compared to other LDCs.   

This thesis described a lossless compression algorithm based on the popular LZW compression 
standard and its opponents such as FBAR/FQAR. Broadly, the well-known LDCs suffer in 
consistency in acting less probabilistic, thus depending on many random factors and redundancies 
when it comes to data types, finding a char match within the context of LDC.  

Concerning memory size management and thus its efficiency, there are ways to reconfigure data 
access and allocation through compression techniques as explained in the previous chapters, e.g. 
§A.1.2, through a dynamic versus static approach.  

The current version of FBAR compresses data up to 87.5% in a unique manner, whereas other 
compressors do not, since they generate random values depending on data content. FBAR is 



independent of data content, since it follows one and only one concrete rule of logic, applicable to data 
content itself. This logic is combinatorial, and defined as fuzzy with binary and-or logic promotive 
into quantum logic and vice versa. That is why this attribute of FBAR ranks it as the 
highly-information conversive to all logical standards discovered today. In other words, a new way of 
compressing data losslessly amongst other compressors, is itself a novel approach. The most efficient 
FBAR compression would be to implement its quantum application with fuzzy, inclusive of binary for 
performing robust calculations between the absolute discrete state boundaries (purely binary), and 
dual state boundaries (quantum like) applications. This would allow decision making systems to 
compute data efficiently, with all of its complexity intact within the information object.    

FBAR future applications lie onto implementing its quantum logic through signal processing and 
physical applications i.e. a new hardware design and organization, briefly explained as follows:  

C.2 The future of FBAR‟s ultimate compressions  

Simulating a quantum computer (QC) on a traditional classical computer, e.g., an x86 machine is 
a hard problem. The resources required increase exponentially with the amount of quantum memory 
under simulation, to the point at which simulating a QC with even a few dozen quantum bits (qubits) is 
well beyond the capability of any computer made today [41]. Maneuvering with FBAR combinatorial 
logic, reversing ANDed and ORed results inclusive of their in-detailed threshold states of fuzzy type, 
allows future interpreters and dictionary coders, act most efficient in shortest signals possible. Despite 
of hypothesizing now on the primitive grounds of this compressor on current computers, its future 
would promulgate possible advances in quantum technology to handle extreme complexities of logic 
compared to nowadays LDCs. The reason that LDCs today, consume space, and thus clumsy in 
delivering data in shortest time possible compared to lossy types, which is apparent in their 
management of converting multidimensional limits of space in the shortest forms possible.  

Strong dependency on probabilities rather than entangling them in terms of 1-with-0 and 
0-with-1, rather than treating them totally discrete in their representation, demands to create more 
reference points and uncertainties in data reconstruction and calculations. Ergo, having an FBAR 
model in possession, makes computation from the most discrete states to the most continuous, and in 
overall, connected time frames retrievable from one information content to another       
 

 

Fig. C.1. An overview of two co-local parallel signals, in total forming 1-bit revolution whilst a 

set of equipartitioned fragments of signal occupied by binary bits of data. (Extracted from [2])   
  



The transformation of FBAR to its highest levels of compression within its four-layer encodings is 
done via qubit registers. In this regard, a seclusive proposal in § 3.5.1 [2], is given for their new 
hardware design principles. The design in theory, with its practical aspects of an n-fqubit register, is 
briefly outlined as follows:  

C.2.1. New memory architecture for future FBAR LDCs with sub-bit handling 

As we know by now, a number of entangled qubits taken together is a qubit register. Quantum 
computers perform calculations by manipulating qubits within a register. A qubyte is a collection of 
eight entangled qubits. It was first demonstrated by a team at the Institute of Quantum Optics and 
Quantum Information at the University of Innsbruck in Austria, in December 2005. 

 

 

Fig. C.2. (a) An n-fqubit register system with overcoming latency options between clocked 

quantized signals; (b) A 2n-fqubit multiplexer generator taking in signals from the upper image 

for data decompression purposes. (Extracted from [2])    
 



By referring to our new 4D grid model from Appdx. A, a superposing character representing at least 
two characters, indicating a 50% pure LDC on an x86 machine is itself a significant catch for a 
quantum machine. By combining the famous Bloch sphere model [42] representing multiple quibit 
states with the 4D hypercube grid, the building of universal chars would grow exponentially, since all 
bit flags are self-embedded within the hypercube grid structure. Therefore, extracting flags based on 
„char priority‟ in entanglement would be super-condensed into half a signal of a wave, containing the 
FBAR total code information with intact length into shortest forms possible. This new model 
incorporation in terms of concatenated addresses from base into the signal is illustrated in Fig. C.1.   

Fig. C.1 extracted from Ref. [2], illustrates the concept of having signals refreshed for the 
fragmented data in form of storable data dots via fuzzy qubit lattice sites. Every dot represents a 
Boolean bit value memory address, bit polarity or bit position (see Fig. C.1) governing the possibility 
of having information so compressed beyond the classical limits of data computation. 

Possessing memory address, bit location and polarity, permits the algorithm‟s later stages to 
decompress data successfully, without losing 1-bit of information. Data retrieval at the extreme 
compression level becomes imminent despite of having the two co-local parallel signals 
„asynchronous‟ in behavior. The main reason is that the new bi-lattice sites refresh the signal by 
having necessary „off and on‟ bits of information at upper lattice site‟s disposal. Once the signal, either 
of two being delayed, the refreshing process (an iterative loop) compensates signals in data integrity 
with equal fragments of data, adjacent to one another.  

The principle aspect in theory obeys „Bose-Einstein condensation‟ and „photonic projection‟ from 
one upper linear layer to lower layer(s) of qubit registers with a necessary design alteration (upgrade) 
in the lattice site [23]. The practical aspect of presenting FQAR becomes quite feasible akin to 
Phillips‟ research team [24, 25], once we satisfy the design principles of the fqubit registers for an 
ultimate compression. Once the new design is implemented, the grand scale of its work could be 
applied to server architectures addressing memory organization, its management and communications. 
Optimum loads (based on bitrate) of maximally-self-compressed data in memory cells, fixates reliable 
paths in data access and transactions between databases and their applications.  

In our next reports, we suggest physical methods of the hardware design (Figs. C.1, C.2), which 
uses optical projection of bits [23] and matter condensation [37] in form of atomic shift registers, like 
Whitlock et al. [38]. In our design, we commit znip bits (Appdx. A) to memory/grid according to 
FBAR projections, simplifying Alice and Bob entanglement concept by super-compressing an 
encoded message, thereby decode and decompress. The FBAR logic would then be called as FQAR or 
quantum and-or in its maximum performance of LDC. Hence, a negative entropy < 0 bits/byte of Eq. 
(6), denoting double efficiency above 87.5%, for a universal predictability, is not farfetched in reality.  

C.2.2. The extended grid model for ultimate LDCs 

In the classical version of bit computation on current computers, however, the „current challenge‟ 
was to implement the FBAR‟s 4th layer projections commencing with an 8-bit to 5-bit iterative 
compression, which yielded an estimate of 37.5% compression. From there, condensed techniques 
were applicable in form of a 4D hypercube model, practically satisfying 8-bit to 4-bit sequential 
compressions, which yielded as estimate of 50% compression. Further challenges meet those 
compression values generated from 2n:1 ratios. The 50% compression is significant to prove the 
possibility of a guaranteed superdense coding technique [3, 34] in quantum information theory.  

Future extreme compressions obeying this model deliver highest possible percentages of LDCs 
without worrying about quality loss and data integrity variations. Self-embedded efficient space and 
temporal limits of computation shall be granted as a result of the FBAR/FQAR models, yielding future 
advances in information technology. We aim to publish our next report in some quantum information 
and computation journal for the extended 4D model, whereby the current abstract is reformulated as 
follows (subject to change before publication):   

 
 

Abstract – We report a new lossless data compression (LDC) algorithm for implementing predictably-fixed compression values 
on quantum computers. The fuzzy qubinary and-or (FQAR) algorithm, primarily aims to introduce a new model for superdense 
coding in quantum information theory. Classical coding on x86 machines would not suffice techniques for maximum LDCs, 
generating fixed values of Cr 2:1. We have previously implemented the compression and simulated the decompression phase 
using fuzzy binary and-or (FBAR) logic. This compression was done through a 4D hypercube consisting of self-embedded 
41-bit flags, for at least a 2-original character input, resulting in 1 character (a superposing char) representing the original. This 
resulted in a 50% compression proving a superdense transmission on 16 classical bits via 8 qubits (doubled efficiency) with a 
pure superposition of both 0 and 1 logic. In contrast with probabilistic LDCs that use Shannon entropy, the current model with 
`fuzzy qubinary' entropy, is presented in form of a combinatorial Bloch sphere hypercube (hyper-sphericube). This model is a 
stateful improvement on its predecessor to reconstruct 8 original chars via 1 compressed char, yielding a Cr= 8:1 or 87.5% 
compression. The current fuzzy qubit model shows an exponential compression growth for 2n-char:1 input scenarios, denoting 
universal predictability with a negentropy < 0 bits/byte. We conclude that this model is a steppingstone to quantum information 
models solving complex negative entropies, giving LDCs > 87.5% space savings for an ultimate LDC. 

 



C.3 Conclusion  

In this study, we introduced and implemented FBAR logic, thereby evaluated its lossless 
compression ability compared to other known compressors.  

We conclude that almost every LDC uses probabilistic Shannon entropy as its „logic base‟ in 
conducting lossless compression. However, we conclude that our LDC performs fixed compression 
ratios, contrasting probabilistic standards of a typical LDC algorithm. We thus conclude that, our 
algorithm contains predictable values due to a self-embedded 41-bit flag structure for each 
two-character input.  

We finally claim that this algorithm is novel in most aspects such as encryption, binary, fuzzy and 
quantum information methods. To this account, the fields of interest encompass the newly-born FBAR 
models useful to quantum information theory mathematicians, as well as computer scientists for its 
logic, and software engineers for its applications.    

FBAR can be used for different kinds of input values. The system was tested on an x86 machine, 
under both UNIX and Windows platforms.  

Test samples as char-based documents, e.g., HTML, LaTeX and plain text, were examined for our 
prototype and compared with other compressors, varying from low-average to high ranks.  

FBAR could achieve higher space saving percentages, above 50% as estimated, simulated and 
discussed in theory from its quantum state protocol, once linked reciprocally with fuzzy and classical 
binary. Future generation computers, by using this model, e.g., combining the 4D grid model with the 
famous Bloch sphere in quantum information, could sustain a great deal of space and bitrate savings.  

The “LDD simulation”, on the other hand, allowed us to study FBAR products from our 
experiment‟s future challenges. Its implemental state performed a maximum possible compression 
based on FBAR logic orienting to FQAR, approximating a 0 space memory occupation, yielding a 
data compression greater or equal to 87.5%. FBAR is independent of data content, since it follows one, 
and only one, concrete rule of logic: the AND/OR logic, impure-pure pairwise states applicable to 
data content itself. In FQAR, negative entropy denoting universal predictably giving values  93.75% 
compression is estimated. We conclude that, this model could be considered as a solution to complex 
negentropy problems in signal processing and information theory. That is why this attribute of FBAR 
to FQAR, ranks it as a fresh way to compress data losslessly amongst other compressors used today.   
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