R. B. Palmer
Stanford Linear Accelerator Center, Stanford University, Sanford, California 9430s and Brookhaven National Laboratory, Upton, New York 11973

Table of Contents

Page

1. Introduction 2
Theorem 1. General Acceleration Theorem 5
2. Radiation Pressure 7
A) Nonrelativisfic 7
B) Relativistic 10
3. A Noncelativistic Case (the Ponderamotive Force) 11
4. Allow Free Charges (Plasma Beat Wave Acceleration) 15
5. Allow External Magnetic Field B (Inverse Fie Electron Laser) 17
6. Allow Finite Refractive Index (Inverse Cerenkov Effect) 21
7. Acceleration Near a Planar em. Source (the Grating Accelerator) 23
Theorem 2. Lawson's Theorem 24
Grating Accelerator 25
8. Acceleration Between Planar e.m. Source (2D Linage) 21
9. Acceleration with Cylindrical Symmetry (Conventinal Iris Loaded Linear Structure) 20
Theorem 3. Panolsky Wenzel Theorem 31
[^0]Invited tall presented at the Joint US-CERN School on Particle Accelerators:

1. Introduction

We wish to discuss the acceleration of charged particles by electre.uasnetic fields, ie., by fields that are produced by the motion of other charged particles driven by nome power source. It is convenient, from the start, to note that such electromagtalic fields may be separated into "near" and "Far" fields. The distinction can early be ger when we look at the form of the field a generated by a moving point charge. From Jackson ${ }^{1}$ (p. 675, eq. 14.14):

$$
\dot{E}(x, t)=c\left[\frac{\dot{n}-\dot{\beta}}{r^{2}(1-\tilde{\beta} \cdot \bar{n})^{3} R^{3}}\right]+\frac{e}{c}\left[\frac{\hat{n}_{2}\{(\hat{n}-\dot{\beta}) \times \dot{\hat{\beta}}\}}{(1-\dot{\beta} \cdot \tilde{n})^{3} R}\right]
$$

where \bar{n} is \boldsymbol{a} unit vector from the particle to the observation point and R is the distance. $\overline{\boldsymbol{\beta}}, \dot{\bar{\beta}}$ and 7 refer to the motion of the charge at time $[t-(R / c)]$, and c is the electric charge. One notes at once that the first part of this expression falls as $1 / \boldsymbol{R}^{\mathbf{2}}$, Just like any static electromagnetic field; it is the "bear" field part. The second part falls only mo $1 / R$ and represents a propagating or radiating field; it is the "far" field.

Or course, we do hot th general use field a generated by a single moving charge. It is thus often more convenient to look at the pomihis fields by examining Ma: well's equations and deducing the kinds of fields that can satisfy them. Taken from Jackson (p. 218, eq. 6.28) but expressed in MKS unis:

$$
\begin{align*}
\nabla \times \bar{E}(t) & =-\frac{d \bar{B}(t)}{d t} \tag{1.1}\\
\nabla \cdot \bar{B}(t) & =0 \tag{1.2}\\
\nabla \times \bar{B}(t) & =\mu \varepsilon \frac{d \bar{E}(t)}{d t} \tag{1,3}\\
\nabla \cdot \bar{E}(t) & =\frac{q}{\epsilon_{\varepsilon}} \tag{LI}
\end{align*}
$$

Q is the apace charge density, and μ and c are the magnetic eumepplibility and dielectric constants in the medium. $c_{\text {, }}$ is the dielectric constant in free apace. Since any time-vatying field can be represented as an integral of sinusoidally time-varying fields, (by taking a Fourier transform) we can write

$$
\begin{align*}
& \dot{E}(t)=\int \dot{E} \exp (-i \omega t) d \omega \tag{1.5}\\
& \dot{B}(t)=\int \dot{B} \exp (-i \omega l) d \omega \tag{1.6}
\end{align*}
$$

\dot{E} and \bar{B} are complex and depend on the frequency ω. The E^{\prime}, and $\boldsymbol{B}^{\prime} \mathrm{s}$ satisfy the following modifed Maxwell's equations. We have now also made the assumption that there are no charges in the space in which these fields are present.

$$
\begin{align*}
\nabla \times \hat{E} & =\dot{\omega} \hat{B} \tag{1.7}\\
\nabla \cdot \hat{B} & =0 \tag{1.8}\\
\nabla \times \dot{B} & =i^{\mu \mu E} \hat{E} \tag{1.-D}\\
\nabla \cdot \dot{E} & =0 \tag{1.10}
\end{align*}
$$

From vetor algebra (sec for instance, inside the front cover of Jackson) we call write

$$
\nabla^{2} \dot{E}=\nabla \cdot(\nabla \cdot \dot{E})-\nabla \times(\nabla \times \bar{E})
$$

From Eq. (1.10)

$$
\nabla \times \bar{E}=0,
$$

from Eq, (1.7)

$$
\nabla \approx \dot{E}=i \omega \dot{B},
$$

60

$$
\nabla^{2} \dot{E} \cdots-i \omega \nabla \times \bar{B} .
$$

and from Eq. (1.9)

$$
\nabla \times \bar{B}=-i \omega \mu \text { c } \dot{E}
$$

which then gises us the wave equation:

$$
\begin{equation*}
\nabla^{2} \dot{E}--\mu t \omega^{2} \dot{E} . \tag{1.11}
\end{equation*}
$$

A similar calculation for B gives us

$$
\begin{equation*}
\nabla^{2} \dot{B}=-\mu c w^{2} \dot{B} \tag{1.12}
\end{equation*}
$$

All solutions to these equations can be expressed as sums of waves of the form

$$
\begin{align*}
& \dot{E}=E_{0} \operatorname{cxp}[i(\dot{k} \cdot \dot{r}-\omega t)\}, \\
& \dot{B}=E_{v} \exp \{i(\dot{t} \cdot \vec{r}-\omega t)\} . \tag{1.13}
\end{align*}
$$

If \dot{k} is a real vector, i.e., if

$$
\begin{equation*}
\dot{k} \cdot \dot{r}=k_{k} \cdot x+k_{k} \cdot y+k_{k} \cdot x_{n} \tag{1.14}
\end{equation*}
$$

then these equations represent traveling waves moving in the direction of the vector \dot{k} at a velacity equal to $\omega /|k|=1 / \sqrt{\mu c}$. Since $\mu_{0} \epsilon_{d}=1 / c^{2}$, by definition, where c equals the velocity of light,
we sec that the wave velocity is c / N, where the seffacted index $N=\sqrt{\mu c /\left(\mu_{9} t_{v}\right)}$. Substituting Eq.(1.13) into Eqs. (1.8) and (1.10), we obtain

$$
\begin{align*}
& \dot{E}_{4} \cdot \vec{K}=0, \tag{1.15}\\
& \tilde{E}_{k} \cdot \bar{K}=0, \tag{1.16}
\end{align*}
$$

These show ux that the waves that wn are discussing tere transversely polerized (again on tha assumption that the vectors \bar{k} are real). Finally, using Piq. (1.7), we cen relate the B fields to the E fitlds, and obtain

$$
\begin{align*}
& \dot{B}_{4}=\frac{\bar{E}}{\dot{\omega}} \times \dot{E}, \\
& |\dot{B}|=\frac{|\dot{E}|}{c}, \tag{1.17}
\end{align*}
$$

which shows us that the B fields and E fields are perpendicular to one asocher and that the magnitude of the E field is equal to the magnitude of the l field times e.

Thus we have found that solutions to Maxwell's equations in a apace with no free charges include solutions that arc plain, parallel, transversely pularized waves with a velocity of e/N, where N is the refractive index (see Figure 1).

Figure 1
We will ste later that these are not the only solutions in need not be a seal vector, and if complex, the waves represented by Eqs. (1.13) and (1.14) cuitain exponentials. These solutlons fall in amplitudr at distances which are far from any changes and thus cannot exist "FAR" from such sources. They are relerred to as "NEAR" fielda (gee Sections 7-9). For the moment we will consider only "far" fields (see Figute 2).

Figure 2

Theorem 1. Gcheral Acceleration Theorem.

Consider a charge e moving in a field described by Maxwell's equations at a velocity $v=s \mathrm{c} . \mathrm{lt}$
(a) $P_{\text {res }}=0$, ie., we neglect powe: radiated by the moving charge,
(b) $\beta=1$, e. . the charge is moving rear the velocity of light,
(c) $4-0$. i.e, the particle is moving in a region with no other free charges,
(d) $B_{\text {ectar }}-E_{\text {otatic }}=0$, so that the charge moves on an ajproximately straight line,
(e) $N=1$, i.e., the parlicle moves in a medium with no refractive index,
 wavelength,
then, if there are no fields or static potential at $-\infty$ or $+\infty$:

$$
\int_{-\infty}^{+\infty} \text { Acceleration }=0
$$

The proof in relaticely trivial. Chose the axes 5 that the particle is moving on the x axis, then:

$$
\begin{equation*}
\left.\int \text { Acceleration }=\int_{-\infty}^{+\infty} c E_{i} \exp \left(i f k_{t} \cdot x-\omega t\right)\right\} \tag{1.19}
\end{equation*}
$$

For $弓=1$ we have

$$
z=c\left(t-t_{0}\right) .
$$

If θ is the angle butaeen the vector direction of the wave ${ }^{1}$ and the a axis then

$$
k_{1}-|k| \cos \theta=\frac{w}{c} \cos \theta
$$

and ti.us

$$
\int \text { Acceleration }=c E_{4} \int_{-\infty}^{+\infty} \operatorname{cxp}\left(i \omega\left(t-t_{0}\right) \cos \theta\right)
$$

If $\cos \theta \neq 1$, the Rths oscillates and the integral is 2eto.

If $\cos f_{1}=1$, then the whe is propagating in the ε diruction and from the transverse poiasization condition [Eq. $\{1.16) \mid E_{t}=0$. Thus in all cases, acceleration is zero. No playing with a focus of fhase plates or holograms can change this.

In the folluwing sections we will deal with acceleration that accurs when we relax one of the conditions listed above.

DSSAAMER

 (Inted Stato dimerriment of aty agency thereat

2. Madiation Preseque

A) Nonfelanivistic

In quantum terms we can understand that when a photon of electromagnetir enetgy interacts with (i.e., Compton scatters off) an electron, then momentum is imparted to (i.e., a force acts on) that electron. Classically we culculate the oscillatory motion given to the electron the re-radiaticn of fields caused by this motion, and hence the reulting force.

For matheruatical convenietuce, we consider the case of constant circularly polarized radiation (from Eqs. (1.13),(1.14)]:

$$
\begin{align*}
& E_{z}+i E_{y}=E_{0} \exp \{i(k z-\omega t)\} \\
& B_{z}+i B_{y}=i \frac{E_{0}}{c} \exp \{i(t z-\omega t)\} \tag{2.1}
\end{align*}
$$

Ignoring reradiation, the motion of the electron in the x, y plane is circular. The force is always inward (see Figure 3a):

$$
\begin{align*}
|\bar{F}| & =m_{c} \bar{x} \quad c E_{0} \\
& =m_{c} v \omega^{\prime} \tag{2.2}\\
& =m_{i} \rho \omega^{2} \\
\rho & =\frac{E_{0} c}{m_{c} w^{i}} \tag{2.3}
\end{align*}
$$

Figure 3

FOR Examplite: far the kind of Geld generated by a 1 cmifong focus of a $1.7 \mathrm{TW} \mathrm{CO}_{2}$ laser, we mighe have:

$$
\begin{aligned}
E_{0} & \approx 100 \mathrm{cV} / \mathrm{m} \\
\lambda & \approx 10 \mu \mathrm{~m} \\
e & \approx 1.6 \times 10^{-19} \mathrm{C} \\
\mathrm{~m}_{4} & \approx 9.1 \times 10^{-31} \mathrm{~kg}
\end{aligned}
$$

then:

$$
\rho \approx 5 \mu \mathrm{~m} .
$$

This circular motion will radiate a power P (gee Jachson, p. E65):

$$
\begin{equation*}
P_{r a d}=\frac{2}{3} \frac{c^{2}}{c^{3}} \gamma^{4}(\bar{x})^{1} \frac{1}{4 \pi f_{L}}, \tag{2.4}
\end{equation*}
$$

or, if nomrelativistic, and substituting

$$
\begin{gather*}
\bar{i}=\frac{c E_{0}}{m_{4}} \tag{2.5}\\
P_{r a d} \approx \frac{2}{3} \frac{e^{\prime} E_{b}}{m_{i}^{2} c^{5}} \frac{1}{4 \pi \varepsilon_{0}} \tag{2.6}
\end{gather*}
$$

There are several ways of deriving the forward force on the election:
(1) by corsidering the interference of incoming and radiated fields:
(2) by using sucegy and monaentum conservation,
(3) by noting the consequences of a phase elip.

I will usz the latter. By energy conservation a phase slip ϕ must exist between the electoon mation and the inconsing field fat Figure 3b). The powe given to the electran from the field is.

$$
\begin{equation*}
r_{\text {recoued }}=E_{v e v} \sin \phi . \tag{2.7}
\end{equation*}
$$

where

$$
\mu=\frac{c E_{0}}{m_{z} \omega},
$$

and

$$
\begin{equation*}
P_{t r t}=P_{r a d} \tag{2.8}
\end{equation*}
$$

so using (2.6):

$$
\begin{align*}
\frac{E_{C}^{2} e^{2}}{m_{r} \omega} \sin \phi & =\frac{2}{3} \frac{c^{4} E_{0}^{2}}{m_{i}^{2} c^{3}}-\frac{1}{4 \pi E_{0}}, \tag{2.9}\\
\sin \phi & =\frac{2}{3}\left(\frac{c^{2}}{4 \pi \varepsilon_{\mathrm{E}} m_{4} c^{2}}\right) \frac{1}{c}
\end{align*}
$$

which, using the definition of the classical electron radiug ra,

$$
\begin{equation*}
r_{1}=c^{2} 4 \pi c_{0} m_{r} c^{J} \tag{2.10}
\end{equation*}
$$

gives

$$
\begin{equation*}
\sin \phi=\frac{2}{3} r_{c} \frac{\omega}{c} \tag{2.11}
\end{equation*}
$$

FOH EXAMPLE: for the above example

$$
\begin{aligned}
\omega & =2.88 \times 10^{14} \mathrm{stc} \\
c & =3 \times 10^{-1} \mathrm{~m} / \mathrm{sec} \\
\tau_{t} & =2.8 \times 10^{-15} \mathrm{~m}
\end{aligned}
$$

then

$$
\sin \phi=1.2 \times 10^{-9}
$$

Which is a tery sniall angie ϕ !

$$
\begin{align*}
\boldsymbol{F}_{x} & =c \bar{B} \times \dot{v}, \\
& =c \frac{E_{0}}{c} v \sin \phi . \tag{2.12}\\
v & =\frac{c E_{0}}{m_{i} \omega}
\end{align*}
$$

60

$$
\begin{align*}
& F_{\mathrm{r}}=\frac{\varepsilon E_{0}}{c} \frac{\varepsilon E_{0}}{m_{\mathrm{r}} \omega} \frac{2}{3} r_{\mathrm{s}} \frac{\omega}{c}, \\
& F_{\mathrm{r}}=\frac{2}{3}\left(E_{\mathrm{O}} c\right)^{2} \frac{r_{\mathrm{r}}}{\operatorname{m}_{\mathrm{t}} c^{2}}, \tag{2.13}
\end{align*}
$$

which is the expression for the nontelativistic radiation pressure. It may be compared with. the instantaneous radiation force E_{0} e:

$$
\begin{equation*}
f_{r}=\frac{F_{1}}{E_{0 \varepsilon}}=\frac{2}{3} E_{0} e \frac{r_{4}}{m_{1} c^{2}} . \tag{2.14}
\end{equation*}
$$

which increases as the fin'd E_{0} inereases, but even for our mather high power laser example, this fraction is very:ma!?.

$$
\begin{align*}
& E_{0}=100 \mathrm{GV} / \mathrm{m} \\
& f_{F}=3.6 \times 10^{-10} . \tag{2.15}
\end{align*}
$$

It is clear that iadintion prensure is not a practical means of accelerating particles.
13) Briativistic

It might apprar from E.f. (2.4) that if γ is large, the radiation might also become large ($P_{\text {rot }} \partial \gamma^{4}$). Mut in this case we have to consider also the force or the moving electron from the B field of the wave

$$
\begin{align*}
m_{r} \bar{z}=F & =F_{0}+F_{B}, \\
& =e E_{0}-t B_{0} v \\
& -e E_{0}-e E_{0} \beta, \tag{2.16}\\
& =: E_{0}(1-\rho), \\
& =\frac{e E_{0}}{2 \gamma^{2}} .
\end{align*}
$$

So for $7>1$,

$$
\begin{equation*}
P=\frac{2}{3} \frac{c^{J}}{c^{3}} 7^{4}\left(\frac{c E_{0}}{27^{2}}\right)^{2} \frac{1}{4 \pi c_{4}} . \tag{2.17}
\end{equation*}
$$

and we we chist radiated power, and thus force, has not ineseased.
Thus tor all practial rases the first assumption of Theorean 1 is satisfied.

3. A Nonrelativistic Cace (the Ponderamotivo Force)

We have seen in \$ec. 2 that a uniform electromagnetie wave induces only small forces on an election. The tame is not true for a time varying field.

Again we consider a circularly polarized wave [Eg. (2.1)]. Assuming the rate of change of amplitude is relatively sinath the motion is again epproximately cliculat with (from Eq. (2.3)):

$$
\begin{equation*}
\rho=\frac{E_{Q} e}{m_{\mathrm{a}} w^{2}} \tag{3.1}
\end{equation*}
$$

If we allow the magnitude of the wave E_{0} to incteas, then we have

$$
\begin{equation*}
\dot{\rho}=\frac{\bar{E}_{0} c}{m_{\epsilon} \omega^{2}}, \tag{3.2}
\end{equation*}
$$

and the molion becomes a spiral (see Figure 4).

Figure 4

Now the sjored energy in this orbital motion Wr is

$$
\begin{align*}
W & =\frac{1}{2} m_{c} v^{2} \tag{3.3}\\
& =\frac{1}{2} m_{c} \psi^{2} \phi^{2}
\end{align*}
$$

and the zate of cluage of this enetgy will be

$$
\begin{equation*}
\dot{w}=m_{e} w^{2} \rho \dot{\rho} \tag{3.4}
\end{equation*}
$$

Using Eq. (3.2), we obtain

$$
\dot{W}=\rho c \dot{E}_{0}
$$

which must equal the energy given to the electron. Again, 0 in Sec. 2, e phase \&, must develop (see Figure 4) to that such an energy gain can take place:

$$
\begin{align*}
\dot{w} & =E_{0} c u \sin \phi_{p} \tag{3.6}\\
& =E_{0} e w \rho \sin \phi_{p} .
\end{align*}
$$

Equating Eqs. (3.5) and (3.6) gives

$$
p \in \dot{E}_{0}=E_{0} \in \omega p \sin \phi_{p},
$$

80

$$
\begin{equation*}
\sin \phi_{p}=\frac{\bar{E}_{0}}{E_{0}} \cdot \frac{1}{\omega} \tag{3.7}
\end{equation*}
$$

Unlike the radiation pressure phase angle of Eq- (2.11), ϕ_{p} can be large. ϕ_{p} is of the order of the reciprocat of the number of cycles over which the amplitude charge oceurs.

As in the radiation preasure case, this phase angle produces a finte force in the \mathbf{z} direction:

$$
\begin{align*}
\boldsymbol{F}_{\mathrm{a}} & =\bar{B} \times c \bar{v}, \\
& =\frac{E_{0}}{c} c v \sin \phi_{\mathrm{p}}, \tag{3.8}\\
& =\frac{E_{0} c}{c} \rho \omega \sin \phi_{\rho},
\end{align*}
$$

to with Eq. (3.7):

$$
\begin{align*}
& F_{t}=\frac{E_{0} e}{e} \rho \omega \frac{\dot{E}_{0}}{E_{0}} \frac{1}{\omega}, \tag{3.9}\\
& F_{s}=e \dot{E}_{0} \frac{\rho}{e},
\end{align*}
$$

and the ratio of thif to the radial force $E_{\mathrm{g}} \mathrm{c}$:

$$
J F=\frac{F_{0}}{E_{0} e}=c \dot{E} \stackrel{\rho}{c} \cdot \frac{1}{E_{0 \tau}}
$$

using Eq. (3.2)

$$
\begin{equation*}
j_{f}=\frac{F_{B}}{E_{0} t}=\frac{\dot{E}_{Q}}{m \omega^{i}} \tag{3.10}
\end{equation*}
$$

Figure 5
As an example of time varying fields, we consider the beat of two waves, each with amplitude E_{0}, at frequencies ω_{1} and ω_{2}, where $\omega_{1} \approx \omega_{2}$. The fields will be as shown lt Figure 5 . The resultant time varying amplitude will be:

$$
\begin{equation*}
E_{0}(t)=2 E_{0} \sin \left[\left(\omega_{1}-\omega_{1}\right) t\right] \tag{3.11}
\end{equation*}
$$

and the maximun rate of change of this amplitude:

$$
\begin{equation*}
\dot{E}_{0 \text { max }}=2 E_{0}\left(\omega_{2}-\omega_{1}\right) \tag{3.12}
\end{equation*}
$$

The resulting maximum accolerating force \{using Eq. (3.9)\} is

$$
\begin{equation*}
F_{\mathrm{i} \text { maz }}=2 \mathrm{c} E_{0}\left(\omega_{1}-\omega_{1}\right) \frac{\rho}{c} \tag{3.13}
\end{equation*}
$$

and the ratio of this force to the maximum radial force ($2 \mathrm{E} E_{0}$) is.

$$
\begin{align*}
& f_{F}=\frac{F_{\mathrm{z}}}{2 c E_{0}}=\frac{2 e E_{0}}{2 c E_{0}} \cdot\left(\omega_{2}-\omega_{1}\right) \cdot \frac{\rho}{c}, \\
& f_{F}=\frac{E E_{0}}{m_{\mathrm{k}} c} \frac{\omega_{g}-\omega_{1}}{\omega^{2}} . \tag{3.14}
\end{align*}
$$

As an example, we ronsider the beat from two lines of a CO_{2} laser where

$$
\begin{aligned}
\frac{\omega_{2}-\omega_{1}}{\omega} & \approx 3 \% \\
E_{0} & =100 \mathrm{GV} / \mathrm{m}=10^{11} \mathrm{~V} / \mathrm{m} \\
\omega & =1.9 \times 10^{14} \mathrm{sec}^{-1} \\
f_{F} & =3 \times 10^{-3} \\
F_{4} & -1 G V / \mathrm{m}
\end{aligned}
$$

which is not so negligible!

The acceleration, unfortunately does not continue indefinitely. The maximum velocity achieved

$$
\begin{equation*}
v_{m a z}=\int_{0}^{\mathrm{t}} \frac{F_{*}}{m_{*}} d t \tag{3.15}
\end{equation*}
$$

Fhom Eq. (3.9)

$$
F_{i}=\frac{2 c \rho}{c} \frac{d E_{0}}{d t}
$$

from Eq. (2.3)

$$
\rho=\frac{c E_{\mathrm{D}}}{m_{\mathrm{e}} \omega^{2}}
$$

50

$$
\begin{align*}
& \frac{r(1)}{\varepsilon}=\int_{0}^{1} \frac{2_{E}}{m_{r} c^{2}} \frac{e E_{0}}{n_{i} w^{2}} \frac{d E_{0}}{d t} d t, \\
& v\left(E_{0}\right)=\left(\frac{e}{m_{t} \omega c}\right)^{2} 2 \int_{0}^{E_{0}} E_{0} d E_{0} \tag{3.16}\\
& \frac{v_{\text {max }}}{c}=\frac{u_{t}}{e}+\left(\frac{c E_{0 \text { max }}}{m_{t} \omega c}\right)^{2} . \tag{3.17}
\end{align*}
$$

For our example,

$$
\begin{aligned}
E_{0} & =100 \mathrm{GV} / \mathrm{m} \\
\omega & =1.88 \times 10^{14} \mathrm{sec}^{-1} \\
m_{\mathrm{F}} & =9.1 \times 10^{-31} \mathrm{k}_{\mathrm{B}} \\
e & =1.6 \times 10^{-10} \mathrm{c} \\
c & =3 \times 10^{\mathrm{s}} \mathrm{~m} \mathrm{sec}^{-1} \\
\frac{v_{\text {mox }}}{e} & =\frac{v_{\text {initioi }}}{c}+0.1
\end{aligned}
$$

So that acceleration can even reach relativistic velocities with plausible laser power levela. However it is rlear from E_{q}. (3.10) that integrating from any point with $E_{0}=0$ to any other poitu with E_{U}, the nel accelcration is aero. This example suegests, although it does not prove, that condition (b) is not in fact required for the iesult of Theorem 1 to be cortect.

4. Aliuw Free Charges (Plabma Beat Wave acceleration)

The Ponderamotive force (see Sec. 3) can be used to induce perturbatirns in an otherwise uniform diytribution of charges, and the "static* felds generated by these perturlatione can be used to aceelerate particles. This idea war praposed by Witlis for chapges in a dente beam. ${ }^{2}$ More realistically, Dawson propused the perturbation of charges in a plama. ${ }^{3}$ In this case he explicitly roposed that bent waves be used (as ciscussed in Set. 3) and that the resulting oscillations in electron plasind density be entanced by selecting a plasma whose plasma frequency is equal to the beat f-zqueney, i.e.,

$$
\begin{equation*}
\omega_{1}-\omega_{2}=\omega_{p} \tag{4.1}
\end{equation*}
$$

In this case the amplitude of the plasma oscillations will increase intil losses or nonlinearities overcome the amplification provided by the beat wave. The nonlinearities wili cleatly stop the process before the amplitude is such as to cause the plasma density, at its oscillating minima, to become zero.

To examine the magnitude of acceleration that we may expect, we retura to Maxwell [Eqs. (1.1) to (1.4)]. If we assutne that there is a solution in which the excess change density q is also periodic in t and x, i.e., a plasma wave with

$$
\begin{align*}
& q=\rho c=\rho a \exp \left\{i\left(k_{F} z-w t\right)\right\}, \tag{4.2}\\
& E=E_{0} \exp \left\{i\left(k_{z} z-\omega t\right)\right\} \tag{4.3}
\end{align*}
$$

Then substituting in Eqs. (1.1) to (1.4) for small a, one obtains a solution if

$$
\begin{equation*}
\omega_{p}=\left\{\frac{\rho_{s} \varepsilon^{2}}{\varepsilon_{o} m_{t}}\right\}^{2 / 2} \tag{4.4}
\end{equation*}
$$

which frequency is donned as the "plasma frequency."
The amplitude a cannot be greater than. 1. If it were, the electron density would have to be negative. In practice, nontincarities will bimit a to $\approx 1 / 10$.

From Eq. (1.4) we have

$$
\nabla \cdot E=\frac{q}{c_{\mathrm{p}}}
$$

That is,

$$
\begin{align*}
\frac{d E}{d z} & =\frac{c}{\varepsilon_{0}} \rho \tag{4.5}\\
& =\frac{e}{c_{0}} a \rho_{0} \exp \left\{i\left(k_{c} z-w i\right)\right\}
\end{align*}
$$

Difetentiating E from Eq. 4.3, we get

$$
E_{0} k_{2}=\frac{e}{c_{0}} a \rho_{\mathrm{n}}
$$

Substituting far ρ_{0} using Eq. (4.4), and for k_{4} vaing $k \cdot=\omega_{F} / \boldsymbol{c}$:

$$
E_{0}=\frac{\omega_{p} m_{e} c a}{e},
$$

Which gives the amplitude of longitudinal acceleration as a function of the wave density amplitude a. Chearly, higher fields are possible at higher plasma frequencies.

For all example consider the beat wave between two CO_{2} laser ficquencies 10% apart, then

$$
\begin{aligned}
\omega_{p} & =1.88 \times 10^{19} \quad\left(\lambda_{\mathrm{p}}=100 \mu \mathrm{~m}\right) \\
m_{\mathrm{t}} & =9.1 \times 10^{-31} \mathrm{tg} \\
c & =3 \times 10^{0} \mathrm{~m} \mathrm{mec}^{-1} \\
e & =1.6 \times 10^{-18} \mathrm{C} \\
\rho_{0} & =3.8 \times 10^{21} \mathrm{~m}\left(3.8 \times 10^{15} \mathrm{~cm}^{-2}\right) .
\end{aligned}
$$

If

$$
a=1 \quad \text {, }
$$

then

$$
E_{0}=3.2 \times 10^{9}(3.2 \mathrm{GeV} / \mathrm{m})
$$

Thus we sue that with a quite reasonable plasma density, very high acreleration gradients are possible. Of course plasmas are complicated and the efficiency of driving the beat wave will not in general be 100 g. Much E^{\prime}. ay is being devoted to this mechanism. ${ }^{\prime}$

Note also that such a plarma wave can be excited by a bunch of low-energy particles passing through the plasnua. Tha mechanism is then known as a "plasma wake acceleratior."\$

6. Allow External Magnetic Field B (Inverce Fred Electron Lacer) ${ }^{\text {(}}$

Before introducing the field, let us consider the forces on a relativistic particle traveling at a small angle to a plane parallel wave. For a time they will remain in phase. The forces ot the particle are illustrated in Figure 6.

Figure 6

The electrostatic force

$$
\begin{equation*}
\hat{F}_{e}=e \hat{E}_{\phi} \text { (perpendicular to wave direction) } \tag{5.1}
\end{equation*}
$$

the magnetic force

$$
\begin{equation*}
\dot{F}_{B}=e \bar{B}_{\phi} \times \overline{\mathrm{v}} \tag{5.2}
\end{equation*}
$$

but

$$
|B|=\frac{|E|}{c}
$$

in vacuurn, so

$$
\begin{equation*}
\left.\left|F_{B j}=c \beta\right| E_{\psi} \mid \quad \text { (perpendicular to } \bar{v}\right) \tag{5.3}
\end{equation*}
$$

In each case ϕ is the relative phase between the particle and the wave: $E_{\phi}=E \cos \theta$.
The accelerating field for amall θ is

$$
\begin{equation*}
E_{\text {acc }}=E_{\phi} \sin \theta \approx E_{\phi} \theta \tag{5.4}
\end{equation*}
$$

The deflecting lield for small θ and $\beta \approx 1$ is

$$
\begin{equation*}
E_{d r / h e c t i o n}=E_{t}(\rho-\cos \theta) \approx 0 . \tag{5.5}
\end{equation*}
$$

Thus we see that despite the polarization being nearly perpendicular to tine velocity, the forces on the electron are almost entircly along the molion, i, e, accelerating or deceleraling. No net
acceleration will occur because as the phase slips, acceleration and deceleration will alternate. let us estisrate this rate of slip. Let a be the direction of wave propogation. Then:

$$
\begin{aligned}
u_{s}(\text { wave }) & =c_{1} \\
v_{s}(\text { partrele }) & =e \rho \cos \theta .
\end{aligned}
$$

Their phase ϕ will slip by $2 x$ in a distance:

$$
\begin{equation*}
\Delta=\frac{2 \pi}{K}, \tag{5.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \mu \approx k\left(1-\frac{1}{\beta \cos \theta}\right), \tag{5.7}\\
& K \approx k\left(\frac{\theta^{2}}{2}+\frac{1}{2 \gamma^{2}}\right), \tag{5.8}
\end{align*}
$$

If we ersulue $\theta^{2} / 2 \geqslant 1 / 2 \gamma^{3}$ then

$$
\begin{equation*}
\Delta \approx \frac{2 \lambda}{d^{2}} \tag{5.9}
\end{equation*}
$$

For a distance $A / 2$ we can lave acceleration, then it will reverse. Over a long distance there will be no net acceleration. How can we overcome this? Suppose after each distance $A / 2$ we have a magnet that reverses the sign of θ (see Figure 7), acceleration will then continue indefinitely.

Figure 7

Since the arceleration is groyortionat to θ_{1} we wish to maximine the amphitude of the zig-rag: with a fied B, his is achieved by having a field everywhere but alternating its sign with an appropriate period. Such magnets are known as wigglers.

A more etegant (and casier to calculate) solution is to use a "helical ficld; ${ }^{\text { }}$ i.e., a field that remaine transverse but whose direction rotates about the axis. It is the field generated by n winding of two interleaved helical wires, carrying opposite currents. The motion of a charged particle in surh a field will also be a helix with constant angle θ.

The helical field is given by

$$
\begin{equation*}
B_{z}+i B_{y}=B_{0} \exp \{i K x\} \tag{5.10}
\end{equation*}
$$

The force on the particle is then

$$
\begin{align*}
F_{x}+i F_{y} & =i \operatorname{ev} B_{0} \exp \left\{i K_{z}\right\}, \\
& =\frac{d p_{1}}{d t}+i \frac{d p_{y}}{d t}, \tag{5.11}
\end{align*}
$$

so

$$
\begin{align*}
p_{z}+i p_{y} & =\int i \operatorname{cv} B_{0} \exp \{i K z\} d t, \\
& =\frac{\operatorname{ev} E_{0}}{K \frac{d x}{d!} \exp \{i K z\},} \tag{5.12}
\end{align*}
$$

and

$$
\begin{align*}
p_{\perp} & =\frac{c v B_{0}}{K \frac{d x}{d i}} \tag{5.13}\\
& \left.\approx \frac{\varepsilon B_{0}}{K} \quad \text { (for amall } \theta\right) .
\end{align*}
$$

The transverse momentum is a constant, with its direction rotating about the axis (i.e., a helix). The helix pitch angle θ is then:

$$
\begin{equation*}
\theta=\frac{p_{2}}{p_{t}}=\frac{\varepsilon B_{0}}{K_{p_{t}}} \tag{5.14}
\end{equation*}
$$

Now, from Eqs. (5.6) and (5.9)

$$
K \approx \frac{2 \pi}{\lambda} \frac{\theta^{2}}{2}
$$

Substituting in Eqs. (5.14) gives.

$$
\begin{align*}
\theta & =\left(\frac{c B \lambda}{\pi p_{1}}\right)^{1 / 3}, \tag{5.15}\\
& =\left(\frac{c D \lambda}{m_{c} c \pi \gamma}\right)^{1 / 3},
\end{align*}
$$

and from Eq. (5.4)

$$
E_{a}=E_{0}{ }^{9} \cos \phi
$$

50

$$
E_{0}(\max)=E_{v} \theta
$$

For example, with a powerful CO_{2} laser one might have

$$
\begin{aligned}
\lambda & =10 \mu \mathrm{~m} \\
B & =1 \mathrm{Tes} / \mathrm{s} \\
n_{1} & =9.1 \times 10^{-31} \mathrm{kgm} \\
c & =3 \times 10^{8} \mathrm{mbcc} \\
E_{0} & =10^{11} \mathrm{eV} / \mathrm{m} \quad(100 \mathrm{GV} / \mathrm{m})
\end{aligned}
$$

then for

$$
\begin{array}{ll}
T=100(50 \mathrm{MeV}), & \theta=1.2 \times 10^{-3}, \\
T=10^{3}(50 \mathrm{GeV}), & \theta=1.2 \times 10^{-9}, \\
E_{a}=12 \mathrm{GV} / \mathrm{m} / \mathrm{m} .
\end{array}
$$

Thus we see that we can obtain good acceleration at low energies but it brofnes less attractive as the energy goes up. In addition, C. Yellegrini ${ }^{7}$ has pointed out that synchtotron radiation effectively limits the usefultess of the method above a few hundred GeV .

6. Allow Finite Refractive Index (Inverac Cerentov Effect)

This mechanism was first distussed and subsequently demonstrated by R. Pantel. ${ }^{\circ}$ As in Sec. 5, we can slart by considering the Interaction of a relativistic particle with a plane wave traveling in nearly the same direction. As in Eq. (f.4), tie arcelerating feld is

$$
\begin{equation*}
E_{\text {occ }}=E_{\psi} \operatorname{tin} \theta, \tag{6.1}
\end{equation*}
$$

where θ is the angle between the particle and traveling plaite wave and $E_{\phi}=E_{0} \cos \theta$, where ϕ is the relative phase between the particle and that wave. The defiecting fiell will again be

$$
\begin{equation*}
E_{(t)}=E_{\psi}(\beta-\cos \theta) \text {, } \tag{6.2}
\end{equation*}
$$

which for $\beta \approx 1$ and θ small is negligible.
The phase ϕ will be given by

$$
\begin{equation*}
\phi=\phi_{1}+\omega\left(\frac{N_{2} \cos \theta}{e}-t\right), \tag{6.3}
\end{equation*}
$$

where N is the refractive index of the medium. If $\mathbf{N} \neq 1$ then we can arrange to keep the phase ϕ constant by scting:

$$
\begin{equation*}
N \cos \theta=1 . \tag{6.4}
\end{equation*}
$$

The actelerating field is then

$$
\begin{equation*}
E_{\mathrm{arc}}=E_{0} \sin \theta \omega \frac{E_{0}}{\sqrt{1-\frac{1}{N}}} . \tag{6.5}
\end{equation*}
$$

Figure 8

Clearly, this could be a very efficient and simple mechentsm if N could ba made retsonable harge. Unfortunately, a large N implies a high density of gat and that will (1) break down et lower field and (2) cause Coulombseattering of the bengh. How serions theare aje would depend on the application.

A more "eficient" geometry thar that of a plane wave to obtained at an "axicon" Iocus. This is the field oblained by adding waves, each at a fixed angle θ to the beam axis, but at all diferent azimuthal angles. It is obtained by passing a plane parallel wave through an "axicesn" lens (bec Figure B). Such a field is also present in a circul_- wivequide excited in the TSon mode. The felds ate well known in this case, and are debcribed by Beasel Fuuctions of the first kind (nee Jackson.' p. 367).

7. Acceleration Near a Planar e.m. Source (the Grating Accelerator) ${ }^{0}$

In our discussions so far we have restricted ourselves to propagating tinusoldal waves that ate "far" waves by the definition given in the introduction. But it was noted, in that intronthat there is a class of aolutions to Maxwell's equations that are not ninusoidal propagating waves, and that exist only close to some source, i.c., "neas" waves.

Returning then to Maxwell's equations and their solutions discussed in Sec. 1 [Eq. (1.13)]:

$$
\begin{align*}
& \dot{E}=\bar{E}_{0} \exp \{i(\bar{k} \cdot \bar{F}-\omega t)\}, \tag{7.1}\\
& \dot{B}=\bar{B}_{0} \exp \{i(\bar{k} \cdot \bar{F}-\omega t)\},
\end{align*}
$$

where \dot{k} was a vector and |Eq. (1.14)]:

$$
\begin{equation*}
\bar{k}^{2}=\frac{\omega^{2}}{c^{2}}=k_{3}^{2}+k_{y}^{2}+k_{z}^{2} . \tag{7.2}
\end{equation*}
$$

If k is a real vector, then k_{z}, k_{y}, and k_{z} are all real and less than ($\left.\omega / c\right)^{2}$, and Eq. (7.2 represents platie parallel propagating waves. These are far waves". If the source is distributed over a plane surface, than the strength of such waves will remain independent of the distance y from that surface. if $E_{\text {d }}$ represents the amplitudes at that surface then:

$$
\begin{equation*}
E(y) \approx E_{0}, \tag{7.3}
\end{equation*}
$$

However, another solution to Eq. (7.2) would be to allow \bar{k} to be complex and thus allow one or more of k_{x}, k_{y} or k_{a} to be negative. If, for instance, k_{i}^{9} is negative, where y is the direction away from the surface, then defining P to be real:

$$
\begin{align*}
p^{2} & =-k_{y}^{2}, \tag{7.4}\\
p & =-i k_{y},
\end{align*}
$$

then Eq. (7.1) becouns

$$
\begin{equation*}
\dot{E}=E_{0} \exp \{-p y\} \exp \left\{i\left(k_{s} z+k_{z} x-w t\right)\right\} . \tag{7.5}
\end{equation*}
$$

In this case w ? bec that the amplitude of the "wave" falls with the distance y from the surlace

$$
\begin{equation*}
E(y) \approx=\exp \{-\rho y\} E_{z}, \tag{7.6}
\end{equation*}
$$

and such ficlds are "near" fields. Because they fall exponentially from the surface they are also referred to sometimer as "evanescent" waver.

For convenicnce fet us consider waves traveling along the \mathbf{z} direction, i.e., $k_{\mathbf{a}}=0$:

$$
\begin{align*}
& \bar{E}=\dot{E}_{D} \exp \left\{-p_{y}\right\} \exp \left\{i\left(k_{t} x-\omega t\right)\right\} . \tag{7.7}\\
& k_{3}^{z}=\frac{\omega^{2}}{c^{2}}+p^{2} . \tag{1.8}
\end{align*}
$$

Substituting into Eq. (1.JO) gives

$$
-E_{\psi} i p+E_{z} k_{z}=0
$$

and thus

$$
\begin{equation*}
E_{*}=\frac{i p}{k_{z}} E_{v} \tag{7.9}
\end{equation*}
$$

So, unlike the fat ficle case, we have a non-zero field in the direction of propagation. This fieid is 90° out of phase with the transverse field. The field pattern at a given time t is illustrated in Figure 9 . As a function of time, the whole pattern advances along the z axis at a velocity

$$
\begin{equation*}
w_{1}=\frac{\omega}{k_{1}}=\frac{c}{\sqrt{1+\frac{p^{2} c^{2}}{\omega^{2}}}}, \tag{7.10}
\end{equation*}
$$

and we note that this wave velocity is less than the velocity of light. For this tearon they are sometimes selerred to as "slow" waves.

Eceaube of this "slowness" one cannol actelerate relativistic particles along the direction of propagation of the surface wave. From this one derives:

Thadrem_2. Lnwson's Theorem.

This states that for any one-sided system which is two-dimensional in character, no acceleration is possible. In our example we are referring to one-sided aystens; if the fields are uniform th the x coordinate as above, it is two-dimensional, and thur there can be no teceletation.

The restriction is not so severe, however, since the uniformity in x can be broken even when the structure is itself uniform in \boldsymbol{x}. An example of this is the grating accelerator.

Figure 9

GRATINGAGCELERATOR

In a grating acceleratar, flow waves are excited on the auface of a periodic etructure in auch a way that the direction of propagation of the waves are oriented diagonally acroas the surlate from both sides. The two sets of waves gencrate a periodic wave pattern that is periodic in both z and x_{1} i.e., k_{i} and k_{t} are finite and real; k_{v} is imaginary leading to an exponential fall-of of field away from the grating surface. For beceleration in the x direction we require

$$
k_{k}=\frac{\omega}{\bar{\beta} c}=\frac{\omega}{c},
$$

since

$$
\frac{\boldsymbol{w}^{2}}{c^{2}}=k_{i}^{2}+k_{y}^{2}+k_{2}^{2}
$$

thus

$$
k_{t}^{2} \approx-k_{v}^{2}=p^{2}
$$

and the ficl on a po-ticle traveling at the velocity of light ($4=c t$) is

$$
\begin{equation*}
E_{1}=E_{0} \exp \left\{-p_{y}\right\} \exp \left\{i\left(\phi_{0}, k_{x} x\right]\right\} \tag{7.11}
\end{equation*}
$$

where

$$
\phi_{0}=z_{0}-c l_{0}
$$

If can be phown that such a wave pattern together with higher apace harmonies, form an Eigen solution over L suitable periodic structure with pertod $\boldsymbol{\lambda} / \mathbf{2}$; i.e., the grating acts as a "cavity" that supports the accelerating mode without radiating away the stored energy. The extent of the fietd transversely (in direction x, in our example) can be limited by placing reflecting walls (bec Figure 10). The fields can be excited either by intfoducing them at one end and allowing them to propagate along the 2 direction. Alternatively, they can be excited by incident radiation at an angle θ_{1} from the vertical where

$$
\begin{equation*}
k_{z}=\frac{\omega}{c} \cos \theta_{z} \tag{7.12}
\end{equation*}
$$

(this angle assures the matching periodicity in the x direction). In addition, in onder to couple the incoming radiation to the accelcrating mode, the grating periodicity must have a small period $=\lambda$ tompontm.

Figure 10
Let us now compare the magnitude of acceleration with the magnitude of aurface fielda. Heturning to Maxwelf [Eq. (1.4)]

$$
\nabla \cdot \bar{E}=0
$$

which for

$$
E=E_{0} \exp \left\{-p y+i\left(k_{2} x+k_{2} x-\omega t\right)\right\},
$$

gives

$$
\begin{equation*}
E_{x} k_{z}+E_{x} k_{z}+E_{y} i \rho=0 . \tag{7.13}
\end{equation*}
$$

If we select the direction of polarization to have $E_{1}=0$ (this maximizes arceleration) then

$$
\frac{E_{t}}{E_{v}}=\frac{i p}{k_{z}} \approx i \frac{\lambda}{2 \pi} p .
$$

and

$$
\begin{equation*}
\frac{E_{a}(y)}{E_{y}(0)}=\frac{\lambda}{2 \pi} p \exp \{-p y\} . \tag{7.14}
\end{equation*}
$$

A lage value of p gives a higher ratio of acceleration to defectirg fields but a high p also implien a more rapid exponential fall-olf from the surface. For a fixed distance from the surfare y the maximum arceteration is ottioned when

$$
p=\frac{1}{y},
$$

and then

$$
\begin{equation*}
\frac{E_{\text {arc }}}{E_{\text {surface }}}=\frac{1}{2 \pi} \frac{\lambda}{y}=\frac{\lambda}{y} . \tag{T.15}
\end{equation*}
$$

Here we bee, for the first time, the explicit requirement for near fields to be negligible:

$$
\begin{equation*}
v>\lambda . \tag{7.16}
\end{equation*}
$$

8. Acceleration Between Planar e.m. Sources (2D Linac)

This may not be a particularly practical case, but it can be anderstood without use of Bessel tunctions. It is also mathenalically cutel

Consider two plane parallel "far" waves propageting in mearly the same direction, one at an angle θ above the beam direction and one at angle - below the beam (nee bigure 11). The magnitudes of the two waves are jdentical. The directions of polarization are vertical and oppasite, so that on the axis the transverse electric fields exactly cancel:

$$
\begin{align*}
& k_{z}=0 \text { (for both waves), } \\
& k_{y}=\frac{\omega}{c} \operatorname{tin} \pm \theta \approx \pm \frac{\omega \theta}{c}, \tag{8.1}\\
& k_{y}=\frac{\omega}{c} \cos \theta \approx \frac{\omega}{c} \text { (for both), } \\
& E_{o x}=0(f o r b o t h), \\
& E_{o y}= \pm E_{0} \cos \theta, \tag{8.2}\\
& E_{0 z}=E_{0} \sin \theta \text { (for both), }
\end{align*}
$$

then

$$
\begin{align*}
& E_{y}=E_{0} \cos \theta\left[\exp \left\{i \frac{\omega \theta}{c} y\right\}+\exp \left\{i \frac{\omega \theta}{c} y\right\}\right] \exp \left\{i \frac{\omega}{c}(\cos \theta z-c t)\right\}, \\
& \left.E_{4}=E_{0} \sin \theta\left[\exp \left\{i \frac{\omega \theta}{c} y\right\}-\exp \left\{i \frac{\omega \theta}{c} y\right\}\right] \exp \left\{i \frac{\omega}{c} i \cos \theta z-c t\right)\right\} \tag{8.3}
\end{align*}
$$

i.e.,

$$
\begin{align*}
& E_{y}=2 E_{0} \cos \theta \sin \left(\frac{\omega \theta}{c} y\right) \exp \left\{i \frac{\omega}{c}\{\cos \theta x-c t\}\right\} \\
& E_{x}=2 E_{0} \sin \theta \cos \left(\frac{\omega \theta}{c} y\right) \exp \left\{i \frac{\omega}{c}(\cos \theta x-c t)\right\} \tag{B.4}
\end{align*}
$$

Figure 11
which for $\theta \rightarrow 0$ and $2 E_{0} \theta \rightarrow A_{0}$

$$
\begin{align*}
& E_{Y} \approx A_{0} \frac{\omega}{c} y \exp \left\{i \frac{\omega}{c}(z-c t)\right\} \\
& E_{\delta} \approx A_{0} \exp \left\{i \frac{\omega}{c}(z-c i)\right\} \tag{8.5}
\end{align*}
$$

Here we sce that the accelerating field will semain in phase whth the payticle and need nol go to zero $\left\{E_{0}\right.$ went to ∞, as $0 \rightarrow 0$, but the observed fiedr can remein fite). We note moreover that the accelerating field is independent of transverse posilion x or y. However, the transverse field E_{x} rises linearly with u.

If the felds are generated at iwo surfaces at $\pm y$, then

$$
\begin{equation*}
\frac{E_{0 c t}(0)}{E_{U}(\mathrm{t})}=\frac{e}{\omega y}=\frac{1}{2 \pi} \frac{\lambda}{\nu}=\frac{\lambda}{y} \tag{8.6}
\end{equation*}
$$

We note that this is the same relation as found for the optimized planar grating accelerator [Eq. (7.15)]. Although we starled with two far fields we have, by taking the limit $\rightarrow 0$ obtained e *near" field solution.

9. Acceleration with Cylindrical Symmetry

 (Conventional Irla Loaded Linac Structure)As in Sec. 8 we can again derive the near feld solution by starting with a far field case and taking a limit. We start with the fields discussed in Ser. 6; i.c., the inverse of Cerenkov fields (see Figure B). These felds would be formed by taking the two interfering beams of Sec. 8 and rotating shout the axis. Beama are approaching the axis at fixed angles θ to that axis, but from all aimuthal ditections. The fields that result cannot be simply written down, bince they involve infinite sums, but they can be written in teriws of Bessel functions.

In general the fields in an axially symmetric casz can be represented as sums of transverse electic (TE) and transverse Magnclic (TM) modes. Since only the TM moder contain accelerating fieldas, we wiil cunsidet only these. With z along the cylindrical axis, ρ perpendisular to that axis and θ circumferential about it [from Jucinon, ${ }^{2}$ p. 367, eq. (e.117)]

$$
\begin{aligned}
& E_{1}=E_{0} J_{0}(\rho \gamma) \cdot \exp \left\{i\left(k_{z} z-\omega t\right)\right\}, \\
& E_{p}=-E_{0} \frac{i k_{z}}{\gamma} J_{1}(\rho \gamma) \cdot \operatorname{xp}\left\{i\left(k_{z} z-\omega t\right)\right\}, \\
& E_{4}=\frac{i \omega}{c \gamma} J_{1}(\rho \gamma) \cdot \exp \left\{i\left(k_{z} z-\omega t\right)\right\} .
\end{aligned}
$$

(Note that we have cxchanged E with \boldsymbol{B} to obtain the $\boldsymbol{T M}$ case; the reference being for $T E$.)
In the above 7 is not the relativistic parameter but:

$$
\begin{align*}
& 7^{2}=\frac{\omega^{2}}{c^{2}}-k_{i}^{2} \\
& k_{z}-\frac{\omega}{c} \cos \theta, \tag{0.2}
\end{align*}
$$

thus

$$
\gamma=\frac{\omega}{c} \sin \theta .
$$

where θ is the angle between the incoming plane parallel waves and the axis (as in Sec. 8). Thus

$$
\begin{align*}
& E_{t}=E_{0} J_{0}\left(\frac{\rho}{\lambda} \sin \theta\right) \cdot \exp \left\{i\left(k_{1} x-\omega t\right)\right\}, \\
& E_{t}=-E_{0} \frac{i}{\sin \theta} J_{1}\left(\frac{\rho}{\lambda} \sin \theta\right) \cdot \exp \left\{i\left(k_{1} z-\omega t\right)\right\}, \tag{9.3}\\
& c B_{4}=E_{0} \frac{i}{\sin \theta} J_{1}\left(\frac{\rho}{\lambda} \sin \theta\right) \cdot \exp \left\{i\left(k_{z} z-\omega t\right)\right\},
\end{align*}
$$

where J_{0} and J_{1} are Bessel functions of the first kind.

As E $\rightarrow 0$ (Jackson, ${ }^{3}$ p. 105, eq. 3.89)

$$
\begin{align*}
& J_{0}(c) \rightarrow 0 \\
& J_{1}(c) \rightarrow \frac{\varepsilon}{2} \rightarrow 0 . \tag{9.4}
\end{align*}
$$

So at $p:=0$ we obtain

$$
\begin{aligned}
& E_{1}=E_{0} \exp \left\{i\left(k_{1} x-\omega t\right)\right\} \\
& E_{0}=B_{0}=0
\end{aligned}
$$

since $k_{s}=(\omega / c) \cos \theta$, continuous atceleration will only be obtained in the litnit of $\theta \rightarrow 0$. In this limit, using $E q$. (9.4):

$$
\begin{gather*}
E_{1}-E_{0} \exp \left\{i \phi_{0}\right\} \text { (independent of } \rho \text {), } \\
E_{p} \rightarrow-E_{0} i \frac{1}{\theta} \frac{\rho \theta}{2 \lambda} \exp \left\{i \phi_{0}\right\}=-E_{0} i \frac{\rho}{\lambda} \exp \left\{i \phi_{\phi}\right\}, \\
c B_{\psi} \rightarrow E_{0} i \frac{1}{\theta} \frac{\rho \theta}{2 \lambda} \exp \left\{i \phi_{a}\right\}=E_{0} i \frac{\rho}{\lambda} \exp \left\{i \phi_{0}\right\}, \tag{9.7}
\end{gather*}
$$

where $\phi_{0}=(\omega / c)\left(s_{0}-c f_{0}\right)$ is the initial phase.
We note that as in Sec. A the limit is finite even though the terms -O . Agalm, as in Sec. E, we can examine the acculerating field os the tource is forced to be more distant:

If the source in at some lurge $f_{\text {, }}$ then the field at that source, $E_{2} \approx E_{a}(p) \geqslant E_{r}(p)$, and

$$
\begin{equation*}
\frac{E_{0 c c}}{E_{i}}=\frac{E_{5}(0)}{E_{p}(\rho)}=\frac{\lambda}{2_{\rho}} \tag{0.8}
\end{equation*}
$$

which, but for a factor of 2 , is of the same form as Eqs. (8.6) and (7.15). So again we have a "near" field acceleration which falls, relative to source fields, ws the wavelength divided by the distance to the source.

Returning to Eq. (9.6), we wee that E, is independent of ρ. It is a constant, despite the increasing radial ficld E_{g}. Since E_{f} is constant, it is cleat that such mode cannot exist in a simple circular wavguide. In fact, such an accelcrating mode can only exist in structurea that contain a dielectric (auch as a dielectric loaded wavequide) or that are periodic (such os en iris loaded linae atructure). See Figure 12.

Again looking at Eq. (9.0), we might expect that there is a forussing or defocussing force coming from the Gnite, but rising with ρ, radial field E_{p}. However, a radial force will atso come

Figure 12
(rom the feld B_{0} ard for a telativistic particle ($\beta \approx 1$)

$$
\begin{equation*}
F_{p}=c\left(E_{p}-B_{\phi} \beta c\right), \tag{9.9}
\end{equation*}
$$

which from Eq. (9.6) is seen to give:

$$
\begin{equation*}
F_{p} \approx \frac{c E_{\mathrm{t}}}{\gamma^{3}}=0 \tag{9.10}
\end{equation*}
$$

This conclusion is known as

Theorem 3. Panolsky Wenzel Theorem.

In any cyländrically symmetric system, whett. periodic, loaded or aperiodic, if we integrate from $-\infty$ to $+\infty$ (set Figure 13), any transverse deflection is proportional to $1 / \gamma^{2}$ and is thus negligible for a sufficiently relativistic particle.

Figure 13

The generalization to any structure arises because, If integrated fora $\rightarrow \infty$ to $+\infty 0$ my mode that is not synchronous with the particle will vanish, and the only mode that is synchronoun is that described by Eq. (9.B).

That the theorem is semarkable, is invatrated by Figure 13b. In a conventional accelerating cavity, it is clear that there are focuesing E Gelds at the entry ond defocussing fields at the exit. If the joarticle passes through as the phase ϕ changes sign, then these electric fields will give a net focussing force. By the theorem, thest forces must be just cancelhed by the magnetic fields which are zero on axis and rising on the radius. Sinte there is no very obvious connection between the circulat H ficlds and the iris generated E fields, the cancellation is remarkable. It is nevertheless true!

Since the Panofsky Wenzel theorem is important, I will go through the basie derivation from Maxwell.

From Eq. (1.11)

$$
\nabla^{2} \dot{E}=-\frac{\omega^{2}}{c^{2}} \bar{E}
$$

Writing this out for E_{a} in cylindrical coordinates (Jackson, back cover):

$$
\begin{equation*}
\frac{1}{p} \frac{d}{d p}\left(p \frac{d E_{4}}{d p}\right)+\frac{1}{p^{2}} \frac{d^{2} E_{r}}{d \phi^{3}}+\frac{d^{2} E_{z}}{d z^{2}}+\frac{\omega^{2}}{d^{2}} E_{t}=0 . \tag{9.15}
\end{equation*}
$$

Given cylindrical symmetry

$$
\begin{equation*}
\frac{d^{2} E_{d}}{d \phi^{2}}=0 . \tag{9.12}
\end{equation*}
$$

$\operatorname{Eos} \theta=1$

$$
\begin{equation*}
\frac{d^{2} E_{r}}{d r^{2}}=-k_{z}^{3} E_{4}=-\omega^{2} c^{2} E_{x} . \tag{9.13}
\end{equation*}
$$

50

$$
\begin{equation*}
\frac{1}{\rho} \frac{d}{d \rho}\left(\beta \frac{d E_{r}}{d \rho}\right)=0 . \tag{B.14}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{d E_{1}}{d \rho} & =\frac{\operatorname{const}}{\rho}, \tag{9.15}\\
E_{t} & =\text { const } t_{2}+\text { const } \ln (\rho) . \tag{9.16}
\end{align*}
$$

If $E: \neq \infty$ at $\rho \rightarrow 0$, th:n consi ${ }_{1}=0$. Thus

$$
\begin{equation*}
E_{1}=\text { const }{ }_{2} \text {. } \tag{9.17}
\end{equation*}
$$

which is the satne as Eq. (0.6) and is the precondition for Panosky Wenzel.

Now we go back to Maxwell Eq. (1.7)

$$
\nabla \times \hat{E}=\dot{j} \omega \hat{B}
$$

Going again to the back cover of Jacknon' and writing out the axitnuthal aylindrical component:

$$
\begin{equation*}
\left(\frac{d E_{t}}{d t}-\frac{d E_{x}}{d \rho}\right)=i \omega B_{\psi} . \tag{9.15}
\end{equation*}
$$

From Eq. (9.17)

$$
\frac{d}{d \dot{p}}=0 .
$$

and for a wave propogating at e

$$
\frac{d E_{s}}{d z}=i k_{s} E_{f}=i \frac{\omega}{c} E_{p},
$$

$s 0$

$$
\begin{equation*}
i \omega B_{\psi}=i \frac{\omega}{c} t_{p} . \tag{9.19}
\end{equation*}
$$

Now the transvcrse force on a particie moving at $\beta=1$ in the \mathbf{a} direction:

$$
F_{p}=e\left(E_{p}-c D_{p}\right),
$$

whith from Eq. (9.19) gives

$$
\begin{equation*}
F_{f}=0 . \tag{9.20}
\end{equation*}
$$

Wonderful!

Referentes

1. J. D. Jacisinn, Classica! Etcetrodynamicy, 2nd Edition, John Wiley \& Sons.
2. W. Willis, CERN Report 75-9 (1975).
3. T. Taima and !. M. Dawsm, Lazer Efextron Actefertor, Physical Heview Lethert 43, $\mathbf{7 6 7}$ (1979).
4. C. Jachi et al، Experimentat Study of Beat Wave Ezeitation of High Phase Vtioctity 5pate Charge Waves in a Plasma for Particle Acceleration, Proc Lasey Acc. of Particles, Malibu, CA; p. 09 (1985) and T. Katsouleas at A., Plama Acceltrators, inid., p. 63 (1985).
5. P. Chen and J. M. Dawson, The Flame Wake Field Aecelerotot, isif., p. 201.
6. R. B. Paliner, Interactian of Relativistic Partifits and Free Electromagnatie Waves in the Prestnce of a Stotic Helical Mfagnet, J. Applied Physics 43, 3014 (1972).
7. C. Pellagsiniel al., The Repart of the Working Group on Far Field Acceleration, Proc. Lascr Aceel. af Partieles, Los Alamos, p. 138 (1932).
8. R. H. Pantell, Electron (and Poxitran) Acceleration with Laserf, in Lajer Interactions and Fefated Plasmo Phenomene, 6, Plenum Pub. Co., New York (1983), pe. 1083-1092.

9. J. D. Lawson, Rutherlord Lab. Meport RL-75-0.43 (1975); IEEE Traisactiona on Nuclear Sciente, NS-28, 4217 (1079).
10. W. K. H. Pamolbky and W. A. Wertel, Rew. Sai. Instrum. 27, 967 (1956).

[^0]: *Work supported by Department of Energy contracts DE-AC03-76SF005 15 (SLAG) and DE- AC02-76C0016 (BNL).

