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1. fntreducttaa 

We wish to discuss the acceleration of charged particles by electri.ua^netic fields, Lt>, by 
fields that are produced by the motion of other charged panicles driven by aome power source. 
It it convenient, from the start, to note that such eleclromagfietic fields may be separated into 
"near" and Tar* fields, The distinction can easily be aeer when we took at the form af the fields 
Generated by a moving point charge. From Jackson' (p, 875, *q, 14.14]: 

£(«.») 
^(i-finf fi» c 

n» tint!) 
(l-0h) R 

where «i* a unit vector from the particle to the observation point and R it the distance. 0,0 and 
1 refer to the motion of the charge at time [t - (Jt/e)], and c la the electric charge. One notes at 
once that the first pari of this expression falls •» 1/J?*, just ltkfc any static electromagnetic field; 
it is the "near" field part. The second part fall; only as \fR and represents a propagating or 
radiating field; it is the "Ut* field. 

Or course, wv in not In general uic fields scnuralcd by a single moving charge. It is thus often 
more convenient to look at the possible fields by examining Ma: .veil's equations and deducing 
the kinds of fields that can satisfy them. Taken from Jackson (p. 318, eq. 6.28) but expressed in 
MKS units: 

Vxe7(i) = - '«<«* 
rfc 

V x B{t) = fit 4 

V-E(t) = -2-

(1.1) 

(1.2) 

(1-3) 

(1.4) 

o is the space charge density, and ft and t are the msgnelie suiccplihility and dielectric constant! 
in the rm-dlurn (k Is the dielectric constant in free space Since any time-varying field can be 
itpiescnted as sn integral of liiiuioidally lime-varying fields, (by taking a Fourhr tran&fcnn) "" we 

can write 

E[i) - I E exp(-iwi)/fcj 

B(t) = J b «tp(-tul)iL> (1.6) 



E and B ue coinjlcx and depend on the frequency u. The E\ and fr'a satisfy the following 
modified Mix we) IV equation*. We have now alio ntxde the assumption that there aie no charges 
in the space in which these fields are present. 

V xE =• •ufl (1.7) 

V - S = 0 (1.8) 

V xB = i^tteE (1-9) 

VE - Q (1.10) 

From veclor algebra (sec for instance, inside tht front cover of Jackson) we can whit

e r s v . ( r - £ ) - v x ( V x i - ) . 

From Eq. (1.10) 

T x £& 0 , 

from Eq. (1.7) 

V x E = i»>B , 

to 

V s £ '• - i u ^ x B , 

and from Lq (19) 

V x f l - - I W M « £ 

which then gives us the wave equation: 

V*E - - ( i t w ' f , (1.11) 

A »ir»il»r calculation fol B gives us 

V*B = -M^u'fl . (112) 

All solutions to these equations can be expressed as sums of waves or the form 

E = £ocx|>{i'(Jr f- ut)\ , 

B = i»,jexp{i(* f - u i ) } . 

If i ii a real vector, i < , if 

£ • f = k, • 3 + kv • y 4 *j • z . (1.14) 

then thett equations represent Uaveling waves moving in the direction of the vector £ at a velocity 
equal to vj\k\ = 1/,/JS. Since ii„et = 1/t*, by definition, where c equals the velocity of light, 
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wc svc thai the w»ve velocity is t/N, where the refracted index N = ^ittj\ttrtt). Substituting 
Eq.(1.13) into Eqs. (IB) and (1.10), we obtain 

» * * = 0 , 

(1.15) 

(1.16) 

These show UK thai the waves ihst we are discussing ftff transversely polarized [again on the 
assumption thai the vectors k are real). Finally, using Kq. (I- 7), we can relate the B fields to the 
E fields, and obtain 

Bi = - x E , 

l i l -J j I . 
(1.17) 

which shows us ilni the B fields and J? fields are perpendicular to one another and that the 
magnitude of the A' field is equal to the magnitude or lite II field times e. 

Thus v.c have found Lhat solutions to Maxwell's equations in a tpace with no free charge* 
include solutions that arc plain, t'aralk'l, transversely polarized waveb with a velocity or t/N, 
V»IIPTC JV is \lic TttTiirtive index (sec Figf* !)• 

•id 

Direction dl 

Figure 1 

We will MT later that these are not iVie only solutions k need not \>e a real vector, and if 
complex, the waves represented by Eq»- (1.13) and (1.14) cuMain exponential*. These solution* 
Tall in amplitudr at distances which arc Far from any changes and thus cannot exist "FAR* from 
inch aourccs They are referred to as "HEAR" fields (sec Sections 7-9). For the moment we will 
con&idci ooly *f.4 B" fields (SPL> Figure 2). 
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Theorem 1. General .Acceleration Theorem. 

Consider o charge t moving in a field described by Maxwell's equation* i t a velocity 

i = fit. H 

(a) P,d *= 0. ••'•• w e neglect power radiated by the moving charge, 

(b) 0 =s I, i t . , the charge is movingnear the velocity of light, 

(c) q - 0. ).t , the particle is moving in a region with no o l W free charges, 

l**) fl«on! - J îiaiic = Oi to that the charge moves on an approximately straight 

line, 

(e) Ar — 1, i t , the particle moves in a medium with no refractive index, 

[/) ('/*) 3 * '• , r i l he distance r to any source of field is large compared to the 
wavelength, 

then, if there arc no fields or Etatic potential at - oo or too: 

/ Acceleration --- 0 . 
- D O 

The proof ih relatively trivial. Chose the ajics BO that the particle i: moving on the z axis, 

then; 
-too 

I Acceleration = f e £ , exp(i(k, • i - uit)} . (110) 

For ;' — 1 * ( have 

» = e ( l - to) • 

If 6 is the angle L#(*ecn the vector direction of '.he wave k and the i ails then 

i , - HUosS = - cos* 

and 1I.-JS 

/ Acceleration - e E, I CX|>{IJ(I - i 0 ) cdsS} 

If cosfl •} 1, the TtilS oscillates and the integral b lero. 



• .fc, r dWclion and from <h. t r a n s m i t p°I«-

jtalion condition lKq. (J-H>H *» 

In the loltowiitR sccuoui * ' c *Ul deal WHO 

conditions liil*d **><>«• 

DISCIAIMKK 
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2. Ha dint 1cm Treasure 

A) NONBEUIIVISTIC 

In quantum terms v.e tan understand that when * photon of electromagnetic energy interacts 

with (i.e., Complon scallers olf) an electron, then momentum is imparted to (i.e., a force acts on) 

that electron. Classically we circulate the oscillatory motion given to the electron, the re-radiation 

of fields caused by this motion, and hence the resulting force. 

For mathematical convenience, we consider the case of constant circularly polarized radiation 

[from Eqs. (l.l 3],{1.H)|: 

£ , -t iE, - Eo cxp{i'(Jc.r - ui)} , 

U.-l iB, = i— c x p { . ( * e - u t ) } . 

Ignoring reradiation, the motion of the electron in the x, y plane is circular. The force is 

always inward (sec Figure 3a): 

|Fj = m, I •=• ( C o , 

»= m, f w , (3.2) 

m, pu 

t> = j • (2.3) 

> t > ] A.-

Figure 3 



TOR EXAMPLE: far (he kind of fie/d generated by a I cm-long facuj of a 1.7 TVV C0t Itser, 
wt might havt: 

E0 <« 100 CV/rxi, 

t « 1.6 x I D - 1 9 C , 

m, es 9.1 X ID' 3 1 kg , 

then: 

p es .5 nm . 

This circular motion will radiate a power P (see Jutks'jn, ]. BfiS): 

ft- = J J Vlx)' -^- . (3--I) 

or, if nonrelativihtic, md substituting 

3 m | c 5 «ne„ *- - ; ^B ==r • Cs.e) 

There arc several ways of deriving the forward force on the (loclron; 

(1) by copniilering the interference of incoming and radiated fields: 

(2) by using energy and momentum conservation, 

(3) by noting the consequences of a phase slip. 

I will HI? the Utter. By energy conservation a phase slip 4> must exist between the electron 

(notion end tit* iu-ooniinft field ( n t F\fc«iif 3ty, Tht powu givt-n to the ctacWon from the field is, 

f'rtcmit — Eat v tin ^ , (2.7) 

where 

££•[1 

and 

I 



^ ! B i n * . ? «!5I _L 

so using (2.6): 

»'n^ - T ( j -
3 \ 4 j r e „ f f i , e ' / e 

(2.9) 

wh ich , tiding the definit ion of the classic*) electron radius r ( l 

^ = e ' l i t . m . i ' , (2 10) 

£]V£i 

s i n tA = 
3 ' c 

2 u 
Bini^ = - r, — . [2 11/ 

FOH EXAMPLE: for the above example 

u = 1,88 x 1 0 H s t c " 1 , 

c = 3 x 1 0 1 m / i K , 

r t = 2.B x J 0 ~ " in , 

then 

sin<& E 1 . 2 x 1 0 " B . 

which is a very snja/I angle <#>! 

Referring again to Figure 3b, » c sec that there is now * finite force in the z direction 

F, = e B x v , 

= £ — u * i n * . (2.12) 
c 

tEg 
mtu> ' 

I EQ t EQ 2 W 
r, = ; r, - , 

f m c u 3 t 

F. = ?(Eo<)a - i j . 
(2.13) 

G 



which is the expression for the nont'lativUlk radiation pressure. It may be compared with 
till.' instantaneous radiation force Eo t: 

fr = 4r- = I E a * - V (2.n) 
fco< 3 rn r c 3 

which im.rtjJ.vs as the fuM Ev increases, but even For our iother high power laser example, this 

Oadiun 16 very r.mall. 

Eo = lOOGV/m , 
(2.15) 

SF = 3,6 * 1 0 " l n . 

ll is clear tlicl ladintion pn-Muic it not a practical means of accelerating particles. 

» ) nri.ATIVISTIC 

ll might appear from t'.i) (2,4) that if i h large, the radiation might *lso become large 

(P,Bid'lA). But in this ca&e wc have to consider also the Tore* on the moving electron From the B 

field of the wave 
m, I =- F " F, + FB , 

(2.16) 

c Eo - t Be v 

tEo- eEoff , 

< i o ( l -0). 

e£b 
2V 

So for -j > 1, 

"\ $*($)'£;• 
and w« *cc that raittaUd po»«i, and thus force, h u not increased. 

Thus for all practical cases the first assumption of Tiieorcfii 1 is satisfied. 

ID 
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3. A NoiirclatlvlGttc Ca«c (the Ponderamoiivn Force) 

We have j«n in Set. 2 that a uniform electromagnetic wave induces only small forces on an 
elretrob. The tame it not true for a time varying field. 

Again we consider a circularly polariccd wave [Eq. (2.1)). Assuming the rate or change of 
amplitude ia relatively (mall 'tie motion is again approximately circular with {from Eq. (2.3)]: 

P = 
Eat 

ir we allow th« magnitude of the wave £o lo increaic, then we have 

£be 
P = 

m, u ,» ' 

and the motion becomes a spiral (see Figure 4). 

Figure 4 

(3.1) 

(3.2) 

Now the stored energy in this orbital motion W is 

1 i J 

and fhe rate of tWnuc of this encigy will lie 

H' — mt J1 p p 

Using Eq.(3.Z), we obtain 

(3.3) 

(3.4) 

<«l 

11 



which must equal the energy given to the electron. Again, u in Sec. 3, a phase £ F mint develop 
(ace Figure 4) to that tuch an energy gain can lake place: 

W = Eatv aln^L , 
(3.6) 

= Eotup ain^p . 

Equaling Eqs. (3.5) and (3.6) givex 

p t Eo = £Q t tj p tin 4p i 

CO 

* * = | - I • (3.7) 

Unfile the radiation pressure phase angfe of Eq. (2.11), 4>r can be large. $p is of lie order of 
the reciprocal of (lie n urn tier eftydes over which (he a/npJiditfe cAarge occurs. 

A* in the radiation prnswe case, this phas* angle produces a finite force in the z direction: 

*© with Eq. (3.7): 

F. = B x i i , 

= 

= p u Bin<f>r , 
c 

F. ~ Eat £b 1 _ - ( , „ _ . _ , 
e £© w 

ft ~ 

(3.8) 

(3^1 

and the ratio of thir to the radial force EQ c: 

/ f £be ' ~c Eot 

u»ingEq. (3.1) 

a. - .* - — - , t * * 

u 



c* 

Figure 5 

As an example of time varying fields, we consider the beat of two waves, each with amplitude 

£o, at frequencies ui and "2, where ui ta wj. The fields will be as shown Iti Figure 5. The 

resultant time varying amplitude will be: 

£b(<) - 2£o B i n [ ( u i - U | ) ( ] , 

and the maximum rate of change of this amplitude: 

•Eomoj = 2 £ 0 ( U J - " i ) • 

The resulting maximum accelerating force {using Eg. (3.9)] is 

F,mai = 1c Ea ( u j - U l ) - . 

and the ratio of this force to the maximum radial force (2e£To) is 

_ F, 2eE0 p 

r £'o u j - wi 
/ > " • * — = — -

m t c u 3 

As an example, we consider the beat from two lints of a COj laser where 

£•„ « 100 Cl ' /m = JO" \ ' /m 

u = 1.9 x 1 0 H sec"1 

/ f = 3 x ] 0 S 

F, *• l C'V/m 

which is not s o ncg'Jc.jbJe.' 

(3 .11 ) 

(3.12) 

(3-13J 

( 3 . 1 4 ) 
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The atftlcralion, unfortunately does not continue indefinitely. The maximum velocity 
achieved 

I 

f F* , 
vmii - j — dt , (3.15) 

c 
ftujri Eq. (3.9) 

from Eq. (2.3) 

For our example. 

_ Itp dEa 

F' ~ T~dT • 

cE0 

P = m , u * ' 

vtt> _ j _0e_ e £ 0 dEq rf( 

c 

0 

c e 

Ea - 100 GV/m 

u = 1.88 x 10 " sec' 1 

fTJ, = 0.1 x 10" S 1 l g 

t = 1.6 X 1IT w C 

£ «= 3 x 10* m sec - ' 

e 
- t , ' n , "° ' + o.i 

c 

So that acceleraliar c;in even reach relativisLic velocities with plausible laser power levels. 

However it is clear from Eq. (3.16) that integrating from any point with EQ - 0 to any other 

poiut with Ei,, the ncl acceleration is icro. This example suggests, although it does nst prove, 

that condition (b) is not in fact required for the tesult of Theorem 1 to be correct. 

14 



4. AlSow Free Charge! (Plasma Beat Wove acceleration) 

The Pondcraroolive force (see Set. 3) can be used to induce perturbations in an otherwise 

uniform distribution of charges, and the "italic* fields generated by these perturbations can be 

used to accelerate particles. This idea w u proposed by Willis for ctiatRts in a dense beam. 1 More 

realistically, Dawson proposed the perturbation of charges in a plasma. 1 In this case he explicitly 

proposed th.H bent waves be used (as discussed in Sec. 3) and that the resulting oscillations in 

election plasma density be enhanced by selecting a plasma whose plasma frequency is equal to 

the beat f-.'quency, i.e., 

ui ~ wj = wp , (4.1) 

In this case the amplitude of llic plasma oscillations will increase until losses or nonlincarities 

overcome the amplification provided by the beat wave. The nonlincarities will ck-arly slop the 

process before the amplitude is such as t-> cause the plasma density, at its oscillating minima, to 

become itro. 

To examine the magnitude of acceleration that we may expect, we return to Maxwell 

[Eqs. (1.1) to (J-4)]- If we assume that there h a solution In which the excess change density g is 

also periodic in t and z, i.e., a plasma wave with 

V = P* - pae*p{Hktt-ui)} , (4.2) 

E = £ 0 e j c p ( i ( * r * - u ; [ ) ) . (4.3) 

Then substituting in Eqs. (].]) to (1.4) for small a, one obtains a solution if 

( c„ ra, j (4.4) 

which frequency is defined as the "plasma frequency." 

The amplitude a cannot be greater than 1. If it were, the electron density would have to be 

negative. In practice, nonUncaiitks will limit a l t n 1/10. 

From Eq. (1.4) we have 

V E = — 

That is, 
dE e 

- — P , 
(4.S) 

dz e. 

7 " C «p{«'{«=. * - "')} 

is 



DilTt'.ten Mating E from Eq. 4 3, we get 

Substituting far PQ usiciR Eq. [i A), and for k, using It. = wtjc: 

which gives the amplitude of longitudinal acceleration as a function of the wave density amplitude 

a. Clearly, higher held*, are possible at higher plasma frequencies. 

for an example consider the beat wave between tivo COj laser frequencies 10% apart, 

then 

w p = 1.88 x 1 0 , s (Ap = 100 nm) 

m, = 0.1 x 1 0 " s l kg 

£ — 3 x 10* m »et~ 1 

e = 1 6 >; 10""" C 

pc, = 3.6 x 10" in ( 3 , 8 * l O ^ c m - 1 ) . 

II 
o = .1 , 

then 

Eo = 3.2 x 10* (3.2 GeV/m) , 

Thus we sec that with a quite reasonable plasma density, very high acceleration gradient* are 

possible. Or course plasmas are complicated and the efficiency of driving the beat wave will not 

in general be ]00?£. Much »' -ay is being devoted to this mechanism.* 

JJote also that such a plasma wave can be excited by a bunch of low-energy particles passing 

through the plasma. Tlu mechanism is then known as a "plasma wake accefcralur."* 

K 



6. Allow External Magnetic Field B (Inverse Frgi; Electron Laior)" 

Before introducing the field, let us consider the farces on a relativislic particle traveling at a 

small angle 6 to a plane parallel wave. For a time they will remain in phase. The forces en the 

particle are illustrated in Figure 6. 

F.'eE 

Figure 6 

The electrostatic force 

F, — e £ ^ ( perpendicular to wave direction) , (S.l) 

the magnetic force 

but 

in vacuum, so 

\FB\ — c/J | £> j (perpendicular to 5) (5.3) 

In each case c) is the relative phase between the particle and the wave: E+ - E cos 9. 

The accelerating field for small 0 is 

£„« = Et sin* es E46 (S-4) 

The deflecting Held for small 6 and / i e l i i 

EdtfU'u™ = Etl0-ct>i$) t 0 . (5.S) 

Thus we tee that despite the polarization being nearly perpendicular to tiie velocity, the forces 

on the electron are almost entire);' along the mnl'nn, i.e., accelerating or decelerating. No net 

17 



acceleration will occur because as the phase ilips, acceleration and deceleration will alternate. 
Let us estimate this rate of slip. Lei * be the direction of wave propagation. Then: 

vm {u/ave) = e , 

v, (particle) •* efj cosfl 

Their phase <J will slip by 2x in a distance: 

A - £ 

writ 

V 0 cosfi/ 

If we assume C*/2 > l / 2 i ' then 

* 2 A 

(5.6) 

(S.7) 

(5.8) 

(5.9) 

For a distance A/2 we can have acceleration, then it will reverse. Over a long distance there 

will be no net acceleration. How can wc overcome this? Suppose after each distance A/2 we have 

a magnet that reverses the sign of 6 (see Kigure 7), acceleration will then continue indefinitely. 

Since the acccluialioit ii vtojiorlionat to 8, wev/lsh to mvtlmiie the amplitudt of the zig-zag; 

with a fixed B, this is achieved by having a field everywhere but alternating its sign with an 

appropriate period. Such magnet* are known as wigglcre. 

A more elegant (and easier to calculate) solution is lo use a "helical field;* i.e., a field that 

remains transverse but whose direction rotates about the axis. It is the field generated by a 

winding of two interleaved helical wires, carrying opposite currents. The motion of a charged 

particle in such a field will also be a helix with constant angle 6. 

18 



The helical field is given by 

Bz + iBy = Bci:xp{iKz} . (5.10) 

The force on the particle Is then 

Fi + iFt = itvBo exp{i'A'i} , 

Pi + (p|, = / tClfBo CXp{l'.K>} dt , 

euBo 

(5.11) 

(5.12) 

K dt exp{ih't) , 

Pi = 
K A* ' 

(5.13) 

c ^ (forimallfl) . 

The transverse momentum is a constant, with Its direction rotating about the axis (i.e., a helix). 

The helix pilch angle 8 is then: 

Now, from Eqs. (S.6) and (5.9) 

Substituting in Eqs. (S.M) givei. 

P* n p. 

2n f 1 

ii a 
A 2 

• « ( _ ) , (5.15) 

and from Eq. (5.4) 

\m,c jr - , , l 

Ea = EuScnsd 

E^mai) = Eu8 

10 



For example, with a pon-er/uJ COj Jaser one inir;M Jiave 

A = 1 0 ^ m , 

B = 1 TesJa 

in, = 9.1 x 1CT31 i «m , 

« = 3 x ]0* m sec" 1 

Eo = 10" eV/m (100 GV/m) , 

then [or 

T = 100 (SO MeV) , « = | . 2 x IO-* , Ea = 1.2 GV/m , 

^ = 10 s (50 GeV) , « = 1.2x 10"* , Et = .12 GV/m . 

Thus wc set that wc can obtain good acceleration at tow energies but it becomes less attractive 

as the energy govs up. In addition, C. Pellegrini7 has pointed out thut synchrotron radiation 

efTectivcly limits llic usefulness jf the method above a few hundred G*V, 

20 



8. Allow Finite Refractive ILJUX (Inverse terenLov Effect) 

This mechanism was first ditcv&sed and subsequently demonstrated by R. Pantel.* As in 

Sec. 5, we can start by considering the Interaction erf a relativists particle with o plane wave 

traveling in nearly the Game direction. At in Eq. (S.4), t"«ie accelerating Geld is 

face = E* *in9 (6.1) 

where 6 is the angle between the particle and traveling plane wave and E+ = E'o cos ff, where # is 

the relative phase between the particle and that wave. The deflecting fieli will again be 

Ettl = £ V ( 0 - c o » 8 ) , (6.Z) 

which for 0 e; 1 and B small is negligible. 

The phase 4 will be given by 

, , {Nz co i f A 
(6.3) 

where N is the refractive index of thi: medium. If N j* 1 then we can arrange to keep the phase 

c4 constant by Betting: 

Af cosff = 1 . (6.4) 

rhe accelerating field is then 

Han — Eo slnf £ 0 

/ ^ 
(6.5) 

e< 

Figure S 
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Clearly, Uiis could be a very efficient and simplt mechanism J ff could hi made rc^onahle 

large Unfortunately, a Urg« N implies a high dentity of gad and that will (!) break down kt 

lower Geld and (1) ciuie Coulomb scattering of the beam. Hf>w atriaita theze are would depend 

on the application. 

A mote "efficient* geometry t h i s thai of a plane wave to obtained at on "axicofl* focus. 

This is the field obtained by adding waves, each at a fixed angle 0 to the beam axis, but at all 

different :uiriiuthal angles. It is obtained by passing a plane parallel w*ve through &n "ixicon" tens 

(sec Figure S). Such a field is also present in a circular v.'.'.veguld'e excited In the r."?on code. 

The Gelds .if'; well known in this case, and axe described by Beasel Functions or l!ic first kind 

(sec Jackson,1 p. 367). 
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7. Acceleration Near A Planar e .m. Source (the Grat ing Accelerator)' 

In our discussions GO far we have restricted ourselves to propagating sinusoidal waves that are 

Tar" waves by tlie definition given in the introduction. But it was noted, in that introd'iction, 

that there is a class of solutions to Maxwell's equations that arc not sinusoidal propagating waves, 

and that exist only clone to some source, i.e., "near* waves. 

Returning then to Maxwell's equations and their solutions discussed in Sec. 1 [Eq. (1.13)}: 

E = Eo e*p{'(* • f - w')} « 
(7.1) 

B = Ba exp{i[ii • i - wt)) , 

where k was a vector and |Eq. (1.14)]: 

*' = ~ = fc* + *J + *J . (7.2) 

If k is a real vector, then kt, t„, and k, are all real and less than (w/e} 1 , and Eq. (7.2) represents 

plane parallel propagating w-aves. These arc Tar waves". If the source is distributed over a plane 

surface, than the strength or such waves will remain independent of the distance V from that 

surface. If E, represents the amplitudes at that surface then: 

£(y) « E, , (7.3) 

However, another solution to Eq. (7.2) would he to allow k to be complex and thus allow one 

or mote of *,, kv or k, to he negative. If, for instance, JtJ is negative, where y Is the direction 

away from the surface, then defining p to be real: 

P = - ' * ! i 

then Eq. (7.1) becomes 

£ = £ f t exp(-py} cxp{i'(*,.i + ktz-ul)) . (7.5) 

In this case w. BL-C that the amplitude of the "wave" falls with the distance y from the surface 

E{y) * exp{-pir} £, , (7.6) 

and such fields arc "near" field;. Because they fall exponentially from the surface they are also 

referred to sometimes as "evanescent" waves. 
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For convenience tut vz consider waves traveling alone the z direction, i.e., k, u 0: 

E = £o exp{-p,) «p{i(*. * - " ( ) } . (7.7) 

* J = ^ 4 p * . (7.B) 

Substituting into Eq. (1.J0) gives 

-E,ip + EMk. = 0 , 

and thuB 

E, = ^E, . (7.6) 

So, unlike the far field cue, wr have a non-zero field in the direction of propagation. This Geld 
is 90° out or phase with the transverse Geld. The field pattern at a given time I in illustrated in 
Figure 0. As a function of time, the whole pattern advances along the z axis at a velocity 

«• = r - i ' . • • l"°> k- hW' 
and we note that this wave velocity is less than the \eloti\j of li&hl. For this reason tVity are 
sometimes inferred to as "slow1' waves. 

Because of this "sfoirress" one cannot accelerate relativislic particles along the direction of 
propagation of the surface wave. From this one derives: 

Thprtrftm 2. Lwson's TAeorein. 

This states that for any one-sided system which is two-dimensional in character, 
no acceleration is possible. In our example we are referring to one-sided iysttms; 
if the fields are uniform In the z coordinate as above, it is two-dimensional, and ttiui 
there can be no acceleration. f 

The restriction is not «o severe, however, since the uniformity in x can be broken even when 
the structure is itself uniform in x. An example of this is the grating accelerator. 

Figure 9 
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GRAT1N0 ACCELERATOR 

In a, guting accelerator, stow waves aie excited on the mtfa.ee of a periodic etcucturc. in »uc^ 

a. way thai the direction of propagation of the waves are oriented diagonally acroa* the surface 

from both sides. The two sets of waves generate a periodic wave pattern that is periodic in both 

z and i , i.e., k, and kt are finite and real; k¥ IE imaginary lending to an exponential fall-off of 

Geld away from the grating surface. For acceleration in the i direction we requiTe 

w w 
k' = Jc

 B 7 ' 

since 

thus 

and the fieli on a ps'licle traveling at the velocity of light (i = tt) it 

E, = Eo exp{-p v J exp{i(d„ • t . x ) } , (7.11) 

where 

& = *. - «'o • 

It can be shown* that Buch a wavepattern together with higher apace harmonics, form an Eigcn 

solution over t suitable periodic structure with period X/2; )'.*., the grating acU as a "cavity* 

that supports the accelerating mode without radiating away the stored energy. The extent of the 

field transversely (in direction x, in our example) can be limited by placing reflecting walls (see 

Figure 10), The fields can be excited either by introducing them at one end and allowing them 

to propagate along the 2 direction. Alternatively, they can be excited by incident radiation at an 

angle 0, from the vertical where 

kt = - cosfl, . (7.12)' 
c 

(this angle assures the matching periodicity in t^e x direction). In addition, in order to couple 

the incoming radiation to the accelerating mode, the grating periodicity must have a small period 

= k component. 
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'•> U7 f.7T!?A10 

Figure 10 

Let us now compare the magnitude of acceleration with the magnitude of iurf&i:e fields. 
Returning lo Maxwell [Eq. (1.4)] 

which for 

gives 

V - £ " 0 , 

E = EQ exp{-py + Hkxx + k t l - ut)} , 

£ i*! + E,k. + E¥ ip L, 0 . (7.13) 

]f we select the direction of polarization to have £ x •= 0 (this maximizes acceleration) then 

E. i> . A 
= — Ri t — p k. 2rr 

and 

^ = s P « P I - P » ) • (T.H) 

A large value of p gives • higher ratio of acceleration lo deflecting fields but & high p ilso Impliei 

a more rapid exponential fall-oft from the surface. For a. fixed distance from (he turfite V the 

maximum acceleration is obtained when 

and then 

p = 
1 

t 

£»r* 1 Jt X 
**tvtl&ct 2* V V 

(T.15) 

Here wc tec, for the first time, the explicit requirement for near fields to be negligible: 

1/ > X , (7,16) 

ie 



8. Acceleration Between Planar e .m. Sources (2D Linac) 

This may not be a particularly practical cue , but it can be understood without use or Bessel 
functions. It is also mathematically cutel 

Consider two plane parallel "far" waves propagating in nearly the same direction , one at 

an angle $ above the beam direction and one at an angle -fl below the beam (tee Figure 11). 

The magnitude; of the two waves are identical. The directions of polarization are vertical and 

opposite, to that on the axk the transverse electric fields exactly cancel: 

Jfcj = 0 (for both waves) , 

kt - - 6\n±« BS ± -— , ( 8 l j 

iii tit 
kz = - cos 0 es — (ror both) , 

£ „ = O (for both) , 

Ety = ±E0 C O J » , {8.2) 

Eot = EQ tin e {for both) , 

then 

Ev = E o c o s e c x p < i — y l + e x p J t — ir> «*p {t - ( c o s P r - t i ) } • 

E, = £ o s l n 0 e x p J i — y l - e x p { i — j-II exp li — {zasBx - tt)\ \ 

Et - 2EQ cos 8 tin ( — y J exp li - (cos 6 z - et} 1 

E. = 2£e sin 6 cos I — p ) e x p f i - ( c o s 0 r - r t ) | , 

Figure 11 

(a.3) 

(6.4) 
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which for 6 -> 0 and 2E 0 fl - • A0 

Et ** Aa ~ V **V \i— \ 3 ~ e t i J . 

E, m J4D e x p / i - { i - e i ) } 

Here we ece that th« acceltrnting field will remain in phase with the particle and need not go 

to i t i o [Et went to 00, as 6 -» 0, but the observed fields can remain finite). We note moreover 

that tlie accelerating Geld is independent or transverse position 1 or y. However, the transverse 

field Si rises linearly with u-

IT the fields ire generated at two surface* at ±]/, then 

£»£! = J. = _L* - * (ae) 
£„((,-) wy 2* y y 

We note that this is the same relation as found for the optimized planar grating accelerator 

|Eq. (7.15)]. Although we Blurted w[th two far fields we have, by taking the limit * —»0 obtained 

a "near* field solution. 



B. Acceleration wi th Cylindrical Symmetry y . 
(Conventional Iris Loaded Llnac Structure) 

As in Sec. 8 wc can again deiive the near field solution by starting with a far field c u e and 

taking a limit. We start with the Getds discussed in Sec. 6; I.e., the inverse of Cerenkov fields 

(see Figure S). These fields would be formed by taking the two interfering beams of Sec. 6 and 

rotating about the axis. Beams are approaching the axil at fixed angles 6 to that axis, but from 

all aiimuthal directions, The fields thai result cannot be simply written down, since they involve 

infinite sums, but they can be written in terms or Bessel functions. 

In general the fields ir. in axially symmetric HHL' can be represented as sums of transverse 

eleclic (TE) and transversa Magntlic (TM) modes. Since only the TM mode* contain accelerating 

fields, wc wiii consider only these. With i along the cylindrical axis, p perpendicular to that axis 

and B circumferential about it [from Jacaion, 1 p. 367, eq. (E.117)] 

B, = EoMn) • e x p { i ( i , ; - w i ) } , 

E, = - r 0 ^ jt(P1) • **p {<(*. t-vt)} , 
t 

(Note that we have exchanged E with B to obtain the TM case; the reference being for TE.] 

In the above 7 is not the relativistic parameter but: 

. » - - , w it 

thus 

* , - ~ c o s « , (Q.2) 

7 = — u n a , 
C 

where 6 is the angle between the incoming plane parallel waves and the axis (as In Sec. 8). 

Thus 

E, = £0 J O ( T B'n ^) exp{i[kMz-ut)) , 

E, = £ 0 -^B J, ( £ sinfl) exp {.(*,* -wt)> , (9,3) 

cB4 =• Ea ~ J\ ( x Bin$) exp{i(kt = -ut)) , sin v u / 

where Jo and J\ are Bessel functions of llic first kind. 
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AE C -t 0 [JatksDn,1 p. 10S, eq, 3.89) 

So at p ••= 0 we obtain 

E, = Ea e x p { i ( * , * - w f ) } , 

Et = J?* = 0 . 

since i , = W O eosfl, continuous acceleration will only be obtained in the limit of 0 —> 0. In this 

limit, using Eq. (9.4): 

E, -' Eo exp{i^ a ) (independent of p) , (6.6) 

cB, - £"o i I | | «xp{t'fU = £ D i>j «*{»'#.} , 

(9.7) 

0 2ft 

where f>, = (w/c)(*o - c(o) is the initial phase. 

We note that as in Sec. 8 the limit is finite even though the terms -< 0. Again, as in Sec. 8, 

we can examine the accelerating field as the source is forced to be more distant.-

K the source is a! some lurgc p, then the field at that source, E, «s Et(p) > Et{p), and 

£•« „ £i<2U *. (o.8) 

which, but for ft factor of 2, is of the same form as Eos, (8.6) and (7.15). So again wc have a 

"near" field acceleration which falls, relative to source fields, as the wavelength divided by the 

distance to the source. 

Returning to Eq. (OX), we see that E, is independent of p. It is a constant, despite the 

increasing radial field Et. S i n e E, is constant, it [s clear that eutti a mode cannot exist in a 

simple circular waveguide. In fact, such an accelerating mode can only exist in structures that 

contain a dielectric (*uc h as a dielectric loaded wave&uidc) or that arc periodic (such as an iris 

loaded linac structure). Sec Figure 12. 

Again looking at Eq. (9.0), we might expect that there is a focussing or defocussing force 

coming from the finite, but rising with p, radial field B,. However, a radial force will also come 
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I d ! 

"Melol TuOt 

ID) 

B(tim 

Figure 12 

from the field 8^ *r& for » relatrvistie particle [0 *= 1) 

F, =- t{E,-Bt$c) , (9.9) 

which from Eq. (9.0) is seen to give: 

This conclusion is known as 

(9-10) 

yhrorcm 3. PanoJifcy H'cnrel Theorem. 

In any cylindrical!/ tymmelrk system, whelk periodic, loaded or aperiodic, If we 

Integrate from - o o to •+» (see Figure 13), any ImnsverBB deflection is proportional to 

l/*) 1 and is thus negligible for a sufficiently relativistic particle. 

iE , ' f tE 0 

flE0 *<" 

Figure 13 

»> 



The generalization to »ny structure arises because, If integrated from - o c to +00 any mode 
that is not synchronous with the particle will vanish, and the only mode that is synchronoua is 
Ihsit described by Eq. (9.B). 

That the theorem is rcma.tl.vliU, it iYluitraAed by Figure \Z\>. In a conventional accelerating 

cavity, it is clear thai there are focussing E fields at the entry end defocussing Gelds at the exit. 

If the particle passes through as the phase ci changes sign, then these electric Gelds will give a net 

focussing force. By the theaters, these forces must be jus', canceled by the magnetic fields which 

arc zero on axis and rising on the radius. Since there h no very obvious connection between the 

circulai B fields and the iris generated E fields, the cancellation is remarkable. It is nevertheless 

true! 

Since the Panofsky Wcnzel theorem is important, I will go throufch the Visit derivation from 

Maxwell. 

From Eq. ( M l ) 

w1 -V ' £ = ~~ E 

Writing this out for E, in cylindrical coordinates (Jackson,' back cover): 

Given cylindrical symmetry 

For 0 - 1 

Mid 

d Ej tonal | 

(0.12) 

£ * i ^ _fc* £ . = - u V B. . (MS) 

U (>£)-»• 
(<US) 

dp p 

E, = tonsli 4 consti In (p) . (9-16) 

If E, / 00 at p - . 0, th-Mi cooslj = 0. Thus 

E, = tonst» , (0.17) 

which is the same as Eq. (0.6) and is the precondition for Panosky Wenicl. 
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Now we go back to Maxwell Kq. (l.V) 

V x B = iwB . 

Going again to Liie back cover of Jackion1 and writing out the azitnulhal cylindrical component: 

From Eq. (9.17) 

anti for a wave propogatiiig, at e 

dfc', 
dp 

ao 

iuBt B | - i , . (9.19) 

Now tlie transverse force en a particle moving at 0 = 1 in Ihu i direction: 

F, - t ( £ , - c 0 # ) , 

whith from Eq. (0.19) gives 

F, = 0 . (9.2U) 

Wojidttfol! 
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