
Université Libre de Bruxelles
Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

An Introduction to

Ant Colony Optimization

Marco Dorigo and Krzysztof Socha

IRIDIA – Technical Report Series

Technical Report No.

TR/IRIDIA/2006-010

April 2006

Accepted for publication as a chapter in Approximation Algorithms and Metaheuristics,

a book edited by T. F. Gonzalez.

IRIDIA – Technical Report Series
ISSN 1781-3794

Published by:
IRIDIA, Institut de Recherches Interdisciplinaires

et de Développements en Intelligence Artificielle

Université Libre de Bruxelles
Av F. D. Roosevelt 50, CP 194/6
1050 Bruxelles, Belgium

Technical report number TR/IRIDIA/2006-010

The information provided is the sole responsibility of the authors and
does not necessarily reflect the opinion of the members of IRIDIA. The
authors take full responsability for any copyright breaches that may
result from publication of this paper in the IRIDIA – Technical Report
Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

An Introduction to Ant Colony Optimization

Marco Dorigo∗ and Krzysztof Socha†

IRIDIA, Université Libre de Bruxelles, CP 194/6,

Av. Franklin D. Roosevelt 50, 1050 Brussels, Belgium

http://iridia.ulb.ac.be

December 16, 2005

1 Introduction

This chapter presents an overview of ant colony optimization (ACO) – a metaheuristic inspired by the

behavior of real ants. ACO was proposed by Dorigo and colleagues [18, 14, 19] as a method for solving hard

combinatorial optimization problems.

ACO algorithms may be considered to be part of swarm intelligence, that is, the research field that

studies algorithms inspired by the observation of the behavior of swarms. Swarm intelligence algorithms are

made up of simple individuals that cooperate through self-organization, that is, without any form of central

control over the swarm members. A detailed overview of the self-organization principles exploited by these

algorithms, as well as examples from biology, can be found in [8]. Many swarm intelligence algorithms have

been proposed in the literature. For an overview of the field of swarm intelligence, we refer the interested

reader to [4].

This chapter, which is dedicated to present a concise overview of ACO, is organized as follows. Section 2

presents the biological phenomenon that provided the original inspiration. Section 3 presents a formal

description of the ACO metaheuristic. Section 4 overviews the most popular variants of ACO and gives
∗mdorigo@ulb.ac.be
†ksocha@ulb.ac.be

1

2 FROM BIOLOGY TO ALGORITHMS 2

examples of their application. Section 5 shows current research directions, and Section 6 summarizes and

concludes the chapter.

2 From Biology to Algorithms

Ant colony optimization was inspired by the observation of the behavior of real ants. In this section,

we present a number of observations made in experiments with real ants, and then we show how these

observations inspired the design of the ACO metaheuristic.

2.1 Ants

One of the first researchers to investigate the social behavior of insects was the French entomologist Pierre-

Paul Grassé. In the forties and fifties of the 20-th century, he was observing the behavior of termites – in

particular, the Bellicositermes natalensis and Cubitermes species. He discovered [26] that these insects are

capable to react to what he called “significant stimuli”, signals that activate a genetically encoded reaction.

He observed [27] that the effects of these reactions can act as new significant stimuli for both the insect that

produced them and for the other insects in the colony. Grassé used the term stigmergy [27] to describe this

particular type of indirect communication in which the “workers are stimulated by the performance they

have achieved”.

The two main characteristics of stigmergy that differentiate it from other means of communication are:

• the physical, non-symbolic nature of the information released by the communicating insects, which

corresponds to a modification of physical environmental states visited by the insects; and

• the local nature of the released information, which can only be accessed by those insects that visit the

place where it was released (or its immediate neighborhood).

Examples of stigmergy can be observed in colonies of ants. In many ant species, ants walking to, and

from, a food source deposit on the ground a substance called pheromone. Other ants are able to smell this

pheromone, and its presence influences the choice of their path—i.e., they tend to follow strong pheromone

2 FROM BIOLOGY TO ALGORITHMS 3

concentrations. The pheromone deposited on the ground forms a pheromone trail, which allows the ants to

find good sources of food that have been previously identified by other ants.

Some researchers investigated experimentally this pheromone laying and following behavior in order to

better understand it and to be able to quantify it. Deneubourg et al. [11] set up an experiment called a

“binary bridge experiment”. They used Linepithema humile ants (also known as Argentine ants). The ants’

nest was connected to a food source by two bridges of equal length. The ants could freely choose which

bridge to use when searching for food and bringing it back to the nest. Their behavior was then observed

over a period of time.

In this experiment, initially there is no pheromone on the two bridges. The ants start exploring the

surroundings of the nest and eventually cross one of the bridges and reach the food source. When walking to

the food source and back, the ants deposit pheromone on the bridge they use. Initially, each ant randomly

chooses one of the bridges. However, due to random fluctuations, after some time there will be more

pheromone deposited on one of the bridges than on the other. Because ants tend to prefer in probability

to follow a stronger pheromone trail, the bridge that has more pheromone will attract more ants. This in

turn makes the pheromone trail grow stronger, until the colony of ants converges towards the use of a same

bridge.1

This colony level behavior, based on autocatalysis, that is, on the exploitation of positive feedback, can

be exploited by ants to find the shortest path between a food source and their nest. This was demonstrated

in another experiment conducted by Goss et al. [25], in which the two bridges were not of the same length:

one was significantly longer than the other. In this case, the stochastic fluctuations in the initial choice of a

bridge were much reduced as a second mechanism played an important role: those ants choosing by chance

the shorter bridge were also the first to reach the nest and when returning to the nest they chose the shorter

bridge with higher probability as it had a stronger pheromone trail. Therefore, the ants—thanks to the

pheromone following and depositing mechanism—quickly converged to the use of the shorter bridge.

In the next section we explain how these experiments and findings were used to develop optimization

algorithms.
1Deneubourg et al. conducted several experiments, and results show that each of the two bridges was used in about 50% of

the cases.

2 FROM BIOLOGY TO ALGORITHMS 4

2.2 Algorithms

Stimulated by the interesting results of the experiments described in the previous section, Goss et al. [25]

developed a model to explain the behavior observed in the binary bridge experiment. Assuming that after t

time units since the start of the experiment, m1 ants had used the first bridge and m2 the second one, the

probability p1 for the (m + 1)-th ant to choose the first bridge can be given by:

p1(m+1) =
(m1 + k)h

(m1 + k)h + (m2 + k)h
, (1.1)

where parameters k and h are needed to fit the model to the experimental data. The probability that the

same (m + 1)-th ant chooses the second bridge is p2(m+1) = 1 − p1(m+1). Monte Carlo simulations, run to

test how the model corresponds to the real data [44], showed very good fit for k ≈ 20 and h ≈ 2.

This basic model, which explains the behavior of real ants, may be used as an inspiration to design

artificial ants that solve optimization problems defined in a similar way. In the above described ant foraging

behavior example, stigmergic communication happens via the pheromone that ants deposit on the ground.

Analogously, artificial ants may simulate pheromone laying by modifying appropriate pheromone variables

associated with problem states they visit while building solutions to the optimization problem. Also, ac-

cording to the stigmergic communication model, the artificial ants would have only local access to these

pheromone variables.

Therefore, the main characteristics of stigmergy mentioned in the previous section can be extended to

artificial agents by:

• associating state variables with different problem states; and

• giving the agents only local access to these variables.

Another important aspect of real ants’ foraging behavior that may be exploited by artificial ants is the

coupling between the autocatalytic mechanism and the implicit evaluation of solutions. By implicit solution

evaluation, we mean the fact that shorter paths (which correspond to lower cost solutions in the case of

artificial ants) are completed earlier than longer ones, and therefore they receive pheromone reinforcement

quicker. Implicit solution evaluation coupled with autocatalysis can be very effective: the shorter the path,

2 FROM BIOLOGY TO ALGORITHMS 5

the sooner the pheromone is deposited, and the more ants use the shorter path. If appropriately used, it can

be a powerful mechanism in population-based optimization algorithms (e.g., in evolutionary algorithms [33,

21] autocatalysis is implemented by the selection/reproduction mechanism).

Stigmergy, together with implicit solution evaluation and autocatalytic behavior, gave rise to ACO. The

basic idea of ACO follows very closely the biological inspiration. Therefore, there are many similarities

between real and artificial ants. Both real and artificial ant colonies are composed of a population of

individuals that work together to achieve a certain goal. A colony is a population of simple, independent,

asynchronous agents that cooperate to find a good solution to the problem at hand. In the case of real ants,

the problem is to find the food, while in the case of artificial ants, it is to find a good solution to a given

optimization problem. A single ant (either a real or an artificial one) is able to find a solution to its problem,

but only cooperation among many individuals through stigmergy enables them to find good solutions.

In the case of real ants, they deposit and react to a chemical substance called pheromone. Real ants

simply deposit it on the ground while walking. Artificial ants live in a virtual world, hence they only

modify numeric values (called for analogy artificial pheromones) associated with different problem states. A

sequence of pheromone values associated with problem states is called artificial pheromone trail. In ACO,

the artificial pheromone trails are the sole means of communication among the ants. A mechanism analogous

to the evaporation of the physical pheromone in real ant colonies allows the artificial ants to forget the past

history and focus on new promising search directions.

Just like real ants, artificial ants create their solutions sequentially by moving from one problem state

to another. Real ants simply walk, choosing a direction based on local pheromone concentrations and

a stochastic decision policy. Artificial ants also create solutions step-by-step, moving through available

problem states and making stochastic decisions at each step.

There are however some important differences between real and artificial ants:

• Artificial ants live in a discrete world – they move sequentially through a finite set of problem states.

• The pheromone update (i.e., pheromone depositing and evaporation) is not accomplished in exactly

the same way by artificial ants as by real ones. Sometimes the pheromone update is done only by some

of the artificial ants, and often only after a solution has been constructed.

3 THE ANT COLONY OPTIMIZATION METAHEURISTIC 6

• Some implementations of artificial ants use additional mechanisms that do not exist in the case of real

ants. Examples include look-ahead, local search, backtracking, etc.

3 The Ant Colony Optimization Metaheuristic

Ant colony optimization (ACO) has been formalized into a combinatorial optimization metaheuristic by

Dorigo et al. [15, 16, 20] and has since been used to tackle many combinatorial optimization problems.

Given a combinatorial optimization problem (COP), the first step for the application of ACO to its

solution consists in defining an adequate model. This is then used to define the central component of ACO:

the pheromone model. The model of a COP may be defined as follows:

Definition 1.1 A model P = (S,Ω, f) of a COP consists of:

• a search space S defined over a finite set of discrete decision variables and a set Ω of constraints among

the variables;

• an objective function f : S → R+
0 to be minimized.2

The search space S is defined as follows: Given is a set of discrete variables Xi, i = 1, ..., n, with values

vj
i ∈ Di = {v1

i , ..., v
|Di|
i }. A variable instantiation, that is, the assignment of a value vj

i to a variable Xi,

is denoted by Xi ← vj
i . A solution s ∈ S—i.e., a complete assignment in which each decision variable has

a value assigned—that satisfies all the constraints in the set Ω, is a feasible solution of the given COP. If

the set Ω is empty, P is called an unconstrained problem model, otherwise it is said to be constrained. A

solution s∗ ∈ S is called a global optimum if and only if: f(s∗) ≤ f(s) ∀s∈S. The set of all globally optimal

solutions is denoted by S∗ ⊆ S. Solving a COP requires finding at least one s∗ ∈ S∗.

The model of a COP is used to derive the pheromone model used by ACO. First, an instantiated decision

variable Xi = vj
i (i.e., a variable Xi with a value vj

i assigned from its domain Di), is called a solution

component and denoted by cij . The set of all possible solution components is denoted by C. A pheromone

trail parameter Tij is then associated with each component cij . The set of all pheromone trail parameters
2Note that minimizing over an objective function f is the same as maximizing over −f . Therefore, every COP can be

described as a minimization problem

3 THE ANT COLONY OPTIMIZATION METAHEURISTIC 7

Algorithm 1 Ant colony optimization metaheuristic
Set parameters, initialize pheromone trails

while termination conditions not met do

ConstructAntSolutions

ApplyLocalSearch {optional}

UpdatePheromones

end while

is denoted by T. The value of a pheromone trail parameter Tij is denoted by τij (and called pheromone

value).3 This pheromone value is then used and updated by the ACO algorithm during the search. It allows

modeling the probability distribution of different components of the solution.

In ACO, artificial ants build a solution to a combinatorial optimization problem by traversing the so-

called construction graph, GC(V,E). The fully connected construction graph consists of a set of vertexes

V and a set of edges E. The set of components C may be associated either with the set of vertexes V

of the graph GC , or with the set of its edges E. The ants move from vertex to vertex along the edges

of the graph, incrementally building a partial solution. Additionally, the ants deposit a certain amount of

pheromone on the components, that is, either on the vertexes or on the edges that they traverse. The amount

∆τ of pheromone deposited may depend on the quality of the solution found. Subsequent ants utilize the

pheromone information as a guide towards more promising regions of the search space.

The ACO metaheuristic is shown in Algorithm 1. It consists of an initialization step and a loop over

three algorithmic components. A single iteration of the loop consists of constructing solutions by all ants,

their (optional) improvement with the use of a local search algorithm, and an update of the pheromones. In

the following, we explain these three algorithmic components in more detail.

ConstructAntSolutions: A set of m artificial ants construct solutions from elements of a finite set of

available solution components C = {cij}, i = 1, ..., n, j = 1, ..., |Di|. A solution construction starts with an

empty partial solution sp = ∅. Then, at each construction step, the current partial solution sp is extended

by adding a feasible solution component from the set of feasible neighbors N(sp) ⊆ C. The process of

3Note that pheromone values are in general a function of the algorithm’s iteration t : τij = τij(t).

3 THE ANT COLONY OPTIMIZATION METAHEURISTIC 8

constructing solutions can be regarded as a path on the construction graph GC = (V,E). The allowed paths

in GC are hereby implicitly defined by the solution construction mechanism that defines the set N(sp) with

respect to a partial solution sp.

The choice of a solution component from N(sp) is done probabilistically at each construction step. The

exact rules for the probabilistic choice of solution components vary across different ACO variants. The best

known rule is the one of Ant System (AS) [19]:

p(cij |sp) =
τα
ij · η(cij)β

∑
cil∈N(sp) τα

il · η(cil)β
, ∀cij ∈ N(sp), (1.2)

where τij is the pheromone value associated with the component cij , and η(·) is a function that assigns

at each construction step a heuristic value to each feasible solution component cij ∈ N(sp). The values that

are given by this function are commonly called heuristic information. Furthermore, α and β are positive

parameters, whose values determine the relative importance of pheromone versus heuristic information.

Eq. 1.2 is a generalization of Eq. 1.1 presented in Sec. 2: ACO formalization follows closely the biological

inspiration.

ApplyLocalSearch: Once solutions have been constructed, and before updating pheromones, often some

optional actions may be required. These are often called daemon actions, and can be used to implement

problem specific and/or centralized actions, which cannot be performed by single ants. The most used

daemon action consists in the application of local search to the constructed solutions: the locally optimized

solutions are then used to decide which pheromones to update.

UpdatePheromones: The aim of the pheromone update is to increase the pheromone values associated

with good or promising solutions, and to decrease those that are associated with bad ones. Usually, this is

achieved (i) by decreasing all the pheromone values through pheromone evaporation, and (ii) by increasing

the pheromone levels associated with a chosen set of good solutions Supd:

τij ← (1− ρ) · τij + ρ ·
∑

s∈Supd|cij∈s

F (s) , (1.3)

where Supd is the set of solutions that are used for the update, ρ ∈ (0, 1] is a parameter called evaporation

rate, and F : S → R+
0 is a function such that f(s) < f(s′) ⇒ F (s) ≥ F (s′), ∀s 6= s′ ∈ S. F (·) is commonly

3 THE ANT COLONY OPTIMIZATION METAHEURISTIC 9

called the fitness function.

Pheromone evaporation is needed to avoid a too rapid convergence of the algorithm. It implements a

useful form of forgetting, favoring the exploration of new areas in the search space. Different ACO algorithms,

such as for example Ant Colony System (ACS) [17] or MAX -MIN Ant System (MMAS) [53] differ in the

way they update the pheromone.

Instantiations of the update rule presented in Eq. 1.3 are obtained by different specifications of Supd,

which in many cases is a subset of Siter∪{sbs}, where Siter is the set of solutions that were constructed in the

current iteration, and sbs is the best-so-far solution, that is, the best solution found since the first algorithm

iteration. A well-known example is the AS-update rule, that is, the update rule of Ant System [19], where:

Supd ← Siter . (1.4)

An example of a pheromone update rule that is more often used in practice is the IB-update rule (where

IB stands for iteration-best):

Supd ← arg max
s∈Siter

F (s) . (1.5)

The IB-update rule introduces a much stronger bias towards the good solutions found than the AS-update

rule. Although this increases the speed with which good solutions are found, it also increases the probability

of premature convergence. An even stronger bias is introduced by the BS-update rule, where BS refers to

the use of the best-so-far solution sbs. In this case, Supd is set to {ssb}. In practice, ACO algorithms that

use variations of the IB-update or the BS-update rules and that additionally include mechanisms to avoid

premature convergence, achieve better results than those that use the AS-update rule.

3.1 Example: The Traveling Salesman Problem

One of the most popular ways to illustrate how the ACO metaheuristic works, is via its application to the

traveling salesman problem (TSP). The TSP consists of a set of locations (cities) and a travelling salesman

that has to visit all the locations once and only once. The distances between the locations are given and the

task is to find a Hamiltonian tour of minimal length. The problem has been proven to be NP-hard [35].

3 THE ANT COLONY OPTIMIZATION METAHEURISTIC 10

Figure 1.1: Example construction graphs for a 4-city TSP. a) - when components are associated with the

edges of the graph, b) - when components are associated with the vertexes of the graph. Note that cij ≡ cji.

The application of ACO to the TSP is straightforward. The moves between the locations become the

solution components—i.e, the move from city i to city j becomes a solution component cij ≡ cji. The

construction graph GC = (V,E) is defined by associating the set of locations with the set V of vertices of

the graph. Since, in principle, it is possible to move from any city to any other one, the construction graph

is fully connected and the number of vertices is equal to the number of locations defined by the problem

instance. Furthermore, the lengths of the edges between the vertices are proportional to the distances

between the locations represented by these vertices. The pheromone is associated with the set E of edges of

the graph. An example of the resulting construction graph GC is presented in Fig. 1.1a.

The ants construct the solutions as follows. Each ant starts from a randomly selected location (vertex

of the graph GC). Then, at each construction step it moves along the edges of the graph. Each ant keeps

a memory of its path through the graph, and in subsequent steps it chooses among the edges that do not

lead to vertexes that it has already visited. An ant has constructed a solution once it has visited all the

vertexes of the graph. At each construction step an ant chooses probabilistically the edge to follow among

the available ones (those that lead to yet unvisited vertices). The exact rule depends on the implementation,

4 MAIN VARIANTS OF ACO 11

an example being Eq. 1.2. Once all the ants have finished their tour, the pheromone on the edges is updated

according to one of the possible implementations of Eq. 1.3. ACO has been shown to perform quite well on

the TSP [51].

It is worth noticing that it is also possible to associate the set of solution components of the TSP (or any

other combinatorial optimization problem) with the set of vertices V rather than the set of edges E of the

construction graph GC . For the TSP, this would mean associating the moves between locations with the set

V of vertices of the construction graph, and the locations with the set E of its edges. The corresponding

example construction graph for a 4-city TSP is presented in Fig. 1.1b. When using this approach, the ants’

solution construction process has to be also properly modified: the ants would have to move from vertex to

vertex of the construction graph choosing thereby the connections between the cities.

It is important to note that both ways of defining the construction graph are correct and both may be

used in practice. Depending on the problem at hand, one may be more intuitive than the other. For instance,

for the University Course Timetabling Problem (UCTP) the second one seems better suited [48].

4 Main Variants of ACO

Several variants of ACO have been proposed in the literature. We present the main characteristics of the most

successful ones together with a short list of their applications. We attempt to present them in chronological

order as new variants are often based on ideas introduced earlier.

In the following sections we present Ant System—the first implementation of an ACO algorithm—followed

by MAX -MIN Ant System and Ant Colony System. We mention also some others that are less popular

but still quite interesting, such as hyper-cube ACO or population-based ACO. In order to illustrate the

differences between them clearly, we use the example of the traveling salesman problem, as described in

Sec. 3.1.

4.1 Ant System

Ant System (AS) was the first ACO algorithm to be proposed in the literature [18, 14, 19]. Its main

characteristic is that the pheromone values are updated by all the ants that have completed the tour. The

4 MAIN VARIANTS OF ACO 12

pheromone update for τij , that is, for edge joining cities i and j, is performed as follows:

τij ← (1− ρ) · τij +
m∑

k=1

∆τk
ij , (1.6)

where ρ is the evaporation rate, m is the number of ants, and ∆τk
ij is the quantity of pheromone per unit

length laid on edge (i, j) by the k-th ant:

∆τk
ij =

Q
Lk

if ant k used edge (i, j) in its tour,

0 otherwise,
(1.7)

where Q is a constant, and Lk is the tour length of the k-th ant.

When constructing the solutions, the ants in AS traverse a construction graph and make probabilistic

decision at each vertex. The transitional probability pk
ij of the k-th ant moving from city i to city j is given

by:

pk
ij =

τα
ij ·ηβ

ij∑
l∈allowedk

τα
il ·ηβ

il

if j ∈ allowedk,

0 otherwise,
(1.8)

where allowedk is the list of cities not yet visited by the k-th ant, and α and β are parameters that control

the relative importance of the pheromone versus the heuristic information ηij given by:

ηij =
1

dij
, (1.9)

where dij is the length of edge (i, j).

Several implementations of the AS algorithm have been applied to different combinatorial optimization

problems. The first and best known is the application to the TSP [18, 14, 19]. However, AS was also used

successfully to tackle other combinatorial problems. The AS-QAP [39, 38] algorithm was used to tackle

quadratic assignment problem (QAP), AS-JSP [9] for the job-shop scheduling problem (JSP), AS-VRP [5, 6]

for the vehicle routing problem (VRP), and AS-SCS [42, 43] for the shortest common supersequence (SCS)

problem.

4 MAIN VARIANTS OF ACO 13

4.2 MAX -MIN Ant System

MAX -MIN Ant System (MMAS) is an improvement over the original Ant System idea. MMAS was

proposed by Stützle and Hoos [53] and introduces the following two changes:

• only the best ant can update the pheromone trails, and

• the minimum and maximum values of the pheromone are limited.

Equation 1.6 takes hence the following new form:

τij ← (1− ρ) · τij + ∆τbest
ij , (1.10)

where ∆τbest
ij is the pheromone update value defined by:

∆τbest
ij =

Q
Lbest

if the best ant used edge (i, j) in its tour,

0 otherwise.
(1.11)

Lbest is the length of the tour of the best ant. This may be (subject to the algorithm designer decision)

either the best tour found in the current iteration—iteration-best, Lib—or the best solution found since the

start of the algorithm—best-so-far, Lbs—or a combination of both.

Concerning the limits on the minimal and maximal pheromone values allowed, respectively τmin and

τmax, Stützle and Hoos suggest that they should be chosen experimentally based on the problem at hand.

The maximum value τmax may be calculated analytically provided that the optimum ant tour length is

known. In the case of the TSP, τmax is given by:

τmax =
1
ρ
· 1
L∗

, (1.12)

where L∗ is the length of the optimal tour. The minimum pheromone value τmin should be chosen with

caution as it has a rather strong influence on the algorithm performance. They present an analytical approach

to finding this value based on the probability pbest that an ant constructs the best tour found so far. This

is done as follows. First, it is assumed that at each construction step an ant has a constant number k of

options available. Therefore, the probability that an ant makes the right decision (i.e., the decision that

4 MAIN VARIANTS OF ACO 14

belongs to the sequence of decisions leading to the construction of the best tour found so far) at each of n

steps is given by pdec = n−1
√

pbest. The analytical formula they suggest for finding τmin is:

τmin =
τmax · (1− pdec)

k · pdec
. (1.13)

For more details on how to choose τmax and τmin, we refer to [53]. It is important to mention here that

it has been also shown [48] that for some problems the choice of an appropriate τmin value is more easily

done experimentally than analytically.

The process of pheromone update in MMAS is concluded by verifying that all pheromone values are

within the imposed limits:

τij =

τmax if τij > τmax,

τmin if τij < τmin.
(1.14)

MAX -MIN Ant System provided a significant improvement over the basic Ant System performance.

While the first implementations focused on the TSP [53], it has been later applied to many other combinato-

rial optimization problems such as the QAP [52] or the university course timetabling problem (UCTP) [48],

the generalized assignment problem (GAP) [37], and the set covering problem (SCP) [36].

4.3 Ant Colony System

Another improvement over the original Ant System was Ant Colony System (ACS) introduced by Gam-

bardella and Dorigo [22, 17]. The most interesting contribution of ACS is the introduction of a local

pheromone update in addition to the pheromone update performed at the end of the construction process

(called here offline pheromone update).

The local pheromone update is performed by all the ants after each construction step. Each ant applies

it only to the last edge traversed:

τij = (1− ϕ) · τij + ϕ · τ0 , (1.15)

where ϕ ∈ (0, 1] is the pheromone decay coefficient, and τ0 is the initial value of the pheromone.

4 MAIN VARIANTS OF ACO 15

The main goal of the local update is to diversify the search performed by subsequent ants during one

iteration. In fact, decreasing the pheromone concentration on the edges as they are traversed during one

iteration encourages subsequent ants to choose other edges and hence to produce different solutions. This

makes less likely that several ants produce identical solutions during one iteration.

The offline pheromone update, similarly to MMAS, is applied at the end of each iteration by only one

ant (the one that found the best solution in the iteration). However, the update formula is slightly different:

τij ←

(1− ρ) · τij + ρ ·∆τij if edge (i, j) belongs to Tbest, the best tour found so far,

τij otherwise,
(1.16)

and in case of TSP, ∆τij = 1
Lbest

.

Another important difference between AS and ACS is in the decision rule used by the ants during the

construction process. Ants in ACS use the so-called pseudorandom proportional rule: the probability for an

ant to move from city i to city j depends on a random variable q uniformly distributed over [0, 1], and a

parameter q0; if q ≤ q0, then j = argmaxl∈N(sp){τilη
β
il}, otherwise Eq. 1.8 is used.

ACS has been initially developed for the travelling salesman problem [22, 17], but it was later used to

tackle various combinatorial optimization problems, including vehicle routing [1] and timetabling [49].

4.4 Others

In addition to the main variants of ACO just described, it is worth mentioning the hyper-cube ACO (HC-

ACO) proposed by Blum [3], and population-based ACO (PB-ACO) proposed by Guntsch and Midden-

dorf [29].

The main idea introduced by HC-ACO is the normalization of pheromone values used in the pheromone

table. According to HC-ACO, the pheromone values should always be normalized in the interval [0, 1]. It has

been shown [3] that this makes the HC-ACO algorithm behavior independent of the scaling of the objective

function, an issue for previous ACO algorithms.

Population-based ACO introduces a novel mechanism for pheromone updates. As in regular ACO, some

of the good solutions found are used to increase the pheromone values. However, pheromone evaporation

5 FUTURE DIRECTIONS 16

is implemented differently. PB-ACO memorizes the solutions used to increase the pheromone values (the

set of memorized solutions is called a “population”, hence its name). Once the population has reached its

maximum dimension (a parameter of the algorithm), the worst solutions in the population are removed to

make room for the new ones. When a solution of the population is removed, the pheromone associated with

it is also removed: this is obtained by applying a negative pheromone update.

5 Future Directions

Research in ant colony optimization is very active. It includes the application of ACO algorithms to new real-

world optimization problems or new types of problems, such as dynamic optimization [28], multiobjective

optimization [34], stochastic problems [32], or continuous and mixed-variable optimization [47]. Also, with

an increasing popularity of parallel hardware architectures (multi-core processors and the grid technology), a

lot of research is being done on creating parallel implementations of ACO that will be able to take advantage

of the available hardware. In this section we shortly present current research in these new areas.

5.1 Other Types of Problems

One of the new areas of application of ACO is dynamic optimization. This type of problems are characterized

by the fact that the search space dynamically changes. While an algorithm searches for good solutions, the

conditions of the search as well as the quality of the solutions already found may change. This poses a whole

new set of issues for designing successful algorithms that can deal with such situations. It becomes crucial

for an algorithm to be able to adjust the search direction, following the changes of the problem being solved.

Initial attempts to apply ACO to dynamic optimization problems have been quite successful [12, 31, 28] .

Multiobjective optimization is another area of application for metaheuristics that has received increasing

attention over the past years. A multiobjective optimization problem involves solving simultaneously several

optimization problems with potentially conflicting objectives. For each of the objectives, a different objective

function is used to assess the quality of the solutions found. Algorithms usually aim at finding the so called

Pareto set—i.e., a set of non-dominated solutions—based on the defined objective functions. In the Pareto

set, no solution is worse than any other in the set, when evaluated over all the objective functions. Some

5 FUTURE DIRECTIONS 17

ACO algorithms designed to tackle multiobjective problems have been proposed in the literature [34, 30, 13].

Finally, recently researchers attempted to apply ACO algorithms to continuous optimization problems.

When an algorithm designed for combinatorial optimization is used to tackle a continuous problem, the

simplest approach is to divide the domain of each variable into a set of intervals. The set of intervals is

finite and may be handled by the original discrete optimization algorithm. However, when the domain of

the variables is large, and the required accuracy is high, this approach runs into problems. The problem

size (i.e., the number of intervals) grows, and combinatorial optimization algorithms become less efficient.

Also, this approach requires setting the number of intervals a priori—before the algorithm is run. In case

of real-world problems, this is not always a sensible thing to do.

Due to these reasons, optimization algorithms able to handle continuous parameters natively have been

developed. Recently, Socha [47] has extended ACO to continuous (and mixed-variable—continuous and dis-

crete) problems. Research in this respect is ongoing and should result in new, efficient ACO implementations

for continuous and mixed-variable problems.

5.2 Parallel ACO Implementations

Parallelization of algorithms becomes more and more an interesting and practical option for algorithm

designers. ACO is particularly well suited for parallel implementations thanks to ants operating in an

independent and asynchronous way. There have already been many attempts to propose parallel ACO

algorithms. They are usually classified by their parallel grain, that is, the relationship between computation

and communication. We can then distinguish between coarse-grained and fine-grained models. While the

former are characterized by many ants using the same CPU and rare communication between the CPUs, in

the latter only few ants use each CPU and there is a lot of communication going on. A review of the trends

and strategies in designing parallel algorithms may be found in [10].

Randall and Lewis proposed a first reasonably complete classification of parallel ACO implementa-

tions [46]. Although many parallel ACO implementations have been proposed in the literature [40, 54,

24, 45, 7, 50], the results are fragmented and difficult to compare. Experiments are usually of limited scale

and concern different optimization problems. Also, not all parallel implementations proposed are compared

6 CONCLUSIONS 18

with their sequential counterparts, which is an essential measure of their usefulness [50]. All this implies

that more research is necessary in the area of parallelization of the ACO metaheuristic.

6 Conclusions

We have presented an introduction to ant colony optimization—a metaheuristic inspired by the foraging

behavior of real ants. The central component of ACO is the pheromone model based on the underlying

model of the problem being solved. The basic idea of ACO, which has been formalized into a metaheuristic

framework, leaves many options and choices to the algorithm designer. Several variants of ACO have been

already proposed, the most successful being MMAS Ant System and Ant Colony System.

ACO is a relatively young metaheuristic, when compared to others such as evolutionary computation,

tabu search, or simulated annealing. Yet, it has proven to be quite efficient and flexible. ACO algorithms

are currently state-of-the-art for solving many combinatorial optimization problems including the sequential

ordering problem (SOP) [23], the resource constraint project scheduling (RCPS) problem [41], and the open

shop scheduling (OSS) problem [2]. For an in-depth overview of ACO, including applications, the interested

reader should refer to [20].

Acknowledgments

Marco Dorigo acknowledges support from Belgian FNRS, of which he is a Research Director. This work was

supported by the “ANTS” project, an “Action de Recherche Concertée” funded by the Scientific Research

Directorate of the French Community of Belgium.

References

[1] L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Paquete, O. Rossi-Doria, and

T. Schiavinotto. Metaheuristics for the vehicle routing problem with stochastic demands. In X. Yao et al.,

editor, Proceedings of Parallel Problem Solving from Nature - PPSN VIII, 8th International Conference,

volume 3242 of LNCS, pages 450–460. Springer-Verlag, Berlin, Germany, 2004.

REFERENCES 19

[2] C. Blum. Beam-ACO – Hybridizing ant colony optimization with beam search: An application to open

shop scheduling. Computers & Operations Research, 32(6):1565–1591, 2005.

[3] C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimization. IEEE Transactions

on Systems, Man, and Cybernetics – Part B, 34(2):1161–1172, 2004.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems.

Oxford University Press, New York, NY, 1999.

[5] B. Bullnheimer, R. F. Hartl, and C. Strauss. Applying the ant system to the vehicle routing problem.

In I. H. Osman, S. Voß, S. Martello, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends

in Local Search Paradigms for Optimization, pages 109–120. Kluwer Academic Publishers, Boston, MA,

1998.

[6] B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system algorithm for the vehicle routing

problem. Annals of Operations Research, 89:312–328, 1999.

[7] B. Bullnheimer, G. Kotsis, and G. Strauß. Parallelization strategies for the ant system. Technical

Report 8, Vienna University of Economics and Business Administration, Vienna, Austria, 1997.

[8] S. Camazine, J.-L. Deneubourg, N. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-Organization

in Biological Systems. Princeton University Press, Princeton, NJ, 2003.

[9] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant System for job-shop scheduling. JORBEL

— Belgian Journal of Operations Research, Statistics and Computer Science, 34(1):39–53, 1994.

[10] V.-D. Cung, S. L. Martins, C. C. Ribeiro, and C. Roucairol. Strategies for the parallel implementation

of metaheuristics. In C. C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, vol-

ume 15 of Operations Research/Computer Science Interfaces, chapter 13. Kluwer Academic Publishers,

Amsterdam, The Netherlands, 2001.

[11] J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels. The self-organizing exploratory pattern of the

Argentine ant. Journal of Insect Behavior, 3:159–168, 1990.

REFERENCES 20

[12] G. Di Caro and M. Dorigo. Antnet: Distributed stigmergetic control for communications networks.

Journal of Artificial Intelligence Research (JAIR), 9:317–365, 1998.

[13] K. Doerner, W. Gutjahr, R. Hartl, C. Strauss, and C. Stummer. Pareto ant colony optimization: A

metaheuristic approach to multiobjective portfolio selection. Annals of Operations Research, 131(1–

4):79–99, 2004.

[14] M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD thesis, Dipartimento di

Elettronica, Politecnico di Milano, Italy, 1992.

[15] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, and

F. Glover, editors, New Ideas in Optimization, pages 11–32. McGraw Hill, London, UK, 1999.

[16] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete optimization. Artificial

Life, 5(2):137–172, 1999.

[17] M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning approach to the traveling

salesman problem. IEEE Transactions on Evolutionary Computation, 1(1):53–66, 1997.

[18] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy. Technical Report

91-016, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1991.

[19] M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony of cooperating agents.

IEEE Transactions on Systems, Man, and Cybernetics – Part B, 26(1):29–41, 1996.

[20] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.

[21] D. Fogel. Evolutionary Computation. IEEE Press, Piscataway, NJ, 1995.

[22] L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs by ant colonies. In

T. Baeck, T. Fukuda, and Z. Michalewicz, editors, Proceedings of the 1996 IEEE International Confer-

ence on Evolutionary Computation (ICEC’96), pages 622–627. IEEE Press, Piscataway, NJ, 1996.

[23] L. M. Gambardella and M. Dorigo. Ant Colony System hybridized with a new local search for the

sequential ordering problem. INFORMS Journal on Computing, 12(3):237–255, 2000.

REFERENCES 21

[24] L. M. Gambardella, E. Taillard, and G. Agazzi. MACS-VRPTW: A multiple ant colony system for

vehicle routing problems with time windows. In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas

in Optimization, pages 63–76. McGraw-Hill, UK, 1999.

[25] S. Goss, S. Aron, J. Deneubourg, and J. Pasteels. Self-organized shortcuts in the Argentine ant. Natur-

wissenschaften, 76:579–581, 1989.

[26] P. P. Grassé. Les insectes dans leur univers. Ed. du Palais de la decouverte, Paris, 1946.

[27] P. P. Grasse. La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natal-

ensis et cubitermes sp. la théorie de la stigmergie: essai d’interprétation du comportement des termites

constructeurs. Insectes Sociaux, 6:41–81, 1959.

[28] M. Guntsch and M. Middendorf. Applying population based ACO to dynamic optimization problems.

In M. Dorigo, G. Di Caro, and M. Sampels, editors, Proceedings of ANTS 2002 – Third International

Workshop on Ant Algorithms, volume 2463 of LNCS, pages 111–122. Springer-Verlag, Berlin, Germany,

2002.

[29] M. Guntsch and M. Middendorf. A population based approach for ACO. In S. Cagnoni, J. Gottlieb,

E. Hart, M. Middendorf, and G. Raidl, editors, Applications of Evolutionary Computing, Proceedings

of EvoWorkshops 2002: EvoCOP, EvoIASP, EvoSTim, volume 2279 of LNCS, pages 71–80. Springer-

Verlag, Berlin, Germany, 2002.

[30] M. Guntsch and M. Middendorf. Solving multi-criteria optimization problems with population-based

ACO. In C. Fonseca, P. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Proceedings of Evolutionary

Multi-Criterion Optimization: Second International Conference, EMO 2003, volume 2632 of LNCS,

pages 464–478. Springer-Verlag, Berlin, Germany, 2003.

[31] M. Guntsch, M. Middendorf, and H. Schmeck. An ant colony optimization approach to dynamic

TSP. In L. Spector et al., editor, Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2001), pages 860–867. Morgan Kaufmann Publishers, San Francisco, CA, 2001.

REFERENCES 22

[32] W. J. Gutjahr. S-ACO: An ant-based approach to combinatorial optimization under uncertainty. In

M. Dorigo, L. Gambardella, F. Mondada, T. Sttzle, M. Birratari, and C. Blum, editors, ANTS’2004,

Fourth Internatinal Workshop on Ant Algorithms and Swarm Intelligence, volume 3172 of LNCS, pages

238–249. Springer-Verlag, Berlin, Germany, 2004.

[33] J. Holland. Adaptation in Natural and Artiffcial Systems. University of Michigan Press, MI, 1975.

[34] S. Iredi, D. Merkle, and M. Middendorf. Bi-criterion optimization with multi colony ant algorithms. In

E. Zitzler et al., editor, Proceedings of the Evolutionary Multi-Criterion Optimization, First Interna-

tional Conference (EMO’01), volume 1993 of LNCS, pages 359–372. Springer-Verlag, Berlin, Germany,

2001.

[35] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy-Kan, and D. B. Shmoys. The Travelling Salesman

Problem. John Wiley & Sons, New York, NY, 1985.

[36] L. Lessing, I. Dumitrescu, and T. Sttzle. A comparison between ACO algorithms for the set covering

problem. In M. Dorigo, L. Gambardella, F. Mondada, T. Sttzle, M. Birratari, and C. Blum, editors,

ANTS’2004, Fourth Internatinal Workshop on Ant Algorithms and Swarm Intelligence, volume 3172 of

LNCS, pages 1–12. Springer-Verlag, Berlin, Germany, 2004.

[37] H. R. Lourenço and D. Serra. Adaptive approach heuristics for the generalized assignment problem.

Technical Report Economic Working Papers Series No.304, Universitat Pompeu Fabra, Dept. of Eco-

nomics and Management, Barcelona, Spain, 1998.

[38] V. Maniezzo and A. Colorni. The Ant System applied to the quadratic assignment problem. IEEE

Transactions on Knowledge and Data Engineering, 11(5):769–778, 1999.

[39] V. Maniezzo, A. Colorni, and M. Dorigo. The Ant System applied to the quadratic assignment problem.

Technical Report IRIDIA/94-28, IRIDIA, Université Libre de Bruxelles, Belgium, 1994.

[40] D. Merkle and M. Middendorf. Fast ant colony optimization on runtime reconfigurable processor arrays.

Genetic Programming and Evolvable Machines, 3(4):345–361, 2002.

REFERENCES 23

[41] D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-constrained project

scheduling. IEEE Transactions on Evolutionary Computation, 6(4):333–346, 2002.

[42] R. Michel and M. Middendorf. An island model based ant system with lookahead for the shortest

supersequence problem. In A. E. Eiben, T. Back, M. Schoenauer, and H.-P. Schwefel, editors, Proceedings

of PPSN-V, Fifth International Conference on Parallel Problem Solving from Nature, pages 692–701.

Springer-Verlag, Berlin, Germany, 1998.

[43] R. Michel and M. Middendorf. An ACO algorithm for the shortest common supersequence problem. In

D. Corne, M. Dorigo, and F. Glover, editors, New Methods in Optimisation. McGraw Hill, Boston, MA,

1999.

[44] J. M. Pasteels, J.-L. Deneubourg, and S. Goss. Self-organization mechanisms in ant societies (i): Trail

recruitment to newly discovered food sources. Experientia Supplementum, 54:155–175, 1987.

[45] M. Rahoual, R. Hadji, and V. Bachelet. Parallel ant system for the set covering problem. In M. Dorigo,

G. D. Caro, and M. Sampels, editors, Proceedings of Ant Algorithms - Third International Workshop,

ANTS 2002, volume 2463 of LNCS, pages 262–267. Springer-Verlag, Berlin, Germany, 2002.

[46] M. Randall and A. Lewis. A parallel implementation of ant colony optimization. Journal of Parallel

and Distributed Computing, 62(9):1421–1432, 2002.

[47] K. Socha. ACO for continuous and mixed-variable optimization. In M. Dorigo, M. Birattari, C. Blum,

L. M. Gambardella, F. Mondada, and T. Stützle, editors, Ant Colony Optimization and Swarm Intelli-

gence, 4th International Workshop, ANTS 2004, volume 3172 of LNCS, pages 25–36. Springer-Verlag,

Berlin, Germany, 2004.

[48] K. Socha, J. Knowles, and M. Sampels. A MAX -MIN ant system for the university timetabling

problem. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Proceedings of ANTS 2002 – Third

International Workshop on Ant Algorithms, volume 2463 of LNCS, pages 1–13. Springer-Verlag, Berlin,

Germany, 2002.

REFERENCES 24

[49] K. Socha, M. Sampels, and M. Manfrin. Ant algorithms for the university course timetabling problem

with regard to the state-of-the-art. In G. Raidl et al., editor, Proceedings of EvoCOP 2003 – 3rd European

Workshop on Evolutionary Computation in Combinatorial Optimization, volume 2611 of LNCS, pages

334–345. Springer-Verlag, Berlin, Germany, 2003.

[50] T. Stützle. Parallelization strategies for ant colony optimization. In A. E. Eiben, T. Bäck, M. Schoe-

nauer, and H.-P. Schwefel, editors, Proceedings of Parallel Problem Solving from Nature - PPSN V: 5th

International Conference, pages 722–731. Springer-Verlag, Berlin, Germany, 1998.

[51] T. Stützle and M. Dorigo. ACO algorithms for the traveling salesman problem. In K. Miettinen,

M. M. Mäkelä, P. Neittaanmäki, and J. Périaux, editors, Evolutionary Algorithms in Engineering and

Computer Science, pages 163–183. John Wiley & Sons, Chichester, UK, 1999.

[52] T. Stützle and H. Hoos. The MAX-MIN Ant System and Local Search for Combinatorial Opti-

mization Problems: Towards Adaptive Tools for Combinatorial Global Optimisation. In S. Voss,

S.Martello, I.H.Ossmann, and C.Roucairol, editors, Meta-Heuristic, Advances and Trends in Local

Search Paradigma for Optimization, pages 313–329. Kluwer Academic Publishers, 1998.

[53] T. Stützle and H. H. Hoos. MAX-MIN Ant System. Future Generation Computer Systems, 16(8):889–

914, 2000.

[54] E.-G. Talbi, O. Roux, C. Fonlupt, and D. Robillard. Parallel ant colonies for combinatorial optimization

problems. In Proceedings of the 11 IPPS/SPDP’99 Workshops Held in Conjunction with the 13th In-

ternational Parallel Processing Symposium and 10th Symposium on Parallel and Distributed Processing,

pages 239–247. Springer-Verlag, Berlin, Germany, 1999.

Index

MAX -MIN Ant System, 13

ant colony optimization, 1

Ant Colony System, 14

ant foraging behavior, 4

Ant System, 12

construction graph, 7

fitness function, 9

heuristic information, 8

implicit evaluation, 4

pheromone, 2

evaporation, 8

trail, 3, 5

update, 8

pseudorandom proportional rule, 15

solution

best-so-far, 9

iteration-best, 9

stigmergy, 2

25

