
An introduction to artificial neural
networks in bioinformaticsçapplication
to complex microarray andmass
spectrometry datasets in cancer studies
Lee J. Lancashire,Christophe Lemetre and Graham R. Ball
Submitted: 14th November 2008; Received (in revised form): 13th February 2009

Abstract
Applications of genomic and proteomic technologies have seen a major increase, resulting in an explosion in the
amount of highly dimensional and complex data being generated. Subsequently this has increased the effort by the
bioinformatics community to develop novel computational approaches that allow for meaningful information to be
extracted. This information must be of biological relevance and thus correlate to disease phenotypes of interest.
Artificial neural networks are a form of machine learning from the field of artificial intelligence with proven pattern
recognition capabilities and have been utilized in many areas of bioinformatics. This is due to their ability to cope
with highly dimensional complex datasets such as those developed by protein mass spectrometry and DNA micro-
array experiments. As such, neural networks have been applied to problems such as disease classification and
identification of biomarkers. This review introduces and describes the concepts related to neural networks, the
advantages and caveats to their use, examples of their applications in mass spectrometry and microarray research
(with a particular focus on cancer studies), and illustrations from recent literature showing where neural networks
have performed well in comparison to other machine learning methods.This should form the necessary background
knowledge and information enabling researchers with an interest in these methodologies, but not necessarily from
a machine learning background, to apply the concepts to their own datasets, thus maximizing the information gain
from these complex biological systems.
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INTRODUCTION
The intention of this review is to provide researchers

with an understanding of the potential benefits

of using artificial neural network (ANN)-based

approaches within a biomedical context. They may

be applied for classification, predictive modelling and

biomarker identification within data sets of high

complexity. The focus within this review is on

transcript or gene expression data generated from

DNA microarray (MA) analysis, or peptide/protein

level data generated by mass spectrometry (MS). In

‘Artificial neural networks’ section the concepts

behind ANN learning will be introduced and

described detailing their advantages and disadvan-

tages. This will include details on how robust models

are generated, tested and validated using suitable
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cross validation approaches. In ‘Regularization’

section the reader will be made aware of techniques

that must be applied during the modelling process in

order to obtain reliable results, a principal considera-

tion in highly dimensional datasets. In ‘Experimental

methods requiring robust bioinformatics’ section the

MS and MA technologies will be outlined. In ‘Data

complications in proteomics and genomics’ section,

issues of high dimensional input data and the

importance of reproducibility will be examined. In

‘Recent applications’ section, examples of publica-

tions detailing how ANNs are currently being used

in genomic MA and proteomic MS studies will be

summarized. ‘Comparison to other machine learning

methods’ section provides highlighted case studies

where ANNs have performed favourably in com-

parison to other common statistical and machine

learning methodologies. ‘Future trends’ section

briefly outlines the advanced steps necessary once

a validated ANN biomarker signature has been

discovered. ‘Conclusions’ will sum up the review.

Researchers with an interest in the potential benefits

that ANN approaches may bring to their laboratories

should then be able to apply them to their own

datasets, maximizing the information to be gained

from the analysis of complex biological systems.

Background
There are a number of steps required in order

to identify and validate a biomarker so that it can

be used in a clinical setting [1], and despite the

increasing use of high-throughput technologies such

as MS and gene MAs, there remains a lack of

clinically useful biomarkers emerging for diseases

such as cancer. There may be several reasons for this,

such as the reported lack of reproducibility of these

approaches [2–5], and the sheer mass of data being

generated, which is often extremely noisy, and is

becoming progressively complex. This is particularly

true in the field of ‘-omics’, where for example, in

the recent Affymetrix GeneChip 1.0 ST MAs

(designed to target all known and predicted exons

in human, mouse and rat genomes), each individual

case studied contains information for approximately

1.2 million exon clusters corresponding to over 1.4

million probesets. Thus teasing out the key com-

ponents from these datasets requires the use of

mathematical models running on hardware capable

of efficient analyses. The discovery of new biomar-

kers could facilitate more reliable, efficient and less

subjective methods to assist the human expert in the

diagnosis of disease, as well as providing new

potential targets for future therapies.

With this in mind, it is clear that the identification

of new biomarkers still requires a concerted, multi-

disciplinary effort. This necessitates the requirement

for specific computational tools for data-mining, and

as such remains a major challenge in bioinformatics

[6]. One such tool are ANNs [7], a form of machine

learning from the field of artificial intelligence

utilized in many areas of bioinformatics and medicine

[8] due to their ability to cope with noisy, non-linear

and highly dimensional datasets, in particularly when

appropriate regularization strategies are employed

and when combined with appropriate feature

reduction methodologies or forward selection meth-

ods such as that proposed in [9]. Using ANNs, it is

possible to analyse these sophisticated datasets in

identifying novel gene or protein signatures

(biomarkers or fingerprints) of biological systems in

an endeavour to identify specific phenotypes for

diagnosis of disease, establishing a patient’s clinical

outcome, or even predicting a patient’s response to

therapy.

ARTIFICIALNEURALNETWORKS
ANNs are inspired by the way in which the

human brain learns and processes information, with

the ability to handle complex (non-linear) features

within data in order to generalise and predict well for

future cases. Their concept simulates the behaviour

of a biological neural network; in humans, learning

involves minor adjustments to the synaptic connec-

tions between neurons, in ANNs, the learning

process is based on the interconnections between

the processing elements that constitute the network

topology.

McCulloch and Pitts first described the concept of

the artificial neuron in 1943 as a mathematical

function derived from simulating the basic functions

of biological neurons [10]. This manuscript will focus

on ANNs in their most common form, the multi-

layer perceptron (MLP), but other ANN-based

approaches exist; for example radial basis function

networks and recurrent neural networks. In the

MLP, ANNs are organized into several layers, with

each layer having a number of respective neurons, or

processing elements, that constitute that layer

(Figure 1). Simply put, the majority of ANNs have

a similar topology consisting of an input layer, one or

more hidden layers and an output layer. The number
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of hidden layers and the number of neurons in each

layer is dependent on the complexity of the problem,

i.e. the number of input neurons. The input layer

interacts with the external environment to receive

the input data as a vector of predictor variables, each

represented as a node. This information is passed

through to the first hidden layer, and multiplied (thus

modified) by a set of associated weights. These

products are summed and fed through a non-linear

transfer function (e.g. sigmoid, hyperbolic tangent)

which scales and then produces an output, similar to

the axon of the neuron. The calculation of the

output for each neuron is then as follows:

vk ¼
Xn

i¼1

wkixi

and

yk ¼ �ðvk þ vk0
Þ

where x1, x2. . .xn are the input signals converging to

neuron k.!k1, !k2. . .!kn are the weights connecting

neuron k. vk is the net input. yk is the output of the

neuron where vk0 is a bias term and �(.) is the

activation function commonly of the form:

�ðvÞ ¼
1

1þ e�v

for the sigmoid activation function and:

�ðvÞ ¼
ev � e�v

ev þ e�v

for the hyperbolic tangent activation function.

Ultimately this modified information reaches the

node(s) in the output layer, the result of which is the

output of the entire ANN, for example the predicted

class for a given case, or a continuous numerical

output in a regression model. In a two group

classification problem, the output in the training

examples is usually represented as 0 and 1, or �1 and

1. The interconnecting weights are crucial to the

system and also enable a variable strength to be given

to each input variable included in the model,

whether it is excitatory or inhibitory.

ANN learning
ANNs must be trained to efficiently compute the

gradient as to be capable of accurately modelling a set

of cases and predicting their output. There are two

major learning paradigms; supervised and unsuper-

vised. Supervised learning involves providing the

network with a set of cases that have values for the

inputs as well as the known desired outputs.

The output of the network is then compared with

the true output to calculate error by assessing the

network performance as learning progresses. The

interconnecting weights are initially randomized

(e.g. [�1, 1]) so that predictions after completion

of the first training cycle are essentially random. One

of the most popular forms of supervised learning is to

compare the error between the true output and the

predicted output and then feed this error back

through the layers of the network. The weights are

adjusted so that after completion of the next training

cycle (or epoch) the error decreases according to:

!kið�Þ ¼ ��kxi

Each weight update !ki at the current (�th) cycle is

updated in proportion to the input value to which

the weight is applied xi, the error in the output

of the unit �k and constants known as the learning

rate � [11]. The weight change of a neuron

is proportional to the influence an input had on

the error during training and the learning rate is a

constant which controls the size of these weight

changes. The larger the learning rate, the faster

learning will proceed; however too large a value may

lead to non-convergence of the model. Each time

a pattern is presented to the network, the weights

leading to an output node are modified slightly

during learning in the direction required to result in

a smaller error the next time the same pattern is

presented, until a target error is reached or no

improvement of the error is observed. The larger the

learning rate, the larger the weight changes and the

faster the learning will proceed. If the learning rate is

Figure 1: Architecture of a typical multi-layered
perceptron artifical neural network.
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too small, training will be slowed down, however,

oscillation or non-convergence can occur if the

learning rate is too large [12]. A momentum term, �,

may be applied to help prevent the network

becoming trapped in local minima, or being stuck

along flat regions in error space. This occurs with a

slight alteration to the weight update rule by making

the weight update on the �th iteration depend on the

update that occurred during the (� –1th) iteration:

!kið�Þ ¼ ��kxi þ �!kið� � 1Þ

This helps to speed up the time it takes for the

network to reach convergence by gradually increas-

ing the step size of the search in regions where the

gradient is not changing. As with the learning rate,

effectively choosing values for these constants

depends on the particular problem of interest and

experimentation is important here to find optimal

values. In our own experiences for MA and MS data,

a learning rate of 0.1 combined with a momentum of

0.5 has proved successful [9, 13]. The target error

that needs to be minimized is often determined

as the total sum-of-squares based on the difference

between the output and target vector as follows:

" ¼
1

2

Xn

j¼1

ðdj � yjÞ
2

where n is the number of cases, dj is the target

network output for case j and yj is the network

predicted output for case j. Alternative error

functions also exist, such as the mean squared error,

or the maximum conditional likelihood fitting, but

will not be dwelt upon here. This learning process is

an extension of the generalized delta rule, and is

commonly known as back-propagation [14–16].

It is crucially important that the data used in training

the network should be reasonably large in order

to contain all the information necessary to be able to

recognize which of the predictor variables are

important amongst the vast amounts of noise and

individual variation that is expected to cloud

important information in complex ‘-omics’ datasets.

If the network outputs fail to show good discrimina-

tion on an independent test dataset, over-fitting may

have occurred and training must be continued or

repeated. Over-fitting can occur when the number

of parameters in a model exceeds the number of

cases. It is in essence a memorization of the training

data (and any associated random noise) [17, 18]. In

order for the network to be trained to a satisfactory

level which maintains generalization for new data,

it is vital to employ an appropriate regularization

technique (discussed later in the review). Once

learning is complete the weights are stored and can

be used to predict future cases in separate test

datasets. Other learning algorithms have also been

proposed. These include (but are not limited to)

QuickProp [19], RPROP [20] and the Levenberg–

Marquardt algorithm [21, 22].

Unsupervised learning occurs when the network

attempts to map the inputs to outputs without any

external assistance. Therefore the network itself

governs how it groups the cases based upon the

input data. This is sometimes referred to as self

organization, and Kohonen’s self organizing maps

[23] are the most popular form of neural network-

based unsupervised learning. Other forms of unsu-

pervised learning include principal components

analysis, independent components analysis, hebbian

learning and autoassociators. Although unsupervised

learning algorithms are an active area of research, it is

beyond the scope of this review to explain and

review their application in detail and consequently

this manuscript will focus on the use of supervised

neural networks. For a more detailed discussion on

unsupervised pattern recognition in high-throughput

genomics and proteomics see [24].

Advantages and disadvantages of
artificial neural networks
As ANNs are loosely based on the way a biological

neuron is believed to organize and process informa-

tion, they have many advantages in their ability to

derive meaning from large complex datasets. First,

they do not rely on data to be normally distributed,

an assumption of classical parametric analysis

methods. They are able to process data containing

complex (non-linear) relationships and interactions

that are often too difficult or complex to interpret by

conventional linear methods. Another advantage is

that they are fault tolerant, i.e. they have the ability

of handling noisy or fuzzy information, whilst also

being able to endure data which is incomplete or

contains missing values. In addition to this (like other

machine learning methods), they are capable of

generalization, so they can interpret information

which is different to that of the training data, thus

representing a ‘real-world’ solution to a given

problem by their ability to predict future cases or

trends based on what they have previously seen.

Thus, trained ANNs can be used as standalone

executable systems in order to predict the class of an
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unknown case of interest, and therefore have the

potential application in diagnosis. Finally, there are

several techniques that can be used to extract

knowledge from trained ANNs, and the importance

of individual variables can be easily recovered using

various methods such as the analysis of interconnect-

ing network weights [25], sensitivity analysis and rule

extraction [26]. This, from a biological perspective, is

perhaps one of the most useful aspects of ANN

modelling. Gevrey et al. [27] review this subject in

more depth.

Like all approaches, ANNs also have their

limitations. Training of ANNs can potentially be

time consuming depending on the complexity of the

data being modelled, and as the number of hidden

layers required to capture the features of the data

increases, so does the time taken for training to

complete. As such, only one or two hidden layers are

commonly used. Over-fitting may be a problem in

ANNs, which is a memorization of the training cases

causing the network to perform poorly on future

cases. The one major barrier which researchers

usually associate with ANNs is that it is not always

apparent how they reach a solution, and because

of this they have been referred to as ‘black boxes’

[28–31].

Further limitations originate from the data itself.

Experimental data may suffer from high background

variation that is difficult for computational algo-

rithms to interpret. The challenges in terms of

reproducibility of some technologies has also been

investigated [18, 32–39], rendering validation with a

separate cohort of samples virtually impossible. The

old adage ‘garbage in, garbage out’ can be strongly

applied to modelling with ANNs, and thus the

quality of the model output is highly dependent

upon the quality of the input data. If the input data is

not representative of the ‘real world’ scenario, the

model is compromised. To overcome these issues,

several techniques for pre-processing the data have

been proposed, and the reader is referred to [40–45]

for more examples, and for a guide to considerations

regarding study design see [2].

Implementing artificial neural networks
Implementing ANNs is usually performed with

statistical computer software packages, or open

source equivalents in R (http://www.r-project.

org/index.html) and Weka (http://www.cs.waikato.

ac.nz/ml/weka/). A comprehensive list of ANN

software packages can be found at ftp://ftp.sas.com/

pub/neural/FAQ6.html#questions.

REGULARIZATION
Commonly the main purpose of modelling is to

simulate a real world system and therefore a model is

judged on its ability to generalize to new data. In

ANNs the risk of low generalization is mainly

attributed to over-training of the model, leading to

over-fitting and subsequently poor predictive per-

formance during independent validation. Due to the

fact that even a linear model would over-fit in high

dimensions, ANNs must be appropriately regularized

during training in order to achieve sufficiently high

predictive performances. In order to address this,

regularization techniques need to be applied during

training. Several options for regularization exist and

methods can be chosen according to the type of

data or generalization performance that is required.

This section will now briefly introduce some of the

most common forms.

Weight decay
One of the simplest regularization methods to

implement is weight decay. In weight decay, the

error function includes a penalty term, for example

the sum of squared weights and biases multiplied by

a decay constant that controls how much the

penalty term should affect the resulting error

function. Since over-fitted models are more likely

to contain unusually large weights, this approach

aims at penalizing such large weights, in order to

keep weight values smaller than they naturally

otherwise would converge at, thus keeping the

activation of the neurons in the linear range [7].

Resampling and early stopping
According to Ntzani and Ioannidis [46], independent

validation is only conducted in about 10% of MA

studies published. Given the fact that these complex

datasets are likely to be non-linear in nature, one

may not have prior information regarding the

intricacies of the data. As such it is vital to estimate

the performance of these models on new data in

order to be confident that over-fitting has been

avoided. It was stated earlier that the back-propaga-

tion algorithm should stop training once the network

has achieved an acceptable level, however, the

question remains as to what is considered to be an

acceptable level, and what can be done to ensure that
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the model will be capable of generalizing to

additional future cases. If training is terminated

solely on the basis of a set number of iterations the

model is at risk of over-fitting. The most universal

approach to address this problem is resampling.

Typically in ANN-resampling approaches, the data

is split into different subsets, where a percentage of

the total sample set is used to train and optimize the

ANN (the training set) and (sample size permitting)

the remaining are partitioned for validation during

training (the validation set) and external testing after

the modelling is complete (the test set). A crude

regularization technique known as the early stopping

mechanism monitors the network error with respect

to a validation or test dataset. This process signals to

stop training either when a predetermined number

of iterations have completed, or when the prediction

accuracy of the model begins to worsen for the

validation or test dataset, a sign of over-fitting. The

weights resulting in the minimum validation or

test error are then selected. Once the network has

completed the learning process, it is further validated

using the test data split, to give an unbiased

estimation of the networks likely performance on

future unseen cases. Examples of this approach

can be found in [8] and [12].

Bayesian regularization
The Bayesian regularization approach involves

modifying the target function (such as the sum of

squared errors) in order to improve the models

generalization ability. The Bayesian regularization

aims to smooth the cost function by adding to it

a regularization parameter based on the sum of

squared weights. To reduce bias, the weights and

variables of the network are assumed to follow a

Gaussian distribution and are assigned prior prob-

abilities, optimized according to the Bayesian

framework of Mackay [47]. Network training then

attempts to find the trade-off between minimizing

the model complexity and model error, as such

minimizing both the bias and variance [48]. Methods

such as automatic relevance determination will

identify and remove unnecessary parameters from

the model since the Bayesian approach provides

an estimate for the entire distribution of model

parameters rather than a single optimal set of

weights. Model comparison is based on highest

evidence, rather than cross validation, and as such

Bayesian regularization maximizes the data available

as it does not require a validation set since all the

training data can be used for model fitting. A review

of Bayesian methods for supervised neural networks

can be found in [49], and an example of its

application in a microarray study can be found

in [48].

Cross validation
There are a number of cross validation approaches

used to give an unbiased estimation of the error rate.

Examples of these will now be discussed.

First, in Monte Carlo resampling, a training,

validation and test set are randomly constituted, with

a predetermined number of cases in each subset. All

three sets may be randomized, or alternatively the

test subset may be kept constant, with the training

and validation sets drawn at random a number of

times, to enable comparison between models for

validation data [7].

Bootstrapping has been shown to be an effective

strategy for estimating the error of predictive values

in neural network models, and therefore is a reliable

approach in determining generalization of the net-

work [50]. In bootstrapping, rather than repeatedly

analysing subsets of data (as in the Monte Carlo

approach), subsamples of the data are analysed,

where many ‘pseudo-replicates’ are created by

resampling the original data. Here, cases are drawn

at random from the data set, with equal probability,

in order to replicate the process of sampling multiple

datasets. The 0.632 bootstrap error estimator has

been preferred in small sample microarray classifi-

cation [51, 52].

k-fold validation is an effective approach when

the number of samples is not efficient enough to split

the data into three subsets. In a widely used version

of this called leave one out cross validation [53, 54],

N divisions are made (where N is the total number of

cases in the dataset) and in each division the network

is trained on all of the samples except one, which is

set aside for test purposes. This process is repeated so

that all of the samples are used once for testing.

Tenfold validation is commonly used when the

number of samples is relatively high (e.g. >100)

whilst leave-one-out methods are useful when the

training set is lower (e.g. <100) or when the number

of features is higher than the number of examples.

This multiple cross validation helps to minimize

overlap of the test set compared to resampling. For

an overview of assessing the accuracy of prediction

algorithms for classification problems, the interested

reader is directed to [55].
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EXPERIMENTALMETHODS
REQUIRING ROBUST
BIOINFORMATICS
The advent of these high-throughput techniques

has increased the potential for identification of

new biomarkers massively. These methods facilitate

the comprehensive profiling of samples representing

disease states. The hurdle to overcome with these

technologies is now the sheer complexity of the data

generated. This complexity is necessary to represent

coverage (or even partial coverage given current

technological limitations) of the genome or pro-

teome. MAs are one of the methods commonly used

for the high throughput sample profiling at the

transcript level, whilst MS is being used to detect

changes at the protein level. These technologies are

therefore complementary to one another in describ-

ing biological systems, and the basic principles will

be briefly outlined.

Microarrays
A DNA MA consists of a solid surface, onto which

DNA molecules have been chemically bonded. The

purpose of MAs is to detect the presence and

the abundance of labelled nucleic acids in a given

biological sample, which will then hybridize to the

DNA on the array, and become detectable via the

label. The source of the labelled nucleic acids is

the mRNA of the sample of interest, so therefore the

purpose of a MA is to measure gene expression. As

there may be thousands of different DNA molecules

bonded to an array, it is possible to measure the

expression of many thousands of genes simulta-

neously, leading to the potential for extremely high

throughput analysis. There are two major types

of MA technology used today; firstly cDNA and

secondly oligonucleotide arrays, such as those

marketed by Affymetrix. For a more detailed

explanation of the technology, the reader is referred

to [56], or more specifically [57] and [58] for cDNA

and oligonucleotide MAs respectively.

Mass spectrometry
MS approaches, more specifically MALDI (matrix-

assisted laser/desorption ionization) and a modifi-

cation of this named SELDI (surface enhanced laser

desorption/ionization) TOF (time of flight) MS

are now being readily used to generate proteomic

profiles of biological samples. Simply, a mass spectro-

meter consists of an ion source, a mass analyser to

measure the mass/charge ratio (m/z) of the analytes

which have been ionized (mass spectrometers do not

measure mass directly, but rather the mass to charge

ratio of ions formed), and finally a detector that

records the number of ions at each m/z value. This

generates a spectrum according to the time of

flight of the ion, directly related to its mass, or a

‘fingerprint’ for the sample being analysed. For an

overview of the method see [59]. These analyses

have an inherent ability to generate profiles consist-

ing of hundreds of thousands of points, with each

point representing a protein mass, a peptide mass or a

fragment of the above. This high dimensionality

provides an obstacle and limits many analysis

methods.

DATACOMPLICATIONS IN
PROTEOMICSANDGENOMICS
Dimensionality and complexity
Biological ‘-omics’ datasets are unusual in that there

is a very large p (input variables) and relatively

small n (cases). As the dimensionality of the input

data space (p� n) increases, it becomes exponentially

more difficult to find a global optimum for the

parameter space. This has been termed ‘the curse of

dimensionality’ [60], and often leads to an input

space with many irrelevant or noisy inputs, which

coupled with the wide heterogeneity commonly

found in biological samples, make it difficult to

identify the truly important markers with predictive

algorithms performing badly as a result of them

modelling extraneous portions of the data space.

Conventional statistical theory would indicate that

for a valid representation of the population one

should have a model where n> p, and some rules

state that to have confidence in results there should

be at least 10 events for each variable [61]. Clearly

some form of dimensionality reduction/variable

selection algorithm is required to satisfy this, because

acquiring a data set containing hundreds of thousands

of samples is not feasible. Ma and Huang [62] review

the topic of feature selection in bioinformatics, and

for a review to approaches for dimensionality

reduction in biomarker studies the reader is referred

to [63].

Reproducibility
Superimposed on the dimensionality issues are those

of data quality. In order to identify biomarkers the

data should be reproducible within samples, between

sample runs and across multiple instruments (at least
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instruments of the same model) [64]. This can be

optimized through the use of technical and experi-

mental replicates, where filtering and averaging of

samples are methods which are commonly used to

assess reproducibility and increase the confidence in

the profiles for comparison. Technical replicates

provide information on the variability that occurs

when performing a particular assay, whilst experi-

mental (or biological) replicates give a measure of the

natural sample to sample variation. Lack of reprodu-

cibility decreases the validity of markers and makes

validation and ultimately clinical use difficult [65].

Low reproducibility within the data adds to the issues

of dimensionality by making the relevant features

within data sparser with respect to the overall noise.

Low replication and poor data quality can lead to the

introduction of features not representative of disease,

but of sample run, sample collection, storage and

preparation. This introduces random, noisy and

unimportant features within the data, further

increasing the problem of data analysis.

RECENTAPPLICATIONS
This section will now highlight recent applications

of ANN technologies in MAs and MS. Since the

majority of studies involving the use of ANNs are in

tumour diagnosis, the following will focus on the

field of cancer. Table 1 summarizes the majority of

studies using ANNs with these technologies since

2001, and a selection of these will now be discussed

in more detail.

Genomics
The seminal paper by Khan et al. [66] was perhaps

the first major application showing the potential

advantages of using ANNs for these complex

datasets. Here they used principal components

analysis (PCA) followed by ANNs to classify 88

round blue-cells tumours into four diagnostic

categories based on cDNA MA analysis of over

6000 genes. Due to the high accuracy of the models

developed the authors eluded to the potential use of

ANN-based methodologies ‘as an adjunct to routine

histological diagnosis’. This dataset was made avail-

able for the scientific community to download and

has since formed the basis for several more studies

using various ANN-based algorithms in the success-

ful classification of these samples [67–70].

In [71], Gruvberger and colleagues used PCA for

dimensionality reduction followed by ANN analysis

to predict the oestrogen receptor (ER) status of

58 tumours from their gene expression profiles.

Here they performed a series of classifications using

different sets of 100 genes and showed the ANN

performance to be good discriminators on this data.

As a result of using ANNs, they hypothesized that

the classification was not only controlled by a few

differentially expressed genes, but a more complex

expression pattern existed involving a larger number

of genes.

In predicting long term survival of 40 patients

with large B-cell lymphoma, O’Neill and Song [72]

used the data generated by Alizadeh et al. [73]

containing 12 078 transcripts representing expression

levels for 4026 genes. This was the first time ANNs

were shown to have the ability to perfectly classify

(100% accuracy) this type of high dimensional data,

and also provided a robust solution for reducing

Table 1: Cancer studies using artificial neural networks
to analysemicroarray andmass spectrometry data since
2001

Platform Cancer type Number
of cases

Number
of classes

References

MA Astrocytoma 65 2 [86]
MA Astrocytoma 60 2 [69]
SELDI-TOF Astrocytoma 12 2 [80]
MA Breast 58 2 [68, 71]
MA Breast 10 2 [87]
MA Breast 49 2 [9]
MA Breast 78 2 [69, 88]
MA Breast 15 2 [69]
SELDI-TOF Breast 40 2 [89]
SELDI-TOF Breast 82 2 [90]
MA Colorectal 62 2 [69, 91]
SELDI-TOF Colorectal 147 2 [82, 92]
SELDI-TOF Colorectal 93 2 [83]
MA Oesophageal 28 2 [93]
MA Leukaemia 72 2 [94]
MA Leukaemia 64 2 [95]
MA Leukaemia 38 2 [69]
MA Leukaemia 57 3 [69]
MALDI-TOF Liver 132 2 [84]
SELDI-TOF Liver 106 2 [96]
SELDI-TOF Liver 182 2 [97]
MA Lung 32 2 [69]
MA Lymphoma 40 2 [72]
MA Lymphoma 220 2 [75]
MALDI-TOF Melanoma 100 2 [65]
SELDI-TOF Melanoma 205 2 [85]
MA Myeloma 105 2 [77]
MA Neuroblastoma 56 2 [76]
MA Ovarian 54 2 [98]
MA Prostate 102 2 [69]
SELDI-TOF Renal 138 2 [81]
MA SRBCT 88 4 [66^70]

SRBCT: small round blue cell tumours.
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unknown noise and redundancies in datasets whilst

maintaining correct classifications.

Using the data made accessible by Rosenwald

et al. [74], Ando and co-workers [75] described the

use of fuzzy neural networks as an approach to

variable selection in the expression profiling of 220

diffuse large B-cell lymphoma patients in an effort to

predict survival from 7384 genes. Here, using just

four genes, ANNs were shown to predict outcome

with a classification accuracy of 73%. The analysis in

the original manuscript achieved a lower accuracy

using more genes in a Cox model. Moreover, the

authors showed that by increasing the number of

genes in their model to 35 (many of which were

clinically relevant to the prognosis of lymphoma),

the accuracy increased to 91%. They were able to

extract informative rules from their models, with a

view to using these approaches in future approaches

focused on personalized medicine.

Wei et al. [76] used cDNA MAs to analyse 56

tumour samples from patients with neuroblastoma.

Total 37 920 data points for each of the samples

remained to be analysed after the removal of poor

quality data. Due to this complexity, the authors

chose to utilize the power of ANNs in order to

develop a predictor of survival. Using all of the data

in a model, high accuracies were achieved (88%).

What is more, they proposed an ANN base gene

minimization strategy and identified a signature of 19

genes, some of which had previous affiliations as

prognostic markers. This subset of 19 genes had the

ability to correctly classify 98% of the patients

and further partition the patients into subgroups

according to survival status. They concluded that

ANN-based approaches such as this would allow

therapies to be tailored in a patient specific manner

according to their gene expression profiles.

Using ANNs to analyse a 7129 gene expression

dataset derived from 74 patients diagnosed with

multiple myeloma and 31 normal bone marrow

cases, Narayanan et al. [77] showed how genes that

were consistently positive or negatively expressed

could be identified from large datasets. They

achieved this by using the interconnecting weights

of the trained ANN model, and demonstrated how

ANNs could be utilized as a powerful method for

dimensionality reduction by identifying 39 genes

with 100% generalization on unseen cases. Many of

these genes had been previously linked to cancer.

Furthermore, the authors described how symbolic

knowledge can be extracted from these trained

ANN models in order to create simple rules. For

example, if gene x is present then myeloma, and if

gene y is absent then normal. This made clear the

potential for the use of ANNs in a clinical setting.

In one of our own studies [9], we presented

a novel stepwise algorithm using ANNs so that

optimal predictive gene signatures can be identified

from highly complex, noisy and heterogeneous

datasets. Using the dataset published by West et al.
[78] we identified gene subsets highly predictive

for ER status and lymph node status in 49 breast

cancer cases analysed by MA containing 7129 gene

transcript intensities per patient. As with other studies

using ANNs, many of these genes had previously

been associated with cancer. When the models were

applied to a completely separate 88-patient cohort

dataset made available by Huang etal. [79], accuracies

of 88% and 83% were seen for predicting ER and

lymph node status respectively. This manuscript also

showed how ANNs could be used in the interroga-

tion of predictive biomarkers to provide an insight

into how the increased or decreased expression

affects the class of interest, enabling rules for

molecular classification to be derived.

Proteomics
One of the first major applications of ANNs for

the analysis of MS data was in the classification of

astrocytoma by Ball et al [80]. They showed the early

promise of utilizing SELDI-TOF MS technology

combined with intensive computer algorithms

for protein expression screening in cancer patients.

Here ANNs were used to screen �100 000 data

points generated by SELDI-TOF MS, and by

scrutinizing the interconnecting network weights,

the authors were able to assign a relative importance

value to each ion in terms of its contribution to the

classification. The top 50 ions were identified, which

could be grouped into several sub-groups according

to their mass. Furthermore, an additive approach was

performed in order to find the optimal combination

of ions in terms of predictive ability. This led to

the identification of two ions that in combination

were able to predict tumour grade with an accuracy

of 94%.

Rogers et al. [81] also used SELDI-TOF MS in

their study on urinary proteins in renal cancer. Here,

ANNs were utilized in an effort to detect early onset

of disease, and identify indicative biomarkers.

Following pre-processing using peak identification,

ANN models were built and trained using several
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types of controls (healthy controls and benign cases

combined with healthy controls). Both peak pre-

sence/absence (categorical), as well as actual peak

intensities (continuous) were used, with the latter

shown to be more efficient. This highlighted

the importance and extra information gain that is

achieved using actual intensity data to capture the

heterogeneity in biological systems rather than peak

presence/absence. Moreover, this study utilizing

ANNs achieved superior results to the urinary

protein assays that were available at the time for

bladder cancer.

With a current lack of reliable biomarkers for

colorectal cancer, Chen etal. [82] proposed the use of

proteomics combined with ANN analysis for

the discovery of key proteins able to distinguish

colorectal cancer patients from a healthy population.

To achieve this, MS profiles were generated by

SELDI-TOF MS for an age and gender matched

cohort of 55 colorectal cancer cases and 92 healthy

controls. Initially analysis by cluster analysis showed

54 peaks of interest, culminating in the identification

of four candidate biomarkers significantly elevated in

colorectal cancer patients. These four ions were then

used in an ANN model to build a classifier and

discriminate healthy controls from cancer. Here,

this approach was shown to outperform discriminant

analysis and achieve a sensitivity of 91% and

specificity of 93%.

Similarly, Ward et al. [83] were also interested

in data mining SELDI-TOF MS data for reliable

biomarkers of colorectal cancer. They performed

proteomic profiling on 62 colorectal cancer patients

and 31 non-cancer controls. First, feature selection

by t-test was conducted, with statistically significant

differentially expressed peaks selected for ANN

training. The final ANN model included seven

peaks and was able to classify with high sensitivity

(95%) and specificity (91%), and outperformed CEA

(a marker of proven benefit in prognosis and benefit)

in discriminating colorectal cancer.

In an effort to improve the prognosis of breast

cancer patients through early diagnosis, Hu et al. [54]

also used SELDI-TOF-MS to explore for reliable

tumour markers in serum. They performed screening

of the serum proteome in 49 breast cancer patients,

51 patients with benign breast diseases and 33

healthy controls. Total 253 mass peaks were

identified using discriminant analysis in classifying

between breast cancer and benign, and also between

breast cancer and benign plus controls. Using a

stepwise approach to assess the predictive ability for

each peak, an ANN was able to narrow down the

number of markers of interest to just four peaks.

These were able to accurately predict the outcome of

cancer with a sensitivity of 76% and specificity of

90% for the blind test set. This four-peak model did

not result in a statistically significant reduction

predictive performance compared to the 253 peak

model, and therefore the four-peak model was

shown to be more parsimonious in discriminating

cancer patients from healthy controls.

Luk et al. [84] focused their work on hepatocel-

lular carcinoma biomarkers, investigating differ-

entially expressed proteins between tumour and

adjacent healthy liver tissue. Here, proteomic

profiling was performed using MALDI-TOF MS

and 2D gel electrophoresis followed by analysis by

ANNs and decision trees. Both techniques proved

to be excellent discriminators of the two pheno-

types, with ANNs superior in both training and

validation data.

Mian et al. [85] were interested in profiling the

serum proteome in the classification of early and late

stage melanoma, and also predicting disease progres-

sion. Here, screening of the patients’ proteome was

performed with MALDI-TOF MS, showing an

interesting signal with significantly higher intensity in

25% of the stage IV samples. ANN modelling in

the lower mass range of the spectrum was shown

to accurately classify between disease stages and

also between progressors and non-progressors.

Interestingly, when predicting disease progression,

this ANN approach was shown to outperform S100-

�, a widely utilised correlate of tumour burden in

melanoma.

COMPARISON TOOTHER
MACHINE LEARNINGMETHODS
There have been a number of studies comparing

ANNs with other statistical and machine learning

approaches to data analysis. Some of these will now

be briefly reviewed, outlining how ANNs have

performed compared to other statistical and machine

learning methods when applied to biological data.

This brief discussion will include but will not be

focused singly on MA and MA methodology

benchmarking studies, as few have been published.

Dreiseitl et al. [99] compared the ability of KNN,

logistic regression, ANNs, decision trees and SVMs

in classification of skin lesion data. The authors found
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logistic regression, ANNs and SVMs to give almost

identical results, with k-nearest neighbours and

decision trees performing the worst. Interestingly,

even the worst of the five methods (decision trees)

achieved sensitivity and specificity values comparable

to human experts indicating these approaches may

be of use to assist human decisions in the medical

arena.

Sargent [100] carried out a review on 28 cases

comparing ANNs with other statistical approaches

when applied to medium and large data sets with

more than 200 cases. ANNs outperformed regression

in 36% of the studies, and was outperformed in 14%

of the studies, with the results being similar in the

remaining cases.

Pal et al. [67] used an ANN-based approach in

categorizing subgroups of cancer from microarray

data. They identified a smaller number of biomarkers

when compared to other machine learning tool such

as SVMs whilst performing equally well, suggesting

ANNs found a more parsimonious solution. The

study performed in [101] was a direct comparison of

SVMs and ANNs in the detection of mammographic

CAD. Overall, the authors found a similar perfor-

mance between the two techniques, with ANNs

slightly outperforming SVMs in detection and

diagnosis in the test set of data.

Song and co-workers [102] compared various

machine learning techniques to more classical

statistical approaches in the prediction of outcome

in two datasets. They used ANNs (single and multi-

layered), logistic regression, least squares linear

separation and support vector machines (SVMs)

to determine the risk of death in a population of

patients with cardiac problems. They found the

multi layered ANN to be consistently better than the

other approaches, suggesting that the ability of the

ANN to model non-linear data was providing

additional information regarding the datasets leading

to higher predictive capabilities [103].

Eftekhar and colleagues [104] made a comparison

between ANNs and logistic regression models to

study patients with head injury trauma. It was

reported that ANNs significantly outperformed the

logistic models in discrimination and calibration

(goodness of fit) in 77.8% of cases but under-

performed in 68% of cases when comparing model

accuracies.

In the study by Hu et al. [54] the authors

compared their ANN model with other commonly

used machine learning techniques such as SVMs and

decision trees. They showed ANNs to be more

reliable than the other methods in the discrimination

of cancer patients from normal controls from mass

spectrometry data.

Shen and Tan [105] used different coding

strategies and feature selection methods in comparing

SVMs to other machine learning methods on two

cancer microarray datasets. Here, ANNs achieved

similar results to SVMs and outperformed K-nearest

neighbour and C4.5 decision tree approaches.

Another direct comparison between ANNs and

SVMs was performed by Romero and Toppo on

a variety of benchmark datasets [106]. Overall,

ANNs obtained similar accuracies to SVMs and the

two approaches remained competitive across the

different datasets.

In 2008, Peterson and co-workers [69] performed

a comparison of a large number of machine learning

methods (including ANNs, SVMs, K-nearest neigh-

bour, linear discriminant analysis and logistic regres-

sion) in the classification of DNA microarrays in

cancer research. One of the main findings here was

that at the greatest level of sample size ANNs

out-performed all other methods resulting in the

greatest area under the curve.

Judson et al. [107] performed a comparison of six

machine learning approaches in complex simulated

datasets. They showed that, particularly when using

a large number of features, ANNs and SVMs

were always the top performers, whereas recursive

partitioning and regression trees and K-nearest

neighbours were always the poorest.

In a study investigating heart rate variability

before a Paroxysmal atrial fibrillation event using

ANNs and SVMs [108], Chesnokov showed ANNs

provided better results in terms of sensitivity,

specificity and positive predictive value compared

to SVM which became biased towards positive cases.

Muselli and co-workers [109] proposed an

ANN-based method for gene selection microarray

data. In both the artificial and the real gene

expression data, they showed that SVMs exhibited

poor performance compared to the ANN-based

method.

FUTURETRENDS
As with the development of a novel therapeutic

agent, model systems representing novel biomarker

expression signatures (be it gene or protein expres-

sion) must be validated carefully and extensively in a

Artificial neural networks in bioinformatics 325
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/10/3/315/211497 by U
.S. D

epartm
ent of Justice user on 16 August 2022



medical setting. Trained models of these biomarker

signatures need to be incorporated into simple

software solutions so that medical practitioners

who are unsavvy in machine learning techniques

can simply enter the biomarker profiles from their

patients and receive an instant prediction with an

acceptable degree of confidence. If it can be shown

that the application of such models leads to an

improvement in medical care towards the holy grail

of cost effective ‘personalized medicine’, then these

ANN software applications may be more widely

acceptable and made more readily available to assist

patient care in a larger number of hospitals and

clinics.

CONCLUSIONS
Rapidly advancing technologies in genomics and

proteomics have increased the complexity of data

being generated, and with that the requirement for

robust data mining approaches in order to analyse

and extract panels of biomarkers from biological

systems. This review introduces one such approach,

artificial neural networks, as a robust tool able to

digest these datasets and identify the key components

(biomarkers), thus providing an increased under-

standing of the biological system being modelled

whilst also pointing out potential therapeutic targets

for focusing future research. Representative works in

this field and comparisons with other popular

statistical and machine learning techniques are

highlighted to provide the interested reader with

the sufficient background information required so

that they can utilize the potential power of these

approaches in the modelling of their own complex

datasets.
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