
An Introduction to Assertional Reasoning for Concurrent Systems

A. UDAYA SI-IANKAR

Department of Computer Sczence and Znst[tute for /idLanced Computer Studzes, Unwerstty of Maryland,

College Park, Maryland 20742

This is a tutorial introduction to assertional reasoning based on temporal logic The

objective is to provide a working familiarity with the techmque. We use a simple

system model and a simple proof system, and we keep to a minimum the treatment of

issues such as soundness, completeness, compositionahty, and abstraction. We model

a concurrent system by a state transition system and fairness requirements. We reason

about such systems using Hoare logic and a subset of hnear-time temporal logic,

specifically, invariant assertions and leads-to assertions. We apply the method to

several examples.

Categories and Subject Descriptors: D.2,4 [Software Engineering]: Program

Verification-correctness proofs; D.3 3 [Programming Languages]: Language

Constructs and Features; F 3.1 [Logics and Meanings of Programs] Specifying and

Verlfymg and Reasoning about Programs—assertions; Lnvarzants; logws of programs;

pi-e- and post-condztwts

General Terms: Verlficatlon

Additional Key Words and Phrases: Assertional reasoning, generation of preconditions,

Hoare logic, mvarlants, leads-to, progress properties, safety properties, state transition

systems, weakest preconditions

1. INTRODUCTION have recently been proposed to specify

A concurrent system consists of several
and analyze concurrent systems. One

such approach is assertional reasoning
processes that execute simulta~eouslY based on temporal logic.1

and interact with each other during the Reasoning assertionally about pro-
course of their execution via shared vari- grams is not new. Floyd [1967] intro-
ables or message passing. This is unlike duced assertional reasoning for sequen-

a sequential system consisting of a single tial programs, and Hoare formulated this
process that interacts with its environ-

ment only at the start and the end of its
as a logic, namely, Hoare logic [Hoare

execution. Indeed, many concurrent sys-

tems are useful only while executing, for
10ther approaches, such as CCS [Milner 1989] and

example, operating systems, communica- CSP [Hoare 1985], wdl not be covered in this tuto-

tion networks, etc. Various approaches rial

This work was supported m part by National Science Foundation grant NCR-890450.

Permmslon to copy wfchout fee all or part of this material is granted provided that the copies are not made

or distributed for dmect commercial advantage, the ACM copyright notice and the title of the publication

and its data appear, and notice is given that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish requires a fee and/or specific permission.

C) 1993 ACM 0360-0300/93/0900-0225 $01.50

ACM Computmg Surveys, Vol 25, No 3, September 1993

226 “ A. Udaya Shankar

I CONTENTS

INTRODUCTION

BASIC NOTIONS

21 Safety

22 Progres> and Fairness

2J State Transltlon Systems

SYSTEM LIODEL AND ASSERTION LANGUAGE

J 1 System Model

32 Assertion Language

3 3 Au.xdlary Variables

34 Relatlonshlp to Other Formalisms

PROVING SAFETl” .4ND PROGRESS

ASSERTIONS

41 Reasoning about Actlon~ with Hoare-Tr]ples

42 Reasoning about Actlonswlth

Weakest Precondltlons

43 Reasoning about Events

.44 Proof Rules for Invariance

45 Generating Invariant Requirements

46 Proof Rules for Leads-To

EX’AMPLESOF CONCURRENT

SYSTEMSANALYSES!

51 A Bounded-Buffer

Producer-Consumer E~amplc

52 An Interactlng-I,ooph E~ample

DISTRIBUTED SYSTEM MODEL

61 B1.cklng Channel~

62 N(,nblochlng Channels

63 Cbannel Falrne<s RequlIements

EXAMPLES OF DISTRIBUTED SYSTEMS

ANAI,YSES

71 AData Transfer Protocol with Flow Control

72 AShorte.t-Dl>tan ceAlg[]IILhm

7 3 A Termlnatlon I)etectlon Algorltbln

for Dlffuslng Computations

DISCUSSION

APPENDIX 1

REFERENCES

1969; Apt 1981]. Dijkstra [1976] ex-

tended this to nondeterministic sequen-

tial programs with guarded commands

and introduced weakest preconditions.

Reasoning about concurrent programs

involves several extensions. Frost, be-

cause the processes of a concurrent pro-

gram interact (and interfere) with each

other, it is necessary to assume some

level of atomicity in their interaction

[Dijkstra 1965]. Second, the properties of

interest for concurrent programs are

more complex than for sequential pro-

grams; we are interested, for example, in

infinite executions where every non-

blocked process eventually executes some

statement, where every request is even-

tually satisfied, etc. [Pnueli 1977]. In-

variants and termination suffice for se-

quential programs, but not for

concurrent programs.

Pnueli [1977; 1979] pioneered the use

of temporal logic for reasoning formally

about the properties of concurrent sys-

tems. Since then, various assertional

methods based on temporal logic for-

malisms have been proposed, for exam-

ple, Manna and Pnueli [1984; 1992],

Owicki and Lamport [1982], Lamport

[1983b; 1989; 1991], Chandy and Misra

[1986; 1988], Back and Kurki-Suonio

[1983; 1988], Lynch and Tuttle [1987],

Schneider and Andrews [1986], Lam and

Shankar [1990]. In these methods, we

reason about a concurrent system using

two kinds of assertions, referred to as

safety assertions and progress asser-

tions2 [Lamport 1977]. Informally, a

safety assertion states that “nothing bad

can happen” (e. g., variable x never ex-

ceeds 5), while a progress assertion states

that “something good will eventually

happen” (e.g., x will eventually become

5). (The distinction is made precise at the

end of Section 3.2.) With these two kinds

of assertions, we can reason about any

property that holds for a concurrent

system iff it holds for every possible exe-

cution of the system. This class of proper-

ties includes partial correctness, invari-

ant, termination, deadlock freedom,

livelock freedom, worst-case complexity,

hard real-time properties, etc. It does not

include properties that involve opera-

tions over all possible behaviors, such as

average complexity, probability distribu-

tion of response time, etc.

Assertional reasoning can be done at a

formal level using temporal Ioglc proof

systems. However, we emphasize that as-

sertional reasoning is not just about

proofs. More importantly, it is a conve-

nient language for talking unambigu-

ously about concurrent systems, so that

2Progress assertions are also referred to as liveness

assertions The term “progress” m used in Chandy

and Misra [1986; 1988]

ACM Computmg Surveys, Vol 25, No 3, September 1993

Assertional Reasoning for Concurrent Systems 8 227

one person’s view of a concurrent system

can be communicated to another without

distortion.

The objective of this tutorial is to pro-

vide a working familiarity with asser-

tional reasoning, so that the reader can

apply it to concurrent and distributed

systems of interest. Our approach is to

use a simple state transition representa-

tion of concurrent systems and a simple

proof system. We illustrate this approach

on a variety of examples. We place mini-

mum emphasis on theoretical issues such

as models, semantics, soundness, com-

pleteness, etc., because we feel that these

issues are concerned with the founda-

tion, rather than the application, of as-

sertional reasoning. We do not use a com-

positional model or proof system, because

we feel that it would hinder, rather than

help, the novice. We do, however, discuss

compositional approaches in the conclu-

sion.

The formalism we utilize is taken to a

large extent from Lam and Shankar

[1990] and Shankar and Lam [1987]. But

the basic ideas are present in much of

the recent work in assertional reasoning,

including the temporal-logic approach of

Manna and Pnueli [1984; 1992], UNITY

[Chandy and Misra 1986; 1988], TLA

[Lamport 1991], and 1/0 automata

[Lynch and Tuttle 1987].

This tutorial is organized as follows. In

Section 2, with the help of a mutual-

exclusion algorithm, we informally intro-

duce the basic notions of our approach,

namely, state transition system, fairness

requirements, invariant and leads-to as-

sertions, and proof rules. In Sections 3

and 4, we present these notions formally

and describe how our approach fits in

with those of others. Section 3 deals with

the system model and assertion lan-

guage, and Section 4 deals with proof

rules and methods to apply them. In

Section 5, we present examples of con-

current systems and their analyses. In

Section 6, we specialize the system model

for distributed systems. In Section 7, we

present examples of distributed systems

and their analyses. In Section 8, we moti-

vate compositional and refinement tech-

niques and review some of the literature

in this area.

2. BASIC NOTIONS

Let us consider a simple solution by

Peterson [1981] to the mutual exclusion

problem involving two processes, 1 and 2.

Each process can access a “critical sec-

tion” (which may represent, for example,

access to a shared data structure). The

purpose is to ensure that (1) while pro-

cess z is accessing the critical section, the

other process j does not access it also,

and (2) if a process i wants to access the

critical section, then process i is eventu-

ally allowed to access it. The first is a

safety property, and the second is a

progress property. Throughout this ex-

ample, we use i and j to identify the

processes where i #j.

The solution uses two boolean vari-

ables, thinkingl and thinkingz, and a

variable turn that takes values from

{1, 2}. thinking, = true means process i

is not interested in accessing the critical

section; it is initially true. turn is used to

resolve contention. If process i wants to

enter the critical section, it sets thinking,

to false and turn to j, and it then checks

the values of thinking] and turn. Process

i enters the critical section only if think-

ing] = true or turn = i. When it leaves

the critical section, it sets thinking, to

true. Expressed in a traditional concur-

rent programming language, the solution

is as follows; process 1 executes the first

loop below; process 2 executes the second

loop:s

cobegin

repeat
S1: thmkingl + false;

S2: turn * 2;

S3: await thinkingz v turn = 1;

“critical section”;

S4: thmkmgl + true;

forever

.—

3We have simplified Peterson’s algorithm here by

using await statements. As usual, we assume that

the boolean guard of an await statement is evalu-

ated atomically and that control goes to the next

statement only if the guard is true.

ACM Computmg Surveys, Vol 25. No 3, September 1993

228 * A. Udaya Shanlzar

II

re~eat

RI, thlnkingz +false,

R2: turn - 1;

R3 awaltthlnklngl ‘/turn=2

“crihcal section”,
R4: thinkingz +true;

forever

cobegln

Because we do not make any assump-

tion about the relative speeds of the two

processes, the algorithm has many possi-

ble executions. How can we prove that

the algorithm is correct, i.e., each of its

executions satisfies the safety and

progress properties? The usual approach

is to consider some example executions.

2.1 Safety

Consider the safety property. Suppose

process 1 enters the critical section, say

at time tl. We want to show that process

2 is not in the critical section at the same

time. At tl, thinkingz v turn = 1 held;

otherwise process 1 would not have en-

tered the critical section. There are two

cases to consider:

(a)

(b)

Suppose thinkingz held. Then pro-

cess 2 is not in the critical section,

because process 2 sets thinkzngz to

false before it attempts to enter the

critical section, and sets th inkingz to

true only after it leaves the critical

section,

Suppose ~ think ing9 A turn = 1

held. Let us assume ‘p~ocess 2 is in

the critical section and reach a con-

tradiction. Let t2 < tl be the time

process 2 entered the critical section.

Thus, thinkingl V turn = 2 held at

ta. If thinkingl held at t2, then at

some time t~ between t2 and t~,pro-

cess 1 executed S2 setting tz~rn to 2.

Hence at t~, turn should equal 2,

which is a contradiction. If T think-

ingl A turn = 2 held at t2,then again

turn should equal 2 at tl, since pro-

cess 1 cannot set turn to 1. Again we

have a contradiction.

This kind of reasoning is referred to as

operational (or behavioral) reasoning.

The basic idea is to examine example

execution sequences and to show that

each case satisfies the desired property.

In general, it is hard to be sure that we

have exhausted all the possible execu-

tions. Operational reasoning is useful be-

cause it gives insight, but it is prone to

errors.

Assertional reasoning works differ-

ently. Instead of examining different

execution sequences, we successively for-

mulate assertions. Each assertion states

a property about all executions of the

program. The final assertion implies the

desired property. Each assertion in the

succession is proved by applying a proof

rule. A proof rule consists of a list of

conditions and a conclusion, such that if

the conditions are satisfied by the pro-

gram, then we can infer that the conclu-

sion is satisfied by the program. Further-

more, the soundness of a rule should be

“obvious” and not depend on the particu-

lar program or property being examined.

In this tutorial, we use invariant as-

sertions for expressing safety properties.

An invariant assertion has the form In-

wariant(P), where P is a predicate

(boolean expression) in the program vari-

ables. Inuaricznt(P) states that at any

instant during execution the values of

the program variables satisfy P. A proof

rule for invariance, informally stated, is

the following: l~zuariant (P) holds if (i) P

holds initially and (ii) every statement S

of the program preserves P, i.e., execut-

ing S when P holds leaving P holding.

Let us prove the mutual-exclusion

property assertionally. The property is

expressed by Inuariant(Ao), where:

AO - - (process 1 at S4 A

process 2 at R4)

We start by considering the following

predicates:

Al = process 1 at S2, S3, or S4

~ 7 thinkingl

Az = process 2 at R2, R3, or R4

* 1 thinkingz

We can prove that Inz]ariant (Al) holds

by applying the invariance proof rule de-

ACM Computmg Surveys, Vol 25, No 3, September 1993

Assertional Reasoning for Concurrent Systems 9 229

scribed above. Here are the details: Ini-

tially Al holds, because process 1 is at S1

and thinkingl is true. S1 preserves Al

because it makes both sides of the ~

true. S2 preserves Al because both sides

are true before execution (since process 2

is at S2, and we can assume Al), and S2

leaves both sides true. S3 preserves Al

in the same way. S4 preserves Al be-

cause it makes both sides false. Every Ri

preserves Al because it does not affect

Al.

The proof for Inuariant(Az) is sym-

metric; simply interchange process 1 with

process 2, and t?zinkingl with think ingz.

We now consider another pair of

predicates:

As G process 1 at S4 == thinkingl V

turn = 1 V process 2 at R2

Ad = process 2 at R4 * thinkingl V

turn = 2 V process 1 at S2

172uariant(As) holds by the invariance

rule. (Initially, As holds vacuously. S1,

S2 and S4 establish Aa vacuously by

falsifying the antecedent. S3 preserves

As because it is executed only if think-

ingL V turn = 1. RI preserves As be-

cause it establishes one disjunct in A3’s

consequent, namely, “process 2 at R2.”

R2 and R4 preserve As in the same way;

each of them establishes one disjunct in

A~’s consequent.) Invariant (Ai) follows

by symmetry.

We have established that Inuar-

iant(A1) holds, for i = 1, 2, 3,4. It is easy

to show that Al, Az, AJ, and Al imply

A(l by predicate logic. (Assume ~ A. and

reach a contradiction: - AO and As im-

ply thinhingz V turn = 1. T AO and AJ

imply thinkingl V turn = 2. 1 AO and

Al and Ay imply ~ thinkingl and

7 thinkingz. Thus, we have turn = 1 and

turn = 2, which is a contradiction.) Hence

Inzmriant(AO) holds.

The assertional argument differs from

the previous operational argument in two

important ways. First, properties are

stated precisely. This M Important for

communication: We may state an asser-

tion that is not valid, for example, ln-

variant(process 1 at S3 * process 2 not

at R3), but there is no ambiguity as to

what it means. Second, the assertional

proof is in terms of applications of proof

rules. It can be checked by examining the

individual statements of the algorithm

without understanding the algorithm.

This seems central to what a “proof’ is

all about. It may take an expert to invent

an algorithm or a proof (whether opera-

tional or assertional), but it should not

require an expert to check a proof. In

fact, the assertional approach lends itself

to mechanization, i.e., the process of

checking a proof can be completely auto-

mated, and this motivates much of the

work in theorem proving.

A common complaint about assertional

proofs of concurrent algorithms is that

they are too tedious or too difficult and

that the insight gained in doing opera-

tional reasoning is often lost or buried

among the tedious and “syntactic” details

of assertional proofs. We disagree. It is

concurrent algorithms, and not asser-

tional proofs, that are difficult to

understand.

An assertional proof can be made brief

and insightful just like any other proofi

by omitting steps and unnecessary de-

tail; e.g., in the above proof, maybe the

invariance of Al and Az is obvious, but

that of A? and AJ is not, If you think a

property 1s obvious, then state it asser-

tionally (so we know what you mean);

assume it without proofi and use it to

prove other properties. Proof rules can be

formulated to allow such reasoning. An

example is the following gen-

eralization of the invariance rule: Inuari-

ant(P) holds if, for some predicate Q, (i)

Inuariant(Q) holds, (ii) P holds initially,

and (iii) for every statement S of the

program, executing S when P ~ Q holds

leaves P holding. This rule allows us to

assume the invariance of Q, and we make

use of it in proving Inuariant(P). (It sim-

plifies to the former rule if Q = true.)

2.2 Progress and Fairness

Let us give an operational proof of the

progress property of the mutual exclu-

sion algorithm. Suppose process 1 wants

ACM Computmz Survejs, Vol 25. No 3, September 1993

230 “ A. Udaya Shankar

to enter the critical section. It sets think-

ing ~ to false, turn to 2, and checks for

thinkingz v turn = 1, say, at time tl.If

process 2 is not attempting to enter the

critical section, then thinkingz is true,

and process 1 enters the critical section.

If process 2 is also attempting to enter

the critical section, then thinkingz will

be false, and the value of turn deter-

mines which process enters first. There

are two cases to consider:

(a) If process 2 was the last process to

assign turn, then turn equals 1 at tl,

and process 1 enters the critical

section first.

(b) If process 1 was the last process to

assign turn, then turn equals 2 at t~.

Process 2 enters the critical section

and process 1 has to wait. Assuming

that process 2 does not stay indefi-

nitely in the critical section, at some

time t2 (> tl) it sets thinking? to

true. At this point, one of two things

can happen:

(bl) Process 1 enters the critical sec-

tion.

(b2) Process 1 is slower than process

2, and before it can execute S3

process 2 executes Rl, say at

time t~ > t2.Then process 2 is

again blocked. However, process

2 will soon execute R2 setting

turn to 1, at which point process

1 becomes unblocked. More im-

portantly, it remains unblocked

because process 2 can never set

turn to 2. Thus process 1 eventu-

ally enters the critical section.

Clearly, there are more cases here than

in the safety proof But there is also a

fundamental difference. In the case of

safety, we do not care if a process takes

forever to execute a statement. But in

the case of progress, that is not true in

general. Consider process 2. If it is think-

ing, we do not care if it ever executes RI.

But if it does execute Rl, then it must

execute R2 in finite time; otherwise pro-

cess 1 can wait forever (case b2). For the

same reason, process 2 must also not

delay indefinitely the execution of R3 and

R4.

Because R3 is an await statement

whose condition {thinkingl V turn = 2)

can be enabled and disabled by process 1,

we need to be more precise in what we

mean by “process 2 must not delay indef-

initely the execution of R3.” Assume

process 2 is at R3.

●

e

One interpretation is that if R3 re-

mains continuously enabled, then pro-

cess 2 eventually executes R3. We refer

to this as “process 2 executes R3 with

weak fairness.”

Another interpretation is that if pro-

cess 2 is at R3-and R3 becomes enabled

and disabled repeatedly,~ then process

2 eventually executes R3 in one of its

enabled periods. We refer to this as

“process 2 executes R3 with strong

fairness.”

The notions of weak fairness and strong

fairness were introduced in Lehmann et

al. [198 1]. A detailed treatment of these

(and other kinds of fairness) can be found

in Francez [1986] and Manna and Pnueli

[1992]. Weak fairness for a statement is

easy to implement,5 whereas strong fair-

ness is not [Sistla 1984; Apt et al. 1988].

It turns out that strong fairness implies

weak fairness (see Section 3.1). The fair-

ness terminology can be extended to

statements like R1 and R4, simply by

considering them to be always enabled.

Weak fairness suffices for such state-

ments because they cannot be disabled

by another process.

To summarize, we want R2, R3, R4,

S2, S3, and S4 to be executed with weak

fairness. Note that R1 and S 1 are the

only statements that need not be exe-

cuted with any fairness. Thus, if both

processes are thinking, the system can

stay in that state forever. In any other

situation, the system is not “at rest” in

4This can happen If, for example, the program exe

cuted by process 1 IS changed to repeat turn + 1.

tur]l + 2 forever

‘For example, m a multlprogrammed cnwronment

t)y simply using a FIFO queue for scheduhng en

abled statements

ACM Comput,ng Surveys, Vol 25, No J September 1993

Assertional Reasoning for Concurrent Systems ● 231

that it will eventually execute some

statement.

To reason asserticmally about progress,

we consider assertions of the form P

leads-to Q, where P and Q are predicates

in the program variables. It means that

if at some instant the program variables

satisfy P, then at some later instant they

satisfy Q. How long do we have to wait?

No a priori time bound is implied, but

we do know that it must hold whenever

the system reaches a state where it is at

“rest,” i.e., no process is at an enabled

statement subject to fairness.

To prove assertions like P leads-to Q,

we rely on two kinds of proof rules. The

first kind is for inferring leads-to asser-

tions from program specification and

fairness requirements. An example is the

leads-to via S rule, where S is a pro-

gram statement that is executed with

weak fairness: P leads-to Q holds via S if

(i) whenever P holds, S can be executed

and its execution results in Q holding

and (ii) for every statement R other than

S, if P holds and R can be executed, its

execution results in P v Q holding. Note

that the leads-to via S rule requires us to

examine every statement of the program,

and not just S. This rule implies that

once P holds, it will continue to hold (at

least) until Q becomes true, and that

there is at least one statement, S, which

will eventually make Q hold (if no other

statement makes it so).

The second kind of proof rule is for

inferring leads-to assertions from other

leads-to assertions. For example, P

leads-to Q holds if P leads-to R and R

leads-to Q hold, or if P leads-to (Q v R)
and R leads-to Q hold. Such rules are

called closure rules.

Now let us give an assertional proof of

progress for the mutual exclusion algo-

rithm. Suppose process 1 wants to access

the critical section, It executes S1 and

S2, at which point the following boolean

condition holds:

Xl = T thinkingl ~ process 1 at S3

A turn = 2

Thus the desired progress property can

be expressed by:

YI - Xl leads-to process 1 at S4

Suppose Xl holds, and process 2 is at

R1. What can happen next? S3 can be

executed because thinkingz is true

(which follows from Inuariant(Al) and

process 2 being at RI); its execution re-

sults in process 1 being at S4. Or R1 can

be executed, resulting in Xl and process

2 at R2. No other statement can be exe-

cuted. Because S3 has weak fairness,

process 1 will eventually execute S3 un-

less process 2 executes R1. In fact, we

have just given the details of applying

the leads-to via S rule to establish

Yz = Xl A process 2 at R1 leads-to

process 1 at S4 V (xl A process 2

at R2) (via S3)

The tag “via S3” at the right indicates

that Yz, holds by the leads-to via S rule

with S instantiated by S3. Here are some

other assertions that hold by the leads-to

via S rule:

Ys = Xl A process 2 at R2 leads-to

1 thinkingl A process 1 at S3 A

turn = 1 A process 2 at R3 (via R2)

Yb = 1 thinkingl A process 1 at S3 A

turn = 1 A process 2 at R3 leads-to

process 1 at S4 (via S3)

Y~ = Xl ~ process 2 at R3 leads-to

X1 A process 2 at R4 (via R3)

YG = Xl A process 2 at R4 leads-to

X1 A process 2 at R1 (via R4)

The desired result YI follows by apply-

ing closure rules to Yz through Y6:

YT = Xl A process 2 at R2 leads-to

process 1 at S4 (from Ys and YJ)

Yg = Xl A process 2 at R1 leads-to

process 1 at S4 (from Y, and Y,)

Yg = Xl A process 2 at R4 leads-to

process 1 at S4 (from Y6 and YS)

YIO = Xl A process 2 at R3 leads-to

process 1 at S4 (from Y, and Y9)

Finally, YI follows from YT, Y8, Yg, and

YIO, because when Xl holds, process 2

has to be at one of the statements Rl,

R2, R3, or R4. This completes our asser-

AC!M Computmg Surveys, Vol 25, No 3, September 1993

232 ● A. Udauya Shankar

tionalproof ofprogress. As in the case of

the safety proof, we point out that each

step can be checked by a nonexpert.

2.3 State Transition Systems

In our proofs for the mutual exclusion

algorithm, we have implicitly assumed

that each statement is executed atomi-

cally. That is, once a process starts

executing a statement, another process

cannot influence the statement’s execu-

tion or observe intermediate points of the

execution. This means that if two state-

ments, say Si and Rj, are executed con-

currently, then the net effect is either

that of Si followed by Rj, or Rj followed

by Si. (This assumption was made in both

the operational and assertional proofs.)

More generally, consider a system of

processes concurrently executing on some

architecture (hardware or software). To

analyze such a system, we need a formal

model of the system. Any formal model

makes assumptions about the real world

that ultimately have to be accepted on

faith. Almost every model used for cor-

rectness analysis assumes that the exe-

cution of a concurrent svstem can be.
viewed in terms of events that can be

considered atomic.G Some events repre-

sent activities internal to a process (e.g.,

read or write of a local variable), while

the remaining events represent commu-

nications between processes (e.g., a mes-

sage transfer, a read, or write of a shared

variable).

The granularity of an event refers to

the extent of the system that is affected

by the event; for example, an event that

reads an integer is more coarse-grained

than one that reads a single bit. The

level of atomicit y, i.e.. the granularity

of events that we can consider atomic,

depends on the architecture upon which

the processes execute and the properties

being analyzed. A well-known folk theo-

rem is that any sequence of operations

can be considered atomic if it contains

only a single access to a single shared

‘i For a dlscusslon, see SectIons 2.1 and 22 In Manna

and Pnueh [1992]

variable. Larger units can be treated as

atomic by using synchronization con-

structs, such as awaits, semaphores,

conditional regions, etc. In a message–

passing system, it is common to treat

each message send or reception as atomic.

(See Lam~ort [19901 for a discussion of

the folk theorem and extensions to it.)

Because of the atomicity assumptions,

we can view a concurrent program as a

state transition system, Simply associ-

ate with each process a control variable

that indicates the atomic statement to be

executed next by the process. Then the

state of the program is defined by the

values of the data variables and control

variables. In anv state, an atomic state-

ment can be executed if and only if it is

pointed to by a control variable and is

enabled. Executing the statement results

in a new state. Thus each statement exe-

cution corresponds to a state transition,

and each execution of the concurrent m-o-

gram corresponds to a sequence of s~ate

transitions.

The distinction between data variables

and control variables is natural in a con-

current program. Data variables are up-

dated in assignment statements, whereas

control variables are updated according

to the control flow of the program state-

ments. However. as far as understanding

and analyzing the program is concerned,

there is no fundamental difference be-

tween data and control variables. But

dealing with control flow of program

statements is rotationally more cumber-

some than dealing with assignment

statements. So it is natural to consider a

system model where control variables are

treated just like data variables, i.e., up-

dated in assignment statements. This is

the approach taken m many recent

works, for example, Back and Kurki-

Suonio [1988], Lamport [1991], Chandry

and Misra [1986; 1988], Manna and

Pnueli [1984; 1992], Lynch and Tuttle

[1987].7

7An example of an approach that does not treat

control variables just hke data variables]s Owlckl

and Lamport [1982]

ACM Computmg Surveys. Vol 25, N(I 3, September 199:3

Assertional Reasoning for Concurrent Systems ● 233

This means that the state transition

system can be defined by a set of state

variables (corresponding to the data and

control variables) and a set of events

(corresponding to the atomic statements).

Each event has an enabling condition,

which is a predicate on the state vari-

ables, and an action, which updates the

state variables. Thus, a concurrent sys-

tem is described by a state transition

system and fairness assumptions on the

events. Typically, the state transition

system is nondeterministic in that more

than one event can be enabled in a

system state.

This is illustrated with the mutual-

exclusion algorithm. For i = 1,2, let

control, denote the control variable for

process i. Let es~ denote the event corre-

sponding to Sk, and let e~~ denote the

event corresponding to Rk. The concur-

rent system is specified as follows:

State variables and initial condition:
thin kingl, thinking~: boolean.

Initially true.

turn: {1, 2}.

controll, controlz: {1, 2,3, 4}. Initially 1.

Events:

esl
enabled G control ~ = 1

action = thinkingl + false;

control, + 2

esz
enabled E COTItrol ~ = 2

action = turn ~ 2; control, + 3

esq

enabled G control ~ = 3 A

(thlnkingz V tarn = 1]

action = controll + 4

esh
enabled E control ~ = 4

action = th[nkingl + true;

controll + 1

e~~
enabled G controlz = 1

action G thinklngz * false;

controlz + 2

e~z

enabled E controlz = 2

action ~ turn + 1; controlz + 3

‘R1

enabled = control~ = 3 A

(thinkingl V turn = 2)

action = controlg + 4

eR4
enabled F control~ = 4

action E thinkingl * true;

control ~ + 1

Fairness requirements:

Events esz, es~, es~, eRl> ‘R,3, and ‘R4

have weak fairness

Although we have listed the events in

the same order as in the program, they

can be listed in any order. The desired

safety property is expressed by Inuari-

ant(7 (controll = 4 ~ controlz = 4)) and

the desired progress property by control,

= 2 leads-to controll = 4 and controlz ==

2 leads-to controlz = 4.

The above example illustrates how to

encode read, write, await, and repeat-

forever statements in state transition no-

tation. Other kinds of statements can be

encoded similarly. For example,

S1: if B then S2: (statement)

else S3: (statement)

becomes the event

esl
enabled = control = S1

action E if B then control + S2

else control + S3

if we assume that B is checked atomi-

cally. If instead B = C ~ D, where C and

D are atomically evaluated in order, then

we insert a control point, say S la, be-

tween C and D, and model S1 by two

events: one event has enabling condition

con trol = S1, and its action sets control

to Sla or S3 depending on the value of C;

the other event has enabling condition

control == Sla, and its action sets control

to S2 or S3 depending on the value of D.

For another example, consider “S1:

P(sem); S2: (statement) ,“ where sem is

a semaphore. S1 can be modeled by an

event with enabling condition control =

ACM Computmg Surveys, Vol 25. No 3. September 1993

234 ● A. Uclaya Shankar

S1 ~ sem > 0 and action sem G sem –

1; control + S2. Similarly, “S 1: V(sen2);

S2: (statement)” can be modeled by an

event with enabling condition control =

S1 and action sem + sem + 1;control G

S2.

As mentioned in the Introduction,

properties such as partial correctness, in-

variant, termination, deadlock freedom,

livelock freedom, etc., can be modeled by

safety and progress assertions. Invari-

ant and livelock freedom (or starvation

freedom) were illustrated in the mutual

exclusion example. Deadlock freedom for

a concurrent program means that the

program can never reach a state where

all processes are blocked. It is modeled

by Inz~ariant(E), where E denotes the

disjunction of the enabling conditions of

all events. Note that deadlock freedom is

a safety property. For a concurrent

program that is supposed to terminate,

partial correctness means that if the pro-

gram terminates then some desired pred-

icate P holds. Let control, denote the

control variable for the i th process in the

program. Let start, denote its initial

value, and end, denote its value at ter-

mination. Partial correctness is specified

by

Inuariant([’di: control, = end,] * P),

and termination of the program is speci-

fied by

[Vi: control, = start,] leads-to

[b’i: control, = end,].

3. SYSTEM MODEL AND ASSERTiON

LANGUAGE

In Section 2, we informally introduced a

system model, namely, state transition

systems and fairnem requirements, an

assertion language, namely, invariant

and leads-to assertions, and some proof

rules. In this section, we describe the

system model and assertion language

precisely, introduce a few extensions, and

show how our formalism fits in with those

of other authors. Proof rules are dealt

with in Section 4.

Currently, our notion of fairness ap-

plies to an individual event. We will ex-

tend this to a set of events, because this

is often more appropriate in many situa-

tions. We will allow assertions that con-

sist of invariant assertions and leads-to

assertions joined by logical connective.

We will allow auxiliary state variables,

for recording history information of sys-

tem execution. With auxiliary variables,

any safety and progress property, includ-

ing fairness requirements, can be ex-

pressed in terms of invariant and leads-to

assertions.

3.1 System Model

A (concurrent) system A is defined by

● a state transition system defined by

—VariablesA, a set of state variables and

their domains.

—Initiali, an initial condition on Varia-

bles..

—Eue~ts., a set of events.

●

-For ea~h event e ● Euentsi:

enabled, an enabling condition

(predicate in Variablesi); and

actionA(e), an action (sequential pro-

gram that updates Variablesi);

a finite set of fairness requirements

-each fairness requirement is a subset

of Euents~ tagged with” weak fairness”

or “strong fairness.”

VariablesA defines the set of system

states; specifically, each value assign-

ment to the variables denotes a system

state. Initial+q defines a subset of system

states, referred to as the initial states.

We assume that the set of initial states is

nonempty. For each event e, the enabling

condition and action define a set of state

transitions, specifically, {(s, t): s, t are

system states; s satisfies enabled~(e);

and t is the result of executing action~(e)

in s}. We assume that action~(e) always

terminates when executed in any state

satisfying enabled~(e) and that its

execution is atomic.

A behavior is a sequence of the form

(sO, eO, sl, el,...) where the sl’s are

states, the e,’s are events, so is an initial

ACM Comput,ng Surveys, Vol 25, No 3, September 199.3

Assertional Reasoning for Concurrent Systems ● 235

state, and every (s~, sl + ~) is a transition

of e~. A behavior can be infinite or finite.

By definition, a finite behavior ends in a

state. Note that for any behavior o-, ev-

ery finite prefix of a ending in a state is

also a behavior. Let 13ehauiors(A) denote

the set of behaviors of A. Behauiors(A)

is sufficient for defining safety properties

of A but not its progress properties (be-

cause it includes behaviors where A’s

fairness requirements are not satisfied).

We next define the behaviors of A that

satisfy the fairness requirements. Let E

be a subset of Euents~. The enabling con-

dition of E, denoted enabled, is de-

fined by [~e E E: enabled~(e)]. Thus, E

is enabled (disabled) in a state iff some

(no) event of E is enabled in the state.

Let u= (so, eo, sl, el, . . .) be an infinite

behavior. We say “E is enabled (disabled)

infinitely often” in cr if E is enabled

(disabled) at an infinite number of s,’s.

We say “E occurs infinitely often” in o if

an infinite number of et’s belong to E.

A behavior cr of A satisfies weak fair-

ness for E iff (1) a is finite and E is

disabled in the last state of u, or (2) u is

infinite and either E occurs infinitely of-

ten or is disabled infinitely often in m

[Lynch and Tuttle 1987]. Informally, this

means that if E is enabled continuously,

then it eventually occurs.

A behavior o of A satisfies strong

fairness for E iff (1) u is finite and E is

disabled in the last state of cr, or (2) u is

infinite and if E is enabled infinitely

often in o, then it occurs infinitely often

in a. Informally, this means that if E is

enabled infinitely often, then it eventu-

ally occurs.

A behavior w of A is allowed iff o

satisfies every fairness requirement of A.

Let AllowedBehauiors(A) denote the set

of allowed behaviors of A. AllowedBe-

hauiors(A) is sufficient for defining the

progress properties of A, as well as the

safety properties of A.

Note that a prefix of an allowed behav-

ior is not necessarily an allowed behav-

ior. Intuitively, a finite behavior u 1s

allowed iff the fairness requirements of

A do not require A to extend u in the

future. This does not mean that A must

not extend u. It just means that A is not

obliged to extend u. If A is not subject to

fairness requirements, then every behav-

ior of the system is an allowed

behavior.

It may appear that fairness require-

ments are a complicated way of forcing

an event to occur. However, a little

thought shows that this is not so. For

example, we cannot insist that an event

occur as soon as it is enabled, because

this means that two or more events can-

not be enabled in the same state; i.e., it

eliminates nondeterminism, which is

fundamental to our modeling of concur-

rency. Another approach is to insist that

events occur within some T seconds of

being continuously enabled. Although

this approach allows nondeterminism, its

real-time constraint makes it harder to

implement, and hence undesirable unless

we are interested explicitly in real-time

properties.

We allow events to have parameters.

This is a convenient way of defining a

collection of events. For example, con-

sider an event E(i) with enabling condi-

tion x = O and action x + i, where x is

an integer state variable and where the

parameter i ranges over {1, 2,. ... 50}.

Event E(i) actually specifies a collection

of 50 events, E(l), E(2),... , E(50).

3.2 Assertion Language

Let A be a system that we want to ana-

lyze. Henceforth, we use the term state

formula to refer to a predicate in the

state variables of A. A state formula

evaluates to true or false for each state

of the system.8 We say that a state satis-

fies a state formula to mean that the

state formula evaluates to trz~e at that

state.

In Section 2, we considered assertions

of the form Inuariant(P) and P leads-to

Q, where P and Q are state formulas.

8 The preczse meaning of evaluatin~ a state formula

P at a state s is as follows: for each state variable u

that appears free in P, replace u by the value of

the state variable in s, and then evaluate the re-

sulting P.

ACM Computmg Surveys, Vol 25, No 3, September 1993

236 ● A. Udaya S?lankar

We now define precisely what it means

for an assertion to hold (or be satisfied)

for system A.

We first define what it means for an

assertion to satisfy a behavior of A. Let

cr= (so, eo, sl, el,...) be a (finite or infi-

nite) sequence of alternating states and

events of A. Sequence u satisfies Inuari-

ant(P) iff every state S, in o satisfies P.

Sequence u satisfies P leacls-to Q iff for

every s, in m that satisfies P there is an

Sj in u, j > i, that satisfies Q.

System A satisfies Inzariant(P) iff ev-

ery behavior of A satisfies Inuariant(P).

System A satisfies P leads-to Q iff every

allowed behavior of A satisfies P

leads-to Q.

Actually, for system A to satisfy Zn-
L,ariarlt(p), it is sufficient if Inuarzant(P)

holds for every finite behavior. And be-

cause every finite behavior is a prefix of

an allowed behavior, it is sufficient if

Inuariant(P) holds for every allowed be-

havior. So, we can say that an (invariant

or leads-to) assertion holds for A iff it

holds for every allowed behavior of A.

We now extend the class of assertions

in two ways. First, we allow assertions

that are made up of invariant assertions

or leads-to assertions joined by logical

connective (for example, (~rzuarian t (?“)

A (P leads-to Q)) * (R leads-to S)). Such

an assertion L is satisfied by CT iff L

evaluates to true after each invariant or

leads-to assertion X in L is replaced by

X(m), where X(CT) is true if [r satisfies

X and false if v does not satisfy X.g As

before, system A satisfies L iff every

allowed behavior of A satisfies L.

Our second extension is to allow asser-

tions to contain parameters, which are

variables distinct from state variables

(and thus not affected by events) 10 Pa-

rameters are convenient for defining

classes of assertions. For example, x = n

‘]Thus, (. satisfies (InL,arzant(T) A (P leads-to Q))

~ (R leads-to S) Iff u satlsfles R leads-t{] b’, or u

does not satky ~n~arfant(T) or F’ leads-to Q.)

‘“ parameters are akm referred to as rzgtd uanab[es

In the literature [Lamport 1991; Manna and Pnuell

1992]

leads-to y = n + 1, where n is an integer

parameter, defines a collection of leads-to

assertions. When evaluating an asser-

tion, every parameter is universally

quantified. Thus, x = n leads-to y = n +

1 holds iff [Via: x = n leads-toy = n + 1]

holds.

Throughout this tutorial, unless other-

wise indicated, we assume the following

precedence of operator binding power:

arithmetic and data structure operators,

such as +, = , prefix, subset, bind

stronger than logical operators; the logi-

cal operators 1, ~, V, and ~ arein

decreasing order of binding power; fol-

lowed by the leads-to operator. Here are

some examples of invariant and progress

assertions, together with an informal En-

glish interpretation:

0

a

●

●

*

Inuariant(x > -y): x is always greater

than y;

x = O leads-to y = 1: if x equals O,

then eventually y equals 1;

x = n leads-to x = n + 1: x keeps in-

creasing;

.x=n~y#O leads-to x~n+lvy

= O: x grows without bound unless y

becomes O;

(x>n Ieads-to x>n+l)+(v>m

leads-to y z nl + 1): y grows w~thout

bound if x grows without bound.

Note that the third assertion is satisfied

only by infinite behaviors, whereas each

of the other assertions is satisfied by

some finite behaviors and some infinite

behaviors.

We use invariant assertions to express

safety properties and use assertions built

from leads-to and invariant assertions to

express progress properties. We now

make precise the terms safet.~ property

and progress property. Assertional rea-

soning is concerned with properties P

such that for every sequence CT of alter-

nating states and events, P is either true

or false. P is a safety property if for any

ir, if P holds for u then it holds for any

prefix of CT. This means that if a safety

property does not hold for some Q, then

there is a point in CT where it first stops

holding. P is a pure progress property if

ACM (’omputlng Survey.. Vu] 25 No 3, Septemlwi- 1993

Assertional Reasoning for Concurrent Systems - 237

any finite cr can be extended to a se-

quence that does satisfy P. Alpern and

Schneider [1985] showed that every

property (that evaluates to true or false

for every sequence o-) can be expressed

as the conjunction of a safety property

and a pure progress property.

3.3 Auxiliary Variables

Our assertion language uses only two

operators on sequences, namely, Inzmri-

ant and leads-to. Because of this, we may

not be able to express all safety and

progress properties of interest for a given

system A. (he way to overcome this is to

add more operators on sequences, as in

Manna and Pnueli [1984; 1992]

(discussed below).

Another way, which is the one taken in

this tutorial, is to augment system A

with auxiliary variables [Owicki and

Gries 1976]. Auxiliary variables are state

variables that record some history of sys-

tem execution, but they do not affect the

system execution and hence do not have

to be implemented. Auxiliary variables

are also known as history variables

[Abadi and Lamport 1988].

Specifically, we can declare a subset

Vars of the state variables of A to be

auxiliary variables iff the variables in

Vars (1) do not appear in event-enabling

conditions, and (2) do not affect the up-

date of any state variable not in Vars.

Because we specify actions by programs,

we can express condition (2) using the

Owicki and Gries [1976] syntactic crite-

ria: that is, variables from Vars can ap-

pear only in assignment statements; and

if a variable from Vars appears in the

right-hand side of an assignment state-

ment, then the left-hand side must be

also a variable from Vars.] 1

There is a difference between our use

of auxiliary variables and that of Owicki

and Gries [1976]. We use them in stating

and proving desired properties, whereas

11Implicit in this syntactic criteria is the assump-

tion that the value of a variable can be changed

only by assignment

Owicki and Gries used them only in

proving; their desired properties were

stated without recourse to auxiliary

variables.

With auxiliary variables, we can ex-

press fairness requirements as progress

assertions. For an event set E subject to

fairness, let cozmt(E) be an auxiliary

variable indicating the number of times

E has occurred since the beginning

of system execution; that is, include

cozmt(.?3) + count(E) + 1 in the action of

every event e = E. The following asser-

tions are equivalent to weak and strong

fairness, respectively:

● enabled(E) A count(E) = k leads-to

T enabled(E) v count(E) = k + 1

(weak fairness)

“ (1 enabled(E) leads-to enabled(E)) *

(cozfnt(E) = k leads-to count(E) = k +

1) (strong fairness)

3.4 Relationship to Other Formalisms

As mentioned earlier, most of the recent

approaches to assertional reasoning of

concurrent systems use a state transition

model, for example, Abadi and Lamport

[1988; 1990], Lamport [1989; 1991],

Manna and Pnueli [1984; 1992], Chandy

and Misra [1986; 1988], Back and

Kurki-Suonio [1988], Lynch and Tuttle

[1987], Lam and Shankar [1990]. All

these approaches use a set of state vari-

ables to define the system state, but they

differ in how they define the state transi-

tions of an event, and in the kinds of

fairness requirements.

In this tutorial, an event is defined by

an enabling condition and an action. For

example, a state transition system with

three integer state variables, x, y, z can

have an event e with enabling condition

~=2andactiony+y+l; x*3.

In UNITY [Chandry and Misra 1986;

1988], the abstraction from program is

taken one level further. Each event, re-

ferred to as a UNITY statement, is con-

sidered to be always enabled, and the

action has the form of a multiple-assign-

ment statement with an optional guard.

Thus, the above event e would become

ACM Computing Survey., Vol 25, No 3. September 1993

238 ● A. Udaya Shankar

the UNITY statement “(x, y) + (3, y +

1) if x = 2,” Although the statement is

always enabled, its occurrence changes

the system state only if the guard is true.

In both this tutorial and in UNITY, the

assignment statement is used to change

the value of a state variable. Conse-

quently, Hoare logic or weakest precondi-

tion logic (and in particular the assign-

ment axiom) is needed to prove proper-

ties of individual events. For example, to

prove that the above event e preserves a

state formula P,lz we would have to

prove the Hoare-triple {P ~ z = 2} y - y

+ 1; x + 3{ P}. (These logics are dis-

cussed in Section 4.)

An alternative approach is to do away

with assignments (e.g., Lamport [1983a;

1991], Shankar and Lam [1987], and Lam

and Shankar [1990]). Define an event by

a predicate in primed and unprimed ver-

sions of the state variables, where the

primed version of a state variable refers

to its new value. In this approach, the

above event e is defined by the predicate

x=2~.x’=3Ay ’=y +lAz.’=z.

Any state pair (s, t) that satisfies the

predicate is a transition of the event.

Because there is no assignment state-

ment, reasoning about the transitions

does not need Hoare logic; standard logic

is sufficient. For example, to prove that

event e preserves a state formula P, one

hastoprove x=2~x’=3Ay ’ =.v+l
AZ’ =ZAP*P(, Where p’ is P with

every free occurrence of x, y, and z re-

placed by x’, y’, and z‘. A variation of

this method is to use pre- and post-condi-

tions to define the transitions of an event

[Lynch and Tuttle 1987]. Event e can be

specified by precondition x = 2 A y = n

and postcondition x = 3 ~ y = n + 1.

Note that n is not a state variable but a

parameter used for referring to the value

of y before the event occurrence (thus a

precondition is not the same as our

enabling condition).

The notions of weak fairness and strong

fairness were introduced in Lehmann et

al. [198 1]. A detailed treatment of them

‘L That M, to prove that the execution of e in any

state where P holds results m a state satisfying P

(and other kinds of fairness) can be found

in Francez [1986] and Manna and Pnueli

[1992]. The definitions of behaviors and

weak fairness used in this tutorial are

taken from Lynch and Tuttle [1987] .13

The definition of strong fairness is taken

from Lam and Shankar [1990]. UNITY

uses the same notion of behaviors. The

standard fairness notion in UNITY is that

every UNITY statement is executed in-

finitely often. This corresponds to weak

fairness for every event, if we treat a

UNITY statement as an event with the

UNITY guard becoming the event’s

enabling condition.

Manna and Pnueli [1992] and Lamport

[1991] have a technically different defini-

tion of behaviors. They prefer to deal

only with infinite behaviors. So they aug-

ment the system being studied with a

hypothetical “idling event” that is always

enabled and whose occurrence does not

change state. Thus a finite behavior is

extended to an infinite one by appending

an infinite sequence of idling transitions.

Also, a finite sequence of idling transi-

tions can be inserted between any two

transitions. Lamport refers to this as

“stuttering.” The fairness requirements

in Lamport [1991] are, as in this tutorial,

defined in terms of event sets subject to

weak or strong fairness. In Manna and

Pnueli [1992], individual events are sub-

ject to weak or strong fairness.lh

Manna and Pnueli’s [1984; 19921 tem-

poral logic is a logic for reasoning about

sequences of states. It has a variety of

temporal operators, including ❑ (hence-

forth), 0 (eventz~ally), O (next), and U

(until), for constructing assertions (tem-

poral formulas) from state formulas. Let

P and Q be state formulas, and let a =

13Lynch and Tuttle [1989] use the terms “execu-

tions” for our behaviors and “actions” for our events.

They reqmre that different event sets subject to

fan-ness must be mutually excluslve, and they do

~,ot consider strong famness

Lamport [1991] usee the term “actIon” for our

event Manna and Pnueh [1992] use the term

“transition” for our event, “transltlon relatlon” for

our set of transitions, “JustIce” for weak famness,

“compassion” for strong fau-ness, and “process-Jus-

tice” for tbe fan-ness cm event sets.

ACM Comput]ng Surveys, Vol 25, No J, September 1993

Assertional Reasoning for Concurrent Systems 9 239

(so, SI,) be an infinite sequence of

states. ❑ P is satisfied by o iff every s,

satisfies P. OP is satisfied by u iff there

is some S, that satisfies P. OP is satis-

fied by o- iff SI satisfies P. P UQ is

satisfied by a iff the following holds: if so

satisfies P, there is some s, that satisfies

Q and every s], O < j < i, satisfies P. In

the above expressions, P can be replaced

by a temporal formula, resulting in a rich

assertion language. For example, P +

OQ is satisfied by a iff the following

holds: if so satisfies P, then there is

some s, that satisfies Q. ❑ (P * OQ) is

satisfied by Q iff for every s, that satis-

fies P, there is some s~, j > i that satis-

fies Q. ❑(P ~ OQ) is satsified by CT iff

for every S, that satisfies P, s,. ~ satis-

fies Q. The above temporal operators can

be thought of as “future” operators, be-

cause they examine the states to the right

of so. For each of these operators, Manna

and Pnueli [1992] also define a “past”

version that examines states to the left.

A thorough treatment of the relation-

ships between different temporal opera-

tors (e.g., m El = P is equivalent to OP)

and proof rules is given in Manna and

Pnueli [1992].

In this tutorial, we make use of a frag-

ment of Manna and Pnueli’s temporal

logic. Specifically, our Inuariant(P) is

❑ P, and our P leads-to Q is ❑(P ~ OQ).

Using only these two temporal operators

may require the use of auxiliary vari-

ables to state certain properties. For ex-

ample, the property “x never decreases”

is specified in Manna and Pnueli’s logic

by ❑(X = n ~ Ox > n), and in our logic

by Inuariant(xOl~ s x), where xOl~ is an

auxiliary variable that is assigned the

value of x at the start of every event

action (which may affect x). Of course, if

this is not convenient, we can always

include additional temporal operators

from Manna and Pnueli’s logic (e.g., see

Alaettinoglu and Shankar [19921).

Lamport [1991] defines a Temporal

Logic of Actions, referred to as TLA, in

which he can express event specifica-

tions, fairness requirements, and a frag-

ment of Manna and Pnueli’s temporal

logic (consisting of ❑ and O) under one

unified logic.

4. PROVING SAFETY AND PROGRESS

ASSERTIONS

Recall that our safety assertions are in-

variant assertions, and our progress as-

sertions are built from lead-to assertions

and invariant assertions. In Section 2,

we informally described proof rules for

proving invariant and leads-to asser-

tions. In this section, we describe a more

complete set of proof rules and give a

rigorous justification for them. Because

the system model and assertion language

of this tutorial are very similar to those

in Lamport [1991], Manna and Pnueli

[1984, 1992], and Chandry and Misra

[1986; 1988], our proof rules are also sim-

ilar, and in many cases identical, to the

rules found in those references.

Proof rules contain statements such as

“e preserves P,” where e is an event and

P is a state formula. To reason rigorously

about such statements, we resort to

Hoare logic [Hoare 1969; Apt 1981], a

well-known formalism for sequential pro-

grams. We also describe Dijkstra’s weak-

est precondition logic [Dijkstra 1976], an-

other well-known formalism for sequen-

tial programs. Although weakest precon-

dition logic is not needed for stating or

checking proofs, it is very helpful in in-

venting proofs.

In Section 4.1, we describe Hoare logic

for reasoning about actions. In Section

4.2, we describe Dijkstra’s weakest

precondition logic for reasoning about ac-

tions. In Section 4.3, we extend this nota-

tion to reason about individual events. In

Section 4.4, we describe rules for proving

invariant assertions, and in Section 4.5

we describe a heuristic for applying the

rules. In Section 4.6, we describe rules

for proving leads-to assertions. Through-

out this section, P, Q, and R denote

state formulas.

4.1 Reasoning about Actions

with Hoare-Triples

A Hoare-triple has the form {P} S{ Q},

where P and Q are state formulas and

where S is an action. {P}S{Q} means that

for every state s satisfying P, the execu-

tion of S starting from s terminates in a

state that satisfies Q.

ACM Computing Surveys, Vol 25, No 3, September 1993

240 “ A. Udaya Shankar

A Hoare-triple may be valid or invalid.

Here are some valid Hoare-triples:

“{~j~~x +ythenx+y+l{.r=3

o{trae} ifx+ythenx+y+l{x=y

+lvx=y}

*{x= O~y=n}x-x+y{x=n}

●{x=n}for i= OtolO:x+.X+i{x =

n + 55}

●{.~=O~y =l}whilex>Odox - 2X

{y = 1}

And here are some invalid Hoare-triples:

●{.x=3 }x+y+l{.Y =4}

*{x= l~y=l}while .x> Odox~ 2X

{y = 1}

* {P} S{ false}, for any S and P.

We have given examples of Hoare-tri-

ples, but we have not given proof rules

for them. The actions that we will en-

counter in this tutorial are simple. Con-

sequently, we will be able to generate

valid Hoare-triples by inspection, as in

the above examples. At the same time,

there are simple proof rules when the

actions do not involve loops, and we now

explain them. We can use them instead

of, or to supplement, our “answer by

inspection.”

For any state formula P, let P[.~/t]

denote the state formula obtained by re-

placing every free occurrence of x in P

by t.15The proof rules for Hoare-triples

‘sFor example, lf F’ - x = 2 V y = 3. then P[.1/5]

~ 5 = 2 V y = 3 (which IS eqmvalent to y = 3),

P[x/x + 1]= .I+ 1 = 2 Vy = 3 (which IS equlva-

lent to x=1 VY =3), P[a,’2]=2=2\ly=3

(which 1s equmalent to true), and F’[.Y/z, y/z] - z

=2vz=3

Every variable in P is either free or bound, I e ,

wlthm the scope of a quantifier. If the expression t

contains an Identifier that happens to be also used

to ldentlfy a bound variable of P, then suitable

renaming 1s needed to avoid name clashes. For

example, consider P - x = 2 A [3x .I = y]. P has

three variables the r Inside the scope of the exis-

tential quantification, which is bound, the x out-

side the scope, which is free, and y, which is free

To obtain P[y/a], It 1s necessary to rename the

bound x to somethmg else, e g , n, so that there is

no name clash, thereby ohtammg z = 2 A [3 n. n =

“X1.

are as follows (for rules of additional con-

structs, see Hoare [1969], Apt [1981], and

Gries [1981]):

* {P}x ~ e{Q} holds if P = Q[.~/e] holds.

* {P} if B then S{Q} holds if {P ~ B}S{Q}

and P~7B*Q hold.

● {P} if B then S, else S,{Q} holds if

{P A B} S1{Q} and {P ~ ~ B} S2{Q} hold.

● {P} while B do S{Q} holds if {P ~

B}S{P} and P A ~ B = Q hold.

“ {P}SI: SZ{Q} holds if for some state

formula R, {P} SI{R) and {R} SJ{Q} hold.

4.2 Reasoning about Actions with Weakest

Preconditions

Dijkstra’s weakest precondition terminol-

ogy offers another way to reason about

actions. This terminology is more in-

volved than Hoare-triples, and it is not

needed for stating proofs. But it is very

helpful for inventing proofs. Throughout

we use “wrt” as an abbreviation for “with

respect to.”

P is a sufficient precondition of Q

wrt S means that {P}S{Q} holds. P is a

weakest precondition of Q wrt S

means that (a) P is a sufficient precondi-

tion of Q wrt S and (b) R * P holds for

any other sufficient precondition R of Q

wrt S. That is, a weakest condition P

specifies the largest set of states where

the execution of S terminates with Q

holding.

One way to obtain weakest precondi-

tions is by inspection. Another way is to

use Dijkstra’s predicate transformer

wp(S, Q), which for a program S and

state formula Q returns a weakest pre-

condition of Q wrt S. For the constructs

we consider here, [LIp(S, Q) is as follows

(for additional constructs, see Dijkstra

[1976]):

o wp(x -e, Q) - Q[x/e]

● wp(if B then S, Q) = (B ~ wp(S, Q))

A(T B-Q)

o wp(if B then SI else SL, Q) = (B ~

Wp(slj Q)) ~ (1 B ~ Wp(t$z, Q))

“ Wp(sl;sz, Q) = Wp(Sl, WP(Sz, Q))

ACM Computmg Surveys, Vol 25, No 3. September 1993

Assertional Reasoning for Concurrent Systems 9 241

Thus, P e wp(S, Q) holds means that

P is a weakest precondition of Q wrt S,

and P * wp(S, Q) holds means that P is

a sufficient precondition of Q wrt S.

4.3 Reasoning about Events

We extend the Hoare-triple notation to

an event e by defining {P}e{Q} to mean

{P A enczbled(e)}action(e){ Q}. That is, for

every state s satisfying P, either e is not

enabled at s, or the execution of action(e)

starting from s terminates in a state

that satisfies Q. For example, given an

event e with enabling condition x # y

and action x ~.y + 1, {x # y}e{x = y +

l}, {x=y}e{x#y+ l}, and{x+y~y
—— n – l}e{x = n} hold, and {x # y}e{x +

y + 1} does not hold.

We extend the weakest precondition

notation to events. P is a sufficient

precondition of Q wrt e means that

{P}e{Q} holds. P is a weakest precon-

dition of Q wrt e means that P is a

sufficient precondition of Q wrt e, and

R ~ P holds for any other sufficient pre-

condition R of Q wrt e, We define P to

be a necessary precondition of Q wrt

e if for every state s satisfying T P, e is

enabled and its action results in a state

satisfying = Q. If P is both a sufficient

precondition of Q wrt e and a necessary

precondition of Q wrt e, then P is a

weakest precondition of Q wrt e.

The wp predicate transformer for event

e is defined by wp(e, Q) = enabled(e) *

wp(action(e), Q).

4.4 Proof Rules for Invariance

There are two kinds of rules for proving

invariants. The first kind is for inferring

invariant assertions from the system

specification:

Invariance Rule. Invariant(P) is sat-

isfied by system A if the following hold:

(i) Initial.. ~ P

(ii) for every event e of A: {P}e{P}

Proof of Soundness. Let w =

(sO, eo, sl, el,...) be a finite behavior of

system A. We have to show that condi-

tions (i) and (ii) imply that every s, in u

satisfies P. We prove this by induction

on the length of a. Condition (i) implies

that so satisfies P. Assume that for some

n, states so,. ... s~ in cr satisfy P. As-

sume that s. is not the last state of a

(otherwise, we are done). Thus, em, s., ~

follows s,, in o. It suffices to prove that

sn + I satlsf~es P. Because u is a behav-
ior, s. satmfies enabled~(e~). From the

induction hypothesis, we have that s,,

satisfies P. Therefore, condition (ii) im-

plies that s., ~ satisfies P. ❑

Suppose we know that system A satis-

fies invariant(Q) for some state formula

Q. How can we exploit this information

in proving Invariant(P)? Basically, we

can relax condition (ii) in rule 1 to {P ~

Q}e{Q = P}, because we do not have to

consider state transitions (s, t) where s

or t does not satisfy Q. That is, the above

invariance rule can be generalized to the

following:

Inuariant(P) is satisfied by system A

if the following hold for some state

formula Q:

(i) Initial* = p

(ii) for every event e of A:

{P ~ Q}e{Q *P}

(iii) Invariant is satisfied by sys-

tem A

Note that the general version reduces

to the simple version if Q - true. When

we apply these rules in our examples, we

shall say Inuariant(P) holds by the in-

variance rule assuming Invariant(Q) to

mean that P and Q satisfy the condi-

tions of the general invariance rule. We

shall say Invariant(P) ?Lolds by the in-

variance rule to mean that P satisfies

the conditions of the simple invariance

rule.

The second kind of proof rule is for

inferring invariant assertions from other

invariant assertions. Here are two

examples:

● lnuariant(P) holds if for some state

formula Q, Q = P and invariant(Q)

hold.

ACM Computmg Survey~, Vol 25. No 3. September 1993

242 “ A. Uda-ya Shankar

0 Invariant(P) holds if for some state
formulas Q and R, Q A R - P, In-

variant(Q), and Invariant(R) hold.

Actually, the first rule is a special case

of the second rule with R - true. Be-

cause these rules are so obvious, we do

not give them any special name. When

we use the first (or second) rule, we sim-

ply say Inuarian t (P) holds because of

Invariant(Q) (or Invariant and

lnuariant(R)).

Each rule above defines some suffi-

cient conditions for invariance. Suppose

we have a system and a state formula P,

and we have to prove that the system

satisfies Invariant(P). Where do we

start? If we do not already know some

invariant for the system, the first step is

to see whether P satisfies the invariance

rule. If we are lucky, it may. But in

general, {P}e{P} will not hold for some

event e. This is natural because P is a

desired property, and for any nontrivial

desired property, the system has to

maintain additional properties to achieve

P. We need to unearth these additional

properties, in order to find a state for-

mula Q that implies P and satisfies the

invariance rule.

Accumulator Example

Consider the following concurrent pro-

gram written using the cobegin/coend

construct:

x: Integer Inlhally x = O

cobegin

X+X+2011X+X+2111X+X+2211

~~~Ilx+ X+2N-1

coend

The above program has N subpro-

grams that are executed concurrently. Let

us assume that each x - x + 2‘ state-

ment is atomic. We can model the pro-

gram by the following state transition

system, where i is a parameter that

ranges over {O, . . . . N – 1} and where b(i)

denotes the control for the ith

subprogram:

State variables and initial condition:

x: integer. Initially x = O.

b(z): {O, 1}. Initially b(t) = O

Events

e(z)

enabled = tJ(z) = O

actzon =x+x+2’; b(i)- 1

Fairness requirements:

{e(0), . . . . e(lV – 1)}has weak famness.

Suppose we want to prove that x > 2‘

if the i th subprogram has terminated.

This property is stated by lnuartant(l?o ),

where

BO-b(i)=l*x>2[.

B. happens to satisfy the invariance

rule: It holds initially. {Bo}e(t ){BO} holds

because e(i) makes the consequent true

(by adding 22 to x). {Bo}e(k){BO} holds

for k # i because e(k) does not make the

antecedent true or the consequent false.

Suppose we want to prove that x = 2 N

– 1 holds at termination of the program.

The program is terminated iff all N sub-

programs have terminated. Thus the

property can be stated as Inuariant( A(] ),

where

Ao-[VZ: b(Z) =l]-.r=2N–l.

Our first approach is to use the invari-

ance rule. However, {Ao}e(i){Ao) does not

hold. For example, consider a state s that

satisfies b(0) = O, b(i) = 1 for i + O, and

x#2N– 2. State s satisfies A. (vacu-

ously). But e(0) is enabled at s, and its

occurrence would result in a state that

does not satisfy AO. Clearly, we need to

keep more information about the rela-

tionship between the b( i)’s and x, which

is that at any instant, x has accumu-

lated the 2‘ contributions of the i’s where

b(i) = 1. This leads us to the following

state formula:

Al-x= ~2’where J={t:b(i)= l}.

lGJ

Al satisfies the invariance rule (make

sure of this). Al implies AO. Therefore

A. is invariant.

ACM Computmg Surveys, Vol 25, No 3, September 1993



Assertional Reasoning for Concurrent Systems ● 243

4.5 Generating Invariant Requirements

Suppose we have a system and a state

formula AO that is to be proved invariant

for the system. The difficulty is in coming

up with a state formula that satisfies the

invariance rule and implies AO (e.g., the

state formula Al in the accumulator ex-

ample above). This requires invention

and insight into why the system works.

Although there is no algorithm to gen-

erate assertions, there is a heuristic

based on weakest preconditions that is

often successful [Shankar and Lam 1987].

The heuristic generates, starting from

AO, a succession of state formulas,

Al, Az,... , AK. ~, such that the conjunc-

tion AO A . . . A AK. ~ satisfies the

invariance rule.

At any point, the heuristic maintains

the following:

e

0

A set of state formulas, AO,

A1,..., A~_l, where AO is the state

formula to be proved invariant. Each

A, is referred to as an invariant re-

quirement. K indicates the number of

invariant requirements currently de-

fined. For each A,, Initial * Al holds.

(We want Inum-iant( A,) to hold.)

A marking, defined as follows. Each

( Aj, e) pair, where ~“ ranges over

{o ,... , K – 1}and where e ranges over

the system events, is either marked or

unmarked. Associated with each

marked (Al, e) pair is a subset J of

{AO,..., A ~_ ~} such that (the conjunc-

tion of the state formulas in) J is a

sufficient precondition of A~ wrt e; that

is,

{)A A, e{A,}
A,EJ

holds. We refer to J as the justifica-

tion for marking ( A~, e).

Note that the marking indicates the

extent to which AO A . . . A AK. ~ satisfies

the invariance rule. If all ( A,, e) pairs

are marked, then AO ~ “““ A AK. ~ satis-

fies the invariance rule, The justifica-

tions allow us to “undo” parts of the

proof if needed (see below). (The justifica-

tions are also useful for checking the

proof.)

At the start of a heuristic application,

assuming Initial = A. holds, we have a

single invariant requirement, namely,

AO, and nothing is marked. (If Initial *

AO does not hold, then AO is not

invariant.)

At each step of the heuristic, we choose

an unmarked ( AJ, e) entry and do the

following:

generate a weakest precondition P of Al

wrt e.

if Initial = P does not hold then STOP

“heuristic terminates unsuccessfully”

else begin

if Al A ... A A~_l * P does not

hold then begin

A~=P; K~K+ lend;

“add a new invariant

requirement”

mark ( Aj, e) with justifica-

tion AK

end

else mark (Al, e) with justifica-

tion J

where J q {Al, ..., A~.l}

such that A A,. ~ AJ * P

holds

end

The heuristic terminates successfully if

all (Al, e) pairs are marked; in this case,

AOA.. AA “~ –.1 Satlsflle.s the invariance
rule. The heurlstlc termmates unsuccess-

fully if a precondition P is generated

that does not satisfy Initial; in this case,

we can conclude that AO is not invariant

[Shankar and Lam 1987].

Typically, a brute-force application of

the heuristic will not terminate (except

in special cases such as finite state sys-

tems). The following should be kept in

mind when applying the heuristic.

First, it is crucial to simplify the ex-

pression for P as much as possible in

each iteration. Otherwise the Al’s grow

unmanageably. In addition to the usual

algebraic and predicate calculus trans-

formations, it is possible to make use of

an existing invariant requirement, say

AZ, to simplify the expression for P. For

example, if P = y = O * x G {O, 1} and

A, - x G {1,2}, then we can simplify P to

ACM Computmg Surveys, Vol 25, No 3, September 1993



244 ● A. Udaya Shankar

y =, O * x = 1;note that Al now has to

be included in the justification for mark-

ing (Al, e).

Second, the choice of the unmarked

(A,, e) pair in each iteration is often very

important. It is often very convenient to

generate a precondition with respect to a

sequence of events, rather than just one

event; for example, wp( e], A,) may be

complicated while z~lp(el, u)p(ej, ...

wp(e~, AL ) ~~~)) is simple.

Third, if the expression for a weakest

precondition P becomes unmanageable

(and this depends on our ingenuity and

patience [Dijkstra 1976]), then we can

obtain either a sufficient precondition or

a necessary precondition. If we obtain a

necessary precondition P, then we can-

not mark ( AJ, e). However, this step is

still useful because it gives us another

invariant requirement. If we obtain a

sufficient precondition P, then we can

mark ( Aj, e). However, after this if the

heuristic terminates unsuccessfully, i.e.,

without all ( A,, e ) pairs marked, we can-

not conclude that A. is not invariant.

This is because the sufficient precondi-

tion P that was introduced as an invari-

ant requirement may not be invariant: in

which case, the heuristic failed because it

attempted to prove that P is invariant.

Thus, whenever we use sufficient precon-

ditions, we must be prepared to roll back

the heuristic in case of unsuccessful ter-

mination. (If we find that we have to

remove an Ak from the set of invariant
requirements, the justifications allow us

to easily locate the marked ( A~, e) pairs

that have to be unmarked.)

Fourth, after a few iterations of the

heuristic, it is quite possible that our

insight into the system improves, and we

are able to guess a state formula Q that

we believe is invariant and relevant to

establishing Inuarian t( A{, ) (i.e., it allows

us to mark some unmarked ( A , e) pairs.)

We simply add Q to the set 0$ invariant

requirements, after making sure that

InitLa[ _ Q holds. In the same way, we

can incorporate a property Q that is

known a priori to be invariant, except

that in this case we need not worry about

marking Q wrt to the events.

4.6 Proof Rules for Leads-To

We have two kinds of leads-to proof rules.

The first kind is for inferring leads-to

assertions from the system specification:

Leads-to via Event Set Rule. Given a

system A with weak fairness for event

set E G Eventsk, P leads-to Q is satisfied

by A if the following hold:

(i) for every event e ● E: {P}e{Q}

(ii) for every event e e Events~ – E:

{P}e{P v Q}

(iii) Invariant( P = enabled~( E)) is sat-

isfied by A

Proof of Soundness. Let g =

(sO, eO, sl, el, . . . ) be an allowed behavior

of system A. We have to show that the

conditions of the rule imply that a satis-

fies P leads-to Q. Let S, satisfy P (if

there is no such z, P leads-to Q holds

vacuously). We have to show that there

exists an s,, j > i, in cr such that s]

satisfies Q. Let us assume the negation:

(iv) for all s~ in o, k > i, Sk does not

satisfy Q.

From (i) and (ii), we know that if Sk

satisfies P and if sk is not the last state

in m, then s},+ ~ satisfies P V Q. From

(iv), we know that s~, ~ does not satisfy

Q. Thus, every s~ in m, k > i satisfies P,

and hence the enabling condition of E

(from condition (iii )). Also from condition

(i), we know that eh E E for e, in u,

k > z (otherwise, Q would hold). If o- is

finite, then E is enabled in the last state.

If u is infinite, then E is continuously

enabled but never occurs. Either case is

not possible because a is an allowed be-

havior and E has weak fairness. ❑

If event set E has strong fairness in-

stead of weak fairness, then in condition

(iii) of the above rule we can replace

Inlariant(P * enabled, by the

weaker P leads-to Q V enubled~(E) (see

Lam and Shankar [ 1990] for details).

The second kind of leads-to proof rule

is for inferring leads-to assertions from

other leads-to assertions. We refer to

them as closure rules. Here are some

ACM ~omputmg Surveys, Vol 25, No 3, Scptemhc, 1993



Assertional Reasoning for Concurrent Systems “ 245

obvious examples (for a complete treat-

ment, see Chandy and Misra [1988] and

Manna and Pnueli [1984; 1992]):

o P leads-to Q holds if Invariant( P * Q)

holds.

e P leads-to Q holds if for some R, P

leads-to R. and R leads-to Q hold.

0 P leads-to Q holds if for some R, P

leads-to Q v R and R leads-to Q hold.

e P leads-to Q holds if P = PI V Pz, PI

leads-to Q, and Pz leads-to Q hold.

e P leads-to Q holds if Inuariant( R) and

P A R leads-to R * Q hold.

Sometimes we have to apply a closure

rule N times, where N is a parameter of

the problem being solved. For such cases,

we need a generalization based on well-

founded structureslG [Manna and Pnueli

1984; Chandry and Misra 1988; Lamport

1991]:

Leads-To Well-Founded Closure Rule.

Let (Z, > ) be a well-founded structure.

Let F(w) be a state formula with param-

eter w G Z. P leads-to Q is satisfied if

the following hold:

(i) P leads-to Q V [2x: H x)]

(ii) F(w) leads-to Q v [=x < W: F(x)]

Different instances of well-founded

structures are appropriate in different

situations. One special case of a well-

founded structure is the natural integers;

here the ordering is total. Another spe-

cial case is the partial ordering induced

by set inclusion on the subsets of a

countable set.

When we use these rules in our exam-

ples, for brevity we shall say P leads-to Q

holds via E to mean that P, Q, and E

satisfy the conditions of the above leads-

to via event set rule. We shall say P

leads-to Q holds by closure of Ll, Lz,...,

where Ll, L2, ““” are other assertions, to

mean that P leads-to Q holds by apply-

16A well-founded structure (Z, > ) is a partial order

> on a nonempty set Z such that there is no

infinite descending chain z ~ > z ~ > where each

z, E z.

ing the closure rules to Ll, Lz, . . . . Fi-

nally, it is often the case when P leads-to

Q holds via E, that only a subset F of

the events in E are enabled when P

holds. To explicitly indicate this, we say

that P leads-to Q holds via F c E; for-

mally, this means that P leads-to Q holds

via E and P ~ 1 enabled( E – F) holds.

Accumulator Example (Continued)

Let us prove that the accumulator pro-

gram (at the end of Section 4.4) satisfies

LO E [Vi: b(i) = O] leads-to

[Vi: b(i) =l].

Recall that event set E = {e(0),...,

e( N – 1)}has weak fairness. We expect

LO to hold, because for each i, if b(i) = O

then e(i) eventually sets b(i) to 1, and

after that b(i) is not affected.

Define J = {i: b(i) = 1).We expect the

following to hold:

LI - IJI =n <Nleads-tol J = n + 1.

LI holds via event set E. The details are

as follows: IJI = n < N implies

enabled(E), because of the definition of

J. For every event e = E, {IJI = n <

N}e{l J I = n + 1}, because e’s occurrence

increases IJ I by 1. There is no system

event not in E.

The following can be derived from LI

using N applications of the leads-to tran-

sitivity rule (or more precisely, using the

well-founded closure rule with the natu-

rals as the well-founded structure and

F(w)-N– IJI = W):

Lz = IJI = O leads-to IJI =N.

Lz implies LO because of the definition

of J (or more precisely, using the last

closure rule). This completes the proof of

LO.

5. EXAMPLES OF CONCURRENT SYSTEMS

ANALYSES

In this section, we consider some con-

current systems and analyze desirable

properties. The weakest precondition

ACM Computmg Surveys, Vol 25, No 3, September 1993



246 ● A. Udaya Shanhar

heuristic for obtaining invariant require-

ments is illustrated.

Many of our examples involve se-

quences. If B is a set of values, then

sequence of B denotes the set of finite

sequences whose elements are in B. It

includes the null sequence, denoted by

(). For any sequence y, let Iyl denote the
length of y, and let y(i) denote the ith

element in y, with the Y(O) being the

leftmost element. Thus, -y =

(y(o),..., y(lyl - 1)).
We say “y prefix-of 2“ to mean Iyl < Iz I

and y = (z(0), . . ..z(lyl – 1)). For any

nonnull sequence y, define tail(y) to be

(y(l),..., y(lyl – l)); i.e., y with the

leftmost element removed. For any se-

quence y, define heaci( y) to be y(0) if y

is nonnull and a special value nil (that is

not in any variable’s domain) if y is null.

We use @ as the concatenation operator

for sequences. Given two sequences y and

.Zj y@~ is the sequence (y(0),. ... y(lyl –

,.. ., Z(IZI – 1)).>

5.1 A Bounded-Buffer Producer-Consumer

Example

Consider a producer process and a con-

sumer process that share a FIFO buffer

of size N > 0. The producer can append

data items to the buffer. The consumer

can remove data items from the buffer.

To avoid buffer overflow, the processes

maintain a variable indicating the num-

ber of spaces in the buffer. We assume

that if the buffer is not empty, the con-

sumer process eventually consumes the

item at the head of the buffer. However,

we do not require the producer to repeat-

edly produce data items. This system can

be modeled as follows, where DATA de-

notes the set of data items that can be

produced, and parameter data has

domain DATA:

State variables and initial condition:

buffer: sequence of DATA. Initially (). {The

FIFO buffer shared between the

processes)

numspaces: integer. Initially N. {The num-

ber of spaces currently available in
the buffer}

Events:

Produce(data)

enabled G numspaces > 1

actzon = buffer ~ buffer@ ( data);

numspaces ~ numspaces – 1

Consume( data)

enabled = head( buffer) = data

actzon G buffer G tail(buffer);

numspaces ~ nurnspaces + 1

Fairness requirements:

{Consurne(data): data E DATA} has

weak fairness.

Suppose we want to say that the buffer

never overflows. This safety property can

be specified by the following assertion:

(1) Inuariant(lbufferl < N).

Suppose we want to specify that data

items are consumed in the order they

were produced. This is a safety property.

We cannot specify this property on the

above model because it does not have any

state variables that indicate the order of

production or of consumption. So we in-

troduce two auxiliary variables as

follows:

● produced: sequence of DATA. Initially

(). {Records data blocks in the order
they are produced}

“ consumed: sequence of DATA. Initially

(). {Records data blocks in the order

they are consumed}

The events are modified as follows (note

that the auxiliary variable condition is

satisfied).

● produced * produced~ (data) is added

to the action of Produce( data).

● consumed ~ consumed @(data) is

added to the action of Consume(data ).

The desired property can now be for-

malized by the following assertion:

(2) Invariant (consumed prefix-of

produced).

Suppose we want to say “the buffer is

empty just before data is produced.” How

can we specify this safety property? We

can rephrase it as “the buffer is empty

whenever data can be produced, i.e.,

ACM Computmg Surveys, Vol 25 No 3, September 1993



Assertional Reasoning for Concurrent Systems “ 247

whenever Produce(dzzta) is enabled,” and

this is specified by the following asser-

tion:

(3) Invariant (n umspaces >0 *

Ibufferl = O).

Suppose we want to say that whatever

is produced is eventually consumed. This

is a progress property. It can be specified

by the following assertion:

(4) produced = n leads-to consumed = n.

Given the safety assertion Inuar-

iant ( consumed prefix-of produced), it can

also be specified by

(5) Iproduced I = n leads-to

Iconsumedl = n.

Suppose we want to say that the pro-

ducer keeps producing data blocks. This

progress property can be specified by the

following assertion:

(6) Iproducedl = n leads-to

Iproducedl = 12 + 1.

Assertions (l), (2), (4), and (5) are sat-

isfied by the system. Assertion (3) is not

satisfied unless N = 1 or N = O. Asser-

tion (6) is not satisfied; it would be satis-

fied if, say, {Produce(data): data G

DATA} is subject to weak fairness. We

next give proofs of assertions (1), (2), and

(5).

Proof of a Safety Property. Let us

prove that Inuaria~zt( AO ) holds for the

system, where

AO - Ibzzfferl < N.

We use the heuristic for generating in-

variant requirements. The first step is to

check whether Initial = AO, which it

does. Next, we set up the marking.

We represent the marking by a table

that has a row for each invariant re-

quirement and a column for each system

event. For an invariant requirement A,

and an event e, if ( A,, e) is unmarked, its

entry in the table is blank. If ( A,, e ) is

marked, its entry indicates the justifica-

tion, i.e., a subset of the invariant re-

quirements such that their conjunction is

a sufficient precondition of AZ wrt e.

Thus, the reader can easily check the

validity of the marking. Also, an (A,, e)

entry in the table contains NA to indicate

that e does not affect any of the state

variables of A,; thus { AZ}e{ A,} holds triv-

ially. Finally, just to remind ourselves

that each invariant requirement must be

checked first against Initial, we add a

column for that purpose. It will contain

OK to indicate that Initial =+ AJ holds,

At the start, we have the following

marking.

I Initial Produce(data) Consurne( data) ~

AO OK

Next we try to mark the unmarked

(Al, e) pairs. We can mark ( AO, Con-

sume( data)) with the justification AO be-

cause {A O}Consz~me(data){AO} holds

(since Consunze(data) decreases Ibufferl

by 1).

What about ( AO, Prodz~ce( data))? Pro-

duce(data)’s action increases Ibuffer I by

1. So in order for AO to hold, it is neces-

sary (and sufficient) that Ibuffer I < N – 1

hold whenever Produce(data) is enabled.

That is, the following is a weakest pre-

condition of AO wrt Produce(data):

Al = nz~rnspaces >1 * Ibufferl < N – 1.

Al is not implied by AO, so we can add

Al as an invariant requirement. But Al

reminds us that we need to investigate

the relationship between n umspaces and

buffer. In fact, the relationship is obvi-

ous; numspaces indicates the number of

spaces in buffer:

Az E Ibufferl + nz~mspaces = N.

Observe that Az implies Al. Az holds

initially. { Az}Produce( data){ Az} holds

because Produce(data) decrements

numspaces by 1 and increments Ibuffer I

by 1. {Az}Consume(data){ Az} holds in the

same way, with numspaces and Ibuffer I

interchanged. We are done. Our proof is

summarized in the following marking,

ACM Computmg Surveys, Vol 25, No 3. September 1993



248 “ A. Udaya Shankar

where * is used to indicate an old entry:

lInztzal Produce(data) Consume(data)l

A, ‘ A, Au

Ag OK A2 AZ

In fact Az implies A,], so we can re-

move the AO row in the above marking

and just note that Az * AO holds. Is Az

the weakest state formula that satisfies

the invariance rule and implies AO? See

Note 1 in Appendix 1 for the answer. ❑

Proof of a Safety Property. Let us

prove that lnoarian t( BO ) holds for the

system, where

BO G consumed prefix-of produced.

BO holds initially. {B O}Produce

( data){llo} holds because Prodzzce(dczta)

appends data to the right of produced

and does not affect consumed. At this

point, we have the following marking:

IndLa[ Produce(data ) Consume( data)

BO OK BO

Consider (BO, Consume( data)). Con-

sume preserves BO iff head( buffer) is the

next element in sequence after the last

element in consumed. That is, the follow-

ing is a weakest precondition of BO wrt

Consume( data):

BI E Ibuffei - > 0 * consunLed@]

( buffer(0)) prefix-of produced.

BI reminds us that we need to investi-

gate the relationship between buffer,

produced, and consumed. In fact, buffer

stores whatever has been produced and

not yet consumed. This gives us the fol-

lowing:

Bz = produced ==conszimedfibz~f fer.

Note that Ba implies BO and BI. Bz

holds initially. {Bz}Produce(data ){ B,}

holds because Produce(data) appends

data to the right of prodz(ced and to the

right of buffer, and it does not affect

consumed. {B2}Consurned( data){B2}

holds because Consunze( data) transfers

the leftmost element in buffer and

appends it to the right of consumed, pro-

vided bz~ffer was nonnull before the oc-

currence. We are done, as summarized in

the following marking, where we also in-

dicate that Bz implies BO:

Initial Produce( data) Consunze( data)

B2 OK B2 Bz

Bz = B.

Is Bz the weakest state formula that

satisfies the invariance rule and implies

BO? See Note 2 in Appendix 1 for the

answer. ❑

Note that the proofs of Inuariant( Az )

and Invariant ( Bz ) are independent of

each other.

Proof of a Progress Property. Let us

prove that LO holds for the system, where

LO s ~producedj > n leads-to

Iconsumedl > rz.

We expect this to hold because as long

as Iprodz~ced~ > n and lconsz~medl < n

hold, the buffer is not empty, and eventu-

ally Consume will extend consumed.

Consider the following assertion:

LI = Iprodzfcedl > n ~

Iconsumedl = m

< n leads-to

Iprodz(cedl

> n ~ Iconsunzedl = ?n + 1

Using closure rules, we can derive LO

from LI (make sure of this). Thus, it

suffices to establish L1.

We now show that LI holds via event

set E = {Consume(data): data G DATA}.

The details are as follows: Because con-

sumed@buffer = produced (from Bz or

Bl), Iproducedl z n ~ Iconsumedl = m <

n implies buffer # (), which implies en-

abled( E). The occurrence of any event in

E (i.e., Consume( data) for any data) es-

tablishes Iproducedl > n ~ Iconsunzedl >

ACM Computmg Surveys, Vol 25, No 3, September 1993



Assertional Reasoning for Concurrent Systems

m + 1.The occurrence of any event not

in E (i.e., Produce( data) for any data)

preserves Iproducedl > n ~ Iconsumedl

=m <n. ❑

5.2 An Interacting-Loops Example

Consider the following program written

in a traditional concurrent programming

language.

x: integer. Initially x = 4.

cobegin

repeat x + 1 until x = 3

II

repeat if x = 1 then x + 2

else x + 4 until x = 3

II

repeat if x = 2 then x + 3

else x + 4 until x = 3

coend

Assuming that each if statement and

each x = 3 test is atomically executed,

we can model the above program by the

following system, where state variables

a, b, and c represent the control vari-

ables of the three processes.

State variables and initial condition:

x: integer. Initially x = 4.

a, b, c: integer. Initially a = b = c = O.

Events:

c1
enabled = a = O

actzon=x~l; a~l

e2

enabled = a = 1

actzon = if x = 3 then a + 2

else a ~ O

f,
enabled = b = O

actton z if x = 1 then x + 2

else x + 4;
b-l

f,
enabled = b = 1

action = if x = 3 then b F 2

else b + O

&’]

enabled = c = O

action = if x = 2 then x + 3

else x + 4;
~+1

t72

enabled = c = 1

action = if x = 3 then c + 2

else c + O

Fairness requirements:

{cl, ez}, {fI, fz}, {gl, gz} have
ness.

Proof of a Safety Property.

. 249

weak fair-

It is obvi-

ous that ~ equals’3 if the program termi-

nates; that is, Inuariant(AO ) holds,

where AO=a=b=c=2~x~ 3, be-

cause AO satisfies the invariance rule. ❑

Proof of Negation of a Safety Property.

Does .x equal 3 if only some of the loops

have terminated? That is, does Inuari-

ant (B. ) hold, where

BO~a=2Vb=2Vc=2~x =3.

We shall prove that lnz~ariant(BO) does

not hold, by providing a finite behavior

that ends in a state that does not satisfy

BO. Let us represent the system state by

the value of the 4-tuple (x, a, b, c). Con-

sider the following sequence of alternat-

ing states and events:

~= ((4, 0,0, 0), el, (l, l, (),0), e27

(l, o,o, o), fl, (2,0,1,0 ),gl,

(3,0,1,1),

f2, (3,0,2,1 ),el, (l,l,2,1))

It is easy to check that o is a behavior of

the system and that its last state

(1, 1,2, 1) does not satisfy BO. (Is there a

shorter counterexample?) ❑

Proof of Nega tion of a Progress Prop-

erty. Does the system eventually termi-

nate? That is, does LO hold, where

LO~a=b=c=O leads-to

a= b=c =2.

It is obvious that the system has termi-

nating behaviors, for example, the follow-

ing behavior (for brevity, we show only

the sequence of events in a behavior):

f ).CTo= (el, fl, gl, e2j 2jg2

It is also obvious that the system has

nonterminating behaviors, for example,

the infinite behavior (e], ez, el, ez, ..” ).

However, we cannot conclude from this

behavior that the system does not satisfy

ACM Computmg Surveys, Vol 25, No 3, September 1993



250 “ A. Udaya Shankczr

LO because it is not an allowed behavior

(e.g., fl is continuously enabled but never

occurs).

We now disprove LO by demonstrating

allowed behaviors that are nonterminat-

ing. In fact, we show something stronger,

that the system can reach a state from

where termination is impossible. Con-

sider the following behaviors:

After a certain point in behavior o-1, only

el and e~ are active. After a certain point

in behavior ZTz,only el, ez, fl, and f2 are

active. In both cases, g ~ and gz are per-

manently disabled. Because g ~ is the only

event that can set x to 3, the system has

no possibility of terminating after that

point. ❑

6. DISTRIBUTED SYSTEM MODEL

In this section, we specialize our system

model for message-passing distributed

systems. We consider a distributed sys-

tem to be an arbitrary directed graph

whose nodes are processes and whose

edges are one-way communication chan-

nels. A channel can be either perfect or

imperfect. A perfect channel is a FIFO

buffer. An imperfect channel can lose,

reorder, and/or duplicate messages in

transit.

The state transition system modeling

the distributed system has a state vari-

able for each channel indicating the se-

quence of messages traveling in the
channel. IT For each process, there ‘s a

set of nonauxiliary state variables. Addi-

tionally, the system can have other state

variables that are auxiliary.

17The pract]ce of modehng a channel by the se-

quence of messages in transit has been used by

Chandy and Mmra [ 1988] and m networking htera-

ture (e.g., Knuth [ 1981] and Shankar and Lam

[19831). Another way to model a channel IS by the

sequence of messages sent mto It and the sequence

of messages received from It [ Hadpern and Owlckl

1983].

The state transition system has events

for each process and for each imperfect

channel; a perfect channel has no events

(enqueuing and dequeuing of messages is

done by send and receive primitives in

process events). The events of an imper-

fect channel model the imperfections of

the channel; they can access (read or

write) only the channel state variable

and auxiliary state variables. The events

of a process can access only auxiliary

state variables, the state variables of that

process, and state variables of channels

connected to the process.l~ Furthermore,

a process event can access an outgoing

(incoming) channel state variable only by

sending (receiving) messages.

To formalize these constraints, let

transit, denote the state variable for a
~.

channe (Z, ,)) from process i to process j.

Define the following operations:

Send( transit,,, m )

~ transit,] - transit, j@(m)

Remove ( transit,])

= transit,, ~ tail( transit,,)

6.1 Blocking Channels

We first consider distributed systems

with blocking channels, i.e., where a

channel can block a process from sending

a message into it. Specifically, let state

formula ready( transit,]) be true iff chan-

nel (i, j) is ready to accept a message

from the process, for example,

ready (transitlj) - Itransit, I < N. Each

#event of process i is one o the following

three types:

- An internal event e (i.e., does not send

or receive messages) has the

enabled G P

action = S

form:

lB In fact, these conditions can be relaxed further a

process or channel event can read nonauxdlary

state variables of other processes and channels pro-

vided them values are used only to update auxdlary

state variables

ACM Computmg Surveys, Vol 25, No 3, September 1993



Assertional Reasoning for Concurrent Systems ● 251

e

●

A send event e(m) that sends message

m into an outgoing channel (i, j) has

the form:

enabled G P A ready (transit,j )

action = S; Send(transitl~, m )

A receive event e(m) that receives mes-

sage m from an incoming channel (j, i)

has the form:

enabled E P A head(transitl, ) = m

action E Remove( transit],); S

where P and S do not access nonauxil-

iary state variables of other processes or

channels.lg

6.2 Nonblocking Channels

We next consider distributed systems

with nonblocking channels, i.e., a

channel never blocks a process from

sending a message. Such a distributed

system can be modeled as above, with

ready( transit, ~) = true. However, in this

case a simpler model can be used [Lam-

port 90]. We can classify the events of

process i into those that receive a mes-

sage and those that do not receive a mes-

sage, as follows:

● A receive event e(m) that receives mes-

sage m from an incoming channel (j, i)

has the form:

enabled = P A head(transit~l ) = m

action ~ Remove( transit],); S

● An event e that does not receive a

message has the form:

enabled = P

action ~ S

where P and S are as in the blocking

case above, except that S can now in-

clude send operations on outgoing

channels.

lgOf course, they can access auxiliary variables
provided the auxiliary variable condition is satis-
fied.

6.3 Channel Fairness Requirements

In order to prove useful progress proper-

ties for a distributed system, it is gener-

ally necessary to assume some fairness

requirement for every channel (i, j) of

the system. For each message m that can

be sent into channel (i, j), let E(m) de-

note the set of process events that can

receive message m from channel (i, j).

For any set of messages lV, let E(N) =

U ~ . ~E(m). We say the receive events

for channel (i, j) are always ready iff

head(transitll) = m * enabled(E(m)) is

invariant for the distributed system; that

is, there is always an event ready to

receive whatever message is at the head

of channel (i, j).

For every perfect channel (i, j), we as-

sume the following fairness requirement:

For any message set N, {E(N)} has weak

fairness. Thus, if the receive events are

always ready, any message in the chan-

nel is eventually received.

For every imperfect channel (i, j), we

assume the following fairness require-

ment: If the receive events for channel

(i ,j) are always ready, then for every

allowed behavior CT of the distributed

system and for every message set N, if

messages from N are sent infinitely of-

ten in a, then messages from N are

received infinitely often in o. Thus, any

message that is repeatedly sent is even-

tually received [Hailpern and Owicki

1983]. (This is similar to strong fairness,

and it is not implied by weak fairness for

{E(N)} for any message set N.)

The above fairness requirements jus-

tify the following proof rule, where

count (N) is a (auxiliary) variable indi-

cating the number of times messages

from N have been sent since the begin-

ning of system execution.

Leads-to Via Message Set Rule. Given

a channel whose receive events are al-

ways ready and a set of messages N that

can be sent into the channel, P leads-to

Q is satisfied if the following are satis-

fied:

(i) for every event e G E(i’V): {P}e{Q}

(ii) for every event e @ E(N): ‘

{P}e{P v Q}

ACM Computmg Surveys, VOI 25, No 3, September 1993



252 “ A. Uclaya Shankar

(iii) P A cozlnt( N’) > k leads-to

Q V count(N) > k + 1

The above rule is valid whether chan-

nel (i, ~“) is perfect or imperfect. However,

it is typically used only when channel

(i, j) is imperfect, because if channel (z, .j)

is perfect then the stronger leads-to via

event set E(N) rule can be used.

7. EXAMPLES OF DISTRIBUTED SYSTEMS

ANALYSES

In this section, we present some dis-

tributed systems and analyze desirable

properties. Throughout, we assume that

channels are nonblocking.

7.! A Data Transfer Protocol with Flow

Control

A data transfer protocol is a distributed

solution to the producer-consumer prob-

lem. Consider two processes, 1 and 2,

connected by two one-way channels, (1,2)

and (2, 1). Process 1 produces data items

and sends them to process 2 which

consumes them. We want data to be con-

sumed in the same order as it was pro-

duced. We have an additional require-

ment that the number of data items in

transit must be bounded. (This prevents

congestion if, as is often the case, the

channel is implemented over a store-

and-forward network.) We consider a

simple scheme that achieves this, assum-

ing that the channels are error-free. Pro-

cess 2 acknowledges each data item it

receives. Process 1 allows at most N data

items to be outstanding, i.e., sent and

not acknowledged.

The protocol specification follows,

where DATA denotes the set of data

items that can be produced:

Process 1 state variables, initial condi-

tion, and events:

produced: sequence of DATA.

Initially ().

Auxiliary variable recording the se-
quence of data items produced

s: integer. Initially O.
Indicates number of data items sent.

a: integer. Initially O.
Indicates number of data items

acknowledged.

Produce( data)

enabled = s – a < N

action = produced * produced61 (data);

S+s+l;

Send(transztl ~, data)

RecACK

enabled = head(transzt~, ~) = ACK

actzon = Rernoue(transltz, ~);

a-a+l

Process 2 state variables, initial condi-

tion, and events:

consumed: sequence of DATA

Initially ().

Auxihary variable recording the se-

quence of data Items consumed.

RecDATA( data)

enabled = head( tran. wt~ ~) = data

action = Remoue(tran.sltl ~);

consumed

+ consunzed(~l ( data);

Send(transitz ~, ACKI

Channels (1, 2) and (2, 1), state variable,

and initial condition:

transztl ~, transztz ~: sequence of mes-

sages. Initially ().

(There are no channel events because the
channels are error-free. )

Fairness requirements:

Famness requu-ements for the channels.

Proof of a Safety Property. Let us

prove that the number of data items in

transit does not exceed N; that is, prove

Invariant( A(,), where

Produce(data) is the only event that

can falsify AO. It is enabled only if s – a

< N holds. Note that for every data item

outstanding at process 1, either the data

item is in transit in channel (1, 2), or an

acknowledgment for it is in transit in

channel (2, 1). That is, we expect the fol-

lowing to be invariant:

Al = s – a = Itransitl ~1 + Itransitz II

Because process 1 allows at most N

items to be outstanding, we expect the

following to be invariant:

Az=s–a <N.

ACM Computmg Surveys, Vol 25, No 3, September 1993



Assertional Reasoning for Concurrent Systems ● 253

This completes the proof because Al A Az

implies AO, and each of Al and Az satis-

fies the invariance rule. Is Al ~ Az the

weakest state formula that satisfies the

invariance rule and implies AO? See Note

3 in Appendix 1. ❑

Proof of a Safety Property. Let us

prove Inuariant(BO A Bl), where

B() = consumed prefix-of produced

Ill = Iproduced/ – Icon. sumedl < s – a.

Because channel (1, 2) is a perfect FIFO

buffer, we expect the following to be in-

variant:

Bz G consunzed@transitl, ~ = produced.

Bz implies BO and ]producedl –

Iconsunzecll = Itransitl,, 1. We know that

Itransitl, ~] < s – a (from Al). The proof

is complete, as summarized in the follow-

ing marking:

~

Bz = B.

B2~Al=Bl ❑

Proof of a Progress Property. Let us

prove that LO holds, where

Lo = Iproduced I z n leads-to

Iconsumedl > n.

We can establish LO, proceeding as in

the bounded-buffer producer-consumer

example. Define the following assertion:

Ll = Iproducedl > n A Iconsunzedl

= m < n leads-to Iproduced I

> n A Iconsunzedl = m + 1.

LO can be derived from LI using clo-

sure rules. LI holds via event set

{RecDATA(data): data G DATA} because

of I?z (make sure of this). c1

7.2 A Shortest-Distance Algorithm

Consider a distributed system with an

arbitrary but finite topology. Let the set

of processes be {1, . . . . IV}, and let the set

of channels be E G {1, . , N) x

{1,..., IV} – {(i, i): i = I,...,N}. Associ-

ated with each channel (i, ,j) is a nonneg-

ative length D(i, j). We say process i is

reachable iff i = 1 or if there is a path in

E from process 1 to process i. For each

reachable process i, let D(i) indicate the

length of a shortest path from process 1

to process i.

We consider an algorithm that informs

each reachable node of its shortest dis-

tance from process 1. Specifically, each

process i maintains an estimate of the

shortest distance from process 1 in a

variable dist( i ). Process 1 starts the al-

gorithm by sending on every outgoing

channel (1, j) a message containing

D( 1, j). When a process i receives a mes-

sage d, it sends d + D(i, j) on every out-

going channel (i, j) iff d is less than

dist(i).

The algorithm specification follows,

where i, j G {1,2, ..., N), and z is con-

sidered to be greater than any number.

For convenience, we assume an initial

state where process 1 has already started

the algorithm.

Process z state variable, initial condi-

tion, and events:

dist( i ): real. Initially dist( 1) = O A

[Vi # 1: dist(i) = CC]

Rec,(J, d)

enabled s head(translt,, ) = d

action = Rernow( transit,,);

if d < dzst ( L) then begin

dist(t) ~ d;

forall(i, k)=El

Send(transit, h,

cZ+D(i, k))

end

Channel (i, j), (i, j) ~ E, state variable,

and initial condition:

transit,J: sequence of messages.
Initially = ( D( 1, j)) A

transltl,l

transit,, = [V2# 1:()]

Fairness requirements:

Fairness requirements for the channels.

Proof of a Safety Property. Let us

prove that if dist (i ) + M, then i is reach-

able and dist ( i ) is the length of some

ACM Computmg Survey,, Vol 25. No 3, September 1993



254 9 A. Udaya Shankar

path from 1 to i, that is, Invariant,

where:

AO=dist(i)=d #x-

there is a path from 1 to i of length d.

AO holds initially. The following is a

sufficient precondition of AO wrt an oc-

currence of Ret, ( j, c1) that changes

dist(i):

Al G d E transztl, a

there is a path from 1 to L of length d.

Al holds initially and is preserved by

every event. This completes the proof, as

summarized in the following marking:

Inztial Ret,

Au OK Al, A.

Al OK Al

❑

Proof of a Progress Property. Let us

prove that every reachable process even-

tually learns its shortest distance, i.e., LO

holds, where

LO = i reachable leads-to clist ( i ) = D(i).

One way to prove this is to consider a

shortest path from process 1 to process i

and establish that each process on this

path eventually informs its successor on

the path of the successor’s shortest dis-

tance from process 1. In the rest of the

proof, let i be a reachable process; let

( jO, . . . . j. ) be a shortest path from 1 to z

where jfl = 1 and j. = i, and let k range

over {O, . . . , n – 1}. Define the following

progress assertion:

LI G dist( j~ ) = D( jh ) leads-to

dist(ji+l) = D(jk+l).

LO follows by closure of LI (specifi-

cally. using the chain rule with F( n – k )

- dist( jk ) = D( j~ )). Thus, it suffices to

prove Li.

Define state formula II(1) to be true iff

the lth message in transit,,, ~h+, is

D( jh+ ~), that is, H(l) = transitl,, ~, , ~1) =

D(jk , ~). Define the following assertions,

where for brevity we use X to denote

dist(j~) = D(jt) A dzst(j}, ,1) > ll(j~ , ~)

A, -X=[S1: H(l)]

Lz -X~H(l) A 1> 0 leads-to

dist(jk+ ~) = D(jh , ,)

V(XA~(/ – 1))

Lz = X A H(0) leads-to

dist(jfi+l) = D(j~+l)

AJ satisfies invariance rule 1. Each

of Lz and L~ hold via event set

{Recj,{jk + 1,” )}. LI follows by closure of
Inuarzant( AJ, L2, and Lj. ❑

Proof of a Progress Property. Let us

prove that the algorithm eventually ter-

minates, i.e., L~ holds, where

Ld E Initial leads-to transit,, = {).

Because of L ~, it suffices to prove the

following:

L~ - [’v’ reachable z: dzst(z ) = D(i)]

leads-to transzt,, = ().

Let G denote the number of messages in

transit in all channels. Define the follow-

ing:

LG - [V reachable i: dzst(i) = D(i)]

A G = n > 0 leads-to

[V reachable i: dist( i )

=D(z)] //G<n

LG holds via event set {Ret,} using Al.

Lb follows from closure of LG. n

7.3 A Termination Detection Algorithm

for Diffusing Computations

We consider an algorithm presented in

Dijkstra and Scholten [ 1980] for detect-

ing the termination of diffusion computa-

tions. Consider a distributed system with

a set of processes {1, , . . . N} and a set of

channels Ec{l, . . .. N}x{l. N}. ,N}–

{(i, i):i= l,... , N} such that if (z, j) = E

then (j, i) ● E.

ACM Computing Surveys, Vol 25, No 3 September 1993



Assertional Reasoning for Concurrent Systems ● 255

A diffusing computation is a dis-

tributed computation with the following

features. Each process can be active or

inactive. An active process can do local

computations, send and receive mes-

sages, and spontaneously become inac-

tive. An inactive process does nothing.

An inactive process becomes active iff it

receives a message. Initially, all pro-

cesses are inactive except for a distin-

guished process, say process 1, and all

channels are empty. (The shortest-dis-

tance algorithm in the previous section is

a diffusion computation, with an initial

state where process 1 has already sent

out messages.)

The following specification models an

arbitrary diffusing computation:

Process z, J = {1, ..., N}, state variables,

initial condition, and events:

actiue,: boolean. Initially trzle iff i = 1.

Indicates whether or not process i
is active.

Zlars,: integer.

Variables of diffusing computation.

Local,

enabled = active, A P

action = S

Send, (j, m)

enabled = actiz)el A P

action = Sencl(transit,~, m); S

Rec,(J, m)
enabled = head(transzt~, ) = m

action = Remove( translt~, ); S;

active, - true

Deactiuatel

enabled = active, A P

action = S; active, ~ false

where P denotes a state formula in vars,,

and S denotes an action in varsl and

actiuel; S can set active, to false. (The

P’s and S’s of different events need not

be the same.)

Channel (i, j), (i, j) G E, state variable,

and initial condition:

transitCJ: sequence of messages.

Initially ().

Fairness requirements:

(Arbitrary fairness requirements)

A diffusing computation is said to have

term inated iff all processes are inactive

and no messages are in transit. Note that

once the computation has terminated, it

can never leave the terminated state.

We now “superimpose” on the above

diffusing computation system a termina-

tion detection algorithm that will allow

process 1 to detect termination of the

diffusing computation. The termination

detection algorithm uses messages re-

ferred to as signals that are distinct from

the messages of the diffusing computa-

tion, Henceforth, we use message to mean

a diffusion computation message. For

each message that is sent from process i

to process j, a signal is sent at some time

from process j to process i.

Each process is either disengaged or

engaged to some other process. Initially,

all processes are disengaged. Process i

becomes engaged to process j iff i re-

ceives a message from I“ and was disen-

gaged before the reception. While en-

gaged, if process i receives a message

from any process k, it responds by imme-

diately sending a signal to k. Process i

becomes disengaged by sending a signal

to the process j to which it is engaged;

process i can do this only if it is not

active and it has received signals for all

messages it sent.

Note that every active process is en-

gaged and that a process can become

engaged and disengaged several times

during the course of the diffusion compu-

tation. We say that there is an engage-

ment edge from i to j iff i is engaged to

j. We shall see that the engaged pro-

cesses and the engagement edges form

an in-tree rooted at process 1; that is, for

each engaged process i, there is a path

from i to process 1. Thus, whenever pro-

cess 1 has received a signal for every

message it sent, it can deduce that no

other process is engaged.

The specification of the termination de-

tection algorithm, superimposed on the

above model for an arbitrary diffusion

computation, follows (for notational con-

venience, we let process 1 be always

engaged to itself):

Process i, i = {1,... , N}, state variables,

initial condition, and events:

actiue,: boolean. Initially true iff z = 1.

varsl: integer.

ACM Computmg Surveys. Vol 25, No 3. September 1993



256 * A. Ua?aya Shankar

deficzt,: integer. Inltlally O.

The number of messages sent by pro-

cess z for which signals have not

been received.

engager,: {1,...N} U {zzzZ}. Initially

engagerl = 1 A [tfi # l:t?ngager, =

nil].

nL/ lff process z is disengaged.

Local,

enabled = actlL,et A P

action = S

Sendl( j, m)
erzabled = actlle, A P

actzon = Se?ld( transzt, , nz ); S;

deficit, ~ de~cit, + 1

Rec,(J, ?Tz)

enabled = heczd(transztJ, ) = m

actiorz = Remoue( transLtJ, ); S;

actiue, ~ trac;

if engagerr = nd then

wzgager, F J

else

Send(translt,J, slgtzal)

DeActzl~atel

enabled = actlue, A p

action = S; actzle, ~ false

RecSlgnal,(J)

enabled = kead( transltJ, ) = signal

action G R.enzoue(transitJ, );

deficltt G deficLtl – I

DLsEngageL for L # I

enabled = ~ active, A engager, # nil

A deficit, = O

action G Send( transzt,l, szgnal )

where

j = erzgager,;

engager, * n d

Channel (z, J), (z, J) E E, state variable,

and initial condition:

transztlJ: sequence of messages.

Initially ( ),

Fairness requirements:

{Disengage,} has weak fairness,

Fairness requirements for channels.

Proof of u Safety Property. Let us

prove that if deficitl = O and process 1 is

not active, then the diffusion computa-

tion has terminated; i.e., no process is

active, and no (diffusion computation)

messages are in transit. Formally, let

Termination = [Vi: ~ active, ]

A[v(z, j) GE:

no messages

in transit,]] ,

and let us prove In Ljarian t ( A{] ), where

AO = deficztl = O A T actiuel

* Termination.

We next define some functions on the

system state:

● F,j, for every (Z, J) E E, is 1 if engager,
—— i and is O if engager, + i.

● The set of engaged processes, Engaged

= {i: engager, # niz}.

● The set of engagement edges, Engage-

ments = {(J”, L): engager, = L A i + nd}

- {(1,l)}.

Note that 1 is an engaged process and

(1, 1) is not an engagement edge.

Define the following:

Al E deficit, = ~(, ~, ~ ~ number of mes-

sages in transit,, + number of sig-

nals in transztll + F,,.

Az = i G Engaged – {1} * there is a

path of engagement edges from i

to 1.

Ay = activeh ~ k ● Engaged.

Ab G deficith >0 ~ k ● Engaged.

Al implies that if deficit, = O then pro-

cess L has no incoming engagement edge.

Az implies that the engaged nodes and

the engagement edges form an in-tree

rooted at process 1; recall that each en-

gaged process other than 1 has exactly

one outgoing edge and that process 1 has

no outgoing edge. A3 and Ad imply that

a disengaged process is not active and

has zero deficit. It can be checked that

Al satisfies invariance rule 1 and that

Az A As A Ai satisfies invariance rule 1

given that Al is invariant. Also Al A AZ

A As A Ad implies AO, as follows: As-

sume deficitl = O; because of Al and AZ,

this implies that i G Engaged for i # 1,

which implies 1 actiue, (from A~) and

deficit, = O (from Ai ), which implies that

no messages are in transit (from Al).

The proof is summarized in the follow-

ing marking, where we have abbreviated

the event names:

ACIVI Computmg Surveys, Vol 25, No 3, September 1993



Assertional Reasoning for Concurrent Systems * 257

m
DeAct RecSig DwEng

Al NA Al Al

Az NA NA Al

AZ true NA true

A. NA A. true

A1AA2AA3~A,1-A0 ❑

Proof of a Progress Property. Let us

prove that if the diffusion computation

has terminated, then eventually deficitl

becomes O; that is, Lo holds, where

L,, G Termmation leads-to deficit ~ = O.

We shall prove that once Termination

holds, the leaf nodes of the engagement

tree keep leaving the engagement tree

until it consists of only process 1. Define

the following functions on the system

state:

● The set of leaf nodes, Leaoes = {i: i ●

Engaged A [Vj: (j, i ) @ Engagements]}.

o State formula II( n, m ) = true iff IEn-

gagedl = n and (E, ~ ,,,.,,,, deficitl ) = m.

Define the following progress asser-

tions:

LI = Termination ~ H( n, m)

~f2>l Am>0

leads-to Term ination

A(~(n, m – 1) V [31: H(~2 – 1,1)])

Lg = Termination A H(I, m )

A m > 0 leads-to

Termination A H(I, m – 1)

L{ z Termination A H(n, O) A n > 1

leads-to Termination A

[21: H(n - 1,1)]

Each of LI and Lj holds via event set

{RecSignal,: i = Leaues}. Lg holds via

event set {DisEngage,: i c Leaues}. In

each case, the event set is not empty

because Leaves is never empty.

Consider a lexicographic ordering of in-

teger 2-tuples; i.e., (j, k) < (n, m) iff j <

n or j = n A k < m. Then, we get the

following from the closure of LI, Lz, and

La:

LJ = Termination A H( n , m) A (n, m)

> (1, O) leads-to Termination

A[~(j,~) < (n, m): H(j, k)l

Using the chain rule on this, we get

L~ E Termination A H( n, m )

leads-to H(l, O)

Because process 1 is always engaged,

[3(n, m) > (1, O): H(~2, m)] is invariant,

From the definition of H( n, m), we have

that H(l, O) implies deflcitl = O. Com-

bining these with L~, we obtain LO. ❑

8. DISCUSSION

In this tutorial, we focused on the follow-

ing: Given a concurrent system S and

desired properties P, express P in terms

of safety and progress assertions and

prove that S satisfies P using a set of

proof rules. We modeled a system by a

set of state variables, a set of events each

with an enabling condition and an action,

and a set of fairness requirements on the

events. We used only invariant and

leads-to assertions (but other kinds of

assertions can be easily added). We intro-

duced auxiliary state variables whenever

needed to express a correctness property.

As discussed in Section 3.4, our system

model, assertion language, and proof

rules are similar to those of other au-

thors, for example, Lamport [ 1989; 1990],

Lynch and Tuttle [1987], Manna and

Pnueli [1984; 1992], Chandy and Misra

[1986; 1988], Back and Kurki-Suonio

[1988], and Abadi and Lamport [1988;

1990]. The formalism in this tutorial

comes to a large extent from Lam and

Shankar [1990]. These references also

contain many examples of assertional

analyses. Other examples may be found

in Dijkstra [1965; 1976; 1977], Dijkstra

and Schloten [ 1980], Dijkstra et al. [ 1978;

1983], Drost and Leeuwen [1988], Drost

and Schoone [1988], Hailpern and Ow-

icki, [1983], Knuth [1981], Lamport

[ 1982; 1987], Murphy and Shankar

[1991], Andrews [1989], Schneider and

ACM Computmg Surveyi. VCII 25, No 3. September 1993



258 ● A. Udaya Shankar

Andrews [1986], Schoone [1987], Shankar

[1989], Shankar and Lam [1983; 1987],

Tel [ 1987], Tel et al. [ 1988], and AIaet-

tinoglu and Shankar [ 1992] (this list is

only a sampling).

Assertional reasoning allows the proof

of a system property to be presented at a

convenient level of detail, by omitting

obvious details of proof rule applications.

(Of course, what is obvious to one person

may not be so to another person. )

The difficulty in proving a system

property P is in coming up with addi-

tional properties Q such that Q satisfies

the proof rules and implies P. The most

successful approach to obtaining the ad-

ditional properties of Q seems to be to

develop them while developing the sys-

tem, as demonstrated by Dijkstra [ 1976;

1977] in his numerous program deriva-

tions; see also his paper “Two Starva-

tion-Free Solutions of a General Exclu-

sion Problem,” EWD 625, Plataanstraat

5,5671, Al Nunen, The Netherlands, date

unknown. In this approach, one starts

with a skeleton system and a set of de-

sired properties and successively adds

(and modifies) states variables, events,

and desired properties. The process ends

when we have a system and a set of

properties that satisfy the proof rules.

This approach has been formalized into

stepwise refinement techniques by sev-

eral authors. See, for example, Abadi and

Lamport [1988], Back and Kurki-Suonio

[ 1988], Back and Sere [ 1990], Chandy

and Misra [ 1986; 1988], Lamport [ 1983;

1989], Lynch and Tuttle [ 1987], and

Shankar and Lam [ 1992].

Typically, a concurrent system S con-

sists of smaller concurrent systems

S’l, . . . . S. that interact via message-

passing primitives (mcludmg procedure

calls) or shared variables. (The structure

can be hierarchical in that S[ can itself

consist of concurrent systems.) For exam-

ple, a data transfer protocol consists of a

producer system, a consumer system, and

two channel systems; an operating sys-

tem may consist of a process manage-

ment system, a memory management

system, and a file system. We can ana-

lyze such a composite system S by ignor-

ing its subsystem structure (and that is

what we did with distributed systems in

this tutorial). Although this is efficient

for small systems, it does not generally

scale up to larger systems. A composi-

tional approach is required, where we

can prove that S satisfies a property P

in two stages: first prove that each S,

satisfies some property P,, and then prove

that the P,’s together imply P.

For such an approach to work, we need

a composition theorem of the kind: if each

S, satisfies P,, then the composition of

the S,’s satisfies the conjunction of the

P,’s. It turns out that such composition

theorems are not a straightforward mat-

ter. Typically, each P, consists of an as-

sumption on the environment of S[ and a

requirement on S,, and the difficulty is

in avoiding circular reasoning of progress

properties. There are several composi-

tional approaches based on temporal logic

in the literature. See, for example, Abadi

and Lamport [ 1990], Chandy and Misra

[ 1988], Lam and Shankar [ 1992], Lynch

and Tuttle [1987], and Pnueli [ 1984].

Each places certain restrictions on the

types of properties and compositions

allowed.

So far, we have thought of P, as a

desired property of S,, that is, a property

of interest to the environment of S,. Let

us go one step further and think of an

embellished Pl, say E,, that includes all

(and only those) properties of interest to

the environment of S,. In addition to

safety and progress properties, E, must

include information needed for compos-

ing S, with systems in its environment,

such as which events and variables of S,

are visible to the environment, which

transitions are controlled by the environ-

ment, and which by S,, etc. Given E,, we

can think of S, as an implementation of

E,. More importantly, we can replace S,

by another implementation T, that satis-

fies E,, without affecting the properties

of S. Such a compositional approach is

very useful for building, maintaining, and

updating large concurrent systems. Per-

haps the most difficult step in applying

this approach is in identifying which

properties of a system S, are important

ACM Computing Surveys, Vol 25, No 3, September 1993



Assertional Reasoning for Concurrent Systems “ 259

to its environment. Such compositional

theories are presented. See, for example,

Abadi and Lamport [1990], Chandy and

Misra [1988], Lam and Shankar [1982],

and Lynch and Tuttle [1987].

APPENDIX 1

Note 1

Let us go back to the point just after we

obtained Al and see whether a brute-

force application of the heuristic would

yield Az. At this point, (Al,

Produce(data)) is unmarked.

wp(Produce(data), Al)

= enabled( Produce(data)) *

wp( action( Produce( data), Al )

= numspaces > 1 * (numspaces — 1

>l*lbufferl+l<N–1)

= nurnspaces 2 1 ~ numspaces > 2

- Ibufferl <N– 2

- nurnspaces ~ 2 * Ibufferl < N – 2

Thus, we have a new invariant require-

ment:

As E nurnspaces 22 * Ibufferl < N – 2.

Note that A:] is a weakest precondition

of AO with respect to two successive oc-

currences of Produce, i.e., wp( Produce,

wp(Produce, Ao)). If we consider a weak-

est precondition of AO with respect to k

occurrences of Produce, where 1 < k <

numspaces, we get the following invari-

ant requirement:

A~ G nurnspaces > k * Ibufferl < N – k.

Observe that Al * Al[k/k – 1]. So

there is no need to consider Al, for every

k. It suffices to consider Ai[ k/num-

spaces ], which is

numspaces 2 numspaces ~

Ibuffer I < N – numspaces.

Because the antecedent is always true,

the above is equivalent to its consequent,

which yields:

As = Ibuffei - + nurnspaces < N

It is easy to see that Initial * As,

{As}produce( data){A~}, and {A~}Con -

sume(data){A~} hold. Also As * AO

holds. Thus, As is a weaker substitute

for Az. It is probably fair to say that

when we obtained Az, we felt that there

is nothing weaker that satisfies AO and

invariance rule 1. Now we see that this is

not true. This is typical of how weakest

preconditions throw additional light on

even the simplest algorithms. Another

way to think of it is that once we under-

stand an algorithm, we usually know

more about it than we need to.

Note 2

Let us go back to the point just after we

obtained BI and see if a brute-force ap-

plication of the heuristic would yield Bz.

We derive the following weakest precon-

dition of BO wrt k occurrences of Con-

sume, where k = Ibuffer I (similar to the

derivation of As above):

BA ~ consumed@ buffer

prefix-of produced.

We next obtain a weakest precondition of

B~ wrt Produce(data):

u)p(Produce(data), Ba )

* consumed @buffer @ ( data )

prefix-of produced@{ data )

N consumed@ bu ffer prefix-of

produced ~

(i) ((lconsumedl + Ibufferl < Iprodz~cedl

~ data = produced( ~consumedl +

Ibufferl + 1)) V

(ii) ( Iconsumedl + Ibufferl = Iproduced))

Above, disjunct (i) requires the data item

produced to equal a previously produced

data item, Because this cannot be en-

forced in the current system, the only

way to achieve the weakest precondition

is to enforce disjunct (ii), which yields

Bb = consumed@ buffer = produced.

So in this case, brute force has yielded

the same invariant requirement as ob-

tained by using intuition, i.e., Bz.

ACM Computmg Surveys, Vol 25. No 3, September 1993



260 ● A. Uclaya Slzankar

Note 3

Let us start from the beginning, just af-

ter A. is specified. Produce(data) is the

only event that can falsify A.. Let us

obtain the weakest precondition of AO

wrt the maximum possible number of oc-

currences of Produce. Produce( data) is

enabled as long as s – a < N holds.

Therefore, starting from any state g

where s – a = k, N – k occurrences of

Produce are possible. The resulting state

satisfies AO iff g also satisfies Itrarwt,, ~ I

+ N – k s N, or equivalently Itransitl, ~ I

– (s – a) <0. In other words, we have

the following weakest precondition of Au

wrt N – (s – a ) occurrences of Produce:

A, - Itrarzsitl ,1< s - a.

RecACK is the only event that can fal-

sify A ~. Starting from any state g where

Itransitz, II = k holds, k occurrences of

RecACK are possible. The resulting state—
satisfies Ad iff g satisfies Itransitl ~ I

– ( a + k), or equivalently ltransitl ~ I

– (a + ltransit2 J. That is, we have

following weakest precondition of As

Itransit, , I occurrences of RecACK:

<s

<s

the

wrt

AJ - Ih-ansitl ~1 + Itrarzsitz,ll < s – a.

Note that Al implies As. No more

assertions are needed to establish In-

uarianf( AO ), as the following marking

demonstrates:

Finally, we observe that AC) A A4 N weaker

than Al A AZ.

ACKNOWLEDGMENTS

The comments of the anonymous rewewers greatly

Improved the presentation and accesslblhty of this

tutorial, in particular, Section 2 was suggested by

revlewcr 1, Richard Muntz suggested further im-

provements, Cengz Alaettmoglu, Jean Bolot, and

Carol Whitney carefully read various parts of the

tutorial Pravm Bhagwat and Debanjan Saha

caught a mistake Jlm Anderson and Ken Salem,

both of whom taught from a previous version, pro-

wded invaluable feedback.

REFERENCES

AB.ADI, M., AND LMWWKT, L. 1990. Composmg

specifications. In Stepa$zse Refinement of Dl ~-

trzbuted Systems. Lecture Notes m Computer

Science, vol 430, Sprmger-Verlag, New York

Also m ACM Truns Progru??L Lung. Syst. 15, 1

(Jan 1993), 73-132

ABADI, M , ANU L.AMPORII, L 1988 The existence

of refinement mappmgs Tech Rep D@tal

,Systems Research Center, Palo Alto, Calif AISO

m Thwr Compaf SCZ 82, 2 (May 1991),

253-284

ALAE1 NNOGLLJ, C., ANI) SHANEVAR, A. U 1992

Stepwlsc assertlonal dcslgn of dmtance-vector

routing algorithms In IFIP Proceech ng.s of the

12 International Symposlcim on Protocol Spec Z-

ficcctzorz, Testzng, and Verzfkatzon (Orlando, Fla,

June). IFIP, Arhngton, Va

ALPERN. B., .4NLJ SCHNEIDER, F 1985, Defining

hveness Injf Process Lett. 21, -1( Ott ), 181-185

ANCJREWS, G R 1989 A method for iolvmg syn-

chroni zation problems SCZ C’omp ut Progru m

13, 4 (Dee ), 1–21

APT, K R 1981. Ten years of Hoare’s Ioglc A

survey—Part I ACM Trans Program Lang

Syst 3, 4 (Ott ) 431-483

APT, K. R, FRANCEZ, N., AND K.4Tz, S 1988, Ap

prammg famness m languages for distributed

programmmg. Dlstrzb. C’ompat. 2, 4, 226-241.

BACK R J R , AND KURhl-SUON1O, R 1988 D1s-

trlbuted cooperation with action systems ACM

Tram Program Lang. Svst 10, 4 (Ott),

513-554

BACK, R J R., KCRKI-SUONIO, R 1983 Decen-

trahzatlon of process nets with a centrahzed

control In the 2nd ACM SIGACT-SIGCOPS

Syrnposz ZLm on the Prln~lples of Dlsti-lbated

Compatzng (Montreal, Aug ) ACM, New York,

131-142

BACK R. J, R,, AND SERE, K. 1990, Stepwme re-

finement of parallel algorithms Set. Comput.

Fb-ograwi 13, 2-3, 13:3-180

CHAND> K M AND MIsrw J 19s8 A Fou,]r/o -

tlon of Parallel Program De<lgn Addlson-Wes-

Iey, Reading, Mass

CHANDY, K. M., AND MIhRA, J. 1986, An example

of stepwme refinement of distributed programs:

Qmcscence detect~on ACIIf Trans. Program.

Lang, Syst, 8, 3 (July), 326-343,

DI.JKhTRA, E W 1977 A correctness proof for

communicating processes—A small exercise

EWD-607, Burroughs, Nuenen, The Nether-

lands

DI.JhhV?A, E W. 1976 A Dlsclpllne of Program-

m zng Prentice-Hall, Englewood Chffs, N.J

ACM Comput]ng Surveys, Vol 25 No 3, September 1993



Assertional Reasoning for Concurrent Systems “ 261

DLJKSTRA, E. W. 1965 Solution of a problem m

concurrent programming control. Comn~Z.Ln.

ACM 8, 9 (Sept )

DIJMTM, E. W., AND SC’HOLTEN, C, S. 1980. Ter-

mmatlon detection for diffusing computations,

Inf Process. Lctt 11 (Aug.), 1-4.

DI,JKSTRA, E W,, FEIJN, W. H, J., AND VAN G.ASTWWN,

A J. M. 1983, Derlvatlon of a termination

detection algorlthm for distributed computa-

tions, Inj( Process. Lett. 16, 217-219,

DLJ~STRA, E. W., LAMPORT, L,, MARTIN, A J., AND

SC’IIOLTEN, C. S. 1978. On-the-fly garbage

collection: An exercise in cooperation Com -

TnUtZ ACM’ 21, 11 (Nov.), 966–975

DROSr, N. J , .+ND SCHWJNE, A A. 1988 Asser-

tlonal verification of a reset algorlthm. Rljk-

sunivermtelt Utrecht, RUU-CS-88-5,

DROST, N. J., AND VAN LEEUWEN, J, 1988, Asser-

tional verification of a majority consensus algo-

rlthm for concurrency control m multlple copy

databases Rljksuniversltelt Utrecht, RUU-CS-

88-13

FJAWD, R. W. 1967. Asslgnlng meanmgs to pro-

grams. In Proceedings of the S,vmpo,szzim oa

.4pplled Mathentufzcs. Vol 19. American Matb-

ematlcal Society, 19–3’2,

FRANCEZ, N. 1986, F’curness. Sprmger-Verlag,

New Yorh

GRIE’i, D 1981 The Sczence of Programmzttg,

Springer-Verlag, New York

HAIL~J;RN, B, T,, ANL) OWICM, S. S, 1983. Modu-

lar verification of computer commumcation

protocols. IEEE Trans. Coni ntun. COM-31, 1

(Jan. ), 56-68.

HOAM,, C’. A, R, 1985. Commwz~catzrcg Sequen-

fzal Processes, Prentice-Hall, Englewood Cliffs,

NJ.

HOATW, C A. R. 1969. An axiomatic basis for

computer programming. Comman ACM 12, 10

(Oct.), 576-583.

KNUI H, D. E 1981. Vcrficatlon of llnk-level pro-

tocols B17’ 21, 31-36.

LAM, S. S,, AND SHANRAR, A. U, 1992 Specifying

modules to satisfy interfaces: A state transition

system approach, Dzstr/b. Compat. 6, 1,39–63,

LAM, S. S., .AND SHANKAR, A. U. 1990 A rela-

tional notatmn for state transition systems

IEEE Trans. Softw, Eng. 16 (July), 755-775.

LAMPORT, L 1991 The temporal logic of actions.

DEC SRC Rep .57, Palo Alto, Cahf Revised

1991

L,wv IK)RT> L 1990 A theorem on atomlclty m dis-

tributed algorithms. Dz.strzb. CornpZJt. 4, 2,

59-68,

LAMPORZ’. L. 1989. A simple approach to specify-

ing concurrent systemh Com m arc, AC’hf 32, 1

(Jan.), 32-45.

LA MPORT, L 1987. A fast mutual excluslon algo-

rlthm ACM Trans. Contput. Syst. 5, 1 (Feb ),

1-11

LAMPORT, L. 1983a, What good m temporal logic.

m Proceedz ~lgs of Informs tzon Processing 83.

IFIP, Arlington, Va,

LAMPORT, L. 1983b, Specifying concurrent pro-

gram modules. ACM Trans Program. Lat~g

Syst. 5, 2 (Apr.), 190-222

L~MPORT, L. 1982 An assertional correctness

proof of a distributed algorithm. SCL L’omput,

Prqqranz. 2, 3, 175-206.

LAMPORT, L. 1977. Proving tbe correctness of

multlprocess programs. IEEE Tra n.~, Softu,,

Eng. SE 3, 2 (Feb.), 125-143.

LEHMAN, D.. PNUELI, A., STAVJ, J 1981 Impar-

tiahty, JustIce, and fairness. The ethics of con-

current termination In Proceedl ngs of the 8th

ZCXLP (Acre, Israel, .July). Lecture Notes m

Computer Science, vol. 115 Springer-Verlag,

New York.

LYNCH, N. A., AND ‘NJTTLE, M. R. 1987. Hierar-

chical correctness proofs for dmtrlbuted algo-

rithms In Procecd[ ngs of the ACM Sy)nposL u)~l

on Przrzczples of Dzstrlbzlted Compzltlng (Van-

couver, B C.) ACM, New York.

MANNA, Z., AND PNUELI, A. 1984. Adequate proof

prmclples for mvarlance and liveness proper-

ties of concurrent programs, Sczence of Com -

pzlter Programming, 4, 257–289.

MANNA, Z , AND PNUEX J, A 1992 The Temporal

Logzc of Reactzoe and Concurrent Systems:

Speczfzcatton, Sprmger-Verlag, New York, 1992.

MILNER, R, 1989, Com)nzinzcatzorz and Concur-

rency, Prentice-Hall, Englewood Chffs, N.J

MURPHY, S. L., AND SUANKAR, A. U 1991 Con-

nection management for tbe transport layer:

Service specification and protocol construction,

IEEE Trans. Commun. 39 (Dec.), 1762-1775.

OWICKI, S , AND GRIES, D. 1976. An axlomatlc

proof technique for parallel programs I. Acts

Inforn~atzca 6, 4, 319-340.

OWICVU, S., AND LAMPORT, L. 1982. Proving live-

ness properties of concurrent programs. ACM

Trans. Program. Lang. S,yst. 4 (July), 455-495.

PETERWN, G. L. 1981 Myths about the mutual

exclusion problem. Inj! Process Lett. 12, 3

(June) 1133-1145

PNCJELI, A. 1984. In tranmtlon from global to

modular temporal reasoning about programs.

In NATO ASI Series, Logzc.s and Models of

Concurrent Systems. CO1. F13. Sprmger-Verlag,

Berlin, 123-144,

PNUELI, A, 1979, The temporal semantics of con-

current programs. In SwnmztZcs of Concurrent

Cornputatzon Lecture Notes in Computer Sci-

ence, vol. 70. Springer-Verlag, New York, 1–20.

PNEULI, A. 1977 The temporal lo~c of programs.

In proceedings of the ltlth ACM Symposzzim on

the Found at70na of Computer Sc~ence ACM,

New York, 46–57,

S(IHNF.IDER, 1?. B., AND ANDREWb, G R. 1986.

Concepts for concurrent programmmg. In Cur-

rent Tre?zds t n Concurrency. Lecture Notes m

ACM Camputmg Surveys, Vol 25, No 3, September 1993



262 e A. Uduya Shankar

Computer Science, vol. 224. Sprmger-Verlag,

New York, 669-716

SCHOONE, A A 1987 Venficatlonof connectlon-

management protocols Rljksunlversltelt

Utrecht, RUU-CS-87-14

SHANhAILA. U, 1989. Vern’ledd atatransferpro-

tocols with variable flow control. ACM Trans

ComPut. Syst 7,3( Aug),231-316.

SHANIMR, A U , .ANII LAM, S S. 1992 A stepwlse

refinement heurlstlc for protocol construct~on

ACM Trans Program Lang ,~vst 14, 3 (July),

417-461

SHANKAR, A. U., AND L.mI, S. S 1987 Tlme-

dependent dustrlbuted systems Proving safety,

liveness and real-time properties Dlstrzb.

Comput, 2, 2, 61-79.

Recewed January 1991, final revlslon accepted May 1993

SHANICAR, A U , AND LAM, S. S. 1983 An HDLC

protocol specdlcatlon and its verification using

Image protocols ACM Trans. Comp ut S.yst 1,

4 (Nov.), 331-368

SISTLA, A P 1984 Dlstrlbuted algorithms for

ensuring fam mterprocess commumcat]ons In

Proceedings of the ACM Symposium on Prlncl -

ples of Dzstrzbuted Computzng (Vancouver. B.C ,

Aug. ). ACM, New York

TEL, G 1987 Assertlonal verification of a

timer-based protocol Rljksumversltelt Utrecht,

RUU-CS-87-15

TEL, G , TAN, R B , AND VAN LEIEUWEN, J, 1988

The derivation of graph markmg algorithms

from distributed termination detection proto-

cols Scl Comput Program. 10, 2, 107–137

ACM Computmg Surveyh, Vol 25, No 3, September 1993


