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ABSTRACT 
An introduction to the area of intelligent autonomous hierarchical 

control is given. Autonomous control systems arc designed to perform well 
under significant uncertainties in the system and environment for extended 
pcriods of time, and they must be able to compensate for system failures 
without extemal intervention. Intelligent autonomous control systems use 
techniques from the field of Artificial Intelligence to achieve this autonomy. 
Such control systems evolve from conventional control systems by adding 
intelligent components, and their development requires interdisciplinary 
rcscarch. The fundamental issues in autonomous control system modelling 
and analysis are discussed, with emphasis on mathematical modelling. 
Some recent results in relevant research areas are summarized. 

1.0 INTRODUCTION 

Autonomous means having the power for self government. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Autonomous controllers have the power and ability for self govemance in 
the performance of control functions. They arc composed of a collection of 
hardware and software, which can perform the necessary control functions, 
without external intervention, over extended time periods. To achieve 
autonomy, the controller must be able to perform a number of functions in 
addition to the conventional control functions such as tracking and 
regulation. These additional functions, which include the ability to tolerate 
failures, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare discussed in this paper. 

There are several degrees of autonomy. A fully autonomous controller 
should perhaps have the ability to even perform hardware repair, if one of its 
components fails. Note that conventional fixed controllers can be considered 
to havc a low degree of autonomy since they can only tolerate a restricted 
class of plant parameter variations and disturbances. The autonomous 
controller functional architecture for future space vehicles described in this 
paper provides the functions to attain a high level of autonomy. It can 
interface with both the crew, ground station and the on-board systems of the 
space vchicle. A command by the pilot or the ground station is executed by 
dividing i t  into appropriate subtasks which are then performed by the 
controller. The controller can deal with unexpected situations, new control 
tasks, and failures within limits. To achieve this, high level decision 
making techniques for reasoning under uncertainty and taking actions must 
be utilized. These techniques, if used by humans, are attributed to 
intelligent behavior. Hence, one way to achieve autonomy is to utilize 
high level decision making techniques, "intelligent" methods, in the 
autonomous controller. Autonomy is the objective. and "intelligent" 
conrro//ers are one way to achieve it. The field of Artificial Intelligence 
[Charniak and McDermou 85; Shapiro 871 and Operations Research offer 
some of the tools to add the higher level decision making abilities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAutonomous Control Systems: Autonomous control systems 
must perform well under significant uncertainties in the plant and the 
environment for extended periods of time and they must be able to 
compensate for system failures without external intervention. Such 
au~onomous bchavior is a very desirable characteristic of advanced systems. 
An autonomous controller provides high level adaptation to changes in the 
plant and environment. To achieve autonomy the methods used for control 
system design should utilize both (i) algorithmic-numeric methods, based on 
the state of the art conventional control, identification, estimation, and 
communication theory, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U) decision making-symbolic methods, such as 
the ones developed in computer science and specifically in the field of 
Artificial Intelligence (AI). In addition to supervising and tuning the control 
algorithms, the autonomous controller must also provide a high degree of 
tolcrance to failures. To ensure system reliability, failures must first be 
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detected, isolated, and identified, and subsequently a new control law must be 
designed if it is deemed necessary. The autonomous controller must be 
capable of planning the necessary sequence of control actions to be taken to 
accomplish a complicated task. It must be able to interface to other systems 
as well as with the operator, and it may need learning capabilities to enhance 
its performance while in operation. 

Advanced planning, learning, and expert systems, among others, must 
work together with conventional control systems in order to achieve 
autonomy. The need for quantitative methods to model and analyze the 
dynamical behavior of such autonomous systems presents significant 
challenges well beyond current capabilities. It is clear that the development 
of autonomous controllers requires significant interdisciplinary research 
effort as it integrates concepts and methods from areas such as Control, 
Identification, Estimation, and Communication Theory, Computer Science, 
especially Artificial Intelligence, and Operations Research. 

Autonomous controllers can of course be used in a variety of systems 
from manufacturing to unmanned space, atmospheric, ground, and 
underwater exploratory vehicles. In this paper, we present an autonomous 
controller architecture for future space vehicles. Referring to a particular 
class of control problems has the advantage that the development addresses 
relatively well defined control needs rather than abstract requirements. 
Furthermore, the autonomous control of space vehicles is highly 
demanding; consequently the developed architecture is general enough to 
encompass all related autonomy issues. It should be stressed that all the 
results presented here apply to any autonomous control system. In other 
classes of applications, the architecture, or parts of it, can be used directly 
and the same fundamental concepts and characteristics identified here are 
valid. In this paper, a shortened version of [Antsaklis, Passino, Wang 
88,891 the architecture of autonomous controllers necessary for the operation 
of future advanced space vehicles is presented. The concepts and methods 
needed to successfully design such an autonomous controller are introduced 
and discussed. A hierarchical functional autonomous controller architecture 
is described; it is designed to ensure the autonomous operation of the control 
system and it allows interaction with the pilot/ground station and the 
systems on board the autonomous vehicle. 

Autonomous controllers are evolutionary and not revolutionary. They 
evolve from existing controllers in a natural way fueled by actual needs, as 
it is now discussed 

Design Methodology - History: Conventional control systems are designed 
using mathematical models of physical systems. A mathematical model 
which captures the dynamical behavior of interest is chosen and then control 
design techniques are applied, aided by CAD packages, to design the 
mathematical model of an appropriate controller. The controller is then 
realized via hardware or software and it is used to control the physical 
system. The procedure may take several iterations. The mathematical 
model of the system must be "simple enough" so that it can be analyzed 
with available mathematical techniques, and "accurate enough to describe 
the important aspects of the relevant dynamical behavior. It approximates 
the behavior of a plant in the neighborhood of an operating point. 

The first mathematical model to describe plant behavior for control 
purposes is attributed to J.C. Maxwell who in 1868 used differential 
equations to explain instability problems encountered with James Watt's 
flyball govemor; the govemor was introduced in 1769 to regulate the speed 
of steam engine vehicles. Control theory made significant strides in the 
past 120 years, with the use of frequency domain methods and Laplace 
transforms in the 30's and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40s and the introduction of the state space 
analysis in the 60's. Optimal control in the 50's and 60's. stochastic, robust 
and adaptive control methods in the 60's to today, have made it possible to 
control more accurately significantly more complex dynamical systems than 
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the original flyball governor. 
The control methods and the underlying mathematical theory were 

developed to meet the ever increasing control needs of our technology. The 
evolution in the control area was fueled by three major zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAneeds: 
(i) The need to deal with increasingly complex dynamical systems. 
(ii) The need to accomplish increasingly demanding design requiremcnts. 
(iii) The need to attain these design requirements with less precise advanced 
knowledge of the plant and its environment, that is, the nced to control 
under increased uncertainty. 

The need to achieve the demanding control specifications for 
increasingly complex dynamical systems has been addressed by using more 
complex mathematical models such as nonlinear and stochastic ones, and by 
developing more sophisticated design algorithms for, say, optimal control. 
The use of highly complex mathematical models however, can seriously 
inhibit our ability to develop control algorithms. Fortunately, simpler 
plant models, for example linear models, can be used in the control design; 
this is possible because of the feedback used in control which can tolerate 
significant model uncertainties. Controllcrs can then be designed to meet 
the specifications around an operating point, where the linear model is valid 
and then via a scheduler a controller emerges which can accomplish the 
control objectives over the whole operating range. This is, for example, the 
method typically used for aircraft flight control. In autonomous control we 
.need to significantly increase the operating range of the plant. We must be 
able to deal with significant uncertainties in models of increasingly complex 
dynamical systems in addition to increasing the validity range of our 
control methods. This will involve the use of intelligcnt dccision making 
processes to generate control actions so that a performance level is 
maintained even though there are drastic changes in the operating conditions. 

There are needs today that cannot be successfully addressed with the 
existing conventional control theory. They mainly pertain to the arca of 
uncertainty. Heuristic methods may be needcd to tune the parameters of an 
adaptive control law. New control laws to perform novel control functions 
should be designed while the system is in operation. Learning from past 
experience and planning control actions may be necessary. Failure detection 
and identification is needed. These functions have been performed in thc 
past by human operators. To increase the speed of response, to rclicve the 
pilot from mundane tasks, to protect operators from hazards, autonomy is 
desired. It should be pointed out that several functions proposed in later 
sections, to be part of the autonomous controller, have been performed in 
the past by separate systems; examples include fault trees in chemical 
process control for failure diagnosis and hazard analysis, and control systcm 
design via expert systems. 

In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 the functions, characteristics, and benefits of autonomous 
control are outlined. Next it is explained that plant complcxity and design 
requirements dictate how sophisticated a controller must be. From this it 
can be seen that often it is appropriate to use methods from Operations 
Research or Computer Science to achieve autonomy. Such methods are 
studied in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAintelligent control theory. An overview of some relevant research 
literature in the field of intelligent autonomous control is given together 
with references that outline research directions. An autonomous control 
functional architecture for future space vehicles is then presented, which 
incorporates the concepts and characteristics described earlier. The controllcr 
is hierarchical, with three levels, the Execution Level (lowest level), the 
Coordination Level (middle level), and the Management and Organization 
Level (highest level). The general characteristics of the overall architecture, 
including those of the three levels are explained, and an example to illustrate 
their functions is given. 

In Section 3 ,  fundamental issues and attributes of intelligcnt 
autonomous systems are described. 

Section 4 discusses mathematical models for autonomous systems 
including "logical" Discrete Event System models. An approach to the 
quantitative, systematic modelling, analysis, and design of autonomous 
controllers is also discussed. It is a "hybrid approach since it is proposed 
to use both conventional analysis techniques based on diffcrcnce and 
differential equations, together with new techniques for the analysis of 
systems described with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa symbolic formalism such as finite automata. The 
more global, macroscopic view of dynamical systems, taken in the 
development of autonomous controllers, suggests the use of a modcl with a 
hybrid or nonuniform structure, which in turn requires the use of a hybrid 
analysis. 

In Section 5 ,  several major relevant research areas are indicated. In 
particular, some interesting recent results from the areas of Planning and 
Expert systems, Machine Learning, Artificial Neural Networks and the area 
of Restructurable Controls are briefly outlined. Finally, some concluding 
remarks are given in Section 6. 

2 0 FUNCTIONAL ARCHITECTURE OF AN 
AUTONOMOUS CONTROLLER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.1 Intelligent Autonomous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAControl 

Motivation: Sophistication and Complexity in Control: The complexity of 
a dynamical system model and the increasingly demanding closed loop 
system performance requirements, necessitate the use of more complex and 
sophisticated controllers. For example, highly nonlinear systems normally 
require the use of more complex controllers than low order linear ones when 
goals beyond stability are to be met. The increase in uncertainty, which 
corresponds to the decrease in how well the problem is structured or how 
well the control problem is formulated, and the necessity to allow human 
intervention in control, also necessitate the use of increasingly sophisticated 
controllers. Controller complexity and sophistication is then directly 
proportional to both the complexities of the plant model and of the control 
design requirements. 

Based on these ideas, [Saridis 79, Gevarter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA841 suggest a hierarchical 
ranking of increasing controller sophistication on the path to intelligent 
controls. At the lowest level, deterministic feedback control based on 
conventional control theory is utilized for simple linear plants. As plant 
complexity increases, such controllers will need for instance, state 
estimators. When process noise is significant, Kalman or other filters may 
be needed. Also, if it is required to complete a control task in minimum 
time or with minimum energy, optimal control techniques are utilized. 
When there are many quantifiable, stochastic characteristics in the plant, 
stochastic control theory is used. If there are significant variations of plant 
parameters, to the extent that linear robust control theory is inappropriate, 
adaptive control techniques are employed. For still more complex plants, 
self-organizing or learning control may be necessary. At the highest level 
in their hierarchical ranking, plant complexity is so high, and performance 
specifications so demanding, that intelligent control techniques are used. 

In the hierarchical ranking of increasingly sophisticated controllers 
described above, the decision to choose more sophisticated control 
techniques is made by studying the control problem using a controller of a 
certain complexity belonging to a certain class. When it is determined that 
the class of controllers being studied (e.g., adaptive controllers) is inadequate 
to meet the required objectives, a more sophisticated class of controllers 
(e.g. intelligent controllers) is chosen. That is, if it is found that certain 
higher level decision making processes are needed for the adaptive controller 
to meet the performance requirements, then these processes can be 
incorporated via the study of intelligent control theory. These intelligent 
autonomous controllers are the next level up in sophistication. They are 
enhanced adaptive controllers, in the sense that they can adapt to more 
significant global changes in the vehicle and its environment than 
conventional adaptive controllers, while meeting more stringent performance 
requirements. 

One turns to more sophisticated controllers only if simpler ones cannot 
meet the required objectives. The need to use intelligent autonomous 
control stems from the need for an increased level of autonomous decision 
making abilities in achieving complex control tasks. In the next section a 
number of intelligent control research results which have appeared in the 
literature are outlined. 

A Literature Overview: In [Antsaklis, Passino and Wang 88,891 the 
authors provided a relatively complete list of references for the field of 
autonomous control. Here we provide references which we feel will provide 
the reader with an introduction to autonomous control. First, there are 
several relevant books: Hierarchical systems are treated in 
[Mesarovic,Macko and Takahara 70; Findeisen et aI.801. In Fischein et 
al.861 the authors explain how a wide variety of AI techniques will be useful 
in enhancing space station autonomy, capability, safety, etc. Aerospace 
applications are also discussed in [Heer and Lum 881. For a book on AI and 
autonomous systems see [Dougherty and Giardina 881, and for one on 
cybernetics and intelligent systems see [Glorioso and Osorio 801. For a 
book on intelligent manufacturing systems see [xusiak 901. 

loumals with papers relevant to the area of intelligent autonomous 
control are The Journal of Intelligent and Robotic Systems, IEEE Trans. on 
Systems, Man, and Cybernetics, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Journal of Intelligent Systems, Journal of Applied 
Artificial Intelligence, and the standard !.I and control theoretic journals. 
The reader should also consult some of the recent conference proceedings: 
Proceedings of the 1985 IEEE Workshop on Intelligent Control, 1986 
Intelligent Autonomous Systems Conference, the Space Telerobotics 
Workshop, and the Proceedings of the IEEE International Symposium on 
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Intelligent Control in 1987, 1988, 1989, and 1990. 
In [Antsaklis, Passino and Wang 88,891 the authors introduce an 

intelligent autonomous controller and discuss in detail the fundamental 
characteristics of autonomous control. In [Ozguner 891 the author offers a 
decentralized control-theoretic view on intelligent control. Fundamentals of 
intelligent systems such as the principle of increasing intelligence with 
decreasing precision, are discussed in [Saridis 851, [Saridis 871, and [Meystel 
851. The work in [Saridis 80,83,85,87,89], and [Valavanis 861, [Valavanis 
and Saridis 87a,87b] probably represents the most complete mathematical 
approach to the analysis of intelligent machines. There have been numerous 
studies on the use of Expert Systems to control various processes; in 
[Astrom et al. 861 expert systems have been used in chemical process 
control. There are interesting relationships between the type of problems 
examined in intelligent autonomous control, "Fuzzy Control" [Zadeh 881, 
and "Automated Reasoning" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANos 881. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2 An Intelligent Autonomous Control Architecture For Future Space 

Vehicles 
Here, a functional architecture of an autonomous controller for future 

space vehicles is introduced and discussed. This hierarchical architecture has 
three levels, the Execution Level, the Coordination Level, and the 
Management and Organization Level. The architecture exhibits certain 
characteristics, as discussed below, which have been shown in the literature 
to be necessary and desirable in autonomous systems. Based on this 
architecture we identify the important fundamental issues and concepts that 
are needed for an autonomous control theory. 

Architecture Overview: Structure and Characteristics; The overall funclional 
architecture for an autonomous controller is given by the architectural 
schematic of Figure 1; for more detailed description zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsee [Antsaklis, Passino 
and Wang 88,891. This is a functional architecture rather than a hardware 
processing one, therefore it does not specify the arrangement and duties of 
the hardware used to implement the functions described. Note that the 
processing architecture also depends on the characteristics of the current 
processing technology; centralized or distributed processing may be chosen 
for function implementation depending on available computer technology. 

The architecture in Figure 1 has three levels. At the lowest level, the 
Execution Level, there is the interface to the vehicle and its environment via 
the sensors and actuators. At the highest level, the Management and 
Organization Level, there is the interface to the pilot and crew, ground 
station, or onboard systems. The middle level, called the Coordination 
Level, provides the link between the Execution Level and the Management 
Level. Note that we follow the somewhat standard viewpoint that there are 
three major levels in the hierarchy. It must be stressed that the system may 
have morc or fewer than fhree levels. For instance, see the architecture 
developed in [Tumer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA841. Some characteristics of the system which dictate 
the number of levels are the extent to which the operator can intervene in 
the system's operations, the degree of autonomy or level of intelligence in 
the various subsystems, the dexterity of the subsystems, the hierarchical 
characteristics of the plant. Note however that the three levels shown here 
in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 are applicable to most architectures of autonomous controllers, 
by grouping together sublevels of the architecture if necessary. Notice that 
as it  is indicated in the Figure, the lowest, Execution Level involves 
conventional control algorithms, while the highest, Management and 
Organimtion Level involves only higher level, intelligent, decision making 
methods. The middle, Coordination Level is the level which provides the 
interface between the actions of the other two levels and it uses a 
combination of conventional and intelligent decision making methods. 

The sensors and actuators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare implemented mainly with hardware. They 
are the connection between the physical system and the controller. Software 
and perhaps hardware are used to implement the Execution Level. Mainly 
software is used for both the Coordination and Management Levels. There 
are multiple copies of the control functions at each level, more at the lower 
and fewer at the higher levels. For example, there may be one control 
manager which directs a number of different adaptive control algorithms to 
control the flexible modes of the vehicle via appropriate sensors and 
actuators. Another control manager is responsible for the control functions 
of a robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm for satellite repair. The control executive issues commands 
to the managers and coordinates their actions. 

Note that the autonomous controller is only one of the autonomous 
systems on the vehicle. It is responsible for all the functions related to the 
control of the physical system and allows for continuous online 
development of the autonomous controller and to provide for various phases 
of mission operations. The tier structure of the architecture allows us to 
build on existing advanced control theory. Development progresses, 

creating each time, higher level adaptation and a new system which can be 
operated and tested independently. The autonomous controller performs 
many of the functions currently performed by the pilot, crew, or ground 
station. The pilot and crew are thus relieved from mundane tasks and some 
of the ground station functions are brought aboard the vehicle. In this way 
the vehicle becomes more autonomous. 

Pilot and Crew/Ground Station/OnBoard Systems 

t 
Upper Management zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Executive I Decision Making and 

Management and 
Organization Level 

Learning 

and Algorithms 

Lower Management 

Hardware and Software 

Coordination Level 

t 
Vehicle and Environment 

Figure 1. Autonomous Controller Functional Architecture 

Functional Operation: Commands are issued by higher levels to lower 
levels and response data flows from lower levels upwards. Parameters of 
subsystems can be altered by systems one level above them in the hierarchy. 
There is a delegation and distribution of tasks from higher to lower levels 
and a layered distribution of decision making authority. At each level, 
some preprocessing occurs before information is sent to higher levels. If 
requested, data can be passed from the lowest subsystem to the highest, e.g., 
for display. All subsystems provide status and health information to higher 
levels. Human intervention is allowed even at the control implementation 
supervisor level, with the commands however passed down from the upper 
levels of the hierarchy. 

The specific functions at each level are described in detail in [Antsaklis, 
Passino and Wang88,89]. Here we present a simple illustrative example to 
clarify the overall operation of the autonomous controller. Suppose that the 
pilot desires to repair a satellite. After dialogue with the control executive, 
the task is refined to "repair satellite using robot A". This is arrived at 
using the capability assessing, performance monitoring, and planning 
functions of the control executive. The control executive decides if the 
repair is possible, under the current performance level of the system, and in 
view of near term planned functions. The control executive, using its 
planning capabilities, sends a sequence of subtasks sufficient to achieve the 
repair to the control manager. This sequence could be to order robot A to: 
"go to satellite at coordinates xyz", "open repair hatch", "repair". The 
control manager, using its planner, divides say the first subtask, "go to 
satellite at coordinates xyz", into smaller subtasks: "go from start to 
x1y1z1". then "maneuver around obstacle", "move to ~ 2 ~ 2 2 2 "  ,..., "arrive at 
the repair site and wait". The other subtasks are divided in a similar manner. 
This information is passed to the control implementation supervisor, which 
recognizes the task, and uses stored control laws to accomplish the 
objective. The subtask "go from start to xIy1z1", can for example, be 
implemented using stored control algorithms to first, proceed forward 10 
meters, to the right 15 degrees, etc. These control algorithms are executed 
in the controller at the Execution Level utilizing sensor information; the 
control actions are implemented via the actuators. 

2.3 Some Design Guidelines for  Autonomous Controllers 
There are certain functions, characteristics, and behaviors that 

autonomous systems should possess [Turner et a1.84, Firschein et a1.861. 
These are outlined below. Some of the important characteristics of 
autonomous controllers are that they relieve humans from time consuming 
mundane tasks thus increasing efficiency, enhance reliability since they 
monitor health of the system, enhance performance, protect the system from 
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internally induced faults, and they have consistent performance in 
accomplishing complex tasks. 

There are autonomy guidelines and goals that should be followed and 
sought after in the development of an autonomous system. Autonomy 
should reduce the work load requirements of the operator or, in the space 
vehicle case discussed here, of the pilot/crew/ground station, for the 
performance of routine functions, since the gains due to autonomy would be 
superficial if the maintenance and operation of the autonomous controller 
taxed the operators. Autonomy should enhance the functional capability of 
the system. Since the autonomous controller will be performing the 
simpler routine tasks, persons will be able to dedicate themselves to even 
more complex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtasks. 

There are certain autonomous system architectural characteristics that 
should be sought after in the design process. The autonomous control 
architecture should be amenable to evolving future needs and updates in the 
state of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAart. The autonomous control architecture should be functionally 
hierarchical; for lower level subsystems to take some actions, they have to 
clear it with a higher level authority. The system must, however, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbc able to 
have lower level subsystems, that are monitoring and reconfiguring for 
failures, act autonomously to certain extent to enhance system safety. 

There are also certain operational characteristics of autonomous 
controllers. Persons should have ultimate supervisory override control of 
autonomy functions. Autonomous activities should be highly visible, 
"transparent", to the operator the maximum extent possible. 

Finally, there must be certain features inherent in the autonomous 
system design. Autonomous design features should prevent failures that 
would jeopardize the overall system mission goals or safety. These features 
should enhance safety, and avoid false alarms and unnecessary hardware 
reconfiguration. This implies that the controller should have self-test 
capability. Autonomous design features should also be tolerant of transient 
errors, they should not degrade the reliability or operational lifetime of 
functional elements, they should include adjustable fault detection 
thresholds, avoid irreversible state changes, and provide protection from 
enuneous or invalid extemal commands. 

3.0 CHARACTERISTICS OF AUTONOMOUS CONTROL SYSTEMS 

Based on the architecture described in Section 2 we identify the 
important fundamental concepts and characteristics that are needed for an 
autonomous control theory. Note that several of these have been discussed 
in the literature as outlined above. Here, these characteristics are brought 
together for completeness. Furthermore, the fundamental issues which must 
be addressed for a quantitative theory of intelligent autonomous control are 
introduced and discussed. 

There is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsuccessive delegation of duties from the higher to lower 
levels; consequently the number of distinct tasks increases as we go down 
the hierarchy. Higher levels are concerned with slower aspects of the 
system's behavior and with its larger portions, or broader aspects. There is 
then a smaller contextual horizon at lower levels. i.e. the control decisions 
are made by considering less information Also notice that higher levels are 
concemed with longer time horizons than lower levels. Due to the fact that 
there is the need for high level decision making abilities at the higher levcls 
in the hierarchy, there is increasing intelligence as one moves from the 
lower to the higher levels. This is reflected in the use of fewer conventional 
numeric-algorithmic methods at higher levels as well as the use of more 
symbolic-decision making methods. This is the "principle of increasing 
intelligence with decreasing precision" by [Saridis 891. The decreasing 
precision is reflected by a decrease in time scale density. decrease in 
bandwidth or system rate, and a decrease in the decision (control action) rate. 
All these characteristics lead to a decrease in granularity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof models used, or 
equivalently, to an increase in model abstractness. Model granularity also 
depends on the dexterity of the autonomous controller as discussed in 
[Antsaklis, Passino and Wang 88,891. The Execution Level of a highly 
dexterous controller is very sophisticated and it can accomplish complex 
control tasks. The control implementation supervisor can issue high level 
commands to a dexterous controller, or it can completely dictate each 
command in a less dexterous one. The simplicity, and level of abstractness 
of macro commands in an autonomous controller depends on its dexterity. 
The more sophisticated the Execution Level is, the simpler are the 
commands that the control implementation supervisor needs to issue. 
Notice that a very dexterous robot arm may itself have a number of 
autonomous functions. If two such dexterous arms were used to complete a 
task which required the coordination of their actions then the arms would be 
considered to be two dexterous actuators and a new supervisory autonomous 
controller would be placed on top for the supervision and coordination task. 

In general, this can happen recursively, adding more intelligent autonomous 
controllers as the lower level tasks, accomplished by autonomous systems, 
need to be supervised. 

There is an ongoing evolution of the intelligent functions of an 
autonomous controller and this is now discussed. It was pointed out in 
Section 2 that complex control problems required a controller sophistication 
that involved the use of AI methodologies. It is interesting to observe the 
following [Mendel and Zapalac 681: Although there are characteristics which 
separate intelligent from non-intelligent systems, as intelligent systems 
evolve, the distinction becomes less clear. Systems which were originally 
considered intelligent evolve to gain more character of what are considered to 
be non-intelligent, numeric-algorithmic systems. An example is a route 
planner. Although there are AI route plannjng systems, as problems like 
route planning become better understood, more conventional numeric- 
algorithmic solutions are developed. The AI methods which are used in 
intelligent systems, help us to understand complex problems so we can 
organize and synthesize new approaches to problem solving, in addition to 
being problem solving techniques themselves. AI techniques can be viewed 
as research vehicles for solving very complex problems. As the problem 
solution develops, purely algorithmic approaches, which have desirable 
implementation characteristics, substitute AI techniques and play a greater 
role in the solution of the problem. It is for this reason that we concentrate 
on achieving autonomy and not on whether the underlying system can be 
considered "intelligent". 

4.0 MATHEMATICAL MODELS FOR AUTONOMOUS SYSTEMS 

For autonomous control problems normally, the plant is so complex 
that it is either inappropriate or impossible to describe it with conventional 
system models such as differential or difference equations. For instance, 
even though it might be possible to accurately describe some system with 
very complex nonlinear differential equations, it may be inappropriate if this 
description makes subsequent analysis too difficult. The complexity of the 
plant model necessary for design depends on both the complexity of the 
physical system and on how demanding the design specifications are. There 
is a tradeoff between model complexity and our ability to perform analysis 
on the system via the model. However, if the control performance 
specifications are not too demanding, a more abstract, higher level, model 
can be utilized, which will make subsequent analysis simpler. This model 
intentionally ignores some of the system characteristics, specifically those 
that need not be considered in attempting to meet the particular performance 
specifications. For example, a simple temperature controller could ignore 
almost all dynamics of the house or the office and consider only a 
temperature threshold model of the system to switch the furnace off or on. 

Logical Discrete Event System (DES) models such as those used in the 
Ramadge-Wonham framework (e.g. [Zhong and Wonham 901) or such as 
Petri nets [Peterson 811 are quite useful for modelling the higher level 
decision making processes in the intelligent autonomous controller. It was 
shown in [Passino and Antsaklis 89a,89b] that DES-theoretic models can be 
used to represent AI planning systems which are an important component of 
the intelligent autonomous controller. Also, it was shown in 
[McDonnellDouglas 881 that Petri nets can be used as knowledge 
representation tools in AI. In particular the authors showed that knowledge 
that can be represented with semantic networks, scripts, and production rules 
in an expert system can also be clearly represented with Petri net models. 
The "timed" or "performance" models from DES-theoretic research will also 
prove useful in modelling components of the higher levels in the intelligent 
autonomous controller. For instance, queueing network models, Markov 
chains, etc. The choice of whether to use such models will, of course, 
depend on what properties of the autonomous system need to be studied. 

The quantitative, systematic techniques for modelling, analysis, and 
design of control systems are of central and utmost practical importance in 
conventional control theory. Similar techniques for intelligent autonomous 
controllers do not exist This is of course because of their novelty, but for 
the most part, it is due to the "hybr id" structure (nonuniform, 
nonhomogeneous nature) of the dynamical systems under consideration. 
The systems are hybrid since in order to examine autonomy issues, a more 
global, macroscopic view of a dynamical system must be taken than in 
conventional control theory. Modelling techniques for intelligent 
autonomous systems must be able to support this macroscopic view of the 
dynamical system, hence it is necessary to represent both numeric and 
symbolic information. We need modelling methods that can gather all 
information necessary for analysis and design. For example, we need to 
model the dynamical system to be controlled (e.g., a space platform), 
failures that might occur in the system, the conventional adaptive controller, 
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and the high level decision making processes at the management and 
organization level of the intelligent autonomous controller (e.g., an AI 
planning system performing actions that were once the responsibility of the 
ground station). The nonuniform components of the intelligent controller 
all take part in the generation of the low level control inputs to the 
dynamical system, therefore they all must be considered in a complete 
analysis. For an extended discussion on the modelling of hybrid systems 
consult [Zeigler 871. 

It is our belief that research should begin by using different models for 
different components of the intelligent autonomous controller. Full hybrid 
models that can represent large portions or even the whole autonomous 
system should be examined but much can be attained by using the best 
available models for the various components of the architecture and joining 
them via some appropriate interconnecting structure. For instance, research 
in the area of systems that are modelled with a logical DES model at the 
higher levels and a difference equation at the lower level should be examined. 
In  any case, our modelling philosophy requires the examination of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hierarchical models. Much work needs to be done on hierarchical DES 
modelling, analysis, and design, let alone the full study of hybrid 
hierarchical dynamical systems. Some research has begun to address 
hierarchical DES [Zhong and Wonham901. 

A practical but very important issue is the simulation of hybrid 
systems. This requires simulation of both conventional differential 
equations and symbolic decision making processes or DES. Normally, 
numeric-algorithmic processing is done with languages like FORTRAN and 
symbolic decision making can be implemented with LISP or PROLOG 
while DES are often simulated with SLAM. Sometimes several types of 
processing are done on computers with quite different architectures. There is 
then the problem of combining symbolic and numeric processing on one 
computer. If the computing is done on separate computers, the 
communication link normally presents a serious bottleneck. Combining 
AI, DES, and conventional numeric processing is currently being addressed 
by many researchers and some promising results have been reported. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5.0 PLANNING AND EXPERT SYSTEMS, LEARNING AND 

NEURAL NETWORKS, RESTRUCTURABLE CONTROL 

In this Section we will discuss results obtained on the analysis and 
design of several components of the intelligent autonomous controller 
architecture. One can roughly categorize research in the area of intelligent 
autonomous control into two areas: conventional control theoretic research, 
addressing the control functions at the Execution and Coordination Levels, 
and the modelling, analysis, and design of higher level decision making 
systems found in the Management and Organization Level, and the 
Coordination Level. Below we provide only a sampling of the results to 
introduce the reader to these research zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAareas. 

To determine how to utilize AI techniques it is productive to study the 
relationships between AI and conventional control methods. In this way 
one can determine what AI techniques have to offer over conventional 
control methods. For instance, the authors in [Passino and Antsaklis 89al 
have provided a systems and control theoretic perspective on AI planning 
(and expert) systems. In this work, the authors explain how AI planning 
systems are in fact control systems where the input and output variables are 
symbols rather than numbers. It is shown that the techniques used in the 
implementation of AI planning systems are actually generalized open and 
closed loop control, state estimation, system identification, and adaptive 
control. 

It is also important to study how to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse conventional control techniques 
in conjunction with AI techniques to perform autonomous control 
functions. For instance, in [Passino and Antsaklis 88a; Passino 861 the 
authors introduce a fault detection and identification (FDI) system that is 
composed of AI decision making mechanisms and conventional FDI 
algorithms. The "hybrid algorithmic-decision making FDI system detects 
and identifies failures for an intelligent restructurable controller on board an 
advanced zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaircraR 

Some control theoretic techniques offer modelling, analysis, and design 
techniques for the higher level decision making mechanisms in the 
intelligent autonomous controller. For instance, in [passino and Antsaklis 
89b,88b,c] the authors show that AI planning problems can be studied in a 
discrete event system (DES) theoretic framework by utilizing the A* 
algorithm. Moreover, there are many recent results developed in a DES- 
theoretic framework that can be used for the study of components of the 
intelligent autonomous controller (e.g., results from the Ramadge-Wonham 
formulation for the study of "logical" DES models). 

It is important to note that in order to obtain a high degree of autonomy 

it is absolutely necessary to, in some way, adapt or learn [Antsaklis 881. 
Although the literature on higher level learning performed in conjunction 
with low level adaptation is limited, in [Gao, Peek and Antsaklis 88; Peek 
and Antsaklis 89.901 the authors show how an expert 1earnir.g system can 
be used to tune the parameters of an adaptive controIler for a large flexible 
space antenna. Neural networks also appear to offer methodologies to 
perform learning functions in the intelligent autonomous controller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see for 
instance, the April issues of the IEEE Control Systems Magazine in 1987, 
1988 and the Special Issue of April 1989 [Antsaklis 901 ; also the new 
IEEE Trans. on Neural Networks). Neural networks can also be used to 
implement certain components of the intelligent autonomous controller. 
For instance, the authors in [Sartori, Passino and Antsaklis 891 investigate 
how to implement the match phase of expert systems with a "multi-layer 
perceptron". 

We stress that in autonomous control we seek only to significantly 
widen the operating range of the system so that significant failures and 
environmental changes can occur and performance will still be maintained. 
All of the conventional control techniques are useful in the development of 
autonomous controllers and they are relevant to the study of autonomous 
control. It is the case however, that certain techniques are more suitable for 
interfacing to the autonomous controller and for compensating for 
significant system failures. For instance the area of "restructurable" or 
"reconfigurable" control systems [Passino 86; Stengel 841. Recently there 
have been advances in the theory of restructurable controls [Gao and 
Antsaklis 89,901 where the authors develop stability bounds on the 
allowable parameter variations, induced by system failures. 

It is our viewpoint that conventional modelling, analysis, and design 
methods should be used whenever they are applicable for the components of 
the intelligent autonomous controller. For instance, they should be used at 
the Execution Level of many autonomous controllers. We propose to 
augment and enhance existing theories rather than develop a completely new 
theory for the hybrid systems described above; we wish to build upon 
existing, well understood and proven conventional methods. The 
symbolic/numeric interface is a very important issue; consequently it should 
be included in any analysis. There is a need for systematically generating 
less detailed, more abstract models from differentiavdifference equation 
models to be used in higher levels of the autonomous controller 
(Coordination Level). There is also a need for systematically extracting the 
necessary information from lower level symbolic models to generate higher 
level symbolic models to be used in the hierarchy where appropriate. Tools 
for the analysis of this information extraction also need to be developed (see 
for instance [passino, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASartori, and Antsaklis 891). In this way conventional 
analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be used in conjunction with the developed analysis methods to 
obtain an overall quantitative, systematic analysis paradigm for intelligent 
autonomous control systems. In short, we propose to use hybrid 
modelling, analysis, and design techniques for nonuniform systems. This 
approach is not unlike the approaches used in the study of any complex 
phenomena by the scientific and engineering communities. 

6.0 CONCLUDING REMARKS 
The fundamental issues in autonomous control system modelling and 

analysis were identified and briefly discussed, thus providing an introduction 
to the research problems in the area. A hierarchical functional autonomous 
controller architecture was also presented. It was proposed to utilize a 
hybrid approach to modelling and analysis of autonomous systems. This 
will incorporate conventional control methods based on differential equations 
and new techniques for the analysis of systems described with a symbolic 
formalism. In this way, the well developed theory of conventional control 
can be fully utilized. It should be stressed that autonomy is the design 
requirement and intelligent control methods appear, at present, to offer some 
of the necessary tools to achieve autonomy. A conventional approach may 
evolve and replace some or all of the "intelligent" functions. Note that this 
paper is based on the results presented in [Antsaklis, Passino and Wang 
88,891. 
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