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In experimental science, it is desirable to hold all fac-
tors constant except those intentionally manipulated. In
psychology, however, this ideal is often not possible. El-
ements such as participants and items vary, in addition to
the intended factors. For example, a researcher interested
in the psychology of reading might manipulate the part
of speech and observe reading times. In this case, there
is unintended variability from the selection of both par-
ticipants and items. In his classic article, “The Language-
as-Fixed-Effect Fallacy: A Critique of Language Statis-
tics in Psychological Research,” H. H. Clark (1973)
discussed how unintended variability from the simulta-
neous selection of participants and items leads to under-
estimation of confidence intervals and inflation of Type I
error rates in conventional analysis. Type I error rate in-
flation, or an increased tendency to find a significant ef-
fect when none exists, is highly undesirable.

To demonstrate the problem, consider the question of
whether nouns and verbs are read at the same rate. To an-
swer this question, a researcher could randomly select

suitable verbs and nouns and ask a number of partici-
pants to read them. Each participant produces a set of
reading time scores for both nouns and verbs. A common
approach is to tabulate for each participant one mean
reading time for nouns and another for verbs. To test the
hypothesis of the equality of reading rates, these pairs of
mean reading times may be submitted to paired t tests.
This analytic approach is often used in memory research.
For example, Riefer and Rouder (1992) used this analy-
sis to determine whether bizarre sentences are better re-
membered than common ones. Clark (1973), however,
argued that using t tests to analyze means tabulated across
different items leads to Type I error rate inflation.

In the following demonstration, we show by simulation
that this inflation is not only real, but also surprisingly
large. We generate data for a standard ANOVA-style
model (discussed below) with no part-of-speech effects.
We analyze these data by first computing participant
means for each part of speech and then submitting these
means to a paired t test. This process is performed re-
peatedly, and the proportion of significant results is re-
ported. If the test has no Type I error inflation, the pro-
portion should be the nominal Type I error rate, which is
set to the conventional value of .05.

Consider the following ANOVA-style model for nouns:
It is reasonable to expect that each participant has a unique
effect on reading time; some participants are fast at read-
ing, but others are slow. This effect for the ith participant
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is denoted αi. Likewise, it is reasonable to expect that
each item has a unique effect on reading time; some
items are read quickly, and others are read slowly. This
effect for the jth item is denoted βj. Reading times reflect
both the participant and item effects, as well as noise:

(1)

where Nij is the ith participant’s reading time on the jth
noun, µn is a grand reading time for nouns, αi and βj are
participant and item effects, respectively, and ε ij

(n) is any
additional noise. Random variables ε ij

(n) are independent
normals centered around 0, with equal variances. Equa-
tion 1 is a familiar additive form that underlies both
ANOVA and regression. For this paradigm, participant
and item effects should be treated as random. It is rea-
sonable to model them as independent random draws
from normal distributions:

(2)

(3)

and

(4)

In these equations, the symbol “~” is used to denote a
distribution and may be read is distributed as. When
more than one random variable is assigned, as is the case
above, and they are independent, ind~ will be used to de-
note this relationship. The model for nouns is similar to
conventional “within-subjects” or repeated measures
models used in a standard ANOVA. The difference is
that whereas in conventional models only participants
are treated as random effects, in the present model both
participants and items are simultaneously treated as ran-
dom effects.

An analogous model is placed on verbs:

(5)

where Vi j is the ith participant’s reading time on the jth
verb, µv is a grand reading time for verbs, αi and γj are
participant and item effects, respectively, and ε ij

(v) is any
additional noise. These random effects are modeled
analogously:

(6)

and

(7)

We simulated data from this model and performed the
conventional analysis on aggregated means. Vector no-
tation is helpful in describing the simulations. Let α de-
note the vector of all subject random effects, α � (α1, α2,
. . . , αI). (Boldface type is reserved for vectors and ma-
trices.) The goal is to assess Type I error rates; conse-
quently, data were simulated with no true difference in
reading times between nouns and verbs (µn � µv). Each
replicate of the simulation starts with simulating partic-

ipant random effects (α), noun-item random effects (β ),
and verb-item random effects (γ ) as draws from normal
distribution. In our first simulation, there were 50 hypo-
thetical participants, each observing 50 nouns and 50
verbs. Hence, there were 100 values of α and 50 values
each of β and γ. These random effects were kept constant
throughout a replication. Next, the values of the noise,
ε (n) and ε (v), were sampled. There was a total of 5,000
samples for each type of noise, one for each participant-
by-item combination. Then, scores N and V were com-
puted by adding the grand means, random effects, and
noise in accordance with Equations 1 and 5. Mean scores
for each participant in each part-of-speech condition
were tabulated and submitted to a paired t test. There
were 500 independent replicates per simulation.

We performed several simulations by manipulating σ 1
2

and σ 2
2 (σ 2 was set to 1 and serves to scale the other pa-

rameter values). The main result is that the real Type I
error rate is a function of item variability (σ 2

2). Figure 1
shows the proportion of Type I errors (significant t test
results) as a function of item variability. The filled cir-
cles are error rates for 50 hypothetical participants ob-
serving 50 nouns and 50 verbs; the circles with hatched
lines are error rates for 20 hypothetical participants ob-
serving 20 nouns and 20 verbs. With no item variability,
the Type I error rate equals the nominal value of .05. As
item variability is increased, however, the Type I error
rate increases, and does so dramatically. For example, for
the simulation of the larger experiment, when item vari-
ability is only one third that of σ 2, the real Type I error
rate is around .40. This is a surprisingly high rate.

The intuitive reason for the increased Type I error rate
goes as follows. For each replicate, the aggregate item
scores, mean(β ) and mean(γ ), vary. This variation af-
fects all participants equally. In effect, this variation in-
duces a correlation across participants. If a sampled set
of items is a bit quicker than usual, all participants will be
equally affected. This correlation violates the independent-
observations assumption of the t test. It is not surprising,
then, that there is an increase in Type I error rate.

The analysis above is termed participant analysis,
since the data were aggregated across items to produce
participant-specific scores (Baayen, Tweedie, & Schreu-
der, 2002). One alternative would be item analysis, in
which data are aggregated across participants. A mean
reading score is then tabulated for each item, and the
mean scores are submitted to an appropriate t test for in-
ference. Unfortunately, the Type I error rate of this t test
is inflated by participant variability. Another alternative
is to perform both item and participant analyses. Unfor-
tunately, this alternative is also flawed, for if there is both
item and participant variability, each of these tests has
an inflated Type I error rate.

There are valid statistical procedures for this problem.
Clark (1973) proposed a correction, a quasi-F statistic,
that accounts for item variability. This correction works
well (Forster & Dickinson, 1976; Raaijmakers, Schrijne-
makers, & Gremmen, 1999). More recently, Baayen
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et al. (2002) proposed a mixed linear model that ac-
counts for both participant and item variation. Experi-
mentalists, however, have a more intuitive approach:
replication. The more a finding is replicated, the lower
the chance that it is due to a Type I error. For example,
consider two independent researchers who replicate each
other’s experiment at a nominal Type I error rate of .05.
Assume that due to unaccounted item variability, the ac-
tual Type I error rate for each replication is .2. If both
replications are significant, the combined Type I error
rate is .04, which is below the nominal criterion. Psy-
chologists do not often use strict replication, but instead
use near replications in which there are only minor pro-
cedural differences across replicates. Consider the
bizarre memory example above. Although Riefer and
Rouder (1992) used aggregation to conclude that bizarre
sentences are better recalled than common ones, the
basic finding has been obtained repeatedly (see, e.g.,
Einstein, McDaniel, & Lackey, 1989; Hirshman, Whel-
ley, & Palij, 1989; Pra Baldi, de Beni, Cornoldi, & Cave-
don, 1985; Wollen & Cox, 1981), so it is surely not the
result of a Type I error. Oft-replicated phenomena, such
as the Stroop effect and semantic priming effects, are
certainly not spurious.

The reason that replication is feasible in linear con-
texts (such as those underlying both t tests and ANOVA)
is that population means can be estimated without bias,
even when there is unmodeled variability. For example,
in our simulation of Type I error rates, estimates of true
condition means were quite accurate and showed no ap-
parent bias. Consequently, the true difference between
two groups can be estimated without bias and may be ob-
tained with greater accuracy by increasing sample size.
In the case in which there is no true difference, increas-
ing the sample size yields increasingly better estimates
of the null group difference.

The situation is not nearly so sanguine for nonlinear
models. Examples of nonlinear models include signal

detection (Green & Swets, 1966), process dissociation
(Egan, 1975; Jacoby, 1991), the diffusion model (Rat-
cliff, 1978; Ratcliff & Rouder, 1998), the fuzzy logical
model of perception (Massaro & Oden, 1979), the hy-
brid deadline model (Rouder, 2000), the similarity
choice model (Luce, 1963), the generalized context
model (Medin & Schaffer, 1978; Nosofsky, 1986), and
the interactive activation model (McClelland & Rumel-
hart, 1981). In fact, almost all models used for cognition
and perception outside the ANOVA/regression frame-
work are nonlinear. Nonlinear models are postulated be-
cause they are more realistic than linear models. Even
though psychologists have readily adopted nonlinear
models, they have been slow to acknowledge the effects
of unmodeled variability in these contexts. These effects
are not good: Unmodeled variability often yields dis-
torted parameter estimates in many nonlinear models.
For this reason, the assessment of true differences in
these models is difficult.

EFFECTS OF VARIABILITY 
IN SIGNAL DETECTION

To demonstrate the effects of unmodeled variability
on a nonlinear model, we performed a set of simulations
in which the theory of signal detection (Green & Swets,
1966) was applied to a recognition memory paradigm.
Consider the analysis of a recognition memory experi-
ment that entails both randomly selected participants and
items. In the signal detection model, participants moni-
tor the familiarity of a target. If familiarity is above cri-
terion, participants report the target as an old item; oth-
erwise, they report it as a new item. The distribution of
familiarity is assumed to be greater for old than for new
items, and the degree of this difference is the sensitivity.
Hits occur when old items are judged as old; false alarms
occur when new items are judged as old. The model is
shown in Figure 2. It is reasonable to expect that there is

Figure 1. The effect of unmodeled item variability (σ2) on Type I error rate when
data are aggregated across items. All error rates were computed for a nominal Type I
error rate of .05.
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participant-level variability in sensitivity; some partici-
pants have better mnemonic abilities than others. It is
reasonable also to expect item-level variability; some
items are easier to remember than others.

To explore the effects of variability, we implemented
a simulation similar to the previous one. Let d ′ij denote
the ith individual’s sensitivity to the jth item; likewise,
let cij denote the ith individual’s criterion when assessing
the familiarity of the jth item (cij is measured as the dis-
tance from the mean of the new-item distribution; see
Figure 2). Consider the following model:

d ij′ � µd�αi�βj (8)

and
cij � µc�αi /2�βj /2. (9)

Parameters µd and µc are grand means, parameter αi de-
notes the effect of the ith participant, and parameter βj

denotes the effect of the jth item. The model on d ′ is ad-
ditive for items and participants; in this sense, it is anal-
ogous to the previous model for reading times. One odd-
looking feature of this simulation model is that
participant and item effects are half as large on criteria
as they are on sensitivity. This feature is motivated by
Glanzer, Adams, Iverson, and Kim’s (1993) mirror ef-
fect. The mirror effect refers to an often-observed pattern
in which manipulations that increase sensitivity do so by
both increasing hit rates and decreasing false alarms.
Consider the case of unbiased responding shown in Fig-

ure 2. In the figure, the criterion is half of the value of the
sensitivity. If a manipulation were to increase sensitivity
by increasing the hit rate and decreasing the false alarm
rate in equal increments, then criterion must increase
half as much as the sensitivity gain (like sensitivity, cri-
terion is measured from 0, the mean of the new-item dis-
tribution). In Equations 8 and 9, the particular effect of
a participant or item is balanced in hit and false alarm
rates. If a particular participant or item is associated with
high sensitivity, the effect is equally strong in hit and
false alarm rates.

Because αi and βj denote the effects from randomly
selected participants and items, it is reasonable to model
them as random effects. These are given by

(10)

and

(11)

We simulated data in a manner similar to the previous
simulation. First, item and participant effects were sam-
pled according to Equations 10 and 11. Then these ran-
dom effects were combined according to Equations 8
and 9 in order to produce underlying sensitivities and cri-
teria for each participant /item combination. On the basis
of these true values, hypothetical responses were pro-
duced in accordance with the signal detection model
shown in Figure 2. These hypothetical responses are di-
chotomous: A specific participant judges a specific item
as either old or new. These responses were aggregated
across items to produce hit and false alarm rates for each
individual. From these aggregated rates, d ′ and c were
computed for each participant. Because individualized
estimates of d ′ were computed, variability across partic-
ipants was not problematic (σ1 was set equal to .5). The
left panel of Figure 3 shows the results of a simulation
with no item effects (σ2 � 0). As expected, d ′ estimates
appear unbiased. The right panel shows a case with item
variability (σ2 � 1.5). The estimates systematically
underestimate true values. This underestimation is an as-
ymptotic bias; it does not diminish as the numbers of
participants and items increase. We implemented vari-
ability in the context of a mirror effect, but the underes-
timation is also obtained in other implementations. Sim-
ulations with item variability exclusively in hits result in
the same underestimation. Likewise, simulations with
item variability in c alone result in the same underesti-
mation (see Wickelgren, 1968, who makes a comparable
argument).

The presence of asymptotic bias is disconcerting. Un-
like analysis with ANOVA, replication does not guaran-
tee correct inference. In the case of signal detection, one
cannot tell whether a difference in overall estimated sen-
sitivity between two conditions is due to a true sensitiv-
ity difference or to an increase in unmodeled variability
in one condition relative to the other. One domain in
which asymptotic underestimation is particularly perni-
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Figure 2. The signal detection model. Hit and false alarm prob-
abilities are the areas of the old-item and new-item familiarity
distributions that are greater than the criterion, respectively. Val-
ues of sensitivity (d ′) and criterion (c) are measured from 0, the
mean of the new-item familiarity distribution.
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cious is signal detection analyses of subliminal semantic
activation. Greenwald, Draine, and Abrams (1996), for
example, used signal detection sensitivity aggregated
across items to claim that a set of word primes was sub-
liminal (d ′ � 0). These subliminal primes then affect re-
sponse times to subsequent stimuli. The asymptotic
downward bias from item variability, however, renders
suspect the claim that the primes were truly subliminal.

The presence of asymptotic bias with unmodeled vari-
ability is not unique to signal detection. In general, un-
modeled variability leads to asymptotic bias in nonlinear
models. Psychologists have long known about problems
associated with aggregation in specific contexts. For ex-
ample, Estes (1956) warned about aggregating learning
curves across participants. Aggregate learning curves may
be more graded than those of individuals, leading re-
searchers to misdiagnose underlying mechanisms
(Haider & Frensch, 2002; Heathcote, Brown, & Mewhort,
2000). Curran and Hintzman (1995) critiqued aggrega-
tion in Jacoby’s (1991) process dissociation procedure.
They showed that aggregating responses over partici-
pants, items, or both possibly leads to asymptotic under-
estimation of automaticity estimates. Ashby, Maddox,
and Lee (1994) showed that aggregating data across par-
ticipants possibly distorts estimates from similarity
choice-based scaling (such as those from Gilmore, Hersh,
Caramazza, & Griff in, 1979). Each of the examples
above is based on the same general problem: Unmodeled
variability distorts estimates in a nonlinear context. In all
of these cases, the distortion does not diminish with in-
creasing sample sizes. Unfortunately, the field has been
slow to grasp the general nature of this problem. The cri-
tiques above were made in isolation and appeared as spe-
cific critiques of specific models. Instead, we see them

as different instances of the negative effects of aggregat-
ing data in analyses with nonlinear models.

The solution is to model both participant and item
variability simultaneously. We advocate Bayesian hier-
archical models for this purpose (Rouder, Lu, Speck-
man, Sun, & Jiang, 2005; Rouder, Sun, Speckman, Lu,
& Zhou, 2003). In a hierarchical model, variability on
several levels, such as from the selection of items and
participants as well as from measurement error, is mod-
eled simultaneously. As was mentioned previously, hier-
archical models have been used in linear contexts to im-
prove power and to better control Type I error rates (see,
e.g., Baayen et al., 2002; Kreft & de Leeuw, 1998). Al-
though better statistical control is attractive to experi-
mentalists, it is not critical. Instead, it is often easier (and
wiser) to replicate results than to learn and implement
complex statistical methodologies. For nonlinear mod-
els, however, hierarchical models are critical, because
bias is asymptotic. 

The main drawback to nonlinear hierarchical models
is tractability. They are difficult to implement. Starting
in the 1980s and 1990s, however, new computational
techniques, based on Bayesian analysis, emerged in sta-
tistics. The utility of these new techniques is immense;
they allow for the analysis of previously intractable mod-
els, including nonlinear hierarchical ones (Gelfand &
Smith, 1990; Gelman, Carlin, Stern, & Rubin, 2004;
Gill, 2002; Tanner, 1996). These new Bayesian-based
techniques have had tremendous impact in many quanti-
tatively oriented disciplines, including statistics, engi-
neering, bioinformatics, and economics.

The goal of this article is to provide an introduction to
Bayesian hierarchical modeling. The focus is on a rela-
tively new computational technique that has made
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Figure 3. The effect of unmodeled item variability (σ2) on the estimation of sensitivity (d ′). True values of d ′
are the means of d ′ij across items. The left and right panels, respectively, show the results without and with item
variability (σ 2 � 1.5). For both plots, the value of σ 1 was .5.
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Bayesian analysis more tractable: Markov chain Monte
Carlo sampling. In the first section, basic issues of esti-
mation are discussed. Then this discussion is expanded
to include the basics of Bayesian estimation. Following
that, Markov chain Monte Carlo integration is intro-
duced. Finally, a series of hierarchical signal detection
models is presented. These models provide unbiased and
relatively efficient sensitivity estimates for the standard
equal-variance signal detection model, even in the pres-
ence of both participant and item variability.

ESTIMATION

It is easier to discuss Bayesian estimation in the con-
text of a simple example. Consider the case in which a
single participant performs N trials. The result of each
trial is either a success or a failure. We wish to estimate
the underlying true probability of a success, denoted p,
for this single participant. Estimating a probability of
success is essential to many applications in cognitive
psychology, including signal detection analysis. In signal
detection, we typically estimate hit and false alarm rates.
Hits are successes on old-item trials, and false alarms are
failures on new-item trials.

A formula that provides an estimate is termed an esti-
mator. A reasonable estimator for this case is

(12)

where y is the number of successes out of N trials. Esti-
mator p̂0 is natural and straightforward.

To evaluate the usefulness of estimators, statisticians
usually discuss three basic properties: bias, efficiency,
and consistency. Bias and efficiency are illustrated in
Table 1. The data are the results of weighing a hypothet-
ical person of 170 lb on two hypothetical scales four sep-
arate times. Bias refers to the mean of repeated estimates.
Scale A is unbiased because the mean of the estimates
equals the true value of 170 lb. Scale B is biased. The
mean is 172 lb, which is 2 lb greater than the true value
of 170 lb. Scale B, however, has a smaller degree of error
than does Scale A, so Scale B is termed more efficient
than Scale A. Efficiency is the inverse of the expected
error of an observation and may be indexed by the reci-
procal of root mean squared error. Bias and efficiency
have the same meaning for estimators as they do for
scales. Bias refers to the difference between the average
value of an estimator and a true value. Efficiency refers

to the average magnitude of the difference between an
estimator and a true value. In many situations, efficiency
determines the quality of inference more than bias does.

How biased and efficient is estimator p̂0? To provide
a context for evaluation, consider the following two al-
ternative estimators:

(13)

and

(14)

These two alternatives may seem unprincipled, but, as is
discussed in the next section, they are justif ied in a
Bayesian framework.

Figure 4 shows sampling distributions for the three
probability estimators when the true probability is p � .7
and there are N � 10 trials. Estimator p̂0 is not biased,
but estimators p̂1 and p̂2 are. Surprisingly, estimator p̂2
has the lowest average error; that is, it is the most effi-
cient. The reason is that the tails of the sampling distri-
bution are closer to the true value of p � .7 for p̂2 than
for p̂1 or p̂0. Figure 4 shows the case for a single true
value of p � .7. Figure 5 shows bias and efficiency for
all three estimators for the full range of p. The conven-
tional estimator p̂0 is unbiased for all true values of p,
but the other two estimators are biased for extreme prob-
abilities. None of the estimators is always more efficient
than the others. For intermediate probabilities, estimator
p̂2 is most efficient; for extreme probabilities, estimator
p̂0 is most efficient. Typically, researchers have some
idea of what type of probability of success to expect in
their experiments. This knowledge can therefore be used
to help pick the best estimator for a particular situation.

The other property of estimators is consistency. A
consistent estimator converges to its true value. As the
sample size is increased, the estimator not only becomes
unbiased, the overall variance shrinks toward 0. Consis-
tency should be viewed as a necessary property of a good
estimator. Fortunately, many estimators used in psychol-
ogy are consistent, including sample means, sample vari-
ances, and sample correlation coefficients. The three es-
timators, p̂0, p̂1, and p̂2, are consistent; with sufficient
data, they converge to the true value of p. In fact, all es-
timators presented in this article are consistent.

BAYESIAN ESTIMATION OF A
PROBABILITY

In this section, we provide a Bayesian approach to es-
timating the probability of success. The datum in this ap-
plication is the number of successes (y), and this quan-
tity may be modeled as a binomial:

y ~ Binomial(N, p),

where N is known and p is the unknown parameter of 
interest.

ˆ .p
y

N2
1

2
= +

+

ˆ
.

p
y

N1
5

1
= +

+

ˆ ,p
y

N0 =

Table 1
Weight of a 170-Pound Person Measured on 

Two Hypothetical Scales

Scale A Scale B

Data (lb) 180, 160, 175, 165 174, 170, 173, 171
Mean 170 172
Bias 0 2.0
RMSE 7.91 2.55
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Bayes’s (1763) insightful contribution was to use the
law of conditional probability to estimate the parameter
p. He noted that

(15)

We describe each of these terms in order.
The main goal is to find f ( p | y), the quantity on the

left-hand side of Equation 15. The term f( p | y) is the dis-
tribution of the parameter p given the data y. This distri-
bution is referred to as the posterior distribution. It is
viewed as a function of the parameter p. The mean of the
posterior distribution, termed the posterior mean, serves
as a suitable point estimator for p.

The term f (y | p) plays two roles in statistics, depend-
ing on context. When it is viewed as a function of y for
known p, it is known as the probability mass function.
The probability mass function describes the probability
of any outcome y given a particular value of p. For a bi-
nomial random variable, the probability mass function is
given by

(16)

For example, this function can be used to compute the
probability of observing a total of two successes on three
trials when p � .5:

� 3/8.

The term f(y | p) can also be viewed as a function of
parameter p for fixed y. In this case, it is termed the like-
lihood function and describes the likelihood of a partic-
ular parameter value p given a fixed value of y. For the
binomial, the likelihood function is given by

(17)

In Bayes’s theorem, we are interested in the posterior as
a function of the parameter p. Hence, the right-hand
terms of Equation 15 are viewed as a function of param-
eter p. Therefore, f (y | p) is viewed as the likelihood of p
rather than the probability mass of y.

The term f (p) is the prior distribution and reflects the
experimenter’s a priori beliefs about the true value of p.

Finally, the term f (y) is the distribution of the data
given the model. Although its interpretation is important
in some contexts, it plays a minimal role in the develop-
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Figure 4. Sampling distributions of p̂0, p̂1, and p̂2 for N � 10 trials
with a p � .7 true probability of success on any one trial. Bias and root
mean squared error (RMSE) are included.
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ment presented here for the following reason: The pos-
terior is a function of the parameter of interest, p, but
f (y) does not depend on p. The term f (y) is a constant
with respect to p and serves as a normalizing constant
that ensures that the posterior density integrates to 1. As
will be shown in the examples, the value of this normal-
izing constant usually becomes apparent in analysis.

To perform Bayesian analysis, the researcher must
choose a prior distribution. For this application of esti-
mating a probability from binomially distributed data,
the beta distribution serves as a suitable prior distribu-
tion for p. The beta is a flexible two-parameter distribu-
tion; see Figure 6 for examples. In contrast to the normal
distribution, which has nonzero density on all numbers,
the beta has nonzero density between 0 and 1. The beta
distribution is a function of two parameters, a and b, that
determine its shape. The notation for specifying a beta
distribution prior for p is

p ~ Beta(a, b).

The density of a beta random variable is given by

(18)

The denominator, Be(a, b), is termed the beta function.1

Like f (y), it is not a function of p and plays the role of a
normalizing constant in analysis.

In practice, researchers must completely specify the
prior distribution before analysis; that is, they must choose
suitable values for a and b. This choice reflects re-
searchers’ beliefs about the possible values of p before
data are collected. When a � 1 and b � 1 (see the mid-

dle panel of Figure 6), the beta distribution is flat; that is,
there is equal density for all values in the interval [0, 1].
By choosing a � b � 1, the researcher is committing to
all values of p being equally likely before data are col-
lected. Researchers can choose values of a and b to best
match their beliefs about the expected data. For exam-
ple, consider a psychophysical experiment in which the
value of p will almost surely be greater than .5. For this
experiment, priors with a � b are appropriate.

The goal is to derive the posterior distribution using
Bayes’s theorem (Equation 15). Substituting the likeli-
hood function (Equation 17) and prior (Equation 18) into
Bayes’s theorem yields

Collecting terms in p yields

f ( p | y) � kp (y�a�1)(1�p)(N�y�b�1), (19)

where

The term k is constant with respect to p and serves as a
normalizing constant. Substituting

a′ � y � a, b′ � N � y � b (20)

into Equation 19 yields

f ( p | y) � kp a′�1(1�p)b′�1.

This equation is proportional to a beta density for pa-
rameters a′ and b′. To make f ( p | y) a proper probability
density, k has a value such that f ( p | y) integrates to 1.
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Figure 5. Bias and root mean squared error (RMSE) for the
three estimators as functions of true probability of success. The
solid, dashed, and dashed/dotted lines denote the characteristics
of p̂0, p̂1, and p̂2, respectively.

Figure 6. Probability density function of the beta distribution
for various values of parameters a and b.
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This occurs only if the value of k is a beta function—for
example, k � 1/Be(a ′, b′). Consequently,

(21)

The posterior, like the prior, is a beta, but with param-
eters a′ and b′ given by Equation 20.

The derivation above was greatly facilitated by sepa-
rating those terms that depend on the parameter of inter-
est from those that do not. The latter terms serve as a
normalizing constant and can be computed by ensuring
that the posterior integrates to 1.0. In most derivations,
the value of the normalizing constant becomes apparent,
much as it did above. Consequently, it is convenient to
consider only those terms that depend on the parameter
of interest and to lump the rest into a proportionality con-
stant. Hence, a convenient form of Bayes’s theorem is

Posterior distribution �

Likelihood function � Prior distribution.

The symbol “�” denotes proportionality and is read is
proportional to. This form of Bayes’s theorem is used
throughout this article.

Figure 7 shows both the prior and posterior of p for
the case of y � 7 successes in N � 10 trials. The prior
corresponds to a beta with a � b � 1, and the observed
data are 7 successes in 10 trials. The posterior in this
case is a beta distribution with parameters a′ � 8 and
b′ � 4. As can be seen, the posterior is considerably
more narrow than the prior, indicating that a large degree
of information has been gained from the data. There are
two valuable quantities derived from the posterior distri-
bution: the posterior mean and the 95% highest density
region (also termed the 95% credible interval). The for-
mer is the point estimate of p, and the latter serves anal-
ogously to a confidence interval. These two quantities
are also shown in Figure 7.

For the case of a beta-distributed posterior, the ex-
pression for the posterior mean is

The posterior mean reduces to p̂1 if a � b � .5; it reduces
to p̂2 if a � b � 1. Therefore, estimators p̂1 and p̂2 are
theoretically justified from a Bayesian perspective. The
estimator p̂0 may be obtained for values of a � b � 0. For
these values, however, the integral of the prior distribu-
tion is infinite. If the integral of a distribution is infinite,
the distribution is termed improper. Conversely, if the 
integral is finite, the distribution is termed proper. In
Bayesian analysis, it is essential that posterior distribu-
tions be proper. However, it is not necessary for the prior
to be proper. In some cases, an improper prior will still
yield a proper posterior. When this occurs, the analysis
is perfectly valid. For estimation of p, the posterior is
proper even when a � b � 0.

When the prior and posterior are from the same distri-
bution, the prior is termed conjugate. The beta distribu-
tion is the conjugate prior for binomially distributed data
because the resulting posterior is also a beta distribution.
Conjugate priors are convenient; they often facilitate the
derivation of posterior distributions. Conjugacy, however,
is not at all necessary for Bayesian analysis. A discussion
about conjugacy is provided in the General Discussion.

BAYESIAN ESTIMATION WITH 
NORMALLY DISTRIBUTED DATA

In this section, we present Bayesian analysis for nor-
mally distributed data. The normal plays a critical role in
the hierarchical signal detection model. We will assume
that participant and item effects on sensitivity and bias
are distributed as normals. The results and techniques
developed in this section are used directly in analyzing
the subsequent hierarchical signal detection models.

Consider the case in which a sequence of observa-
tions, w � (w1, . . . , wN), are independent and identically
distributed as normals:

The goal is to estimate parameters µ and σ 2. In this sec-
tion, we discuss a more limited goal—the estimation of
one of the parameters assuming that the other is known.
In the next section, we will introduce a form of Markov
chain Monte Carlo sampling for estimation when both
parameters are unknown.

Estimating µ With Known σ 2

Assume that σ 2 is known and that the estimation of µ
is of primary interest. The goal then is to derive the pos-
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Figure 7. Prior and posterior distributions for 7 successes out
of 10 trials. Both are distributed as betas. Parameters for the
prior are a � 1 and b � 1; parameters for the posterior are a′ �

8 and b ′ � 4. The posterior mean and 95% highest density region
are also indicated.
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terior, f (µ |σ 2; w). According to the proportional form
of Bayes’s theorem,

All terms are conditioned on σ 2 to reflect the fact that it
is known.

The first step is to choose a prior distribution for µ.
The normal is a suitable choice:

Parameters µ0 and σ 0
2 must be specified before analysis

according to the researcher’s beliefs about µ. By choos-
ing σ 0

2 to be increasingly large, the researcher can make
the prior arbitrarily variable. In the limit, the prior ap-
proaches having equal density across all values. This
prior is considered noninformative for µ.

The density of the prior is given by

Note that the prior on µ does not depend on σ 2; there-
fore, f (µ) � f (µ |σ2).

The next step is multiplying the likelihood, f (w | µ,
σ 2), by the prior density, f (µ |σ 2). For normally distrib-
uted data, the likelihood is given by

(22)

Multiplying the equation above by the prior yields

We concern ourselves with only those terms that involve
µ, the parameter of interest. Other terms are used to nor-
malize the posterior density and are absorbed into the
constant of proportionality.

where

(23)

and

(24)

The posterior is proportional to the density of a normal
with mean and variance given by µ′ and σ 2′, respectively.
Because the conditional posterior distribution must inte-
grate to 1.0, this distribution must be that of a normal
with mean µ ′ and variance σ 2′:

(25)
Unfortunately, the notation does not make it clear that
both µ′ and σ 2′ depend on the value of σ 2. When this de-
pendence is critical, it will be made explicit: µ ′(σ 2) and
σ 2′(σ 2).

Because the posterior and prior are from the same
family, the normal distribution is the conjugate prior for
the population mean with normally distributed data (with
known variance). In the limit that the prior is diffuse (i.e.,
as its variance is made increasingly large), the posterior
of µ is a normal with µ′ � w� and σ 2′ � σ 2/N. This dis-
tribution is also the sampling distribution of the sample
mean in classical statistics. Hence, for the diffuse prior,
the Bayesian and conventional approaches yield the same
results.

Figure 8 shows the estimation for an example in which
the data are w � (112, 106, 104, 111) and the variance is
assumed known to be 16. The mean of these four obser-
vations is 108.25. For demonstration purposes, the prior
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is constructed to be fairly informative, with µ0 � 100
and σ 0

2 � 100. The posterior is narrower than the prior,
reflecting the information gained from the data. It is cen-
tered at µ′ � 107.9, with variance 3.85. Note that the
posterior mean is not the sample mean but is modestly
influenced by the prior. Whether the Bayesian or the con-
ventional estimate is better depends on the accuracy of
the prior. For cases in which much is known about the
dependent measure, it may be advantageous to reflect
this information in the prior.

Estimating σ 2 With Known µ
In the last section, the posterior for µ was derived for

known σ 2. In this section, it is assumed that µ is known
and that the estimation of σ 2 is of primary interest. The
goal then is to estimate the posterior f (σ 2 | µ; w). The 
inverse-gamma distribution is the conjugate prior for σ 2

with normally distributed data. The inverse-gamma dis-
tribution is not widely used in psychology. As its name
implies, it is related to the gamma distribution. If a ran-
dom variable g is distributed as a gamma, then 1/g is dis-
tributed as an inverse gamma. An inverse-gamma prior
on σ 2 has density

The parameters of the inverse gamma are a and b, and in
application, these are chosen beforehand. As a and b ap-
proach 0, the inverse gamma approaches 1/σ 2, which is
considered the appropriate noninformative prior for σ 2

(Jeffreys, 1961).

Multiplying the inverse-gamma prior by the likelihood
given in Equation 22 yields

Collecting only those terms dependent on σ 2 yields

where

a′ � N/2 � a (26)
and

(27)

The posterior is proportional to the density of an inverse
gamma with parameters a′ and b′. Because this posterior
integrates to 1.0, it must also be an inverse gamma:

σ 2 | µ; w ~ Inverse Gamma (a′, b′). (28)

Note that posterior parameter b′ depends explicitly on
the value of µ.

MARKOV CHAIN 
MONTE CARLO SAMPLING

The preceding development highlights a problem: The
use of conjugate priors allowed for the derivation of pos-
teriors only when some of the parameters were assumed
to be known. The posteriors in Equations 25 and 28 are
known as conditional posteriors because they depend on
other parameters. The quantities of primary interest are
the marginal posteriors: µ | w and σ 2 | w. The straightfor-
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Figure 8. Prior and posterior distributions for estimating the
mean of normally distributed data with known variance. The
prior and posterior are the dashed and solid distributions, re-
spectively. The vertical line shows the sample mean. The prior
“pulls” the posterior slightly downward in this case.
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ward method of obtaining marginals is to integrate 
conditionals:

In this case, the integral is tractable, but in many cases it
is not. When an integral is symbolically intractable, how-
ever, it can often still be evaluated numerically. One of
the recent developments in numeric integration is Markov
chain Monte Carlo (MCMC) sampling. MCMC sam-
pling has become quite popular in the last decade and is
described in detail in Gelfand and Smith (1990). We show
here how MCMC can be used to estimate the marginal
posterior distributions of µ and σ 2 without assuming
known values. We use a particular type of MCMC sam-
pling known as Gibbs sampling (Geman & Geman, 1984).
Gibbs sampling is a restricted form of MCMC; the more
general form is known as Metropolis–Hastings MCMC.

The goal is to find the marginal posterior distribu-
tions. MCMC provides a set of random samples from the
marginal posterior distributions (rather than a closed-
form derivation of the posterior density or cumulative
distribution function). Obtaining a set of random sam-
ples from the marginal posteriors is sufficient for analy-
sis. With a sufficiently large sample from a random vari-
able, one can compute its density, mean, quantiles, and
any other statistic to arbitrary precision.

To explain Gibbs sampling, we will digress momen-
tarily using a different example. Consider the case of
generating samples from an ex-Gaussian random vari-
able. The ex-Gaussian is a well-known distribution in
cognitive psychology (Hohle, 1965). It is the sum of nor-
mal and exponential random variables. The parameters
are µ , σ , and τ, the location and scale of the normal and
the scale of the exponential, respectively. An ex-Gaussian
random variable, x, can be expressed in conditional form:

and
η ~ Exponential(τ ).

We can take advantage of this conditional form to gen-
erate ex-Gaussian samples. First, we generate a set of
samples from η. Samples will be denoted with square
brackets; [η]1 denotes the first sample, [η]2 denotes the
second, and so on. These samples can then be used in the
conditional form to generate samples from the marginal
random variable x. For example, the first two samples are
given by

and

In this manner, a whole set of samples from the mar-
ginal x can be generated from the conditional random
variable x |η. Figure 9 shows that the method works. A
histogram of [x] generated in this manner converges to
the true ex-Gaussian density. This is an example of Monte
Carlo integration of a conditional density.

We now return to the problem of deriving marginal
posterior distributions of µ | w from the conditional
µ |σ 2; w. If there was a set of samples from σ 2 | w, Monte
Carlo integration could be used to sample µ | w. Like-
wise, if there was a set of samples of µ | w, Monte Carlo
integration could be used to sample σ 2 | w. In Gibbs sam-
pling, these relations are used iteratively, as follows:
First, a value of [σ 2]1 is picked arbitrarily. This value is
then used to sample the posterior of µ from the condi-
tional in Equation 25:

where µ ′ and σ 2 ′ are the explicit functions of σ 2 given
in Equations 23 and 24. Next, the value of [µ]1 is used to
sample σ 2 from the conditional posterior in Equation 28.
In general, for iteration m,

(29)

and

(30)

In this manner, sequences of random samples [µ] and
[σ 2] are obtained.

The initial samples of [µ] and [σ 2] certainly reflect the
choice of starting values [σ 2]1 and are not samples from
the desired marginal posteriors. It can be shown, how-
ever, that under mild technical conditions, the later sam-
ples of [µ] and [σ 2] are samples from the desired mar-
ginal posteriors (Tierney, 1994). The initial region in
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of the appropriate ex-Gaussian distribution.
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which the samples reflect the starting value is termed the
burn-in period. The later samples are the steady-state pe-
riod. Formally speaking, the samples form irreducible
Markov chains with stationary distributions that equal
the marginal posterior distribution (see Gilks, Richard-
son, & Spiegelhalter, 1996). On a more informal level,
the first set of samples have random and arbitrary values.
At some point, by chance, the random sample happens to
be from a high-density region of the true marginal pos-
terior. From this point forward, the samples are from the
true posteriors and may be used for estimation.

Let m0 denote the point at which the samples are ap-
proximately steady state. Samples after m0 can be used to
provide both posterior means and credible regions of the
posterior (as well as other statistics such as posterior
variance). Posterior means are estimated by the arith-
metic means of the samples:

and

where M is the number of iterations. Credible regions are
constructed as the centermost interval containing 95%
of the samples from m0 to M.

To use MCMC to estimate posteriors of µ and σ 2, it is
necessary to sample from a normal and an inverse-gamma

distribution. Sampling from a normal is provided in many
software packages, and routines for low-level languages
such as C or Fortran are readily available. Samples from
an inverse-gamma distribution may be obtained by tak-
ing the reciprocal of samples from a gamma distribution.
Ahrens and Dieter (1974, 1982) provide algorithms for
sampling the gamma distribution.

To illustrate Gibbs sampling, consider the case of es-
timating IQ. The hypothetical data for this example are
four replicates from a single participant, w � (112, 106,
104, 111). The classical estimation of µ is the sample
mean (108.25), and confidence intervals are constructed
by multiplying the standard error (sw��1.93) by the ap-
propriate critical t value with three degrees of freedom.
From this multiplication, the 95% confidence interval
for µ is [102.2, 114.4]. Bayesian estimation was done
with Gibbs sampling. Diffuse priors were placed on µ
(µ0 � 0, σ 0

2 � 106) and σ 2 (a � 10�6, b � 10�6). Two
chains of [µ] are shown in the left panel of Figure 10,
each corresponding to a different initial value for [σ 2]1.
As can be seen, both chains converge to their steady state
rather quickly. For this application, there is very little
burn-in. The histogram of the samples of [µ] after burn-
in is also shown (right panel). The histogram conforms to
a t distribution with three degrees of freedom. The poste-
rior mean is 108.26, and the 95% credible interval is
[102.2, 114.4]. For normally distributed data, the diffuse
priors used in Bayesian analysis yield results that are nu-
merically equivalent to their frequentist counterparts.

The diffuse priors used in the previous case represent
the situation in which researchers have no previous knowl-
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edge. In the IQ example, however, much is known about
the distribution of IQ scores. Suppose our test was normed
for a mean of 100 and a standard deviation of 15. This
knowledge could be profitably used by setting µ0 � 100
and σ 0

2 � 152 � 225. We may not know the particular
test–retest correlation of our scales, but we can surmise
that the standard deviations of replicates should be less
than the population standard deviation. After experiment-
ing with the values of a and b, we chose a � 3 and b �

100. The prior on σ 2 corresponding to these values is
shown in Figure 11. It has much of its density below 100,
reflecting our belief that the test–retest variability is
smaller than the variability in the population. Figure 11
also shows a histogram of the posterior of µ (the posterior
was obtained with Gibbs sampling as outlined above;
[σ 2]1 � 1, burn-in of 100 iterations). The posterior mean
is 107.95, which is somewhat below the sample mean of
108.25. This difference is from the prior; people, on aver-
age, score lower than the obtained scores. Although it is a
bit hard to see in the figure, the posterior distribution is
more narrow in the extreme tails than is the correspond-
ing t distribution. The 95% credible interval is [102.1,
113.6], which is modestly different from the correspond-
ing frequentist confidence interval. This analysis shows

that the use of reasonable prior information can lead to a
result different from that of the frequentist analysis. The
Bayesian estimate is not only different but often more ef-
ficient than the frequentist counterpart.

The theoretical underpinnings of MCMC guarantee
that infinitely long chains will converge to the true pos-
terior. Researchers must decide how long to burn in chains
and then how long to continue in order to approximate
the posterior well. The most important consideration in
this decision is the degree of correlation from one sam-
ple to another. In MCMC sampling, consecutive samples
are not necessarily independent of one another. The value
of a sample on cycle m � 1 is, in general, dependent on
that of m. If this dependence is small, then convergence
happens quickly, and relatively short chains are needed.
If this dependence is large, then convergence is much
slower. One informal, graphical method of assessing the
degree of dependence is to plot the autocorrelation func-
tions of the chains. The bottom right panel of Figure 11
shows that for the normal application, there appears to be
no autocorrelation; that is, there is no dependence from
one sample to the next. This fact implies that conver-
gence is relatively rapid: Good approximations may be
obtained with short burn-ins and relatively short chains.

Figure 11. Analysis with informative priors. The two top panels show
the prior distributions on µ and σ 2. The bottom left panel shows the his-
togram of samples of µ after burn-in. It differs from a t distribution from
frequentist analysis in that it is shifted toward 100 and has a smaller
upper tail. The bottom right panel shows the autocorrelation function
for µ. There is no discernible autocorrelation.
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There are a number of formal procedures for assessing
convergence in the statistical literature (see, e.g., Gel-
man & Rubin, 1992; Geweke, 1992; Raftery & Lewis,
1992; see also Gelman et al., 2004).

A PROBIT MODEL FOR ESTIMATING A 
PROBABILITY OF SUCCESS

The next step toward a hierarchical signal detection
model is to revisit estimation of a probability from indi-
vidual trials. Once again, y successes are observed in N
trials, and y ~ Binomial(N, p), where p is the parameter
of interest. In the previous section, a beta prior was placed
on parameter p and the conjugacy of the beta with the bi-
nomial directly led to the posterior. Unfortunately, a beta
distribution prior is not convenient as a prior for the sig-
nal detection application.

The signal detection model relies on the probit trans-
form. Figure 12 shows the probit transform, which maps
probabilities into z values using the normal inverse cu-
mulative distribution function. Whereas p ranges from 0
to 1, z ranges across the real number line. Let Φ denote
the standard normal cumulative distribution function. With
this notation, p � Φ(z) and, conversely, z � Φ�1( p).

Signal detection parameters are defined in terms of
probit transforms:

and

where p(h) and p(f ) are hit and false alarm probabilities, re-
spectively. As a precursor to models of signal detection,
we develop estimation of the probit transform of a proba-
bility of success, z � Φ�1( p). The methods for doing so
will then be used in the signal detection application.

When using a probit transform, we model the y suc-
cesses in N trials as

y ~ Binomial[N, Φ(z)],

where z is the parameter of interest.
When using a probit, it is convenient to place a normal

prior on z:

(31)

Figure 13 shows various normal priors on z and, by trans-
form, the corresponding prior on p. Consider the special
case when a standard normal is placed on z. As is shown
in the figure, the corresponding prior on p is flat. A flat
prior also corresponds to a beta with a � b � 1 (see Fig-
ure 6). From the previous development, if a beta prior is
placed on p, the posterior is also a beta with parameters
a′ � a � y and b′ � b � (N � y). Noting for a flat prior
that a � b � 1, it is expected that the posterior of p is dis-
tributed as a beta with parameters a′ � 1 � y and b′ �

1 � (N � y).
The next step is to derive the posterior, f (z |Y ), for a

normal prior on z. The straightforward approach is to
note that the posterior is proportional to the likelihood
multiplied by the prior:

This equation is intractable. Albert and Chib (1995) pro-
vide an alternative for analysis, and the details of this al-
ternative are provided in Appendix A. The basic idea is
that a new set of latent variables is defined upon which z
is conditioned. Conditional posteriors for both z and
these new latent variables are easily derived and sam-
pled. These samples can then be used in Gibbs sampling
to find a marginal posterior for z.

In this application, it may be desirable to estimate the
posterior of p as well as that of z. This estimation is easy
in MCMC. Because p is the inverse probit transform of
z, samples can also be inversely transformed. Let [z] be
the chain of samples from the posterior of z. A chain of
posterior samples of p is given by [ p]m � Φ( [z]m).

The top right panel of Figure 14 shows the histogram
of the posterior of p for y � 7 successes on N � 10 tri-
als. The prior parameters were µ0 � 0 and σ 0

2 � 1, so the
prior on p was flat (see Figure 13). Because the prior is
flat, it corresponds to a beta with parameters (a � 1, b �

1). Consequently, the expected posterior is a beta with
density a′ � y � 1 � 8 and b′ � (N � y) � 1 � 4. The
chains in the Gibbs sampler were started from a number
of values of [z]1, and convergence was always rapid. The
resulting histogram for 10,000 samples is plotted; it ap-
proximates the expected distribution. The bottom panel
shows a small degree of autocorrelation. This autocorre-
lation can be overcome by running longer chains and
using a more conservative burn-in period. Chains of
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Figure 12. Probit transform of probability ( p) into z scores (z).
The transform is the inverse cumulative distribution function of
the normal distribution. Lines show the transform of p � .69 into
z � 0.5.
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1,000 samples with 100 samples of burn-in are more
than sufficient for this application.

ESTIMATING PROBABILITY FOR
SEVERAL PARTICIPANTS

In this section, we propose a model for estimating sev-
eral participants’ probability of success. The main goal
is to introduce hierarchical models within the context of
a relatively simple example. The methods and insights
discussed here are directly applicable to the hierarchical
model of signal detection. Consider data from a number
of participants, each with his or her own unique proba-
bility of success, pi. In conventional estimation, each of
these probabilities is estimated separately, usually by the
estimator p̂i�yi /Ni, where yi and Ni are the number of
successes and trials, respectively, for the ith participant.
We show here that hierarchical modeling leads to more
accurate estimation.

In a hierarchical model, it is assumed that although in-
dividuals vary in ability, the distribution governing indi-
viduals’ true abilities is orderly. We term this distribution
the parent distribution. If we knew the parent distribution,
this prior information would be useful in estimation.
Consider the example in Figure 15. Suppose 10 individ-
uals each performed 10 trials. Hypothetical performance
is indicated with Xs. Let’s suppose the task is relatively
easy, so that individuals’ true probabilities of success
range from .7 to 1.0, as indicated by the curve in the fig-

ure. One participant does poorly, however, succeeding on
only 3 trials. The conventional estimate for this poor-
performing participant is .3, which is a poor estimate of
the true probability (between .7 and 1.0). If the parent
distribution is known, it would be evident that this poor
score is influenced by a large degree of sample noise and
should be corrected upward, as indicated by the arrow.
The new estimate, which is more accurate, is denoted by
an H (for hierarchical).

In the example above, we assumed a parent distribu-
tion. In actuality, such assumptions are unwarranted. In
hierarchical models, parent distributions are estimated
from the data; these parents, in turn, affect the estimates
from outlying data. The estimated parent for the data in
Figure 15 would have much of its mass in the upper
ranges. When serving as a prior, the estimated parent
would exert an upward tendency in the estimation of the
outlying participant’s probability, leading to better esti-
mation. In Bayesian analysis, the method of implement-
ing a hierarchical model is to use a hierarchical prior.
The parent distribution serves as a prior for each indi-
vidual, and this parent is termed the first stage of the
prior. The parent distribution is not fully specified, but
instead, free parameters of the parent are estimated from
the data. These parameters also need a prior on them,
which is termed the second stage of the prior.

The probit transform model is ideally suited for a hi-
erarchical prior. A normally distributed parent may be
placed on transformed probabilities of success. The ith
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Figure 13. Three normally distributed priors on z and the corresponding priors on p. Priors on z were obtained
by drawing 100,000 samples from the normal. Priors on p were obtained by transforming each sample of z.



HIERARCHICAL BAYESIAN MODELS 589

participant’s true ability, zi, is simply a sample from this
normal. The number of successes is modeled as

(32)

with a parent distribution (first-stage prior) given by

(33)

In this case, parameters µ and σ 2 describe the location
and variance of the parent distribution and reflect group-
level properties. Priors are needed on µ and σ 2 (second-
stage priors). Suitable choices are

(34)

and
σ 2 ~ Inverse Gamma (a, b). (35)

Values of µ0, σ 0
2, a, and b must be specif ied before

analysis.
We performed an analysis on hypothetical data in order

to demonstrate the hierarchical model. Table 2 shows hy-
pothetical data for a set of 20 participants performing 50
trials. These success frequencies were generated from a
binomial, but each individual had a unique true proba-
bility of success. These true probabilities,2 which ranged
between .59 and .80, are shown in the second column of
Table 2. Parameter estimators p̂0 (Equation 12) and p̂2
(Equation 14) are shown.

All of the theoretical results needed to derive the con-
ditional posterior distributions have already been pre-

sented. The Albert and Chib (1995) analysis for this ap-
plication is provided in Appendix B. A coded version of
MCMC for this model is presented in Appendix C.

The MCMC chain was run for 10,000 iterations. Pri-
ors were set to be fairly diffuse (µ0 � 0, σ 0

2 � 1,000, a �

b � .1). All parameters converged to steady-state behav-
ior quickly (burn-in was conservative, at 100 iterations).
Autocorrelation of samples of pi for 2 select participants
is shown in the bottom panels of Figure 16. The auto-
correlation in these plots was typical of other param-
eters. Autocorrelation for this model was no worse than
that for the nonhierarchical Bayesian model of the pre-
ceding section. The top left panel of Figure 16 shows
posterior means of the probability of success as a func-
tion of the true probability of success for the hierarchi-
cal model (filled circles). Also included are classical 
estimates from p̂0 (filled circles). Points from the hier-
archical model are, on average, closer to the diagonal.
As is indicated in Table 2, the hierarchical model has
lower root mean squared error than does its frequentist
counterpart, p̂0. The top right panel shows the hierarchi-
cal estimates as a function of p̂0. The effect of the hier-
archical structure is clear: The extreme estimates in the
frequentist approach are moderated in the Bayesian
analysis.

Estimator p̂2 also moderates extreme values. The ten-
dency is to pull them toward the middle; specifically, es-
timates are closer to .5 than they are with p̂0. For the data
of Table 2, the difference in efficiency between p̂2 and
p̂0 is exceedingly small (about .0001). The reason that
there was little gain for p̂2 is that it pulled estimates to-
ward a value of .5, which is not the mean of the true
probabilities. The mean was p� � .69, and for this value
and these sample sizes, estimators p̂2 and p̂0 have about
the same efficiency. The hierarchical estimator is supe-

µ µ σ~ , .Normal 0
2( )

z
i

| , .µ σ µ σ2 ind
~ Normal , 2( )

y z N z
i i i i

| , ,ind
~ Binomial Φ( )⎡⎣ ⎤⎦

Figure 14. (Top) Histograms of the post-burn-in samples of z
and p, respectively, for 7 successes out of 10 trials. The line fit for
p is the true posterior, a beta distribution with a ′ � 8 and b′ � 4.
(Bottom) Autocorrelation function for z. There is a small degree
of autocorrelation.

Figure 15. Example of how a parent distribution affects esti-
mation. The outlying observation is incompatible with the parent
distribution. Bayesian estimation allows for the influence of the
parent as a prior. The resulting estimate is shifted upward, re-
ducing error.
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rior to these nonhierarchical estimators because it pulls
outlying estimates toward the mean value, p�. Of course,
the advantage of the hierarchical model is a function of
sample size. With increasing sample sizes, the amount
of pulling decreases. In the limit, all three estimators
converge to the true individual’s probability.

A HIERARCHICAL SIGNAL 
DETECTION MODEL

Our ultimate goal is a signal detection model that ac-
counts for both participant and item variability. As a pre-
cursor, we present a hierarchical signal detection model
without item variability; the model will be expanded in
the next section to include item variability. The model
here is applicable to psychophysical experiments in which
signal and noise trials are identical replicates, respectively.

Signal detection parameters are simple subtractions of
probit-transformed probabilities. Let d ′i and ci denote
signal detection parameters for the ith participant:

and

where p
i
(h) and p

i
(f ) are individuals’ true hit and false

alarm probabilities, respectively. Let hi and fi be the pro-
bit transforms: hi���1( p i

(h)) and fi���1( p
i
(f )). Then,

sensitivity and criteria are given by

d ′i � hi � fi
and

ci � �fi.

The tactic we follow is to place hierarchical models on h
and f rather than on signal detection parameters directly.
Because the relationship between signal detection pa-
rameters and probit-transformed probabilities is linear,
accurate estimation of hi and fi results in accurate esti-
mation of d ′i and ci.

The model is developed as follows: Let Ni and Si de-
note the number of noise and signal trials given to the ith
participant. Let y

i
(h) and y

i
(f ) denote the the number of

hits and false alarms, respectively. The model for y
i
(h) and

y
i
(f ) is given by

and

It is assumed that each participant’s parameters are
drawn from parent distributions. These parent distribu-
tions serve as the first stage of the hierarchical prior and
are given by

(36)

and

(37)

Second-stage priors are placed on parent distribution pa-
rameters (µk, σ k

2) as

(38)

and

(39)σ
k k k

a b k
2 ~ , , .Inverse Gamma h, f( ) =

µ
k k k

u v k~ , , ,Normal h, f( ) =

f
i

ind
~ Normal f fµ σ, .2( )

h
i

ind
~ Normal h hµ σ, 2( )

y f N f
i i i i

( ) | , .f ind
~ Binomial Φ( )⎡⎣ ⎤⎦

y h S h
i i i i

( ) | ,h ind
~ Binomial Φ ( )⎡⎣ ⎤⎦

c p
i i

= − ( )−Φ 1 ( ) ,f

′ = ( ) − ( )− −
d p p

i i i
Φ Φ1 1( ) ( )h f

Table 2
Data and Estimates of a Probability of Success

Participant True Prob. Data* p̂0 p̂2 Hierarchical

1 .587 33 .66 .654 .672
2 .621 28 .56 .558 .615
3 .633 34 .68 .673 .683
4 .650 29 .58 .577 .627
5 .659 32 .64 .635 .660
6 .665 37 .74 .731 .716
7 .667 30 .60 .596 .638
8 .667 29 .58 .577 .627
9 .687 34 .68 .673 .684

10 .693 34 .68 .673 .682
11 .696 34 .68 .673 .683
12 .701 37 .74 .731 .715
13 .713 38 .76 .750 .728
14 .734 38 .76 .750 .727
15 .736 37 .74 .731 .717
16 .738 33 .66 .654 .672
17 .743 37 .74 .731 .716
18 .759 33 .66 .654 .672
19 .786 38 .76 .750 .728
20 .803 42 .84 .827 .771

RMSE .053 .053 .041
*Data are numbers of successes in 50 trials.
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Analysis takes place in two steps. The first is to obtain
posterior samples from hi and fi for each participant.
These are probit-transformed parameters that may be es-
timated following the exact procedure in the previous
section. Separate runs are made for signal trials (produc-
ing estimates of hi) and for noise trials (producing esti-
mates of fi). These posterior samples are denoted [hi] and
[ fi], respectively. The second step is to use these posterior
samples to estimate posterior distributions of individual
d ′i and ci. This is easily accomplished. For all samples,

(40)

and

(41)

Hypothetical data and parameter estimates are shown
in Table 3. Individual variability in the data was imple-
mented by sampling each participant’s d ′ and c from a
log-normal and from a normal distribution, respectively.
True d ′ values are shown, and they range from 1.23 to
2.34. From these true values of d ′ and c, true individual
hit and false alarm probabilities were computed, and in-
dividual hit and false alarm frequencies were sampled
from a binomial. Hit and false alarm frequencies were
produced in this manner for 20 hypothetical individuals,
each observing 50 signal and 50 noise trials.

A conventional sensitivity estimate for each individ-
ual was obtained using the formula

Φ�1(Hit rate) � Φ�1(False alarm rate).

The resulting estimates are shown in the last column of
Table 3, labeled Conventional. The hierarchical signal
detection model was analyzed with diffuse prior param-
eters: ah � af � bh � bf � .01, uh � uf � 0, and vh � vf �

1,000. The chain was run for 10,000 iterations, with the
first 500 serving as burn-in. This choice of burn-in pe-
riod is very conservative. Autocorrelation for sensitivity
for 2 select participants is displayed in the bottom pan-
els of Figure 17; this degree of autocorrelation was typ-
ical for all parameters. Autocorrelation was about the
same as in the previous application, and the resulting es-
timates are shown in the next-to-last column of Table 3.

The top left panel of Figure 17 shows a plot of esti-
mated d′ as a function of true d ′. Estimates from the hi-
erarchical model are closer to the diagonal than are the
conventional estimates, indicating more accurate esti-
mation. Table 3 also provides efficiency information; the
hierarchical model is 33% more efficient than the con-
ventional estimates (this amount is typical of repeated
runs of the same simulation). The reason for this gain is
evident in the top right panel of Figure 17. The extreme
estimates in the conventional method, which most likely

c f
i m i m

⎡⎣ ⎤⎦ = − ⎡⎣ ⎤⎦ .

′⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ − ⎡⎣ ⎤⎦d h f
i m i m m
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Figure 16. Modeling the probability of success across several partici-
pants. (Top left) Probability estimates as functions of true probability;
the triangles represent estimator p̂0, and the circles represent posterior
means of pi from the hierarchical model. (Top right) Hierarchical esti-
mates as a function of p̂0. (Bottom) Autocorrelation functions of the pos-
terior probability estimates for 2 participants from the hierarchical
model. The degree of autocorrelation is typical of the other participants.
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reflect sample noise, are shrunk to more moderate esti-
mates in the hierarchical model.

SIGNAL DETECTION WITH ITEM
VARIABILITY

In the introduction, we stressed that Bayesian hierar-
chical modeling may provide a solution for the statisti-
cal problems associated with unmodeled variability in
nonlinear contexts. In all of the previous examples, the
gains from hierarchical modeling were in better effi-
ciency. Conventional analysis, although not as accurate
as Bayesian analysis, certainly yielded consistent if not
unbiased estimates. In this section, item variability is
added to signal detection. Conventional analyses, in
which scores are aggregated over items, result in incon-
sistent estimates characterized by asymptotic bias. In
this section, we show that in contrast to conventional
analysis, Bayesian hierarchical models provide consis-
tent and accurate estimation.

Our route to the model is a bit circuitous. Our first at-
tempt, based on a straightforward extension of the pre-
vious techniques, fails because of an excessive amount
of autocorrelation. The solution to this failure is to use a
powerful and recently developed sampling scheme,
blocked sampling (Roberts & Sahu, 1997). First, we will
proceed with the straightforward but problematic exten-
sion. Then we will introduce blocked sampling and show
how it leads to tractable analysis.

Straightforward Extension
It is straightforward to specify models that include

item effects. The previous notation is here expanded by
indexing hits and false alarms by both participants and

items. Let yij
(h) and yij

(f ) denote the response of the ith per-
son to the jth item. Values of yij

(h) and yij
(f ) are dichoto-

mous, indicating whether the response was old or new.
Let pij

(h) and pij
(f ) be true probabilities that yij

(h)
� 1 and

yij
(f )

� 1, respectively; that is, these probabilities are true
hit and false alarm rates for a given participant-by-item
combination, respectively. Let hij and fij be the probit
transforms [hij � Φ�1( pij

(h)), fij � Φ�1( pij
(f ))]. The model

is given by

(42)

and

(43)

Linear models are placed on hij and fij:

hij � µh � αi � γj (44)

and

fij � µf � βi � δj . (45)

Parameters µh and µf correspond to the grand means of
the hit and false alarm rates, respectively. Parameters α
and β denote participant effects on hits and false alarms, 
respectively; parameters γ and δ denote item effects on
hits and false alarms, respectively. These participant and
item effects are assumed to be zero-centered random ef-
fects. Grand mean signal detection parameters, denoted
d ′. . and c. ., are given by

d ′. . � µh � µf (46)

and

c. . � �µf . (47)

y f
ij ij

( ) .f ind
~ Bernoulli Φ( )⎡⎣ ⎤⎦

y h
ij ij

( )h ind
~ Bernoulli Φ ( )⎡⎣ ⎤⎦

Table 3
Data and Estimates of Sensitivity

False
Participant True d ′ Hits* Alarms* Hierarchical Conventional

1 1.238 35 7 1.608 1.605
2 1.239 38 17 1.307 1.119
3 1.325 38 11 1.554 1.478
4 1.330 33 16 1.146 0.880
5 1.342 40 19 1.324 1.147
6 1.405 39 8 1.730 1.767
7 1.424 37 12 1.466 1.350
8 1.460 27 5 1.417 1.382
9 1.559 35 9 1.507 1.440

10 1.584 37 9 1.599 1.559
11 1.591 33 8 1.486 1.407
12 1.624 40 7 1.817 1.922
13 1.634 35 11 1.427 1.297
14 1.782 43 13 1.687 1.724
15 1.894 33 3 1.749 1.967
16 1.962 45 12 1.839 1.988
17 1.967 45 4 2.235 2.687
18 2.124 39 6 1.826 1.947
19 2.270 45 5 2.172 2.563
20 2.337 46 6 2.186 2.580

RMSE .183 .275
*Data are numbers of signal responses in 50 trials.
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Participant-specific signal detection parameters, de-
noted d ′i. and ci., are given by

d ′i. � µh � µf � αi � βi (48)

and
ci. � �µf � βi. (49)

Item-specific signal detection parameters, denoted d ′. j

and c. j , are given by

d ′. j � µh � µf � γj � δj (50)

and
c. j � �µf � δj . (51)

Priors on (µh, µf) are independent normals with mean
µ0,k and variance σ 2

0,k, where k indicates hits or false
alarms. In the implementation, we set µ0, k � 0 and
σ 2

0, k � 500, a sufficiently large number. The priors on
(α, β, γ, δ ) are hierarchical. The first stages (parent dis-
tributions) are normals centered around 0:

(52)

(53)

(54)

and

(55)

Second-stage priors on all four variances are inverse-
gamma distributions. In application, the parameters of
the inverse gamma were set to (a � .01, b � .01). The
model was evaluated with the same simulation from the
introduction (Equations 8–11). Twenty hypothetical par-
ticipants observed 50 signal and 50 noise trials. Data in
the simulation were generated in accordance with the
mirror effect principle: Item and participant increases in
sensitivity corresponded to both increases in hit proba-
bilities and decreases in false alarm probabilities. Al-
though the data were generated with a mirror effect, this

δ σδj
ind
~ Normal 0 2, .( )

γ σγj
ind
~ Normal 0 2, ,( )

β σβi
ind
~ Normal 0 2, ,( )

α σαi
ind
~ Normal 0 2, ,( )

Figure 18. Autocorrelation of overall sensitivity (µh � µ f ) in a
zero-centered random-effects model. (Left) Values of the chain.
(Right) Autocorrelation function. This degree of autocorrelation
is problematic.
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Figure 17. Modeling signal detection across several participants. (Top left)
Parameter estimates from the conventional approach and from the hierarchi-
cal model as functions of true sensitivity. (Top right) Hierarchical estimates as
a function of the conventional ones. (Bottom) Autocorrelation functions for
posterior samples of d ′

i for 2 participants.
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effect is not assumed in model analysis: Participant and
item effects on hits and false alarms are estimated inde-
pendently.

Figure 18 shows plots of the samples of overall sensi-
tivity (d ′. .). The chain has a much larger degree of auto-
correlation than was previously observed, and this auto-
correlation greatly complicates analysis. If a short chain
is used, the resulting sample will not reflect the true pos-
terior. Two strategies can mitigate autocorrelation. The
first is to run long chains and thin them. For this appli-
cation, the Gibbs sampling is sufficiently quick that the
chain can be run for millions of cycles in the course of a
day. With exceptionally long chains, convergence oc-
curs. In such cases, researchers do not use all iterations,
but instead skip a fixed number—for example, discard-
ing all but every 50th observation. The correlation be-
tween sample m and sample m � 50 is greatly attenuated.
The choice of the multiple, 50 in the example above, is not
completely arbitrary, because it should reflect the amount
of autocorrelation. Chains with larger amounts of autocor-
relation should implicate larger multiples for thinning.

Although the brute-force method of running long chains
and thinning is practical in this context, it may be im-
practical in others. For instance, we have encountered a
greater degree of autocorrelation in Weibull hierarchical
models (Lu, 2004; Rouder et al., 2005); in fact, we ob-
served correlations spanning tens of thousands of cycles.
In the Weibull application, sampling is far slower, and
running chains of hundreds of millions of replicates is
simply not feasible. Thus, we present blocked sampling
(Roberts & Sahu, 1997) as a means of mitigating auto-
correlation in Gibbs sampling.

Blocked Sampling
Up to now, the Gibbs sampling we have presented may

be termed componentwise: For each iteration, parameters
have been updated one at a time and in turn. This type of
sampling is advocated because it is straightforward to
implement and sufficient for many applications. It is
well known, however, that componentwise sampling leads
to autocorrelation in models with zero-centered random
effects.

The autocorrelation problem comes about when the
conditional posterior distributions are highly determined
by conditioned-upon parameters and not by the data. In
the hierarchical signal detection model, the sample of µh
is determined largely by the sum of Σ iαi and Σ jγj. Like-
wise, the sample of each αi is determined largely by the
values of µh. On iteration m, the value of [µh]m�1 influ-
ences each value of [αi]m, and the sum of these [αi]m val-
ues has a large influence on µh. By transitivity, the value
of [µh]m�1 influences the value of [µh]m; that is, they are
correlated. This type of correlation is also true of µf , and
subsequently for the overall estimates of sensitivity.

In blocked sampling, sets of parameters are drawn
jointly, in one step, rather than componentwise. For the
model on old-item trials (hits), the parameters (µh, α, γ )
are sampled together from a multivariate distribution.

Let θh denote the vector of parameters: θh � (µh, α, γ ).
The derivation of conditional posterior distributions fol-
lows by multiplying the likelihood by the prior:

Each component of θ has a normal prior. Hence, the
prior f (θh | σα

2 , σ γ
2) is a multivariate normal. When the

Albert and Chib (1995) alternative is used (Appendix B),
the likelihood term becomes that of the latent data w,
which is distributed as a multivariate normal. The re-
sulting conditional posterior is also a multivariate nor-
mal, but one with nonzero covariance terms (Lu, 2004).
The other needed conditional posteriors are those for the
variance terms (σα

2 , σ γ
2). These remain the same as be-

fore; they are distributed as inverse-gamma distribu-
tions. In order to run Gibbs sampling in the blocked 
format, it is necessary to be able to sample from a mul-
tivariate normal with an arbitrary covariance matrix, a
feature that is built in to some statistical packages. An al-
ternative is to use a Cholesky decomposition to sample
a multivariate normal from a collection of univariate
ones (Ashby, 1992). Conditional posteriors for new-item
parameters (µf , β, δ, σ β

2, σδ
2) are derived and sampled

analogously. The R code for this blocked Gibbs sampler
may be found at www.missouri.edu/~pcl.

To test blocked sampling in this application, data were
generated in the same manner as before (Equations 8–11,
20 participants observing 50 items, with item and partici-
pant increases in d ′ resulting in increased hit rate proba-
bilities and decreased false alarm rate probabilities). Fig-
ure 19 shows the results. The two top panels show
dramatically improved convergence over componentwise
sampling (cf. Figure 18). Successive samples of sensitiv-
ity are virtually uncorrelated. The bottom left panel
shows parameter estimation from both the conventional
method (aggregating hit and false alarm events across
items) and the hierarchical model. The conventional
method has a consistent downward bias of .27 in this
sample. As was mentioned before, this bias is asymptotic
and remains even in the limit of increasingly large num-
bers of items. The hierarchical estimates are much closer
to the diagonal and have no detectable overall bias. The
hierarchical estimates are 40% more efficient than their
conventional counterparts. The bottom right panel shows
a comparison of the hierarchical estimates with the con-
ventional ones. It is clear that the hierarchical model pro-
duces higher valued estimates, especially for smaller
true values of d ′.

There is, however, a noticeable but small misfit of the
hierarchical model—a tendency to overestimate sensi-
tivity for participants with smaller true values and to
underestimate it for participants with larger true values.
This type of misfit may be termed over-shrinkage. We
suspect over-shrinkage comes about from the choice of
priors. We discuss potential modifications of the priors
in the next section. The good news is that over-shrinkage
decreases as the number of items is increased. All in all,
the hierarchical model presented here is a dramatic im-

f f fθθ θθ θθh h h| , ; | , , | ,σ σ σ σ σ σα γ α γ α γ
2 2 2 2 2 2y y( ) ( ) ×� (( ).
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provement on the conventional practice of aggregating
hits and false alarms across items.

The hierarchical model can also be used to explore the
nature of participant and item effects. The data were gen-
erated by mirror effect principles: Increases in hit rates
corresponded to decreases in false alarm rates. Although
this principle was not assumed in analysis, the resulting
estimates of participant and item effects should show a
mirror effect. The left panel in Figure 20 shows the rela-
tionship between participant effects. Each point is from

a different participant. The y-axis value of the point is
αi , the participant’s hit rate effect; the x-axis value is βi ,
the participant’s false alarm rate effect. The negative cor-
relation is expected: Participants with higher hit rates
have lower false alarm rates. The right panel presents the
same effects for items (γj vs. δj). As was expected, items
with higher hit rates have lower false alarm rates.

To demonstrate the model’s ability to disentangle dif-
ferent types of item and participant effects, we performed
a second simulation. In this case, participant effects re-
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Figure 19. Analysis of a signal detection paradigm with participant
and item variability. The top row shows that blocked sampling mitigates
autocorrelation. The bottom row shows conventional and hierarchical
estimates of participants’ sensitivity as functions of the true sensitivity
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flected the mirror effect as before. Item effects, however,
reflected baseline familiarity. Some items were assumed
to be familiar, which resulted in increased hits and false
alarms. Others lacked familiarity, which resulted in de-
creased hits and false alarms. This baseline-familiarity
effect was implemented by setting the effect of an item
on hits equal to that on false alarms (γj � δj). Overall sen-
sitivity results of the simulation are shown in Figure 21.

These are highly similar to the previous simulation in that
(1) there is little autocorrelation; (2) the hierarchical esti-
mates are much better than their conventional counter-
parts; and (3) there is a tendency toward over-shrinkage.
Figure 22 shows the relationships among the random ef-
fects. As expected, estimates of participant effects are
negatively correlated, reflecting a mirror effect. Estimates
of item effects are positively correlated, reflecting a
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Figure 21. Analysis of the second simulation of a signal detection par-
adigm with participant and item variability. The top row shows little auto-
correlation. The bottom row shows conventional and hierarchical esti-
mates of participants’ sensitivity as functions of the true sensitivity (left)
and hierarchical estimates as a function of the conventional estimates
(right). True participant random effects were generated with a mirror
effect, and true item random effects were generated with a shift in base-
line familiarity.
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baseline-familiarity effect. In sum, the hierarchical model
offers detailed and relatively accurate analysis of partici-
pant and item effects in signal detection.

FUTURE DEVELOPMENT OF A SIGNAL
DETECTION MODEL

Expanded Priors
The simulations reveal that there is some over-shrinkage

in the hierarchical model (see Figures 19 and 21). We
speculate that the reason this comes about is that the
prior assumes independence between α and β and be-
tween γ and δ. This independence may be violated by
negative correlation from mirror effects or by positive
correlation from criterion effects or baseline-familiarity
effects. The prior is neutral in that it does not favor either
of these effects, but it is informative in that it is not con-
cordant with either. A less informative alternative would
not assume independence. We seek a prior in which mir-
ror effects and baseline-familiarity effects, as well as a
lack thereof, are all equally likely.

A prior that allows for correlations is given as follows:

and

The covariance matrices, Σ(i) and Σ( j), allow for arbi-
trary correlations of participant and item effects, respec-
tively, on hit and false alarm rates. The prior on the co-
variance matrix elements must be specified. A suitable
choice is that the prior on the off-diagonal elements be
diffuse, and thus able to account for any degree and di-
rection of correlation. One possible prior for covariance
matrices is the Wishart distribution (Wishart, 1928),
which is a conjugate form. Lu (2004) developed a model
of correlated participant and item effects in a related ap-
plication, Jacoby’s (1991) process dissociation model.
He provided conditional posteriors as well as an MCMC
implementation. This approach looks promising, but sig-
nificant development and analysis in this context are still
needed.

Fortunately, the present independent-prior model is suf-
ficient for asymptotically consistent analysis. The advan-
tage of the correlated prior discussed above would be
twofold: First, there may be some increase in the accuracy
of sensitivity estimates. The effect would emerge for ex-
treme participants, for whom there is a tendency in the 
independent-prior model to over-shrink estimates. The
second benefit may be increased ability to assess mirror
and baseline-familiarity effects. The present independent-
prior model does not give sufficient credence to either of
these effects; hence, its estimates of true correlations are
biased toward 0. A correlated prior would lead to more

power in detecting mirror and baseline-familiarity effects,
should they be present.

Unequal Variance Signal Detection Model
In the present model, the variances of old- and new-

item familiarity distributions are assumed to be equal.
This assumption is fairly standard in many studies. Re-
searchers who use signal detection in memory do so be-
cause it is a quick and principled psychometric model to
measure sensitivity without a detailed commitment to
the underlying processing. Our models are presented
with this spirit; they allow researchers to assess sensitiv-
ity without undue influence from item variability.

There is some evidence that the equal-variance as-
sumption is not appropriate. The experimental approach
for testing the equal-variance assumption is to explicitly
manipulate criteria and to trace out the receiver-operating
characteristic (Macmillan & Creelman, 1991). Ratcliff,
Sheu, and Gronlund (1992) followed this approach in a
recognition memory experiment and found that the stan-
dard deviation of familiarity from the old-item distribu-
tion was .8 that of the new-item distribution. This result,
taken at face value, provides motivation for future devel-
opment. It seems feasible to construct a model in which
the variance of the old-item familiarity distribution is a
free parameter. This may be accomplished by adding a
variance parameter to the probit transform of hit rate.
Within the context of such a model, then, the variance
may be simultaneously estimated along with overall sen-
sitivity, participant effects, and item effects.

GENERAL DISCUSSION

This article presents an introduction to Bayesian hier-
archical models. The main goals of this article have been
to (1) highlight the dangers of aggregating data in nonlin-
ear contexts, (2) demonstrate that Bayesian hierarchical
models are a feasible approach to modeling participant
and item variability simultaneously, and (3) implement a
Bayesian hierarchical signal detection model for recogni-
tion memory paradigms. Our concluding discussion fo-
cuses on a few select issues in Bayesian modeling: sub-
jectivity of prior distributions, model selection, pitfalls
in Bayesian analysis, and the contribution of Bayesian
techniques to the debate about the usefulness of signifi-
cance tests.

Subjectivity of Prior Distributions
Bayesian analysis depends on prior distributions, so it

is prudent to wonder whether these distributions add too
much subjectivity into analysis. We believe that priors
can be chosen that enhance analysis without being overly
subjective. In many situations, it is possible to choose
priors that result in posteriors that exactly match fre-
quentist sampling distributions. For example, Bayesian
estimation of the probability of success in a binomial
distribution is the proportion of successes if the prior is
a beta with parameters a � b � 0. A second example is
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from the normal distribution. The posterior of the popu-
lation mean is t distributed with the appropriate degrees
of freedom when the prior on the mean is flat and the
prior on variance is 1/σ 2.

Although researchers may choose noninformative
priors, it may be prudent in some situations to choose
vaguely informative priors. There are two general rea-
sons to consider an informative prior: First, vaguely in-
formative priors are often more convenient than nonin-
formative ones, and second, they may enhance estimation
in those cases in which preexperimental knowledge is
well established. We will examine these reasons in turn.

There are two ways in which vaguely informative pri-
ors are more convenient than noninformative ones. First,
the use of vaguely informative conjugate priors greatly
facilitates the derivation of posterior conditional distrib-
utions. This, in turn, allows for rapid sampling of condi-
tionals in the Gibbs sampler in estimating marginal pos-
terior distributions. Second, the vaguely informative
priors here were proper, and this propriety guaranteed
the propriety of the posteriors. The disadvantage of in-
formative priors is the possibility that the choice of the
prior will unduly influence the posterior. In the applica-
tions we presented, this did not occur for the chosen pa-
rameters of the prior. Increasing the variance of the pri-
ors above the chosen values has minuscule effects on
estimates for reasonably sized data sets.

Although we highlight the convenience of vaguely in-
formative, proper priors, researchers may also choose non-
imformative priors. Noninformative priors, however, are
often improper. The consequences of this choice are that
(1) the researcher must prove the propriety of the posteri-
ors, and (2) MCMC may need to be implemented with the
somewhat more complicated Metropolis–Hastings algo-
rithm rather than with Gibbs sampling. Neither of these ac-
tivities are prohibitive, but they do require additional skill
and effort. For the models presented here, vaguely infor-
mative conjugate priors were sufficient for valid analysis.

The second reason to use informative priors is that in
some applications, researchers have a reasonable expec-
tation of the range of data. In the signal detection exam-
ple, we placed a normal prior on d ′ that was centered at
0 and had a very wide variance. More statistical power
could have been obtained by using a prior with a major-
ity of its mass above 0 and below 6, but this increase in
power would have been slight. In estimating a response
probability in a two-choice psychophysics experiment,
it is advantageous to place a prior with more mass above
.5 than below it. The hierarchical priors advanced in this
article can be viewed as a form of prior information. This
is information that people are not arbitrarily dissimilar—
in other words, that true parameters come from orderly
parent distributions (an alternative view, however, is pre-
sented by Lee & Webb, 2005). Judicious use of infor-
mative priors can enhance estimation.

We argue that the subjectivity in choosing priors is no
greater than other elements of subjectivity in research.

On the contrary, it may even be less so. Researchers rou-
tinely make seemingly arbitrary choices during the
course of design and analysis. For example, researchers
using response times typically discard those outside an
arbitrary window as being too extreme to reflect the pro-
cess of interest. Participants themselves may be dis-
carded for excessive errors or for not following direc-
tions. The determination of a response-time window, an
error-prone participant, or a participant not following di-
rections imposes a fair degree of subjectivity on analy-
sis. Within this context, the subjectivity of Bayesian pri-
ors seems benign.

Bayesian analysis may be less subjective because it
can limit the need for other subjective practices. Priors in
effect serve as a filter for cleaning data. In the present
example, hierarchical priors mitigate the need to censor
extremely poor-performing participants. The estimates
from these participants are adjusted upward because of
the influence of the prior (see Figure 15). Likewise, in
our hierarchical response time models (Rouder et al.,
2005; Rouder et al., 2003), there is no need to truncate
long response times. The impact of these extreme obser-
vations is mediated by the prior. Hierarchical priors may
be less arbitrary than other selection practices because
the researcher does not have to specify criterial values
for selection.

Although the use of priors may be advantageous, it
does not come without risks—the main one being that
the choice of a prior could unduly influence the outcome.
The straightforward method of assessing this risk is to
perform analyses repeatedly with a few different priors.
The posterior will always be affected somewhat by the
choice of prior. If this effect is marginal, then the result-
ing inference can be accepted with greater confidence.
This need for assessing the effects of the prior on the
posterior is similar in spirit to the safeguards required in
frequentist analysis. For example, when truncating data,
the researcher is obligated to explore the effects of dif-
ferent points of truncation in order to ensure that this
fairly arbitrary decision only marginally affects the 
results.

Model Selection
We have not covered model testing or model selection

in this article. One of the negative consequences of using
hierarchical models is that individual parameter esti-
mates are no longer independent. The value of an esti-
mate for any participant depends, in part, on the values
of others. Accordingly, it is invalid to analyze these pa-
rameters with ANOVA or ordinary least-squares regres-
sion to test hypotheses about groups or experimental 
manipulations.

One proper method of model selection (which includes
hypothesis testing) is to compute and compare Bayes
factors. This approach has been discussed extensively in
the statistical literature (see Kass & Raftery, 1995; Meng
& Wong, 1996) and has been imported to the psycho-
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logical literature (see, e.g., Pitt, Myung, & Zhang, 2003).
When using a Bayes factor approach, one computes the
odds of one hypothesis being true relative to another hy-
pothesis. Unlike estimation, computing Bayes factors is
complicated, and a discussion is beyond the scope of this
article. We anticipate that Bayes factors will play an in-
creasing role in inference with nonlinear models.

Bayesian Pitfalls
There are a few special pitfalls of Bayesian analysis

that deserve mention. First, there is a great temptation to
use improper priors wherever possible. The main prob-
lem associated with improper priors is that without ana-
lytic proof, there is no guarantee that the resulting pos-
teriors will be proper. To complicate the situation,
MCMC sampling can be done, unwittingly, from im-
proper posterior distributions, even though the analysis is
meaningless. Researchers choosing improper priors
should provide evidence that the resulting posterior is
proper. The propriety of the posterior is not an issue if re-
searchers choose proper priors, but the use of proper pri-
ors is not foolproof, either. In some situations, the vari-
ance of the posterior is directly related to the variance of
the prior without constraint from the data (Hobert &
Casella, 1996). This unacceptable situation is an example
of undue influence of the prior. When this happens, the
model under consideration is most likely not appropriate
for analysis. Another pitfall is that in many hierarchical
situations, MCMC integration converges slowly (see
Figure 18). In these cases, researchers who do not check
for convergence may fail to estimate true posterior dis-
tributions. In sum, although Bayesian approaches are
conceptually simple and are easily implemented in high-
level packages, researchers must approach both the is-
sues of choosing a prior and checking the ensuing analy-
sis with thoughtfulness and care.

Bayesian Analysis and Significance Tests
Over the last 40 years, researchers have offered vari-

ous critiques of null-hypothesis significance testing (see,
e.g., Cohen, 1994; Cumming & Finch, 2001; Hunter,
1997; Rozeboom, 1960; Smithson, 2001; Steiger &
Fouladi, 1997). Some authors offer Bayesian inference
as an alternative on the basis of its philosophical under-
pinnings (Lee & Wagenmakers, 2005; Pruzek, 1997;
Rindskopf, 1997). Our rationale for advocating Bayesian
analysis is different: We adopt the Bayesian approach out
of practicality. Simply put, we know how to analyze
these nonlinear hierarchical models in the Bayesian
framework alone. Should there be tremendous advances
in frequentist nonlinear hierarchical models that make
their implementation more practical than Bayesian ones,
we would gladly consider these advances.

Unlike those engaged in the significance test debate,
we view both Bayesian and classical methods as having
sufficient theoretical grounding. These methods are tools
whose applicability depends on the situation. In many

experimental situations, researchers interested in the
mean difference between conditions or groups can safely
draw inferences using classical tools such as t tests,
ANOVA, and ordinary least-squares regression. Those
worrying about robustness, power, and control of Type I
error can increase the validity of analysis by replication.
In many simple cases, Bayesian analysis is numerically
equivalent to classical analyses. We are not advocating
that researchers discard useful and convenient tools such
as null-hypothesis significance tests within ANOVA and
regression models; we are advocating that they consider
modeling multiple sources of variability in analysis, es-
pecially in nonlinear contexts. In sum, the usefulness of
the Bayesian approach is its tractability in these more
complicated settings.
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APPENDIX A

This appendix describes the Albert and Chib (1995) method for estimating a probit-transformed probabil-
ity. Let xj be 1 if the participant is successful on the jth trial, and 0 otherwise. For each trial, a latent variable,
wj , is defined as follows:

(A1)

Latent variables w are never known. All that is known is their sign. If a trial j was successful, it was posi-
tive; otherwise, it was nonpositive. Although w is not known, its construction is nonetheless essential.

Without any loss of generality, the random variable wj is assumed to be a normal with a variance of 1.0. For
Equation A1 to hold, the mean of these normals needs be z, where z � Φ�1( p).A1 Therefore,

This construction of wj is shown in Figure A1a. The parameters of interest are z and w � (w1, . . . , wJ); the
data are (x1, . . . , xJ). Note that if the latent variables w were known, the problem of estimating z would be
simple: Parameter z is simply the population mean of w and could be estimated accordingly. The fact that w
is latent will not prove to be a stumbling block.

The goal is to derive the marginal posterior of z. To do so, conditional posterior distributions are derived
and then integrated using Gibbs sampling. The desired conditionals are z | w and wj | z; xj, j � 1, . . . , J. We
start with the former. Parameter z is the population mean of w; hence, this case is that of estimating a popu-
lation mean from normally distributed observations (w). The prior on z is a normal with parameters µ0 and
σ 0

2, so the previous derivation is applicable. A direct application of Equations 23 and 24 yields that the con-
ditional posterior z | w is a normal with parameters

(A2)

and

(A3)

The conditional wj | z; xj is only slightly more complex. If xj is unknown, latent variable wj is normally dis-
tributed and centered at z. When wj is conditioned on xj , the sign of wj is known. If xj � 0, then by Equation A1
wj must be negative. Hence, the conditional wj | z; xj is a normal density that is truncated above at 0 (Fig-
ure A1b). Likewise, if xj � 1, then wj must be positive, and the conditional is a normal truncated below at 0
(Figure A1c). The conditional posterior, therefore, is a truncated normal, truncated either above or below de-
pending on whether or not the trial was answered successfully.

Once conditionals are specified, analysis proceeds with Gibbs sampling. Sampling from a normal is
straightforward; sampling from a truncated normal is not too difficult, and an algorithm for such sampling is
coded in Appendix C.

σ
σ

′
−

= +
⎛

⎝
⎜

⎞

⎠
⎟

2

0
2

1

1N .

′ = +
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟

−

µ
σ

µ

σ
N Nw1

0
2

1

0

0
2

w z
j
ind
~ Normal , .1( )

x
w

w
j

j

j

=
≥

<

⎧
⎨
⎪

⎩⎪

1 0

0 0

, ,

, .

Wickelgren, W. A. (1968). Unidimensional strength theory and com-
ponent analysis of noise in absolute and comparative judgments.
Journal of Mathematical Psychology, 5, 102-122.

Wishart, J. (1928). A generalized product moment distribution in sam-
ples from normal multivariate population. Biometrika, 20, 32-52.

Wollen, K. A., & Cox, S. D. (1981). Sentence cueing and the effect of
bizarre imagery. Journal of Experimental Psychology: Human Learn-

ing & Memory, 7, 386-392.

NOTES

1.

where Γ is the generalized factorial function; for example, Γ(n) � (n � 1)!.

2. True probabilities for individuals were obtained by sampling a beta
distribution with parameters a � 35 and b � 15.
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APPENDIX B

Gibbs sampling for the hierarchical model is based on the Albert and Chib (1995) method, as follows: Let
xij be the indicator for the ith person on the jth trial: xij � 1 if the trial is successful, and 0 otherwise. Latent
variable wij is constructed as

(B1)

Conditional posterior wij | zi; xij is a truncated normal, as was discussed in Appendix A. Conditional posterior
zi | w, µ, σ 2 is a normal with mean and variance given in Equations A2 and A3, respectively (with the substi-
tution of µ for µ0 and σ 2 for σ 0

2). Conditional posterior densities of µ | σ 2, z and σ 2 | µ, z are given in Equa-
tions 25 and 28, respectively.
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APPENDIX A (Continued)

Figure A1. The Albert and Chib (1995) construction of a trial-specific latent vari-
able for probit transforms. (a) Construction of the unconditional latent variable wj for
p � .84. (b) Conditional distribution of wj on a failure on trial j. In this case, wj must
be negative. (c) Conditional distribution of wj on a success on trial j. In this case, wj

must be positive.

NOTE TO APPENDIX A

A1. Let µw be the mean of w. Then, by construction,

Random variable wj is a normal with variance of 1.0. The term Pr(wj 	 0) is its cumulative distribution function evaluated
at 0. Therefore,

Combining this equality with the one above yields

and by symmetry of the normal,

µ
w

p z= =−Φ 1( ) .

Φ −( ) = −µ
w

p1 ,

Pr / .w
j w w

<( ) = −( )⎡⎣ ⎤⎦ = −( )0 0 1Φ Φµ µ

Pr Pr .w x p
j j

<( ) = =( ) = −0 0 1



HIERARCHICAL BAYESIAN MODELS 603

APPENDIX C

This appendix provides code in R for the hierarchical analysis of several individuals’ probabilities. R is a
freely available, easy-to-install, open-source statistical package based on SPlus. It runs on Windows, Macin-
tosh, and UNIX platforms and can be downloaded from www.R-project.org.

#functions to sample from a truncated normal
#-------------------------------------------
#generates n samples of a normal (b,1) truncated below zero
rtnpos=function(n,b)
{
u=runif(n)
b+qnorm(1-u*pnorm(b))
}
#generates n samples of a normal (b,1) truncated above zero
rtnneg=function(n,b)
{
u=runif(n)
b+qnorm(u*pnorm(-b))
}
#-----------------------------
#generate true values and data
#-----------------------------
I=20 #Number of participants
J=50 #Number of Trials per participant
#generate each individual’s true p
p=rbeta(I,35,15)
#result, use scan() to enter
#0.6932272 0.6956900 0.6330869 0.6504598 0.7008421 0.6589233 0.7337305
#0.6666958 0.5867875 0.7132572 0.7863823 0.6869082 0.6665865 0.7426910
#0.6649086 0.6212024 0.7375715 0.8025261 0.7587382 0.7363251
#generate each individual’s observed numbers of successes
y=rbinom(I,J,p)
#result, use scan() to enter
#34 34 34 29 37 32 38 29 33 38 38 34 30 37 37 28 33 42 33 37
#----------------------------------------
#Analysis Set Up
M=10000 #total number of MCMC iterations
myrange=101:M #portion kept, burn-in of 100 iterations discarded
#needed vectors and matrices
z=matrix(ncol=I,nrow=M)
#matrix of each person’s z at each iteration
#note z is probit of p e.g. z=qnorm(p)
sigma2=1:M
mu=1:M
#prior parameters
sigma0=100 #this parameter is a variance: sigma_0^2
mu0=0
a=.1
b=.1
#initial values
sigma2[1]=1
mu[1]=1
z[1,]=rep(1,I)
#shape for inverse gamma calculated outside of loop for speed
shape=(I)/2+a
#-----------------------------
#Main MCMC loop
#-----------------------------
for (m in 2:M) #iteration
{
for (i in 1:I) #participant
{
w=c(rtnpos(y[i],z[m-1,i]),rtnneg(J-y[i],z[m-1,i])) #samples of w|y,z
prec=J+1/sigma2[m-1]
mean.z=(sum(w)+mu[m-1]/sigma2[m-1])/prec
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z[m,i]=rnorm(1,mean.z,sqrt(1/prec))     #sample of z|w,mu,sigma2
}
prec=I/sigma2[m-1]+1/sigma0
mean.mu=(sum(z[m,])/sigma2[m-1]+mu0/sigma0)/prec
mu[m]=rnorm(1,mean.mu,sqrt(1/prec))     #sample of mu|z
rate=sum((z[m,]-mu[m])^2)/2+b
sigma2[m]=1/rgamma(1,shape=shape,scale=1/rate)  #sample of sigma2|z
}
#-----------------------------------------
#Gather estimates of p for each individual
allp.est=pnorm(z[myrange,]) # MCMC chains of p
p.est.h=apply(allp.est,2,mean) #posterior means
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