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Ecological Applications, 6(4), 1996, pp. 1036-1046 
C 1996 by the Ecological Society of America 

AN INTRODUCTION TO BAYESIAN INFERENCE FOR 
ECOLOGICAL RESEARCH AND ENVIRONMENTAL 

DECISION-MAKING1,2 

AARON M. ELLISON 
Department of Biological Sciences and Program in Environmental Studies, Mount Holyoke College, 

South Hadley, Massachusetts 01075-6418 USA 

Abstract. In our statistical practice, we ecologists work comfortably within the hy- 
pothetico-deductive epistemology of Popper and the frequentist statistical methodology of 
Fisher. Consequently, our null hypotheses do not often take into account pre-existing data 
and do not require parameterization, our experiments demand large sample sizes, and we 
rarely use results from one experiment to predict the outcomes of future experiments. 
Comparative statistical statements such as "we reject the null hypothesis at the 0.05 level," 
which reflect the likelihood of our data given our hypothesis, are of little use in commu- 
nicating our results to nonspecialists or in describing the degree of certitude we have in 
our conclusions. In contrast, Bayesian statistical inference requires the explicit assignment 
of prior probabilities, based on existing information, to the outcomes of experiments. Such 
an assignment forces the parameterization of null and alternative hypotheses. The results 
of these experiments, regardless of sample size, then can be used to compute posterior 
probabilities of our hypotheses given the available data. Inferential conclusions in a Bay- 
esian mode also are more meaningful in environmental policy discussions: e.g., "our ex- 
periments indicate that there is a 95% probability that acid deposition will affect northeastern 
conifer forests." Based on comparisons with current statistical practice in ecology, I argue 
that a "Bayesian ecology" would (a) make better use of pre-existing data; (b) allow stronger 
conclusions to be drawn from large-scale experiments with few replicates; and (c) be more 
relevant to environmental decision-making. 

Key words: Bayesian inference; decision analysis; environmental decision-making; epistemology; 
probability; statistical errors; uncertainty. 

INTRODUCTION 

On the whole, general ecological theory has, so far, 
been able to provide neither the largely descriptive, 
scientific conclusions often necessary for conserva- 
tion decisions, nor the normative basis for policy.- 
Shrader-Frechette and McCoy 1993 

Ecologists are in the midst of an introspective period 
in which we are questioning intensively the theoretical 
underpinnings, utility, predictive ability, and episte- 
mological foundations of ecology (e.g., Peters 1991). 
Serious doubts have been raised about the utility of 
abstract, general theories that have been shown re- 
peatedly to have little predictive value in field or lab- 
oratory situations (Weiner 1995). An alternative "bot- 
tom-up" approach, accumulating a succession of case 
studies from which general conclusions may be de- 
rived, has been advocated by Shrader-Frechette and 
McCoy (1993). The use of meta-analysis to synthesize 
large numbers of case studies (Gurevitch et al. 1992, 
Gurevitch and Hedges 1993, Warwick and Clarke 1993, 
Arnqvist and Wooster 1995) can identify common pro- 
cesses that have occurred under disparate conditions, 

but it cannot be used to predict the likelihood of oc- 
currence of those processes in other, unrelated situa- 
tions. In addition, a bottom-up, inductivist approach 
may undermine ecology's claim to be a truly scientific 
endeavor (Popper 1968, Peters 1991). 

These doubts are not new to our discipline; critical 
self-examination has occurred repeatedly since ecology 
emerged as a science in the late 19th century (e.g., 
Kingsland 1985, McIntosh 1985). However, the current 
episode of reflection coincides with a rapidly growing 
awareness of local, regional, and global environmental 
problems. Ecologists can and increasingly are expected 
to estimate the magnitude of responses of populations, 
communities, and ecosystems to anthropogenic stres- 
sors, to formulate experiments to examine potential and 
actual environmental impacts, and to design and im- 
plement strategies to ameliorate these impacts (e.g., 
Holling 1978, Orians et al. 1986, Lubchenco et al. 
1991, Shrader-Frechette and McCoy 1993, Huenneke 
1995, Underwood 1995). However, the counsel of ecol- 
ogists will be considered only if it is perceived by 
decision-makers as scientifically accurate and legiti- 
mate, and if it is communicated intelligibly and mean- 
ingfully. Few decision-makers are, or have been, prac- 
ticing ecologists, and they cannot be expected to 
interpret conclusions presented in technical jargon. 

Bayesian statistical inference can be used to estimate 

I Manuscript received 14 August 1995; revised 14 Decem- 
ber 1995; accepted 10 January 1996. 

2 For reprints of this group of papers on Bayesian inference, 
see footnote 1, p. 1034. 
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ecologically meaningful parameters and provides an 
explicit expression of the amount of uncertainty in 
these parameter estimates. Since Bayesian inference 
requires the investigator to use pre-existing data to de- 
velop quantitative, probabilistic, and parameterized hy- 
potheses, Bayesian hypothesis testing (decision anal- 
ysis) inevitably will lead to testable predictions, and 
permit the rapid development and refinement of appli- 
cable theory. Recent discussions of the relative pref- 
erence for Type I vs. Type II statistical errors in pure 
and applied ecological contexts (e.g., Peterman 1990, 
Shrader-Frechette and McCoy 1992, Mapstone 1995) 
illustrate that conclusions based on falsificationist epis- 
temology (Popper 1968, Strong 1980) are of little use 
to decision-makers, and allow for little flexibility in 
dynamic, changeable situations (Holling 1978, Lee 
1993). In contrast, conclusions presented in a Bayesian 
framework can be understood more easily by decision- 
makers and by the public at large, because these con- 
clusions are presented in clear, familiar language. 

This paper is not meant as a complete review either 
of epistemological issues in ecology or of Bayesian 
parameter estimation and decision analysis. Rather, I 
first sketch some difficulties with the way that we infer 
conclusions from our data. Then, I briefly illustrate that 
Bayesian inference can provide an alternative statistical 
framework in which to couch experimental and obser- 
vational data, synthesize existing information, generate 
useful (and perhaps novel) ecological theory, and con- 
tribute to sound environmental policy. Readers inter- 
ested in more complete treatments of historical and 
epistemological issues in ecological thought can begin 
with recent books by McIntosh (1985), Peters (1991), 
and Shrader-Frechette and McCoy (1993). Accessible 
presentations of Bayesian techniques and their appli- 
cability to a wide range of "pure" and "applied" sit- 
uations are provided by Good (1965), Iversen (1984), 
Howson and Urbach (1991), and Kass and Raftery 
(1995). Technical introductions of Bayesian inference 
are given by Lindley (1972), Box and Tiao (1973), 
Geisser (1993), Bernardo and Smith (1994), and Gel- 
man et al. (1995). The additional papers in this Special 
Feature provide concrete examples of the use of Bay- 
esian inference in both ecological research and envi- 
ronmental decision-making (Ludwig 1996, Taylor et al. 
1996, Ver Hoef 1996, Wolfson et al. 1996). Other ex- 
amples can be found in Carpenter (1990), Reckhow 
(1990), Walters and Holling (1990), Solow (1994), 
Gustafson and Franklin (1995), Nicholson and Barry 
(1995), and Raftery et al. (1995). 

WHAT ECOLOGISTS SHOULD Do WITH 

STATISTICS, AND WHAT WE'D LIKE To Do 
WITH THEM 

Ecology is the science which says what everyone 
knows in language that no one understands.-Elton 
1927 

As ecologists, we study relationships between or- 
ganisms and their physical and biological environments 
(e.g., Pianka 1994), and we describe these relationships 
using the language of statistics. Anyone who has taught 
introductory ecology probably would attest that this 
language can distort and refract Elton's "quantitative 
natural history" in strange and unpredictable ways. In 
general, we can identify two fundamental goals of an 
ecological experiment, whether descriptive or manip- 
ulative: parameter estimation and hypothesis testing. 
In this and the following section, I discuss frequentist 
and Bayesian approaches to these goals. 

Frequentist parameter estimation 

Given a random sample of n individuals from a larger 
population exposed to a treatment (T), we often cal- 
culate an average response value of the organism to 
the treatment. This average response value usually is 
reported as the mean value of all the observations: X 
= lxlIn. Assuming that our data (suitably transformed, 
if necessary) are a random sample, this estimate of the 
mean is known to be an unbiased estimator of the true 
population mean [L, no matter what the true, value of 
p. (Efron 1978). More precisely, if we took an infinite 
number of samples of size n from this population, and 
calculated the mean of each sample, the expected value 
(the mean) of these means, E(X) = [L. We similarly can 
calculate the sample variance as 52 = I(x, - X)2/(n - 

1), the sample standard deviation s = \/;, and the 
expected standard deviation E(s) = sl\n? of the ex- 
pected distribution of the set of repeatedly determined 
sample means {X} (also known as the standard error 
of the mean, sx). 

A central assumption underlying calculations of 
these and other commonly used statistical parameters 
is known as the frequentist assumption (e.g., Efron 
1978): there is a true, fixed value, for each parameter 
of interest, and the expected value of this parameter is 
the average value obtained by random sampling re- 
peated ad infinitum (Table 1). From an ecological per- 
spective, there are many difficulties with this assump- 
tion. Within experiments, true randomization is diffi- 
cult, replication is often small, misidentified (Hurlbert 
1984), or by virtue of circumstance, nonexistent (e.g., 
Carpenter 1990, Reckhow 1990). Ecological experi- 
ments rarely are repeated independently. No two or- 
ganisms are exactly alike, and consequently they are 
unlikely to respond to our treatment in exactly the same 
way. Evolution virtually guarantees that even if they 
were alike today, their offspring will be measurably 
different. Thus, the idea that there is a true, fixed value 
for any ecologically meaningful statistical parameter is 
a Platonic phantom. Furthermore, even if there was a 
true, fixed value for a given statistical parameter, fre- 
quentist statistical theory states that we can never know 
it. Although we implicitly hope that we have sampled 
appropriately and obtained a realistic estimator of our 
population mean, it is likely that the best we can hope 
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TABLE 1. Some fundamental differences between frequentist and Bayesian statistical inference 
in their uses and interpretations of statistical concepts and terms. 

Concept or term Frequentist interpretation Bayesian interpretation 

Probability Result of an infinite series of trials The observer's degree of belief, or 
conducted under identical con- the organized appraisal in light 
ditions of the data 

Data Random (representative) sample Fixed (all there is) 
Parameters Fixed Random 
k% confidence This interval will include the true k% of the possible parameter val- 

interval value of a given parameter in ues will fall within the confi- 
k% of all possible samples dence (credibility) interval 

Treatment of Conditions on sufficient statistics Integrates over all possible values 
nuisance or maximum likelihood estimate 
parameters 

Conclusion P(x I H) P(H I x) 

to do is to state the probability distribution in which 
the average response value, and unobserved values, are 
likely to occur (Simberloff 1980). 

The standard way we get around this dilemma is to 
compute the reliability of our estimated statistical pa- 
rameter by constructing a "k% confidence interval" 
around X 

P(X - t",Cn-11'S9 + t(a[n-1] S9) = ( - ox) = k 
(1) 

where t[n-1] = the percent (ot) of area in both tails of 
a t distribution beyond the indicated value of t for n-I 
degrees of freedom. By convention, we most commonly 
compute a 95% confidence interval based on a normal 
distribution, where tQQS5[o] = 1.96. Unfortunately, Eq. 1 
tells us only that the interval (X - 1.96-sg, X + 1.96.sg) 
will include the true value of ,u in 95% (P = 0.95) of 
the infinitely many repeated samples from our popu- 
lation (Table 1). We cannot use Eq. 1 to state that there 
is a k% probability that the true mean does in fact occur 
within the confidence interval we created from our ex- 
periment, and Eq. 1 is not a probability distribution in 
which we expect ,u to occur (Howson and Urbach 
1991). Since ,u is fixed, it is either inside a confidence 
interval or outside it. It makes no sense to assert that 
a fixed parameter would occur in a fixed confidence 
interval only k% of the time (Sokal and Rohlf 1995). 
In addition, for most parameterized, nonnormal distri- 
butions, the actual probability that Eq. 1 includes ,u is 
substantially (?60%) less than the expected coverage 
k (e.g., Robinson 1975). 

Frequentist hypothesis testing 

Once we have an estimate of the parameter of in- 
terest, we normally test hypotheses regarding that pa- 
rameter; e.g., was the parameter affected by the applied 
treatment? Assume that we have collected a set of ran- 
dom, independent observations x = {xl, . . ., xj I from 
a normal population to which an experimental treat- 
ment has been applied, and that the sample variance 
approximates the population variance. If we substitute 
the expected mean value (p.0) under a point null sta- 
tistical hypothesis (e.g., Ho: p. = [L0, where p.0 may be 

obtained from a set of controls) for X in Eq. 1, and use 
ta.[n_ 11we obtain the upper and lower bounds of the 
"rejection region" for this null hypothesis at the ot 
level. In other words, for the two-tailed test H,: ,u # 

O,' if X < the lower bound or X > the upper bound of 
Eq. 1, it is unlikely that our sample comes from the 
population where the expected value of X, E(X) = .o 
In standard statistical jargon, we would "rej-ect the null 
hypothesis" (Ho) that ,u = po at the ot level of signif- 
icance, or we would state that our results are "signif- 
icant" with probability (P value) P ' x. 

The meaning of this result is far from obvious; Sokal 
and Rohlf (1995) devote nearly 12 pages to explaining 
it. Most importantly, supporting H1 or inferring cause 
and effect from P values is not possible (see also Le- 
wontin 1974). Precisely, if we reject Ho at the ot level, 
we are asserting that we will incorrectly reject a true 
null hypothesis (i.e., commit a Type I statistical error) 
with frequency ot, if we repeated this experiment an 
infinite number of times. The converse error (Type II), 
accepting a false null hypothesis, depends on the spec- 
ified level of ox, the sample size, the magnitude of the 
true effect, and varies with the underlying (and often 
unknown) population distribution. 

Formally, a P value is the probability of observing 
our results conditional on Ho (i.e., ot = P(xIHo) and the 
probability of observing all results less likely than the 
observed result. In other words, the P value overstates 
how unlikely the data really are, because it is weighted 
by additional, unlikely, and unobserved results (e.g., 
Berger 1985, Berger and Berry 1988). Note also what 
a P value does not tell us. It does not tell us how 
probable our null hypothesis actually is given the data 
(i.e., P(HoIx)), nor does it tell us the probability of our 
alternative hypothesis (i.e., P(HIlx)). Based on the 
statement that observed data are unlikely given a null 
hypothesis (P(xIHo) is small), one cannot conclude that 
the alternative hypothesis is likely (or "true") given 
the data (P(HIlx) is large); this commits the logical 
fallacy of affirming the consequent (e.g., Howson and 
Urbach 1991). That is, if a null hypothesis implies a 
particular set of data (p -X q), then although observing 
different data implies that the null hypothesis is false 
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(not q -X not p, or symbolically -q -* -ip), it does 
not necessarily imply that the alternative hypothesis 
produced the observed data (-ip -4 -iq). In fact, even 
if P(xIHo) is small, P(HoIx) may be quite large (and 
P(HIlx) consequently small), with frequency as high as 
an order of magnitude >a (Lindley 1957, Berger and 
Delampady 1987, Berger and Sellke 1987). Similarly, 
failure to reject Ho does not indicate the evidence in 
favor of it (Kass and Raftery 1995). In point of fact, 
P(HIlx), the probability that the treatment "caused" 
the results (or the likelihood of the alternative hypoth- 
esis, given the data), is what most scientists and policy- 
makers actually want to know. 

It is arguable that most ecologists are testing an im- 
plicit statistical null hypothesis of the form Ho p, = 
0, and that they are using their statistical analysis as a 
benchmark to indicate that they in fact had obtained 
an adequate sample to observe any trend. Put another 
way, the point of statistical analyses in ecological re- 
search is the testing of a scientific hypothesis that the 
imposed treatment had the hypothesized effect (and 
that the sample size was large enough to detect it). This 
difference between statistical and scientific hypotheses 
also illustrates the importance of reporting statistical 
power (= 1 - the probability of committing a Type II 
statistical error). If sample size is small, power will be 
low, and the statistical null hypothesis may be falsely 
accepted. However, if sample size is large, power may 
be so high that it may be very unlikely to ever accept 
a statistical null hypothesis, even if the true effect is 
small and biologically irrelevant (see also Raftery 
1995). An example illustrates this distinction between 
statistical and biological significance: for even modest 
sample size (n = 50) and one independent variable, a 
correlation coefficient need only explain 7% of the vari- 
ance in the data to be significant at the 0.05 level (Rohlf 
and Sokal 1995). For larger sample sizes, it may be 
virtually impossible to ever accept the statistical null 
hypothesis, even if the observed treatment effect is 
ecologically irrelevant. One way around this difficulty 
is to set a substantially lower ot level for rejection of 
the statistical null hypothesis when sample size and 
statistical power are high (e.g., Raftery 1995). There 
are no frequentist guidelines for such reductions in ox 
for given sample sizes, however. 

A randomly chosen set of 50 papers published in 
Ecology in 1994 bears out the assertion that ecologists 
principally are testing scientific, not statistical hypoth- 
eses. Forty-nine of the papers examined at least one 
scientific hypothesis using standard statistical tech- 
niques, such as t tests, regression, ANOVA, etc., and 
regularly reported P values (however, only 1 of 50 
reported statistical power). All but one found statisti- 
cally "significant" results. Despite the oft-repeated 
statement that the use of explicit statistical null hy- 
potheses or multiple working (scientific) hypotheses 
are needed if ecology is to mature as a science (e.g., 
Strong 1980, Peters 1991) only 10 of these papers ex- 

plicitly presented null hypotheses, while 14 (including 
5 of the 10 with null models) used multiple hypotheses. 
Thus, in 61% of the sample (30 of 49 papers), it was 
not clear what statistical or scientific hypothesis was 
being rejected by the reported P values. Similar results 
have been found in literature surveys of aquatic sci- 
ences (Bourget and Fortin 1995), psychology, and med- 
icine (Sterling et al. 1995). 

In general, however, classical hypothesis testing and 
rejection appeared unimportant, as the authors of 47 of 
these papers asserted that their results (i.e., data) sup- 
ported or confirmed their hypothesis. In other words, 
96% of the authors considered P(H11x) to be high, de- 
spite the fact that the authors actually tested P(xIHo). 
If we were really serious about testing plausible eco- 
logical null hypotheses (i.e., those that we expect to 
accept with high frequency), there would not be a 
dearth of papers reporting "nonsignificant" results. In 
fact, we normally expect to accept a single ecological 
alternative hypothesis by rejecting a statistical Ho (and 
consequently rarely state it); otherwise we would not 
have done the experiment in the first place. On the other 
hand, if we expect to reject an ecological H0.in the first 
place, then it would be more informative to know the 
likelihood of both Ho and H1 once the experiment is 
complete, in light of the data obtained. Additional data 
could then be used to revise the likelihood of these, 
and other, alternative hypotheses. Frequentist hypoth- 
esis testing and P values do not provide this type of 
information. Construction of sound, predictive ecolog- 
ical theory that can both advance ecological under- 
standing and contribute to environmental policy deci- 
sions requires that we precisely state how likely a par- 
ticular ecological process is to affect variables of in- 
terest. 

BAYESIAN INFERENCE FOR 
ECOLOGISTS 

When we make a scientific generalization we do not 
assert the generalization and its consequences with 
certainty; we assert that they have a high degree of 
probability on the knowledge available to us at the 
time, but that this probability may be modified by 
additional knowledge.-Jeffreys 1931 

Bayesian inference provides a mechanism, based on 
the probability calculus, to quantify the uncertainty in 
parameter estimates, and to determine the probability 
that an explicit scientific hypothesis is true given 
("conditional on") a set of data. Bayesian inference 
treats statistical parameters as random variables (Table 
1), and uses a likelihood function to express the relative 
plausibility of obtaining different values of this param- 
eter when particular data have been observed (Mc- 
Cullagh and Nelder 1991). 

Bayesian parameter estimation 

Bayesian parameter estimation begins with the ob- 
servation that the joint probability of two events, P(O 
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x), equals the product of the probability of one of the 
events and the conditional probability of the second 
event given the first one. 

P(x)-P(0Ix) = P(Ox) = P(0).P(xI0). (2) 

Rearranging terms in Eq. 2 yields an expression for 
P(0Ox), or the posterior probability of obtaining the 
parameter 0 given the data at hand 

P(0 I X) = P(x IO) .P(0) (3) 
P(x) 

This expression is known as Bayes' theorem (Bayes 
1763). In this expression, P(0) is the prior probability 
of obtaining the specified parameter. In other words, 
P(0) is the probability of observing 0 that is expected 
by the investigator before the experiment is conducted. 

There are three interpretations of the prior proba- 
bility P(0) (Cox and Hinkley 1974): (1) a frequency 
distribution whose parameters reflect analysis and syn- 
thesis of existing data (see Taylor et al. 1996 for an 
example); (2) an "objective" statement of what is ra- 
tional to believe about the initial parameter or distri- 
bution, given initial ignorance of this parameter (see 
Ludwig 1996 and Ver Hoef 1996 for examples); or (3) 
a subjective measure of what the investigator actually 
believes. (Wolfson 1996, and references therein, dis- 
cusses how to elicit such statements of belief.) 

Ecologists and others trained in frequentist statistics 
are most likely to use the first or second interpretation 
of P(0) when designing and analyzing an experiment. 
The information required to construct P(0) as a fre- 
quency distribution normally is reported qualitatively 
in the introduction to a research paper or in descriptions 
of study sites and study species, but these data rarely 
are used quantitatively, even in review papers (Peters 
1991). Objective statements of P(0) reflecting total ig- 
norance can be expressed with noninformative priors, 
such as P(0) = a uniform distribution, where all values 
are equally likely (Jeffreys 1961; see Ludwig 1996 for 
an example). However, since scientific research is an 
incremental process, in which new hypotheses are 
based on preexisting data, it is unlikely that we would 
ever be in a situation of complete ignorance regarding 
possible values of hypothetical parameters (Wolfson 
1996). 

The other term in the numerator, P(x I 0) is Fisher's 
likelihood function for the parameter (Box and Tiao 
1973, Reckhow 1990). The denominator is the expected 
value of the likelihood function, and acts as a scaling 
constant that normalizes the sum or integral of the area 
under the posterior probability distribution. Because 
the denominator in Eq. 3 is a constant, this equation 
has the form of: 

posterior probability oc likelihood X prior probability. 

This statement indicates that the likelihood function is 
what modifies prior knowledge into posterior expec- 
tations (Box and Tiao 1973). 

A simple example of parameter estimation illustrates 
the use of Eq. 3 and the interaction between the in- 
vestigators' prior probability distributions and the like- 
lihood function. Consider two ecologists interested in 
estimating the fraction of foliar area (here denoted by 
3) of red spruce (Picea rubens Sarg.) affected by a pre- 
defined concentration of acid deposition in a previously 
unstudied location in Vermont. The first ecologist (A) 
has extensive experience with red spruce at other sites 
in Vermont, and before visiting the new study site, she 
estimates 3 to be 0.4 ? 0.05 (mean ? 1 SD), and asserts 
that population values of 3 form a normal distribution; 
in statistical notation, a 3 N (0.4, 0.052). Therefore, 
ecologist A's prior probability function (solid black line 
in Fig. 1) is: 

1 r 1(30.41 
PA(0) = exp [_( 4 = ,a-0.05 ex2[ 0.05)J (4 

In addition to being an expression of possible values 
for [, Eq. 4 is also a testable hypothesis about the 
distribution of possible 3 values. The second ecologist 
(B) has much less experience with red spruce in Ver- 
mont, and estimates 3 - N(0.2, 0.12). Therefore, 

1 1 (3- 0.2V 
PBQ3 - .1exp o.)J (5) 

V-2,a 0. 1 [2( 0.1)] 

(dotted line in Fig. 1). 
Subsequent to obtaining adequate funding, these two 

ecologists measure [ by growing 10 red spruce seed- 
lings in a controlled environment and applying nitric 
acid at a specified concentration. The results are b = 
{b,, . . ., blo} values that are normally distributed with 
mean b = 0.3 and standard deviation 0.075. The stan- 
dardized likelihood function (shaded curve in Fig. 1) 
for this result is - N(b, [sIV\n]2), where the variance 
= the squared standard error of the mean. Following 
Box and Tiao (1973), the posterior distribution of 3 
given {b,}, P([ I b), - N(3n, dn2), where 

f= + (wO[O + wnb) (6) 
WO + Wn 

and 

- 2 Wo + Wn (7) 

n = the sample size, Po is the prior mean, wo = 1/Uo2 
(the reciprocal of the prior variance) and wn = n/s2. In 
this example, ecologist A reports a posterior estimate 
of foliar loss [n = 0.318 ? 0.021 (mean ?1 SD), while 
ecologist B reports On = 0.295 + 0.023. 

Despite the large initial discrepancies between the 
two ecologists' estimates of [ and their differing de- 
grees of certitude in their estimates (expressed as each 
ecologist's prior Uo2), the application of Bayesian in- 
ference to their data following a single experiment 
leads to close agreement of their subsequent parameter 
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PRIORS AND LIKELIHOOD FUNCTION 
1.0 

0.8 - P(bl) 

z 0.6- w 
3 0.4 -~U3 

IL 0.2 -- - 0 

0.0 - 

-0.2 0.0 0.2 0.4 0.6 

POSTERIORS 
1.0 

0.8 -I%(1(PIb)! PA (PI b) 

o0.6- z U w 
o 0.4- 
w 
LL 0.2- 

0.0 
-0.2 0.0 0.2 0.4 0.6 

FIG. 1. Top: illustration of the relationship between the 
two hypothetical prior probability distributions described by 
Eqs. 6 and 7, and the likelihood function based on the hy- 
pothetical experimental data. Bottom: Posterior probability 
distributions resulting from applying Bayes' theorem to the 
top panel. 

estimates (Fig. 1). Since Bayesian inference is an it- 
erative process, the posterior probability distribution 
of ,B obtained by this experiment can now be used as 
the prior probability distribution for a new set of ex- 
periments, should further refinement of this estimate 
or additional hypothesis testing be required. 

This example also illustrates a general principle of 
Bayesian inference. For parametric distributions, as 
long as the likelihood function "dominates" the prior 
distributions (i.e., wo << wj), the data will have a much 
greater effect on the posterior probability function than 
will the prior (Box and Tiao 1973). They also point 
out that this conforms to standard scientific practice. 
If the prior dominates the likelihood, then the experi- 
ment is probably irrelevant, since that implies the ex- 
istence of more prior information than the subsequent 
experiment can supply to influence posterior estimates. 
This is an important result, as one of the common crit- 
icisms of Bayesian inference is that specifying a prior 

probability distribution is a subjective process that is 
inappropriate to scientific research, wherein the data 
are expected to speak for themselves. Recall, however, 
the subjective nature of what scientists regularly do. 
We rarely, if ever, test all possible hypotheses, and most 
of us use substantial prior knowledge about the be- 
havior of a system in designing our experiments (e.g., 
Berger and Berry 1988, Johnson 1990, Lewontin 1991). 
Unlike classical frequentist statistical practice, Baye- 
sian inference requires the investigator to state as- 
sumptions explicitly and use pre-existing information 
quantitatively in order to define the prior distribution 
or hypothesis. 

Each ecologist can place a 95% Bayesian credibility 
interval on her estimate of P: 

P(3n -2 V D -? n + 2V) = 0. 95 (8) 

where D = ?n2 from Eq. 7 (Efron 1978). While the 
Bayesian credibility interval (or bounds on the poste- 
rior probability) is calculated analogously to a fre- 
quentist confidence interval (Eq. 1), the interpretations 
are very different (Table 1). Because Bayesian infer- 
ence treats statistical estimates (here, 1) as random 
variables, in this example the interpretation of Eq. 8 is 
that 95% of the potential values of 1 will fall within 
the boundaries of the credibility interval. If the inves- 
tigator uses a noninformative prior, the bounds of Eq. 
8 will equal the bounds of Eq. 1. However, given some 
prior information, Eq. 8 normally will be narrower than 
Eq. 1 (e.g., Deely and Zimmer 1969). 

Bayesian hypothesis testing 

Alternative prior probability distributions for spe- 
cific parameters can also be viewed as multiple working 
hypotheses. Bayes' theorem (Eq. 3) can be extended 
to assess the relative probabilities of such alternative, 
quantitative hypotheses given the available data (e.g., 
Jeffreys 1961, Iversen 1984, Reckhow 1990, Bernardo 
and Smith 1994). Although a frequentist analysis at- 
tempts to "reject" an hypothesis, and a Bayesian 
speaks in terms of its "likelihood," both probably 
would agree that statistical hypothesis testing should 
be used to assess the evidence in favor of the null 
hypothesis. 

For multiple hypotheses Hi, Eq. 3 can be generalized: 

P(H I x) = P(x I Hi) P(H) (9) 
P(x) 

where 

p(x) _ fY P(x I Hj) P(Hj) H discrete 0 (x) fJ P(x I H). P(H) dH H continuous (1) 

again is a scaling constant equal to the sum of the 
conditional probabilities P(x I H1) weighted by their pri- 
or probabilities p(Hj). The ratio of the posterior prob- 
abilities of two alternative hypotheses (often called the 
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TABLE 2. Interpretation of Bayes factors suggested by Jeffreys (1961) and Kass and Raftery (1995). In this table, the value 
given is based on Blo, the evidence against Ho, where the likelihood of Ho would be the denominator and the likelihood 
of H, would be the numerator in Eq. 11. This reciprocal of the likelihoods given in Eq. 11 is how most ecologists would 
be likely to use Bayes factors in day-to-day research. 

Jeffreys (1961) Kass and Raftery (1995) 

loglo(Blo) Blo Evidence against Ho 2 X loge(B10) Blo Evidence against Ho 
0-0.5 1-3.2 Not worth more than 0-2 1-3 Not worth more than 

a bare mention a bare mention 
0.5-1 3.2-10 Substantial 2-6 3-20 Positive 

1-2 10-100 Strong 6-10 20-150 Strong 
>2 >100 Decisive >10 >150 Very strong 

"odds ratio") gives the relative evidence for one hy- 
pothesis over another: 

P(Ho |x) P(HO) P(x Ho) 
P(H1 Ix) P(H,) P(xjHI)( 

Eq. 1 1 is often stated as: 

posterior odds = prior odds X Bo, 
and Bo, is called the "Bayes factor" (reviewed by Kass 
and Raftery 1995). Jeffreys (1961) and Kass and Raf- 
tery (1995) proposed scales using Bayes factors with 
which to decide whether or not data fail to support Ho 
or favor H1 (Table 2). Note that if two hypotheses are 
considered to be equally likely a priori (P(HO) = P(HI) 
= 0.5), then the Bayes factor = the posterior odds in 
favor of Ho. If two hypotheses are simple distributions 
(all parameters specified), and Ho is nested within H,, 
then Bo, is simply the standard likelihood ratio (Reck- 
how 1990, Kass and Raftery 1995). For nested hy- 
potheses, if any parameter (e.g., expected mean, vari- 
ance) is unknown for either of the hypotheses (so-called 
nuisance parameters), then the values for the terms of 
Bo, must be obtained by integrating (or summing, in 
the discrete case), not maximizing, the likelihood over 
the parameter space (see Eq. 10; Kass and Raftery 
1995). If Ho and H1 are not nested, then standard fre- 
quentist likelihood ratio tests are inapplicable (Kass 
and Raftery 1995). Use of Bayes factors requires pa- 
rameterization of the prior. If the prior probability dis- 
tributions are noninformative (e.g., the uniform distri- 
bution), then Bo, is also undefined. 

As an example, consider a simple comparison be- 
tween two means, where the means are each the amount 
of red spruce foliage lost to two different applications 
of nitric acid (n = 10 plants per treatment). The null 
hypothesis Ho is w = VL2 (or, equivalently, ji1 - 12 = 

0), and the alternative H1 is ,u = 1? 2. Assume that the 
mean responses are Xl = 0.31 and X2 = 0.30, and the 
underlying populations are known to be normal, with 
c2 = 0.01. A standard (frequentist) t test on simulated 
data (drawn from N(0. 31, 0.01) and N(0.30, 0.01)) finds 
that these two samples are "significantly different" at 
P = 0.0 16. For this simple case, where the populations 
are both normal and their variances are known, the 
posterior odds in favor of Ho can be calculated using 
methods outlined by Cox and Hinkley (1974: Chapter 

10). If the prior probabilities of Ho and H, both equal 
0.5, then the posterior odds in favor of Ho in this ex- 
ample = 0.06. Equivalently, this means that the odds 
are 17:1 in favor of the alternative hypothesis that 
the two means are different. This provides "positive" 
(Kass and Raftery 1995) to "strong" (Jeffreys 1961) 
evidence in favor of HI (Table 2). Note that if there 
were a priori evidence that Ho was more likely than 
H,, then the posterior odds in favor of Ho would in- 
crease as a function of P(HO)IP(HI). In addition, this 
process and attendant results are substantially more in- 
formative about the quantitative importance of acid de- 
position than a statement that simply rejects a null hy- 
pothesis that acid deposition has no effects on spruce 
foliage. Reckhow (1990) similarly showed that effec- 
tive use of prior probabilities allowed for biologically 
meaningful resolution among statistically contradic- 
tory outcomes of studies examining effects of acidi- 
fication on sulfate concentrations, acid neutralizing ca- 
pacity, and total base cations in Adirondack lakes. 

I illustrated above (Frequentist hypothesis testing) 
that as sample size increases, it becomes increasingly 
unlikely to accept Ho for a fixed significance level (e.g., 
a, = 0.05), and that to distinguish biological signifi- 
cance from statistical significance, the (x level should 
be reduced as sample size increases (Raftery 1995). 
Although there are no frequentist guidelines for such 
reductions, Cox and Hinkley (1974) illustrate that the 
posterior odds in favor of Ho scale directly with sample 
size for a given significance level. However, they find 
that, when contrasting means from normal distributions 
where the variances between treatments are approxi- 
mately equal, the posterior odds in favor of Ho will be 
roughly constant if the ox is reduced as a function of n 
log(n), where n is sample size. Thus, the frequentist 
and Bayesian approaches to hypothesis testing give 
comparable results with respect to the "truth" of Ho if 
(x is reduced as n increases (Cox and Hinkley 1974). 
Note, however, that a frequentist would not assess di- 
rectly the probability in favor of either the null or the 
alternative hypothesis. 

Bayesian inference is not limited to parameter esti- 
mation or simple hypothesis testing. There are Baye- 
sian procedures to perform post-hoc multiple compar- 
isons among means (Waller and Duncan 1969); to con- 
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struct and test alternative regression models (e.g., Har- 
tigan 1969, Hoadley 1970, Lindley and Smith 1972, 
Box and Tiao 1973, Halpern 1973, Dempster et al. 
1977); to estimate the relative importance of variance 
components in common ANOVA models (fixed effects 
models, random effects models, mixed models, block 
designs); to analyze time-series models (e.g., Spall 
1988, Pole et al. 1994); and to conduct sensitivity anal- 
yses of simulation models whose parameterization is 
uncertain (Raftery et al. 1995). 

BAYESIAN INFERENCE, ADAPTIVE 

MANAGEMENT, AND ENVIRONMENTAL 
DECISION-MAKING 

Ecological understanding of complex phenomena is 
essential if society is to anticipate and ameliorate 
the environmental effects of human activities.-Lub- 
chenco et al. 1991 

Ecologists cannot ignore anthropogenic impacts on 
the biosphere, and many of us want to contribute sub- 
stantively to decision-making processes surrounding 
environmental problems (e.g., Orians et al. 1986, Lub- 
chenco et al. 1991, Shrader-Frechette and McCoy 1993, 
Vitousek 1994, Huenneke 1995, Underwood 1995). 
Despite Vitousek's (1994) assertion that we are certain 
that there are a number of components of global en- 
vironmental change that are occurring and are driven 
by human activities, a quantitative expression of that 
certitude, stated in a way that is meaningful to decision- 
makers, normally is absent from ecological publica- 
tions. The lack of quantifiable uncertainty often is used 
by ecologists to justify their lack of involvement with 
the decision-making process, and by some decision an- 
alysts as a vehicle to avoid using scientific information 
in the process (Underwood 1995:242). However, un- 
certainty is fundamental to all scientific activities, and 
people regularly make decisions based on uncertain 
data (e.g., weather forecasts). Ludwig et al. (1993) 
clearly illustrated that ignoring ecological uncertainty 
has led repeatedly to environmental catastrophes. 

Most formal frameworks for making decisions ex- 
plicitly incorporate uncertainty by using odds ratios 
(Eq. 11) to decide among alternative courses of action 
(e.g., Chernoff and Moses 1959, Lindley 1971, Berger 
1985, Smith 1988, Chechile and Carlisle 1991). For 
any situation in which a decision must be made, there 
is a problem to be solved, a set of possible actions, a 
set of uncertain events associated with each action, and 
a set of consequences that can occur subsequent to the 
events (Bernardo and Smith 1994). The degree of un- 
certainty that a particular event will occur can be ex- 
pressed quantitatively as a prior probability, the deci- 
sion can be seen as an experiment, and potential con- 
sequences can be estimated as posterior probabilities. 
Each possible consequence also needs to be assigned 
a quantitative value (usually referred to as its utility; 
Lindley 1971). Although most often expressed in mon- 

etary terms, the utility need only express some stan- 
dardized value that individuals or society place on each 
hypothesized outcome. For example, the utilities of dif- 
ferent emission-control policies could be expressed as 
expected changes in net photosynthetic rates of affected 
trees. 

Bayes' theorem is used in decision analysis to es- 
timate the consequences of a decision (as posterior 
probabilities) based on uncertainty (prior probability) 
and events (likelihood functions). Bayesian decision 
theory demonstrates that the optimal decision is the 
one that maximizes the product of the utility and the 
posterior probability of the consequence of the given 
decision (e.g., Lindley 1971, Berger 1985, Chechile 
and Carlisle 1991). Alternatively, Shrader-Frechette 
and McCoy (1993) suggest that a minimax decision rule 
(choose the decision for which the maximum possible 
loss or risk is minimized) is preferable in environmen- 
tal decision-making, as it guards against choosing a 
course of action leading to the most egregious envi- 
ronmental impacts (recall Peterman 1990). However, 
Bernardo and Smith (1994) point out that the minimax 
rule (which does not depend on a prior probability dis- 
tribution) is equivalent to the Bayes decision rule that 
uses the prior probability distribution associated with 
the highest expected risk. In other words, the minimax 
decision rule is appropriate in environmental situations 
only when prior data provide strong evidence for sub- 
stantial negative effects (and dominate the likelihood 
functions). This is likely to be the case only when there 
is substantial prior information and little uncertainty 
about possible outcomes. 

However, environmental decisions rarely are made 
in light of complete and certain data, so decisions 
should be made in ways that reflect the uncertainty and 
that can be modified when new data become available. 
"Adaptive management" (e.g., Holling 1978, Orians 
et al. 1986, Lee 1993) incorporates initial uncertainty, 
treats decisions as hypotheses to be tested, and de- 
mands that managers learn from the consequences of 
their decisions and alter their decisions (and implement 
new decisions) accordingly. Adaptive management is 
precisely analogous to an iterative Bayesian learning 
and decision process. Prior information is specified, 
decisions are made, and consequences are observed. 
The consequences are treated not as final events, but 
as new sources of information (new prior probability 
functions) for subsequent "experiments" (events, like- 
lihood functions) that lead to modifications in man- 
agement practices (new decisions). As suggested by 
Holling (1978), Orians et al. (1986), and Underwood 
(1995), ecologists can contribute to this process at all 
stages. We can gather, synthesize, and meta-analyze 
information to construct prior hypotheses, we can treat 
decisions as experiments, and we can analyze results 
as posterior hypotheses to be tested rather than as done 
deals. Bayesian inference and decision theory provide 
a quantitative framework and intelligible language in 
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which to analyze and express adaptive management 
procedures. 

CONCLUDING REMARKS 

What is unknown and of interest? H. What is known? 
X. Calculate P(H I X). How? The probability calculus 
is the only tool. The Bayesian argument provides a 
recipe.-Lindley, in Efron 1986 

Theory and methods of Bayesian inference have de- 
veloped rapidly in the last 50 yr, but they are still dis- 
cussed rarely, if at all, where ecologists encounter and 
learn statistics: in introductory statistics classes and 
biometry textbooks. Efron (1986) argued that Bayesian 
inference is applied rarely to scientific data analysis 
because it is more difficult to solve for Bayesian pos- 
terior probabilities than it is to compute P values. For 
some ecological data, Eq. 9 would require integration 
of functions that may be solvable only by numerical 
approximation. As yet, there is little easily used soft- 
ware for conducting Bayesian analyses, but this is 
changing rapidly (e.g., Smith and Gelfand 1992, Albert 
1993, Cook and Broemeling 1995, Kass and Raftery 
1995, Raftery et al. 1995, Ver Hoef 1996). Many eco- 
logical datasets and hypotheses, however, could be an- 
alyzed using Bayesian techniques without undue dif- 
ficulty. Bernardo and Smith (1994) provide formulae, 
likelihood functions, and methods to calculate prior and 
posterior distributions for 8 univariate and 2 multivar- 
iate parameterized discrete distributions, and 16 uni- 
variate and 8 multivariate parameterized continuous 
distributions. The use of Bayesian inference to analyze 
nonparametric data (i.e., where the distribution func- 
tions are unknown) has to date received less attention 
(Ferguson 1973, Leonard 1978, Bernardo and Smith 
1994). 

Conceptually, Bayesian inference is the most 
straightforward way of analyzing and interpreting our 
hypotheses in light of our data. As ecologists, we have 
a vast store of natural history and experimental data 
with which to address uncertain hypotheses. New ob- 
servations, experiments, and statistical analyses are the 
only tools we have to evaluate critically these hypoth- 
eses. If we are seriously interested in testing our hy- 
potheses in light of our data, we should use tools ap- 
propriate to the task. 
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