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Introduction

Carbohydrates are considered the third

class of information-encoding biological

macromolecules. ‘‘Glycomics,’’ the scientific

attempt to characterize and study carbohy-

drates, is a rapidly emerging branch of

science, for which informatics is just begin-

ning. Glycomics requires sophisticated algo-

rithmic approaches. Several algorithms and

models have been developed for glycobiol-

ogy research in the past several years. This

tutorial will provide a brief introduction to

the field of glycome informatics, which will

include a primer on glycobiology as well as

descriptions of the algorithms and models

that have been developed in this field.

The four essential molecular building

blocks of cells are nucleic acids, proteins,

lipids, and carbohydrates, often referred to

as glycans. Nucleotide and protein sequenc-

es are at the heart of nearly all bioinfor-

matics applications and research, whereas

glycan and lipid structures have been widely

neglected in bioinformatics. However, gly-

cans are the most abundant and structurally

diverse biopolymers formed in nature.

Bound to proteins, as glycoproteins, they

are known to affect the functions of proteins.

More than half of all protein sequences

deposited in the SWISS-PROT databank

include potential glycosylation sites and thus

may be glycoproteins. Based on an analysis

of well-annotated and characterized glyco-

proteins in SWISS-PROT, it was concluded

that more than half of all proteins are

glycosylated [1].

The development and use of informatics

tools and databases for glycobiology and

glycomics research has increased consider-

ably in recent years. However, the general

development in this field can still be

considered as being in its infancy when

compared to the genomics and proteomics

areas. In terms of bioinformatics in glyco-

biology, there are several paths of research

that are currently in progress. The develop-

ment of algorithms to reliably support the

characterization of glycan structures for

high-throughput applications is the most

immediate demand of the glycomics com-

munity. Additionally, several major glyco-

related projects (Consortium for Functional

Glycomics [2], KEGG Glycan [3], GLY-

COSCIENCES.de [4]) are maturing and

provide well-structured glyco-related data

that are awaiting data mining and analysis.

With the exciting new developments in

carbohydrate arrays and automated MS

annotation, the analysis of the glycome has

reached a new level of sophistication, which

requires broader informatics support. This

tutorial aims to give an overview of the

current status of carbohydrate databases, the

newest analytical techniques, as well as the

informatics needed for rapid progress in

glycomics research.

Background

Complex carbohydrates are chains of

monosaccharides, often called glycans,

and are often found attached to proteins

(to form glycoproteins) and lipids (glyco-

lipids, glycosphingolipids, etc.). Glycopro-

teins are usually on the cell surface, where

they are recognized by bacteria, viruses,

and other proteins, such as lectins, in order

to facilitate various crucial functions. It is

also known that glycans are involved in a

variety of biological processes including

protein folding and signalling events.

The complex structure of glycans has

been a bottleneck in the structure deter-

mination and thus data accumulation of

glycan structures. This is confounded by

the complex biosynthetic pathways of

glycans. It is known that glycan-specific

diseases called CDGs (congenital disorders

of glycosylation) are caused by defects in

these pathways [5]. Furthermore, there

have been many reports on glycan mark-

ers related to human diseases such as

cancer and autoimmune diseases [6,7].

Carbohydrate Structure Notation.

Complex carbohydrates are composed of

monosaccharides that are covalently linked

by glycosidic bonds, either in the a or b
form. Unlike DNA and proteins, however,

monosaccharides may be linked to one or

more other monosaccharides, such that

they form a branched tree structure. In

order to formulate a standardized notation

for glycans, the Consortium for Functional

Glycomics (CFG) proposed a standard

symbolic representation for those

monosaccharides that are found most in

nature, which has been employed in [8].

This representation (as given in Figure 1)

will be utilized throughout this tutorial.

Carbohydrates are most classically drawn

as a tree in a two-dimensional plane, with

the root monosaccharide placed at the

right-most position and children branching

out toward the left. Each node represents a

monosaccharide, and each edge represents

a glycosidic linkage, which includes the

carbon numbers that are bound and the

conformation. An example of an N-linked

glycan is given in Figure 2.

Although the two-dimensional notation is

nice and pretty, it is not suitable for storage

in a database, let alone for bioinformatic

analysis. The IUPAC–IUBMB (Interna-

tional Union of Pure and Applied Chemis-

try–International Union of Biochemistry

and Molecular Biology) has specified the

‘‘Nomenclature of Carbohydrates’’ to

uniquely describe complex oligosaccharides

based on a three-letter code to represent

monosaccharides (e.g., ‘‘gal’’ for galactose

and ‘‘man’’ for mannose). Each monosac-

charide code is preceded by the anomeric

descriptor and the configuration symbol.

The ring size is indicated by an italic f for

furanose or p for pyranose. The carbon
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numbers that link the two monosaccharide

units are given in parentheses between the

symbols separated by an arrow. For exam-

ple, the structure in Figure 2 would be

represented as: b-D-GlcpNAc-(1R4)-[b-

D-GlcpNAc-(1R2)-a-D-Manp-(1R3)][a-

D-Manp-(1R3)-[a-D-Manp-(1R6)]-a-

D-Man-(1R6)]-b-D-Manp-(1R4)-b-D-

GlcpNAc-(1R4)-b-D-GlcpNAc. In such a

way, long carbohydrate sequences can be

adequately described in abbreviated form

using a sequence of letters.

However, as we discuss in the next

section, it is not always possible to obtain a

full and exact representation of carbohy-

drates due to the difficulties in sequencing

them. Currently, the most popular method

for complex carbohydrate sequencing is

mass spectroscopy (MS). However, this

process is often incomplete and error-

prone. For example, unless one uses MS in

tandem it is nearly impossible to distin-

guish between isomeric monosaccharides

(e.g., glucose, galactose, and mannose are

all hexoses with the same mass). As any

spectrometrist will state, MS in tandem is a

rather tedious process, even for one

carbohydrate structure. Thus, for those

developing databases, the notation for

carbohydrates must be flexible enough to

capture all the data at hand but also be

able to account for ambiguities.

There are currently in use several

different notations for carbohydrates, which

developed out of the construction of some

major databases during a time when no

standard notation for carbohydrates existed.

Briefly, these notations are KEGG Chem-

ical Function (KCF) format, which repre-

sents glycans using a connected graph,

LINUCS (Linear Notation for Unique

Description of Carbohydrate Sequences),

which provides a unique and linear notation

for glycans, and Linear Code by Glyco-

Minds, which provides a commercial com-

plex carbohydrate database [9].

Databases

As of the time of this writing, there are

three major databases for complex carbo-

hydrates, Glycosciences.de, KEGG GLY-

CAN, and the database developed by the

Consortium for Functional Glycomics

(CFG). All three databases are based on

the CarbBank database developed in the

1990s by the Complex Carbohydrate

Research Center (CCRC) at the Univer-

sity of Georgia [10]. These databases have

been summarized in Table 1.

The major issue that was facing the

glyco-informatics community was the fact

that each of these databases represented

their glycan structures in different formats.

Glycosciencse.de uses the LINUCS format,

KEGG the KEGG Chemical Function

Figure 1. Standard representation of carbohydrate chains as proposed by the Consortium for Functional Glycomics.
doi:10.1371/journal.pcbi.1000075.g001

Figure 2. An example of an N-linked glycan, illustrated as a tree structure rooted at
the right side and branching toward the left.
doi:10.1371/journal.pcbi.1000075.g002
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(KCF) format, and CFG the IUPAC

format. In September 2006, a workshop

was held at the National Institutes of Health

(NIH), United States, where glycobiologists

and glyco-informaticians gathered to discuss

a standard exchange format for carbohy-

drate structures. At this meeting, the

GLYDE-II XML format for glycans and

glycoconjugates, developed by the CCRC,

was agreed upon as the standard format for

exchanging carbohydrate data [11].

Glycome Informatics Methods

Along with the development of these

glycan databases over the past few years,

bioinformatic methods for analyzing glycan

structures have also appeared. In general,

these can be classified into the following six

categories: glycosylation analysis, glycomics,

glycan biomarker prediction, glycan struc-

ture analysis, glyco-gene expression analy-

sis, and glycan structure mining.

In the area of research in the first three

categories of glycosylation analysis, glyco-

mics and glycan biomarker prediction may

be of most interest to biologists, whereas the

latter are (currently) active areas of research

in the informatics community. Thus, the

literature is rich in research in the former

areas, and it is hoped that the latter areas

will be able to develop and produce more

interesting results as these technologies

advance. In any case, these areas are all

covered equally in this section.

Glycosylation Analysis. Since the

methods in this section have been summar-

ized nicely in two previous reviews [12,13],

they are only briefly mentioned for reference.
Prediction of glycosylation binding

sites on proteins. As one form of post-

translational modification, glycosylation

affects the function of the modified

protein. Thus, many methods have been

developed to predict glycosylation sites

based on the amino acid sequence. These

methods have been summarized in Table 2.

Statistical analysis of amino acids

surrounding the glycosylation binding

site of a glycoprotein. The statistical

analysis of amino acids surrounding glyco-

sylation binding sites has been an active

area of research by the German Cancer

Research Center. One of their tools called

GlySeq [14] statistically analyzes the

amino acids surrounding the glycosylation

sites based on protein sequences from

Swiss-Prot and the Protein Data Bank

(PDB). These statistics are publicly

available in the GlySeqDB database.

In addition to analyzing the surround

sequence, a tool called GlyVicinity performs

a statistical analysis of a PDB entry by

computing the frequency of amino acids

within a user-definable distance up to 10 Å

of carbohydrate residues. This tool per-

forms on top of the data in GlyVicinityDB,

which contains distance information of the

amino acids in the spatial vicinity of

carbohydrate residues in PDB entries [14].

Mathematical modeling of glyco-

sylation. In other work at Johns

Hopkins University, a model to mathe-

matically formulate N-glycosylation was

developed [15] based on a previous model

that formulated the initial stages of N-

glycosylation up to the first galactosylation

of an oligosaccharide [16]. This new

model characterizes the substrate specifi-

cities of known glycosyltransferases as a

rule table. Thus, given a set of expressed

genes, the list of possible glycans synthe-

sized by the input can be predicted. This

model was further enhanced to incorpor-

ate enzyme kinetics such that concentra-

tions of structures could be computed

using nonlinear algebra. The results were

supported by experimental evidence.

Glycomics (Mass Analytics). The

field of glycomics can be defined as the

technology to determine carbohydrate

sequences (structures) using mass spectral

data. This area of research has been the

Table 1. The Three Major Publicly Available Carbohydrate Databases Are Listed Along with the URLs and Literary References.

Database Name Description URL Reference

Glycosciences.de Database of glycan structures and mass spectral data, based at the German Cancer
Research Center

http://www.glycosciences.de [4]

KEGG GLYCAN A part of the KEGG database containing glycan structures extracted from CarbBank
and subsequently linked with the GENES and PATHWAY information in KEGG. Glycosyl-
transferases and glycan binding protein data have also been organized in KEGG BRITE

http://www.genome.jp/kegg/glycan/ [3]

CFG Developed by the Bioinformatics Core of the CFG, this database contains structures from
CarbBank and a seed database provided by GlycoMinds. They have been subsequently
linked with tissue and cell data, glycan array information, and glycans specifically
synthesized by the CFG.

http://www.functionalglycomics.org/ [2]

doi:10.1371/journal.pcbi.1000075.t001

Table 2. Glycosylation Prediction Programs.

Name Description URL

Big-PIPredictor [41] GPI-anchor prediction http://mendel.imp.univie.ac.at/sat/gpi/gpi_server.html

GlyProt [42] In-silico glycosylation http://www.glycosciences.de/modeling/glyprot/

GlySeq [14] Statistical analysis of glycosylation sites http://www.glycosciences.de/tools/glyseq/

GPI-SOM [43] Identification of GPI-anchor signals using a Self Organizing Map (SOM) http://gpi.unibe.ch

NetNGlyc [44] and
NetOGlyc [45]

N- and O-glycosylation prediction; also available as SOAP-based web
services

http://www.cbs.dtu.dk/services/NetNGlyc/ and
http://www.cbs.dtu.dk/services/NetOGlyc/

NetCGlyc [46] C-mannosylation site prediction from mammalian proteins http://www.cbs.dtu.dk/services/NetCGlyc/

YinOYang [44] Neural network predictions for O-b-GlcNAc binding sites in eukaryotic
proteins, using predicted phosphorylation sites

http://www.cbs.dtu.dk/services/YinOYang/

doi:10.1371/journal.pcbi.1000075.t002
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most desired by the glycobiology

community due to the tedious process

traditionally being used to characterize

glycans and glycoproteins. In particular,

each mass peak was manually annotated

by experts, resulting in months of analysis

for one mass spectrum.

This problem was conventionally solved

by developing a database of theoretical

mass spectra corresponding to known

glycan structures. Thus newly produced

MS data could be compared with the

theoretical spectra to find the most similar

one, thus providing a clue as to the

structures behind the new spectra [17].

More recently, as a result of the large

volumes of MS data being produced by

the CFG, the Cartoonist program was

developed to automatically annotate N-

glycans in MALDI-MS data [18]. The

Cartoonist labels peaks in MALDI spectra

of permethylated N-glycans with dia-

grams, or cartoons, of the most plausible

glycans consistent with the peak masses

and the types of glycans being analyzed.

There are three main parts to Cartoonist:

(i) select annotations from a library of

biosynthetically plausible cartoons, (ii)

determine the precision and calibration

of the machine used to generate the

spectrum automatically based on the

spectrum itself, and (iii) assign a confidence

score to each annotation. As a result, the

Cartoonist provides a list of all plausible

annotations for each peak, associating

each annotation with a confidence score.

In an attempt to predict any type of

glycan structure from mass spectra, the

GLYCH method was developed to use a

dynamic programming method and a

listing of all possible fragment types of

glycans [19]. There are still difficulties,

however, in distinguishing between differ-

ent branches. Other online tools for

annotating glycan structures from mass

peaks include GlycoPep ID [20], Glyco-

Mod [21], and GlycoPeakFinder [22].

Glycan Biomarker Prediction.

Many glycan motifs are known to be

involved in a variety of diseases including

cancer [23]. Thus it came about that

methods to predict characteristic glycan

substructures from sets of known glycans

may be useful in predicting such

biomarkers. From the bioinformatics

side, kernels are well-known as useful

classifiers for large sets of data given a

vector of features from which to extract

the most likely candidates. Thus, several

kernel methods for glycan biomarker

prediction and classification have been

developed. For an introduction to kernel

methods, the interested reader is referred

to the book Learning with Kernels by

Scholkopf and Smola [24]. Support

vector machines (SVMs) are the most

popular kernel method, where two (or

more) classes of objects can be trained

such that new objects can be classified

according to the trained features of the

objects. In addition to training and

classification, new methods for ‘‘feature

extraction’’ have been utilized in SVMs

such that the most relevant features to the

classification problem can be identified to

improve training. This feature extraction

method has subsequently been used, as

will be described here, to extract possible

glycan features that may serve as

biomarkers. More details on feature

extraction for computational biology can

be found in the literature [25].

In glycome informatics, the layered-

trimer kernel was first developed and used

to verify the utility of using kernels for

glycan biomarker prediction [26]. This

method was further expanded as the q-

gram distribution kernel [27], and a

separate method combining multiple ker-

nels was later used for glycan structure

classification [28].

Layered-trimer kernel. Taking

advantage of the fact that the glycan

substructures at the leaves are more prone

to be recognized compared to the root

structures attached to proteins, a weighting

scheme was employed that differentiated

substructures based on their ‘‘depth’’ or the

‘‘layer’’ of the substructure, the number of

glycosidic linkages between the substructure

and the root. Furthermore, it is known that

glycosyltransferases interact with three

monosaccharides on average. Thus, glycan

structures were decomposed into trimers.

This produced a feature vector of trimers

distinguished by layer, which was tested

using a dataset of glycans related to different

blood components as well as to leukemic

cells. These annotations were retrieved from

the original CarbBank database.

The kernel was defined using a weight-

ing parameter for the layer of each glycan

substructure, according to the following

equation. Given the feature vectors for two

glycans X and Y, their inner product is

calculated as Swkxkyk, where k is a feature,

and so the summation is taken over all

features. The weighting parameter wk is set

to 1 when the layer of feature k is 1.

Otherwise, wk = 12exp(2ah), where a is a

positive constant to weight h, the layer of

the matching substructures.

Using this kernel on the leukemia

dataset described above, the model was

able to extract a feature that was highly

characteristic of leukemia, which was

corroborated by experimental evidence.

Q-gram distribution kernel. This

method extended the layered-trimer kernel

in order to account for potential glycan

biomarkers that were smaller or larger than

trimers, without the use of layers, since it

was assumed that layer information could

be subsumed by the wider distribution of

features. As a result, the q-gram distribution

kernel could predict leukemia markers as

equally well as the previous model, and, in

addition, it found that sulfation was a major

marker for cystic fibrosis, which is smaller

than a trimer. Thus, a more flexible kernel

was developed.

Multiple kernel. Finally, to more

efficiently handle the large number of

features required by the q-gram

distribution kernel, a hierarchical model

was developed, where a kernel for each q

was first developed, upon which another

kernel was trained to extract the best

feature from the best kernel. This model

was again shown to produce similar results

to the original layered-trimer kernel.

Glycan Structure Analysis. The

tree structure of glycans has been a topic

of interest especially for bioinformaticians

interested in trees. Traditionally, RNA

structures and phylogenetic analyses have

been the focus of tree-based algorithms.

However, these structures result in trees

with information at the leaves, with

internal nodes representing relationships

between the leaves. Thus, glycans have

provided a structure where internal and

external nodes all represent the same type

of object: monosaccharides. As a result,

glycan structure alignment using tree

alignment algorithms and glycosidic

linkage score matrices has been

developed and analyzed.

Glycan structure alignment. The

first application of tree-structure alignment

using dynamic programming applied to

glycans was the algorithm called KEGG

Carbohydrate Matcher, or KCaM [29]. By

comparing two nodes between two trees

based on the mapping of the respective

children, the dynamic programming

algorithm in Figure 3 can be used to align

two glycans. Here, M(u,v) is the mapping

between the children of u and v, and sons(x)

is the set of children of node x, and w(u,v) is

the similarity score between nodes u and v,

which can be defined by a weighting

between the matches of the monosac-

charide type and the glycosidic linkage

between the monosaccharide and its

parent (which is null at the root). Con-

sidering the fact that gaps really are not

expected to appear often in meaningful

glycan structure alignments, the gap penalty

d may be set to a very large value to penalize

gaps more heavily.
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Glycan substitution matrix. This

algorithm may now be used to analyze

monosaccharide similarity, as in amino

acid similarity, as represented by amino

acid substitution matrices such as PAM

[30] and BLOSUM [31]. However, unlike

proteins, there are not functionally

distinguished families of glycans, as they

are considered more as modifiers of

protein functions as opposed to function-

regulating molecules in and of themselves.

Furthermore, the linkage conformation

information should also be taken into

consideration. Therefore, an appropriate

glycan score matrix would be one where

glycosidic linkages and the monosac-

charides being linked should be used as

the basic unit for comparison. Glycan

families can be defined computationally or

be generated based on the classic classi-

fication of glycans, which is derived from

the core structure, determined by the

conjugate to which the glycans are bound.

Once the appropriate classes of glycans

are defined, the KCaM alignment results

can be used to calculate the frequency of

alignment of glycosidic linkages, which

includes the full linkage information (car-

bon numbers and conformation), as well as

the two monosaccharide names which are

linked (hereafter called ‘‘links’’). This score

matrix of links is thus the log odds score of

the expected frequency of alignment of

link pairs [32]. From this matrix, we

expect to find those links that are posi-

tioned similarly, and thus those that are

potentially ‘‘functionally’’ similar. This

matrix can also be used to improve the

KCaM algorithm to produce more bio-

logically meaningful results.

Glyco-Gene Expression Analysis.

In an attempt to overcome one of the

major issues in glycomics, glycan structure

characterization through MS, a

bioinformatic method to predict glycan

structures in a particular cell through the

gene expression profiles was developed

[33]. In this method, the concept of a ‘‘co-

occurrence score’’ was calculated based on

the co-occurrence of pairs of links within

the same glycan structures. It was expected

that by doing so the substrate specificity of

glycosyltransferases could be captured in a

single numerical matrix. Once this co-

occurrence score matrix was developed, it

could be used to make predictions from

expression data.

This method was further improved such

that (i) the database of glycans were

augmented with new glycans that should

exist and (ii) the prediction score for

glycans used the expression values directly

as opposed to using binary values. The

first step was performed by analyzing the

database of glycans and finding those that

differed by more than one link. That is,

considering the fact that glycosyltransfer-

ases typically catalyze only one link at a

time, if two similar glycans in the database

existed, but differed by say two to four

links, then ‘‘intermediate’’ glycans that

should be catalyzed in the process of

synthesizing the larger structure should

Figure 3. Dynamic programming algorithm for aligning two tree structures, where
sons(x) refers to the children of node x, d(x) is a gap penalty, and M(u,v) refers to all
mappings between the children of nodes u and v.
doi:10.1371/journal.pcbi.1000075.g003

Figure 4. An example of the generation of a new glycan entry given two similar glycans. Since Entry 2 contains just two more nodes than
Entry 1, and since in almost all cases glycosidic linkages are synthesized one by one, we can assume that the New Entry exists and can be added as a
new structure.
doi:10.1371/journal.pcbi.1000075.g004
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also exist, and these ‘‘intermediate’’ gly-

cans are added to the database. Figure 4 is

an example, where a new entry can be

presumed to exist and thus added to the

database based on the two existing entries

Entry 1 and 2. With this augmented

database, it is hoped that better scoring

results will be obtained. As a result, using a

dataset of acute lymphocytic and myelo-

cytic leukemia, those structures containing

Lewis-a, Lewis-x, or sialyl-Lewis-x epi-

topes, which are known to be related to

cancer, were often ranked more highly

compared to the original method. Fur-

thermore, the newly added glycan entries

were also found to be ranked highly in the

results [34].
Glycan Structure Mining. Lectins

are known to recognize specific glycan

structures, whose binding events trigger

signalling processes to occur. However,

oftentimes the specific structures being

recognized are unknown. For example,

siglecs are suspected to recognize patterns

not only at the leaves of glycans but also

further deeper in the chain [35]. In order

to find such patterns, which may not

necessarily form a connected tree, a tree-

structure probabilistic model was

developed, called the probabilistic sibling-

dependent tree Markov model, or

PSTMM [36,37]. This method not only

included dependencies between parent

and child, as in the hidden tree Markov

model (HTMM) [38], but also included

dependencies between consecutive

siblings. Efficient algorithms were accord-

ingly developed for the estimation of

parameters and for training the model.

This model was later improved for

computational complexity while also

maintaining the same level of perfor-

mance. In this new ordered tree Markov

model (OTMM) [39], instead of incor-

porating dependencies to both elder

sibling and parent from each node, only

one dependency was used, where the

eldest sibling depended only on the

parent, and each younger sibling only

depended on its older sibling.

In order to retrieve the learned patterns

directly from the model, a profile version

of these models, called ProfilePSTMM,

was subsequently developed to add inser-

tion and deletion states in addition to the

original match state. This model was

tested on binding affinity data of galectins,

which are known to recognize galactose

residues, but had not been analyzed for

longer patterns. In this experiment, a

dimer structure was found to appear

highly in the data, which was corroborated

by experimental results [40].

Conclusion

This tutorial briefly described several

different bioinformatic methods for gly-

come research. With the further develop-

ment of data resources and standards for

data exchange, we hope that even better

and newer methods to help understand the

functioning of the glycome can be devel-

oped.
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