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)e standard assumptions that underlie many conceptual and quantitative frameworks do not hold for many complex physical,
biological, and social systems. Complex systems science clarifies when and why such assumptions fail and provides alternative
frameworks for understanding the properties of complex systems. )is review introduces some of the basic principles of complex
systems science, including complexity profiles, the tradeoff between efficiency and adaptability, the necessity of matching the complexity
of systems to that of their environments, multiscale analysis, and evolutionary processes. Our focus is on the general properties of
systems as opposed to the modeling of specific dynamics; rather than provide a comprehensive review, we pedagogically describe a
conceptual and analytic approach for understanding and interacting with the complex systems of our world.)is paper assumes only a
high school mathematical and scientific background so that it may be accessible to academics in all fields, decision-makers in industry,
government, and philanthropy, and anyone who is interested in systems and society.

1. Introduction

How can we scientifically approach the study of complex
systems—physical, biological, and social? Empirical studies,
while useful, are by themselves insufficient, since all ex-
periments require a theoretical framework in which they can
be interpreted. While many such frameworks exist for
understanding particular components or aspects of systems,
the standard assumptions that underlie most quantitative
studies often do not hold for systems as a whole, resulting in
a mischaracterization of the causes and consequences of
large-scale behavior.

)is paper provides an introduction to complex systems
science, demonstrating a few of its applications and its
capacity to help us make more effective decisions in the
complex systems of our world. It focuses on some general
properties of complex systems, rather than on the modeling
of specific dynamics as in the subfields of dynamical systems,
agent-based modeling and cellular automata, network sci-
ence, and chaos theory. Section 2 introduces key concepts,
including complexity profiles, the tradeoff between efficiency
and adaptability, and the necessity of matching the

complexity of systems to that of their environments. Section
3 considers the analysis of complex systems, attending to the
oft-neglected question of when standard assumptions do
and—more importantly—do not apply. Section 4 discusses
principles for effectively intervening in complex systems
given that their full descriptions are often beyond the limits
of human comprehension. Section 5 provides further
reading. Section 6 concludes the work.

2. Basic Principles of Complex Systems Science

2.1. Why Complex Systems Science? Complex systems
science considers systems with many components. )ese
systems could be physical, biological, or social. Given this
diversity of systems, it may seem strange to study them all
under one framework. But while most scientific disciplines
tend to focus on the components themselves, complex sys-
tems science focuses on how the components within a system
are related to one another [1]. For instance, while most ac-
ademic disciplines would group the systems in Figure 1 by
column, complex systems science groups them by row.
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Systems may differ from each other not because of
differences in their parts but because of differences in how
these parts depend on and affect one another. For example,
steam and ice are composed of identical water molecules but,
due to differences in the interactions between the molecules,
have very different properties. Conversely, all gases share
many behaviors in common despite differences in their
constituent molecules.)e same holds for solids and liquids.
)e behaviors that distinguish solids from liquids from gases
are examples of emergence: they cannot be determined from
a system’s parts individually. Fluid turbulence, as one might
observe in a flowing river, is an example of how the rela-
tionships between parts can give rise to emergent large-scale
behaviors and patterns that are self-organized, meaning that
they arise not from some external or centralized control but
rather autonomously from the interactions between the

system components [3–7]. Other examples of self-organized
behaviors include the spontaneous formation of conversa-
tion groups at a party, the allocation of goods in a decen-
tralized economy, the evolution of ecosystems, and the
flocking of birds. Such large-scale behaviors and patterns
cannot be determined by examining each system part in
isolation. By instead considering general properties of sys-
tems as wholes, complex systems science provides an in-
terdisciplinary scientific framework that allows for the
discovery of new ideas, applications, and connections.

A full description of all the small-scale details of even
relatively simple systems is impossible; therefore, sound
analyses must describe only those properties of systems that
do not depend on all these details. )at such properties exist
is due to universality, a phenomenon that will be discussed in
Section 3. Statistical physics provides an underlying insight
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Figure 1: Each column contains three examples of systems consisting of the same components (from left to right: molecules, cells, and
people) but with different relations between them. Each row contains systems representing a certain kind of relationship between
components. For random systems, the behavior of each component is independent from the behavior of all other components. For coherent
systems, all components exhibit the same behavior; for example, the behavior (location, orientation, and velocity) of one part of the
cannonball completely determines the behavior of the other parts. Correlated systems lie between these two extremes, such that the
behaviors of the system’s components do depend on one another, but not so strongly that every component acts in the same way; for
example, the shape of one part of a snowflake is correlated with but does not completely determine the shape of the other parts. Implicit in
these descriptions is the necessity of specifying the set of behaviors under consideration, as discussed in Section 2.2. (Image source: [2]).
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that allows for the discovery of such properties: namely, that
while attempting to characterize the behavior of a particular
state of a system (e.g., a gas) may be entirely intractable,
characterizing the set of all possible states of the system may
not only be tractable but may also provide us with a model of
the relevant information (e.g., the pressure, temperature,
density, and compressibility). In other words, taking a step
back and considering the space of possible behaviors provides
a powerful analytical lens that can be applied not only to
physical systems but also to biological and social ones.

2.2. What Is Complexity? We define the complexity of a
behavior as equal to the length of its description.)e length
of a description of a particular system’s behavior depends
on the number of possible behaviors that system could
exhibit [8]. For example, a light bulb that has two possible
states—either on or off—can be described by a single bit: 0
or 1. Two bits can describe four different behaviors (00, 01,
10, or 11), three bits can describe eight behaviors, and so
on. Mathematically, we can write C � log2N, where C is
the complexity of a system and N is its number of possible
behaviors (technically, log2N is actually an upper bound
for the system’s complexity since if some behaviors are
more likely than others, the average length of the system’s
description can be reduced by using shorter descriptions
for the more common behaviors and longer descriptions
for the less common ones—lossless compression algo-
rithms rely on this logic), but for our purposes here, it is
sufficient to state that the greater the number of possible
behaviors, the greater the complexity.

It is important to note that one must carefully define the
space of possible behaviors. For instance, if we are interested
in a light bulb already in a socket, the light bulb has two
possible behaviors, as above, but if we are instead interested
in the complexity of building a light bulb, the space of
possible behaviors might include all of the ways in which its
parts could be arranged. As another example, consider
programming a computer to correctly answer a multiple-
choice question with four choices. At first glance, this task is
very simple: since there are four possible behaviors, only two
bits are required. Nonetheless, we have the sense that
programming a computer to score perfectly on a multiple-
choice test would be quite difficult. )is apparent paradox is
resolved, however, when we recognize that such a task is
difficult only because we do not a priori knowwhat questions
will be on the test, and thus, the true task is to be able to
correctly answer any multiple-choice question. )is task is
quite complex, given the large number of possible ways the
program could respond to a string of arbitrary multiple-
choice questions.

2.3. Complexity and Scale. Consider a human, and then
consider a gas containing the very samemolecules that are in
the human but in no particular arrangement. Which system
is more complex? )e gas possesses a greater number of
possible arrangements of the molecules (i.e., has more en-
tropy, or disorder) and thus would take longer to describe at
a microscopic level. However, when we think of a complex

system, we think of the behaviors arising from the ordered
arrangement of molecules in a human, not the behaviors
arising from the maximally disordered arrangement of
molecules in a gas. It therefore may be tempting to conclude
that complex systems are those with reduced disorder. But
the systems with the least disorder are those in which all
components exhibit the same behavior (coherent systems in
Figure 1), and such behavior is easy to describe and thus not
intuitively complex.

To resolve this apparent paradox, we must consider that
the length of a system’s description depends on the level of
detail used to describe it. )us, complexity depends on scale.
On a microscopic scale, it really is more difficult to describe
the positions and velocities of all the molecules of the gas
than it is to do the same for all the molecules of the human.
But at the scale of human perception, the behaviors of a gas
are determined by its temperature and pressure, while the
behaviors of a human remain quite complex. Entropy
corresponds to the amount of complexity at the smallest
scale, but characterizing a system requires understanding its
complexity across multiple scales. A system’s complexity
profile is a plot of the system’s complexity as a function of
scale [9]. In the examples below, scale will be taken to be
length, but fundamentally, the scale of a behavior is equal to
the number of coordinated components involved in the
behavior, for which physical length is a proxy. A gas is very
simple at the scale of human perception because at this scale,
only behaviors involving trillions of molecules are relevant,
and there are relatively few distinguishable behaviors of a gas
involving so many molecules.

As shown in Figure 2, random, coherent, and correlated
systems (see Figure 1) have qualitatively different complexity
profiles. Random systems have the most complexity at the
smallest scale (finest granularity/most detail), but the
amount of complexity rapidly drops off as the scale is in-
creased and the random behaviors of the individual com-
ponents are averaged out. A coherent system has the same
amount of complexity at small scales as it does at larger
scales because describing the overall behavior of the system
(e.g., the position and velocity of a cannonball) also describes
the behavior of all the components (e.g., the positions and
velocities of all the atoms). Note that complexity tends to
increase (or remain the same) as the scale decreases, since
looking at a system in more detail (while still including the
whole system in the description) tends to yield more in-
formation. For a correlated system, various behaviors occur
at various scales, and so the complexity gradually increases
as one examines the system in greater and greater detail. For
instance, from very far away, a human, being barely visible,
has very little complexity. As the level of detail is gradually
increased, the description will first include the overall po-
sition and velocity of the human and then the positions and
velocities of each limb, followed by the movement of hands,
fingers, facial expressions, as well as words that the human
may be saying. Continuing to greater levels of detail, the
organs and then tissues and patterns within the human brain
become relevant, and eventually so do the individual cells. At
scales smaller than that of a cell, complexity further increases
as one sees organelles (cellular substructures), followed by
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large molecules such as proteins and DNA, and then
eventually smaller molecules and individual atoms. At each
level, the length of the description grows longer. )is in-
credible multiscale structure with gradually increasing
complexity is a defining characteristic of complex systems.

2.4. Tradeoffs between Complexity and Scale. )e intuition
that complex systems require order is not unfounded: for
there to be complexity at larger scales, there must be be-
haviors involving the coordination of many smaller-scale
components. )is coordination suppresses complexity at
smaller scales because the behaviors of the smaller-scale
components are now limited by the interdependencies be-
tween them.)e tension between small-scale and large-scale
complexity can be made precise: given a fixed set of com-
ponents with a fixed set of potential individual behaviors, the
area under the complexity profile will be constant, regardless
of the interdependencies (or lack thereof) between the
components. More precisely, the sum of a system’s com-
plexity at each scale (i.e., the area under its complexity
profile) will equal the sum of each individual component’s
complexity [9]. )us, for any system, there is a fundamental
tradeoff between the number of behaviors a system can have
and the scale of those behaviors.

For instance, consider a factory consisting of many
workers [2]. )e output of the factory can be characterized
using a complexity profile (Figure 3). )e number of dif-
ferent types of goods that the factory can produce at a given
scale is a proxy for the factory’s complexity at that scale, with
the number of copies of the same type of good that the
factory can produce in a given amount of time being a proxy
for scale. )e fundamental tradeoff is evident in the fact that
if the factory wants to be able to churn out many copies of a
single type of good in a short amount of time, it will have to
coordinate all of its workers (perhaps having them work on
an assembly line), thereby reducing their individual freedom
to make many different kinds of goods. )e factory’s pro-
duction would then have low complexity but at a large scale
(e.g., churning out many identical Model-T Fords—“Any
customer can have a car painted any color that he wants so
long as it is black”). On the other hand, if the factory’s
employees work independently, they will be able to create

many different types of products, but none at scale. Of
course, a factory may be able to increase both the complexity
and scale of its production by adding new machinery or
more workers; the precise tradeoff between complexity and
scale applies only when considering a fixed set of compo-
nents with a fixed set of individual behaviors. A subtle point
to be made here is that introducing interactions between two
parts of a system may in some cases increase the set of
relevant individual behaviors of each part, thereby in-
creasing the total area under the complexity profile. For
example, if two people enter into communication with each
other, the communication itself (e.g., speech) may now be a
relevant behavior of each individual person that was not
there before.

A corollary of the tradeoff between complexity and scale
is the tradeoff between adaptability and efficiency [10–15].
Adaptability arises when there are many possible actions
happening in parallel that are mostly independent from one
another, i.e., when the system has high complexity. Effi-
ciency, on the other hand, arises when many parts of a
system are all working in concert, so that the system can
perform the task for which it was designed at the largest
possible scale. Due to the tradeoff between complexity and
scale, a system with more adaptability will have a complexity
profile with greater complexity but predominantly at smaller
scales, while a system with more efficiency will have a
complexity profile with lower complexity but extending to
larger scales. )us, a very efficient system will, due to its
necessarily lower complexity, not be as adaptable to un-
foreseen variations within itself or its environment, while a
very adaptable system, designed to handle all sorts of shocks,
will necessarily have to sacrifice some larger-scale behaviors.
)e Soviets thought they could have their cake and eat it, too:
they originally believed that their economy would outper-
form capitalist ones because capitalist economies have so
much waste related to multiple businesses competing to do
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Figure 3:)e complexity profile of a factory that can produce a large
number of copies of a few types of goods, and the complexity profile
of a factory that can produce many types of goods but not in large
numbers. )e number of copies of a good produced is a proxy for
scale since, given a fixed technology, mass production requires
larger-scale coordinated action in the factory (e.g., an assembly line).
)e number of different types of goods that can be produced at a
given scale is a proxy for the number of different possible behaviors
of the factory—and thus its complexity—at that scale.
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Figure 2: Representative complexity profiles for random, coherent,
and correlated systems (see Figure 1). Any given system may have
aspects of each at various scales.
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the same thing (Chapter 16 in [16]). It would be far more
efficient to coordinate all economic production. But in
creating such large-scale economic structures, lower-scale
complexity was sacrificed, resulting in a nonadaptive system.
Improperly regulated capitalist systems may also sacrifice
redundancy and adaptability for efficiency, resulting in, for
instance, excessive concentrations of market power, harmful
feedback loops, and herd-like behaviors [17–21].

Due to the tradeoff between complexity and scale, any
mechanism that creates larger-scale complexity—whether
market or government or otherwise—will necessarily reduce
individual complexity. )is is not to say that larger-scale
complexity is always harmful; it is often worth trading some
individual-level freedoms for larger-scale cooperation.
When, then, is complexity at a particular scale desirable?

2.5.Why Be Complex? A determination of when complexity
is desirable is provided by the Law of Requisite Variety [22]:
to be effective, a system must be at least as complex as the
environmental behaviors to which it must differentially
react. If a systemmust be able to provide a different response
to each of 100 environmental possibilities and the system has
only 10 possible actions, the system will not be effective. At
the very least, the system would need 100 possible actions,
one for each scenario it could encounter. ()e above con-
dition is necessary but of course not sufficient; a system with
sufficiently many actions may still not take the right actions
in the right circumstances.) Note that the environment to
which a system must react is itself also a system and will
sometimes be referred to as such.

Since complexity is defined only with respect to a par-
ticular scale, we can refine the Law of Requisite Variety: to be
effective, a system must match (or exceed) the complexity of
the environmental behaviors to which it must differentially
react at all scales for which these behaviors occur [9]. To
illustrate this multiscale version of the Law of Requisite
Variety, we consider military conflict [23] (see Figure 4).
Here, one military can be considered as the system, while the
other military is part of the environment with which the
systemmust interact. For two militaries of equal complexity,
i.e., with the same number of behaviors, but with one
military operating at a larger scale (e.g., two very tightly
controlled armies, but with one army larger than the other),
the larger-scale military will likely win. For two militaries of
equal scale but unequal complexity (e.g., two equally sized
and equally powered fleets, but with one being more ma-
neuverable than the other), the higher-complexity military
will likely win, since the high-complexity military has an
action for every action of the lower-complexity military but
not vice versa. When a military with high complexity at a
smaller scale (e.g., a guerrilla force) conflicts with a military
with larger-scale behavior but lower complexity (e.g., the US
army in Vietnam or the Soviet army in Afghanistan), the
terrain, which constrains the scale of the conflict, plays an
important role. In an open field, or in open waters, the
military that has more complexity at the larger scales is
favored, while in the jungle or in the mountains, higher
complexity at smaller scales is favored.

As another example, healthcare involves both small-scale
tasks with high overall complexity such as case management
and large-scale, lower-complexity tasks such as manufacturing
and delivering vaccines [24]. Vaccinations are lower com-
plexity but larger scale because essentially the same actions are
performed for nearly every patient. Large-scale top-down
organizations and initiatives are suited for large-scale, lower-
complexity tasks, but tasks like case management require
health systems with a high degree of small-scale (i.e., local)
complexity.

)e eurozone provides a potential illustration of a
multiscale complexity mismatch. Fiscal policy is made
predominantly at the scale of individual countries and thus
has a higher complexity at the country scale but relatively
little complexity at the scale of the entire eurozone, while
monetary policy is made at the scale of the entire eurozone
and thus has some complexity at the scale of the eurozone
but lacks the ability to vary (i.e., lacks complexity) at the scale
of individual countries. Many have argued that economic
difficulties within the eurozone have arisen because this
mismatch has precluded effective interactions between fiscal
and monetary policy [25–29].

Problems arise not from too much or too little com-
plexity (at any scale) per se but rather from mismatches
between the complexities of a task to be performed and the
complexities of the system performing that task. (Inciden-
tally, human emotions appear to reflect this principle: we are
bored when our environment is too simple and over-
whelmed when it is too complex [30].) Note that the system
in one scenario may be the task/environment in another; for
instance, the same complexity that helps a system interact
with its environment may prevent its effective management
by other systems. In none of the above examples have the
complexity profiles been precisely calculated, nor have scales
been precisely defined. Instead, proxies for scale are used and
estimated comparisons of complexity made. Such an ap-
proach cannot yield precise results (indeed, no approach
can, given the complexity a full description of such systems
would require), but additional precision is not needed when
even the approximate analysis reveals large mismatches in
complexity. (To remedy the diagnosed mismatches, more
detailed analyses may be required.) While it may be
tempting to attribute the problems arising from a complexity
mismatch to particular proximate causes and chains of
events, problems of one form or another will be inevitable
unless the underlying mismatch is addressed.

2.6. Subdivided Systems. Even if the complexity of the
system matches that of its environment at the appropriate
scales, there is still the possibility of a complexity mismatch.
Consider two pairs of friends—four people total, each of
whom can lift 100 pounds—and consider two 200-pound
couches that need to be moved. Furthermore, assume that
each person is able to coordinate with her friend but not with
either of the other two people. Overall then, the system of
people has sufficient complexity at the appropriate scales to
move both couches since each pair of friends can lift one of
the 200-pound couches. However, were one person from
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each pair of friends to be assigned to each couch, they would
not be able to lift the couches because the two people lifting
each couch would not belong to the same pair of friends and
thus would not be able to coordinate their actions. )e
problem here is that while the pairs of friends possess
enough overall complexity at the right scales to lift the
couches, the subdivision within the system of friends is not
matched to the natural subdivision within the system of
couches.)emismatch in complexity can be seen if we focus
our attention on just a single couch: while the couch requires
coordinated action at the scale of 200 pounds, the two people
lifting it are capable only of two independent actions, each at
the scale of 100 pounds.

)e way in which academic departments are organized
provides a more realistic example of the potential of sub-
division mismatch. Academia has multiple levels of subdi-
vision (departments, subfields, etc.) in order to organize
knowledge and coordinate people, resulting in a high overall
degree of complexity across multiple scales, where scale
could refer to either the number of coordinated people or the
amount of coordinated knowledge, depending on which
aspect of the academic system is under consideration.
Similarly, there are multiple levels of natural subdivision in
the set of problems that academia can potentially address,

with each subdivision of problems requiring particular types
of coordinated knowledge and effort in order to be solved.
Academia’s complexity across multiple scales allows it to
effectively work on many of these problems. However, there
may exist problems that academia, despite having sufficient
overall multiscale complexity, is nonetheless unable to solve
because the subdivisions within the problem do not match
the subdivisions within academia. )e increase in inter-
disciplinary centers and initiatives over the past few decades
suggests the perception of such a mismatch; however, the
structure of the academic system as a whole may still hinder
progress on problems that do not fall neatly within a dis-
cipline or subdiscipline [31–36].

)e above examples provide an illustration of the
principle that in order for a system to differentially react to a
certain set of behaviors in its environment, not only must the
system as a whole have at least as much complexity at all
scales as this set of environmental behaviors (as described in
Section 2.5.), but also each subset of the system must have at
least as much complexity at all scales as the environmental
behaviors corresponding to that subset. A good rule of
thumb for applying this principle is that decisions con-
cerning independent parts or aspects of a system should be
able to be made independently, while decisions concerning
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Figure 4: Schematic complexity profiles of militaries in conflict. (a) If two armies are operating with the same number of possible behaviors
but at different scales, the larger-scale one is favored. (b) If two armies are operating at the same scale but with different numbers of possible
behaviors, the higher-complexity one is favored. (c) If two armies are operating at different scales and with different numbers of possible
behaviors, which one is favored depends on the terrain (see text). Note that these profiles are simplified to highlight the key concepts; actual
militaries operate at multiple scales. More generally, (a) and (b) depict conflicts in which one army has at least as much complexity as the
other at every scale.
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dependent parts of the system should be made dependently.
It follows that the organizations that make such decisions
should be subdivided accordingly, so that their subdivisions
match the natural divisions in the systems with which they
interact. )e subdivisions present in the human brain and
the analysis of subdivisions in neural networks more gen-
erally (Chapters 2.4-2.5 in [1]) demonstrate how systems
that are subdivided so as tomatch the natural subdivisions in
their environments outperform those with more internal
connectivity.

2.7. Hierarchies. A common way in which systems are or-
ganized is through hierarchies. In an idealized hierarchy,
there are no lateral connections: any decision that involves
multiple components of the hierarchy must pass through a
common node under whose control these components all
(directly or indirectly) lie. )e complexity profile of such a
hierarchy depends on the rigidity of the control structure
(Figure 5). At one extreme, every decision, no matter how
large or small, is made by those at the top of the hierarchy.
)is hierarchy has the same amount of complexity across all
its scales: namely, the complexity of whatever decisions are
being made at the top. At the other extreme, there is no
communication within the hierarchy, and every individual
acts independently. )is hierarchy has very little complexity
beyond the individual level. Between these two extremes is a
typical hierarchy, in which different decisions are made at
different levels.

No type of hierarchy is inherently better than any other.
For a particular environment, the best hierarchy is one for
which the complexity profile matches that of the tasks
needed to be performed. A tightly controlled (top-heavy)
hierarchy is not well suited to environments in which there is
a lot of variation in the systems with which the lower levels of
the hierarchy must interact; neither is a very loosely con-
trolled hierarchy well suited to environments that require
large-scale coordinated action. For example, centralizing too
much power within the US governance system at the federal
(as opposed to the local or state) level would not allow for
sufficient smaller-scale complexity to match the variation
among locales; too decentralized a governance system would
not allow for sufficient larger-scale complexity to engage
with problems that require nationally coordinated re-
sponses. Assigning decisions to higher levels in hierarchies
allows for more efficiency and scale but less adaptability and
variation.

We should also consider not just the overall complexity
profile of governance systems but how well the subdivisions
in governance systems match those within their territories
(Section 2.6.). Metropolitan areas are in some ways more
similar to one another than they are to the rural areas of their
respective states. So while dividing the US into 50 states
provides substantial lower-scale governmental complexity,
this complexity is not necessarily well matched to natural
urban-rural divides. To the extent that such a mismatch
exists, there may be issues currently handled at the state level
that would be better handled at the local level, thereby
allowing for different policies in urban and rural areas (and

likewise, perhaps some of the powers that some argue should
be devolved from the federal to the state level should in fact
be devolved to the local level).

It is important to distinguish between the complexity of a
hierarchy and the complexity of the decisions that the people
within the hierarchy are capable of making. For instance,
one could design a tightly controlled hierarchy that could
take a large number of large-scale actions (i.e., high com-
plexity at its largest scale), but since the decision-making
abilities of even the most capable humans are of finite
complexity, the individuals at the top may be fundamentally
unable to correctly choose from among these actions. )is
brings us to an important limitation of hierarchies: the
complexity of the decisions concerning the largest-scale
behaviors of a hierarchy—the behaviors involving the entire
organization—is limited by the complexity of the group of
people at the top [2]. )us, a hierarchy will necessarily fail
when the complexity of matching its largest-scale behaviors
to those of its environment is higher than the complexity of
decision-making that is achievable by any individual or
committee. (Note that the complexity of deciding in which
behaviors of a system should correspond to which behaviors
of its environment is generally much greater than the
complexity of either the system or the environment alone:
for example, if both the system and environment have 10
possible behaviors, the system has enough complexity to
match the environment, but properly deciding which be-
haviors of the system should correspond to which envi-
ronmental conditions requires correctly choosing one
option out of a space of 10 factorial or 3,628,800 possibil-
ities.) )e failure of command economies provides a stark
example: the allocation of resources and labor is too complex
a problem for any one person or group of people to un-
derstand. Markets allocate resources via a more networked
system: decisions regarding how to allocate resources are
made without any individual making them, just as decisions
are made in the human brain without any neuron making
them. (Whether or not these market allocations are desirable
depends in part on the way in which the market is structured
and regulated.)
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Figure 5: Complexity profiles of two hierarchies, each with the
same number of people. Here, the scale is the number of coor-
dinatedman-hours. In one hierarchy, all decisions, regardless of the
scale, are made by a single person, while in the other, different
decisions are made at various levels of the hierarchy.
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We began by considering idealized hierarchies with only
vertical connections, but lateral connections provide another
mechanism for enabling larger-scale behaviors. For instance,
cities can interact with one another (rather than interacting
only with their state and national governments) in order to
copy good policies and learn from each other’s mistakes.
)rough these sorts of evolutionary processes (described
further in Section 4), large-scale decisions (large-scale because
policies may be copied by multiple cities) that are more
complex than any individual component can be made. Such
lateral connections can exist within a hierarchical framework in
which the top of the hierarchy (in this example, the national
government) maintains significant control, or they can exist
outside of a strictly hierarchical structure, as in the human
brain. Furthermore, these lateral connections can vary in
strength. Overly strong connections lead to herd-like behaviors
with insufficient smaller-scale variation, such as groupthink
[37–39] (no system is exempt from the tradeoff described in
Section 2.4.), while overly weak connections result in mostly
independent behavior with little coordination.

3. Analyzing Complex Systems

)e previous section has examined some of the general
properties of systems with many components. But how do
we study particular systems? How do we analyze data from
complex systems, and how do we choose which data to
analyze?

3.1. How Do We Understand Any System? In a sense, it is
surprising that we can understand any macroscopic system
at all, as even a very simple mechanical system has trillions
upon trillions of molecules. We are able to understand such
systems because they possess a separation of scales [40],
meaning that the macroscopic behavior we are interested in
occurs at a far larger scale than the behavior of the individual
molecules, with not much behavior occurring in between
these two scales (see Figure 6). )is separation allows us to
treat the macroscopic and microscopic behaviors separately:
for mechanical systems, we treat the macroscopic behavior
explicitly with Newtonian mechanics, while the microscopic
behavior is considered in aggregate using thermodynamics.

More generally, the approach described above is an
example of a mean-field theory [41], in which the average
behaviors of a system’s components are explicitly modeled
and the deviations of the individual components from this
average are treated as statistically independent random
fluctuations. )is approach works very well for systems such
as computers, cars, airplanes, and buildings, in which the
motions of individual molecules are—apart from some
mostly uncorrelated fluctuations—well described by the
motion of the piece of material to which they belong. Mean-
field assumptions are also often employed in analyses of
biological, social, and economic systems; these assumptions
work well in many cases, but, as we will see, they are not
always appropriate for complex systems. It is important,
therefore, to determine under what conditions mean-field
theory holds.

3.2.WhenMean-Field7eory BreaksDown. )e systems for
which mean-field theory applies exhibit large-scale be-
haviors that are the average of the behaviors of their
components. )ey must possess a separation of scales,
which arises when the statistical fluctuations of their
components are sufficiently independent from one an-
other above a certain scale. Mean-field theory may hold
even in the presence of strong interactions, so long as the
effect of those strong interactions can be captured by the
average behavior of the system—that is, so long as each
component of the system can be modeled as if it were
interacting with the average (i.e., mean field) of the sys-
tem. For example, the large-scale motion of solids is well
described by mean-field theory, even though the mole-
cules in a solid interact with one another quite strongly,
because the main effect of these interactions is to keep
each molecule at a certain distance and orientation from
the average location (center of mass) of the solid. Like-
wise, under some (but certainly not all) conditions,
economic markets can be effectively described by mod-
eling each market actor as interacting with the aggregate
forces of supply and demand rather than with other in-
dividual market actors.

However, when there are sufficiently strong correla-
tions between the components of the system, i.e., when
the interactions between a component of the system and a
specific set of other components (as opposed to its general
interaction with the rest of the system) cannot be
neglected, mean-field theory will break down. )ese
systems will instead exhibit large-scale behaviors that
arise not solely from the properties of individual com-
ponents but also from the relationships between com-
ponents. For example, while the behavior of a muscle can
be roughly understood from the behavior of an individual
muscle cell, the behavior of the human brain is funda-
mentally different from that of individual neurons, be-
cause cognitive behaviors are determined largely by
variations in the synapses between neurons. Similarly, the
complex ecological behaviors of a forest cannot be de-
termined by the behaviors of its constituent organisms in
isolation.

Because their small-scale random occurrences are not
statistically independent, complex systems often exhibit
large-scale fluctuations not predicted by mean-field theory,
such as forest fires, viral content on social media, and crashes
in economic markets. Sometimes, these large-scale fluctu-
ations are adaptive: they enable a system to collectively
respond to small inputs [42]. For instance, humans respond
strongly to minor disturbances in the density of air, such as
the sound of their own names. However, some large-scale
fluctuations pose systemic risks.

3.3. Fat-Tailed Distributions and Systemic Risk. When the
components of a system are independent from one another
above a certain scale, then at much larger scales, the mag-
nitudes of the fluctuations of the system follow a normal
distribution (bell curve), for which the mean and standard
deviation are well defined and for which events many
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standard deviations above the mean are astronomically im-
probable. Interdependencies, however, can lead to a distri-
bution of fluctuations in which the probability of an extreme
event, while still small, is not astronomically so. Such dis-
tributions are characterized as fat-tailed—see Figure 7. For
example, while human height follows a thin-tailed distribu-
tion, with no record of anyone over twice as tall as the average
human, human wealth—due to the complex economic in-
teractions between individuals—follows a fat-tailed distri-
bution, with multiple individuals deviating from the average
by factors of more than one million [43].

One danger of interdependencies is that they may make
systems appear more stable in the short term by reducing the
extent of small-scale fluctuations, while actually increasing the
probability of catastrophic failure [44–47]. )is danger is
compounded by the fact that when underlying probability
distributions have fat tails (a situation made more likely by
interdependencies), standard statistical methods often break
down, leading to potentially severe underestimates of the
probabilities of extreme events [48]. As a thought experiment,
imagine 100 ladders, each with a 1/10 probability of falling. If
the ladders are independent from one another, the probability
that all of them fall is astronomically low (literally so: there is
about a 1020 times higher chance of randomly selecting a
particular atom out of all of the atoms in the known universe).
If we tie all the ladders together, we will havemade them safer,
in the sense that the probability of any individual ladder
falling will be much smaller, but we will have also created a
nonnegligible chance that all of the ladders might fall down
together. Other examples include the interconnectedness of
our financial systems resulting in the possibility of global
market crashes [49–54] and the interconnectedness of travel
routes increasing the probability of pandemics such as the
Spanish flu and COVID-19 [55, 56]. When such crises do
occur, they are often attributed to proximate causes or chains
of events, and measures are then implemented to ensure that
those particular chains of events will not occur again. But
unless the underlying systemic instabilities are addressed,
another crisis is bound to happen sooner or later, even if its
precise form cannot be predicted.

3.4. Understanding Complex Systems. Because it is usually
easier to collect data regarding components of a system
than it is to collect data regarding interactions between
components, studies often fail to capture the information
relevant to complex systems, since complex large-scale
behaviors critically depend on such interactions. Fur-
thermore, as discussed in Section 3.3., data analysis can
severely underestimate the probability of extreme events
(tail risk). Finally, analyses often (implicitly) assume lin-
earity, i.e., they assume that the total impact of a set of
factors is equal to the sum of the impacts of each individual
factor, an assumption that often breaks down for complex
systems, which may possess feedback loops, abrupt tran-
sitions (tipping points), and other highly nonlinear be-
haviors [57–64].

How can we understand the systems for which these
standard approaches do not apply? Our understanding of
all systems with many components depends on universality
[65], i.e., the existence of large-scale behaviors that do not
depend on the microscopic details. )e standard ap-
proaches are predicated on the assumption of sufficient
independence between components, which allows large-
scale behaviors to be determined without a full accounting
of the system’s details via mean-field theory and/or normal
distributions. But mean-field theory is just one example of
universality.

Sound is another example: all materials, regardless of their
composition, allow for the propagation of sound waves. Sound
behaves so similarly in all materials because at the length scales
relevant to sound waves, which are far larger than the sizes of
individual atoms and molecules, the effect of the microscopic
parameters is merely to set the speed of the sound. Note that
sound waves cannot be understood as a property of the average
behavior—in this case, average density—of amaterial, since it is
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Figure 6: A complexity profile of a system with a separation of
scales. A separation of scales implies that the behaviors occurring
below a certain scale (s0 in the above figure) are at larger scales
mostly independent from one another, and that therefore, at these
larger scales, only the average effects of the small-scale behaviors
are relevant.
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Figure 7: A normal distribution (thin-tailed) and a distribution
with a power-law decay (fat-tailed). )e fat-tailed distribution may
appear more stable, due to the lower probability of small-scale
fluctuations and the fact that samples from the distributionmay not
contain any extreme events. However, sooner or later, a fat-tailed
distribution will produce an extreme event, while one could wait
thousands of lifetimes of the universe before a normal distribution
produces a similarly extreme event. Note that the axes of this graph
are truncated; the illustrated fat-tailed distribution can, with small
but nonnegligible probability (0.04%), produce events with a scale
of one million or more.
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precisely the systematic correlations in the deviations from that
average that give rise to sound. Nor is sound best understood
by focusing on the small-scale details of atomic motion: sci-
entists understood sound even before they learned what atoms
are. )e key to understanding sound waves is to recognize that
they have a multiscale structure—with larger-scale fluctuations
corresponding to lower frequencies and smaller-scale fluctu-
ations corresponding to higher frequencies—and to model
them accordingly.

Lim et al. apply this approach to studying ethnic violence
[66]. )ey built a predictive model to analyze where ethnic
violence has the potential to occur and applied their model
to India and to what was Yugoslavia. Ethnic violence has
many causes, but rather than focusing on specific, culturally
dependent mechanisms or on the average properties of
regions, such as demographic or economic statistics, the
authors instead considered the multiscale patterns in how
ethnic groups were geographically distributed (Figure 8).
)ey found that ethnic violence did not occur when the
ethnic groups were either well mixed or well separated but
rather occurred only when ethnic groups separated into
geographic patches (this separation falls into the same
universality class as the separation of oil and water), with the
violence most likely to occur for geographic patches of a
particular size. )is analysis implies that ethnic violence can
be prevented by the use of well-placed political boundaries,
as in Switzerland [67]. Although not explicitly included in
the analysis, specific details of a region are relevant insofar as
they are either a cause or an effect (or both) of the patch
size—for instance, animosity between two ethnic groups,
though not explicitly considered, may be a cause as well as a
consequence of geographic segregation [68].

Understanding all the details of any complex system is
impossible, just as it is for most systems with a separation of
scales; there is just too much complexity at the smallest scale.
However, unlike the behaviors of systems with a separation
of scales, the important large-scale behaviors of complex
systems are not simply the average of their small-scale be-
haviors.)e interdependencies at multiple scales canmake it
difficult or impossible to precisely understand how small-
scale behaviors give rise to larger-scale ones, but even for
complex systems, there is much less complexity at the larger
scales than there is at the smaller scales. )us, there will
always be large-scale behaviors that do not depend on most
of the system’s details (see Figure 9). )e key to analyzing
these behaviors is to find the appropriate mathematical (or
conceptual) description, i.e., to identify variables that de-
scribe the relevant space of possible (large-scale) behaviors,
which for complex systems is neither a simple average nor a
full account of all the details. For additional examples of this
multiscale approach, see [40].

4. Complex Systems and Uncertainty

Although the principles discussed throughout Sections 2 and
3 help us recognize the fundamental properties and limi-
tations of systems, our understanding of most complex
systems will inevitably be imperfect. And regardless of how
well considered a plan is, a truly complex system will present

elements that were not considered ahead of time. It should
also be noted that in a functional system with a high degree
of complexity, the potential positive impact of a change is
generally much smaller than its potential negative impact.
For example, a small change to the wiring in a computer is
unlikely to dramatically improve the computer’s perfor-
mance, but it could cause the computer to crash. Airplanes
are another example. )is phenomenon is a consequence of
the fact that, by definition, a high degree of complexity
implies that there are many system configurations that will
not work for every one configuration that will.

Given the absence of perfect knowledge, how can the
success of systems we design or are part of be assured?
While the success of many systems rests on the assumption
that good decisions will be made, some systems do not
depend on individual understanding and can perform well
in spite of the fallibility of decision-makers (whether due to
corruption, subconscious bias, or the fundamental limi-
tations of human minds). )e study of complex systems
approaches this observation scientifically by (implicitly or
explicitly) considering the decision-makers themselves as
part of the system and of limited complexity/decision-
making ability. )e question thus becomes: how do we
design systems that exceed the complexity of the decision-
makers within them?

4.1. Evolutionary Processes. While uncertainty makes most
systems weaker, some systems benefit from uncertainty and
variability [69–72]. )e common characteristic of these
systems is their embodiment of some sort of evolutionary
process, i.e., a process in which successful changes are copied
(and further modified) while unsuccessful changes are not.
)e classic evolutionary processes are biological: due to
variability introduced by randommutations, organisms with
the complexity and scale of humans evolved from single-
celled organisms. Furthermore, humans themselves have the
property of benefiting from exposure to random shocks
(provided the shocks are not too strong). Immune system
performance is improved by early exposure to nonlethal
pathogens [73, 74]; muscles and bones are strengthened by
microtears and microfractures, respectively; we learn by
exposure to new information and problem-solving; and our
psychologies are strengthened by exposure to adversity,
provided the adversity is not too severe [75, 76].

Competitive market economies provide another exam-
ple of how systems can thrive on uncertainty. Due to our
ignorance of which will succeed, many potential innovations
and businesses must be created and improved upon in
parallel, the successful ones expanding and the unsuccessful
ones failing. )e successful among these can then be im-
proved upon in the same manner—with many approaches
being applied at once—and so on. (However, without ef-
fectively regulated multiscale cooperative frameworks—see
Section 4.2.—large-scale parts of the economic system may
optimize for the wrong goals, settling into harmful societal
equilibria [77, 78].)

Likewise, the internal processes of large organizations
may follow an evolutionary pattern in which small parts of
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the organization can fail and thus be improved upon; without
such flexibility, the entire organization may fail at once in the
face of a changing internal or external environment. In some
cases, the failure of the entire organization makes room for
more effective organizations to take its place (assuming the
economy is sufficiently decentralized and competitive so that
the organization in question is not “too big to fail”). )e
collapse of government is generally not one of those cases,
however [79], so it is especially important that governance
systems possess the flexibility to internally benefit from
randomness and uncertainty. Perhaps counterintuitively, not
allowing small failures to occur may weaken systems in the
long run by halting evolutionary processes and by creating
interdependencies that lead to systemic risk (Section 3.3.).

In order to thrive in uncertainty and exceed the com-
plexity of individual decision-making, systems can incor-
porate evolutionary processes so that they, even if very
limited at first, will naturally improve over time. )e first
step is to allow for enough variation in the system, so that the
system can explore the space of possibilities. Since a large
amount of variation means a lot of complexity and com-
plexity trades off with scale (Section 2.4.), such variation
must occur at smaller scales (in both space and time). For
example, in the case of governance, enabling each city to
experiment independently allows for many plans to be tried
out in parallel and to be iterated upon. )e opposite strategy
would be to enact one national plan, the effects of which will
not be able to be comparatively evaluated.
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)e second step is to allow for a means of communi-
cation between various parts of the system so that successful
choices are adopted elsewhere and built upon (e.g., cities
copying the successful practices of other cities). Plans will
always have unintended consequences; the key is to allow
unintended consequences to work for rather than against the
system as a whole. Systems can explicitly design only systems
of lesser complexity since an explicit design is itself a be-
havior of the first system. However, systems that evolve over
time can become more complex than their designers. )e
desire for direct control must therefore be relinquished in
order to allow complexity to autonomously increase over
time.

4.2. Multiscale Evolutionary Processes. Successful evolu-
tionary processes generally do not consist of unbridled
competition but rather contain both competition and co-
operation, each occurring at multiple scales [80]. For ex-
ample, cells cooperate within multicellular organisms in
order to more effectively compete with other organisms, and
organisms cooperate both within and between species in
order to more effectively compete with other species.
Competition at larger scales naturally breeds cooperation at
smaller scales because in order for a group to effectively
compete with another group (large-scale competition), there
must be cooperation within the group. Cooperation can also
breed competition since sometimes the best way for the
group to achieve its shared goals is to facilitate some healthy
competition among its subgroups. )ose subgroups must
foster cooperation within themselves in order to effectively
compete with each other, and they too may be able to in-
crease the effectiveness of their internal cooperation by
introducing some healthy competition among their mem-
bers (Figure 10 provides an example). If these members are
themselves groups, the process of competition begetting
cooperation that begets more competition can continue to
even smaller scales. )is process can work in reverse as well:
in order for individuals to compete more effectively, they

may cooperate with each other to form groups, which in turn
may cooperate to form even larger groups, and so on.)us, a
complex network of cooperation and competition among
groups of various sizes (scales) can naturally evolve.

In order to promote effective group cooperation, com-
petition must be properly structured. A soccer team in which
the players compete with their own team members to score
goals will not be effective, but one in which the players
compete for the title of the most fit may be. )e framework
in which competition occurs must be structured so that the
competitors are incentivized to take actions that are net good
for the group; otherwise, a kind of tragedy-of-the-commons
situation occurs. )e potential for competition to go awry
highlights the importance of having a multiscale structure
with competition occurring on multiple levels, rather than
having everyone in the system compete with everyone else.
With the multiscale structure, groups with unhealthy evo-
lutionary dynamics are selected against, while groups with a
healthy mix of competition and cooperation that benefits the
entire group are selected for. )ere is evidence that the
geographic nature of evolution—in which organisms evolve
in somewhat separated environments and mean-field theory
does not apply—has resulted in precisely this multiscale
structure and has therefore allowed for the evolution of
genuine (e.g., not reciprocal) altruistic behavior [81, 82].
Likewise, market economic systems are successful not be-
cause free markets produce optimal outcomes (real-world
markets often sharply deviate from the assumptions of free-
market models, and externalities abound) but rather be-
cause, at their best, appropriately regulated market systems
allow for multiscale evolutionary processes to naturally arise,
resulting in innovations and complexity far beyond what
anyone could have imagined, let alone designed.

5. Further Reading

Complex systems science, also known as complexity science,
contains many subfields. One starting point for exploring
complex systems more broadly is this clickable map [83] of
complex systems science and related fields. Encyclopedias
[84, 85] and textbooks [1, 86–90] provide a range of per-
spectives. In addition to the topics and references discussed
throughout this introduction, we provide a selection among
the many works applying complex systems science to social
systems and policy [91–105] and management [106–109].
Complex systems science includes, among others, the fields
of system dynamics [110], evolutionary dynamics
[4, 111, 112], network science [113], fractals and scaling
[114–117], urban science [118], pattern formation [119, 120],
econophysics [121], and nonlinear dynamics and chaos
[122, 123]. Book series on complex systems topics include
the Santa Fe Institute Series andUnifying7emes in Complex
Systems.

6. Summary

Systems withmany components often exhibit emergent large-
scale behaviors that cannot be directly inferred from the
behaviors of their components. However, an early insight of
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Figure 9: A representative complexity profile of a complex system.
Understanding all the details (i.e., all of the small-scale behaviors) is
impossible and unnecessary; the most important information is
contained in the large-scale behaviors. However, for systems for
which mean-field theory does not apply, characterizing these be-
haviors will involve more than a simple average.
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statistical physics is that in spite of the impossibility of de-
scribing the details of trillions of molecules, the macroscopic
properties of the molecules can be well understood by ana-
lyzing their space of possible behaviors, rather than their
specific configurations and motions. While many macro-
scopic properties can be described in terms of the average
behaviors of the molecules, the macroscopic properties of
certain physical phenomena, such as phase transitions, cannot
be understood by averaging over system components; ac-
cordingly, physicists were forced to develop new, multiscale
methods. Likewise, while standard statistical methods—which
infer the average properties of a system’s many compo-
nents—can successfully model some biological and social
systems, they fail for others, sometimes spectacularly so.

Taking a systemic view by considering the space of
possible behaviors can yield insights that cannot be gleaned by
considering only the proximate causes and effects of par-
ticular problems or crises. A system’s complexity—which
depends on its number of distinct potential behaviors (i.e., on
the space of possibilities)—is a starting point from which to
get a handle on its large-scale properties, in the same way that
entropy is the starting point for statistical physics. Because the
number of distinct behaviors of a system depends on the level
of detail (behaviors that appear the same at lower resolution
may be distinct at higher resolution), complexity depends on
scale. Interdependencies between components reduce com-
plexity at smaller scales by restricting the freedom of indi-
vidual components while creating complexity at larger scales
by enabling behaviors that involve multiple components
working together. )us, for systems that consist of the same
components, there is a fundamental tradeoff between the
number of behaviors at smaller and larger scales.)is tradeoff
among scales is related to the tradeoff between a system’s
adaptability, which depends on the variety of different re-
sponses it has to internal and external disturbances, and its
efficiency, which depends on its operating scale. )ere is no
ideal scale at which a system should possess complexity;
rather, the most effective systems are those that at each scale
match the complexity of their environments.

When analyzing data or creating organizational struc-
tures, standard methods fail when they underestimate the

importance of interdependencies and the complexity that
arises from these interdependencies. To some extent, these
problems can be mitigated by matching the data analysis or
organizational structure to natural divisions within the
system of interest. Since complex systems are those for
which behaviors occur over multiple scales, successful or-
ganizations and analyses for complex systems must also be
multiscale in nature. However, even when armed with all the
proper information and tools, human understanding of
most complex systems will inevitably fall short, with un-
predictability being the best prediction. To confront this
reality, we must design systems that are robust to the ig-
norance of their designers and that, like evolution, are
strengthened rather than weakened by unpredictability.
Such systems are flexible with multiple processes occurring
in parallel; these processes may compete with one another
within a multiscale cooperative framework such that ef-
fective practices are replicated. Only these systems—that
grow in complexity over time from trial and error and the
input of many—exhibit the necessary complexity to solve
problems that exceed the limits of human comprehension.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant no. 1122374 and by the Hertz Foundation. )e
authors thank Uyi Stewart for discussions that led to the
writing of this paper, Gwendolyn Towers for editing early
drafts of the manuscript, and Robi Bhattacharjee for helpful
discussions regarding complexity and scale.

References

[1] Y. Bar-Yam, Dynamics of Complex Systems, Addison-Wes-
ley, Boston, MA, USA, 1997.

[2] Y. Bar-Yam, “Complexity rising: from human beings to
human civilization, a complexity profile,” in Encyclopedia of

Team collaboration
enables the sport

to exist and compete

Competition
between sports

Competition between sports
for fan attention and money
increases team collaboration

Collaboration of
players enables

teams to compete

Competition between teams
causes selection of teams

 with collaborating players

Collaboration
between teams

Competition
between teams

Collaboration
between players

Competition
between players

Figure 10: An illustration fromChapter 7 in [16], showing the interplay between cooperation and competition in the context of sports teams
and leagues.

Complexity 13



Life Support Systems, R. B. Pimentel, R. C. Elliot, R. Holton,
P. Lorenzano, and H. Arlt, Eds., Vol. 1, EOLSS UNESCO
Publishers, Oxford, UK, 2002.

[3] P. W. Anderson, “More is different,” Science, vol. 177,
no. 4047, pp. 393–396, 1972.

[4] S. A. Kauffman,7e Origins of Order: Self-Organization and
Selection in Evolution, Oxford University Press, New York,
NY, USA, 1993.

[5] M. Eigen, “Selforganization of matter and the evolution of
biological macromolecules,” Die Naturwissenschaften,
vol. 58, no. 10, pp. 465–523, 1971.

[6] M. C. Cross and P. C. Hohenberg, “Pattern formation
outside of equilibrium,” Reviews of Modern Physics, vol. 65,
no. 3, pp. 851–1112, 1993.

[7] H. Haken, Information and Self-Organization: AMacroscopic
Approach to Complex Systems, Springer Science & Business
Media, Berlin, Germany, 2006.

[8] T. M. Cover and J. A. )omas, Elements of Information
7eory, John Wiley & Sons, Hoboken, NJ, USA, 2012.

[9] B. Allen, B. Stacey, and Y. Bar-Yam, “Multiscale information
theory and the marginal utility of information,” Entropy,
vol. 19, no. 6, p. 273, 2017.

[10] R. E. Ulanowicz, “)e balance between adaptability and
adaptation,” BioSystems, vol. 64, no. 1–3, pp. 13–22, 2002.

[11] J. Korhonen and T. P. Seager, “Beyond eco-efficiency: a
resilience perspective,” Business Strategy and the Environ-
ment, vol. 17, no. 7, pp. 411–419, 2008.

[12] R. E. Ulanowicz, “)e dual nature of ecosystem dynamics,”
Ecological Modelling, vol. 220, no. 16, pp. 1886–1892, 2009.

[13] C. Weigelt and M. Sarkar, “Performance implications of

outsourcing for technological innovations: managing the
efficiency and adaptability trade-off,” Strategic Management
Journal, vol. 33, no. 2, pp. 189–216, 2012.

[14] M. Pizzol, M. Scotti, andM.)omsen, “Network analysis as a
tool for assessing environmental sustainability: applying the
ecosystem perspective to a Danish Water Management

System,” Journal of Environmental Management, vol. 118,
pp. 21–31, 2013.

[15] V. Panyam, H. Huang, B. Pinte, K. Davis, and A. Layton,

“Bio-inspired design for robust power networks,” in Pro-
ceedings of the 2019 IEEE Texas Power and Energy Conference
(TPEC), IEEE, College Station, TX, USA, pp. 1–6, February
2019.

[16] Y. Bar-Yam,Making7ingsWork: Solving Complex Problems
in a Complex World, Knowledge Press, Manchester, UK,
2004.

[17] J. B. De Long, A. Shleifer, L. H. Summers, and
R. J. Waldmann, “Positive feedback investment strategies
and destabilizing rational speculation,” 7e Journal of Fi-

nance, vol. 45, no. 2, pp. 379–395, 1990.
[18] T. Lux and M. Marchesi, “Scaling and criticality in a sto-

chastic multi-agent model of a financial market,” Nature,
vol. 397, no. 6719, pp. 498–500, 1999.

[19] B. Lietaer, R. E. Ulanowicz, S. J. Goerner, and N. McLaren,

“Is our monetary structure a systemic cause for financial
instability? Evidence and remedies from nature,” Journal of
Futures Studies, vol. 14, pp. 89–108, 2010.

[20] J.-P. Bouchaud, “Crises and collective socio-economic
phenomena: simple models and challenges,” Journal of
Statistical Physics, vol. 151, no. 3-4, pp. 567–606, 2013.

[21] D. Harmon et al., “Anticipating economic market crises
using measures of collective panic,” PLoS One, vol. 10, no. 7,
Article ID e0131871, 2015.

[22] W. R. Ashby, “Requisite variety and its implications for the
control of complex systems,” in Facets of Systems Science,
G. J. Klir, Ed., pp. 405–417, Springer Science & Business
Media, Berlin, Germany, 1991.

[23] Y. Bar-Yam, “Complexity of military conflict: multiscale
complex systems analysis of littoral warfare,” Report to
Chief of Naval Operations Strategic Studies Group, 2003.

[24] Y. Bar-Yam, “Improving the effectiveness of health care and
public health: a multiscale complex systems analysis,”
American Journal of Public Health, vol. 96, no. 3, pp. 459–
466, 2006.

[25] M. B. Canzoneri, R. E. Cumby, and B. T. Diba, “How do
monetary and fiscal policy interact in the European mone-
tary union?” Tech. Rep., National Bureau of Economic
Research, Cambridge, MA, USA, 2005.

[26] W. Semmler and W. Zhang, “Monetary and fiscal policy
interactions in the euro area,” Empirica, vol. 31, no. 2-3,
pp. 205–227, 2004.

[27] P. Alessandrini and M. U. Fratianni, “In the absence of a
fiscal union, the eurozone needs a more flexible monetary
policy,” PSL Quarterly Review, vol. 68, 2015.

[28] H. Dan, “)e euro zone–between fiscal heterogeneity and
monetary unity,” Transylvanian Review of Administrative
Sciences, vol. 43E, pp. 68–84, 2014.
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