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Abstract

We introduce computational network (CN), a unified framework for describ-

ing arbitrary learning machines, such as deep neural networks (DNNs), con-

volutional neural networks (CNNs), recurrent neural networks (RNNs), long

short term memory (LSTM), logistic regression, and maximum entropy model,

that can be illustrated as a series of computational steps. A CN is a directed

graph in which each leaf node represents an input value or a parameter and

each non-leaf node represents a matrix operation upon its children. We de-

scribe algorithms to carry out forward computation and gradient calculation

in CN and introduce most popular computation node types used in a typical

CN.

We further introduce the computational network toolkit (CNTK), an imple-

mentation of CN that supports both GPU and CPU. We describe the archi-

tecture and the key components of the CNTK, the command line options to

use CNTK, and the network definition and model editing language, and pro-

vide sample setups for acoustic model, language model, and spoken language

understanding. We also describe the Argon speech recognition decoder as an

example to integrate with CNTK.
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Chapter 1

Introduction

1.1 Overview

The Computational Network Toolkit (CNTK) is a software package that makes

it easy to design and test computational networks such as deep neural networks.

A computational network is a style of computation where data flows through a

graph and computations happen in the nodes of the graph. The goal of a compu-

tational network is to take feature data, transform the data through a network of

simple computations, and then produce one or more outputs. The output is of-

ten some sort of decision based on the input features. A computational network

can take many forms such as feed-forward, recursive or convolutional and in-

cludes various forms of computations and non-linearities. The network’s parame-

ters are optimized to produce the “best” possible outcome for a given set of data

and an optimization criteria.

In this chapter we can only give readers a taste for CNTK, and specific features

are described in more detail later. With this purpose, CNTK has 5 primary features:

• CNTK is a general solution for training and testing many kinds of neural

networks

• A user specifies a network using a simple text configuration file. The con-

figuration file specifies the type of network, where to find the input data, and

how to optimize the parameters. All of these design parameters are fixed in

the configuration file.

• CNTK is designed to seamlessly put as many of the computations onto a

GPU, if available, as possible. These types of computational networks are

easy to vectorize and fit nicely onto GPUs. CNTK is compatible with GPUs

that support the CUDA programming environment.

7
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• CNTK automatically calculates the needed derivatives in order to efficiently

perform the necessary optimizations. Networks are composed of many sim-

ple elements, and CNTK can keep track of the details to insure that the opti-

mization is done correctly.

• CNTK can be extended by adding small amounts of C++ code to implement

the necessary blocks. New data readers, non-linearities, and objective func-

tions are easy to add.

Consider the work needed to build a non-standard neural network such as the vari-

able parameter DNN [1]. Conventionally, one needs to design the network, derive

the derivatives needed to optimize the network, implement the algorithm, and then

run the experiments. These steps are error prone and time consuming. With CNTK,

however in many cases, you only need to write a simple configuration file. The rest

of this chapter describes the configuration file needed to implement two simple

examples.

The purpose of this documentation is to describe how to use CNTK for your

own experiments. The bulk of this documentation describes the definition and

mathematics of computational networks (Chapter 2), how to run and configure

CNTK (Chapter 3), how to design networks and edit the models (Chapter 4). Chap-

ter 5 describes a modern speech decoder known as Argon, and Chapter 6 describes

a number of CNTK examples. But first we start with a couple of simple examples

to show the basics of CNTK.

1.2 A Simple Demo

We used a simple Matlab script (included in the distribution) to generate two-

dimensional data with binary labels. The raw data is shown below in Figure 1.1.

This data was stored as a text file, one sample per line, that can be read by the

UCIFastReader method (Section 3.4.1) in CNTK.

The following configuration file tells CNTK how to process this data. There

are three sections of this file:

• The preamble specifies which command blocks to run (Simple_Demo), which

GPU to use, and how to log CNTK’s output.

• The Simple_Demo block specifies one action for CNTK. The start of the

block specifies the action to take (train) but more importantly specifies the

actions needed to train the desired network. This block specifies three com-

ponents in order to train a new network:



CHAPTER 1. INTRODUCTION 9

Figure 1.1: A simple test set to demonstrate the power and ease of CNTK.

– The SimpleNetworkBuilder block specifies the topology of the net-

work, how to initialize the network, and how to evaluate its perfor-

mance (cross-entry with softmax in this case).

– The SGD (Stochastic Gradient Descent) block tells CNTK how to opti-

mize the network to find the best parameters. This includes information

about miniblock size (so the computation is more efficient), the learn-

ing rate, and how many epochs to train.

– The reader block specifies from where to read the input data, how the

features and labels are formatted, and how to randomize the order the

data is applied to the network during training

• Finally, the Simple_Demo_Output block specifies how to test the network.

Again we must specify the source of the data (we are training and testing on

the same data to keep the example small) and how to evaluate the results.

CNTK write the value of the two output nodes, for each test case, into a text

file.

The entire script is shown below.

# command=Simple_Demo_Output

command=Simple_Demo:Simple_Demo_Output
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# deviceId=-1 or "CPU" for CPU, >=0 for GPU devices

DeviceNumber=0

stderr="Demo"

precision="float"

modelPath="models/simple.dnn"

deviceId=$DeviceNumber$

outputNodeNames=ScaledLogLikelihood

traceLevel=1

#######################################

# TRAINING CONFIG (Simple, Fixed LR) #

#######################################

Simple_Demo=[

action="train"

# Notation xxx:yyy*n:zzz is equivalent to xxx,

# then yyy repeated n times, then zzz

# example: 10:20*3:5 is equivalent to 10:20:20:20:5

SimpleNetworkBuilder = [

# 2 input, 2 50-element hidden, 2 output

layerSizes=2:50*2:2

trainingCriterion="CrossEntropyWithSoftmax"

evalCriterion="ErrorPrediction"

layerTypes="Sigmoid"

initValueScale=1.0

applyMeanVarNorm=true

uniformInit=true

needPrior=true

]

SGD = [

# epochSize=0 means epochSize is the size of

# the training set. Must be evenly divisible

# into number of data frames.

epochSize=0

minibatchSize=25

learningRatesPerMB=0.5:0.2*20:0.1

momentumPerMB=0.9

dropoutRate=0.0

maxEpochs=500

]

# Parameter values for the reader

reader = [

# reader to use

readerType="UCIFastReader"

file="SimpleDataTrain.txt"

miniBatchMode="partial"

randomize=Auto
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verbosity=1

features=[

dim=2 # two-dimensional input data

start=0 # Start with first element on line

]

labels=[

start=2 # Skip two elements

dim=1 # One label dimension

labelDim=2 # Two labels possible

labelMappingFile="SimpleMapping.txt"

]

]

]

#######################################

# OUTPUT RESUTLS (Simple) #

#######################################

Simple_Demo_Output=[

action="write"

# Parameter values for the reader

reader=[

# reader to use

readerType="UCIFastReader"

file="SimpleDataTest.txt"

features=[

dim=2

start=0

]

labels=[

start=2

dim=1

labelDim=2

labelMappingFile="SimpleMapping.txt"

]

]

outputPath="SimpleOutput" # Dump output as text

]

You can run this script using the following command on Windows

cntk configFile=Simple.cntk

or under Linux

cntk configFile=Simple.cntk

This CNTK job trains a feedforward network with 2-dimensional input (x and
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Figure 1.2: Trained output values over the region of interest for the first (of two)

output neurons. The dashed line shows the position where the output is zero (the

decision boundary).

y coordinates), and two hidden layers with 50 units each, and then with two output

units (one for each decision). CNTK uses cross entropy with softmax to measure

and optimize the network’s performance.

Figure 1.2 shows the optimized output (before the sigmoid) of one of the two

output nodes.

The output neuron successfully captures the shape of the decision boundary.

The network’s error rate, shown in Figure 1.3, over time is interesting.

On a 2.2GHz Xeon processor with a low-end Quadro 4000 GPU, the training

and testing take 11 minutes 9 seconds (it is this long because the model size and

minibatch size are both small, and the GPU is more efficient with larger amounts

of data).

1.3 A Speech Demo (TIMIT)

A second example shows how to use CNTK to do a simple speech experiment. We

use the LDC’s TIMIT speech database as training and testing data. While this data

is not free, it is relatively common and illustrates a real speech task. The data is

available at https://catalog.ldc.upenn.edu/LDC93S1.
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Figure 1.3: Training error rate vs. epoch number for the simple demo. The network

quickly converges to a solution that gets most of the data correct, before finding the

non-linearity that allows it to track the “bumps” in the decision boundary.

There are three steps in using TIMIT with CNTK: prepare the data, train the

network, and finally test the network’s performance. We will describe each step in

turn. We provide a (cygwin) shell script to perform the necessary actions, but the

necessary steps can easily be replicated with other shells.

The first step is to prepare the data using HTK (Hidden Markov Toolkit). This

involves creating a list of files (the HTK script) and then passing this script to

HTK’s HCopy program, which calculates the filterbank features we use in our ex-

periment. Not all the files in TIMIT are usable, so we start with a list of valid

subjects (the text file TimitSubjects.txt). A python script uses this list of sub-

jects, prepends the directory where the TIMIT distribution is found, and creates

two script files. The first script file is used by HCopy to tell it where to read each

audio file (in NIST’s wave format, which is different from Microsoft’s wave for-

mat) and where to put the output (in a directory called features.) We also take this

opportunity to change the directory structure so the output feature files (___.zda)

are stored in a flat directory called Features. The second script file is used as input

to CNTK and tells CNTK where to find each input file, already processed into fea-

tures. If you do not have python, or you prefer, you can also edit these two included

.scp files by hand so each line contains the directory where your data is stored.
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Figure 1.4: (Square root of the) phone confusion matrices after 1 (left) and 100

(right) epochs. To highlight the off-diagonal terms in these figures, we are display-

ing the square root of all the matrix elements. The single bright yellow off-diagonal

pixel in the epoch 1 result corresponds to phones that are supposed to be “pau” (si-

lence) but are confused with “h#” (the beginning/end of the word.).

The second step is to use HTK’s HCopy program to compute the necessary

speech features. In this study the features are 24-dimensional filterbank features,

plus delta and delta-delta features, and the results are stored in the Features/ direc-

tory. The original TIMIT database is supplied in multiple directories and subdirec-

tories, but we’ve flattened the directory structure to make later processing easier.

(No extra directories to create.)

The third and final step is to use CNTK to compute a model that predicts the

correct tri-phone label. The neural network has 792 input nodes, 3 hidden layers

with 512 nodes each, and 183 output nodes.

Input: The number of input nodes in the network divided by the dimensionality

of the HTK feature vector determines the width of the context window. In

this case 11 frames are used as input to the network.

Output: The TIMIT data is labeled with 61 different phonemes, and the network

is trained to recognize tri-phones. Thus there are 61x3=183 output nodes.

We use a couple of Matlab scripts to analyze the output data and compute the phone

confusion matrix. Figure 1.4 shows the confusion matrices after 1 and 100 epochs.

As expected, there is much less energy in the off-diagonal terms as the number of

epochs grows. This is also shown in Figure 1.5 which shows the training error rate

calculated after each epoch.
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Figure 1.5: Training error rate as a function of epoch number for the TIMIT speech

example.

On a 2.2GHz Xeon processor the training takes 167 minutes without a GPU,

and 61 minutes with a low-end Quadro 4000 GPU.



Chapter 2

Computational Network

2.1 Computational Network

There is a common property in key machine learning models, such as deep neural

networks (DNNs) [2, 3, 4, 5, 6, 7], convolutional neural networks (CNNs) [8, 9,

10, 11, 12, 13, 14, 15, 16, 17], and recurrent neural networks (RNNs) [18, 19,

20, 21, 22]. All these models can be described as a series of computational steps.

For example, a one-hidden-layer sigmoid neural network can be described as the

computational steps listed in Algorithm 2.1. If we know how to compute each step

and in which order the steps are computed we have an implementation of the neural

network. This observation suggests that we can unify all these models under the

framework of computational network (CN), part of which has been implemented

in toolkits such as Theano [23], CNTK [24] and RASR/NN [25]..

Algorithm 2.1 Computational Steps Involved in an One-Hidden-Layer Sigmoid

Neural Network
1: procedure ONEHIDDENLAYERNNCOMPUTATION(X)

⊲ Each column of X is an observation vector

2: T(1) ←W(1)X

3: P(1) ← T(1) +B(1) ⊲ Each column of B(1) is the bias b(1)

4: S(1) ← σ
(

P(1)
)

⊲ σ (.) is the sigmoid function applied element-wise

5: T(2) ←W(2)S(1)

6: P(2) ← T(2) +B(2) ⊲ Each column of B(2) is the bias b(2)

7: O← softmax
(

P(2)
)

⊲ Apply softmax column-wise to get output O

8: end procedure

A computational network is a directed graph {V,E}, where V is a set of ver-

tices and E is a set of directed edges. Each vertex, called a computation node,

16
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Figure 2.1: Represent the one-hidden-layer sigmoid neural network of Algorithm

2.1 with a computational network

represents a computation. Vertices with edges toward a computation node are the

operands of the associated computation and sometimes called the children of the

computation node. Here the order of operands matters for some operations such

as matrix multiplication. Leaf nodes do not have children and are used to repre-

sent input values or model parameters that are not result of some computation. A

CN can be easily represented as a set of computation nodes n and their children

{n : c1, · · · , cKn}, where Kn is the number of children of node n. For leaf nodes

Kn = 0. Each computation node knows how to compute the value of itself given

the input operands (children).

Figure 2.1 is the one-hidden-layer sigmoid neural network of Algorithm 2.1

represented as a CN in which each node n is identified by a {nodename : operatortype}
pair and takes its ordered children as the operator’s inputs. From the figure, we can

observe that in CN there is no concept of layers. Instead, a computation node is the

basic element of operations. This makes the description of a simple model such

as DNN more cumbersome, but this can be alleviated by grouping computation

nodes together with macros. In return, CN provides us with greater flexibility in

describing arbitrary networks and allows us to build almost all models we are in-

terested in within the same unified framework. For example, we can easily modify

the network illustrated in Figure 2.1 to use rectified linear unit instead of a sigmoid

nonlinearity. We can also build a network that has two input nodes as shown in

Figure 2.2 or a network with shared model parameters as shown in Figure 2.3.
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Figure 2.2: A computational network with two input nodes (highlighted).

Figure 2.3: A computational network with shared model parameters (highlighted).

Here we assume the input X, hidden layer S(1), and output layer O have the same

dimension.
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2.2 Forward Computation

When the model parameters (i.e., weight nodes in Figure 2.1) are known, we can

compute the value of any node given the new input values. Unlike in the DNN case,

where the computation order can be trivially determined as layer-by-layer compu-

tation from bottom up, in CN different network structure comes with a different

computation order. When the CN is a directed acyclic graph (DAG) the computa-

tion order can be determined with a depth-first traverse over the DAG. Note that in

a DAG there is no directed cycles (i.e., no recurrent loop). However, there might

be loops if we don’t consider edge directions, for which Figure 2.3 is an example.

This is because the same computation node may be a child of several other nodes.

Algorithm 2.2. determines the computation order of a DAG and takes care of this

condition. Once the order is decided, it will remain the same for all the subsequent

runs, regardless of the computational environment. In other words, this algorithm

only needs to be executed per output node and then cache the computation order.

Following the order determined by Algorithm 2.2, the forward computation of the

CN is carried out synchronously. The computation of the next node starts only after

the computation of the previous node has finished. It is suitable for environments

where single computing device, such as one GPGPU or one CPU host, is used, or

the CN itself is inherently sequential, e.g., when the CN represents a DNN.

Algorithm 2.2 Synchronous forward computation of a CN. The computation order

is determined by a depth-first traverse over the DAG.

1: procedure DECIDEFORWARDCOMPUTATIONORDER(root, visited, order)

⊲ Enumerate nodes in the DAG in the depth-first order.

⊲ visited is initialized as an empty set. order is initialized as an empty

queue

2: if root /∈ visited then ⊲ the same node may be a child of several nodes.

3: visited← visited ∪ root
4: for each c ∈ root.children do ⊲ apply to children recursively

5: call DECIDEFORWARDCOMPUTATIONORDER(c, visited, order)

6: end for

7: order ← order + root ⊲ Add root to the end of order
8: end if

9: end procedure

The forward computation can also be carried out asynchronously with which

the order of the computation is determined dynamically. This can be helpful when

the CN has many parallel branches and there are more than one computing device

to compute these branches in parallel. Algorithm 2.3 shows an algorithm that car-



CHAPTER 2. COMPUTATIONAL NETWORK 20

ries out the forward computation of a CN asynchronously. In this algorithm, all

the nodes whose children have not been computed are in the waiting set and those

whose children are computed are in the ready set. At the beginning, all non-leaf

descendants of root are in the waiting set and all leaf descendants are in the ready

set. The scheduler picks a node from the ready set based on some policy, removes

it from the ready set, and dispatches it for computation. Popular policies include

first-come/first-serve, shortest task first, and least data movement. When the com-

putation of the node finishes, the system calls the SIGNALCOMPLETE method to

signal to all its parent nodes. If all the children of a node have been computed,

the node is moved from the waiting set to the ready set. The algorithm stops when

all nodes are computed. Although not explicitly indicated in the Algorithm 2.3,

the SIGNALCOMPLETE procedure is called under concurrent threads and should

be guarded for thread safety. This algorithm can be exploited to carry out compu-

tation on any DAG instead of just a CN.

Algorithm 2.3 Asynchronous forward computation of a CN. A node is moved to

the ready set when all its children have been computed. A scheduler monitors the

ready set and decides where to compute each node in the set.

1: procedure SIGNALCOMPLETE(node, waiting, ready)

⊲ Called when the computation of the node is finished. Needs to be

thread safe.

⊲ waiting is initialized to include all non-leaf descendants of root.
⊲ ready is initialized to include all leaf descendants of root.

2: for each p ∈ node.parents ∧ p ∈ waiting do

3: p.numFinishedChildren++
4: if p.numFinishedChildren == p.numChildren then

⊲ all children have been computed

5: waiting ← waiting − node
6: ready ← ready ∪ node
7: end if

8: end for

9: end procedure

10: procedure SCHEDULECOMPUTATION(ready)

⊲ Called by the job scheduler when a new node is ready or computation

resource is available.

11: pick node ∈ ready according to some policy

12: ready ← ready − node
13: dispatch node for computation.

14: end procedure
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In many cases, we may need to compute the value for a node with changing

input values. To avoid duplicate computation of shared branches, we can add a

time stamp to each node and only recompute the value of the node if at least one

of the children has newer value. This can be easily implemented by updating the

time stamp whenever a new value is provided or computed, and by excluding nodes

whose children is older from the actual computation.

In both Algorithms 2.2 and 2.3 each computation node needs to know how

to compute its value when the operands are known. The computation can be as

simple as matrix summation or element-wise application of sigmoid function or

as complex as whatever it may be. We will describes the evaluation functions for

popular computation node types in Section 2.4.

2.3 Model Training

To train a CN, we need to define a training criterion J . Popular criteria include

cross-entropy (CE) for classification and mean square error (MSE) for regression.

Since the training criterion is also a result of some computation, it can be repre-

sented as a computation node and inserted into the CN. Figure 2.4 illustrates a CN

that represents an one-hidden-layer sigmoid neural network augmented with a CE

training criterion node. If the training criterion contains regularization terms the

regularization terms can also be implemented as computation nodes and the final

training criterion node is a weighted sum of the main criterion and the regulariza-

tion term.

The model parameters in a CN can be optimized over a training set

S = {(xm,ym) |0 ≤ m < M} using the minibatch based backpropagation (BP)

algorithm. More specifically, we improve the model parameter W at each step

t+ 1 as

Wt+1 ←Wt − ε△Wt, (2.1)

where

△Wt =
1

Mb

Mb
∑

m=1

∇Wt
J (W;xm,ym) , (2.2)

and Mb is the minibatch size. The key here is the computation of∇Wt
J (W;xm,ym)

which we will simplify as∇J
W. Since a CN can have arbitrary structure, we cannot

use the exact same BP algorithm described in Algorithm ?? to compute ∇J
W.

A naive solution to compute ∇J
W is illustrated in Figure 2.5, in which W(1)

and W(2) are model parameters. In this solution, each edge is associated with a

partial derivative, and
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Figure 2.4: The one-hidden-layer sigmoid neural network augmented with a cross

entropy training criterion node J and a label node L.

∇J
W(1) =

∂J

∂V(1)

∂V(1)

∂V(2)

∂V(2)

∂W(1)
+

∂J

∂V(3)

∂V(3)

∂V(4)

∂V(4)

∂W(1)
(2.3)

∇J
W(2) =

∂J

∂V(1)

∂V(1)

∂V(2)

∂V(2)

∂W(2)
. (2.4)

This solution comes with two major drawbacks. First, each derivative can

have very high dimension. If V ∈ R
N1×N2 and W ∈ R

N3×N4 then ∂V
∂W ∈

R
(N1×N2)×(N3×N4). This means a large amount of memory is needed to keep

the derivatives. Second, there are many duplicated computations. For exam-

ple, ∂J
∂V(1)

∂V(1)

∂V(2) is computed twice in this example, once for ∇J
W(1) and once for

∇J
W(2) .

Fortunately, there is a much simpler and more efficient approach to compute

the gradient as illustrated in Figure 2.6. In this approach, each node n keeps

two values: the evaluation (forward computation) result Vn and the gradient ∇J
n

. Note that the training criterion J is always a scalar, If Vn ∈ R
N1×N2 then

∇J
n ∈ R

N1×N2 . This requires significantly less memory than that required in the

naive solution illustrated in Figure 2.5. This approach also allows for factoriz-

ing out the common prefix terms and making computation linear in the number

of nodes in the graph. For example, ∂J
∂V(2) is computed only once and used twice

when computing ∂J
∂W(1) and ∂J

∂W(2) with this approach. This is analogous to com-
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Figure 2.5: The naive gradient computation in CN. W(1) and W(2) are model

parameters and each edge is associated with a partial derivative.

Figure 2.6: An efficient gradient computation algorithm in CN. W(1) and W(2)

are model parameters. Each node n stores both the value of the node υn and the

gradient ∇J
n .

mon subexpression elimination in a conventional expression graph, only here the

common subexpressions are the parents of the nodes, rather than the children.

Automatic differentiation has been an active research area for decades and

many techniques have been proposed ( [26]). A simple recursive algorithm for

deciding the gradient computation order so that the gradient computation can be

efficiently carried out is shown in Algorithm 2.4 to which a similar recursive algo-

rithm for scalar functions has been provided [27, 28]. This algorithm assumes that

each node has a ComputePartialGradient(child) function which computes the

gradient of the training criterion with regard to the node’s child child and is called

in the order that is decided by the algorithm. Before the algorithm is computed,

the gradient ∇J
n at each node n is set to 0, the queue order is set to empty, and
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parentsLeft is set to the number of parents of each node. This function is then

called on a criterion node that evaluates to a scalar. Similar to the forward compu-

tation, an asynchronous algorithm can be derived. Once the gradient is known, the

minibatch based stochastic gradient descent (SGD) algorithm and other training

algorithms that depend on gradient only can be used to train the model.

Alternatively, the gradients can be computed by following the reverse order of

the forward computation and calling each node’s parents’ ComputePartialGradient(child)
function and passing itself as the child argument. This approach, however, requires

additional book keeping, e.g., keeping pointers to a node’s parents which can in-

troduce additional overhead when manipulating the network architecture.

Algorithm 2.4 Reverse automatic gradient computation algorithm. At the top level

node must be a training criterion node that evaluates to a scalar.

1: procedure DECIDEGRADIENTCOMPUTATIONORDER(node, parentsLeft,
order)

⊲ Decide the order to compute the gradient at all descendants of node.

⊲ parentsLeft is initialized to the number of parents of each node.

⊲ order is initialized to an empty queue.

2: if IsNotLeaf(node) then

3: parentsLeft[node]−−
4: if parentsLeft[node] == 0 ∧ node /∈ order then ⊲ All parents have

been computed.

5: order ← order + node ⊲ Add node to the end of order
6: for each c ∈ node.children do

7: call DECIDEGRADIENTCOMPUTATIONORDER(c,
parentsLeft, order)

8: end for

9: end if

10: end if

11: end procedure

In many cases, not all the gradients need to be computed. For example, the

gradient with regard to the input value is never needed. When adapting the model,

some of the model parameters don’t need to be updated and thus it is unnecessary to

compute the gradients with regard to these parameters. We can reduce the gradient

computation by keeping a needGradient flag for each node. Once the flags of leaf

nodes (either input values or model parameters) are known, the flags of the non-

leaf nodes can be determined using Algorithm 2.5, which is essentially a depth-first

traversal over the DAG. Since both Algorithms 2.2 and 2.5 are essentially depth-

first traversal over the DAG and both only need to be executed once they may be
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combined in one function.

Algorithm 2.5 Update the needGradient flag recursively.

1: procedure UPDATENEEDGRADIENTFLAG(root, visited)

⊲ Enumerate nodes in the DAG in the depth-first order.

⊲ visited is initialized as an empty set.

2: if root /∈ visited then ⊲ The same node may be a child of several nodes

and revisited.

3: visited← visited ∪ root
4: for each c ∈ root.children do

5: call UPDATENEEDGRADIENTFLAG(c, visited, order)

6: if IsNotLeaf(node) then

7: if node.AnyChildNeedGradient() then

8: node.needGradient← true
9: else

10: node.needGradient← false
11: end if

12: end if

13: end for

14: end if

15: end procedure

Since every instantiation of a CN is task dependent and different, it is critical

to have a way to check and verify the gradients computed automatically. A simple

technique to estimate the gradient numerically is:

∂J

∂wij
≈ J (wij + ǫ)− J (wij − ǫ)

2ǫ
, (2.5)

where wij is the (i, j)-th element of a model parameter W, ǫ is a small constant

typically set to 10−4, and J (wij + ǫ) and J (wij − ǫ) are the objective function

values evaluated with all other parameters fixed and wij changed to wij + ǫ and

wij − ǫ, respectively. In most cases the numerically estimated gradient and the

gradient computed from the automatic gradient computation agree to at least 4

significant digits if double precision computation is used. Note that this technique

works well with a large range of ǫ values, except extremely small values such as

10−20 which would lead to numerical roundoff errors.
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2.4 Typical Computation Nodes

For the forward computation and gradient calculation algorithms described above

to work we assume that each type of computation node implements a function

Evaluate to evaluate the value of the node given the values of its child nodes,

and the function ComputePartialGradient(child) to compute the gradient of

the training criterion with regard to the child node child given the node value Vn

and the gradient ∇J
n of the node n and values of all its child nodes. For simplicity

we will remove the subscript in the following discussion.

In this section we introduce the most widely used computation node types and

the corresponding Evaluate and ComputePartialGradient(child) functions.

In the following discussion we use symbols listed in Table 2.1 to describe the com-

putations. We treat each minibatch of input values as a matrix in which each col-

umn is a sample. In all the derivations of the gradients we use the identity

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
, (2.6)

where υmn is the (m,n)-th element of the matrix V, and xij is the (i, j)-th element

of matrix X.

2.4.1 Computation Node Types with No Operand

The values of a computation node that has no operand are given instead of com-

puted. As a result both Evaluate and ComputePartialGradient(child) func-

tions for these computation node types are empty.

• Parameter: Used to represent model parameters that need to be saved as part

of the model.

• InputValue: used to represent features, labels, or control parameters that are

provided by users at run time.

2.4.2 Computation Node Types with One Operand

In these computation node types, Evaluate = V (X) and ComputePartialGradient(X) =
∇J

X

• Negate: reverse the sign of each element in the operand X.

V (X) ← −X (2.7)

∇J
X ← ∇J

X −∇J
n. (2.8)
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Symbols Description

λ a scalar

d column vector that represents the diagonal of a square matrix

X matrix of the first operand

Y matrix of the second operand

V value of current node

∇J
n (or ∇J

V) gradient of the current node

∇J
X gradient of the child node (operand) X

∇J
Y gradient of the child node (operand) Y

• element-wise product

⊘ element-wise division

◦ inner product of vectors applied on matrices column-wise

⊚ inner product applied to each row

δ (.) Kronecker delta

1m,n an m× n matrix with all 1’s

X
α element-wise power

vec (X) vector formed by concatenating columns of X

Table 2.1: Symbols used in describing the computation nodes

The gradient can be derived by observing

∂υmn

∂xij
=

{

−1 m = i ∧ n = j

0 else
(2.9)

and

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
= − ∂J

∂υij
. (2.10)

• Sigmoid: apply the sigmoid function element-wise to the operand X.

V (X) ← 1

1 + e−X
(2.11)

∇J
X ← ∇J

X +∇J
n • [V • (1− V )] . (2.12)

The gradient can be derived by observing

∂υmn

∂xij
=

{

υij (1− υij) m = i ∧ n = j

0 else
(2.13)
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and

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=

∂J

∂υij
υij (1− υij) . (2.14)

• Tanh: apply the tanh function element-wise to the operand X.

V (X) ← eX − e−X

eX + e−X
(2.15)

∇J
X ← ∇J

X +∇J
n • (1− V • V ) . (2.16)

The gradient can be derived by observing

∂υmn

∂xij
=

{

1− υ2ij m = i ∧ n = j

0 else
(2.17)

and

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=

∂J

∂υij

(

1− υ2ij
)

(2.18)

• ReLU: apply the rectified linear operation element-wise to the operand X.

V (X) ← max (0,X) (2.19)

∇J
X ← ∇J

X +∇J
n • δ (X > 0) . (2.20)

The gradient can be derived by observing

∂υmn

∂xij
=

{

δ (xij > 0) m = i ∧ n = j

0 else
(2.21)

we have

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=

∂J

∂υij
δ (xij > 0) . (2.22)

• Log: apply the log function element-wise to the operand X.
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V (X) ← log (X) (2.23)

∇J
X ← ∇J

X +∇J
n •

1

X
. (2.24)

The gradient can be derived by observing

∂υmn

∂xij
=

{

1
xij

m = i ∧ n = j

0 else
(2.25)

and

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=

∂J

∂υij

1

xij
. (2.26)

• Exp: apply the exponent function element-wise to the operand X.

V (X) ← exp (X) (2.27)

∇J
X ← ∇J

X +∇J
n • V . (2.28)

The gradient can be derived by observing

∂υmn

∂xij
=

{

υij m = i ∧ n = j

0 else
(2.29)

we have

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=

∂J

∂υij
υij . (2.30)

• Softmax: apply the softmax function column-wise to the operand X. Each

column is treated as a separate sample.

mj (X) ← max
i

xij (2.31)

eij (X) ← e
xij−mj(X) (2.32)

sj (X) ←
∑

i

eij (X) (2.33)

υij (X) ← eij (X)

sj (X)
(2.34)

∇J
X ← ∇J

X +
[

∇J
n −∇J

n ◦ V
]

• V . (2.35)
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The gradient can be derived by observing

∂υmn

∂xij
=











υij (1− υij) m = i ∧ n = j

−υmjυij m 6= i ∧ n = j

0 else

(2.36)

we have

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=

(

∂J

∂υij
−
∑

m

∂J

∂υmj
υmj

)

υij . (2.37)

• LogSoftmax: apply the log of softmax function column-wise to the operand

X. Each column is treated as a separate sample.

mj (X) ← max
i

xij (2.38)

eij (X) ← e
xij−mj(X) (2.39)

sj (X) ←
∑

i

eij (X) (2.40)

υij (X) ← log
eij (X)

sj (X)
(2.41)

∇J
X ← ∇J

X +
[

∇J
n − exp (V )Diag

(

V ectorSum
(

∇J
n

))]

,(2.42)

where V ectorSum (.) sums each column vector, and Diag (x) is a diagonal

matrix formed by vector x. The gradient can be derived by observing

∂υmn

∂xij
=











1− exp (υij) m = i ∧ n = j

−exp (υij) m 6= i ∧ n = j

0 else

(2.43)

we have

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=

(

∂J

∂υij
−
∑

m

∂J

∂υmj
exp (υij)

)

. (2.44)

• SumElements: sum over all elements in the operand X.
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υ (X) ←
∑

i,j

xij (2.45)

∇J
X ← ∇J

X +∇J
n. (2.46)

The gradient can be derived by noting that υ and ∇J
n are scalars,

∂υ

∂xij
= 1 (2.47)

and

∂J

∂xij
=

∂J

∂υ

∂υ

∂xij
=

∂J

∂υ
. (2.48)

• L1Norm: take the matrix L1 norm of the operand X.

υ (X) ←
∑

i,j

|xij | (2.49)

∇J
X ← ∇J

X +∇J
nsgn (X) . (2.50)

The gradient can be derived by noting that υ and ∇J
n are scalars,

∂υ

∂xij
= sgn (xij) (2.51)

and

∂J

∂xij
=

∂J

∂υ

∂υ

∂xij
=

∂J

∂υ
sgn (xij) . (2.52)

• L2Norm: take the matrix L2 norm (Frobenius norm)of the operand X.

υ (X) ←
√

∑

i,j

(xij)
2 (2.53)

∇J
X ← ∇J

X +
1

υ
∇J

nX. (2.54)

The gradient can be derived by noting that υ and ∇J
n are scalars,

∂υ

∂xij
=

xij
υ

(2.55)

and

∂J

∂xij
=

∂J

∂υ

∂υ

∂xij
=

1

υ

∂J

∂υ
xij . (2.56)
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•

2.4.3 Computation Node Types with Two Operands

In these computation node types, Evaluate = V (a,Y), where a can be X, λ or

d, and ComputePartialGradient(b) = ∇J
b where b can be X, Y or d.

• Scale: scale each element of Y by λ.

V (λ,Y) ← λY (2.57)

∇J
λ ← ∇J

λ + vec
(

∇J
n

)

◦ vec (Y) (2.58)

∇J
Y ← ∇J

Y + λ∇J
n. (2.59)

The gradient ∇J
λ can be derived by observing

∂υmn

∂λ
= ymn (2.60)

and

∂J

∂λ
=
∑

m,n

∂J

∂υmn

∂υmn

∂λ
=
∑

m,n

∂J

∂υmn
ymn. (2.61)

Similarly to derive the gradient∇J
y, we note that

∂υmn

∂yij
=

{

λ m = i ∧ n = j

0 else
(2.62)

and get

∂J

∂yij
=
∑

m,n

∂J

∂υmn

∂υmn

∂yij
= λ

∂J

∂υij
(2.63)

• Times: matrix product of operands X and Y. Must satisfy X.cols = Y.rows.

V (X,Y) ← XY (2.64)

∇J
X ← ∇J

X +∇J
nY

T (2.65)

∇J
Y ← ∇J

Y +XT∇J
n. (2.66)

The gradient∇J
X can be derived by observing

∂υmn

∂xij
=

{

yjn m = i

0 else
(2.67)
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and

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=
∑

n

∂J

∂υin
yjn. (2.68)

Similarly to derive the gradient∇J
Y, we note that

∂υmn

∂yij
=

{

xmi n = j

0 else
(2.69)

and get

∂J

∂yij
=
∑

m,n

∂J

∂υmn

∂υmn

∂yij
=
∑

m

∂J

∂υmj
xmi (2.70)

• ElementTimes: element-wise product of two matrices. Must satisfy X.rows =
Y.rows and X.cols = Y.cols.

υij (X,Y) ← xijyij (2.71)

∇J
X ← ∇J

X +∇J
n •Y (2.72)

∇J
Y ← ∇J

Y +∇J
n •X. (2.73)

The gradient∇J
X can be derived by observing

∂υmn

∂xij
=

{

yij m = i ∧ n = j

0 else
(2.74)

and

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂yij
=

∂J

∂υij
yij . (2.75)

The gradient∇J
Y can be derived exactly the same way due to symmetry.

• Plus: sum of two matrices X and Y. Must satisfy X.rows = Y.rows. If

X.cols 6= Y.cols but one of them is a multiple of the other, the smaller

matrix needs to be expanded by repeating itself.
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V (X,Y) ← X+Y (2.76)

∇J
X ←























∇J
X +∇J

n X.rows = V.rows ∧X.cols = V.cols

∇J
X + 11 ,V.rows∇J

n X.rows = 1 ∧X.cols = V.cols

∇J
X +∇J

n1V.cols,1 X.rows = V.rows ∧X.cols = 1

∇J
X + 11 ,V.rows∇J

n1v.cols,1 X.rows = 1 ∧X.cols = 1

(2.77)

∇J
Y ←























∇J
Y +∇J

n Y.rows = V.rows ∧Y.cols = V.cols

∇J
Y + 11 ,V.rows∇J

n Y.rows = 1 ∧Y.cols = V.cols

∇J
Y +∇J

n1V.cols,1 Y.rows = V.rows ∧Y.cols = 1

∇J
Y + 11 ,V.rows∇J

n1V.cols,1 Y.rows = 1 ∧Y.cols = 1

(2.78)

The gradient ∇J
X can be derived by observing that when X has the same di-

mension as V, we have

∂υmn

∂xij
=

{

1 m = i ∧ n = j

0 else
(2.79)

and

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=

∂J

∂υij
(2.80)

If X.rows = 1 ∧X.cols = V.cols we have

∂υmn

∂xij
=

{

1 n = j

0 else
(2.81)

and

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=
∑

m

∂J

∂υmj
(2.82)

We can derive∇J
X and ∇J

Y under other conditions similarly.

• Minus: difference of two matrices X and Y. Must satisfy X.rows =
Y.rows. If X.cols 6= Y.cols but one of them is a multiple of the other,

the smaller matrix needs to be expanded by repeating itself.
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V (X,Y) ← X−Y (2.83)

∇J
X ←























∇J
X +∇J

n X.rows = V.rows ∧X.cols = V.cols

∇J
X + 11 ,V.rows∇J

n X.rows = 1 ∧X.cols = V.cols

∇J
X +∇J

n1V.cols,1 X.rows = V.rows ∧X.cols = 1

∇J
X + 11 ,V.rows∇J

n1v.cols,1 X.rows = 1 ∧X.cols = 1

(2.84)

∇J
Y ←























∇J
Y −∇J

n Y.rows = V.rows ∧Y.cols = V.cols

∇J
Y − 11 ,V.rows∇J

n Y.rows = 1 ∧Y.cols = V.cols

∇J
Y −∇J

n1V.cols,1 Y.rows = V.rows ∧Y.cols = 1

∇J
Y − 11 ,V.rows∇J

n1V.cols,1 Y.rows = 1 ∧Y.cols = 1

(2.85)

The derivation of the gradients is similar to that for the Plus node.

• DiagTimes: the product of a diagonal matrix (whose diagonal equals to d)

and an arbitrary matrix Y. Must satisfy d.rows = Y.rows.

υij (d,Y) ← diyij (2.86)

∇J
d ← ∇J

d +∇J
n ⊚Y (2.87)

∇J
Y ← ∇J

Y +DiagTimes
(

d,∇J
n

)

. (2.88)

The gradient ∇J
d can be derived by observing

∂υmn

∂di
=

{

yin m = i

0 else
(2.89)

and

∂J

∂di
=
∑

m,n

∂J

∂υmn

∂υmn

∂di
=
∑

n

∂J

∂υin
yin (2.90)

Similarly to derive the gradient∇J
Y we note that

∂υmn

∂yij
=

{

di m = i ∧ n = j

0 else
(2.91)

and get

∂J

∂yij
=
∑

m,n

∂J

∂υmn

∂υmn

∂yij
=

∂J

∂υij
di (2.92)
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• Dropout: randomly set λ percentage of values of Y to be zero and scale the

rest so that the expectation of the sum is not changed:

mij (λ) ←
{

0 rand (0, 1) ≤ λ
1

1−λ else
(2.93)

vij (λ,Y) ← mijyij (2.94)

∇J
Y ← ∇J

Y +

{

∇J
n λ = 0

∇J
n •M else

(2.95)

Note that λ is a given value instead of part of the model. We only need to

get the gradient with regard to Y. If λ = 0 then V = X which is a trivial case.

Otherwise it’s equivalent to the ElementTimes node with a randomly set mask M.

• KhatriRaoProduct: column-wise cross product of two matrices X and Y.

Must satisfy X.cols = Y.cols. Useful for constructing tensor networks.

υ.j (X,Y) ← x.j ⊗ y.j (2.96)

[

∇J
X

]

.j
←

[

∇J
X

]

.j
+
[

[

∇J
n

]

.j

]

X.rows,Y.rows
Y (2.97)

[

∇J
Y

]

.j
←

[

∇J
Y

]

.j
+

[

[

[

∇J
n

]

.j

]

X.rows,Y.rows

]T

X, (2.98)

where [X]m,n reshapes X to become an m × n matrix. The gradient ∇J
X can

be derived by observing

∂υmn

∂xij
=

{

ykj n = j ∧ i = m/Y.rows ∧ k = modulus(m,Y.rows)

0 else
(2.99)

and

∂J

∂xij
=
∑

m,n

∂J

∂υmn

∂υmn

∂xij
=
∑

i,k

∂J

∂υi×y.rows+k,j
ykj . (2.100)

The gradient∇J
y can be derived similarly.

• Cos: column-wise cosine distance of two matrices X and Y. Must satisfy

X.cols = Y.cols. The result is a row vector. Frequently used in natural

language processing tasks.
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υ.j (X,Y) ←
xT
.j y.j

‖x.j ‖ ‖y.j ‖
(2.101)

[

∇J
X

]

.j
←

[

∇J
X

]

.j
+
[

∇J
n

]

.j
•
[

yij
‖x.j ‖ ‖y.j ‖

− xijυ.,j

‖x.j ‖2

]

(2.102)

[

∇J
Y

]

.j
←

[

∇J
Y

]

.j
+
[

∇J
n

]

.j
•
[

xij
‖x.j ‖ ‖y.j ‖

− yijυ.,j

‖y.j ‖2

]

. (2.103)

The gradient∇J
X can be derived by observing

∂υ.n
∂xij

=







yij
‖x.j ‖‖y.j ‖

−
xij

(

xT
.j y.j

)

‖x.j ‖
3‖y.j ‖

n = j

0 else
(2.104)

and

∂J

∂xij
=

∑

n

∂J

∂υ.n

∂υ.n
∂xij

=
∂J

∂υ.,j





yij
‖x.j ‖ ‖y.j ‖

−
xij

(

xT
.j y.j

)

‖x.j ‖3 ‖y.j ‖



 .(2.105)

=
∂J

∂υ.,j

[

yij
‖x.j ‖ ‖y.j ‖

− xijυ.,j

‖x.j ‖2

]

. (2.106)

The gradient∇J
y can be derived similarly.

• ClassificationError: compute the total number of columns in which the in-

dexes of the maximum values disagree. Each column is considered as a

sample and δ is the Kronecker delta. Must satisfy X.cols = Y.cols.

aj (X) ← argmax
i

xij (2.107)

bj (Y) ← argmax
i

yij (2.108)

v (X,Y) ←
∑

j

δ (aj (X) 6= bj (Y)) (2.109)

This node type is only used to compute classification errors during the de-

coding time and is not involved in the model training. For this reason, calling

ComputePartialGradient(b) should just raise an error.

• SquareError: compute the square of Frobenius norm of the difference X −
Y. Must satisfy X.rows = Y.rows and X.cols = Y.cols.
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v (X,Y) ← 1

2
Tr
(

(X−Y) (X−Y)T
)

(2.110)

∇J
X ← ∇J

X +∇J
n (X−Y) (2.111)

∇J
Y ← ∇J

Y −∇J
n (X−Y) . (2.112)

Note that v is a scalar. The derivation of the gradients is trivial given

∂v

∂X
= X−Y (2.113)

∂v

∂Y
= − (X−Y). (2.114)

• CrossEntropy: compute the sum of cross entropy computed column-wise

(over samples) where each column of X and Y is a probability distribution.

Must satisfy X.rows = Y.rows and X.cols = Y.cols.

R (Y) ← log (Y) (2.115)

v (X,Y) ← −vec (X) ◦ vec (R (Y)) (2.116)

∇J
X ← ∇J

X −∇J
nR (Y) (2.117)

∇J
Y ← ∇J

Y −∇J
n (X⊘Y) . (2.118)

Note that v is a scalar. The gradient ∇J
X can be derived by observing

∂υ

∂xij
= − log (yij) = −rij (Y) (2.119)

and

∂J

∂xij
=

∂J

∂υ

∂υ

∂xij
= −∂J

∂υ
rij (Y) (2.120)

Similarly to derive the gradient∇J
Y we note that

∂υ

∂yij
= −xij

yij
(2.121)

and get

∂J

∂yij
=

∂J

∂υ

∂υ

∂yij
= −∂J

∂υ

xij
yij

. (2.122)

• CrossEntropyWithSoftmax: same as CrossEntropy except that Y contains

values before the softmax operation (i.e., unnormalized).
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P (Y) ← Softmax (Y) (2.123)

R (Y) ← log (P (Y)) (2.124)

v (X,Y) ← vec (X) ◦ vec (R (Y)) (2.125)

∇J
X ← ∇J

X −∇J
nR (Y) (2.126)

∇J
Y ← ∇J

Y +∇J
n (P (Y)−X) (2.127)

The gradient∇J
X is the same as in the CrossEntropy node. To derive the gradi-

ent ∇J
Y we note that

∂υ

∂yij
= pij (Y)− xij (2.128)

and get

∂J

∂yij
=

∂J

∂υ

∂υ

∂yij
=

∂J

∂υ
(pij (Y)− xij) . (2.129)

• ClassBasedCrossEntropyWithSoftmax: same as CrossEntropyWithSoftmax

except that label Y is a 4 bye T dense matrix. The first row is the word

id, the second row is the class id of this word id, the third row is the first

word id in this class, and the last row is the first word id of the next class.

The last two rows provide the left and right boundary of a slice that corre-

spond to softmax of label given its observation X. It also takes a weight

matrix W for computing with observation X. It also takes outputs Q from

Times node that provides inputs for computing posterior probability given

class.
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for t = 1 : T (2.130)

zt ← Y (0, t) (2.131)

Zt ← [0 · · · δ(i = zt) · · · 0]T (2.132)

ct ← Y (1, t) (2.133)

Ct ← [0 · · · δ(i = ct) · · · 0]T (2.134)

lt ← Y (2, t) (2.135)

rt ← Y (3, t) (2.136)

Wt ← W [:, lt : rt − 1] (2.137)

Pt ← Softmax
(

WT
t X
)

(2.138)

Rt ← log (Pt) (2.139)

v (X,Y) + = Zt ◦Rt (2.140)

Ut ← logSoftmax(Qt) (2.141)

v (X,Y) + = Ct◦Ut (2.142)

∇J
Q ← ∇J

Q+ ∇J
n (exp(Ut)−Ct) (2.143)

∇J
P ← ∇J

n (Pt − Zt) (2.144)

∇J
W ← ∇J

W+ Xt∇JT
P (2.145)

∇J
X ← ∇J

X+ Wt∇J
P (2.146)

•

2.4.4 Computation Node Types for Computing Statistics

Sometimes we only want to get some statistics of the input values (either input

features or labels). For example, to normalize the input features we need to com-

pute the mean and standard deviation of the input feature. In speech recognition we

need to compute the frequencies (mean) of the state labels to convert state posterior

probability to the scaled likelihood. Unlike other computation node types we just

described, computation node types for computing statistics do not require a gra-

dient computation function (i.e., this function should not be called for these types

of nodes) because they are not learned and often need to be precomputed before

model training starts. Here we list the most popular computation node types in this

category.

• Mean: compute the mean of the operand X across the whole training set.

When the computation is finished, it needs to be marked so to avoid recom-

putation. When a minibatch of input X is fed in
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k ← k +X.cols (2.147)

υ (X) ← 1

k
X1X.cols,1 +

k −X.cols

k
υ (X) (2.148)

Note here X.cols is the number of samples in the minibatch.

• InvStdDev: compute the invert standard deviation of the operand X element-

wise across the whole training set. When the computation is finished, it

needs to be marked so to avoid recomputation. In the accumulation step

k ← k +X.cols (2.149)

υ (X) ← 1

k
X1X.cols,1 +

k −X.cols

k
υ (X) (2.150)

ω (X) ← 1

k
(X •X)1+

k −X.cols

k
ω (X) (2.151)

When the end of the training set is reached,

υ ← (ω − (υ • υ))1/2 (2.152)

υ ← 1⊘ υ. (2.153)

• PerDimMeanVarNorm: compute the normalized operand X using mean m

and invert standard deviation s for each sample. Here X is matrix whose

number of columns equals to the number of samples in the minibatch and m

and s are vectors that needs to be expanded before element-wise product is

applied.

V (X) ← (X−m) •s. (2.154)

2.5 Convolutional Neural Network

A Convolutional neural network (CNN) [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 29]

provides shift invariance over time and space and is critical to achieve state-of-the-

art performance on image recognition. It has also been shown to improve speech

recognition accuracy over pure DNNs on some tasks [12, 16, 17, 14, 15]. To sup-

port CNN we need to implement several new computation nodes.

• Convolution: convolve element-wise products of a kernel to an image. An

example of a convolution operation is shown in Figure 2.7, where the input to



CHAPTER 2. COMPUTATIONAL NETWORK 42

the convolution node has three channels (represented by three 3×3 matrices)

and the output has two channels (represented by two 2 × 2 matrices at top).

A channel is a view of the same image. For example, an RGB image can be

represented with three channels: R, G, B. Each channel is of the same size.

There is a kernel for each output and input channel pair. The total number of

kernels equals to the product of the number of input channels Cx and the number

of output channels Cv. In Figure 2.7 Cx = 3, Cv = 2 and the total number

of kernels is 6. Each kernel Kkℓ of input channel k and output channel ℓ is a

matrix. The kernel moves along (and thus shared across) the input with strides (or

subsampling rate) Sr and Sc at the vertical (row) and horizontal (column) direction,

respectively. For each output channel ℓ and input slice (i, j) (the i-th step along the

vertical direction and j-th step along the horizontal direction)

υℓij (K,Y) =
∑

k

vec (Kkℓ) ◦ vec (Ykij) , (2.155)

where Ykij has the same size as Kkℓ.

This evaluation function involves many small matrix operations and can be

slow. Chellapilla et al. [9] proposed a technique to convert all these small matrix

operations to a large matrix product as shown at the bottom of Figure 2.7. With this

trick all the kernel parameters are combined into a big kernel matrix W as shown

at left bottom of Figure 2.7. Note that to allow for the output of the convolution

node to be used by another convolution node, in Figure 2.7 we have organized

the conversion slightly differently from what proposed by Chellapilla et al. [9]

by transposing both the kernel matrix and the input features matrix as well as the

order of the matrices in the product. By doing so, each sample in the output can

be represented by Or×Oc columns of Cv × 1 vectors which can be reshaped to

become a single column, where

Or =

{

Ir−Kr

Sr
+ 1 no padding

(Ir−mod(Kr,2))
Sr

+ 1 zero padding
(2.156)

is the number of rows in the output image, and

Oc =

{

Ic−Kc

Sc
+ 1 no padding

(Ic−mod(Kc,2))
Sc

+ 1 zero padding
(2.157)

is the number of rows in the output image, where Ir and Ic are, respectively, the

number of rows and columns of the input image, Kr and Kc are, respectively,

the number of rows and columns in each kernel. The combined kernel matrix
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is of size Cv × (Or ×Oc × Cx), and the packed input feature matrix is of size

(Or ×Oc × Cx)× (Kr ×Kc).
With this conversion the related computations of the convolution node with

operands W,Y become

X (Y) ← Pack (Y) (2.158)

V (W,Y) ← WX (2.159)

∇J
W ← ∇J

W +∇J
nX

T (2.160)

∇J
X ← WT∇J

n (2.161)

∇J
Y ← ∇J

Y +Unpack
(

∇J
X

)

. (2.162)

Note that this technique enables better parallelization with large matrix oper-

ations but introduces additional cost to pack and unpack the matrices. In most

conditions, the gain outweighs the cost. By composing convolution node with plus

nodes and element-wise nonlinear functions we can add bias and nonlinearity to

the convolution operations.

• MaxPooling: apply the maximum pooling operation to input X inside a win-

dow with size Kr × Kc for each channel. The operation window moves

along the input with strides (or subsampling rate) Sr and Sc at the vertical

(row) and horizontal (column) direction, respectively. The pooling operation

does not change the number of channels and so Cv = Cx. For each output

channel ℓ and the (i, j)-th input slice Xℓij of size Kr ×Kc we have

υℓij (X) ← max (Xℓij) (2.163)

[

∇J
X

]

ℓ,im,jn
←

{

[

∇J
X

]

ℓ,im,jn
+
[

∇J
n

]

ℓ,im,jn
(m,n) = argmaxm,n xℓ,im,jn

[

∇J
X

]

ℓ,im,jn
else

(2.164)

where im = i× Sr +m, and jn = j × Sc + n.

• AveragePooling: same as MaxPooling except average instead of maximum

is applied to input X inside a window with size Kr ×Kc for each channel.

The operation window moves along the input with strides (or subsampling

rate) Sr and Sc at the vertical (row) and horizontal (column) direction, re-

spectively. For each output channel ℓ and the (i, j)-th input slice Xℓij of size

Kr ×Kc we have
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Figure 2.7: Example convolution operations. Top: the original convolution oper-

ations. Bottom: the same operations represented as a large matrix product. Our

matrix organization is different from what proposed by Chellapilla et al. [9] to al-

low for stacked convolution operations. (Modified from the figure in Chellapilla et

al. [9], permitted to use by Simard)
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υℓij (X) ← 1

Kr ×Kc

∑

m,n

xℓ,im,jn (2.165)

[

∇J
X

]

ℓij
←

[

∇J
X

]

ℓij
+

1

Kr ×Kc

[

∇J
n

]

ℓij
, (2.166)

where im = i× Sr +m, and jn = j × Sc + n.

2.6 Recurrent Connections

In the above sections, we assumed that the CN is a DAG. However, when there

are recurrent connections in the CN, this assumption is no longer true. The recur-

rent connection can be implemented using a Delay node that retrieves the value

λ samples to the past where each column of Y is a separate sample stored in the

ascending order of time.

υ.j (λ,Y) ← Y.(j−λ) (2.167)
[

∇J
Y

]

.j
←

[

∇J
Y

]

.j
+
[

∇J
n

]

.j+λ
. (2.168)

When j − λ < 0 some default values need to be set for Y.(j−λ). The gradient can

be derived by observing

∂υmn

∂yij
=

{

1 m = i ∧ n = j + λ

0 else
(2.169)

and

∂J

∂yij
=
∑

m,n

∂J

∂υmn

∂υmn

∂yij
=

∂J

∂υij+λ
. (2.170)

An example CN that contains a delay node is shown in Figure 2.8. Different

from the CN without a directed loop, a CN with a loop cannot be computed for a

sequence of samples as a batch since the next sample’s value depends on the the

previous samples. A simple way to do forward computation and backpropagation

in a recurrent network is to unroll all samples in the sequence over time. Once

unrolled, the graph is expanded into a DAG and the forward computation and gra-

dient calculation algorithms we just discussed can be directly used. This means,

however, all computation nodes in the CN need to be computed sample by sample

and this significantly reduces the potential of parallelization.

There are two approaches to speedup the computation of a CN with directed

loops. In the next two subsections, we will discuss them.
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Figure 2.8: An example CN with a delay node. The shaded nodes form a recurrent

loop which can be treated as a composite node.

2.6.1 Sample by Sample Processing Only Within Loops

The first approach identifies the loops in the CN and only applies the sample-by-

sample computation for nodes inside the loops. For the rest of the computation

nodes all samples in the sequence can be computed in parallel as a single ma-

trix operation. For example, in Figure 2.8 all the nodes included in the loop of

T(3) → P(3) → S(1) → D → T(3) need to be computed sample by sample.

All the rest of the nodes can be computed in batches. A popular technique is to

identify the strongly connected components (SCC) in the graph, in which there is a

path between each pair of vertices and adding any edges or vertices would violate

this property, using algorithms such as Tarjan’s strongly connected components al-

gorithm [30]1. Once the loops are identified, they can be treated as a composite

node in the CN and the CN is reduced to a DAG. All the nodes inside each loop (or

composite node) can be unrolled over time and also reduced to a DAG. For all these

DAGs the forward computation and backpropagation algorithms we discussed in

the previous sections can be applied. The detailed procedure in determining the

forward computation order in the CN with arbitrary recurrent connections is de-

scribed in Algorithm 2.6. Since the input to the delay nodes are computed in the

1Tarjan’s algorithm is favored over others such as Kosaraju’s algorithm [31] since it only requires

one depth-first traverse, has a complexity of O (|V|+ |E|), and does not require reversing arcs in the

graph.
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past they can be considered as the leaf if we only consider one time slice. This

makes the order decision inside loops much easier.

2.6.2 Processing Multiple Utterances Simultaneously

The second approach to speed up the processing in the recurrent CN is to process

multiple sequences at a time. To implement this, we need to organize sequences in

a way that the frames with the same frame id from different sequences are grouped

together as shown in Figure 2.9. By organizing sequences in this way we can

compute frames from different sequences in batch when inside a loop and compute

all samples in all utterances in one batch outside loops. For example, in Figure 2.9

we can compute 4 frames together for each time step. If sequences have different

lengths, we can truncate them to the same length and save the final state of the

sequences that are not finished yet. The remaining frames can be grouped with

other sequences for further processing.

2.6.3 Building Arbitrary Recurrent Neural Networks

With the inclusion of delay nodes, we can easily construct complicated recur-

rent networks and dynamic systems. For example, the long-short-term-memory

(LSTM) [18, 32] neural network that is widely used to recognize and generate

hand-written characters involves the following operations:

it = σ
(

W(xi)xt +W(hi)ht−1 +W(ci)ct−1 + b(i)
)

(2.171)

ft = σ
(

W(xf)xt +W(hf)ht−1 +W(cf)ct−1 + b(f)
)

(2.172)

ct = ft • ct−1 + it • tanh
(

W(xc)xt +W(hc)ht−1 + b(c)
)

(2.173)

ot = σ
(

W(xo)xt +W(ho)ht−1 +W(co)ct + b(o)
)

(2.174)

ht = ot • tanh (ct) , (2.175)

where σ (.) is the logistic sigmoid function, it, ft, ot, ct and ht are vectors with

same size (since there is one and only one of each in every cell) to represent val-

ues at time t of the input gate, forget gate, output gate, cell, cell input activation,

and hidden layer, respectively, W’s are the weight matrices connecting different

gates, and b’s are the corresponding bias vectors. All the weight matrices are full

except the weight matrix W(ci) from the cell to gate vectors which is diagonal. It

is obvious that the whole LSTM can be described as a CN with following node
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Algorithm 2.6 Forward computation of an arbitrary CN

1: procedure DECIDEFORWARDCOMPUTATIONORDERWITHRECCURENT-

LOOP(G = (V,E))
2: StronglyConnectedComponentsDetection(G,G′) ⊲ G′ is a DAG of

strongly connected components (SCC)

3: Call DecideForwardComputationOrder on G′→ order for DAG

4: for v ∈ G, v ∈ V do

5: Set the order of v equal the max order of the SCC V ⊲ This guarantee

the forward order of SCC is correct

6: end for

7: for each SCC V in G do

8: Call GetLoopForwardOrder(root of V)→ order for each SCC

9: end for

10: return order for DAG and order for each SCC (loop)

11: end procedure

12: procedure GETLOOPFORWARDORDER(root)
13: Treat all the delayNode as leaf and Call DecideForwardComponen-

tionOrder

14: end procedure

15: procedure STRONGLYCONNECTEDCOMPONENTSDETECTION(G =
(V,E), DAG)

16: index = 0, S = empty
17: for v ∈ V do

18: if v.index is undefined then StrongConnectComponents(v,DAG)

19: end if

20: end for

21: end procedure

22: procedure STRONGCONNECTCOMPONENT(v,DAG)

23: v.index = index, v.lowlink = index, index = index+ 1
24: S.push(v)
25: for (v, w) ∈ E do

26: if w.index is undefined then

27: StrongConnectComponent(w)

28: v.lowlink = min(v.lowlink, w.lowlink)
29: else if w ∈ S then

30: v.lowlink = min(v.lowlink, w.index)
31: end if

32: end for

33: if v.lowlink = v.index then ⊲ If v is a root node, pop the stack and

generate an SCC

34: start a new strongly connected component

35: repeat

36: w = S.pop()
37: add w to current strongly connected component

38: until w == v
39: Save current strongly connected component to DAG
40: end if

41: end procedure
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Figure 2.9: Process multiple sequences in a batch. Shown in the figure is an exam-

ple with 4 sequences. Each color represents one sequence. Frames with the same

frame id from different sequences are grouped together and computed in batch.

The right matrix is a reshape of the left matrix.
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types: Times, Plus, Sigmoid, Tanh, DiagTimes, ElementTimes and Delay. More

specifically, using these computational nodes, the LSTM can be described as:

H(d) = Delay (H) (2.176)

C(d) = Delay (C) (2.177)

T(1) = Macro2W1b(W(xi),X,W(hi),H(d),b(i)) (2.178)

I = Sigmoid
(

Plus
(

T(1), DiagT imes
(

d(ci),C(d)
)))

(2.179)

T(2) = Macro3W1b
(

W(xf),X,W(hf),H(d),W(cf)C(d),b(f)
)

(2.180)

F = Sigmoid
(

T(2)
)

(2.181)

T(3) = Macro2W1b
(

W(xc),X,W(hc),H(d),b(c)
)

(2.182)

T(4) = ElementT ime
(

F,C(d)
)

(2.183)

T(5) = ElementT imes
(

I, Tanh
(

T(3)
))

(2.184)

C = Plus
(

T(4),T(5)
)

(2.185)

T(6) = Macro3W1b
(

W(xo),X,W(ho),H(d),W(co)C,b(o)
)

(2.186)

O = Sigmoid
(

T(6)
)

(2.187)

H = ElementT ime (O, Tanh (C)) , (2.188)

where we have defined the macro Macro2W1b
(

W(1), I(1),W(2), I(2),b
)

as

S(1) = Plus
(

T imes
(

W(1), I(1)
)

, T imes
(

W(2), I(2)
))

(2.189)

Macro2W1b = Plus
(

S(1),b
)

(2.190)

and macro Macro3W1b
(

W(1), I(1),W(2), I(2),W(3 ), I(3 ),b
)

as

S(1) = Macro2W1b
(

W(1), I(1),W(2), I(2),b
)

(2.191)

Macro3W1b = Plus
(

S(1), T imes
(

W(3), I(3)
))

(2.192)



Chapter 3

Computational Network Toolkit

The computational network toolkit (CNTK) implements CNs. It is written in C++

and supports both GPU (CUDA) and CPU execution. CNTK supports arbitrary

valid computational networks and makes building DNNs, CNNs, RNNs, LSTMs,

and other complicated networks as simple as describing the operations of the net-

works. The toolkit is implemented with efficiency in mind. It removes duplicated

computations in both forward and backward passes, uses minimal memory needed

and reduces memory reallocation by reusing them. It also speeds up the model

training and evaluation by doing batch computation whenever possible. In this

chapter we introduce how to exploit CNTK to accelerate your research.

3.1 Run CNTK

To run CNTK you use a command line similar to

cntk configFile=yourExp.cntk

where yourExp.cntk is a CNTK configuration file, which typically contains several

command blocks. A command block is a top level block of the configuration. Each

command block must specify what action to be carried out with related informa-

tion. To illustrate configuration and command blocks, we use a simple example

below.

command=mnistTrain

mnistTrain=[

action="train"

NDLNetworkBuilder=[

51
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networkDescription="c:\cntk\config\sample.ndl"

run=ndlMacroUse

]

SGD=[

modelPath="c:\cntk\model\mnist.cn"

learningRatesPerMB=0.001

minibatchSize=32

epochSize=60000

maxEpochs=50

]

reader=[

readerType="UCIFastReader"

file="c:\cntk\data\mnist\mnist_train.txt"

features=[

dim=784

start=1

]

labels=[

dim=1

start=0

labelDim=10

labelMappingFile="c:\cntk\data\mnist\mnistlabels.txt

"

]

]

]

In this example, you can notice that all configuration values are specified as

a name-value pair. A value can be a numeric, a string, a list, or even a block of

configurations.

The top-level configuration parameter command determines what command

blocks are to be executed and in what order they are executed if more than one

command block is specified. In this example, the mnistTrain command block will

be executed. This command block specifies the action, which is train in this case,

to execute. There are often three parameter blocks associated with the train action:

a network builder block, which specifies how to build a network from scratch and

how to load a model from an existing model file, a learner block, which specifies

what training algorithm to use, and a reader block, which specifies where and how

to load features and labels. In this specific example, the NDL (network definition
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language) network builder indicated by the NDLNetworkBuilder block is used to

define the network, the stochastic gradient descent learning algorithm as indicated

by the SGD block is used to train the model, and the UCIFastReader is used to load

the feature and labels from file in UCI format. Note that readers are implemented

as separate DLLs, and the name of the reader is also the name of the DLL file that

will be loaded to read data.

The most frequently used configuration blocks are:

• Network Builders

– SimpletNetworkBuilder: creates one of the predefined networks with

limited customization.

– NDLNetworkBuilder: creates a network defined using the network de-

scription language (NDL). It provides full flexibility in designing your

own network operations and structure.

• Learners

– SGD : uses the stochastic gradient descent algorithm to train the model.

It is the desired trainer for most applications.

• Data Readers

– UCIFastReader: reads the text-based UCI format, which contains la-

bels and features combined in one file.

– HTKMLFReader: reads the HTK/MLF format files, often used in speech

recognition applications.

– BinaryReader: reads files in a CNTK binary format. It is also used

by UCIFastReader to cache the dataset in a binary format for faster

processing.

– LMSequenceReader: reads text-based files that contain word sequences,

for predicting word sequences. This is often used in language model-

ing.

– LUSequenceReader: reads text-based files that contain word sequences

and their labels. This is often used for language understanding.

In the following, we will describe CNTK configuration and the above blocks in

detail.



CHAPTER 3. COMPUTATIONAL NETWORK TOOLKIT 54

3.2 Network Builders

Computational networks are constructed using either the network description lan-

guage (NDL) builder or the simple network builder.

3.2.1 The Simple Network Builder

The behavior of the simple network builder is controlled by the SimpleNetwork-

Builder block of the options. When an option is omitted the default value is as-

sumed. Here we list all the control parameters available.

• initValueScale: the value for scaling the range of the random numbers used

for initialization. Default is 1. If the model parameters are initialized us-

ing the uniform distribution, the random number range will be adjusted to

[−0.05× initV alueScale, 0.05× initV alueScale]. If the model param-

eters are initialized using the Gaussian distribution, the standard deviation

will be adjusted to 0.2× initV alueScale/
√
fanout.

• layerTypes: the type of nonlinear operation in hidden layers. Valid values

are sigmoid (default), Tanh, and RectifiedLinear.

• uniformInit: determines whether to use uniform distribution to initialize

model parameters. Valid values are true (default) and false (using Gaussian

distribution to initialize model parameters).

• applyMeanVarNorm: whether to apply mean/variance normalization on the

input. Valid values are true and false (default)

• addDropoutNodes: whether to add drop-out nodes. The default is false. If

specified to true, a drop-out node will be applied to the input node and the

output of every hidden layer.

• layerSizes: specifies the dimensions of layers. For instance, layerSizes=128:10:200:4000

describes a neural network with two hidden layers. The first hidden layer has

a dimension of 10, and the second hidden layer has a dimension of 200. The

input and output layers have a dimension of 128 and 4000, respectively.

• trainingCriterion: the criterion used for training. The default is CrossEn-

tropyWithSoftmax. Alternatives are SquareError, CrossEntropy, and Class-

BasedCrossEntropyWithSoftmax. The ClassBasedCrossEntropyWithSoft-

max is for class-based training, which would be useful if the output dimen-

sion is large and therefore need to be split into classes to speed-up the train-

ing and evaluation.
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• evalCriterion: the criterion for evaluation. The selection of values are the

same as the trainingCriterion.

• lookupTableOrder: specifies the order of context expanding in the lookupN-

ode. The default value is 1. Setting it to a value such as 3 would expand the

input dimension in a context-dependent way by an order of 3. For example,

if the input observation has a dimension of 20, setting this value to 3 would

set the input node dimension to 60.

For recurrent neural networks (RNNs), there are additional parameters.

• recurrentLayer: specifies the layers that contain self recurrent connections.

By default there is no recurrent layer. Use the syntax n1:n2:n3 to specify that

layers n1, n2, and n3 have recurrent connections.

• defaultHiddenActivity: the default hidden layer activity value used by the

delay node when accessing values before the first observation. The default

value is 0.1.

• rnnType: the type of predefined networks. Valid values are

– SIMPLENET: the feed-forward neural network. This is the default

network type.

– SIMPLERNN: the simple RNN, which may be a deep RNN in which

several layers have recurrent loops.

– CLASSLM: the class-based simple RNN. It uses sparse input, sparse

parameter and sparse output. This is often used for language modeling

tasks.

– LBLM: the log-bilinear neural network.

– LSTM: the long short-term memory neural network.

– CLASSLSTM: the class-based long short-term memory neural net-

work. It uses sparse input, sparse parameter and sparse output. This

is often used for language modeling tasks.

3.2.2 The Network Description Language (NDL)

The simple network builder only allows you to build one of the predefined network

types. To build more complicated networks, you need to use the NDL network

builder which has the following parameters. Detailed description on NDL can be

found in Chapter 4.
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• networkDescription: the file path of the NDL script, which will be described

in Chapter 4, to execute. If there is no networkDescription file specified then

the NDL is assumed to be in the same configuration file as the NDLNet-

workBuilder subblock, specified with the run parameter. Note that only one

file path may be specified via the networkDescription parameter. To load

multiple files of macros, use the ndlMacros parameter.

• run: the block of the NDL that will be executed. If an external NDL file is

specified via the networkDescription parameter, the run parameter identifies

a block in that file. This parameter overrides any run parameters that may

already exist in the file. If no networkDescription file is specified, the run

parameter identifies a block in the current configuration file.

• load: the blocks of NDL scripts to load. Multiple blocks can be specified

via a ":" separated list. The blocks specified by the load parameter typically

contain macros, which will be described in Chapter 4, for use by the run

block. Similar to the run parameter, the load parameter identifies blocks in

an external NDL file and overrides any load parameters that may already

exist in the file, if a file is specified by the networkDescription parameter. If

no networkDescription file is specified, load identifies a block in the current

configuration file.

• ndlMacros: the file path where NDL macros may be loaded. This param-

eter is usually used to load a default set of NDL macros that can be used

by all NDL scripts. Multiple NDL files, each specifying different sets of

macros, can be loaded by specifying a "+" separated list of file paths for this

ndlMacros parameter. In order to share macros with other command blocks

such as model editing language (MEL) blocks we will describe in Chapter

4, you should define it at the root level of the configuration file.

• randomSeedOffset: a non-negative random seed offset value in initializing

the learnable parameters. The default value is 0. This allows users to run

experiments with different random initialization.

3.3 Learners

Up to now, CNTK implements an SGD learner. New learners will be added in the

future.
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3.3.1 Stochastic Gradient Descent Learner

The behavior of the SGD algorithm is controlled by the SGD block of the options.

When an option is omitted the default value is assumed. Here we list all the control

parameters used.

3.3.1.1 Training process control

• modelPath: the full path to save the final model. Must be provided and points

to a valid file name.

• trainCriterionNodeName: the name of the training criterion node. If not

provided the default training criterion node in the network will be used.

• evalCriterionNodeName: the name of the evaluation criterion node. If not

provided the default evaluation criterion node in the network will be used.

• epochSize: epoch size, i.e., the number of samples in each epoch. Often is

but may be different from the dataset size. An intermediate model and other

check point information is saved for each epoch. When set to 0 the whole

dataset size is used.

• keepCheckPointFiles: whether you want to keep the check point file after a

new epoch starts. Valid values are true and false (default).

• maxEpochs: maximum number of epochs to run.

• minibatchSize: minibatch size for each epoch. Default value is 256. Can

use syntax such as 128*2:1024 which means using minibatch size 128 for 2

epochs and then 1024 for the rest.

• dropoutRate: dropout rate during the training procedure. Default is 0.0. Can

use syntax such as 0.5*10:0.2 which means using dropout rate 0.5 for 10

epochs and then 0.2 for the rest.

• maxTempMemSizeInSamplesForCNN: maximum temporary memory used

(in number of samples) when packaging and unpackaging input features.

Default is 0, which means using any value as needed. Useful to control the

memory foot print esp. when run under GPU.

• executionEngine: the execution engine to use. Valid values is synchronous

(default).
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3.3.1.2 Learning rate and momentum control

• learningRatesPerMB: learning rates per minibatch. Useful when you want

to use the same learning rate while the minibatch size is changed. Can use

syntax such as 0.8*10:0.2 which means using the learning rate 0.8 for 10

epochs and then 0.2 for the rest. learningRatesPerMB may be missing, for

example, when learningRatesPerSample is provided or the automatic learn-

ing rate determination algorithm is used.

• learningRatesPerSample: learning rates per sample. Useful when you want

to keep the learning rates per sample constant, i.e., automatically increases

effective learning rate for the minibatch when the minibatch size is increased.

Can use syntax such as 0.008*10:0.002 which means using the learning rate

0.008 for 10 epochs and then 0.002 for the rest. learningRatesPerSample

may be missing, for example, when learningRatesPerMB is provided or the

automatic learning rate determination algorithm is used.

• momentumPerMB: momentum per minibatch. Default is 0.9. Can use syntax

such as 0.1*2:0.9 which means using momentum 0.1 for 2 epochs and then

0.9 for the rest.

• momentumPerSample: momentum per sample. Useful when you want to

keep the momentum per sample constant, i.e., automatically scales effective

momentum for the minibatch when the minibatch size is changed. Can use

syntax such as 0.9996*10:0.998 which means using the per sample momen-

tum 0.9996 for 10 epochs and then 0.998 for the rest. momentumPerSample

may be missing, for example, when momentumPerMB is provided.

• autoAdjust: contains the information related to the automatic learning rate

control. Default value is empty (“”) which means no automatic learning rate

control. Inside the block, there can be following values:

– autoAdjustLR: the automatic learning rate adjustment algorithm to use.

Valid values are None (default, don’t auto adjust learning rate), Ad-

justAfterEpoch (check the training criterion after each epoch using the

development set of the training set and decide whether to adjust the

learning rate), and SearchBeforeEpoch (search the learning rate based

on a small portion of the training set before each epoch starts).

used in the AdjustAfterEpoch mode:

– reduceLearnRateIfImproveLessThan: reduce the learning rate if the

improvement is less than this value. Default is 0.
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– learnRateDecreaseFactor: the learning rate decrease factor. Default

value is 0.618.

– increaseLearnRateIfImproveMoreThan: increase the learning rate if

the improvement is larger than this value. Default value is 1#INF (in-

finity) which means never increase.

– learnRateIncreaseFactor: the learning rate increase factor. Default

value is 1.382.

– loadBestModel: weather to load the best model if the current model

decreases the performance. Valid values are true (default) and false.

– learnRateAdjustInterval: determine the frequency of applying the learn-

ing rate adjustment check. Default is 1 epoch. If this value is set to a

value larger than 1 the learning rate adjustment will be based on the av-

erage criterion computed from the last learnRateAdjustInterval epochs.

Used in the SearchBeforeEpoch mode.

– numMiniBatch4LRSearch: the number of minibatches used to search

the learning rate. Default value is 500. It’s typically set to 10-20% of

the total minibatches in an epoch.

– numPrevLearnRate: number of previous learning rates used as a hint

to the search range. Default value is 5.

– numBestSearchEpoch: number of epochs in which we use the best

learning rate instead of the sufficient learning rate . Default value is

1.

Used in the Adaptive Minibatch Sizing mode.

– numMiniBatch4LRSearch: the number of minibatches used to search

the minibatch size when in adaptive minibatch size mode. Default

value is 500. It’s typically set to 10-20% of the total minibatches in

an epoch. This is shared with the search for learning rate in SearchBe-

foreEpoch mode.

– autoAdjustMinibatch: enable or disable whether minibatch size is adap-

tively adjusted. Default value is false. Adaptive minibatch sizing will

begin on epochs starting after user minibatch sizes explicitly specified

are complete. For example if the userspecifed minibatchSize=256:1024,

then 256 and 1024are used in the first 2 Epochs and adaptive minibatch-

sizing is used afterwards
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– minibatchSizeTuningFrequency: The number of epochs to skip, on a

periodic basis, before dynamically adjusting the minibatch size. De-

fault value is 1.

– minibatchSizeTuningMax: The maximum size allowed for an adap-

tively adjusted minibatch size. Default value is 1048576.

3.3.1.3 Gradient control

• gradientClippingWithTruncation: whether to use the truncation based gra-

dient clipping to control gradient explosion. Valid values are true (default)

and false. If it is false the norm based clipping will be used instead which is

more expensive.

• clippingThresholdPerSample: the clipping thread for each sample. Default

value is 1#INF which means infinity (i.e., clipping is turned off).

• L2RegWeight: the L2 regularization weight. Default is 0.

• L1RegWeight: the L1 regularization weight. Default is 0.

• gradUpdateType: gradient update type. Valid values are None (default, no

special treatment to the gradient), AdaGrad, and RmsProp. When gradUp-

dateType equals to AdaGrad or RmsProp, you can control the behavior of

the gradient update using following parameters:

– normWithAveMultiplier : normalize the gradient with the average mul-

tipliers applied to the gradients by the AdaGrad/RmsProp algorithm.

Default is true (default).

When gradUpdateType equals to RmsProp, you can control the behavior of

the gradient update using following parameters:

– rms_wgt_inc: multiplicative increment of the learning rate scale. De-

fault is 1.2.

– rms_wgt_dec: multiplicative decrement of the learning rate scale. De-

fault is 0.75.

– rms_wgt_max: maximum learning rate scale allowed. A value closer

to 1 makes the learning rate adjustment more stable but slower. Default

is 10.

– rms_wgt_min: minimum learning rate scale allowed. A value closer to

1 makes the learning rate adjustment more stable but slower. Default is

0.1.
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– rms_gamma: smoothing factor used to estimate the moving average

of the variance. The smaller the value, the quicker it forgets the past

information. Default is 0.99.

• gaussianNoiseInjectStd: the standard deviation of the Gaussian noise added

when using the AdaGrad approach. Default is 0.

3.3.1.4 Adaptation

Only KL divergence regularization is directly supported. Other adaptation tech-

niques can be easily implemented by adding computation nodes to the network

using the model editing language (MEL) that we will describe in Chapter 4.

• adaptationRegType: adaptation regularization type. Valid values are None

(default) and KL (for KL divergence based regularization)

• adaptationRegWeight: adaptation regularization weight. Default value is 0.

3.3.1.5 Information display

• traceLevel: trace level to decide what information to print out in the stderr.

Valid values are 0 (default) and 1.

• numMBsToShowResult: display training statistics after how many minibatches.

Default is 10.

3.3.1.6 Gradient Check

• gradientCheck: determines whether to use the gradient checker. The default

value is false. When using the gradient checker you need to use a minibatch

size that is larger than the sequence length for RNNs due to the truncated

back-propagation through time (BPTT) algorithm used to train RNNs, and

a smaller learning rate to prevent numerical issues caused by divergence. In

addition, precision should be set to double.

3.4 Data Readers

The reader block is used for all types of readers and the readerType parameter

determines which reader to use. Each reader implements the same IDataReader

interface which will be described in detail in Chapter ??. Many parameters in the
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reader block are shared across different types of readers. Some are specific to a par-

ticular reader. In this block we will introduce the main data readers implemented

in CNTK.

3.4.1 UCIFastReader

UCIFastReader reads text-based UCI format data, in which each data record is a

line of space-delimited floating point feature and label values. The label infor-

mation is either at the beginning or the end of each line, if label information is

provided. To use the UCIFastReader you set the readerType to UCIFastReader as

in

reader=[

readerType="UCIFastReader"

file="c:\cntk\data\mnist\mnist_train.txt"

features=[

dim=784

start=1

]

labels=[

dim=1

start=0

labelDim=10

labelMappingFile="c:\cntk\data\mnist\mnistlabels.txt

"

]

]

In this example you can also notice two sub-blocks named features and labels.

These names are used by the data readers to match the computation node in your

network and the data loaded from the files. If simple network builders are used

to create your network, features and labels are the standard names of the feature

and label nodes, respectively. If you defined your network using the NDL network

builder you need to make sure these names matches the corresponding nodes in

your network. The UCIFastReader has following parameters:

• file: the file that contains the dataset. This parameter has been moved up

from the features and labels sub-blocks, because UCIFastReader requires

the file be the same, and moving up a level is an excellent way to make sure

this restriction is met.
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• dim: the dimension of the input value. Note that each column in the UCI

data file represents one dimension of the input data.

• start: the start column (zero-based) of the input data.

• labelDim: the number of possible label values. This parameter is required for

categorical labels since the dimension of the label node will be determined

by this value. Note that the label value itself is typically specified in one

column in the UCI data file.

• labelMappingFile: the path to a file used to map from the label value to a

numerical label identifier. The file typically lists all possible label values,

one per line, which might be text or numeric. The zero-based line number is

the identifier that will be used by CNTK to identify that label. It’s important

that the same label mapping file is used for training and evaluation. This

can be done by moving the labelMappingFile parameter up so that it can be

shared by both the training and evaluation blocks.

• customDelimiter : the customized delimiter. By default, spaces are used as

the delimiter. With this parameter you can choose to use another delimiter

such as comma or semicolon in addition to spaces. Note though, this reader

does not handle empty fields, e.g., two commas in a row, with or without

whitespace in-between.

• customDecimalPoint: the customized decimal point. By default, dot is used

as the decimal point. With this parameter you can choose to use another

decimal point such as those used in European countries.

• labelType : to indicate how the label columns should be interpreted. By

default it is set to "Category" which means it requires a mapping table to

map from values (can be string) to class IDs so that values are converted to

1-hot representation. It can be set to "Regression" to indicate that the values

are used directly without any conversion or "None" to indicate no labels are

used.

3.4.2 HTKMLFReader

HTKMLFReader is a data reader that reads files typically associated with speech

recognition tasks, and specifically with the HTK suite of tools. The reader can take

as input two types of files, a list of feature files known in HTK parlance as an SCP

file (“script” file) and a label file known as a MLF file (“model label file”). Because

CNTK can be used to build networks with arbitrary topology including networks
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with multiple inputs and outputs, the HTKMLFReader can process one or multiple

SCP and MLF files. A typical example of usage for the HTKMLFReader is as

follows:

reader=[

readerType="HTKMLFReader"

readMethod="rollingWindow"

miniBatchMode="partial"

randomize="auto"

features=[

dim=792

scpFile="$ScpDir$\TIMIT.train.scp.fbank.fullpath"

]

labels=[

mlfFile="$MlfDir$\TIMIT.train.align_cistate.mlf.cntk"

labelDim=183

labelMappingFile="$MlfDir$\TIMIT.statelist"

]

]

The HTKMLFReader has the following configuration parameters:

• readMethod: the method used to read the features files into memory for pro-

cessing during network training. The “rollingWindow” option reads in all

feature files and stores them on disk in one large temporary binary file. The

data is randomized by running a large rolling window over the data in this file

and randomizing the data within the window. This method produces more

thorough randomization of the data but requires a large temporary file writ-

ten to disk. The other option is “blockRandomize” which divides the data

into large blocks and then randomizes the order of the blocks and the order

of the data within the block. The data in each block is read directly from the

feature files. Because this does not require any temporary feature files, this

option is more appropriate for large corpora. The default is blockRandom-

ize. Note that the blockRandomize option requires an archive format of SCP

file, described below. Also, as described below, when used in conjunction

with “frameMode=false” the blockRandomize read method will randomize

over utterances, but not frames. This is appropriate for use with recurrent

architectures when preserving the sequential nature of the training examples

is desired.

• pageFilePath: specify where the temporary page file of the features should

be stored. By default it will use system provided temp file.
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• randomize: Auto or None if readMethod is rollingWindow, Auto, None, or

a specified block size if readMethod is blockRandomize. It determines how

the reader should randomize the data. When a block size is specified, only

that much of data will be in memory at one time.

• minibatchMode: Partial or Full, this option decides how to handle the last

minibatch if there are not enough frames to form a complete minibatch of the

requested size. The default is Partial, which will use the remaining frames

in a smaller final minibatch of the training epoch. The Full option will only

process complete minibatches.

The above example has two sources of data being processed by the reader, features,

in the form of a list of HTK feature files, and labels, which are in the form of an

HTK MLF file. Both features and labels correspond to nodes in the computational

network, in this case, the input and output nodes, respectively. Note that “features”

and “labels” are the default names used by the SimpleNetworkBuilder but if the

network is designed using the Network Description Language (NDL), then any

names can be used, as long as they each have a corresponding node in the network.

To specify continuous-valued features, e.g. MFCC’s or log mel filterbank coef-

ficients, the following parameters should be included in the a configuration block:

• scpFile: a list of files to be processed. The files should be HTK compatible

files and can be specified in standard mode or “archive” model. The details

of using an archive are described below. configuration parameter.

• dim: an integer that specifies the full feature vector dimension with the de-

sired context window. For example, if you had 72-dimensional features (24-

dimensional filterbank features plus delta and delta-delta coefficients) and

the network is designed to process a context window of 11 frames, the spec-

ified dimension should be 792. Note that only symmetric context windows

are supported.

To specify the corresponding labels, e.g. phoneme or senone labels, a configuration

block should be used that specifies the following parameters:

• mlfFile: an HTK-style MLF file that contains the labels for all utterances

specified in the SCP file.

• labelDim: the total cardinality of the label set

• labelMappingFile: a list of all the labels seen in the MLF file
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Note that multiple inputs and outputs can be specified using additional reader

blocks for either features read from files listed in an SCP file or labels read from

an MLF file. For example, in a multi-task learning scenario, where the network

was predicting both speaker identity and senone label, the user would specify an

additional block that includes an MLF file that contains labels corresponding about

speaker identity. Similarly, for a network with multiple inputs, e.g. both MFCC

and PLP features, an additional feature block would be used.

For recurrent structures, such as an RNN or an LSTM, there are additional

configuration options in the HTKMLFReader

• frameMode: true or false, whether the reader should randomize the data at

the frame level or the utterance level. Setting frameMode to true is the de-

fault and is appropriate for training networks without any temporal connec-

tions. For networks that are designed to learn sequential information, e.g.

RNN, frameMode should be set to false, which means utterances are ran-

domized but proper sequence is maintained within an utterance. Note that

this only works with the “blockRandomize” read method.

• nbruttsineachrecurrentiter: specifies the number of utterances to process to-

gether for efficient training of networks with recurrent structures. The default

is 1.

• truncated: true or false

It is important to note that there are some small differences between the standard

SCP and MLF files used in HTK and the ones used in CNTK.

Most notably, the MLF file must contain the actual symbols used for classifica-

tion. For continuous speech recognition, this typically means labels corresponding

to the senones (physical HMM states). However, HVite typically generates an MLF

during forced alignment that includes only the logical HMM state names. Thus, to

use this MLF in CNTK, either the MLF must be post-processed to replace the log-

ical state names with thee corresponding senone labels, or HVite must be modified

so that it writes the senone labels directly.

The SCP files processed by the HTKMLFReader can be one of two varieties:

either the standard format, where each line corresponds to a physical feature file, or

the aliased format, where each line contains a logical name and refers to a segment

of a possibly larger physical file, defined by start and end frames. The logical name

is used to identify the corresponding labels in the MLF file. Even if the files are

stored individually, as in the first case, the aliased format must always be used with

the blockRandomize read method, as it uses the information about the starting and

ending frames in the SCP file to determine the utterance lengths without having
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to open the files themselves. In this case, the start frame should be 0 and the

ending frame should be set appropriately based on the length of the utterance. In

addition, for multiple inputs and/or outputs, the aliased format should also be used

so that all SCP files and MLF files have their logical names in common. If the

rollingWindow read method is used instead of blockRandomize, then the start and

end frame information may be omitted.

Here are example snippets of SCP and MLF files for the TIMIT corpus for

appropriate for a network with 2 feature inputs (in this case, MFCC and PLP fea-

tures) and 1 output corresponding to phoneme states. The SCP file for the MFCC

features contains entries such as these.

train-dr1-fcjf0-si1027.mfc=//hostname/data/TIMIT/mfc/train/

dr1/fcjf0/train-dr1-fcjf0-si1027.mfc[0,306]

train-dr1-fcjf0-si1657.mfc=//hostname/data/TIMIT/mfc/train/

dr1/fcjf0/train-dr1-fcjf0-si1657.mfc[0,281]

train-dr1-fcjf0-si648.mfc=//hostname/data/TIMIT/mfc/train/

dr1/fcjf0/train-dr1-fcjf0-si648.mfc[0,359]

The SCP file for the PLP features is be similar but point to different physical

files. Note that the logical root name in both SCP files is the same.

train−dr1−fcjf0−si1027.plp=//hostname/data/TIMIT/plp/train/dr1/fcjf0/train−dr1−fcjf0−si1027.

plp[0,306]

train−dr1−fcjf0−si1657.plp=//hostname/data/TIMIT/plp/train/dr1/fcjf0/train−dr1−fcjf0−si1657.

plp[0,281]

train−dr1−fcjf0−si648.plp=//hostname/data/TIMIT/plp/train/dr1/fcjf0/train−dr1−fcjf0−si648.plp

[0,359]

The MLF file also shares the logical name with both SCP files. In this

#!MLF!#

"train-dr1-fcjf0-si1027.rec"

0 200000 h#_s2 -136.655975 h# -589.680481 h#

200000 400000 h#_s3 -145.780716

400000 800000 h#_s4 -307.243774

800000 1200000 q_s2 -349.529327 q -897.429504 q

1200000 1500000 q_s3 -280.568817

1500000 1800000 q_s4 -267.331390

1800000 1900000 iy_s2 -76.825096 iy -673.892883 iy

1900000 2400000 iy_s3 -305.832458

2400000 2800000 iy_s4 -291.235352

Finally, it is important to note that in most speech recognition applications,

the continuous-valued features are used as the inputs discrete categorical labels are

used as the output. However, the HTKMLFReader just associates data with node
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names and is agnostic as to how this data is used. For example, an appropriate

MLF file of speaker identity labels could be used to generate a one-hot vector of

speaker identity features as an input to the network.

3.4.3 LMSequenceReader

LMSequenceReader is a reader that reads text string. It is mostly often used for

language modeling tasks. An example of its setup is as follows

reader=[

readerType="LMSequenceReader"

randomize=false

nbruttineachrecurrentiter=10

unk="<unk>"

wordclass="$DataDir$\wordclass.txt"

file="$DataDir$\penntreebank.train.txt"

labelIn=[

labelDim=10000

beginSequence="</s>"

endSequence="</s>"

]

]

In this example, the LMSequenceReader has following parameters:

• randomize: it is either None or Auto. This specifies the mode of whether

doing sentence randomization of the whole corpus.

• nbruttsineachrecurrentiter : this specifies the limit of the number of sen-

tences in a minibatch. The reader arranges same-length input sentences, up

to the specified limit, into each minibatch. For recurrent networks, trainer re-

sets hidden layer activities only at the beginning of sentences. Activities of

hidden layers are carried over to the next minibatch if an end of sentence is

not reached. Using multiple sentences in a minibatch can speed up training

processes.

• unk : this specifies the symbol to represent unseen input symbols. Usually,

this symbol is “<unk>”. Unseen words will be mapped to the symbol.

• wordclass : this specifies the word class information. This is used for class-

based language modeling. An example of the class information is below.
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The first column is the word index. The second column is the number of

occurrences, the third column is the word, and the last column is the class id

of the word.

0 42068 </s> 0

1 50770 the 0

2 45020 <unk> 0

3 32481 N 0

4 24400 of 0

5 23638 to 0

6 21196 a 0

7 18000 in 1

8 17474 and 1

• file : the file contains text strings. An example is below

</s> pierre <unk> N years old will join the board as a

nonexecutive director nov. N </s>

</s> mr. <unk> is chairman of <unk> n.v. the dutch

publishing group </s>

In this example you can also notice one sub-blocks named labelIn.

• labelIn: the section for input label. It contains the following setups

– beginSequence – the sentence beginning symbol

– endSequence – the sentence ending symbol

– labelDim – the dimension of labels. This usually means the vocabulary

size.

3.4.4 LUSequenceReader

LUSequenceReader is similar to SequenceReader. It however is used for language

understanding tasks which have input and output strings that are different. An

example of setting up LUSequenceReader is as follows

reader=[

readerType="LUSequenceReader"

randomize="none"

wordContext=0:1:2

nbrUttsInEachRecurrentIter=10



CHAPTER 3. COMPUTATIONAL NETWORK TOOLKIT 70

unk="<unk>"

wordMap="$DataDir$\inputmap.txt"

file="$DataDir$\atis.train.IOB"

labelIn=[

useWordMap=true

beginSequence="BOS"

endSequence="EOS"

token="$DataDir$\input.txt"

]

labels=[

beginSequence="O"

endSequence="O"

token="$DataDir$\output.txt"

]

]

In this example, the LUSequenceReader has following parameters:

• wordContext: this specifies a context window. For example, wordContext=0:1:2

specifies a context window of 3. In this context window, it reads input at a

current time, the next time and the time after the next time. Another exam-

ple would be wordContext=0:-1. In such case, LUSequencReader reads a

context window of 2 that consist of the current input and the immediate last

input. .

• randomize: it is either None or Auto. This specifies the mode of whether

doing sentence randomization of the whole corpus.

• nbrUttsInEachRecurrentIter : this specifies the limit of the number of sen-

tences in a minibatch. The reader arranges same-length input sentences, up

to the specified limit, into each minibatch. For recurrent networks, trainer re-

sets hidden layer activities only at the beginning of sentences. Activities of

hidden layers are carried over to the next minibatch if an end of sentence is

not reached. Using multiple sentences in a minibatch can speed up training

processes.

• unk : this specifies the symbol to represent unseen input symbols. Usually,

this symbol is “<unk>”.

• wordMap: this specifies a file that maps inputs to other inputs. This is useful

if the user wants to map some inputs to unknown symbols. An example of

the word mapping file is as follows
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buy buy

trans <unk>

• file : the file contains input and its labels. The last column is the label, and

the other columns contain inputs. An example of training file is below.

BOS O

flight O

from O

charlotte B-fromloc.city_name

to O

las B-toloc.city_name

vegas I-toloc.city_name

EOS O

In this example you can also notice two sub-blocks named features and labels.

• labelIn: the section for input label. It contains the following setups

– useWordMap – [Ture, False] specifies if using word map to map input

words to other input words.

– beginSequence – the sentence beginning symbol

– endSequence – the sentence ending symbol

– token – token file contains a list of input words. Their orders are not

important.

• labels: the section for output label.

– token – token file contains a list of output labels. Their order is not

important as long as the tokens are unique.

3.5 Top-Level Commands

Besides the train command, CNTK supports a list of other top-level commands.

We list all the top-level commands and corresponding parameters in this section.
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3.5.1 Train Command

This command asks CNTK to train a model. The related parameters are:

• reader – the reader configuration block used to determine how to load input

data. We have covered this parameter block in previous sections.

• SGD – the SGD training setup.

• NDLNetworkBuilder – the NDL network builder configuration block.

• simpleNetworkBuilder – the simple network builder configuration block.

• cvReader – (optional) the reader configuration block for cross-validation

data

• makeMode – if true (default) the training will continue from whatever epoch

interrupted. If false the training will restart from scratch.

• numMBsToShowResult – indicates after how many minibatches the inter-

mediate results should be shown.

3.5.2 Adapt Command

This command adapts an already trained model using KL divergence regulariza-

tion. It is advised that all other adaptations should be carried out using MEL. The

adapt command is very similar to the train command except that it carries two more

parameters:

• originalModelFileName – the file name of the model that will be adapted.

• refNodeName – the name of the node in the computational network which

will be used for KL divergence regularization.

3.5.3 Test or Eval Command

This command evaluate/test a model for accuracy, usually with a test dataset. The

related parameters are

• reader – the reader configuration block to read the test data.

• modelPath – the path to the model to be evaluated.

• minibatchSize – the minibatch size to use when reading and processing the

dataset.
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• epochSize – the size of dataset. Default is 0. The entire dataset will be

evaluated if it’s set to 0.

• numMBsToShowResult – indicates after how many minibatches the inter-

mediate results should be shown.

• evalNodeNames – an array of one or more node names to evaluate.

3.5.4 CV

This command evaluates a series of models from different epochs on a development

(or cross validation) set and displays the information of the best model. Besides

the parameters used for the test command, this command also use the parameters

• crossValidationInterval – the array of 3 integers identifying the starting epoch,

epoch increment and final epoch to evaluate. For example, 3:2:9 means the

models 3,5,7, and 9 will be evaluated.

• sleepTimeBetweenRuns – how many seconds to wait between runs. This is

needed only if your GPU is too hot.

3.5.5 Write Command

This command writes the value of an output node to a file. The related parameters

are

• reader – the reader configuration block to read the input data.

• writer – the writer configuration block to determine how to write the output

data. If this value is not specified the outputPath parameter will be used.

• minibatchSize – the minibatch size to use when reading and processing the

dataset.

• epochSize – the size of dataset. Default is 0. The entire dataset will be

evaluated if it’s set to 0.

• modelPath – the path to the model to be used to compute the output.

• outputPath – the path to the file to write the output in a text format. If the

writer block exists this parameter will be ignored. Either outputPath or writer

must exist.

• outputNodeNames – an array of one or more output node names to be written

to a file.
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3.5.6 Edit Command

This command executes a model editing language (MEL) script. We will describe

MEL in detail in Chapter 4. Here we list the associated parameter blocks.

• editPath – the path to the MEL script to be executed.

• ndlMacros – the path to the NDL macros file that will be loaded and used in

the MEL script.

3.5.7 SVD Command

This command conducts SVD decomposition for learnable parameters. For exam-

ple:

svd=[

action="SVD"

modelPath="train\lstm.model.67"

outputModelPath="train\lstm.model.svd"

SVDConfig="nodeConfigs"

]

Here we list the associated parameter blocks.

• modelPath – specifies where to load the initial model

• outputModelPath – specifies where to save the revised model

• SVDConfig – a config file which specifies how the SVD is performed for

different groups of nodes. This config is in a two-column format:

<NodeNameRegex> <float>

The first column is a regular expression which will match the node name in

one group. The second column is a float indicating what percentage of SVD-

energy will be kept after SVD, where SVD-energy is defined as the sum of

singular values. For example, the config

LSTMoutput[1-3].Wx[ifco] 0.4

LSTMoutput[1-3].Wh[ifco] 0.6

will cause a more aggressive SVD (0.4) decomposition for the non-recurrent

connections (from x to i,f,c,o gates) in LSTM and less aggressive SVD de-

composition for recurrent connections (from h to i,f,c,o gates), where the

parameter names are defined in the NDL.
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3.5.8 Dumpnode Command

This command dumps the information of node(s) to an output file, which can also

be accomplished in MEL with greater control. The related parameters are:

• modelPath – the path to the model file containing the nodes to dump.

• nodeName – the name of the node to be written to a file. If not specified all

nodes will be dumped.

• outputFile – the path to the output file. If not specified a file name will be

automatically generated based on the modelPath.

• printValues – determines whether to print the values associated with a node

if the node’s values are persisted in the model. Default is true.

• printMetadata – determines whether to print the metadata (node name, di-

mensions, etc.) associated with a node. Default is true.

3.5.9 WriteWordAndClass Command

This command reads the text training data, counts the number of occurrences of

each each word in the training set, sorts the words in the descending order of the

counts, gives each word a unique id, assign each word to a class, and generates

a four column vocabulary file and a word-to-id mapping file to be used by the

LMSequenceReader to train class-based language models. The related parameters

are:

• inputFile – the path to the text training file.

• outputVocabFile – the name of the generated four-column vocabulary file.

The first column is the word id, the second column is the count of the word,

the third column is the word, and the fourth column is the class id.

• outputWord2Cls – the path to the generated word-to-class mapping file.

• outputCls2Index – the path to the generated class-to-wordId mapping file.

• vocabSize – the desired vocabulary size.

• nbrClass – the desired number of classes .

• cutoff – the cutoff count. When a word’s count is below or equal to this value

the word will be treated as <unk>. Default is 2. Note that this parameter is

used only if the desired vocabulary size is larger than the actual number of

words exist in the training set.
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3.5.10 CreateLabelMap Command

Often it is easy to manually craft the label mapping file. Sometimes, however, you

would prefer to have the label mapping file generated automatically which is the

purpose of the CreateLabelMap command. Currently UCIFastReader is the only

reader that supports this action. The related parameters are

• section – the parameter block name (usually a train block) which has the

reader sub-block that will be used to generate the label mapping file. The

generated label mapping file will be saved to the labelMappingFile specified

in the reader sub-block of this parameter block.

• minibatchSize – the minibatch size to use when creating the label mapping

file.

3.6 Plot Command

This command loads a given computation network and describes the network topol-

ogy (usually a DAG) using the DOT (http://www.graphviz.org/doc/info/lang.html)

language. It can also optionally call a third-part tool (http://www.graphviz.org/Documentation/dotguide.pdf)

to render the network topology. Note that many DOT rendering tools are optimized

for DAG, and the rendered graph becomes quite messy if the network structure is

non-DAG. The non-DAG structure is usually caused by the use of delay node. In

this case, this command will treat all the delay nodes as leaf nodes.

The related parameters of this command are:

• modelPath – the path to the computation network.

• outputDOTFile – the path to the output DOT file. If user does not specify it,

${modelPath}.dot will be assumed.

Optionally, if uses want to convert the dot description to a figure, he or she needs

to specify the following parameters:

• outputFile – the path to the output figure.

• renderCmd – A string indicates how the third party tool is used to convert

from a DOT file to a figure. For example, if graphviz is used, the RenderCmd

can be written as

RenderCmd="d:\Tools\graphviz\bin\dot.exe -Tjpg <IN> -o<

OUT>"
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where the plot command will substitute “<IN> “ with the outputDOTFile

command parameters and “<OUT>” with the outputFile command parame-

ters; -Tjpg indicates a jpg file format is selected.

Here is a complete example:

command=topoplot

topoplot=[

action="plot"

modelPath="train\lstm.model.0"

outputdotFile="train\lstm.model.dot" # this specifies the

dot file to output

# if user does not specify this, it will be ${modelPath}.

dot

outputFile="train\lstm.model.jpg" # this specifies the

rendered image

renderCmd="d:\Tools\graphviz\bin\dot.exe -Tjpg <IN> -o<OUT

>"

# if RenderCmd is specified, CNTK will call the plot

command after replacing

# <IN> with ${outputdotFile} and <OUT> with ${outputfile}

]

3.7 ConvertDBN Command

This command is used to convert a model generated by Microsoft’s dbn.exe tool

to a CNTK model. This command is useful when you want to compare the per-

formance of these two tools (dbn.exe only supports simple fully connected deep

neural networks), port existing models trained with dbn.exe to CNTK, or if you

want to use the RBM pre-training which is available in dbn.exe but not in CNTK

right now. The related parameters are

• modelPath – the full path of the generated CNTK model.

• dbnModelPath – the full path of the model to be converted.

3.8 Additional Top-Level Configurations

Besides commands, there are several top-level configurations that you can set.
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3.8.1 Stderr

All logging information in CNTK is sent to standard error, and will appear on the

console screen. You can redirect the logging information to a file with the stderr

parameter. The value of the stderr parameter defines the folder and the prefix of the

log file. The suffix is determined by the command block executed. For example, if

you set

stderr="c:\cntk\log\cntk"

and the command block mnistTrain is to be executed then the full log file name

will be c:\cntk\log\cntk_mnistTrain.log. It is important to note that this file is over-

written on subsequent executions if the stderr parameter and the command being

run are identical.

3.8.2 DeviceId

CNTK supports CPU and GPU computation. Users can determine what device to

use by setting the deviceId parameter. The possible values are

• auto: choose the best device available.If multiple GPUs are available, it will

choose the fastest, least busy GPU. If no usable GPUs can be found CPU

will be used.

• cpu or -1: use the CPU for all computation

• a non-negative integer: use the GPU identified by this number to carry out

all computation.

• all : use all the available GPU devices (currently this flag is not supported)

3.8.3 Precision

The precision of the floating point values determines the tradeoff between the nu-

merical accuracy and the training and testing speed. In CNTK the precision is

specified at the top-level as

precision="float"

The valid values are float (default) and double. For most experiments you

should use float since it’s significantly faster, esp. when running under GPUs. To

run gradient check you should set precision to double.
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3.8.4 NumCPUThreads

The NumCPUThreads parameter determines the maximum CPU threads used for

CPU math operations. In CNTK it is specified at the top-level as

NumCPUThreads=4

By default the value is 0, which means using what ever number of threads deter-

mined by MKL, ACML, or OpenMP. If a positive number is specified, the number

of threads will not be larger than the value specified and the number of hardware

concurrency. If a negative number is specified, the actual number of thread will be

the sum of the number of hardware concurrency and this value floored at 1.

3.8.5 TraceLevel

The traceLevel parameter is usually used by the code in CNTK to specify how

much extra output (verbosity) is desired as in

traceLevel=0 # larger values mean more output

The default value is 0 and specifies minimal output. The higher the number the

more output can be expected. Currently 0 (limited output), 1 (medium output) and

2 (verbose output) are the only values supported.

3.8.6 ShareNodeValueMatrices

The ShareNodeValueMatrices parameter is used to indicate whether to turn on the

sharing of forward computation result matrices to further reduce memory usage.

To turn it on, use

ShareNodeValueMatrices=true

The default value is false, which means the memory sharing only happens during

the backward phase. You should decide whether to turn it on by running the same

setup with this flag on and off. If the results are the same, you are safe to turn it on.

In the future, we will make it on by default after more extensive test.

3.9 Advanced Command Line Parsing Rules

Here we describe CNTK command line parsing rules. As described above, CNTK

consists of a number of components to complete a task. Most of these components

need some configuration information available in order to function, and these con-

figuration parameters are provided through configuration files in CNTK.
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Configuration files are collections of name-value pairs. The configuration data

can be one of the following types:

• Simple: a single value is assigned to the configuration parameter. For exam-

ple, deviceId=auto.

• Array: a configuration parameter is assigned an array of values which need

not be of a uniform type. ’:’ is the default separator for arrays. The separator

may be changed by enclosing the array values in parenthesis and placing the

new separator character immediately following the open parenthesis. The

’*’ character allows a particular value to be repeated multiple times in the

array. For example, minibatchSize=256:512:512:512:1024 equals to mini-

batchSize=256:512*3:1024.

• Set: parameter sets contain sets of configuration parameters of any type.

Parameter sets can be nested. The default separator for parameter sets is

’;’ if multiple items are included on one line. Line separators also serve as

separators for items. For example,

block1=[id=1;size=256]

block2=[

subblock=[string="hi";num=5]

value=1e-10

array=10:"this is a test":1.25

]

In CNTK, configuration files are organized in a hierarchical fashion. The actual

data values are not evaluated until a CNTK component requests the value. When a

value is requested by a component, CNTK will search inside the component block

first. If the value is not found, it will continue looking in the parent and grandparent

parameter set until the parameter is found, or the top level of the configuration

hierarchy is reached without a match. This allows the share of the same parameter

values easier across different blocks.

As we mentioned earlier, to run CNTK you need to specify the configuration

file in the command line as

cntk configFile=yourExp.cntk

This will load the requested configuration file, and execute any command block

listed in the command parameters in the configuration file.
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3.9.1 Commands and Actions

There must be a top-level command parameter, which defines the commands (sep-

arated with ’:’) that will be executed in the configuration file. Each command

references a command block in the file, which must contain an action parameter

defining the operation that block will perform. For example the following com-

mand will execute the mnistTrain block, which executes the train action, followed

by the mnistTest block, which evaluates the model.

command=mnistTrain:mnistTest

mnistTrain=[

action="train"

...

]

mnistTest=[

action="eval"

...

]

3.9.2 Configuration Overloads In the Command Line

It is common to have a configuration that can be used as a base configuration, and

modify only a few parameters for each experimental run. This can be done in a

few different ways, one of which is to override settings on the command line. For

example, to override the model file path, one can simply modify the command line

as follows:

cntk configFile=yourExp.cntk stderr="c:\temp\newpath"

This will override the current setting for stderr, which is defined at the root

level of the configuration file, with the new value. If a parameter inside a command

block needs to be modified, the block also needs to be specified. For example, I

can change the minibatchSize for an experiment in the command line as

cntk configFile=yourExp.cntk mnistTrain=[minibatchSize=256]

or modify the data file used for an experiment as

cntk configFile=yourExp.cntk mnistTrain=[reader=[file="

mynewfile.txt"]]
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3.9.3 Layered Configuration Files

Instead of overriding some parts of a configuration file using command line pa-

rameters, one can also specify multiple configuration files, where the latter files

override the earlier ones. This allows a user to have a master configuration file,

and then specify, in a separate configuration file, which parameters of the master

they would like to override for a given run of CNTK. This can be accomplished by

either specifying a ’+’ separated list of configuration files, or by using the "config-

File=" tag multiple times. The following are equivalent.

cntk configFile=yourExp1.cntk+yourExp2.cntk

cntk configFile=yourExp1.cntk configFile=yourExp2.cntk

If yourExp2.cntk only contains the string "mnistTrain=[reader=[file=mynewfile.txt]]",

then both of these commands would be equivalent to:

cntk configFile=yourExp1.cntk mnistTrain=[reader=[file="

mynewfile.txt"]]

Note that the value of a variable is always determined by the last time it is

assigned. It is also possible to mix command-line parameters, and layered config-

uration files, in arbitrary combinations. For example,

cntk configFile=yourExp1.cntk+yourExp2.cntk var1=value

configFile=yourExp3.config

would process these configuration parameters in the order they appear on the com-

mand line and whatever value assigned last is the value used.

In addition being able to specify multiple configuration files at the command

line, a user can include one configuration file within another. For example, if the

first line of yourExp2.cntk was

include=yourExp1.cntk

then simply running

cntk configFile=yourExp2.cntk

would be equivalent to running

cntk configFile=yourExp1.cntk+yourExp2.cntk

where in this latter case, yourExp2.cntk doesn’t contain the include statement.

Note that these include statements can appear anywhere inside a configuration file;

wherever the include statement appears, that is where the specified configuration

file will be included. Including a configuration file is equivalent to pasting the
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contents of that file at the location of the include statement. Include statements are

resolved recursively (using a depth-first search), meaning that if yourExpA.cntk in-

cludes yourExpB.cntk, and yourExpB.cntk includes yourExpC.cntk, then the full

chain will be resolved, and yourExpC.config will effectively be included in your-

ExpA.cntk. If a configuration file is included multiple times (eg, ’A’ includes ’B’

and ’C’, and ’B’ also includes ’C’), then it will effectively only be included the first

time it is encountered.

3.9.4 Stringize Variables

While layered configuration files allow users to reuse configuration files across

experiments, this can still be a cumbersome process. For each experiment, a user

might have to override several parameters, some of which might be long file paths

(eg, ’stderr’, ’modelPath’, ’file’, etc). The "stringize" functionality can make this

process much easier. It allows a user to specify configuration like the following:

command=SpeechTrain

stderr="$Root$\$RunName$.log"

speechTrain=[

modelPath="$Root$\$RunName$.cn"

SGD=[

reader=[

features=[

type="real"

dim="$DataSet1_Dim$"

file="$DataSet1_Features$"

]

]

]

]

Here, "Root","RunName", "DataSet1_Dim", and "DataSet1_Features" are vari-

ables specified elsewhere in the configuration (at a scope visible from the point at

which they are used). When interpreting this configuration file, the parser would

replace every string of the form "$VarName$" with the string "VarValue", where

"VarValue" represents the value of the variable called "VarName". The variable res-

olution process is recursive; for example, if A=$B$, B=$C$, and C=HelloWorld.txt,

then A would be resolved as "HelloWorld.txt". Please make sure there is no refer-

ence loop in your configuration file. Otherwise the parser will go into infinite loop

at this moment.
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Notice that because it is equivalent for a user to specify the value of a vari-

able in a configuration file vs. at the command line, the values for these vari-

ables can be specified in either location. Recall that the value of a variable is

determined by the last time it is assigned, whether that happens to be in a con-

figuration file, or on the command line. Thus, if "Root" is defined in config1.txt,

but overridden at the command-line, then the value specified at the command-line

would be the one used to resolve instances of $Root$ in configFile1.txt. One use-

ful feature is that if ’stderr’ or ’modelPath’ point to directories which do not ex-

ist, these directories will be created by CNTK; this allows you to specify some-

thing like: "stderr=$Root$\$RunName$\$RunName$.log", even if the directory

"$Root$\$RunName$" doesn’t exist.

3.9.5 Default, Repeated Values, and Comments

Most parameters in configuration files have a default value which will be used if

no configuration value is specified. If there is no default value and the value cannot

be found in a search, an exception will be displayed and the program will exit.

If a parameter name is specified more than once, the last value set to that value

is the one that will be maintained. The only exception to this is in parameter sets,

which are surrounded by ’[’ square braces ’]’, in these cases the values inside the

braces are considered to be a parameter set, and will be added to the currently

existing parameter set. For example:

params=[a=1;b=2;c=3]

params=[c=5;d=6;e=7]

is effectively equal to:

params=[a=1;b=2;c=5;d=6;e=7]

Note that this append processing is NOT used for array elements, and the entire

array will be replaced if it is set multiple times.

The ’#’ character signifies the beginning of a comment, everything that occurs

after the ’#’ is ignored. The ’#’ must be preceded by whitespace or be at the begin-

ning of the line to be interpreted as a comment. The following is valid comment

stderr="c:\cntk\log\cntk" # "_mnistTrain_mnistTest.log"

The following is an example of a value that will not be interpreted as a com-

ment. It sets a parameter “var” to infinity as the ’#’ in ’1#INF’ is not a comment

marker

var=1#INF



Chapter 4

Advanced Setups in

Computational Network Toolkit

4.1 Network Definition Language

The network description language (NDL) provides a simple yet powerful way to

define a network in a code-like fashion. It contains variables, macros, and other

well understood concepts and allows users of CNTK to define any computational

network architecture they want.

4.1.1 Basic Concepts

The example NDL script below describes a one-hidden-layer DNN.

#Variables

SDim=784

HDim=256

LDim=10

#Inputs

features=Input(SDim, 1)

labels=Input(LDim, 1)

#Parameters

W0=Parameter(HDim, SDim)

B0=Parameter(HDim, 1)

W1=Parameter(LDim, HDim)

B1=Parameter(LDim, 1)

#Computation

85
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Times1=Times(W0, features)

Plus1=Plus(Times1, B0)

RL1=RectifiedLinear(Plus1)

Times2=Times(W1, RL1)

Plus2=Plus(Times2, B1)

#Training Criterion

CE=CrossEntropyWithSoftmax(labels, Plus2)

#Test Objective Function

ErrPredict=ErrorPrediction(labels, Plus2)

#Special Nodes

FeatureNodes=(features)

LabelNodes=(labels)

CriterionNodes=(CE)

EvalNodes=(ErrPredict)

OutputNodes=(Plus2)

We will introduce the basic concepts such as variables, parameters, inputs, and

training criteria using this example.

4.1.1.1 Variables

SDim=784

HDim=256

LDim=10

The first thing you will notice are the variables: SDim, HDim and LDim. Vari-

ables are defined in NDL when they appear on the left of an equal sign. From that

point on that variable name will be associated with the value it was assigned. A

variable can contain a matrix or scalar value. Variables are immutable, and assign-

ing new values to an existing variable is not supported.

Variable names may be any alphanumeric sequence that starts with a letter and

are case-insensitive. Any name that is also a function (operator) name is a reserved

word and cannot be used for a variable. The special node names FeatureNodes,

LabelNodes, CriterionNodes, EvalNodes, OutputNodes are also reserved and may

not be used as variable names.

The variables SDim, HDim and LDim are set to scalar numeric values in this

example and are used as parameters in the NDL functions. More specifically,

SDim, HDim and LDim are the sizes of input, hidden, and output layers in this

example and assigned the values 784, 256, and 10, respectively. The input and
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output layer sizes are determined by the task while the hidden layer size can be

chosen by the users depending on their needs.

4.1.1.2 Inputs

features=Input(SDim)

labels=Input(LDim)

Inputs are used to represent input data and labels associated with the samples.

Input is a special function. They are represented as InputNodes internally and are

not saved as part of the CN model. In this example, the features input will have the

dimensions of the input data (SDim), and the labels input will have the dimensions

of the labels (LDim). The variables chosen here are for convenience and could be

any valid variable name.

4.1.1.3 Parameters

B0=Parameter(HDim, 1)

W0=Parameter(HDim, SDim)

W1=Parameter(LDim, HDim)

B1=Parameter(LDim, 1)

Parameters are matrices that constitute the learned model upon completion of

training. They are represented as LearnableParameterNodes internally and are

saved as part of the CN model. The model parameters transform the input data

into the desired output data and are updated as part of the learning process.

In this example. CNTK will train W0 and W1 the weight matrices, and B0

and B1 the bias matrices. Parameter matrices are always represented as two-

dimensional matrices internally. If only one dimension is given the other dimen-

sion is assumed to be 1. By default parameters are initialized with uniform random

numbers between -0.5 and 0.5, but other options exist (see Section 4.1.4).

4.1.1.4 Functions

Times1=Times(W0, features)

Plus1=Plus(Times1, B0)

RL1=RectifiedLinear(Plus1)

Functions describe computation steps. Functions are called using a syntax sim-

ilar to most programming languages. The function name is followed by parenthesis

which contains the comma separated parameter list. Each function returns a single
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value, which is identified by a variable. The complete list of functions can be found

in Section 4.1.4.

The hidden layer in this example involves three computation steps: It first gets

the product of the weight matrix W0 and the features matrix; then gets the excita-

tion by adding the product to the bias; and finally applies the activation function,

in this case RectifiedLinear(), to the excitation. Internally the operators Times(),

Plus() and RectifiedLinear() are represented as computation nodes TimesNode,

PlusNode, and RectifiedLinearNode, respectively. These Computation nodes are

saved as part of the CN model but their values are not.

4.1.1.5 Training and Testing Criteria

#Training Criterion

CE=CrossEntropyWithSoftmax(labels, Plus2)

#Test Objective Function

ErrPredict=ErrorPrediction(labels, Plus2)

Each CN can have multiple root nodes used for different purposes. In this ex-

ample, the training and testing criteria are different. We use the operator CrossEn-

tropyWithSoftmax() to compute the training criterion and the operator ErrorPredic-

tion() to compute the testing criterion. These operators are internally represented

as computation nodes CrossEntropyWithSoftmaxNode and ErrorPredictionNode

with names CE and ErrPredict, respectively.

4.1.1.6 Special Nodes

FeatureNodes=(features1, features2)

LabelNodes=(labels)

CriterionNodes=(CE)

EvalNodes=(ErrPredict)

OutputNodes=(Plus2)

After defining the network, it’s important to let CNTK know what the special nodes

are in the network. For example, CNTK needs to know which input nodes are

features and labels. It also needs to know the default output nodes, evaluation nodes

and training criteria nodes. CNTK supports multiple inputs and outputs which can

be represented by comma separated variable names surrounded by parentheses.

These special nodes can be specified in two different ways, the node arrays, or

by use of special tags we will discuss later. If both methods are used the values are

combined.
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4.1.1.7 Comments

to be interpreted as a comment. The following are valid comments:

#Test Objective Function

ErrPredict=ErrorPrediction(labels, Plus2) # classification

error

# the following variable is set to infinity and

# the # in 1#INF is not interpreted as a comment marker

var = 1#INF

4.1.2 Macros

While creating a network using the syntax shown above is not all that difficult, it

can get wordy when creating deep neural networks with many layers. To alleviate

this problem, common definitions can be combined into macros.

4.1.2.1 Defining Macros

Macros can be defined as a one line function, or as a block of code. For example,

the single-line macro

RFF(x1, w1, b1)=RectifiedLinear(Plus(Times(w1,x1),b1))

defines the three steps involved in the hidden layer computation in the previous

section, all in one line. When the functions calls are nested they will be evaluated

from the innermost nested function call to the outermost.

A macro can also be defined as a block of code, for example

FF(X1, W1, B1)

{

T=Times(W1,X1)

FF=Plus(T, B1)

}

defines the feed forward computation without the activation function. It shows an

alternate format of a macro. Semicolons are not required, but can be used if desired.

The variables and parameters used inside the macros are local to the macro but are

accessible externally with dot operators we will discuss later. The return value of

a macro is defined by a local macro variable that has the same name as the macro.

In this case the FF() macro’s return value is the FF local variable. If no variable

matches, the last variable in the macro will be returned.

The macro
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BFF(in, rows, cols)

{

B=Parameter(rows)

W=Parameter(rows, cols)

BFF = FF(in, w, b)

}

shows how parameters are declared within a macro. As in this example, a macro

may call another macro. However recursion (i.e., calling itself) is not supported.

The macro

RBFF(input,rowCount,colCount)

{

F = BFF(input, rowCount, colCount);

RBFF = RectifiedLinear(F);

}

calls the previous macro and adds the RectifiedLinear() activation function. The

macro

SMBFF(x,r,c, labels)

{

F = BFF(x,r,c);

SM = CrossEntropyWithSoftmax(labels, F)

}

computes the output layer value and the cross entropy training criterion. Since no

variable matches the name of the macro, the last variable defined in the macro, SM

in this case, is used as a return value.

4.1.2.2 Using Macros

The following example uses the macros defined above. It describes the same one-

hidden-layer network discussed in Section 4.1.1 but is much simpler and easier to

understand because of the use of macros. One new feature shown in this network

definition is the access to macro-region variables. ErrorPrediction() needs to ac-

cess an intermediate result from SMBFF before the CrossEntropyWithSoftmax() is

applied. Although the needed variable is local to the macro, it can be accessed via

the dot syntax. The return value of the macro is CE, so CE.F can be used to access

the local variable F defined in the macro. This does requires the user to know the

names used in the macro, so having all macro definitions available is important.

In the single line version of macros, there are no user defined variable names, so

this feature cannot be used. Since macros can be nested, dot names can be several

layers deep if necessary.
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# Sample, Hidden, and Label dimensions

SDim=784

HDim=256

LDim=10

#Inputs

features=Input(SDim)

labels=Input(LDim)

# Layer operations

L1 = RBFF(features, HDim, SDim)

CE = SMBFF(L1, LDim, HDim, labels)

Err=ErrorPrediction(labels, CE.F)

4.1.3 Optional Parameters

Optional Parameters are a feature that allows additional parameters to be speci-

fied to a function. While optional parameters can be specified for any function or

macro, they are limited to constant values. In addition, the underlying function

must support the passed optional parameters, or there is no effect on the network.

When optional parameters are used on a macro, the macro must define local vari-

ables that match the optional parameter name and value.

4.1.3.1 Parameter initialization

One common use of these optional parameters is to define how parameters will be

initialized. In the example

B0=Parameter(HDim, 1, init=zero)

W0=Parameter(HDim, SDim, init="uniform")

the Bias matrix will be zero initialized, and the weight matrix will be initialized

with uniform random numbers. Please consult Section 4.1.4 to find which func-

tions accept optional parameters

4.1.3.2 Tagging special values

As an alternate to providing an array of special nodes that are used as features,

labels, criteria, etc, optional parameters can be used. So instead of using

FeatureNodes=(features)

LabelNodes=(labels)

CriterionNodes=(CE)



CHAPTER 4. ADVANCED SETUPS IN COMPUTATIONAL NETWORK TOOLKIT92

EvalNodes=(ErrPredict)

we can tag these nodes as they are defined.

features=Input(SDim, 1, tag="feature")

labels=Input(LDim, 1, tag="label")

CE = SMBFF(L3, LDim, HDim, labels, tag="criterion")

Err=ErrorPrediction(labels, CE.F, tag="eval")

The acceptable tag names correspond to the special node types and are as fol-

lows:

• feature: feature input.

• label: label input

• criterion: training criteria

• eval: evaluation node

• output: output node

4.1.4 NDL Functions

This section describe the currently implemented NDL functions (operators). These

operations are implemented as computation nodes internally and are discussed in

Chapter 2. As CNTK is expanded, additional functions become available. In the

following discussion named optional parameters are optional parameters that are

specified by an augment name. For example, if cols is a named optional parameter,

we need to call the function as

Function(rowsValue, cols=colsValue)

4.1.4.1 InputValue or Input

Defines input data for the network. Inputs are read from a datasource.The data-

source information is specified in the configuration file separately, allowing the

same network to be used with multiple datasets easily. The syntax is

InputValue(rows, cols, {tag="feature"|"label"})

Input(rows, cols, {tag="feature"|"label"}) #deprecated

• rows - row dimension of the data.
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• cols - column dimension of the data, default to 1. Each column is considered

as a sample in CNTK. Default value is often used since the actual value may

be determined by the minibatch size.

• tag - [named optional] tag for the inputs to indicate the intended usage. It

can be either feature or label.

4.1.4.2 ImageInput or Image

Defines the three-dimensional (channel_id, img_row, img_col) image input data

stored in column-major for the network. ImageInputs are read from a datasource

which is specified in the configuration file separately, allowing the same network

to be used with multiple datasets easily. The syntax is

ImageInput(width, height, channels, numImages,

{tag="feature"|"label"})

Image(width, height, channels, numImages,

{tag="feature"|"label"}) #deprecated

• width - width of the image data.

• height - height of the image data.

• channels - number of channels in the image data (i.e. RGB would have 3

channels)

• numImages - number of images, defaults to 1. Each image is stored as a

column vector with size width× height× channels.

• tag - [named optional] tag for the inputs to indicate the intended usage. It

can be either feature or label.

CNTK uses column-major (similar to matlab) to store the matrices. Each image

is represented as a column vector internally and should be stored as [channel_id,

img_row, img_col].

4.1.4.3 LearnableParameter or Parameter

Defines a parameter in the network that will be trained and stored as part of the

model. Normally used for weight and bias matrices/vectors. These two function

names mean the same thing but Parameter is a shorter name. The syntax is
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LearnableParameter(row, cols,

{computeGradient=true|false,

init="fixedValue"|"uniform"|"gaussian"|"fromFile",

value=0, initValueScale=number})

Parameter(row, cols, {needGradient=true|false,

init="fixedValue"|"uniform"|"gaussian"|"fromFile",

value=0, initValueScale=number}) #deprecated

• rows - number of rows in the parameter.

• cols - number of columns in the parameter, defaults to 1.

• needGradient- [named optional] determines whether the parameter should

be updated by the training algorithm. Defaults is true.

• init - [named optional] parameter initialization method.

– fixedValue- initialize all the values in the parameter with a fixed value

determined by the optional value argument.

– fromFile - No initialization is required, should only be used if the net-

work will be initializing it in some other way

– uniform - Initializes the parameter matrix with uniform random num-

bers in the range of [−0.05× initV alueScale, 0.05× initV alueScale]

– gaussian - Initializes the parameter matrix with Gaussian random num-

bers with zero mean and standard deviation of 0.2×initV alueScale/
√
cols

• initValueScale - [named optional] scale the range of the random numbers

used for initialization. Only meaningful when Uniform or Gaussian is used

as a init method. Default is 1.

• value - [named optional] the initial value of all the parameters when the

initialization method is set to fixedValue. Default is 0.

4.1.4.4 Constant or Const

Defines a constant parameter (i.e., will not change during the training process) that

will be saved as part of the model. The syntax is

Constant(value, rows, cols)

Const(value, rows, cols) #deprecated
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• value - the value of the constant.

• rows - row dimension of the data, default to 1.

• cols - column dimension of the data, default to 1.

4.1.4.5 RectifiedLinear or ReLU, Sigmoid, Tanh, Log

Apply the rectified linear function (RectifiedLinear or ReLU), Sigmoid function

(Sigmoid), hyperbolic tangent (Tanh), or natural logarithm (Log) to each element

of the input matrix. The resulting matrix has the same dimension as that of the

input matrix. The syntax is

RectifiedLinear(m)

ReLU(m) #deprecated

Sigmoid(m)

Tanh(m)

Log(m)

• m - input matrix. Can be any matrix except when it’s input to the log function

under which condition each element must be positive (otherwise exception

will be thrown).

4.1.4.6 Softmax

Compute the softmax of the input matrix for each column. The resulting matrix

has the same dimensions as that of the input matrix. The syntax is

Softmax(m)

• m - input matrix.

4.1.4.7 LogSoftmax

Compute the log of softmax of the input matrix for each column. The resulting

matrix has the same dimensions as that of the input matrix. The syntax is

LogSoftmax(m)

• m - input matrix.
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4.1.4.8 SumElements

Calculate the sum of all elements in the input matrix. The result is a scalar (or one

by one matrix). The syntax is

SumElements(m)

• m - input matrix

4.1.4.9 SumColumnElements

Calculate the sum of all elements in each column of the input matrix. The result is

a row vector. The syntax is

SumColumnElements(m)

• m - input matrix

4.1.4.10 Negate

Negate each element of the matrix. The resulting matrix has the same dimension

as that of the input matrix. The syntax is

Negate(m)

• m - input matrix.

4.1.4.11 Reshape

Reshape the input matrix. The resulting matrix has the same number of elements

as that of the input matrix but is interpreted differently. The syntax is

Reshape(m, numRows, [imageWidth=], [imageHeight=], [

imageChannels=]

• m - input matrix.

• numRows - reshape to a matrix with numRows rows.

• imageWidth, imageHeight, imageChannels - are named optional parameters

that allow you to interpret each column as images with different dimensions.
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4.1.4.12 RowSlice

Select a row slice from the input matrix for all columns (samples). The resulting

matrix is a numRows by m.cols matrix. This function is often used to extract a

portion of the input. The syntax is

RowSlicete(startRow, numRows, m)

• m - input matrix.

• startRow - the start row to get a slice

• numRows - the number of rows to get

4.1.4.13 RowStack

Concatenate rows of input matrices to form a bigger matrix. The resulting matrix

is a sumof(rows) by m1.cols matrix. It supports variable-length input. The syntax

is

RowStack(m1, m2, ...)

• m1, m2 - input matrices. can be any number of input matrices.

4.1.4.14 Scale

Scale each element in the input matrix by a scalar value. The resulting matrix has

the same dimension as that of the input matrix. The syntax is

Scale(scaleFactor, m)

• scaleFactor - floating point scalar scale factor

• m - input matrix

4.1.4.15 Times

Calculate the product of two matrices. The resulting matrix has a size of m1.rows

by m2.cols. The syntax is

Times(m1, m2)

• m1, m2 - input matrices. The m1.cols must equal m2.rows.



CHAPTER 4. ADVANCED SETUPS IN COMPUTATIONAL NETWORK TOOLKIT98

4.1.4.16 TransposeTimes

Calculate the product m1Tm2. The resulting matrix has a size of m1.cols by

m2.cols. The syntax is

Times(m1, m2)

• m1, m2 - input matrices. The m1.rows must equal m2.rows.

4.1.4.17 DiagTimes

Calculate the product of two matrices in which the first matrix is a diagonal matrix

whose diagonal values are represented as a vector. The resulting matrix is m1.rows

by m2.cols. The syntax is

DiagTimes(m1, m2)

• m1 - the diagonal matrix whose diagonal values are represented as a vector

of size m2.rows by one.

• m2 - a normal input matrix. m1.rows must equal m2.rows.

4.1.4.18 Plus, Minus

Calculate the sum (Plus) and difference (Minus) of two matrices. The resulting

matrices have the same dimension as that of the input matrix with larger dimension.

The syntax is

Plus(m1, m2)

Minus(m1, m2)

• m1, m2 - input matrices.

4.1.4.19 ElementTimes, RowElementTimes, ColumnElementTimes,

Calculate the element-wise product of two matrices. The resulting matrices have

the same dimension as that of the input matrix with larger dimension. The syntax

is

ElementTimes(m1, m2)

RowElementTimes(m, vrow)

ColumnElementTimes(m, vcol)
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• m1, m2, m - input matrices.

• vrow, vcol - row and column vectors

m1 and m2 must have same dimension in ElementTimes. m and vrow must have

same number of columns in RowElementTimes, and m and vcol must have same

number of rows in ColumnElementTimes.

4.1.4.20 SquareError or SE

Compute the sum of the squared difference between elements in the two input

matrices. The result is a scalar (i.e., one by one matrix). This is often used as a

training criterion node. The syntax is

SquareError(m1, m2)

SE(m1, m2) #deprecated

• m1, m2 - input matrices. Must have the same dimensions.

4.1.4.21 CrossEntropyWithSoftmax or CEWithSM

Compute the softmax for each column of the input matrix, compare the result

against the ground truth labels and compute sum of the cross entropy value for

all the columns (i.e., samples). The result is a scalar (i.e., one by one matrix). This

is often used as a training criterion node. The syntax is

CrossEntropyWithSoftmax(labels, matrix)

CEWithSM(labels, matrix) #deprecated

• labels - the ground truth labels

• matrix - input matrix.

4.1.4.22 ClassBasedCrossEntropyWithSoftmax or CBCEWithSM

Compute the sum of the cross entropy value for all the columns (i.e., samples)

using the class-based evaluation trick to reduce the computation cost. The result

is a scalar (i.e., one by one matrix). This is often used as a training criterion node

when the number of classes is huge (e.g., in language model). The syntax is

ClassBasedCrossEntropyWithSoftmax(labels, matrix)

CBCEWithSM(labels, mainInputInfo, mainWeight,

classProbBeforeSoftmax) #deprecated
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• labels - the ground truth labels. This is a 4 by T matrix, where T is the

number of samples. The first row is the ground truth output id. The second

row is the ground truth class id. The third and fourth rows are the start

(inclusive) and end (exclusive) output ids corresponding to the ground truth

class id.

• mainInputInfo - contains the main information to make the classification de-

cision. It’s an inputDim by T matrix. In language model, inputDim is often

the hidden layer size.

• mainWeight - the inputDim by outputDim weight matrix, where inputDim is

the number of rows in mainInputInfo and outputDim is the number of output

nodes (e.g., number of words in language model). During the computation,

only the column slice corresponding to the start and end output ids of the

class id is used to reduce the computation.

• classProbBeforeSoftmax - applying softmax on this matrix will result in

class probabilities. This is a numOfClass by T matrix, where numOfClass is

the number of classes.

4.1.4.23 ErrorPrediction or ClassificationError

Evaluate the classification error of the predictions made by the model. It finds the

index of the highest value for each column in the input matrix and compares it to

the actual ground truth label. The result is a scalar (i.e., one by one matrix). This

is often used as an evaluation criterion. It cannot be used as a training criterion

though since the gradient is not defined for this operation. The syntax is

ErrorPrediction(labels, m)

ClassificationError(labels, m)

• labels - the ground truth labels

• m - input matrix.

4.1.4.24 CosDistance or CosDist

Evaluate the cosine distance between each column of two input matrices. The

resulting matrix is a one by m1.cols row vector. The syntax is

CosDistance(m1, m2)

CosDist(m1, m2) #deprecated

• m1, m2 - input matrices. The matrices should have same dimensions.
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4.1.4.25 CosDistanceWithNegativeSamples or CosWithNegSamples

Evaluate the cosine distance between each column of two input matrices as the

distance of positive samples, and the cosine distance between each column of the

left matrix (m1) and numNegSamples of samples in the right matrix (m2) selected

by shifting the column numShifts times as the negative samples. The resulting

matrix is numNegSamples+1 by m1.cols matrix. Often used in the deep structured

semantic model (DSSM). The syntax is

CosDistanceWithNegativeSamples(m1, m2, numShifts,

numNegSamples)

CosWithNegSamples(m1, m2, numShifts, numNegSamples) #

deprecated

• m1, m2 - input matrices. The matrices should have same dimensions.

• numShifts - number of shifts in m2 for choosing negative samples, a 1 by 1

matrix

• numNegSamples- number of negative samples to use in m2, a 1 by 1 matrix

4.1.4.26 MatrixL1Reg or L1Reg, MatrixL2Reg or L2Reg

Compute the L1 (MatrixL1Reg, L1Reg) or Frobenius (MatrixL2Reg, L2Reg) norm

of the input matrix. The result is a scalar (i.e., one by one matrix). This is often

used as regularization terms. The syntax is

MatrixL1Reg(m)

L1Reg(m) #deprecated

MatrixL2Reg(m)

L2Reg(m) #deprecated

• m - input matrix

4.1.4.27 Mean

Compute the mean vector of the input matrix by sweeping the whole dataset. The

resulting matrix is a m.rows by one matrix. This operation is precomputed before

the first training pass. The syntax is

Mean(m)

m - input matrix
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4.1.4.28 InvStdDev

Compute the per-dimensional (i.e., assume each dimension is independent with

each other and the covariance matrix is a diagonal) inversed standard deviation

vector of the input matrix by sweeping the whole dataset. The resulting matrix is a

m.rows by one matrix. This operation is precomputed before the first training pass.

The syntax is

InvStdDev(m)

• m - input matrix

4.1.4.29 PerDimMeanVarNormalization or PerDimMVNorm

Compute the mean-variance normalized matrix for each column (i.e., sample) of

the input matrix. The resulting matrix has the same dimensions as the input matrix.

PerDimMeanVarNormalization(m, mean, invStdDev)

PerDimMVNorm(m, mean, invStdDev) #deprecated

• m - input matrix than needs to be normalized

• mean - the mean vector. It’s a m.rows by one matrix.

• invStdDev - the per-dimensional inversed standard deviation vector. It’s a

m.rows by one matrix in which all values are non-negative.

4.1.4.30 PerDimMeanVarDeNormalization or PerDimMVDeNorm

De-normalize from the mean-variance normalized input matrix for each column

(i.e., sample). It is often used in the generative model where during the training

the network’s output node is normalized which needs to be de-normalized at the

actual generation process. The resulting matrix has the same dimensions as the

input matrix.

PerDimMeanVarDeNormalization(m, mean, invStdDev)

PerDimMVDeNorm(m, mean, invStdDev) #deprecated

• m - input matrix than needs to be de-normalized

• mean - the mean vector. It’s a m.rows by one matrix.

• invStdDev - the per-dimensional inversed standard deviation vector. It’s a

m.rows by one matrix in which all values are non-negative.
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4.1.4.31 Dropout

Compute a new matrix with some percentage of random elements in the input

matrix set to zero. The percentage (called dropout rate) is often set as part of the

training configuration (e.g., the stochastic gradient descent block we will discuss in

Section ??). During evaluation the dropout rate is set to zero and this operation has

no effect (i.e., just pass the input matrix through). It is commonly used to prevent

overfitting during the training process or to pretrain a model. The syntax is

Dropout(m)

• m - input matrix

4.1.4.32 Convolution or Convolve

Compute the convolution of a weight matrix with an image. The resulting matrix

may have different dimension depends on the parameters passed in. The syntax is

Convolution(w, image, kernelWidth, kernelHeight,

outputChannels, horizontalSubsample,

verticalSubsample, [zeroPadding=false,

maxTempMemSizeInSamples=0, imageLayout="HWC"|cudnn

"])

Convolve(w, image, kernelWidth, kernelHeight,

outputChannels, horizontalSubsample,

verticalSubsample, [zeroPadding=false,

maxTempMemSizeInSamples=0, imageLayout="HWC"|cudnn

"]) #deprecated

• w - convolution weight matrix, it has the dimensions of [outputChannels,

kernelWidth * kernelHeight * inputChannels]. If w’s dimensions are not

specified (i.e., all are zero’s) they will be automatically set by CNTK using

a depth-first traversing pass.

• image - the input image.

• kernelWidth - width of the kernel

• kernelHeight - height of the kernel

• outputChannels - number of output channels

• horizontalSubsample - subsamples (or stride) in the horizontal direction. In

most cases this should be set to 1.
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• verticalSubsample - subsamples (or stride) in the vertical direction. In most

cases this should be set to 1.

• zeroPadding - [named optional] specify whether the sides of the image should

be padded with zeros. Default is false. When it’s true, the convolution win-

dow can move out of the image.

• maxTempMemSizeInSamples - [named optional] maximum amount of mem-

ory (in samples) that should be reserved to do matrix packing. Default is 0

which means the same as the input samples.

• imageLayout - [named optional] the storage format of each image. By de-

fault it’s “HWC”, which means each image is stored as [channel, width,

height] in column major. If you use cuDNN to speed up training, you should

set it to cudnn, which means each image is stored as [width, height, channel].

4.1.4.33 MaxPooling, AveragePooling

Computes a new matrix by selecting the maximum (MaxPooling) or computing the

average (AveragePooling) value in the pooling window. This is used to aggregate

information from the input and will reduce the dimensions of a matrix. The syntax

is

MaxPooling(m, windowWidth, windowHeight, stepW, stepH,

imageLayout="HWC"|cudnn")

AveragePooling(m, windowWidth, windowHeight, stepW, stepH,

imageLayout="HWC"|cudnn")

• m - input matrix

• windowWidth - width of the pooling window

• windowHeight - height of the pooling window

• stepW - step (or stride) used in the width direction

• stepH - step (or stride) used in the height direction

• imageLayout - [named optional] the storage format of each image. By de-

fault it’s “HWC”, which means each image is stored as [channel, width,

height] in column major. If you use cuDNN to speed up training, you should

set it to cudnn, which means each image is stored as [width, height, channel].
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4.1.4.34 PastValue (or Delay) and FutureValue

Used to get the past or future value of a node. It is most often used to create

recurrent networks. The resulting matrix has the same dimension as that of the

input matrix. The syntax is

PastValue(rows, cols, m, [timeStep=1, defaultHiddenActivity

=0.1])

Delay(rows, cols, m, [delayTime=1, defaultPastValue=0.1]) #

deprecated

FutureValue(rows, cols, m, [timeStep=1,

defaultHiddenActivity=0.1])

• rows - the number of rows in the input matrix. This parameter is needed be-

cause under some loopy conditions the dimensions cannot be automatically

inferred from the input matrix.

• cols - the number of columns in the input matrix.

• m - input matrix from which the past or future value is obtained. Each col-

umn is a sample. The samples may be from different utterances as explained

in Chapter .2

• timeStep, delayTime - [named optional] the amount of time steps look into

past or future. Default is 1.

• defaultHiddenActivity, defaultPastValue - [named optional] the default value

to use if the past or future values are not available. Default is 0.1.

4.2 Model Editing Language

The model editing language (MEL) of the CNTK provides a means to modify

both the structure and the model parameters of an existing trained network using

a set of provided commands. It provides a number of functions to modify the

network and can use network description language (NDL) to define new elements.

MEL is very important since it allows users, for example, to train a network with

one configuration and later use it as part of another network designed for another

purpose. It also allows users to do discriminative pretraining [3, 4] on DNNs by

building shallow networks first and then inserting new layers one on top of another.

To use MEL, you need to use the “edit” command in the config file.

It looks similar to a scripting language in syntax, but give a simple way to

modify an existing network. This network must have been defined in a format that
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CNTK can read, currently only the CNTK computational network disk format is

supported.

4.2.1 Basic Features

In this section we cover the basic features of the MEL by the following example.

model1 = LoadModel("c:\models\mymodel.dnn", format=cntk)

SetDefaultModel(model1)

DumpModel(model1, "c:\temp\originalModel.dmp", includeData =

true)

#create another hidden layer

Copy(L3.*, L4.*, copy="all")

#Hook up the layer

SetInput(L4.*.T, 1, L3.RL) # Layer 3 output to Layer 4 input

SetInput(CE.*.T, 1, L4.RL) # Layer 4 output to Top layer

input

#Add mean variance normalization using in-line NDL

meanVal = Mean(features)

invstdVal = InvStdDev(features)

inputVal = PerDimMeanVarNormalization(features,meanVal,

invstdVal)

#make the features input now take the normalized input

SetInput(L1.BFF.FF.T, 1, inputVal)

#save model

SaveModel("c:\models\mymodel4HiddenWithMeanVarNorm.cn")

This MEL script is using a network that was defined originally by the NDL

script

# constants defined

# Sample, Hidden, and Label dimensions

SDim=784

HDim=256

LDim=10

features=Input(SDim, tag="feature")

labels=Input(LDim, tag="label")
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# Layer operations

L1 = RBFF(features, HDim, SDim)

L2 = RBFF(L1, HDim, HDim)

L3 = RBFF(L2, HDim, HDim)

CE = SMBFF(L3, LDim, HDim, labels, tag="criterion")

Err=ErrorPrediction(labels, CE.F, tag="eval")

# rootNodes defined here

OutputNodes=(CE.F)

4.2.1.1 Loading and Setting Default Models

The first command of a MEL script is usually a LoadModel() command. This func-

tion takes the name of a model file on disk, and an optional parameter specifying

the format of the model file. Currently only CNTK format model files are accepted,

and CNTK format is the default value. Programmers can write file converters to

support more model formats.

model1 = LoadModel("c:\models\mymodel.cn", format="cntk")

SetDefaultModel(model1)

Here model1 is the name this model is within the MEL script. This identifier

is used in the next line to set this model as the default model. The default model

defines the model that will be assumed in all name references within the script,

where a model name is required but not specified, and the model to which any NDL

commands will apply. If no model has been explicitly set to be the default model,

the last loaded or created model is used as a default. However, It is recommended

that the SetDefaultModel() command be used to make it explicit.

4.2.1.2 Viewing a Model File

It is often necessary to view a model file to determine the names used in the model

file. MEL uses the node names in most commands, to specify which node(s) should

be modified. The Dump() command dumps the node names and optionally values

to a readable file. The parameters are the model name, the file name, and if the

dump should include data. The includeData optional parameter defaults to false.

DumpModel(model1, "c:\temp\originalModel.dmp", includeData =

true)

The dump looks something like this:

...
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features=InputValue [784,32]

L1.BFF.B=LearnableParameter [256,1] NeedGradient=true

0.0127850091

-0.00473949127

0.0156492535

...

0.00529919751

####################################################################

L1.BFF.FF.P=Plus ( L1.BFF.FF.T , L1.BFF.B )

L1.BFF.FF.T=Times ( L1.BFF.W , normInput )

L1.BFF.W=LearnableParameter [256,784] NeedGradient=true

0.0174789988 0.0226208009 -0.00648776069 0.0346485041

-0.0449098013 -0.0233792514

0.0154407881 0.000157605857 0.0206625946 0.0491085015

0.00128563121

...

4.2.1.3 Copy Nodes

The copy command will copy a node, or a group of nodes from one location to

another location. This can be done within the same model, or between different

models:

#create another hidden layer

Copy(L3.*, L4.*, copy=all)

The first parameter is the source of the copy and must exist, the second is the

target and may or may not exist. If it does exist, those matching nodes will be

overwritten by the copy. The optional parameter copy can be used to change this

behavior, the options are: all - the default, which copies all node data and links, or

value - which copies the node values only, leaving the connections between nodes

(if any) unchanged.

Since the L3 used in this copy command was originally defined in NDL as

L3 = RBFF(L2, HDim, HDim)

The new L4 layer will contain all the nodes L3 contains (RectifiedLinear, Plus,

Times, W and B Parameters) all connected just as they were in the original L3

layer.
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4.2.1.4 SetInput

To integrate this new layer into the model, the inputs and outputs of the nodes must

reset. After the copy any node whose connected nodes were not copied will have

those connections set to an invalid value. These need to be fixed in order to have

a valid model. Before a model can be saved CNTK first checks to see if all nodes

are correctly connected.

You can change connections between nodes with the SetInput() command. This

command takes a node to modify, the input number (zero-based) to modify, and the

new value for that input. The following commands hook up the inputs and outputs

for our copied nodes:

#hook up the layer

SetInput(L4.*.T, 1, L3.RL) # Layer 3 output to Layer 4 input

SetInput(CE.*.T, 1, L4.RL) # Layer 4 output to Top layer

input

To connect our new L4 layer, we need to set the second input of the Times node

(L4.BFF.FF.T) to L3.RL, which is the output of the L3 layer. The input number is

zero-based, so the first input is zero and the second input would be ’1’. Likewise

we need to hook the output of the L4 layer nodes to the input of the top layer. Once

again this ends up being a Times node (CE.BFF.FF.T).

4.2.1.5 Adding New Nodes: In-line NDL and NDL Snippets

Adding new nodes to an existing model can be done just as a model was originally

defined in NDL. There are two ways to do this, the simplest is to just type the NDL

definitions into the MEL script, as if it was NDL, like so:

#Add mean variance normalization using in-line NDL

meanVal = Mean(features)

invstdVal = InvStdDev(features)

inputVal = PerDimMeanVarNormalization(features,meanVal,

invstdVal)

This is called in-line NDL and can be used for most tasks. The new nodes will

be placed in the current default model in the MEL script. Note that the variable

features used in the NDL is actually a node from the default model. In-line NDL

may use node names from the default model as parameters, and MEL commands

may use NDL symbols as parameters. There are a number of restrictions in using

in-line NDL:

• Only fully quantified node names are accepted.
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• NDL symbols only apply to the default model at the time they were created

when used in MEL commands.

• Macros may not be defined in in-line NDL (though they can in an NDL

snippet)

• Only macros defined in the default macro file referenced in the config file,

or macros defined in an NDL snippet in the MEL Script may be used.

• NDL will be processed when the next MEL command that requires it to be

processed is encountered. It is only at this time that the new nodes are fully

created. If forward references are used to variables, they must be resolved

before the next MEL command that requires the variables to be resolved.

Using NDL Snippet is another way. NDL snippets are sections of NDL definitions

that generate new nodes. Any NDL construct that is legal in an NDL script can be

used. This includes defining macros and other advanced NDL features. Inside the

snippets wildcard naming and use of symbols from another model are not allowed.

The syntax for defining an NDL snippet are as follows:

[modelName]=[

#ndl commands go here

]

Upon the completion of the snippet, the modelName will be the name of the

newly defined model. This model need not be fully defined. For example, the

special nodes (i.e. criteria nodes) do not need to be defined in the model. However,

all referenced variables must be defined in the snippet. It is often easier to use

in-line NDL to define new nodes in MEL, and NDL Snippets to define any macros.

Macros are defined in a global namespace and can be defined in any model and

used from any other model. One possible use of an NDL snippet is to define an

entirely new model, and then use MEL to populate the new model with values.

4.2.1.6 SaveModel

After the model edits are complete, it’s time to save the model:

#save model

SaveModel("c:\models\mymodel4HiddenWithMeanVarNorm.cn")

This command saves the default model to the path name specified. Alterna-

tively, you can specify the model name as the first parameter with the path as the

second to make the model name explicit. Before the save happens the model is

validated to ensure it is a valid model. Should there be an error in the model, an

error message will be displayed on the console and the model edit will terminate.
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4.2.1.7 Name Matching

You may have noticed the use of the ‘*’ wildcard character in the commands pre-

sented to this point. Those are name matching wildcards, and are useful in match-

ing a group of related nodes. Because of the hierarchical dot-naming scheme used

by NDL, it is easy to select all the nodes that a particular macro generated because

they will all start with the same prefix. Nodes generated by NDL macros have the

following structure:

[name]{.[macroName]}.[nameNode]

Where name is the name assigned in NDL, macroName is the name given to a

macro called by the initial macro, and can be several layers deep, and nameNode

is the name given to a single node in the final macro. For example, this macro in

NDL

L3 = RBFF(L2, HDim, HDim)

generates the following nodes:

• L3.RL: RectifiedLinear node

• L3.BFF.B: Parameter node - used for bias

• L3.BFF.W: Parameter node - used for weight

• L3.BFF.FF.T: Times node

• L3.BFF.FF.P: Plus node

These wildcard patterns can be used to access these nodes:

• L3.*: Select all the L3 nodes

• L3.*.P: Select the L3.BFF.FF.P node

• L3.*: All the L3 nodes in the model

4.2.2 MEL Command Reference

This section contains the currently implemented MEL Command functions.
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4.2.2.1 CreateModel, CreateModelWithName

Creates a new empty model. The syntax is

m=CreateModel()

CreateModelWithName(m)

• m - the name of newly created model

4.2.2.2 LoadModel, LoadModelWithName

Load a model from a disk file and assign it a name. The syntax is

m=LoadModel(modelFileName, [format="cntk"])

LoadModelWithName(m, modelFileName, [format="cntk"])

• m - the name of loaded model

• modelFileName - name of the model file, can be a full path name. If it

contains spaces, it must be enclosed in double quotes.

• Currently only the native CNTK format of model file is accepted. Other

formats may be supported in the future.

4.2.2.3 SaveDefaultModel, SaveModel

Save a model to disk in the specified model format.

SaveDefaultModel(modelFileName, [format="cntk"])

SaveModel(m, modelFileName, [format="cntk"])

• m - the name of the model to save

• modelFileName - name of the model file, can be a full path name. If it

contains spaces, it must be enclosed in double quotes.

• Currently only the native CNTK format of model file is accepted. Other

formats may be supported in the future.
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4.2.2.4 UnloadModel

Unload the specified model from memory. The syntax is

UnloadModel(m)

• m- the name of the model to unload.

In general it is unnecessary to unload a model explicitly since it will happen auto-

matically at the end of the MEL script. It is also not recommended that you reuse

a model identifier after unloading a model.

4.2.2.5 LoadNDLSnippet

Load an NDL Snippet from a file, and process it, assigning the results to a name.

The syntax is

LoadNDLSnippet(m, nsdSnippetFileName, [section])

• m- the name of the model that the snippet will be applied to.

• ndlSnippetFileName - name of the file that contains the snippet we want to

load.

• section - [named optional] name of the section that contains the snippet we

want to load. If the entire file is the snippet no section name should be

specified. Default is the first section appear in the file.

4.2.2.6 Dump, DumpModel

Dump the contents and structure of a model to a file. These two functions mean

the same thing. The syntax is

Dump(m, dumpFileName, [includeData=true|false])

DumpModel(m, dumpFileName, [includeData=true|false])

• m- name of the model to dump.

• dumpFileName- name of the file that we want to save the output.

• includeData - [named optional] if set to true the contents of the nodes that

contain matrix values will also be dumped. Default is false.
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4.2.2.7 DumpNode

Dump the contents and structure of a node to a file. The syntax is

DumpNode(node, dumpFileName, [includeData=true|false])

• node - node name, a wildcard name may be used to output multiple nodes in

one call

• dumpFileName- name of the file that we want to save the output.

• includeData - [named optional] if set to true the contents of the nodes that

contain matrix values will also be dumped. Default is false.

4.2.2.8 Copy, CopyNode

Copy a node, or a group of nodes from one location to another location. This can

be done within the same model, or between different models. The copy can create

new nodes or overwrite/update existing nodes. The network structure can be copied

with multiple nodes, or just the values in the nodes. The syntax is

Copy(fromNode, toNode, [copy="all"|"value"])

CopyNode(fromNode, toNode, [copy="all"|"value"])

• fromNode - node identifier we are copying from. This can also be a wildcard

pattern.

• toNode - node identifier we are copying to. This can also be a wildcard

pattern, but must match the fromNode pattern. A copy from a single node to

multiple nodes is also permitted.

• copy - [named optional] specifies how the copy will be performed. Default

is all.
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if destination node exists if destination node does not exist

all Copies over the values of the

nodes and any links between

them overwriting the existing

node values. Any node inputs

that are not included in the copy

set will remain unchanged.

Copies over the values of the

nodes and any links between

them creating new nodes. All

nodes that include inputs in the

copy set will still be connected.

All other nodes will have no in-

puts and will need to be set using

SetInput()

value Copies over the node contents,

the node inputs will remain un-

changed

Not a valid option, the nodes

must exist to copy only values.

4.2.2.9 CopySubTree

Copy all nodes in a subtree of a computational network from one location to an-

other location. This can be done within the same model, or between different

models. The syntax is

CopySubTree(fromRootNode, toRootNode, [copy="all"|"value"])

• fromRootNode - node identifier we are copying from. This can also be a

wildcard pattern.

• toRootNode - node identifier we are copying to. This can also be a wildcard

pattern, but must match the fromRootNode pattern.

• copy - [named optional] specifies how the copy will be performed. See the

Copy and CopyNode command for details. Default is all.

If the fromRootNode is a wildcard pattern then the toRootNode must also be a

similar wildcard pattern. The CopySubTree() command will execute separately for

each root node.

4.2.2.10 SetInput or SetNodeInput

Set an input (child) of a node (i.e., operand of an operator) to a value. The syntax

is

SetInput(node, inputNumber, inputNode)
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• node - node whose input will be set. This can also be a wildcard pattern.

• inputNumber - a zero-based index to the input that will be set.

• inputNode - node identifier for input node. This must be a single node.

4.2.2.11 SetInputs or SetNodeInputs

Set all the inputs (children) of a node (i.e., operands of an operator). If only one

input needs to be set use the SetInput() command instead. The syntax is

SetInputs(node, inputNode1[, inputNode2, inputNode3])

• node - node whose input we are modifying .

• inputNode1, inputNode2, inputNode3 - node identifier for input node. The

number of input parameters must match the number of inputs the referenced

node requires.

4.2.2.12 SetProperty

Set the property of a node to a specific value. The syntax is

SetProperty(node, propertyName, propertyValue)

• node - the node whose properties will be set

• propertyName - property name to modify.

• propertyValue - the new property value.

The acceptable property names and property values are as follows:

• computeGradient or needsGradient=true|false: A flag that determine if a

node participates in gradient calculations. Applies to Parameter nodes

• feature=true|false: Sets the node as a feature input. Applies to input nodes.

• label=true|false: Set the node as a label input. Applies to input nodes.

• finalCriterion or criterion=true|false: Sets the node as one of the criteria

nodes of the network.

• evaluation or eval=true|false: Set the node as one of the evaluation nodes.

• output=true|false: Set the node as one of the output nodes.
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4.2.2.13 SetPropertyForSubTree

Set the property of a node to a specific value. The syntax is

SetProperty(rootNode, propertyName, propertyValue)

• rootNode - the node at the root of the subtree

• propertyName - property name to modify.

• propertyValue - the new property value.

The acceptable property names and property values for this command are as fol-

lows:

• ComputeGradient or NeedsGradient=true|false: A flag that determine if a

node participates in gradient calculations. Applies to Parameter nodes

4.2.2.14 Remove or RemoveNode, Delete or DeleteNode

Delete or Remove node(s) from a model. All alternate commands perform the

same operation. The syntax is

Remove(node, [node2, node3]) #deprecated

Delete(node, [node2, node3]) #deprecated

RemoveNode(node, [node2, node3])

DeleteNode(node, [node2, node3])

• node - the node to be removed. This can be a wildcard name.

• node2, node3 - additional optional nodes that will also be removed, These

can be wildcards

This command can leave unconnected nodes in a model that would need to be

reconnected using the SetInput() or SetInputs() commands.

4.2.2.15 Rename

Rename a node. Note that this only changes the name of a node (e.g., making it

easier to understand and to reference) but not how it connects with other nodes.

The syntax is

Rename(oldNodeName, newNodeName)
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• oldNodeName- the old node name. Wildcard naming may be used.

• newNodeName- the new node name. Matching wildcard naming may be

used if oldNodeName contains wildcards.



Chapter 5

Speech Recognition Decoder

Integration

5.1 Argon Speech Recognition Decoder

Argon is a dynamic decoder modeled after (Soltau & Saon, “Dynamic Network

Decoding Revisited,” ASRU, 2009). To use Argon, one must supply a represen-

tation of the acoustic search space in the form of a weighted finite state acceptor

that represents all possible word sequences and their associated context-dependent

HMM state sequences. This is H◦C◦L of Mohri et al, (“Weighted Finite State

Transducers in Speech Recognition,” Computer Speech & Language, 2002) . As

a pre-processing step, Argon will convert the AT&T format acceptor into a binary

image for its own internal use. Additionally, one supplies an acoustic model as

trained by CNTK, a source of acoustic features, and a language model. Optionally,

a set of language models and their interpolation weights may be specified.

As output, Argon produces one-best word hypotheses and lattices. Lattices are

produced with state-level alignments, and the one-best hypotheses can optionally

be produced with state-level alignments as well.

Argon is a token-passing decoder. It works by maintaining a set of tokens, each

of which represents a partial path. Each token maintains a language model history

state, a pointer to its location in the decoding graph, and a path score. At each time

frame, all the tokens from the previous frame are advanced over emitting arcs in

the decoding graph, and then across word arcs. When a token finishes a word (i.e.

advances across a word arc), the language model is consulted, and the path score

is adjusted with the language model probability.

Argon uses a simple form of language model lookahead. By default, the search

space H◦C◦L includes the most optimistic log-probability that a word can have,

119
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given the language model. When a word-end is encountered, the remainder of the

language model log-probability is added. To prevent over-pruning at these jumps,

we employ the notion of language-model slack in pruning. Each token maintains a

slack variable, and when a language model score is encountered, the slack variable

is incremented by this amount. It is also multiplied by a number slightly less than

one at each frame so that it decreases exponentially. Tokens that fall outside the

beam by less than the slack amount are not pruned. This effectively smooths the

effect of adding language model scores at word ends.

5.1.1 Representing the Acoustic Search Space

Argon represents the acoustic search space as a determinized, minimized finite

state transducer, encapsulating H◦C◦L. Input arcs are labeled with context depen-

dent HMM states, and output arcs with words. Every path from the start state to

one of the final states represents a sequence of words beginning with “begin-of-

sentence” or <s> and ending with “end-of-sentence” or </s>. The sequence of in-

put labels encountered on such a path represents the sequence of context-dependent

HMM states of the words, as determined by the lexicon and acoustic context model.

A fragment of a search graph is shown in Figure \ref{fig:dcdgraph}.

Minimization of a transducer repositions the output labels in the process of

minimizing the transducer size. This necessitates re-aligning the output to syn-

chronize the word labels with the state sequence. Rather than allowing arbitrary

label shifting, for all words that have two or more phonemes, Argon outputs word

labels immediately before the last phone. This allows for a high degree of com-

pression, good pruning properties, and predictable label positions.

Since H◦C◦L does not represent the language model, we have found it un-

necessary to accommodate <epsilon> arcs in the decoding graph, thus somewhat

simplifying the decoder implementation. Thus, it is a requirement that H◦C◦L
contain only HMM states and word labels. Our reference scripts achieve this with

the OpenFST remove-epsilon operation.

5.1.1.1 From HTK Outputs to Acoustic Search Space

CNTK and Argon use acoustic models based on HTK decision trees. In the first

part of the acoustic model building process, context-independent alignments are

made with HTK, and a decision tree is built to cluster the triphone states. After a

couple of passes of re-alignment, a model file and state level alignments are written

out. CNTK uses the alignments to train a DNN acoustic model.

The simplest way to build an acoustic model is to provide an HTK decision tree

file, a lexicon, a file with pronunciation probabilities, and a model MMF file. The
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MMF file is only used to extract transition probabilities, and as an option, these

can be ignored, in which case the MMF is unnecessary. We provide sample scripts

which process the lexicon and decision tree to produce H◦C◦L.

Our sample script imposes two constraints:

1) 3-state left-to-right models except for silence

2) The standard HTK silence model, which defines a “short-pause” state and

ties it to the middle state of silence

In the output, short-pause and silence are optional between words. All hypothe-

ses start with <s> and end with </s>, both of which are realized as silence.

5.1.2 Representing the Language Model

The language model is dynamically applied at word-ends. Language model looka-

head scores are embedded in the graph, and compensated for at word ends, when

multiple language models may be consulted and interpolated. In the case that mul-

tiple language models are used, they are listed in a file, along with their interpola-

tion weights; this file is given to Argon as a command-line parameter.

5.1.3 Command-Line Parameters

5.1.3.1 WFST Compilation Parameters

These parameters are used in the graph pre-compilation stage, when a fsm pro-

duced by a tool such as OpenFST is converted into a binary image that is conve-

nient to read at runtime.

[-infsm (string: )]: gzipp’d ascii fsm to precompile

[-lookahead-file (string: )]: file with the lookahead scores for each word, if

lookahead was used

[-precompile (bool: false)]: precompile the graph? true indicates that precom-

pilation should be done

[-transition-file (string: )]: transition probability file for use in precompilation

[-graph (string)]: decoding graph to read/write

5.1.3.2 Parameters specifying inputs

These parameters are related to the inputs used in decoding. Their use is exempli-

fied in the sample scripts.

[-infiles (string: )]: file with a list of mfcc files to process

[-graph (string)]: decoding graph to read/write

[-lm (string: )]: language model to use in decoding; use when there is one LM

only
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[-lm-collection (string: )]: file specifying a set of language models to use for

decoding

[-sil-cost (float: 1.0)]: cost charged to silence

[-am (string: )]: binary acoustic model to use in decoding

[-cntkmap (string: )]: mapping from output names in decoding graph to dnn

output nodes

[-dnn_window_size (int: 11)]: number of consecutive acoustic vectors to stack

into one context-window input, depends on acoustic model

5.1.3.3 Parameters specifying outputs

These parameters specify the outputs that Argon creates at runtime.

[-outmlf (string: )]: store recognition results in HTK-style master label format

file

[-detailed-alignment (bool: false)]: enables state-level recognition output

[-lattice-prefix (string: )]: path and filename prefix for output lattices; will be

post-pended with a number

5.1.3.4 Search Parameters

These parameters control Argon’s search

[-acweight (float: 0.0667)]: acoustic model weight. language model weight is

always 1

[-beam (float: 15)]: absolute beam threshold

[-alignmlf (string: )]: source transcription for forced alignment

[-max-tokens (int: 20000)]: number of tokens to keep at each time frame

[-word_end_beam_frac (float: 0.33333)]: beam at word ends is this times the

normal beam

5.2 Constructing a Decoding Graph

As described above, the decoding graph is a representation of how sequences of

acoustic model states form sequences of words, with associated path scores that are

a combination of the acoustic model state transition probabilities and the language

model lookahead scores. This section describes two different decoding graphs: a

simple, context-independent phonetic recognition graph suitable for TIMIT recog-

nition, and a more complex, cross-word triphone large vocabulary graph suitable

for Wall Street Journal or Aurora-4 recognition tasks.

The decoding graph includes scores that represent the most optimistic score

that can be achieved by a word. Scripts extract that score from an ARPA language
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model, and put it in a file that lists the most optimistic score for each word. The

optimistic scores are a simple context-independent form of language model looka-

head. A smoothing mechanism is used internally in the decoder to “smear” the

residual LM score across multiple frames after a word end.

5.2.1 Context-Independent Phonetic Recognition

To build the TIMIT graph, only three input files are needed: the model state map,

the state transitions, and a language model.

The scripts assume each context-independent phone is represented by a three

state, left to right, hidden markov model. The names of these states should be in

a “model state map” file that has one line for every model. The first column is

the name of the model, and subsequent columns are the names of the states, in

left to right order. The transition probabilities between these states are stored in a

separate “state transitions” file. Every state of the acoustic model should have one

line, whose first column is the name of the state, and subsequent columns are the

natural logarithm of the self and forward transition probabilities.

The language model should be an ARPA-style language model over the phone

model names. Additionally, it should include the unknown word <UNK>, and

the beginning and ending sentence markers <s> and </s>. For TIMIT data, they

should represent the h# at the beginning and the h# at the end of every utterance,

respectively, and h# should not exist in the language model.

The DecodingGraph.mak file demonstrates the process of turning these inputs

into a proper Argon decoding graph. When the makefile is successfully run, the

current working directory should contain a decoding graph file i_lp.final.dg that is

suitable for phonetic decoding.

5.2.2 Cross-Word Context-Dependent Large Vocabulary Decoding

Building this style of graph is somewhat more involved, and divided into two

stages. In the first stage, information about the graph structure is extracted from

a donor HTK format acoustic model, and put into a distilled representation. In

the second stage, this representation is used to construct the FST and compile it

into Argon decoding graph format. We imagine that specialized first stages can be

constructed for different styles of input, other than HTK format donor models.

5.2.2.1 Stage One: Extract structure from HTK donor model

The prerequisites for this process are as follows:
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A pronunciation lexicon, an ARPA-format ngram language model, a senone

map file, and an ASCII format HTK donor model, with associated list of all possi-

ble logical model names and their associated physical model names.

5.2.2.2 Stage Two: Build and Compile Graph

The L transducer is built from the normalized lexicon. The H transducer is built

from the triphone to senone mapping file. The C FST is made to cover all possible

triphone contexts that might occur on the input side of L.

H, C, and L are composed, determinized and minimized. Then, the FST is

made into an FSA by moving every non-epsilon output token onto its own arc on

the same path. The silence models between words are made optional, the language

model lookahead scores are applied, and weight pushing is used to take these scores

as early as possible on each path through the FSA.

The end result is a compiled graph, where every path represents a sequence

of acoustic model states interspaced with the word sequence they represent. The

score of the path is equal to the individual HMM transition scores combined with

the language model lookahead scores.

5.2.3 Running Argon

To decode, the following parameters to Argon should be specified: -graph, -lm, -

am, -cntkmap, -infiles, and -outmlf. See above for descriptions of these parameters.

The decoder uses a Viterbi beam search algorithm, in which unlikely hypothe-

ses are pruned at each frame. The -beam parameter prevents unlikely hypotheses

from being pursued. Any hypothesis that differs from the best hypothesis by more

than this amount will be be discarded. The -max-tokens parameter controls the

number of active hypotheses. If the -beam parameter causes more than max-tokens

hypotheses to be generated, then only this many of the best hypotheses will be re-

tained. Decreasing either of these parameters will speed up the search, but at the

cost of a higher likelihood of search errors. Increasing these parameters has the

opposite effect.

The -graph parameter tells Argon which compiled decoding graph should be

used. The -lm should indicate an ARPA format ngram language model.

The -am and -cntkmap should point to the final CNTK compiled acoustic

model, and to its associated mapping file.

The -acweight parameter controls the relative weight of the acoustic model

scores to the language and HMM transition scores. Increasing this value will cause

more weight to be placed on the acoustic model scores. The useful range for this

parameter is between 0.1 and 2.0.
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The -infiles parameter lists the files to be decoded. It is expected that these

files are in HTK format and are ready to be fed into the input layer of the CNTK

acoustic model.

To get a more detailed state-level alignment, specify -detailed-alignment true.



Chapter 6

Example Setups

6.1 Acoustic Model

In this section we describe how CNTK can be used to build several standard mod-

els that can be used for acoustic modeling for speech recognition applications. All

examples are based on the TIMIT corpus for phonetic recognition but can easily

be modified for use for large vocabulary continuous speech recognition. The only

significant change is that context-independent phonetic states used in the TIMIT

example would be replaced by context-dependent senone targets for large vocab-

ulary tasks. We note that these examples are not meant to be representative of

state of the art performance, but rather to demonstrate how CNTK can be used

in a variety of speech recognition applications. All examples are located in the

ExampleSetups folder (ExampleSetups\ASR\TIMIT)

6.1.1 Training a DNN with SimpleNetworkBuilder

The simplest way to create an acoustic model with CNTK is to use the SimpleNet-

workBuilder. This network builder constructs a fully-connected feed-forward net-

work of user-specified depth and size. The configuration file is shown below. As

you can see there are several key blocks of data specified

• SimpleNetworkBuilder: the overall network topology is specified here using

the layerSizes parameter. In this example, the network has 792 inputs (an

11-frame context window of a 72-dimensional feature vector), 3 hidden lay-

ers of 512 sigmoidal neurons and 183 outputs, corresponding to the TIMIT

phoneme states (3 x 61 phonemes). The cross entropy is the criterion for

training and the frame error rate will also be monitored during training us-

ing the evalCriterion parameter. The input data will be mean and variance

126
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normalized since applyMeanVarNorm has been set to true. In addition, if

needPrior is set to true, the prior probabilities of the labels will be com-

puted and a ScaledLogLikelihood node in the network will be automatically

created. This is important if this network will be used to generate acoustic

scores in a speech recognition decoder.

• SGD: this block specifies the parameters for stochastic gradient descent op-

timization. In this example, a total of 25 epochs will be run using a fixed

learning schedule, with a learning rate of 0.8 for the first epoch, 3.2 for the

next 14 epochs, and then 0.08 for all remaining epochs. A minibatch size

of 256 will be used for the first epoch, and all remaining epochs will use a

minibatch size of 1024. A momentum value of 0.9 will also be used.

• reader: this example uses the HTKMLFReader. For SimpleNetworkBuilder,

the inputs must be called “features” and the output labels must be called

“labels”. The scpFile contains the list of files to be processed and the mlfFile

contains the labels for these files. More details about the HTKMLFReader

can be found in Section 1.4.2.

TIMIT_TrainSimple=[

action="train"

modelPath="$ExpDir$\TrainSimpleNetwork\model\cntkSpeech.

dnn"

deviceId=$DeviceNumber$

traceLevel=1

SimpleNetworkBuilder=[

layerSizes=792:512*3:183

trainingCriterion="CrossEntropyWithSoftmax"

evalCriterion="ErrorPrediction"

layerTypes="Sigmoid"

initValueScale=1.0

applyMeanVarNorm=true

uniformInit=true

needPrior=true

]

SGD=[

epochSize=0

minibatchSize=256:1024

learningRatesPerMB=0.8:3.2*14:0.08

momentumPerMB=0.9

maxEpochs=25

]

reader=[
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readerType="HTKMLFReader"

readMethod="rollingWindow"

miniBatchMode="partial"

randomize="auto"

verbosity=1

features=[

dim=792

scpFile="$ScpDir$\TIMIT.train.scp.fbank.fullpath"

]

labels=[

mlfFile="$MlfDir$\TIMIT.train.align_cistate.mlf.cntk"

labelDim=183

labelMappingFile="$MlfDir$\TIMIT.statelist"

]

]

]

6.1.2 Adapting the learning rate based on development data

In addition to using a fixed learning schedule, CNTK can adjust the learning rate

based on the performance on a held out development set. To do this, the develop-

ment set needs to be specified using a second data reader known as a “cvReader”

and the appropriate learning rate adjustment parameters need to specified using an

“AutoAdjust” configuration block within the SGD configuration block. For exam-

ple, the following cvReader could be added to the configuration file in the previous

example as follows:

cvReader=[

readerType="HTKMLFReader"

readMethod="rollingWindow"

miniBatchMode="partial"

randomize="auto"

verbosity=1

features=[

dim=792

scpFile="$ScpDir$\TIMIT.dev.scp.fbank.fullpath"

]

labels=[

mlfFile="$MlfDir$\TIMIT.dev.align_cistate.mlf.cntk"

labelDim=183
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labelMappingFile="$MlfDir$\TIMIT.statelist"

]

]

The learning rate adjustment is specified within the SGD block as follows.

SGD=[

epochSize=0

minibatchSize=256:1024

learningRatesPerMB=0.8:3.2*14:0.08

momentumPerMB=0.9

maxEpochs=25

AutoAdjust=[

autoAdjustLR="adjustAfterEpoch"

reduceLearnRateIfImproveLessThan=0

loadBestModel=true

increaseLearnRateIfImproveMoreThan=1000000000

learnRateDecreaseFactor=0.5

learnRateIncreaseFactor=1.382

]

]

In this example, the learning rate will be reduced by a factor of 0.5 if the error

on the held out data gets worse. While the learning rate can also be increased based

on the performance on a held-out set, this is effectively turned off by setting the

criterion for increasing the learning rate to a high value.

6.1.3 Training a DNN with NDLNetworkBuilder

While standard feedforward architectures are simple to specify with SimpleNet-

workBuilder, NDLNetworkBuilder can be used when alternative structures are de-

sired. In this case, the SimpleNetworkBuilder configuration block in the previous

example is replaced with an NDLNetworkBuilder block.

NDLNetworkBuilder=[

ndlMacros="$NdlDir$\default_macros.ndl"

networkDescription="$NdlDir$\classify.ndl"

]

In this example, a file contained several NDL macros will be loaded and then

the NDL file containing the actual network description will be loaded. Note that

macros can be defined in both files. For example, commonly used macros used

across of variety of experiments can be specified by ndlMacros while macros spe-

cific to a particular network description can be specified within the networkDe-
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scription file. This example creates the exact same network as the first case, but

demonstrates how it can be done using NDL.

One key thing to note is that when NDL is used, there are no longer restrictions

on the names for the network’s inputs and outputs. In this case, the inputs are

associated with a node called “myFeatures” and the labels are associated with a

node called “myLabels”. Note that these new node names need to be used in the

reader block in the main configuration file.

6.1.4 Training an autoencoder

Training an autoencoder is straightforward using either SimpleNetworkBuilder

or NDLNetworkBuilder by using the SquareError criterion node rather than the

CrossEntropyWithSoftmax criterion node. In this example, the network is con-

structed with NDL. Below is a snippet from the NDL file for this example. This

autoencoder has three hidden layers including a middle bottleneck layer of 64 neu-

rons. A macro is defined to perform mean and variance normalization and it is

applied to both the input and target features. Also,

load=ndlMacroDefine

run=ndlCreateNetwork

ndlMacroDefine=[

MeanVarNorm(x)

{

xMean = Mean(x)

xStdDev = InvStdDev(x)

xNorm=PerDimMeanVarNormalization(x,xMean,xStdDev)

}

MSEBFF(x,r,c,labels)

{

BFF=BFF(x,r,c)

MSE=SquareError(labels,BFF)

}

]

ndlCreateNetwork=[

featInDim=792

featOutDim=792

hiddenDim=512

bottleneckDim=64

featIn=Input(featInDim,tag="feature")

featOut=Input(featOutDim,tag="feature")
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featNormIn = MeanVarNorm(featIn)

featNormOut = MeanVarNorm(featOut)

L1 = SBFF(featNormIn,hiddenDim,featInDim)

L2 = SBFF(L1,bottleneckDim,hiddenDim)

L3 = SBFF(L2,hiddenDim,bottleneckDim)

MeanSqErr = MSEBFF(L3, featOutDim, hiddenDim, featNormOut,

tag="criterion")

OutputNodes=(MeanSqErr.BFF.FF.P)

EvalNodes=(MeanSqErr)

]

For an autoencoder the reader will process features for both the input and de-

sired output (targets) for the network. Thus, the reader configuration block in the

main configuration file has two entries “featIn” and “featOut” that both have scp-

Files specified. In this case, they point to the same file, but this is not required. For

example, if a network was trained for feature enhancement, then featIn could be

reading the noisy features while featOut would be reading the desired clean feature

targets.

featIn=[

scpFile=$ScpDir$\TIMIT.train.scp.fbank.fullpath

dim=792

]

featOut=[

scpFile=$ScpDir$\TIMIT.train.scp.fbank.fullpath

dim=792

]

6.1.5 Using layer-by-layer discriminative pre-training

It is well known that deep networks can be difficult to optimize, especially when a

limited amount of training data is available. As a result, a number of approaches

to initializing the parameters of these networks have been proposed. One of these

methods is known as discriminative pre-training. In this approach, a network with a

single hidden layer is trained starting from random initialization. Then the network

is grown one layer at a time, from one hidden layer to two hidden layers and so on.

Each model is initialized using the parameters learned from the previous model

and random initialization for of the topmost output layer.

This process can be performed in CNTK using alternating steps of model train-

ing and model editing using the Model Editing Language (MEL). The config file

example shows how to do this using a series of execution commands. The top level
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command contains five configuration blocks to execute in sequence,

command="TIMIT_DiscrimPreTrain1:TIMIT_AddLayer2:

TIMIT_DiscrimPreTrain2:TIMIT_AddLayer3:TIMIT_Train3"

This main configuration file is a good example of how certain config blocks can

be placed at the top level of the config file. In this example, the SGD and reader

blocks are shared across all stages of processing. The first three configuration

blocks to be processed are shown below:

TIMIT_DiscrimPreTrain1=[

action="train"

modelPath="$ExpDir$\TrainWithPreTrain\dptmodel1\cntkSpeech

.dnn"

NDLNetworkBuilder=[

NetworkDescription="$NdlDir$\create_1layer.ndl"

]

]

TIMIT_AddLayer2=[

action="edit"

CurrLayer=1

NewLayer=2

CurrModel="$ExpDir$\TrainWithPreTrain\dptmodel1\cntkSpeech

.dnn"

NewModel="$ExpDir$\TrainWithPreTrain\dptmodel2\cntkSpeech.

dnn.0"

editPath="$MelDir$\add_layer.mel"

]

TIMIT_DiscrimPreTrain2=[

action="train"

modelPath="$ExpDir$\TrainWithPreTrain\dptmodel2\cntkSpeech

.dnn"

NDLNetworkBuilder=[

NetworkDescription="$NdlDir$\create_1layer.ndl"

]

]

In the first block, TIMIT_DiscrimPreTrain1, the initial model is trained ac-

cording to the network description language file “create_1layer.ndl” and stored in

a folder called dptmodel1. Next, in TIMIT_AddLayer2, the previous model is

edited according to the MEL script “add_layer.mel” which will add a layer to the

existing model and write the new model out to a new model file. This script will

process the variables set in this configuration block that refer to the current layer,
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new layer, current model, and new model. Note that the new model has an ex-

tension “0” and has been placed in a folder called “dptlayer2”. Now, the third

configuration block “TIMIT_DiscrimPreTrain2” will train a model to be located

in the “dptmodel2” folder. Because, the previous step created a model in that lo-

cation with the extension “0”, the training tool will use that model as the initial

model rather than creating a model from scratch. This process repeats itself until

the network contains the total number of layers desired.

To see how a new layer is added, we can look at the MEL script “add_layer.mel”

m1=LoadModel("$currModel$", format="cntk")

SetDefaultModel(m1)

HDim=512

L$newLayer$=SBFF(L$currLayer$.S, HDim, HDim)

SetInput(CE.*.T, 1, L$newLayer$.S)

SetInput(L$newLayer$.*.T, 1, L$currLayer$.S)

SaveModel(m1, "$newModel$", format="cntk")

In this script, the initial model is loaded and set as the default model. A new

layer is created using the macro SBFF (the default macros have been loaded in the

top-level configuration file). Then the new connections are made, with the input

to the cross entropy layer of the existing model connected to the output of the new

layer, and the input of the new layer connected to the output of the previous model’s

top layer. The new model is then saved to the specified file. Note that through the

use of configuration variables, this same script can be reused anytime a new layer

can be added. If different layer sizes were desired, the HDim variable could be set

by the higher level configuration file in the the appropriate edit block, rather than

from within the MEL script.

6.1.6 Training a network with multi-task learning

One interesting approach to network training is multi-task learning, where the net-

work is trained to optimize two objective functions simultaneously. This can be

done in CNTK through the appropriate use of NDL. Let’s assume that we have a

network specified in NDL that has three hidden layers and output of the third hid-

den layer is defined as L3. Furthermore, let’s assume we want to create a network

that optimizes a weighted combination of phoneme classification and the dialect

region of the speaker (dr1, dr2, etc in the TIMIT corpus). To do this, we first define

a macro that can compute the weighted sum of two nodes as follows:

WtObjFcn(o1,w1,o2,w2)

{

A1=Constant(w1)

A2=Constant(w2)
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T1=Times(A1,o1)

T2=Times(A2,o2)

O=Plus(T1,T2)

}

This macro can then be used to create a network for multi-task learning.

#objective function 1

BFF1=BFF(L3,LabelDim1,HiddenDim)

CE1=CrossEntropyWithSoftmax(labels,BFF1.FF.P,tag="eval")

FER1 = ErrorPrediction(labels,BFF1.FF.P,tag="eval")

# objective function 2

BFF2=BFF(L3,LabelDim2,HiddenDim)

CE2=CrossEntropyWithSoftmax(regions,BFF2.FF.P,tag="eval")

FER2 = ErrorPrediction(regions,BFF2.FF.P,tag="eval")

# weighted final objective function

Alpha1=0.8

Alpha2=0.2

ObjFcn = WtObjFcn(CE1,Alpha1,CE2,Alpha2,tag="criterion")

# for decoding

ScaledLogLikelihood=Minus(BFF1.FF.P, LogPrior)

# root Nodes

OutputNodes=(ScaledLogLikelihood)

The output of the hidden layer L3 is connected to two cross entropy nodes,

one that predicts “labels” which correspond to phonetic labels in this example,

and one that predict “region”, the dialect region of the speaker. The final criterion

used for training is the weighted combination of these two criteria. By tagging

the individual CrossEntropyWithSoftmax and ErrorPredition nodes with the “eval”

tag, the values of these nodes can also be monitored and logged during training.

As before, the ScaledLogLikelihood is also computed for use in a decoder.

6.1.7 Training a network with multiple inputs

There are instances where it’s desirable to input multiple features into a network,

such as MFCC and FBANK coefficients. In this case, multiple feature inputs (two,

in this example) need to be specified in the reader, and the network needs to be

constructed appropriately using NDL. The following is a snippet from reader con-

figuration block showing how two different feature types, defined as features1 and

features2 can be read, along with the phonetic labels. In this case, the log mel
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filterbank features which are 72-dimensional will use an 11-frame context win-

dow, while the MFCC features which are 39-dimensional will use a single frame

of input.

features1=[

dim=792

scpFile="$ScpDir$\TIMIT.train.scp.fbank.fullpath"

]

features2=[

dim=39

scpFile="$ScpDir$\TIMIT.train.scp.mfcc.fullpath"

]

labels=[

mlfFile="$MlfDir$\TIMIT.train.align_cistate.mlf.cntk"

labelMappingFile="$MlfDir$\TIMIT.statelist"

labelDim=183

]

The NDL for constructing a network with these inputs and outputs can be done

in a number of ways. One way is to construct a macro that constructs a layer that

takes two inputs, as follows:

SBFF2(input1,rowCount,colCount1,input2,colCount2)

{

B=Parameter(rowCount,init="fixedValue",value=0)

W1=Parameter(rowCount, colCount1)

W2=Parameter(rowCount, colCount2)

T1=Times(W1,input1) T2=Times(W2,input2)

P1=Plus(T1,T2)

P2=Plus(P1,B)

S=Sigmoid(P2)

}

This macro can then be used to create the network. For example, inputs and the

first layer would be declared using the NDL code below.

FeatDim1 = 792

FeatDim2 = 39

features1=Input(FeatDim1,tag="feature")

features2=Input(FeatDim2,tag="feature")

labels=Input(LabelDim1,tag="label")

featInput1=MeanVarNorm(features1)

featInput2=MeanVarNorm(features2)
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L1 = SBFF2(featInput1, HiddenDim, FeatDim1, featInput2,

FeatDim2)

The rest of the hidden layers and the output layer with a cross entropy objective

function would be the same as previous examples. Notice that the names and di-

mensionality of the input and output data have to the same in both the NDL model

description and the reader configuration.

6.1.8 Evaluating networks and cross validation

One a network has been trained, we would like to test its performance. To do

so, we use a configuration very similar to training, except the “train” action is

replaced with the action “eval”, and the data reader needs to be updated to process

the development or evaluation data rather than the training data. Of course, the

SGD optimization block is not necessary and can be omitted.

action="eval"

One version of cross validation is early stopping, where a fixed learning sched-

ule is used during training but all intermediate models are evaluated and the one

with the best performance on a development set is selected for evaluation. If you

perform network training for a large number of epochs, you can efficiently evaluate

the performance of a series of models using the “cv” action.

action="cv"

In addition, you can choose the models you wish to evaluate if you do not want the

output of every single epoch. This is done using the “crossValidationInterval” con-

figuration parameters, which takes 3 colon-separated terms which are interpreted

as a Matlab-style specification of an array. In the following example, the models

from epoch 0, 2, 4, etc. up to the final epoch will be evaluated

crossValidationInterval=0:2:25

6.1.9 Writing network outputs to files

There are many examples where it is necessary to write either the output or an in-

ternal representation of the network to a file. In speech recognition, some common

examples of this are writing the output of the network to a file for decoding or con-

struction of a tandem style acoustic model, or writing the internal representation

to create bottleneck features. CNTK support this by the use of the “write” action,

the specification of a desired output node, and the use of a data writer. To write
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data from a particular node, the node is specified using the configuration param-

eter “outputNodeNames”. For example, for decoding, this would typically be the

ScaledLogLikelihood node. A data reader is used to specify the names of the files

that will be input to the network and a data writer is used to specify the names of

the files to store the output. All nodes specified in the reader and writer must have

SCP files that have a line-by-line correspondence to each other. Data is read from

the first feature file listed in the SCP file specified in the reader and processed by

the network. The values at the desired output node are then passed to the writer

and written to the first file in the SCP file that corresponds to that node in the writer

configuration. The rest of the files are processed in a similar manner, going line-

by-line down the SCP files in the reader and writer. The data is written as an HTK

format feature file with the “USER” parameter kind.

In the following example, data from the autoencoder described previously will

be written to files. In particular, the activations in the second hidden layer prior to

the sigmoid non-linearity will be captured. This node is specified as “L2.BFF.FF.P”.

node will be written to files. The output file names are specified using the SCP file

in the writer, which is line-by-line parallel with the SCP file used by the reader.

TIMIT_WriteBottleneck=[

action="write"

modelPath="$ExpDir$\TrainAutoEncoder\model\cntkSpeech.dnn"

outputNodeNames="L2.BFF.FF.P"

reader=[

readerType="HTKMLFReader"

features=[

dim=792

scpFile="$ScpDir$\TIMIT.core.scp.fbank.fullpath"

]

writer=[

writerType="HTKMLFWriter"

L2.BFF.FF.P = [

dim=64

scpFile="$ScpDir$\TIMIT.core.scp.bottleneck.fullpath"

]

]

]

For writing scaled log likelihoods, the configuration file would look very simi-

lar, except a different node would be specified, e.g. ScaledLogLikelihood, and the

writer should be changed appropriately.

If you are unsure of the exact node name you need to specify, you can use

the “dumpnode” action with printValues set to false. This will generate a text file
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listing of all valid nodes in the network.

TIMIT_DumpNodes=[

action=dumpnode

modelPath="$ExpDir$\TrainAutoEncoder\model\cntkSpeech.dnn"

printValues=false

]

6.2 RNN Language Model

Recurrent neural network (RNN) language models have been proven to obtain

state-of-the-art performance in language modeling. We use Penn Treebank data set

to demonstrate how to build a RNN language model with CNTK. In particular, we

will build a class based RNN language model. The setup file is CNTK\MachineLearning\cn\rnnlmConfig.txt,

which consists of two components: train and test.

6.2.1 Train

Training parameters are specified in this section, with the most important ones

listed as follows.

• action=”train”. It indicates the section is for training.

• minibatchSize=10. In RNN training, the minibatch size is the truncation size

of the truncated BPTT. That is, model parameters are updated after 10 words.

• deviceId=-1. -1 means CPU. One can change to GPU by specifying a non-

negative GPU id.

• epochSize=4430000. The max number of words used to train RNN model in

each epoch. This provides a way to use a proportion of entire training data

for model training.

• SimpleNetworkBuilder section

– rnnType=”CLASSLM”. The RNN network structure. It consists of an

input layer, a recurrent hidden layer and an output layer (including

classes and vocabularies).

– trainingCriterion=”ClassCrossEntropyWithSoftmax”. Training crite-

rion used in model training.

– nodeType=”Sigmoid”. Non-linearity function used in hidden layer.
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– layerSizes=10000:200:10000. Sizes of input, hidden and output layers.

Input layer size is equal to vocabulary size, hidden layer is normally in

the range of 50 to 500, output layer size is the vocabulary size.

– uniformInit=true. Whether to use uniformly randomized values for ini-

tial parameter weights.

– vocabSize=10000. The vocabulary size

– nbrClass=50 . number of word classes.

• SGD section

– learningRatesPerSample=0.1. Learning rate in stochastic gradient de-

scent.

– momentumPerMB=0. Momentum used in updating parameter weights.

The updating equation is gnew = (1 −m) ∗ g +m ∗ gold, where m is

momentum, g is the gradient computed in backward pass, gold is the

gradient value in previous mini-batch, and gnew is the new gradient for

the current min-batch.

– gradientClippingWithTruncation=true. Whether to control the upper

bound of the gradient values using simple truncation or norm based

approach (higher cost).

– clippingThresholdPerSample=15.0. Indicates that the absolute value of

the gradient should never be larger than 15.

– maxEpochs=40. Maximum number of training epochs.

– numMBsToShowResult=2000. The frequency of showing training/val-

idation loss results (in terms of how many mini-batches are processed).

– gradUpdateType=”none”. How the gradients are computed. None

stands for standard gradient update (no special treatment). One can

also choose adagrad or rmsprop.

– modelPath=”C:\CNTKExp\RNN\log\modelRnnCNTK”. The resulting

RNN model file location.

– loadBestModel=true. Choose to use the best of previous models to start

training in each epoch.

– reduceLearnRateIfImproveLessThan=0.001. The learning parameter

is reduced if the difference between previous criterion and current cri-

terion is smaller than previous criterion multiplied by reduceLearn-

RateIfImproveLessThan.
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– continueReduce=true. If true, the learning rate is always reduced per

epoch once it is reduced.

– learnRateDecreaseFactor=0.5. Learning rate decrease factor.

• reader section

– wordclass=”C:\CNTKExp\RNN\data\PennTreeBank\vocab.txt”. Word

class file which contains words, their ids and their class ids, in the

following format

word_id \t frequency \t word_string \t word_class

word_id is a unique non-negative integer, frequency is the frequency

of word (optional), word_string is the word string (low frequent words

may be mapped to <unk>), and word_class is the class id of word.

Word class can be derived using frequency based heuristics [33]or more

sophisticated way[34].

– file=”C:\CNTKExp\RNN\data\PennTreeBank\ptb.train.cntk.txt”. The

location of training data file which has the following format

</s> word1 word2 ... </s>

• cvReader section

– wordclass=”C:\CNTKExp\RNN\data\PennTreeBank\vocab.txt”. Word

class file which contains words, their ids and their class ids.

– file=”C:\CNTKExp\RNN\data\PennTreeBank\ptb.valid.cntk.txt”. Val-

idation data file location. It has the same format as training data.

6.2.2 Test

Test parameters are specified in this section, with the most important ones specified

as follows.

• action=”eval”. It indicates the section is for test.

• minibatchSize=100. Evaluation truncation size is 100.

• deviceId=-1. Use CPU device.

• reader section

– wordclass=”C:\CNTKExp\RNN\data\PennTreeBank\vocab.txt”. Word

class file which contains words, their ids and their class ids.

– file=”C:\CNTKExp\RNN\data\PennTreeBank\ptb.test.cntk.txt”. Test data

file location. It has the same format as training data.
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6.3 LSTM Language Model

We apply long-short-term memory (LSTM) recurrent neural network for language

modeling task. The example setup is at ExampleSetups\LM\LSTMLM\lstmlmconfig.txt.

In this setup, the following need to specified for training

6.3.1 Training

• action=”train” : this informs CNTK to train a model.

• deviceId=-1 : this specifies using CPU.

• SimpleNetworkBuilder:

– recurrentLayer=1 : this specifies that layer 1 is recurrent layer.

– rnnType=”CLASSLM” : this informs CNTK to call class-based LSTM

function in simplenetworkbuilder.

– trainingCriterion=”ClassCrossEntropyWithSoftmax” specifies that train-

ing set to use class-based cross entropy

– evalCriterion=”ClassCrossEntropyWithSoftmax” specifies validation set

also uses class-based cross entropy for evaluation.

– layerSizes=10000:200:10000 : this specifies input, hidden and output

layer sizes.

– vocabSize=10000. The vocabulary size

– nbrClass=50 . number of word classes.

• SGD

– useAdagrad=true : this specifies using AdaGrad for weight update.

– modelPath=”c:\temp\penntreebank\cntkdebug.dnn” : this is the trained

model file name.

• Reader: specifies training reader

– readerType=”LMSequenceReader” : specifies using language model

sequence reader.

– wordclass=”c:\exp\penntreebank\data\wordclass.txt” : specifies word

class info.

– file=”c:\exp\penntreebank\data\ptb.train.cntk.txt” : specifies training file
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• cvReader: specifies cross-validation reader

– readerType=”LMSequenceReader” : specifies using language model

sequence reader.

– wordclass=”c:\exp\penntreebank\data\wordclass.txt” : specifies word

class info.

– file=”c:\exp\penntreebank\data\ptb.valid.cntk.txt” : specifies validation

file

6.3.2 Test

In this setup, the following need to specified for testing

• action=”eval” : this informs CNTK to call simplenetwork evaluation.

• deviceId=-1 : this specifies using CPU.

• modelPath=”c:\temp\penntreebank\cntkdebug.dnn” : this is the trained model

file name.

• Reader: specifies test set reader

– readerType=”LMSequenceReader” : specifies using sequence reader.

– wordclass=”c:\exp\penntreebank\data\wordclass.txt” : specifies word

class info.

– file=”c:\exp\penntreebank\data\ptb.test.cntk.txt” : specifies testing file

6.4 Spoken Language Understanding

One of the important tasks in spoken language understanding is labeling input se-

quence with semantic tags. In this example, we show how CNTK can be used

to train a LSTM recurrent network for the labeling task. The setup file is under

ExampleSetups\SLU\rnnlu.cntk. The data is ATIS, which consists of 944 unique

words, including <unk>, in the training/dev set. Output has 127 dimension, each

corresponding to a semantic tag in ATIS. Unseen words in test will be mapped to

<unk>. A file provides such mapping from one word to the other, which is useful

to map low-frequency input or unseen input to a common input. In this case, the

common input is <unk>.
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6.4.1 Training

In this setup, the following need to specified for training

• action=”train” : this informs CNTK to train a model.

• deviceId=-1 : this specifies using CPU.

• minibatchSize = 10 : this specifies the maximum number of words per mini-

batch.

• SimpleNetworkBuilder:

– recurrentLayer=2 : this specifies that layer 2 is recurrent layer.

– rnnType=LSTM: this informs CNTK to call LSTM function in sim-

plenetworkbuilder.

– lookupTableOrder=3: this specifies forming a context-dependent input

with a context window size of 3.

– trainingCriterion=”ClassCrossEntropyWithSoftmax” specifies that train-

ing set to use cross entropy

– evalCriterion=”ClassCrossEntropyWithSoftmax” specifies validation set

also uses cross entropy for evaluation.

– layerSizes=2832:50:300:127: this specifies input, hidden and output

layer sizes. Notice that input layer has dimension of 2832, which is 3

times 944. This number is obtained in consideration of context window

size and the number of unique words, which 944. If lookupTableOrder

is set to 1, the input layer size should be set to 944.

• SGD

– learningRatePerSample=0.1 : this specifies learning rate per sample.

– modelPath=”c:\temp\exp\ATIS\temp\cntkdebug.dnn” : this is the trained

model file name.

– gradUpdateType=AdaGrad : this specifies using AdaGrad for updating

weights.

• Reader: specifies training reader

– readerType=LUSequenceReader : specifies using LUsequence reader.

– nbruttsineachrecurrentiter=10 : this specifies using maximum of 10

sentences for each minibatch.
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– wordcontext=0:1:2 : this specifies the time indices for forming a con-

text window. In this example, this setup corresponds to using the

current input, the next input, and the input after the next input for

a context window of size 3. User can also use other cases such as

wordcontext=0:-1:1 to form a context window of 3 but using the cur-

rent input, the previous input, and the next input.

– wordmap=c:\exp\atis\data\inputmap.txt : specifies a file that lists a map-

ping from word to the other word. This mapping file should be con-

structed only from training/dev sets.

– file=c:\exp\ATIS\data\atis.train.apos.pred.pos.head.IOB.simple: speci-

fies training file

– labelIn : this specifies information of inputs

∗ beginingSequence=”BOS” : this specifies the symbol of sequence

beginning.

∗ endSequence=”EOS” : this specifies the symbol of sequence end-

ing.

∗ token=”c:\exp\atis\data\input.txt” : this specifies a list of word as

input.

– labels : this specifies information of labels

∗ token=”c:\exp\atis\data\output.txt” : this specifies output semantic

labels.

• cvReader: specifies cross-validation reader. Most of setups should be same

as those in Reader section.

– readerType=”LUSequenceReader” : specifies using sequence reader.

– wordcontext=0:1:2 : this specifies the time indices for forming a con-

text window. This should be the same as specified in Reader section.

– file=”c:\exp\ATIS\data\atis.dev.apos.pred.pos.head.IOB.simple”: spec-

ifies validation file

6.4.2 Test

In this setup, the following need to specified for writing/decoding test set. It uses

LUSequenceWriter to decode test set word sequence to their semantic tags.

• action=”write”: this informs CNTK to call simplenetwork evaluation and

write outputs, which will be specified below.
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• deviceId=-1 : this specifies using CPU.

• modelPath=”c:\temp\exp\ATIS\temp\cntkdebug.dnn”: this is the trained model

file name.

• outputNodeNames=”outputs:labels” : this specifies which nodes to output

results. These node names are pre-specified in CNTK’s simple network

builder. The node “outputs” is the node that output activates before softmax.

The node “labels” is the node that has reference labels for comparison.

• reader: specifies test set reader

– readerType=”LUSequenceReader” : specifies using LUsequence reader.

– wordmap=”c:\exp\atis\data\inputmap.txt”: specifies word map file, which

should be the same as those used in training/validation readers.

– file=”c:\exp\atis\data\atis.test.apos.pred.pos.head.IOB.simple”: speci-

fies testing file

• writer : this specifies where to write

– writerType=”LUSequenceWriter” : this specifies using LUSequenceWriter.

– outputs : specifies where to write for the outputs node.

∗ file=”c:\temp\exp\atis\output\output.rec.txt” : the file name for writ-

ing decode results from LUSequenceWriter.

∗ token=”c:\exp\atis\data\output.txt” : this specifies the semantic la-

bels.
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