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An appraisal i s  given of the current status, both technical and 

nontechnical, of cryptologic research. The principal concepts of 
both secret-key and public-key cryptography are described. Shan- 
non's theory of secrecy and Simmons's theory of authenticity are 
reviewed for the insight that they give into practical cryptographic 
systems. Public-key concepts are illustrated through consideration 
of the Diffie-Hellman public-key-distribution system and the 
Rivest-Shamir-Adleman public-key cryptosystem. The subtleties of 
cryptographic protocols are shown through consideration of some 
specific such protocols. 

I. PRELIMINARIES 

A. Introduction 

That cryptology i s  a"hot" research area hardly needs say- 
ing. The exploits of cryptographic researchers are reported 
today not only in an increasing number of scholarly jour- 
nals and popular scientific magazines, but also in the public 
press. One hears of conflicts between cryptologic research- 
ers and government securityagencies, insinuations of built- 
in "trapdoors" in commonly used ciphers, claims about new 
ciphersthatwould take millionsofyearsto breakandcoun- 
terclaims that no cipher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis secure-all the stuff of high 
drama. To ferret out the truth in such controversies, one 
needs a basic understanding of cryptology, of i t s  goals and 
methods, and of i t s  capabilities and limitations. The aim of 
this paper is to provide a brief, self-contained introduction 
to cryptology that may help the reader to reach such a basic 
understanding of the subject, and that may give him or her 
additional insight into the more specialized paperson cryp- 
tology that form the rest of this special section. 

Only scant attention will be given in this paper to the long 
and rich history of cryptology. For an excellent short his- 
tory, the reader i s  referred to that given in a splendid survey 
of cryptology that appeared earlier in these pages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I] or that 
in an unusually penetrating encyclopedia article [2]. But 
Kahn's voluminous history, The Codebreakers [3], is indis- 
pensable to anyone who wishes to dig deeply into cryp- 
tologic history. Theabridged paperbackedition [4] of Kahn's 
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book can be especially recommended as it packs as much 
suspense as the best spy fiction has to  offer, but will also 
satisfy the historical curiosity of most readers. 

B. Cryptologic Nomenclature and Assumptions 

The word, cryptology, stems from Greek roots meaning 
"hidden" and "word," and is  the umbrella word used to 
describe the entire field of secret communications. For 
instance, the five-year-old scientific society formed by 
researchers in this field is  appropriately called the Inter- 
national Association for Cryptologic Research. 

Cryptology splits rather cleanly into two subdivisions: 
cryptography and cryptanalysis. The cryptographer seeks 
to find methods to ensure the secrecy andlor authenticity 
of messages. The cryptanalyst seeks to undo the former's 
work by breaking a cipher or by forging coded signals that 
will be accepted as authentic. The original message upon 
which the cryptographer plies his art is  called the plaintext 
message, or simply the plaintext; the product of his labors 
is  called the ciphertext message, or just the ciphertext or, 
most often, the cryptogram. The cryptographer always 
employs asecretkeyto control his enciphering process. He 
often (but not always) delivers the secret key by some secure 
means (e.g., in an attache case handcuffed to the wrists of 
a courier) to the person (or machine) to whom he expects 
later to send a cryptogram formed using that key. 

The almost universal assumption of cryptography is that 
the enemy cryptanalyst has full access to the cryptogram. 
Almost as universally, the cryptographer adopts the pre- 
cept, first enunciated by the Dutchman A. Kerckhoff (1835- 
1903), that the security of the cipher must reside entirely in 
the secret key. Equivalently, KerckhoWs assumption is that 
the entire mechanism of encipherment, except for thevalue 
of the secret key, i s  known to the enemycryptanalyst. If the 
cryptographer makes only these two assumptions, then he 
is designing his system for security against aciphertext-only 
attack by the enemy cryptanalyst. If the cryptographer fur- 
therassumes that theenemycryptanalystwill haveacquired 
("by hook or by crook") some plaintext-cryptogram pairs 
formed with the actual secret key, then he i s  designing 
against a known-plaintext attack. The cryptographer may 
even wish to assume that the enemy cryptanalyst can sub- 
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mit any plaintext message of his own and receive in return 
the correct cryptogram for the actual secret key (a chosen- 
plaintext attack), or to assume that the enemy cryptanalyst 
can submit purported "cryptograms" and receive in return 
the unintelligible garble to  which they (usually) decrypt 
under the actual key (a chosen-ciphertext attack), or to 
assume both of these possibilities (a chosen-text attack). 
Most cipher systems in use today are intended by their 
designers to be secure against at least a chosen-plaintext 
attack, even if it is hoped that the enemy cryptanalyst will 
never have the opportunity to mount more than a cipher- 
text-only attack. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. The Need for Cryptology 

Cryptography has been used for millenia to safeguard 
military and diplomatic communications. Indeed, the 
obvious need for cryptography in the government sector 
led to the rather general acceptance, until quite recently, 
of cryptography as a prerogative of government. Most gov- 
ernments today exercise some control of cryptographic 
apparatus if not of cryptographic research. The U.S., for 
instance, applies the same exportlimport controls to cryp- 
tographic devices as to military weapons. But the dawning 
of the Information Age revealed an urgent need for cryp- 
tography in the private sector. Today vast amounts of sen- 
sitive information such as health and legal records, finan- 
cial transactions, credit ratings and the like are routinely 
exchanged between computers via public communication 
facilities. Society turns to the cryptographer for help in 
ensuring the privacy and authenticity of such sensitive 
information. 

While the need for cryptography in both the government 
and private sectors is  generally accepted, the need for 
cryptanalysis i s  less well acknowledged. "Gentlemen do 
not read each other's mail," was the response of U.S. Sec- 
retary of State H. L. Stimson in 1929 upon learning that the 
U.S. State Department's "Black Chamber" was routinely 
breaking the coded diplomatic cables of many countries. 
Stimson forthwith abolished the Black Chamber, although 
as Secretary of War in 1940 he relented in his distaste of 
cryptanalysis enough to condone the breaking of Japanese 
ciphers [4, p. 1781. In today's less innocent world, crypt- 
analysis i s  generally regarded as a proper and prudent activ- 
ity in the government sector, but as akin to keyhole-peep- 
ing or industrial espionage in the private sector. However, 
even in the private sector, cryptanalysis can play a valuable 
and ethical role. The "friendly cryptanalyst" can expose the 
unsuspected weaknesses of ciphers so that they can be 
taken out of service or their designs remedied. A paradigm 
is Shamir's recent breaking of the Merkle-Hellman trap- 
door-knapsack public-key cryptosystem [5]. By publishing 
his ingenious cryptanalysis [6] of this clever and very prac- 
tical cipher, Shamir forestalled i ts likely adoption in prac- 
tice with subsequent exposure to the attacks of cryptan- 
alysts seeking rewards more tangible than scientific 
recognition. Shamir's reward was the 1986 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE W. R. G. 
Baker Award. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Secret and Open Cryptologic Research 

If one regards cryptology as the prerogative of govern- 
ment, one accepts that most cryptologic research will be 
conducted behind closed doors. Without doubt, the num- 

ber of workers engaged today in such secret research in 
cryptology far exceeds that of those engaged in open 
research in cryptology. For only about ten years has there 
in fact been widespread open research in cryptology. There 
have been, and will continue to be, conflicts between these 
two research communities. Open reseach is a common 
quest for knowledge that depends for i ts  vitalityon the open 
exchange of ideas via conference presentations and pub- 
lications in scholarlyjournals. But can agovernment agency, 
charged with the responsibility of breaking the ciphers of 
other nations, countenance publication of'a cipher that it 
could not break? Can a researcher in good conscience pub- 
lish such a cipher that might undermine the effectiveness 
of his own government's code-breakers? One might.argue 
that publication of a provably-secure cipher would force all 
governments to behave like Stimson's "gentlemen," but 
one must be aware that open research in cryptology is 
frought with political and ethical considerations of a sever- 
ity much greater than in most scientific fields. The wonder 
is not that some conflicts have occurred between govern- 
ment agencies and open researchers in cryptology, but 
rather that these conflicts (at least those of which we are 
aware) have been so few and so mild. 

Onecan even argue that thegreatest threat tothe present 
vigorous open cryptologic research activity in the U.S. stems 
not from the intransigence of government but rather from 
its largesse. A recent US. government policy will require 
governmental agencies to rely on cryptographic devices at 
whose heart are tamperproof modules incorporating secret 
algorithms devised by the National Security Agency (NSA) 
and loaded with master keys distributed by NSA [A. More- 
over, NSA will make these modules available to certified 
manufacturers for use in private-sector cryptography, and 
will presumably also supply the master keys for these appli- 
cations. If, as appears likely, these systems find widespread 
acceptance in the American private sector, it will weaken 
the practical incentive for further basic open research in 
cryptography in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU.S. The main practical application for 
such research will be restricted to international systems 
where the NSA technology will not be available. 

E. Epochs in Cryptology 

The entire period from Antiquity until 1949 can justly be 
regarded as the era ofprescientific cryptology; which is  not 
to say that the cryptologic history of these times is  devoid 
of interest today, but rather that cryptology was then plied 
almost exclusively as an art rather than as a science. Julius 
Caesar wrote to Cicero and his other friends in Rome more 
than2000yearsag0,employingacipher inwhicheach letter 
in the plaintext was replaced by the third (cyclically) later 
letter in the Latin alphabet [4, p. 771. Thus, the plaintext 
CAESAR would yield the ciphertext FDHVDU. Today, we 
would express Caesar's cipher as 

y = x e z  (1 ) 

where x i s  the plaintext letter (A = 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB = 1, . . . ,Z  = 251, 
z is  the secret key (which Julius Caesar always chose as 3- 
Caesar Augustus chose 4), y is the ciphertext letter, and 8 

here denotes addition modulo 26 (so that 23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 3 = 0,23 
4 = 1, etc.). There is  no historical evidence to suggest that 
Brutus broke Caesar's cipher, but a schoolchild today, who 
knew a little Latin and who had read the elementary crypt- 
analysis described in Edgar Allen Poe's masterful short story, 
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"The Gold-Bug," would have no difficulty to succeed in a 
ciphertext-only attack on a few sentences of ciphertext. In 
fact, for the next almost two thousand years after Caesar, 
the cryptanalysts generally had a clear upper hand over the 
cryptographers. Then, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1926, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. S. Vernam, an engineer 
with the American Telephone and Telegraph Company 
published a remarkable cipher to be used with the binary 
Baudot code [8]. Vernam's cipher is similar to Caesar's in 
that it i s  described by (I), except that now x, y, and z take 
values in the binaryalphabet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI} and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe denotesaddition 
modulo-two (0 e 0 = 0,O e 1 = 1 , l  e 1 = 0). The new idea 
advanced by Vernam was to use the key only one time, i.e., 
to encipher each bit of ciphertextwith a new randomly-cho- 
sen bit of key. This necessitates the secure transfer of as 
much secret key as one will later have plaintext to encipher, 
but it yields a truly unbreakable cipher as we shall see later. 
Vernam indeed believed that his cipher was unbreakable 
and was aware that it would not be so if the randomly cho- 
sen key bitswere to be reused later, but heoffered no proofs 
of these facts. Moreover, he cited in [8] field tests that had 
confirmed the unbreakability of his cipher, something no 
amount of field testing could in fact confirm. Our reason 
forcallingthe period uptol949the prescientificeraofcryp- 
tology is that cryptologists then generally proceeded by 
intuition and "beliefs," which they could not buttress by 
proofs. It was not until the outbreak of World War II, for 
instance, that the English cryptological community rec- 
ognized that mathematicians might have a contribution to 
make to cryptology [8, p. 1481 and enlisted among others, 
A. Turing, in their service. 

The publication in 1949 by C. E. Shannon of the paper, 
"Communication Theory of Secrecy Systems" [IO], ushered 
in the era ofscientific secret-key cryptology. Shannon, edu- 
cated both as an electrical engineer and mathematician, 
provided a theory of secrecy systems almost as compre- 
hensive as the theory of communications that he had pub- 
lished the year before [Ill. Indeed, he built his 1949 paper 
on the foundation of the 1948 one, which had established 
the new discipline of information theory. Shannon not only 
proved the unbreakability of the random Vernam cipher, 
but also established sharp bounds on the required amount 
of secret key that must be transferred securely to the 
intended receiver. 

For reasons that will become clear in the sequel, Shan- 
non's 1949 paper did not lead to the same explosion of 
research in cryptology that his 1948 paper had triggered in 
information theory. The real explosion came with the pub- 
lication in 1976 by W. Diffieand M. E. Hellman of their paper, 
"New Directions in Cryptography'' [12]. Diffie and Hellman 
showed for the first time that secret communications was 
possiblewithout anytransfer of a secret key between sender 
and receiver, thus establishing the turbulent epoch ofpub- 
lic-key cryptography that continues unabated today. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. C. 
Merkle, who had submitted his paper about the same time 
as Diffie and Hellman but to another journal, indepen- 
dently introduced some of the essential ideas of public-key 
cryptography. Unfortunately, the long delay in publishing 
his paper [I31 has often deprived him of due scientific credit. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F. Plan of this Paper 

In the next section, we review briefly the theory of secret 
key cryptography, following essentially Shannon's original 
approach and making Shannon's important distinction 

Enrryptrr . E : Decrypter Message -"; 
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Fig. 1. Model of a secret-key cryptosystem 

Z 

secret key, Z = [Z,, Z,, * * , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,], after generation by the key 
source, is delivered to the intended receiver, protected from 
the prying eyes of the enemy cryptanalyst. To emphasize 
that the same secret key is used by both the encrypter and 
decrypter, secret-key cryptosystems have also been called 
one-key cryptosystems and symmetric cryptosystems. The 
K digits of the key are letters in some finite alphabet that 
we will often choose to be the binary alphabet (0, I } .  The 
message source generates the plaintext, X = [XI, X,, . . . , 
X,]; the randomizer(whose purposewill soon be explained) 
generates the randomizing sequence, R = [R,, R2, * . . , RI]. 
The encrypter forms the cryptogram, Y = [VI, V,, . . . , V,], 
as a function of X, R, and Z. We write this encrypting trans- 
formation as 

to emphasize that we wish to think of the cryptogram Y as 
some function of only the plaintext X, the particular func- 
tion being determined by the value of the secret key Zand 
of the randomizing sequence R. As Fig. 1 implies, the 
decrypter must be able to invert this transformation with- 
out knowledge of the randomizing sequence. That i s  

x = Dz(Y) (3) 

which expresses the fact that the plaintext X must be some 
function of the cryptogram Ywhere the particular function 
is  determined by the secret key Z alone. The enemy crypt- 
analyst observes the cryptogram Y and nothing else, and 
forms his estimate X of the plaintext X and/or his estimate 
i o f  the secret keyZ. Theenemy cryptanalyst, in accordance 
with Kerckhoff's precept, is  assumed to know all details of 

MASSEY: CONTEMPORARY CRYPTOLOGY 535 

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 2, 2008 at 13:00 from IEEE Xplore.  Restrictions apply.



the encrypter and decrypter, but of course to have no 
knowledge of X, R, and, in particular, of Z. 

Our Fig. 1 differsfrom the"Schematicof ageneral secrecy 
system" that appears as Fig. 1 in Shannon's zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1949 paper [IO] 
only in that we have included a "randomizer" in the enci- 
phering process. Such randomization is  an old trick of the 
cryptographer (and it also plays a special role in the theory 
of authenticity that we will soon consider). In English text, 
the letter e appears much more frequently than any other 
letter. If English text i s  first converted into text in some larger 
alphabet by replacing e each time with a randomly chosen 
letter from the 1arge"e-group"of letters in the larger alpha- 
bet, and similarly replacing otherfrequentlychosen English 
letters with random choices of a letter from appropriately- 
sized groups in the larger alphabet, one obtains a new text 
in which all letters of the larger alphabet have (approxi- 
mately) the same frequency. Enciphering of this random- 
ized text frustrates a single-letter frequency analysis by the 
enemycryptanalyst. But, after deciphering the randomized 
text, the legitimate receiver can remove the randomization 
merely by replacing each letter in the e-group of the larger 
alphabet by the letter e, and so on-he does not need to 
be told in advance which random substitutions would be 
made. Such randomized ciphers are known as "multiple- 
substitution ciphers" and also as "homophonic ciphers." 
The great mathematician, Gauss, deceived himself into 
believing that, by using homophonic substitution, he had 
devised an unbreakable cipher [2]; but, without question, 
randomization i s  a useful cryptographic tool. As its inclu- 
sion hardly complicates Shannon's theory of secrecy, we 
have included it in our Fig. 1. 

It is  important to recognize that X, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, and Z are random 
quantities. The statistics of the plaintext X are of course 
determined by the message source, but the statistics of the 
secret key Zand of the randomizing sequence R are under 
thecontrol 0fthecryptographer.A~ Fig. 1 suggests,weshall 
always assume that X,Z, and Rare statistically independent 
of one another. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Theoretical and Practical Security 

Shannon considered two very different notions of secu- 
rityforcryptographic systems. He first considered theques- 
tion of theoreticalsecurity, by which he meant, "How secure 
i sa  system against cryptanalysiswhen theenemy has unlim- 
ited time and manpower available for the analysis of inter- 
cepted cryptograms?" [IO, p. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6581. Shannon's theory of the- 
oretical security, which we shall next review, casts much 
light into cryptography, but leads to the pessimistic con- 
clusion that the amount of secret key needed to build a the- 
oretically secure cipher will be impractically large for most 
applications. Thus, Shannon also treated the question of 
practicalsecurity, by which he meant: Is  the system secure 
against a cryptanalyst who has a certain limited amount of 
time and computational power available for the analysis of 
intercepted cryptograms? Public-key systems, to be dis- 
cussed in Section Ill,are intended to provide practical secu- 
rity-they cannot provide theoretical security. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Perfect Secrecy 

The first assumption in Shannon's theory of theoretical 
security i s  that the secret key will be used only one time, 
or equivalently that the M digits of the plaintext Xform the 

total of messages that will be enciphered before the secret 
key Z and the randomizer R are changed. The second 
assumption i s  that the enemy cryptanalyst has access only 
to the cryptogram Y and thus is limited to a ciphertext-only 
attack. Shannon then defined perfect secrecy to mean that 
the plaintext X is statistically independent of the crypto- 
gram Y, i.e., that P(X = X I  Y = y )  = P(X = x) for all possible 
particular plaintexts x = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[x,, x2, - , XM] and particular 
cryptograms y. This is  the same as saying that the enemy 
cryptanalyst can do no better estimating Xwith knowledge 
of Y than he could do without knowing Y, nb matter how 
much computing time and power he has available for the 
processing of Y. Having made the right mathematical for- 
mulation of the problem, it was then child's play for Shan- 
non to show that perfect secrecy systems exist. 

Consider the case of a nonrandomized cipher in which 
the plaintext, ciphertext, and key digits all takevalues in the 
L-ary alphabet {0,1, . . , L - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI}, and in which the length 
K of the key and length N of the cryptogram coincide with 
the length M of the plaintext, i.e., K = N = M. Suppose that 
the key is  chosen to be completelyrandom, i.e., P(Z = z) = 
L-M for all LM possible values z of the secret key, and that 
the enciphering transformation i s  

(4) 

where @ denotes addition modulo L. Because for each pos- 
sible choice x, and y, of X, and Y,, respectively, there i s  a 
unique zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, such that Z, = z, satisfies (4), it follows that P(Y = 
y IX=x)  = L-Mforeverypossibleparticularyandx, nomat- 
ter what the statistics of X may be. Thus X and Yare sta- 
tistically independent, and hence this modulo-L Vernam 
system (to use Shannon's terminology) provides perfect 
secrecy. The modulo-L Vernam system is  better known 
under the name, the one-time pad, from its use shortly 
before, during and after World War II by spies of several 
nationalities who were given a pad of paper containing the 
randomly chosen secret key and told that it could be used 
for only one encipherment. There appears to have been a 
general belief in cryptological circles that this cipher was 
unbreakable, but Shannon seems to have been the first to 
publish a proof of this theoretical unbreakability. 

It is worth noting here that the one-time pad offers per- 
fect secrecy no matter what the statistics of the plaintext X 
may be. In fact, we will show shortly that it also uses the 
least possible amount of secret key for any cipher that pro- 
vides perfect secrecy independent of the statistics of the 
plaintext-this is  a most desirable attribute; one would not 
usually wish the security of the cipher system to depend 
on the statistical nature of the message source. But the fact 
that the one-time pad requires one digit of secret key for 
each digit of plaintext makes it imprac,tical in all but the few 
cryptographic applications, such as encrypting the Mos- 
cow-Washington hotline, where the need for secrecy is  
paramount and the amount of plaintext i s  quite limited. 

Y, = XI  @ Z,, i = 1, 2, * * . , M 

D. Key Requirements for Perfect Secrecy 

Togofurther in thestudy oftheoretical security,we need 
to make use of some properties of "uncertainty" (or 
"entropy"), the fundamental quantity in Shannon's infor- 
mation theory [Ill. Uncertainty is always defined as the 
mathematical expectation of the negative logarithm of a 
corresponding probability distribution. For instance, 
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H(XI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY) (which should be read as "the uncertainty about X 
given knowledge of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY") is the expectation of the negative 
logarithm of f(X = X I  Y = y), i.e., 

H(XI Y) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc c f(X = x, Y = y) [-log f(X = X I  Y = y)] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X Y  

where the sums are over all possible values x and y of the 
random quantities Xand Y, respectively. Uncertainties obey 
intuitively-pleasing rules, such as H(X, Y) = H(X) + H(Y(X), 
which we will use in our discussion of theoretical secrecy 
without further justification-the reader i s  referred to [ I l l  
or to the introductory chapters of any standard textbook 
on information theory for proofs of the validity of these 
"obvious" manipulations of uncertainties. 

Equations (2) and (3) above can be written equivalently 
in terms of uncertainties as 

and 

respectively, because, for instance, H(X1 VIZ) is0 if and only 
if Y and Ztogether uniquely determine X. The definition of 
perfect secrecy may be written as 

H(XI Y) = H(X) (7) 

since this equality holds if and only if Xand Yare statistically 
independent. 

For any secret-key cryptosystem, one has 

H(X(Y) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 H(X,Z(Y) 

= H(ZI Y) + H(X1 Y, Z) 

= H(Z(Y)  

5 H(Z) (8) 

where we have made use of (6) and of the fact that the 
removal of given knowledge can only increase uncertainty. 
If the system gives perfect secrecy, it follows from (7) and 
(8) that 

H(Z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 H(X). (9) 

Inequality (8) is Shannon's fundamental bound for perfect 
secrecy; the uncertainty o f  the secret key must be at least 
as great as the uncertainty of the plaintext that i t  is  con- 
cealing. If the Kdigits in the key are chosen from an alpha- 
bet of size L,, then 

H(Z) 5 log ( L t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK log L, ( IO)  

with equality if and only if the key is completely random. 
Si m ilarly, 

(11) 

(where L, i s  the size of the plaintext alphabet) with equality 
if and only if the plaintext is completely random. Thus, if 
L, = L, (as in the one-time pad) and if the plaintext is  com- 
pletely random, Shannon's bound (9) for perfect secrecy 
yields, with the aid of (IO) and of equality in (11) 

K 2 M. (12) 

That is, the key must be at least as long as the plaintext, a 
lower bound that holds with equality for the one-time pad. 

H(X) 5 M log L, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E. Breaking an Imperfect Cipher 

Shannon alsoconsidered thequestion of when theenemy 
cryptanalyst would be able in theory to break an imperfect 
cipher. To this end, he introduced the key equivocation 
function 

(1 3) 

which measures the uncertainty that the enemy cryptan- 
alyst has about the key given that he has examined the first 
n digits of the cryptogram. Shannon then defined the uni- 
city distance U as the smallest n such the f (n) = 0. Given 
udigitsoftheciphertext and not before, therewill beessen- 
tially only one value of the secret key consistent with Y,, Y,, 
. . .  , V,, so it i s  precisely at this point that the enemy 
cryptanalyst with unlimited time and computing power 
could deduce the secret key and thus break the cipher. 
Shannon showed for a certain well-defined "random 
cipher" that 

f(n) = H(ZI Y,, Y2, * - , Y,) 

where 

is the percentage redundancy of the message information 
contained in the N digit cryptogram, whose letters are from 
an alphabet of size L,. When N = M and L, = L, (as is true 
in most cryptosystems), r i s  just the percentage redundancy 
of the plaintext itself, which i s  about a for typical English 
text. When L, = L, and the key is  chosen completely at ran- 
dom to maximize the unicity distance, (14) gives 

K 
U = -. 

r 
(1 6) 

Thus, a cryptosystem with L, = L, = L, used to encipher 
typical English text can be broken after only about N = i K  
ciphertext digits are received. For instance, a secret key of 
56 bits(8ASCII 7-bitsymbo1s)can befound in principle from 
examination of only about 11 ASCII 7-bit symbols of 
ciphertext. 

Although Shannon's derivation of (14) assumes a partic- 
ular kind of "random" cipher, he remarked "that the ran- 
dom cipher analysis can be used to estimate equivocation 
characteristics and the unicity distance for the ordinary 
typesof ciphers"[IO, p. 6981. Wherever it has been possible 
to test this assertion of Shannon's, it has been found to be 
true. Shannon's approximation (14) is routinely used today 
to estimate the unicity distance of "ordinary" secret-key 
ciphers. 

The reader may well be worrying about the validity of (14) 
and (16) when r = 0, as it would in the case when N = M, 
L, = L,, and the message source emitted completely ran- 
dom plaintext so that H(X) = M log L, = N log L,. The answer 
is  somewhat surprising: the enemy cryptanalyst can never 
break the system (U = 00 i s  indeed the correct unicity dis- 
tance!), even if K << M so that (12) tells us that the system 
does not give perfect secrecy. The resolution of this par- 
adox is  that perfect secrecy demands that Y provide no 
information at all about X, whereas breaking the system 
demands that Ydetermines Xessentially uniquely, i.e., that 
Y must provide the maximum possible information about 
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X. If the secret keyzwerealsochosen completelyat random 
in the cipher for the completely-random message source 
described above, there would always be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1; different plain- 
text-key pairs consistent with any possible cryptogram y, 
and all would be equally likely alternatives to the hapless 
cryptanalyst. This suggests, as Shannon was quick to note, 
that data compression i s  a useful cryptographic tool. An 
ideal data compression algorithm transforms a message 
source into the completely-random (or “nonredundant”) 
source that we have just been considering. Unfortunately, 
no one has yet devised a data compression scheme for real- 
istic sources that i s  both ideal and practical (nor is anyone 
ever likely to do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso), but even a nonideal scheme can be 
used to decrease r significantly, and thus to increase the 
unicity distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU significantly. Experience had long ago 
taught cryptographers that redundancy removal was a use- 
ful trick. In the days when messages were hand-processed, 
cryptographers would often delete from the plaintext 
many letters and blanks that could be recognized as miss- 
ing and be replaced by the legitimate receiver. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
THSISASIMPLFORMOFDATACOMPRESION. 

Shannon’s derivation of (14) assumed a cryptographic 
system without the randomizing sequence R in our Fig. 1. 
When randomization is included in the cipher, H(X) in (15) 
must be replaced by H(X, R) in order for (14) still to hold. 
This suggests that randomization can also be used to reduce 
the redundancy r in the cryptogram. This, too, old-time 
cryptographers had learned from experience. They fre- 
quently inserted extra symbols into the plaintext, often an 
X, to hide the real statistics of the message. THXISISAX- 
NEXAMXPLE. 

F. Authenticity and Deception 

We have several times mentioned that cryptography 
seeks to ensure the secrecy and/or authenticity of mes- 
sages. But it i s  in fact quite a recent realization that secrecy 
and authenticityare independent attributes. If one receives 
a cryptogram that decrypts under the actual secret key to 
a sensible message, cannot one be sure that this crypto- 
gram was sent by one‘s friend who i s  the only other person 
privy to this secret key? The answer, as we shall see, in gen- 
eral is: No! The systematic study of authenticity i s  the work 
of G. I .  Simmons [14], who has developed a theory of 
authenticity that in many respects i s  analogous to Shan- 
non‘s theory of secrecy. 

To treat the theoretical security of authenticity systems 
as formulated by Simmons, we must give the enemy crypt- 
analyst more freedom than he is allowed in the model of 
Fig. 1. Fig. 2 shows the necessary modification to Fig. 1. The 
enemy cryptanalyst i s  now the one who originates the 
“fraudulent” cryptogram ?that goes to the decrypter. The 
line from the decrypter to the destination is shown dotted 
in Fig. 2 to suggest that the decrypter might recognize Y as 
fraudulent and thus not be deceived into passing a fraud- 
ulent plaintext X to the destination. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 2. Modifications to Fig. 1 for consideration of authen- 
ticity attacks. 

As did Shannon, Simmons assumes that the secret key 
Zwill be used onlyone time, i.e., to form onlyone authentic 
cryptogram Y. But Simmons recognized that even in this 
case the enemy cryptanalyst can choose either of two quite 
different attacks. He can choose to form his fraudulent 
cryptogram ?without waiting to see the authentic cryp- 
togram Y (the impersonation attack), which explains why 
the input line to the enemy cryptanalyst in Fig. 2 i s  shown 
dotted. The enemy cryptanalyst is  said to succeed in this 
impersonation attack i f  thedecrypter accepts Pas authentic 
(even if it happens that P turns out later to+ coincide with 
the authentic cryptogram Y). The enemy cryptanalyst can 
also wait to see Y before he forms P(thesubstitutionattack), 
in which case he is said to succeed if the decrypter accepts 
P a s  authentic and P decrypts to X with X # X. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, and 
Ps denote the enemy cryptanalyst’s best-possible proba- 
bility of success in an impersonation attack or in a substi- 
tution attack, respectively. Assuming that the enemy crypt- 
analyst will choose the attack that is  more likely to succeed, 
Simmons defines Pd = max (PI, Ps) to be the probability o f  
deception, i.e., the probability that the enemy cryptanalyst 
succeeds in defrauding the decrypter. 

The theory of authenticity i s  in many ways more subtle 
than the corresponding theory of secrecy. In particular, it 
is  not at all obvious how “perfect authenticity” should be 
defined. Let#{ Y }  denote the number of cryptogramsysuch 
thatP(Y=y) # O,andlet#{X} and#{Z} besimilarlydefined 
as the number of plaintexts and cryptograms, respectively, 
with nonzero probability. It follows from (3) that, for every 
I, there must be at least # { X }  different cryptograms y such 
that P(Y = y l Z  = I) # 0. Hence, if the enemy cryptanalyst 
in an impersonation attack selects Y completely at random 
from the #{ Y }  cryptograms with nonzero probability, his 
probability of success will be at least # { X } l # {  Y}. Thus, P,, 
the probability of success in an optimal impersonation 
attack satisfies 

P/ 2 # { X } / # { Y } .  (1 7) 

This shows that good protection against an impersonation 
attack demands that #{Y} be much greater than # { X } ,  and 
shows also that complete protection (i.e., PI = 0) i s  impos- 
sible. We note further that (17) can hold with equality only 
when there are exactly # { X }  valid cryptograms y for each 
key z, which means that a randomized cipher cannot 
achieve equality in (17). 

Becausecomplete protection against deception is impos- 
sible, the only recourse is  to define “perfect authenticity” 
to mean as much protection against deception as i s  possible 
given the size of the space of valid cryptograms (even if this 
means that we must call a system “perfect” for which # {  Y }  
= #{X} and hence Pd = 1). This i s  what Simmons has done, 
but we must develop the theory a little further before intro- 
ducing his precise definition of “perfect authenticity.” 

Let the authentication function, 4( y, z) be defined to be 
1 if y is a valid cryptogram for the secret key z and to be 0, 
otherwise. Note that if Z = z, the decrypter will accept 
= yas a valid cryptogram just when 4( y, z) = 1. To simplify 
notation, we now write P( y), P(z) and P( ylz) as shorthand 
for P(Y = y),  P(Z = z), and P(Y = y l Z  = z), respectively. The 
probability that a particular y i s  a valid cryptogram can then 
be written 

P( y valid) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 4( y, z) P(z) (18) 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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which is just the total probability of the keys z for which y 
i s  a valid cryptogram. The best impersonation attack is for 
the enemy cryptanalyst to choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP = y for that y that max- 
imizes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP( y valid). Thus 

(19) 

Noting that P(Y = y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ = I) = P(z) P( ylz) # 0 implies that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4( y, z) = 1, we can write 

PI = max P( y valid). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 

RY) = P(z) P(YIZ) 4(Y, z). (20) 

which is  Simmons’s bound. The somewhat lengthy deri- 
vation, which nonetheless is  a shortening of that in [14], per- 
mits one to see that equality holds in (28) if and only if both 
(i) P( yvalid) is independent of y so that the left sides of (27) 
and (28) are equal (or, equivalently, so that choosing Ycom- 
pletelyat random is an optimum impersonation attack) and 
(ii) for each cryptogram y, P( y Jz) has the same value for all 
z for which 4( y, z) = 1. Because of the definition of Pd as 

Pd = max (PI, Ps) (29) 

the bound (28) implies the further bound 
Weare now in position to derive Simmons’s lower bound 

log Pd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 -/(Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz); (30) on P,. The first and least obvious step i s  to define 

Qy(z) = P(z) 4( Y, z)lP( Y valid). (21) 

This is  a nonnegative function of z which, because of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I@, 
sums over z to 1, i.e., Qy(z) can be considered as a prob- 
ability distribution over z. Then, because t log t is a strictly 
convex function for t 2 0, we can use Jensen’s inequality, 
cf. [15, pp. 151-1521, to obtain 

(22) 
QY(4 P( y I z) log P( Y I z) 

2 [ Qy(z) P( Y I z) log QYW P( Y 1 z)] 1 [ z  

with equality if and only i f  P( y (  z) has the same value for all 
z for which Qy(z) # 0, i.e., for which d( y, z) # 0. From (20) 
and @I), we have 

(23) P( y) = P( y valid) QYk) P( y I z) 

so that 

(24) P( y) log f( y) = P( y) log P( y valid) 

+ P( y) log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc Qy(z) P( Y 14. 

But the second term on the right of (24) with the aid of (23) 
becomes 

1 

moreover, conditions (i) and (ii) are necessary (but in gen- 
eral no longer sufficient) conditions for equality to hold in 
(30). 

Simmons [I41 has defined perfect authenticity to mean 
that equality holds in (30). Even with perfect authenticity, 
however, it must be remembered that the probability of 
deception Pdwill be small onlywhen /(Y;Z) is large, i.e.,only 
when the cryptogram provides the enemycryptanalyst with 
much information about the key! The information that Y 

gives about Z is a measure of how much of the secret key 
is  used to provide authenticity. 

The theory of the theoretical security of authenticity sys- 
tems is less well developed than is that of secrecy systems. 
In particular, it is  not known in general under what con- 
ditions systemsoffering perfect authenticityexist,although 

constructions of particular such systems have been given. 
Thus, we will content ourselves here with giving a series of 
simple examples that illuminate the main ideas of authen- 
tication theory and show the relation between authenti- 
cation and secrecy. 

In the following examples, the plaintext is  always a single 
binary digit X, the cryptogram Y = [Y,, Y,] is a binary 
sequence of length 2, the key Z = [Z,, . . . , Z,] is a com- 
pletely-random binary sequence so that P(Z = z) = 2-K for 
all z, and all logarithms are taken to the base 2 so that H(Z) 
= K bits. 

Example 7: Consider the encipherment scheme with a key 5 P( y valid) QYM P( y I z) log P( y I z) 
of length K = 1 described by the following table. 

= c P(z) P( VIZ)  d( Y, z) log P( Y lz) 

= c P(z) P(ylz) log P(yJz) (25) 

where we have used (22) to obtain the inequality, and then 

4( y, z) = 1. Using (25) in (24) and summing over y gives 
made use of (21) and of the fact that P( y I z) P(z) # 0 implies 01 11 

-H(Y) 5 c P(y) log P(y valid) - H(YJZ). (26) 

In information theory, thequantity H(Y) - H ( Y ( Z )  i s  called 
the (average) mutual information between Y and Z and is  
denoted /(Y; Z). Thus (26) can equivalently be written as 

(27) 

The final step is  to note that the ”average” of log P( yvalid), 
which appears on the left of (27), is less than or equal to the 
maximum of log P( y valid), so that (19) together with (27) 
yields 

log P/ 2 -/(Y;Z) (28) 

Y 

P( y) log P( y valid) 5. -/(Y; Z). 
Y 

The meaning i s  that, for instance, Y = [I, 01 when X = 1 and 
Z = 0. The enciphering rule is  simply Y = [X, Z], i.e., the 
key i s  appended as a “signature” to the plaintext to form 
thecryptogram. Thus, this system provides nosecrecyat all. 
Moreover, H(ZI Y) = 0 so that /(Y;Z) = 1 bit, and the bound 
(28) becomes PI 2 ;. But P( yvalid) = i f o r  all yso that in fact 
PI = 3, which is as small as possible. But upon observing Y 

= y, the enemy cryptanalyst always knows the other valid 
cryptogram so that he can always succeed in a substitution 
attack. Hence Ps = 1 = Pd > 2-’(y;z’ = j, i.e., theauthenticity 
is not perfect. 

fxample 2: Consider the randomized encipherment sys- 
tem. 
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01 10 

Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, = X so that again there is  no secrecy. Given zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY 
= y for any y, the two possible values of Z are equally likely 
sothatH(Z1Y) = l,andthus/(Y;Z) =O.Itfollowsthenfrom 
(28) that this system must have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ,  = 1 = f d  = 2-'("''and thus 
trivially provides perfect authenticity. But, upon observing, 
say, Y = [0, 01, the enemy cryptanalyst i s  faced with two 
equally likely alternatives, [I, 01 and [I, I], for the other valid 
cryptogram, only one of which will be accepted by the 
receiver,who knowsZ,asauthentic.Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf s  = ].Thisexam- 
ple shows that a randomized cipher can satisfy (30) with 
equality, and also that -l(Y; Z) i s  not in general a lower 
bound on log f s .  

Examples 1 and 2 show that the Substitution attack can 
be stronger than the impersonation attack, and vice versa. 

Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: Consider the same system as in Example 2 
except that z and rare now the two digits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, and z2, respec- 
tively, of the secret key, and hence both are known to  the 
legitimate receiver. There i s  s t i l l  no secrecy because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYl = 
X. Given Y = y for any y, there are still two equally likely 
possibilities for Z so that H(ZI Y )  = 1 and hence l(Y; Z) = 
1 bit. But f (  y valid) = a for all four cryptograms y and thus 
f r  = 1. Moreover, given that he observes Y = y, the enemy 
cryptanalyst is  faced with two equally likely choices for the 
other valid cryptogram so that f s  = 1. Thus f d  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 = 2-"';'' 
and hence this system offers (nontrivial) perfect authentic- 
ity, no matter what the statistics of the plaintext X may be. 

Example 4: Consider the encipherment system. 

z,No 1 

! ; I :: ;: 
10 

1 1 11 00 

Because p(Y = y I X = x )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 for all x and y, the system pro- 
vides perfect secrecy. By the now familiar arguments, /(Y; 
Z) = 1 and f ,  = 4, the corresponding best possible pro- 
tection against impersonation. But, upon observing Y = y, 
the enemy can always succeed in a substitution attack by 
choosing Y to be the complement of y. Thus Ps = 1 = f d  

and hence this system provides no protection against 
deception by substitution. 

Example 5: Consider the encipherment system. 

z,NO 1 ; i 1 fi f 
10 11 

This cipher provides perfect secrecy and has l(Y; Z) = 1 bit. 
Moreover, f (  yvalid) = $for all yso that f r  = 1. Upon observ- 
ing that Y = y, say y = [0, 01, the enemy cryptanalyst is  faced 

with the two alternatives [I, 01 and [0,  I ]  for the other valid 
cryptogram with the probabilities P(X = 0) and P(X = I), 
respectively. Thus, Ps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 i with equality if and only if P(X = 

0) = 3. It follows that Pd = f s  2 2-'";'' = with equality if 
and only if f(X = 0) = 4. Thus, if P(X = 0) = 4, this cipher 
also provides perfect authenticity. (The reader should have 
no trouble adding a third bit to the key to obtain a cipher 
that provides both perfect secrecyand perfect authenticity, 
independent of the plaintext statistics.) 

Examples 3, 4, and 5 illustrate the fact that secrecy and 
authenticity are independent attributes o f  a cryptographic 
system-a lesson that i s  too often forgotten in practice. 

G. Practical Security 

In Section II-E, we noted the possibility for a cipher sys- 
tem with a limited key [i.e., with K << H(X)] to have an infi- 
nite unicity distance and hence to be theoretically 
"unbreakable." Shannon called such ciphers ideal, but 
noted that their design poses virtually insurmountable 
practical problems [IO, p. 7001. Most practical ciphers must 
depend for their security not on the theoretical impossi- 
bility of their being broken, but on the practical difficulty 
of such breaking. Indeed, Shannon postulated that every 
cipher has a workcharacteristic W(n) which can be defined 
as the average amount of work (measured in some con- 
venient units such as hours of computing time on a CRAY 
2) required to find the key when given n digits of the 
ciphertext. Shannon was thinking here of a ciphertext-only 
attack, but a similar definition can be made for any form of 
cryptanalytic attack. The quantity of greatest interest i s  the 
limitof W(n)asn approaches infinity,whichwe shall denote 
by W(w) and which can be considered the average work 
needed to "break the cipher." Implicit in the definition of 
W(n) is that the best possible cryptanalytic algorithm i s  
employed to break the cipher. Thus to compute or under- 
bound W(n) for a given cipher, we are faced with the 
extremely difficult task of finding the best possible way to 
break that cipher, or at least of proving lower bounds on 
the work required in the best possible attack. There is no 
practical cipher known today (at least to researchers out- 
side the secret research community) for which even an 
interesting lower bound on W(w) is known. Such practical 
ciphers are generally evaluated in terms of what one might 
call the historical work characteristic, Wh(n), which can be 
defined as the average amount of work to find the key from 
n digits of ciphertext when one uses the best o f  known 
attacks on the cipher. When one reads about a"cipher that 
requires millions of years to break," one can be sure that 
the writer is talking about wh(m). When calculated by a 
cryptographer who is fully acquainted with the techniques 
of cryptanalysis, wh(W) can be a trustworthy measure of the 
real security of the cipher, particularly if the cryptographer 
includes a judicious "margin of error" in his calculations. 
But there always lurks the danger that W(w) << wh(w), and 
hence that an enemy cryptanalyst might devise a new and 
totally unexpected attack that will, when it i s  ultimately 
revealed, greatly reduce wh(w)-the history of cryptogra- 
phy i s  rife with examples! 

H. Diffusion and Confusion 

Shannon suggested two general principles, which he 
called diffusion and confusion [IO, p. 7081, to guide the 
design of practical ciphers. By diffusion, he meant the 
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spreading out of the influence of a single plaintext digit over 
many ciphertext digits so as to hide the statistical structure 
of the plaintext. An extension of this idea is  to spread the 
influence of a single key digit over many digits of ciphertext 
so as to frustrate a piecemeal attack on the key. By con- 
fusion, Shannon meant the use of enciphering transfor- 
mations that complicate the determination of how the sta- 
tistics of the ciphertext depend on the statistics of the 
plaintext. But acipher should not only bedifficult to break, 
it must also be easy to encipher and decipher when one 
knows the secret key. Thus, a very common approach to 
creating diffusion and confusion is to use aproductcipher, 
i.e., a cipher that can be implemented as a succession of 
simple ciphers, each of which adds i t s  modest share to the 
overall large amount of diffusion and confusion. 

Product ciphers most often employ both transposition 
ciphers and substitution ciphers as the component simple 
ciphers. A transposition cipher merely permutes the letters 
in the plaintext, the particular permutation being deter- 
mined by the secret key. For instance, a transposition cipher 
acting on six-letter blocks of latin letters might cause CAE- 
SAR to encipher to AESRAC. The single-letter statistics of 
the ciphertext are the same as for the plaintext, but the 
higher-order statistics of the plaintext are altered in a con- 
fusing way. A substitution cipher merely replaces each 
plaintext letter with another letter from the same alphabet, 
the particular substitution rule being determined by the 
secret key. The single-letter statistics of the ciphertext are 
the same as for the plaintext. The Caesar cipher discussed 
in Section I-E is a simple substitution cipher with only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26 
possible values of the secret key. But if the substitution is 
made on a very large alphabet so that it i s  not likely that 
any plaintext letterwill occur morethan once in the lifetime 
of the secret key, then the statistics of the plaintext are of 
little useto theenemycryptanalyst and asubstitution cipher 
becomes quite attractive. To achieve this condition, the 
cryptographer can choose the “single letters” upon which 
the substitution is  applied to be groups of several letters 
from the original plaintext alphabet. For instance, a sub- 
stitution upon pairs of Latin letters, in which CA was 
replaced by WK, ES by LB, and AR by UT, would result in 
CAESAR being enciphered to WKLBUT. If this ciphertext 
was then further enciphered by the above-considered 
transposition cipher, the resulting ciphertext would be 
KLBTUW. Such interleaving of simple transpositions and 
substitutions, when performed many times, can yield avery 
strong cipher, i.e., one with very good diffusion and con- 
fusion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. The Data Encryption Standard 

Perhaps the best example of a cipher designed in accor- 
dance with Shannon’s diffusion and confusion principles 
is the Data Encryption Standard (DES). In the DES, the plain- 
text X, thecryptogram Yand the keyZare binary sequences 
with lengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = 64, N = 64, and K = 56, respectively. All 
264 possibte values of Xare, in general, allowed. Because M 
= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN = 64, this means that DES i s  in fact a substitution cipher, 
albeit on a very large alphabet of 264 = IO’’ “letters”! In i ts  
so-called electronic code book mode, successive 64 bit 
“blocks” of plaintext are enciphered using the same secret 
key, but otherwise independently. Any cipher used in this 
manner is  called a block cipher. 

The DES i s  a product cipher that employs 16 “rounds” of 
successive encipherment, each round consisting of rather 
simple transpositions and substitutions on 4 bit groups. 
Only 48 key bits are used to control each round, but these 
are selected in a random-appearing way for successive 
rounds from the full 56 bit key. We shall not pursue further 
details of the DES here; a good short description of the DES 
algorithm appears in [I] and the complete description is 
readily available [16]. It suffices here to note that it appears 
hopeless to give a useful description of how a single plain- 
text bit (or a single key bit) affects the ciphertext (good dif- 
fusion!), or of how the statistics of the plaintext affect those 
of the ciphertext (good confusion!). 

The DES algorithm was submitted by IBM in 1974 in 
response to the second of two public invitations bythe U.S. 
National Bureau of Standards (NBS) for designers to submit 
algorithms that might be used as a standard for dataencryp- 
tion by government and private entities. One design 
requirement was that the algorithm could be made public 
without compromising i t s  security-a requirement that 
Kerckhoff would have admired! The I B M  design was a mod- 
ification of the company’s older Lucifer cipher that used a 
128 bit key.Theorigina1 design submitted by IBM permitted 
all 16 x 48 = 768 bits of key used in the 16 rounds to be 
selected independently. A U.S. Senate Select Committee 
ascertained in 1977 that the US. National Security Agency 
(NSA) was instrumental in reducing the DES secret key to 
56 bits that are each used many times, although this had 
previously been denied by IBM and NBS [ Iq .  NSA also clas- 
sified the design principles that IBM had used to select the 
particular substitutions that are used within the DES algo- 
rithm. But the entire algorithm in full detail was published 
by NBS in 1977 as a U.S. Federal Information Processing 
Standard [16], to become effective in July of that year. 

Almost from the beginning, the DES was embroiled in 
controvery. W. Diffie and M. E. Hellman, cryptologic 
researchers at Stanford University, led a chorus of skep- 
ticism overthe securityof the DES that focused on the small- 
ness of the secret key. With 256 = IO1’ possible keys, a brute- 
force attack or “exhaustive cryptanalysis” (in which the 
cryptanalyst tries one key after another until the crypto- 
grarndeciphersto sensible p1aintext)on the DESwas beyond 
feasibility, but only barely so. Diffie and Hellman published 
the conceptual blueprint for a highly-parallel special-pur- 
pose computer that, by their reckoning, would cost about 
20 million dollars and would break DES cryptograms by 
essentially brute-force in about 12 hours [18]; Hellman later 
proposed a variant machine, that, by his reckoning, would 
cost only 4 million dollars and, after a year of initial com- 
putation, would break 100 cryptograms in parallel each day 
[19]. Counter-critics have attacked both of these proposals 
as wildy optimistic. But the hornet’s nest of public adverse 
criticism of DES did lead the NBS to hold workshops of 
experts in 1976 and 1977 to “answer the criticisms” [ I 7  and 
did give rise to the Senate hearing mentioned above. The 
general consensus of the workshops seems to have been 
that DES would be safe from a Diffie-Hellman-style attack 
for only about ten years, but that the 56 bit key provided 
no margin of safety [ Iq .  Ten years have now passed, and 
the DES appears to have justified the faith of i t s  defenders. 
Despite intensive scrutiny of the DES algorithm by cryp- 
tologic researchers, no one has yet publicly revealed any 
weakness of DES that could be exploited in an attack that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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would be significantly better than exhaustive cryptanalysis. 
The general consensus of cryptologic researchers today is 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADES is  an extremely good cipher with an unfortunately 
small key. But it should not be forgotten that the effective 
size of the secret key can be increased by using multiple 
DES encryptions with different keys, i.e., by making a prod- 
uct cipher with DES used for the component ciphers. At 
least three encryptions should be used to foil the “meet-in- 
the-middle attack” proposed by Merkle and Hellman [20]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. Stream Ciphers 

In a block cipher, a plaintext block identical to a previous 
such blockwould give Fise to the identical ciphertext block 
as well. This is avoided in the so-called stream ciphers in 
which the encipheringtransformation on a plaintext “unit” 
changes from unit to unit. For instance, in the cipher-block 
chaining (CBC) mode proposed for the DES algorithm [16], 
the current 64 bit plaintext block is  added bit-by-bit mod- 
ulo-two to the previous 64 bit ciphertext block to produce 
the 64 bit block that is  then enciphered with the DES algo- 
rithm to produce the current ciphertext block. Cipher- 
block-chainingconverts a blockcipher into a stream cipher 
with the advantage that tampering with ciphertext blocks 
i s  more readilydetected, i.e., impersonation or substitution 
attacks become much more difficult. But cryptographers 
generally reserve the term “stream cipher” for use only in 
the case when the plaintext “units” are very small, say a 
single Latin letter or a single bit. 

The most popular stream ciphers today are what can be 
called binary additive stream ciphers. In such a cipher, the 
K bit secret key Z, i s  used only to control a running keygen- 
erator (RKG) that emits a binary sequence, Zi, Z;, * * . , 
ZEN, called the running key, where in general zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN >> K. The 
ciphertext digits are then formed from the binary plaintext 
digits by simple modulo-two addition in the manner zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y ,  = X, e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,, n = 1, 2, * - N. (31) 

Because modulo-two addition and substraction coincide, 
(31) implies 

X, = Y, e Z;, n = 1,2, . . .  , N 132) 

which shows that encryption and decryption can be per- 
formed by identical devices. A single plaintext bit affects 
only a single ciphertext bit, which is  the worst possible dif- 
fusion; but each secret key bit can influence many 
ciphertext bits so the key diffusion can be good. 

There i s  an obvious similarity between the binary additive 
stream cipher and a binary one-time pad. In fact, if Z, = 
ZA (i.e., if the secret key i s  used as the running key), then 
the additive stream cipher is identical to the one-time pad. 
This similarity undoubtedly accounts in part for the wide- 
spread faith in additive stream ciphers that one encounters 
in many cryptographers and in many users of ciphers. But, 
of course, in practical stream ciphers, the ciphertext length 
N greatly exceeds the secret key length K. The best that one 
can then hope to do i s  t o  build an RKG whose output 
sequence cannot be distinguished by a resource-limited 
cryptanalyst from a completely random binary sequence. 
Thetrickisto buildtheRKGin suchawaythat,uponobserv- 

ing Z;, Z;, . . , ZA, the resource-limited cryptanalyst can 
do no better than to guess Z,+, at random. If this can be 
done, one has a cipher that is secure against even achosen- 

plaintext attack (by which one would mean that the enemy 
cryptanalyst could freely select, say the first n bits of the 
plaintext sequence). 

Stream ciphers have the advantage over block ciphers in 
that analytic measures of their quality are more easily for- 
mulated. For instance, stream cipher designers are greatly 
concerned with the linear complexity or “linear span“ of 
the running-key sequence, which i s  defined as the length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L of the shortest linear-feedback shift-register (LFSR) that 
could produce the sequence. Fig. 3 shows a typical LFSR of 

@ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodulo-two addel 

Fig. 3. A “typical” linear-feedback shift-register. 

length 6. The reason for this concern is that there is  a simple 
algorithm that would quickly find this shortest LFSR after 
examiningonlythefirst2L bitsofthe running key[21].Thus, 
large linear complexity of the running-key sequence i s  a 
necessary (but far from sufficient) condition for the prac- 
tical security of an additive stream cipher. (An up-to-date 
treatment of linear complexity in connection with stream 
ciphers may be found in the book by Rueppel[44].)The RKG 
of an additive stream cipher is often built by the nonlinear 
combiningof theoutput sequencesof several LFSRs,as such 
combining can create a sequence with large linear com- 
plexity. There arises then the danger that individual LFSR 
sequences will be correlated with the running-key sequence 
so that the enemy cryptanalyst can attack the cipher 
piecemeal. Siegenthaler [22] has shown recently that the 
“correction-immunity” of nonlinear combining functions 
can be precisely quantified and that the designer has to 
make an explicit tradeoff between correlation-immunity 
and linear complexity. There are many other known ana- 
lytic approaches to stream cipher design. Taken together, 
they sti l l  leave one far from the point where one could say 
that thetrueworkcharacteristic of a practical stream cipher 
i s  known, but they tend to  give many cryptographers and 
users (perhaps misleadingly) greater trust in the historical 
work characteristics computed for stream ciphers than in 
those computed for block ciphers. 

K. Provably-Secure Ciphers? 

When dealing with the practical security of ciphers, “It 
is difficult t o  define the pertinent ideas involved with suf- 
ficient precision to obtain results in the form of mathe- 
matical theorems,” as Shannon said nearly40years ago [IO, 
p. 7021 in an eloquent understatement that needs no alter- 
ation today. It i s  an open question whether it i s  even pos- 
sible to compute the true work characteristic W(n) or i ts  
asymptotic value W(m). A slender ray of hope lies in a totally 
impractical cipher proposed by this writer and I. Inge- 
marsson [23].Thiscipher isa randomized stream cipherwith 
asecret key of K bits. One can prove that W ( w )  = 2”*where 
the unit of computation i s  a binary test, i.e., a test with 2 
outcomes. The ”catch” i s  that the legitimate receiver must 
wait (during which time he does no testing or other com- 
putational work) until about 2K bits have arrived before he 
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beginstodecipher. Onecan easilyguaranteethattheenemy 
cryptanalyst will need thousands of years to break the 
cipher, if one is willing to wait millions of years to read the 
plaintext! Such a cipher would be tolerable perhaps only 
to Rip van Winkle, the lazy and sleep-prone hero of Wash- 
ington Irving‘s delightful short story, after whom both the 
story and the cipher have been named. Randomization, 
which was the feature that allowed the calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW(-)  
for the impractical Rip van Winkle cipher, may turn out to  
be useful in developing a practical provably-secure cipher, 
if in fact this can be done at all. 

Ill. PUBLIC-KEY CRYPTOGRAPHY 

A. One-way Functions 

That the publication of Shannon’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1949 paper [IO] resulted 
in no discernible upsurge in open cryptological research 
is  due to several factors. First, the theoryof theoretical secu- 
rity of secrecy systems that it provided was virtually com- 
plete in itself, and showed conclusively that theoreticatly- 
secure secrecy systems demand the secure transfer of far 
more secret key than is generally practicable. Moreover, 
the insights that Shannon provided into the practical secu- 
rity of secrecy systems tended to reinforce accepted cryp- 
tographic approaches rather than to suggest new ones. But 
Shannon’s observation that “The problem of good cipher 
design is  essentially one of finding difficult problems, sub- 
ject to certain other conditions.. . . We may construct our 
cipher in such a way that breaking it i s  equivalent to (or 
requires at some point in the process) the solution of some 
problems known to be laborious” [IO, p. 7041 took root in 
the fertile imaginations of the Stanford cryptologic 
researchers, W. Diffieand M. E. Hellman. The fruitwas their 
1976 paper, “New Directions in Cryptography,” [I21 that 
stunned the cryptologic world with the startling news that 
practically-secure secrecy systems can be built that require 
no secure transfer of any secret key whatsoever. 

The crucial contribution of the Diffie-Hellman paper lies 
in two unusually subtle definitions, that of a “one-way func- 
tion,” which was borrowed from work by R. M. Needham 
on secure computer-login techniques, and that of a “trap- 
door one-way function,” which was totally new. Aone-way 
function is defined as a function f such that for every x in 
the domain off, f (x) is easy to compute; but for virtually all 
y in the range of f, it is computationally infeasible to find 
an x such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = f ( x ) .  The first thing to note is that this is 
not a precise mathematical definition. What do “easy,“ 
“virtually all” (which we have substituted for Diffie and 
Hellman’s “almost all,” as the latter can have a precise 
mathematical meaning that was not intended in the defi- 
nition), and “computationally infeasible” mean precisely? 
Yet the definition is sufficiently precise that one has no 
doubt as to what Diffie and Hellman essentially meant by 
a one-way function, and one has the feeling that it could 
be made completely precise in a particular context. It i s  less 
clear how such a function could be of use cryptographi- 
cally-to build acipherthat not even the legitimate receiver 
could decipher seems the obvious (and worthless) appli- 
cation! A trap-door one-way function i s  defined as a family 
of invertible functions fz, indexed by z, such that, given z, 
it is  easy to find algorithms €, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, that easily compute 
fz(x) and f;’( y) for all x and y in the domain and range, 
respectively, of fz; but for virtually all z and for virtually all 

y in the range of fz, it i s  computationally infeasible to com- 
pute f;’( y) even when one knows €,. Again, this i s  only a 
semimathematical definition, but this time the cryptolog- 
ical utility i s  nakedly apparent. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Public Key-Distribution 

Hellman suggested the discrete exponential function 
As a likely candidate for a one-way function, Diffie and 

f(x) = ax  (modulo p) (33) 

wherex is an integer between 1 and p - 1 inclusive, where, 
as indicated, the arithmetic i s  done modulo p, a very large 
prime number, and where a (1 5 a < p) i s  an integer such 
that a, a2, * , ap-’ are, in some order, equal to 1, 2, 
. . .  , p - 1. For example, with p = 7, one could take a = 

3 since a = 3, a’ = 2, a’ = 6, a4 = 4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa5 = 5, and ab = 1. 
(In algebraic terminology, such an a i s  called aprimitive ele- 
mentof the finite field GF(p), and such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa’s are known always 
to exist.) If y = ax, then it i s  natural to write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x = log, Cy) (34) 

so that inverting f(x) is  the problem of calculating discrete 
logarithms. Even for very large p, say p = 2’Oo0, it i s  quite 
easy to calculate f (x) by the trick of square-and-multiply. For 
instance, tocomputea5’ = C X ~ ’ + ’ ~ + ~ + ’  , one would first form 
a’, a4 = (a’)’, a’ = ( ( Y ~ ) ~ ,  a” = and a32 =  CY^^)^, which 
requires 5 multiplications. Then one would multiply a”, 
a16, a4, and a together, which takes 3 more multiplications 
for a total of 8 multiplications (modulo p). Even with p = 
2’Oo0, calculation o f f  (x) for any integer x, 1 5 x < p, would 
take less than 2000 multiplications (modulo p). 

If the discrete exponential function is  indeed one-way, 
then for virtually all integers y, 1 I y < p, it must be com- 
putationally infeasible to compute log, y. It was soon real- 
ized by Hellman and Pohlig that it was not enough that p 
be large, p - 1 must also have a large prime factor (ideally, 
p - 1 would be twice another prime) if the discrete loga- 
rithm is  indeed to be hard to compute [24]. With this pro- 
viso, the best of known algorithms for computing the dis- 
crete logarithm require roughly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 multiplies (modulo p), 
compared to only about 2 log, p multiplies for discrete 
exponentiation. If the discrete logarithm is  truly this hard 
to compute, then the discrete logarithm with the proviso 
on p - 1 i s  indeed a one-way function. But as of this writing 
there is  no proof that the discrete exponential, or any other 
function for that matter, i s  truly one-way. 

Diffieand Hellman suggested an astoundinglysimpleway 
in which the discrete logarithm could be used to create 
secret keys between pairs of users in a network using only 
public messages. All users are presumed to know a and p. 
Each user, say useri, randomly selects an integerx, between 
1 and p - 1 that he keeps as his privatesecret. He then com- 
putes 

VI = ax’ (modulo p). (35) 

Rather than keeping VI secret, he places VI in a certifiedpub- 
licdirectoryaccessible to all users. If users i andjwish later 
to communicate secretly, user i fetches VI from the direc- 
tory, then uses his private secret XI  to form 

Z, = (Y,)” = (a’’)” = ax’x’ (modulo p). (36) 
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In a similar manner, user jformsZ,,. But Z,, = Z,, so that users zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj can now use Z,, as the secret key in a conventional 
cryptosystem. If an enemy could solve the discrete loga- 
rithm problem he could take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, and Y, from the directory, 
solve for X, = log, Y,, and then form Z, in the same manner 
as did user i-there seems to be no other way for an enemy 
to find Z,/ (but there is  no proof of this). The scheme just 
described is  the Diffie-Hellman public key-distribution sys- 
tem. Although it i s  the oldest proposal for eliminating the 
transfer of secret keys in cryptography, it i s  sti l l  generally 
considered today to be one of the most secure and most 
practical public-key schemes. 

It should not beoverlooked that the Diffie-Hellman pub- 
lic key-distribution scheme (and indeed every public-key 
technique) eliminates the need fora secure channel to pass 
along secrets, but does not eliminate the need for authen- 
tication. The custodian of the public directory must be cer- 
tain that it is indeed user i who puts the (nonsecret) Y, into 
the directory, and user i must be certain that Y,was actually 
sent to him by the custodian of the public directory. But it 
must not be forgotten that in secret-key cryptography, cf. 
Fig. 1, the receiver must not only be sure that the key Z 
was kept secret en route to him, but also that the keyZwas 
actually sent by the legitimate sender. Public-key methods 
remove one of these two problems; they do not create a 
new authentication problem, but rather make the old 
authentication problem more apparent. 

C. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARSA Public-Key Cryptosystem 

Having defined a trap-door one-way function, it was an 
easy step for Diffie and Hellman to propose the structure 
of a public-key cryptosystem for a network of many users. 
Each user, say user i, randomly chooses a value Z, of the 
index and keeps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ,  as his private secret. He next forms the 
algorithm fz, that he then publishes in the certified public 
directory. He also forms the algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADz, that he keeps 
secret for his own use. If user j wishes to send a secret mes- 
sage X to user i f  he fetches fz, from the directory. He uses 
this algorithm to compute the cryptogram Y = f z , (X )  that 
he then sends to user i. User i uses his private algorithm 
D ,  to compute fZ , ’ (Y)  = X. If fz i s  truly a trap-door one-way 
function, this cryptosystem provides unassailable practical 
security. 
When, for every index z, the domain and range of fz coin- 

cide, Diffie and Hellman noted that a trap-door one-way 
function can be used to create digital signatures. If user i 
wishes to send a nonsecret message X (to any or all users 
in the system) that he wishes to ”sign” in a way that the 
recipient will recognize him unmistakablyas the author, he 
merely uses his private algorithm to form Y = fZ , ’ (X)  and 
transmits Y. Every user can fetch the public algorithm EZ, 
and then compute f , ( Y )  = X; but noone except user icould 
have known how to write an intelligible message X in the 
form Y = f ; ’ (X) ,  since no one except user i can compute 
fz ’ .  Of course, user i could also send a signed secret mes- 
sageto userj by encrypting Yin userj’s public keyfz,, rather 
than sending Y in the clear (he might first need to break Y 

into smaller pieces if Y i s  “too large to fit” into the domain 

It was not at all clear to Diffie and Hellman in 1976whether 
trap-door one-way functions existed, and they did not haz- 
ard a conjectured such function in their paper. It was left 

of fz,). 

to R. L. Rivest, A. Shamir, and L. Adleman (RSA) of M.I.T. to 
make the first proposal of a possible trap-door one-way 
function in their remarkable 1978 paper, “A Method for 
Obtaining Digital Signatures and Public-Key Cryptosys- 
tems” [25]-it i s  interesting to note that authentication 
received higher billing than secrecy in their title. The RSA 
trap-door one-way function is the essence of simplicity, but 
to describe it we need afew ideas from elementary number 
theory. 

Let gcd ( i f  n) denote the greatest common divisor of the 
integers i and n (not both 0). For example, gcd (12,18) = 6. 
The Eulertotient function +(n), where n i s  a positive integer, 
is  defined as the number of positive integers i less than n 
such that gcd (i, n) = 1 (except that 4(1) is  defined to be 1). 
For instance, 446) = 2 since for 1 5 i < 6 only i = 1 and i 
= 5givegcd (i,6) = 1.Oneseesimmediatelythatforaprime 

p, +(p) = p - 1; and just a little thought more shows that 
if p and q are distinct primes, then 

d(p9) = (p - l ) (q - 1). (37) 

For instance, $46) = 4(2 x 3) = 1 x 2 = 2. A celebrated theo- 
rem of Euler (1707-1783) states that for any positive integers 
x and n with x < n 

x@(”) = 1 (modulo n) (38) 

provided that gcd (x, n) = 1. For example 

5’ = 1 (modulo 6). 

The last fact from number theory that we need dates back 
to Euclid (c. 300 B.C.). If e and m satisfy 0 < e < m and gcd 
(m, e) = 1, then there is  a unique d such that 0 < d < m 
and 

de = 1 (modulo m), (39) 

moreover d can be found in the process of using Euclid‘s 
“extended” algorithm for computing gcd (m, e), cf. [26, p. 
141. 

The RSA trap-door one-way function i s  just the discrete 
exponentiation 

fJx) = xe  (modulo n) (40) 

where x is  a positive integer less than n = p 9  and where 
the “trap-door”z = { p, q, e}; herep and 9 are distinct very 
large primes such that +(n) = (p - l ) (q - 1) has a very large 
prime factor, and e i s  a positive integer less than +(n) such 
that gcd (e, d(n)) = 1. The easy-to-find algorithm E, to com- 
pute fz easily is  exponentiation by square-and-multiply; 
publishing this algorithm amounts just to publishing n and 
e. The inverse function is 

f;’( y) = yd (modulo n) (41) 

where d i s  the unique positive integer less than n such that 

de = 1 (modulo 4(n)). (42) 

The easy-to-find (when one knows z) algorithm D, to com- 
pute f;’ i s  also exponentiation by square-and-multiply; the 
decrypting exponent d i s  found using Euclid’s algorithm for 
computing gcd (e, 4(n)). 

That (41) really gives the inverse function for (40) can be 
seen as follows. Equation (42) is  equivalent to the statement 
(in ordinary integer arithmetic) that 

de = 4(n)Q + 1 (43) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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for some integer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ. From (40) and (43), we obtain 

(modulo n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Xe )d  = X l ( n ) Q + l  

- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( X @ ( ~ ) ) ~ X  (modulo n) 

= x  (modulo n) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(44) 

where at the last step we used Euler's theorem (38). [The 
wary reader will have noted that Euler's theorem requires 
gcd (x, n) = 1; but in fact (38) holds for all positive integers 
x less than n in the special case when n i s  the product of 
two distinct primes.] Equation (44) showsthat raising a num- 
ber to the dpower (modulo n) is indeed the inverse of rais- 
ing a number to thee power (modulo n). It remains to show 
why RSA believed (as do most cryptographers today) that 
it iscomutationally impossible to invert this function fzwhen 
one knows only n and e, and also how it it possible easily 
to choose randomly the two distinct and very large primes 
p and q as must be done for an enemy to be unable to guess 
p and q. 

The enemy knows only n and e. But i f  he can factor n = 

pq, then he knows the entire trap-door z = (p, q, e}, and 
hence can decrypt just as readily as the legitimate receiver. 
The security of the RSA public-key cryptosystem depends 
on the assumption that any way of  inverting fz i s  equivalent 
to factoring n = pq, i.e., given any way to invert fz, one could 
with at most a little more computational work go on to fac- 
tor n. In their paper [25], RSA show that this is  true for the 
most likely ways that one might try to factor n, but the 
assumption has never been proved. But is theattack byfac- 
toring n computationally infeasible? The answer is yes if 
one choosesp and q on the order of 100 decimal digits each 
(as RSA suggested ten years ago) and if there is no revo- 
lutionary breakthrough in factoring algorithms. As Rivest 
[27] recently pointed out, all of the best factoringalgorithms 
today have running times upper-bounded by the same 
peculiar-looking function which, for numbers to be fac- 
tored between 50 and 200 decimal digits, increases by a fac- 
tor of 10 for every additional 15 digits (roughly) in the num- 
ber.Today it takesabout 1 dayon asupercomputertofactor 
a number of about 80decimal digits. It would take IO'times 
that long to factor a 200 digit number n = pq, roughly half 
a million years! One of the by-products of the RSA paper 
has been a revival of interest in factoring, but this accel- 
erated research effort has produced no revolutionary 
breakthrough. Proponents of the RSA public-key crypto- 
system believe that it never will. An interesting fact i s  that 
the best algorithms today for solving the (modulo p) dis- 
crete logarithm problem [28] and the best algorithms for 
factoring n [29] require about the same amount of com- 
putation when p = n, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that the RSA trap-door function 
(49) and the Diffie-Hellman function (33), as of today, have 
about the same claim to be called "one-way." 

It remains to consider how one can randomlychoose the 
very large primes, p and q, required for RSA. A theorem of 
Tchebychef, cf. [30, pp. 9-10], states that the fraction of pos- 
itive integers less than any large integer m that are primes 
iscloseto(1n m)-'.  For instance, the fraction of integers less 
than that are primes is  about (In = &. Because 
90 percent of these integers lie between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIOg9 and the 
fraction of primes in this range i s  also about&. Thus, if one 
chooses an integer between 10g9and 10'OOcompletelyat ran- 
dom the chances that one chooses a prime are about &. 
One easily doubles the odds to & if one is sensible enough 

to choose only odd integers. One needs then only about 
115 such choices on the average before one has chosen a 
prime. But how does one recognize a prime? It i s  a curious 
fact that one can rather easily test quite reliably whether an 
integer is  a prime or not, even if one cannot factor that inte- 
ger after one discovers that it i s  not a prime. Such primality 
tests rely on a Theorem o f  Fermat (1601-1665) that asserts 
that for any positive integer b less than a prime p 

bP-' = 1 (modulop). (45) 

For instance, 24 = 1 (modulo 5). [The reader may have 
noticed that (45) is  a special case of (38), but he should 
remember that Fermat lived a century before Euler!] If one 
has an integer r that one wishes to test for primeness, one 
can choose any positive integer b less than r and check 
whether zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

br-' 1 (modulo r). (46) 

If the answer is no, one has the absolute assurance of Fer- 
mat that r i s  not a prime. If the answer is yes, one can begin 
to suspect that r i s  a prime, and one then christens rapseu- 
doprime to the base b. If r i s  not a prime, it turns out that 
it can be a pseudoprime for less (actually much less) than 
about half of the possible bases b. Thus if r i s  very large, 
and one independently chooses t bases b completely at ran- 
dom, the probability i s  less than about 2-' that r will pass 
Fermat's test (46) for all these bases if r i s  not truly a prime. 
If we take, say t = 100, then we can be virtually certain that 
r i s  a prime if it passes t indepedent Fermat tests. Such 
"probabilistic tests for primeness" were introduced by 
Solovay and Strassen, and have been further refined by 
Rabin [31]. Such tests are today being used to check ran- 
domly-chosen odd integers for primeness until one has 
found the two distinct large primes one needs for the RSA 
trap-door one-way function, or, more precisely, until one 
i s  sufficiently sure that he has found two such primes. 

There are VLSl chips today that can implement the RSA 
encrypting and decrypting function at a data rate of a few 
kilobits per second. (These same chips can also be used to 
implement Fermat's test, and thus to find the needed 100 
decimal digit primes, p and 9). Rivest [27] has given con- 
vincing arguments that significantly higher data rates will 
never be achieved. For many cryptographic applications, 
these data rates are too low. In such cases, the RSA public- 
key cryptosystem may still desirably be used to distribute 
the secret keys that will then be used in high-speed secret- 
key ciphers, such as DES or certain stream ciphers. And the 
RSAalgorithm may still desirably be used for authentication 
in i t s  "digital signature" mode. 

Before closing this section on the RSA system, we should 
mention that Rabin [32] has developed a variant of the RSA 
public-key system for which he proved that being able to 
find the plaintext X from the cryptogram Y i s  equivalent to 
factoring n = pq. The system is  somewhat more compli- 
cated than basic RSA, but Williams [33] refined the variant 
so that the extra complication is quite tolerable. This might 
seem to be the ultimate "RSA system," but paradoxically 
the breaking-is-provably-equivalent-to-factoring versions 
of RSA have a new weakness that was pointed out by Rivest. 
The proof of their equivalence to factoring is  constructive, 
i.e., one shows that i f  one could solve Y = X e  (modulo n) 
for X in these systems [which differ from RSA in that now 
gcd (e, 4(n)) z I], then one could easily go on to factor X. 
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But this means that these systems succumb to a chosen- 
ciphertext attack in which an enemy randomly chooses X’, 
computes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X’)‘ and then submits zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY to the decrypter, 
who returns a solution X of Y = Xe [where the fact that gcd 
(e, d(n)) # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 results in the situation that the solution i s  not 
unique so that X # X’ i s  possible]. The chances are that 
the returned X together with X’ will give the enemy the 
information he needs to factor n = p q  and thus to break 
the system. In a public-key environment, such a chosen- 
ciphertext attack becomes a distinct possibility. The net 
result is that most cryptographers prefer to use the original 
RSA public-key cryptosystem, and to pray for the day when 
a nonconstructive proof is  given that breaking it is equiv- 
alent to factoring. 

This is  perhaps the appropriate point to mention that a 
public-key cryptosystem, i f  i t  i s  secure at all, i s  secure 
against a chosen-plaintext attack. For the enemy cryptan- 
alyst i s  always welcome to fetch the algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, from the 
public directory and then to compute the cryptograms, y 
= f,(x), for as many plaintexts x as he pleases. This shows 
that atrap-door one-way function must necessarily be much 
more difficult to invert that the encrypting function of a 
conventional secret-key cipher that i s  also secure against 
a chosen-plaintext attack. In the latter case, the enemy can 
still (byassumpti0n)obtain the cryptograms y, for whatever 
plaintexts x, he pleases. But he no longer has the luxury of 
watching the encryption algorithm execute its encryptions, 
because the secret key is an ingredient of the algorithm. 

D. Some Remarks on Public-Key Cryptography 

The Diffie-Hellman one-way function and the RSA trap- 
door one-way function suffice to illustrate the main ideas 
of public-key cryptography, which i s  why we have given 
them rather much attention. But a myriad of other such 
functions have been proposed. Some have almost imme- 
diately been exposed as insecure, others appear promising. 
But no one has yet produced a proof that any function i s  
a one-way function or a trap-door one-way function. Even 
the security of the Rabin variant of RSA rests on the 
unproved (but very plausible) assumption that factoring 
large integers i s  computationally infeasible. 

There has been some hope that the new, but rapidly- 
evolving, theory of computational complexity, particularly 
Karp’s theory of NP-completeness, cf. [34], will lead to prov- 
ably one-way functions or provably trap-door one-way 
functions. This hope was first expressed by Diffie and Hell- 
man [12], but has thus far led mainly to failures such as the 
spectacular failure of the Merkle-Hellman trap-door-knap- 
sack public-keycryptosystem. Partofthe difficulty has been 
that NP-completeness is a worst-case phenomenon, not a 
“virtually all cases” phenomenon as one requires in public- 
key cryptography. For instance, Even, Lempel, and Yacobi 
have constructed an amusing example of a public-key 
cryptosystem whose breaking is  equivalent to solving an 
“NP-hard” problem, but which can virtually always be bro- 
ken [35]. [A problem i s  NP-hard if its solution i s  at least as 
difficult as the solution of an NP-complete problem.] But 
the greater difficulty has been to formulate a trap-door one- 
way function whose inversion would require the solution 
of an NP-complete problem; this has not yet been accom- 
plished. For instance, the inversion of the Merkle-Hellman 
trapdoor-knapsack one-way function is actually an easy 

problem disguised to resemblean NP-hard problem; Shamir 
broke this public-key cipher, not by solving the NP-hard 
problem, but by stripping off the disguise. 

IV. CRYPTOGRAPHIC PROTOCOLS 

A. What is a Protocol? 

It i s  difficult to give a definition of “protocol” that is both 
precise and general enough to encompass most things to 
which people apply this label in cryptography and else- 
where. Roughly speaking, we might say that a protocol is  
a specified sequence of actions by which two or more par- 
ties cooperatively accomplish some task. A public-keycryp- 
tosystem, for instance, can be considered a protocol, based 
on a trap-door one-way function, by means of which the 
users of the system and the custodian of the public direc- 
tory cooperate to ensure the privacy of messages sent from 
one user to another. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. A Key-Distribution Protocol 

Many cryptographers, particularly those skeptical of 
public-key ideas, consider the key management problem 
(i.e., the problem of securely distributing and changing 
secret keys) to be the main practical problem in cryptog- 
raphy. For example, if there are S users in the system, one 
will need S(S - 1)/2 different secret keys if one is  to have 
a dedicated secret key for every possible pair of users-an 
unwelcome prospect in a large system. It i s  unlikelythat any 
user will ever wish to send secret messages to more than 
afewother users, but in advanceone usuallydoes not know 
whowill laterwant to talk secret1ytowhom.A popular solu- 
tion to this problem is  the following key-distribution pro- 
tocol that requires the advance distribution of onlyS secret 
keys, but still permits any pair of users to communicate 
secretly; there i s  a needed new entity, however, the trusted 
key distribution center (TKDC). 

Key Distribution Protocol: 
1) TheTKDC securely delivers a randomly-chosen secret 

key Z, to user i in the system, for i = 1,2,  
2) When user i wishes to communicate secretly to user 

j ,  he sends the TKDC a request (which can be in the clear) 
over the public network for a secret key to be used for this 
communication. 

3) The TKDC randomly chooses a new secret key Z,, 
which it treats as part of the plaintext. The other part of the 
plaintext is a “header” in which user i and userj are iden- 
tified. The TKDC encrypts this plaintext in both key Z, and 
key Z, with whatever secret-key cipher is installed in the 
system, then sends the first cryptogram to user i and the 
second to user j over the public network. 

4) Users i and j decrypt the cryptograms they have just 
received and thereby obtain the secret key to be used for 
encrypting further messages between these two users. 

This protocol sounds innocent enough, but i ts  security 
against a ciphertext-only attack requires more than 
ciphertext-only security of the system’s secret-key cipher. 
Why? Because in step 3) we see that an enemy cryptanalyst 
will have access to two cryptograms in different keys for the 
same plaintext. This can be helpful to the cryptanalyst, 
although it does not give him as much information as he 
could get in a chosen-plaintext attack on the individual 
ciphers. Thus, security of the system’s cipher against a cho- 
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sen-plaintext attack will make this protocol also secure 
against chosen-plaintext attacks. The point to be made here 
i s  that when one embeds a cipher into a protocol, one must 
be very careful to ensure that whatever security is  assumed 
for the cipher i s  not compromised by the protocol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C. Shamir’s Three-Pass Protocol 

Oneof the most interesting cryptographic protocols, due 
to A. Shamir in unpublished work, shows that secrecy can 
be obtained with no advance distribution of either secret 
keys or public keys. The protocol assumes two users con- 
nected by a link (such as a seamless optical fiber or a trust- 
worthy but curious postman) that guarantees that the 
enemy cannot insert, or tamper with, messages but allows 
the enemy to read all messages sent over the link. The users 
are assumed to have a secret-key cipher system whose 
encrypting function E z ( . )  has the commutative property, 
that, for al l  plaintexts, x, and all keys, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2, 

€,(E&)) = Ez,(Ez2(x)) (47) 

i.e., the result of a double encryption is the same whether 
one uses first the key z1 and then the key z2 or vice versa. 
There are many such ciphers, e.g., the one-time pad (4) fits 
the bill because (x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 z,) e z2 = (x 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz2) 8 z,, where the 
addition is  bit-by-bit modulo-two. 

Shamir’s Three Pass Protocol: 
1) Users A and B randomly choose their own private 

secret keys, zA and z& respectively. 
2) When user A wishes to send a secret message X to 

user B, he encrypts X with his own key Z ,  and sends the 
resulting crypotogram Yl = EzA(X)  on the open-but-tam- 
perproof link to user B. 

3) User B, upon receipt of Y,, treats Yl as plaintext and 
encrypts Yl with his own key zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZB. He sends the resulting 
cryptogram Y2 = E&’,) = EZB(EzA(X)) on the open-but-tam- 
perproof link to user A. 

4) User A, upon receipt of Y2, decrypts Y2 with his own 
key ZA. Because of the commutative property (47), this 
removes the former encryption by ZA and results in Y3 = 
Ez8(X). UserA then sends Y3 over the open-but-tamperproof 
link to user B. 

5) User B, upon receipt of Y3, decrypts Y3 with his own 
key& to obtain X, the message thatA has now successfully 
sent to him secretly. 

What secret-key cipher shall we use in this protocol? Why 
not the one-time pad, a cipher that gives perfect secrecy? 
If we use the one-time pad, the three cryptograms become 

Y, = x 8 z, 
y’ = x @ z, 8 zs 

y3 = x zs.  (48) 

The enemy cryptanalyst sees all three cryptograms, and 
hence can form 

Yl 8 Y2 Q Y3 = x 

where we have used the fact that two identical quantities 
sum to 0 modulo-two. Thus, the 3-pass protocol is  com- 
pletely insecure when we use the one-time pad for the 
embedded cipher! The reason for this is, as (48) shows, that 
the effect of the protocol is that each of the two ciphers get 

used ‘’It times,” rather than only once as is required for the 
security of the “one-time” pad. 

Is  there a cipher that can be used in the Shamir %pass 
protocol and still retain its security? There seems to be. Let 
p be any large prime for which p - 1 has a large prime factor 
(to make the discrete logarithm problem in moduloparith- 
metic computationally infeasible to solve). Randomly 
choose a positive integer e less than p - 1 such that gcd 
(e,p - 1) = 1, and let d be the unique positive integer less 
than p - 1 such that 

de = 1 (modulo p - 1). (49) 

Let Z = (d, e) be the secret key and take the encrypting and 
decrypting functions to be 

y = Ez(x) = xe 

x = D,(y) = yd (modulo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) (50) 

wherexand yare positive integers less than p. [The fact that 
yd = xde = x (modulo p) i s  an easy consequence of Fermat’s 
theorem (45) and the fact that (49) implies de = Q(p - 1) 
+ 1 for some integer Q.] That this cipher has the com- 
mutative property (47) follows from (50) because 

(modulo p) 

(modulo p). (Xei)e2 = Xeie2 = Xe2ei 

When this cipher is used in the 3-pass protocol, the three 
cryptograms become 

y, = xeA (modulop) 

(modulo p) y2 = p e s  

y3 = xes (modulo p). (51) 

If one can solve the discrete logarithm problem, one can 
obtain 

(52a) 

(52b) 

where a is any chosen primitive element for arithmetic 
modulo p, and where we have used the fact that the arith- 
metic of discrete logarithms i s  modulo-(p - 1) arithmetic- 
this follows from Fermat’s theorem (45) that gives 01P-l  = 

1 = 01’. We can now use Euclid’s extended gcd algorithm, 
cf. Section Ill-C, to find the positive integer b less than p 
- 1 such that 

log, y1 = eA log, x (modulo p - 1) 

log, y2 = eAeB log, x (modulo p - 1) 

b log, yl = 1 (modulo p - 1) 

which from (52a) further implies 

be, log, X = 1 (modulo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp - I). (53) 

Multiplying (52b) by b on both sides, then using (53), we 
obtain 

b log, y2 = e, (modulo p - 1). (54) 

Thus, an enemy who can solve the discrete logarithm prob- 
lem for modulo-p arithmetic can find es, hence also dB, and 
thus read the message x just as well as user B. There seems 
to be no way for the enemy to find x without equivalently 
solving the discrete logarithm problem, but (like so many 
otherthings in public-keycryptography) this has never been 
proved. This particular cipher for the 3-pass protocol was 
proposed by Shamir (and independently but later by J. 
Omura, who was aware of Shamir’s 3-pass protocol, but 
unaware of his proposed cipher for the protocol). 
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D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAClosing Remarks 

There are many protocols that have been proposed 
recently bycryptologic researchers. One of the most amus- 
ing is  the Shamir-Rivest-Adleman, protocol for “mental 
poker,” a protocol that manages to allow an honest game 
of poker to be played with no cards zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[36]. Such frivolous- 
sounding protocols have a serious cryptographic purpose, 
however; in this case one could take the purpose to be a 
protocol for assuring the authenticity of randomly-chosen 
numbers. Similarly, Chaum [37l has proposed an interest- 
ing protocol by which parties making transactions through 
a bank can do so without the bank ever knowing who is 
paying what to whom that also suggests a cryptographic 
application in key distribution. Protocol formulation has 
recently gained new momentum and has become one of 
the most activeareasof current cryptologic research, as well 
as one of the most difficult, particularly when one seeks 
particular cryptographic functions to imbed in the protocol 
without compromise of their security. The RSA trap-door 
one-way function is  far and away the most frequently used 
function for this purpose. 

We have not mentioned many of the important contri- 
butions to cryptology made in the past zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 years. It has not 
been our purpose to survey research in cryptology, but 
rather to sketch the intellectual outlines of the subject. The 
reader who wishes to bring himself abreast of current 
research in cryptology, will find the Proceedings of the 
CRYPTO conference (held annually in Santa Barbara since 
1981) and of the EUROCRYPT conference (held annually 
since 1982) to be invaluable. There are also several recent 
general textbooks [38]-[42] on cryptology that will give the 
reader an orderly development of the subject, and a recent 
text zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[43] gives a broad treatment of the number-theoretic 
concepts on which much of present-day public-key cryp- 
tology depends. The recent book by Rueppel is a good 
source of information on stream ciphers. 
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