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Abstract. Context-oriented Programming, or COP, provides program-
mers with dedicated abstractions and mechanisms to concisely represent
behavioral variations that depend on execution context. By treating con-
text explicitly, and by directly supporting dynamic composition, COP
allows programmers to better express software entities that adapt their
behavior late-bound at run-time. Our paper illustrates COP constructs,
their application, and their implementation by developing a sample sce-
nario, usingContextS in theSqueak/Smalltalkprogrammingenvironment.

1 Introduction

Every intrinsically complex application exhibits behavior that depends on its
context of use. Here, the meaning of context is broad and can range from obvi-
ous concepts such as location, time of day, or temperature over more technical
properties like connectivity, bandwidth, battery level, or energy consumption to
a user’s subscriptions, preferences, or personalization in general.

Besides these examples of context that are often associated with the domain of
ambient computing, the computational context of the program itself, for example
its control flow or the sets or versions of libraries used, can be an important source
of information for affecting the behavior of parts of the system.

Even though context is a central notion in a wide range of application do-
mains, there is no direct support of context-dependent behavior from traditional
programming languages and environments. Here, the expression of variations
requires developers to repeatedly state conditional dependencies, resulting in
scattered and tangled code.

This phenomenon, also known as crosscutting concerns, and some of the
associated problems were documented by the aspect-oriented programming
(AOP [16]) and the feature-oriented programming (FOP [2]) communities. The
focus of AOP is mainly on the establishments of inverse one-to-many relation-
ships [17] to achieve their vision of quantification and obliviousness [10]. FOP’s
main concern is the compile-time selection and combination of variations, and
the necessary algebraic means to reason about such layer compositions [3].
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Fig. 1. Properties of AOP, FOP, and COP

Context-oriented programming (COP [6,14]) addresses the problem of dynam-
ically composing context-dependent concerns, which are potentially crosscutting.
COP takes the notion of FOP layers and provides means for their selection and
composition at run-time. While FOP mechanisms are applied at compile-time—
with the effect that, during program execution, layers as a distinct entity are no
longer available—, COP preserves layers, adds the notion of dynamic layer acti-
vation and deactivation, and provides dynamic scoping to delimit the visibility of
their composition as needed (Figure 1). With the dynamic scoping mechanisms
offered by COP implementations, layered code can be associated with the units
it belongs to and can be composed into or removed from the system depending
on its context of use.

There are several COP extensions to popular programming languages such as
ContextL for Lisp [6], ContextS for Squeak/Smalltalk [14], ContextR for Ruby,
ContextPy for Python, and ContextJ* for Java [14]. Here, we will focus on Con-
textS. Our paper is meant to be used mainly as a tutorial, describing ContextS
in how it can be applied to the implementation of context-dependent behavioral
variations.

The remainder of our paper is organized as follows: We give an overview
of COP in Section 2. In Section 3 we introduce some of the COP extensions
provided with ContextS which are applied to an example presented in Section 4.
After some recommendations for further reading in Section 5 we conclude our
paper with Section 6.

2 Context-Oriented Programming

COP, as introduced in [6,14], facilitates the modularization of context-dependent
behavioral variations. It provides dedicated programming abstractions and mech-
anisms to better express software entities that need to change their behavior
depending on their context of use.
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Based on the implementation of several application scenarios and the devel-
opment of language extensions necessary for them, we have identified behavioral
variations, layers, dynamic activation, contextual information, and proper scop-
ing mechanisms as essential properties of COP support:

Behavioral variations. There is a means to specify behavioral variations, typ-
ically ranging from new to modified or even removed behavior. Here, partial
definitions of modules of the underlying programming model such as pro-
cedures, methods, or classes are prime candidates for being expressed as
behavioral variations.

Layers. There needs to be a means to group related behavioral variations into
layers. As first-class entities, layers can be explicitly referred to at run-time.

Activation/deactivation. Individual layers or combinations of them can be
dynamically activated and deactivated, giving explicit control to program-
mers over their composition – including the point in time of their activa-
tion/deactivation as well as the desired sequence of their application.

Context. COP adopts a very broad definition of context: Context is everything
that is computationally accessible. With that, we do not limit context to a
particular concept, but encourage a wide spectrum of context representations
most suitable for a specific application or system.

Scope. The scope of a layer activation or deactivation can be controlled explic-
itly so that simultaneous compositions affect each other only to the degree
required by the program.

In the following, we will use message dispatch to show how COP is a continu-
ation of previous work. While we do not require message dispatch as a base for
any COP implementation, we do believe that this illustration will help to bet-
ter understand how COP builds on procedural, object-oriented, and subjective
programming (Figure 2).

1D dispatch. Procedural programming offers only one dimension to associate a
unit of behavior with its activation [18]. Names used in procedure calls are
directly mapped to procedure implementations (<m>, Figure 2a).

2D dispatch. Object-oriented programming already uses two dimensions to as-
sociate a unit of behavior with its activation [18]. Names used at the activa-
tion site are mapped to a method implementation with the same name and
the receiver it is defined in (<m, R>, Figure 2b).

m mR mR

S

mR

S
C

a b c d

Fig. 2. Multi-dimensional Message Dispatch
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3D dispatch. Subjective programming as introduced in [18] goes one step fur-
ther than object-oriented programming in that it adds a third dimension
to message dispatch. Here, method implementations are selected not only
by their name and the receiver they are defined in, but also the sender the
message send originated from (<m, R, S>, Figure 2c).

4D dispatch. COP considers yet another dimension by dispatching not only on
the name of a behavioral unit, the receiver it is defined in, and the sender the
message originated from, but also on the context of this particular message
send (<m, R, S, C>, Figure 2d).

3 ContextS

ContextS is our COP extension to Squeak/Smalltalk to explore COP in late-
bound class-based programming environments [12,15]. In Squeak/Smalltalk
there are only objects, and messages exchanged between them. Since every-
thing else is built on top of these concepts, and due to late-binding being used
extensively throughout the system, the realization of ContextS was simple and
straightforward. Only small changes to the language kernel needed to be made
to achieve useful results. In this section we give a brief introduction to the small
set of constructs provided with ContextS, leaving the illustration of their appli-
cation to Section 4. We try to refrain from discussing implementation details,
but will mention some alternatives we are currently investigating.1

3.1 Implementation-Side Constructs

There are two main concepts to be used at the implementation side of concerns
implemented in ContextS: Layers and advice-based partial method definitions.

Layers are simply represented as subclasses of CsLayer. In current versions of
ContextS, layers are containers for partial method definitions. In future versions,
we will move such method definitions away from the layers, into the classes they
belong to. For a detailed discussion on why that should be done, please refer to
our reading list, presented in Section 5.

CsLayer subclass: #MyLayer

instanceVariableNames: ’’

classVariableNames: ’’

poolDictionaries: ’’

category: ’My Category’

Partial method definitions, as shown here, still use an advice-based style as
introduced in PILOT [19] and popularized by CLOS [4] and AspectJ-style lan-
guage extensions [16]. The style presented here is inherited from AspectS [13],
to take advantage of a set of metaobjects called method wrappers AspectS was
built on [5].

1 We use ContextS version 0.0.10 throughout the paper, available from
http://www.swa.hpi.uni-potsdam.de/cop/.
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MyLayer>>adviceCopLeafEvaluate

^ CsAroundVariation

target: [MyTargetClass -> #myTargetSelector]

aroundBlock: [:receiver :arguments :layer :client :clientMethod |

"my layer-specific code"

...]

Here we can see that a partial method definition (adviceCopLeafEvaluate) be-
longs to a particular layer (MyLayer). The name of each such method definition
needs to start with advice and has to have no arguments. These properties are ex-
ploited by the underlying framework to collect and compose all partial definitions
associated with a layer. With CsAroundVariationwe state that we will apply an
around advice with class MyTargetClass and method myTargetSelector as its
target. Layer-specific code provided by this partial method definition is stated in
the around block and has full access to its environment, including the sender and
the receiver of the message, its arguments, as well as the defining layer.

3.2 Activation-Side Constructs

At the client side of a concern implemented using ContextS, useAsLayersFor:
is about the only construct ever used.

receiver useAsLayersFor: argument

useAsLayersFor: is a regular message that can be sent to collections or arrays
that contain instances of CsLayer, or to code blocks that eventually return such
collections or arrays.

All layers (instances of CsLayer) enumerated or computed by the receiver
object are composed into the Squeak image in the order of their appearance
in the list. This composition is only effective in the current process (Squeak’s
version of a thread) and for the dynamic extent of the execution of the block
(an instance of BlockContext which is provided as the second argument).

4 Pretty-Printing as an Example

We use the task of pretty-printing an expression tree in infix, prefix, and postfix
notation as well as an evaluation of the same as an example to show the differ-
ences between a regular object-oriented solution, an approach using the Visitor
design pattern [11], and our context-oriented version.

The basic implementation of the nodes and leaves used to construct our ex-
pression trees is shown in Figure 3. A CopNode (left-hand side of Figure 3) has
three instance variables for the first operand, the second operand, and the oper-
ation to combine the two. Each CopLeaf (right-hand side of Figure 3) has only
one instance variable providing its value. Both classes provide accessor methods
for their instance variables.

An expression tree can be assembled by the creation of individual instances of
CopNode and CopLeaf and their combination. The example tree used throughout
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Object subclass: #CopNode Object subclass: #CopLeaf
instanceVariableNames: ’first op second’ instanceVariableNames: ’value’
classVariableNames: ’’ classVariableNames: ’’
poolDictionaries: ’’ poolDictionaries: ’’
category: ’ContextS-Demo Visitor’ category: ’ContextS-Demo Visitor’

CopNode class>>first: aFirstCopNodeOrCopLeaf CopLeaf class>>value: anInteger
op: aSymbol second: aSecondCopNodeOrCopLeaf ^ self new value: anInteger

^ self new
first: aFirstCopNodeOrCopLeaf;
op: aSymbol;
second: aSecondCopNodeOrCopLeaf

CopNode>>first CopLeaf>>value
"^ <CopNode | CopLeaf>" "^ <Integer>"
^ first ^ value

CopNode>>first: anCopNodeOrCopLeaf CopLeaf>>value: anInteger
first := anCopNodeOrCopLeaf. value := anInteger.

CopNode>>op
"^ <Symbol>"
^ op

CopNode>>op: aSymbol
op := aSymbol.

CopNode>>second
"^ <CopNode | CopLeaf>"
^ second

CopNode>>second: anCopNodeOrCopLeaf
second := anCopNodeOrCopLeaf.

Fig. 3. Basic Node and Leaf Implementation

tree := CopNode
first: (CopNode

first: (CopNode
first: (CopLeaf value: 1)
op: #+
second: (CopLeaf value: 2))

op: #*
second: (CopNode

first: (CopLeaf value: 3)
op: #-
second: (CopLeaf value: 4)))

op: #/
second: (CopLeaf value: 5).

Fig. 4. Construction of an Expression

our paper is built in Figure 4. Figure 5 provides a graphical representation of
the tree created in Figure 4.

4.1 Regular Objects

A simple and straightforward object-oriented implementation of pretty-printing is
listed in Figure 6. The desired behavior is implemented in-place in both classes as
methods evaluate, printInfix, printPostfix, and printPrefix respectively.
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Fig. 5. Expression Tree

CopNode>>evaluate CopLeaf>>evaluate
^ (self first evaluate) ^ self value

perform: self op with: (self second evaluate)

CopNode>>printInfix CopLeaf>>printInfix
^ ’(’, self first printInfix, ^ self value asString

self op, self second printInfix, ’)’

CopNode>>printPostfix CopLeaf>>printPostfix
^ ’(’, self first printPostfix, ^ self value asString

self second printPostfix, self op, ’)’

CopNode>>printPrefix CopLeaf>>printPrefix
^ ’(’, self op, ^ self value asString

self first printPrefix, self second printPrefix, ’)’

Fig. 6. In-place Traversals

Transcript cr; show: tree printInfix. ==> (((1+2)*(3-4))/5)
Transcript cr; show: tree printPrefix. ==> (/(*(+12)(-34))5)
Transcript cr; show: tree printPostfix. ==> (((12+)(34-)*)5/)
Transcript cr; show: tree evaluate. ==> (-3/5)

Fig. 7. Use of In-place Traversals

Because these methods need to coexist side-by-side at the same time, they
are named differently. And because of that, client side code needs to explicitly
decide which one to use.

An application of our system so far is copied down in Figure 7, with the
code executed on its left-, and the resulting print-outs on its right-hand side. In
Squeak, objects are printed to the system console called Transcript by sending
it the message show: with the object as argument.

4.2 Visitors

Our solution to the implementations of pretty-printing as presented previously
is used as a motivation for the Visitor design pattern [11]. From its intent, we
take that a visitor represents “an operation to be performed on the elements of
an object structure” where the Visitor makes it easy to add new operations to
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CopNode>>accept: aCopVisitor CopLeaf>>accept: aCopVisitor
^ aCopVisitor visitNode: self ^ aCopVisitor visitLeaf: self

Fig. 8. Visitor-ready Base Objects

the entire structure. This is because all new operations can be defined outside
this object structure it operates on, and so without the need to change it.

However, the resulting client code of Visitor-based systems is very hard to
understand, with the manual simulation of double dispatch being one of the
main reasons for that. Figure 8 lists the basic framework used for that in CopNode

and CopLeaf, adding implementations of accept: to both classes that then call
back to the argument, providing itself and the proper type information needed
for further processing.

The actual implementation of two of the four visitors,CopPrintPrefixVisitor
and CopEvaluateVisitor, can be seen in Figure 9. Here, our visitLeaf: and
visitNode:methods control both local computation and follow-up traversals.

CopVisitor subclass: #CopPrintPrefixVisitor CopVisitor subclass: #CopEvaluateVisitor
instanceVariableNames: ’’ instanceVariableNames: ’’
classVariableNames: ’’ classVariableNames: ’’
poolDictionaries: ’’ poolDictionaries: ’’
category: ’ContextS-Demo Visitor’ category: ’ContextS-Demo Visitor’

CopPrintPrefixVisitor>>visitLeaf: aCopLeaf CopEvaluateVisitor>>visitLeaf: aCopLeaf
^ aCopLeaf value asString ^ aCopLeaf value

CopPrintPrefixVisitor>>visitNode: aCopNode CopEvaluateVisitor>>visitNode: aCopNode
^ ’(’, ^ (aCopNode first accept: self)

aCopNode op, perform: aCopNode op
(aCopNode first accept: self), with: (aCopNode second accept: self)
(aCopNode second accept: self),
’)’

Fig. 9. Visitor Examples

Transcript cr; show: (tree accept: CopPrintInfixVisitor new). ==> (((1+2)*(3-4))/5)
Transcript cr; show: (tree accept: CopPrintPrefixVisitor new). ==> (/(*(+12)(-34))5)
Transcript cr; show: (tree accept: CopPrintPostfixVisitor new). ==> (((12+)(34-)*)5/)
Transcript cr; show: (tree accept: CopEvaluateVisitor new). ==> (-3/5)

Fig. 10. Use of Visitors

An application of our Visitor-based system so far is transcribed in Figure 10,
again with the code executed on its left, and the resulting print-outs on its right.

4.3 Layers

Now we are going to implement our expression traversal example using Con-
textS by applying the constructs introduced in Section 3. Here, we present two
of our four layers, CopPrintInfixLayer and CopEvaluateLayer, in Figure 11.
Each layer is a subclass of CsLayer, provides two partial method definitions
with class CopLeaf, class CopNode, and their methods printOn: as targets. As
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CsLayer subclass: #CopPrintPrefixLayer CsLayer subclass: #CopEvaluateLayer
instanceVariableNames: ’’ instanceVariableNames: ’’
classVariableNames: ’’ classVariableNames: ’’
poolDictionaries: ’’ poolDictionaries: ’’
category: ’ContextS-Demo Visitor’ category: ’ContextS-Demo Visitor’

CopPrintPrefixLayer>>adviceCopLeafPrintOn CopEvaluateLayer>>adviceCopLeafEvaluate
^ CsAroundVariation ^ CsAroundVariation

target: [CopLeaf -> #printOn:] target: [CopLeaf -> #evaluate]
aroundBlock: [:receiver :arguments aroundBlock: [:receiver :arguments

:composition :client :clientMethod | :composition :client :clientMethod |
receiver value printOn: arguments first] receiver value]

CopPrintPrefixLayer>>adviceCopNodePrintOn CopEvaluateLayer>>adviceCopNodeEvaluate
| stream | ^ CsAroundVariation
^ CsAroundVariation target: [CopNode -> #evaluate]

target: [CopNode -> #printOn:] aroundBlock: [:receiver :arguments
aroundBlock: [:receiver :arguments :layer :client :clientMethod |

:layer :client :clientMethod | receiver first evaluate
stream := arguments first. perform: receiver op
stream nextPut: $(. with: receiver second evaluate]
stream nextPutAll: receiver op.
receiver first printOn: stream.
receiver second printOn: stream.
stream nextPut: $)]

Fig. 11. Layered Traversal Code

[ { CopPrintInfixLayer new } ] useAsLayersFor: [
Transcript cr; show: tree]. ==> (((1+2)*(3-4))/5)

[ { CopPrintPrefixLayer new } ] useAsLayersFor: [
Transcript cr; show: tree]. ==> (/(*(+12)(-34))5)

[ { CopPrintPostfixLayer new } ] useAsLayersFor: [
Transcript cr; show: tree]. ==> (((12+)(34-)*)5/)

[ { CopEvaluateLayer new } ] useAsLayersFor: [
Transcript cr; show: tree evaluate]. ==> (-3/5)

Fig. 12. Use of Layered Traversal Code

already stated previously, objects are printed to the Transcript by sending it
the message show: with the object as argument. show: itself sends printOn: to
the object, with a stream as its argument. This is the method we would override
in a subclass to change the behavior of show:, and this is also the method we
adapt using COP-style refinements.

In this example, our context-dependent behavior simply overrides the original
behavior present before its layer activation by using an around construct without
a proceed. More method combinations including around with proceed, before, or
after semantics can be achieved as well, but are beyond the scope of this tutorial.

In an upcoming version of ContextS, the need for AOP-style inverse relation-
ships will be reduced, since our traversal code belongs to the objects and should
be defined in the scope of their classes so that programmers reading their code
are aware of its impact (Figure 13).

The activation-side of our context-dependent behavior looks as simple and
straightforward as promised (Figure 12): The programmer of the client code
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states or computes the desired layer combination (only one layer in our example),
and uses it via the useAsLayersFor:message. This causes the layer activation to
be composed into the system and visible in the dynamic extent of the execution
of the provided block argument.

Please note that the provided block arguments are the same in all four cases.
The method show: is used all the time to print out our expression tree. Only
the layer used is different from case to case. It is also important to point out
that in the code block provided to useAsLayersFor: the message show: is sent
to Transcript whereas our layers adapt printOn: of CopLeaf and CopNode

respectively.

5 Further Reading

Related work of COP including AOP, FOP, or delegation have been presented
and discussed in other publications In the following we list some of them for
further reading:

Language Constructs for Context-oriented Programming – An Overview of Con-

textL [6]. That paper presents ContextL, our first COP extension. It supplements
the Common Lisp Object System (CLOS) with layers, layered classes, layered
and special slots, layered accessors, and layered functions. In ContextL, layered
classes, slots and functions can be accumulated in layers. ContextL’s layers or
their combinations are dynamically scoped, allowing us to associate partial be-
havioral variations with the classes they belong to, while, at the same time,
changing their specific behavior depending on the context of their use.

Efficient Layer Activation for Switching Context-dependent Behavior [8]. In that
paper, we illustrate how ContextL constructs can be implemented efficiently. As
an interesting result, ContextL programs using repeated layer activations and de-
activations are about as efficient as without, underlining the fact that apparently
other things are more important regarding performance and its optimization. We
also show an elegant and efficient implementation of the prominent AOSD figure
editor example, even without the need to resort to cflow-style constructs in the
first place.

Reflective Layer Activation in ContextL [7]. That paper describes a reflective
approach to the expression of complex, application-specifc layer dependencies,
without compromising efficiency.

Context-oriented Programming [14]. In that contribution, we summarize our
previous work and present COP as a novel approach to the modularization
of context-dependent behavior. We show that, by treating context explicitly
and by providing dedicated abstractions and mechanisms to represent context-
dependent variations, programs can be expressed more concisely than without.
Several examples are provided to illustrate COP’s advantages over more tradi-
tional approaches.
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CopNode>>printOn: aStream CopNode>>printOn: aStream
<<layer: PrintPrefix>> <<layer: Evaluate>>
^ ’(’, ^ self first evaluate

self op, perform: self op
self first printPrefix, with: (self second evaluate)
self second printPrefix,
’)’

CopLeaf>>printOn: aStream CopLeaf>>printOn: aStream
<<layer: PrintPrefix>> <<layer: Evaluate>>
^ self value asString ^ self value

Fig. 13. Another Representation of Layered Traversal Code

6 Summary and Outlook

In our tutorial-style introduction to ContextS we have presented both activation-
side and implementation-side constructs of our COP extension to Squeak/
Smalltalk. We provided sample implementations illustrating three different ap-
proaches to printing out an expression tree: plain and straightforward object-
oriented programming, a Visitor-based application, as well as a COP-based so-
lution using ContextS.

Our intent was not to discuss advantages of COP-style development but rather
to present some of the mechanics involved in working with ContextS. One of the
issues we are working on right now is to allow for specifying context-specific
code outside of layers and inside the classes it belongs to. Figure 13 presents
one of our approaches to this issue. Here we can see different versions of the
printOn: method, associated with one and the same class at the same time.
The difference is the layer expressed via <<layer: ...>> denoting the layer the
particular method belongs to.

While ContextS provides means to express heterogeneous crosscutting behav-
ioral variations, we look into its extension to concisely implement homogeneous
crosscutting concerns as well [1].

We are currently working on medium- to large-sized examples and case studies
to illustrate to what extent COP helps to better express software entities that
need to adapt their behavior to their context of use, and to further refine our
language extensions.
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