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An Introduction to Deep 
Learning 
This technology will be used to enhance and improve identification of structural damage 

by Maria Pantoja, Anahid Behrouzi, and Drazen Fabris 

D eep learning (DL) is a subset of machine learning, the 
science of using computers to improve performance 
without problem explicit programming. Thanks to 

recent advances in computer architecture, data acquisition and 
storage systems, and software tools, DL has become the 
dominant focus for artificial intelligence (AI) research and 
development. The goal of this article is primarily to describe 
the DL process and briefly illustrate an example that will 
enable professional structural engineers to automatically label 
images. More detail on the example is provided in the references. 

Much DL research has been concentrated on the development 
of computer instructions (algorithms) to classify data. Many 
DL algorithms have been designed to find and report patterns 
in data without any preprocessing of these data—this DL 
application is known as unsupervised learning. Other DL 
algorithms learn from data sets (training sets) by correlating 
patterns in the data with classifications provided by human 
experts (ground truth data)—this DL application is known as 
supervised learning. Supervised learning is like learning with 
a teacher who tells you what is the right answer and guides 
you; unsupervised learning is like learning without a teacher 
and your task is to find the patterns in the data on your own. 
In this article, the focus is only on supervised learning. 

After training, DL algorithms become tools that are used to 
categorize new data sets. Many of these DL models (generally 
termed algorithms) can assess data faster and more accurately 
than expert practitioners. For example, radiologists can now 
use DL algorithms to conduct analyses of images used for 
cancer detection.1 The algorithms are adept at identifying 
incipient tumors and alerting the radiologists to the need for 
closer examination. In another example, DL algorithms are 
also being developed to allow unmanned aerial vehicles 
(UAVs) to assist in inspection of civil infrastructure by 
autonomously directing themselves to a pertinent structure, 
then sub-areas in the structure, and then specific, probable 
anomalies.2 Images created by these UAVs can then be 

analyzed by yet another DL algorithm to automatically 
identify and tag structural damage. The resulting collection of 
tagged images can then be used by structural engineers to 
determine appropriate actions.3,4 Similar technologies can also 
be used to train machines capable of autonomously working 
in hazardous environments5 or to manage inventory in civil 
infrastructure projects.6 

The future of image recognition in civil infrastructure will 
be enhanced by advancements in theory and capability of 
computer vision systems. This will not be a substitute for the 
knowledge of expert structural engineers; rather, by 
highlighting damages in images, such DL algorithms will 
facilitate more rapid and targeted analysis by experts. DL 
solutions are currently being researched and implemented to 
solve civil engineering related problems. As these techniques 
become implemented by civil engineers around the world, DL 
can contribute to the surveying and improvement of 
infrastructure on a larger scale. 

The Deep Learning Process 
Overview 

DL algorithms are built from artificial neural networks 
(termed ANN or NN). In general, an NN is comprised of 
interconnected nodes (called neurons) that are arranged in 
layers. While neurons within a particular layer are 
independent of each other, the neurons in a layer are linked to 
the neurons in preceding and following layers by functions 
with variable weights. The term “neuron” was assigned to 
nodes in NN because the multiplicity of connections between 
nodes can be likened to the synaptic connections between 
neurons in a brain. For supervised learning algorithms, the 
weights in the NN algorithm are determined during a training 
step, by an iterative process that minimizes errors between 
classifications made by the algorithm and classifications 
provided in ground truth data. The algorithm and the weights 
determined during the training step comprise a model that can 
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be used to make predictions from new data. This learning 
process generally improves with increasing amounts and 
quality of preclassified data used for training. The model 
weights are updated as new data are acquired and classified. 

When developing an NN, two main steps are mandatory 
(Fig. 1). First, the NN is trained on a set of data that has been 
preclassified, generally by human experts. Training is an 
iterative process, in which the algorithm finds a set of weights 
that minimizes an error measure. Without getting into the 
details, this training process combines linear algebra, 
statistics, and differential calculus to minimize the error 
between the classifications assigned by the algorithm and 
classifications in ground truth data. Second, the trained NN, or 
model, is deployed to classify new data sets. The NN approach 
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Fig. 1. Basic workflow for a DL algorithm designed to identify damage 
in images of structures: (a) in the training step, the algorithm sets 
internal parameters (weights) based on images tagged by an expert 
as showing damage or no damage; and (b) in the deployment step, 
the trained model is used to identify damage in new images 

can be used to classify text, images, or other information. In 
this article, however, we will focus on classification of 
images, which is a machine vision application. 

As stated previously, DL algorithms mimic the connectivity 
of biological neural systems. Although we do not exactly 
know how the human brain works, we do know that a 
collection of connected neurons can perform very complex 
tasks, even though a single neuron can do very little. The 
same can be said about the connected neurons in a DL 
algorithm. The neurons in a DL algorithm can mimic a 
biological neuron by “firing” when stimulated sufficiently by 
inputs from other neurons. We term this activation and the 
mathematical operators that determine the state of a neuron 
are termed activation functions. 

DL algorithms are trained by iteratively making 
calculations forward and backward through the network. The 
training step in developing an NN is an iterative process that 
effectively calibrates a model. This is illustrated in Fig. 1(a). 

During a forward pass, the training set is classified, or 
assigned a score, by the algorithm using the current network 
weights. During a backward pass, the weights are updated to 
improve the classification relative to the ground truth on the 
next iteration. The adjustments are made using loss and cost 
functions to measure the error between the classifications 
made by the algorithm and the classifications provided in the 
training set. Detailed descriptions of loss functions can be 
found in the literature (for example, refer to Reference 7). 

Neurons and weights 
For DL applications, a neuron k is a software function that 

takes an input and generates an output using an activation 
function (Fig. 2(a)). Each neuron k has a bias bk and a set of 
weights, wjk, associated with its connection to preceding 
neurons i. The bias provides a uniform offset to control the 
sensitivity of the learning process. The weights provide 
indications of the level of interaction between nodes. 
Together, they can be considered as analogous to the intercept 
value and the slope in the equation for a straight line. 
Whenever there is a change in the input xi the output varies 
linearly. As a starting point, the weights are usually initialized 
to small arbitrary values. The weights within the NN will 
change during the iterative learning process. 

Neurons are grouped in layers (Fig. 2(b)) that are 
connected with other layers of neurons. In fact, deep learning 
gets its name from the high number of layers used in DL 
algorithms. An NN is comprised of an input layer that reads 
input values and an output layer that produces one or more 
numbers that represent a certain classification. An NN also 
comprises multiple hidden layers (layers between input and 
output layers). In a fully connected NN, each neuron adds all 
the outputs of the previous layer’s neurons together and 
applies an activation function, whose job is to pass to the next 
layer these additions only if it is above a threshold value 
(again, the activation function determines if the neuron will 
“fire”). In other words, if the signal from “upstream” neurons 
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Fig. 2: Details of neurons and layers in an NN: (a) neuron k, with yj input values and output yk. For each neuron k, wjk is the weight assigned to 
the neuron for each yj; and (b) schematic of layers in an NN, showing the position of neuron k within the red box 

is too small, the neuron will not translate input from the 
previous layers to the following layers. The activation 
function determines whether the output from a layer’s neuron 
will identify and propagate an input. Some of the activation 
functions used in DL algorithms are discussed in Reference 8. 

Training 
During training, the weights and biases are adjusted for 

each neuron, allowing interconnected hidden layers to learn 
patterns from an input set. The number of neurons per hidden 
layer and the number of layers is chosen by the data engineer. 
The complexity of the model is usually based on some 
previously developed NN that was used to solve a similar 
problem. The number of neurons in the input layer is the same 
as the size of the input data. For example, if the input 
comprises 32 x 32-pixel greyscale images, the input layer will 
contain 322 = 1024 neurons. Note that each pixel will have 
256 tonal levels for a black-and-white image, and that the 
number of neurons in the input layer will triple if the input 
comprises red, green, and blue color images. 

Successive hidden layers in NN algorithms have been 
observed to be capable of progressively identifying higher-
level features. For example, the first hidden layer may identify 
contrast lines within images (Fig. 3).9 The next hidden layer 
may then respond to associations of these edges, with neuron 
connections that are sensitive to respectively identifying 
noses, eyes, ears, and mouths, for example. A deeper layer 
might then have neurons that are activated by the presence of 
a nose, two eyes, two ears, and a mouth (in other words, 
neurons in this layer would respond positively to a face). By 
connecting many layers, we can create systems that can learn 
to identify complex objects in an image (Fig. 3). 

As previously stated, training the NN is an iterative 
process, with the goal of minimizing the classification errors 
associated with the training set (ground truth). Massive 
numbers of weights and biases may be adjusted during the 
process, even if the algorithm provides only a binary (true or 
false) classification. For example, if the input is a 32 x 32-pixel 
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Fig. 3: Layers tend to learn progressively more complex patterns. As 
shown in Reference 9, inputs comprising photos of faces can be 
categorized by layers that are activated by changes in contrast to 
define edges and parts of objects. A following layer within the NN is 
activated by the objects—in this case, faces 



 

  

 
 

 
 

 
 

 
 

  
 

 
 
 
 
 
 
 
 

 

greyscale image, the network will require 1024 neurons in 
each hidden layer to be fully connected (in a fully connected 
layer, all neurons in that layer are connected to all neurons in 
the preceding and succeeding layers in the network). If the 
network configuration has 10 fully connected hidden layers, 
over 855,000 weights must be adjusted during each training 
step, and each training step will include data for every image 
in the training set. Similarly, millions of weights must be 
learned for a DL algorithm with hundreds of layers and input 
images in the range of 1000 x 1000 pixels. Thus, DL 
algorithms can take hours to train, even using parallel 
processing accelerators such as graphics processing units (GPUs). 

While a NN with many parameters can fit a training set 
data very accurately, this does not necessarily mean that this 
is a good solution for an implementation. Such a trained NN 
may fail to generalize and thus will fail to correctly classify 
new input images that differ from the images in the training 
set. This problem is called overfitting. Refer to Reference 8 for 
discussions of some of the methods used to avoid overfitting. 

Classification errors associated with the training set are 
determined using a loss function, which can be considered a 
surface in multi-dimensional space. This function is 
minimized using a very well-known optimization technique 
called gradient descent (GD),10 which finds changes in 
weights that result in the steepest descent within the loss 
function to minimize the loss function. 

This can be visualized using the function for the straight-
line y = a + bx, where the slope b of the function is the rate of 
change (gradient), also given as the derivative of the function. 
In the more general problem associated with DL, the gradient 

Classification Competition 
The Pacific Earthquake Engineering Research Center 

(PEER) has organized the first image-based structural 
damage identification competition, the PEER Hub 
ImageNet (PHI) Challenge. Contestants will receive 
training and testing data sets that have been labeled for 
classifications that include: 
� Scene level (pixel, object, or structural);
� Damage condition (yes or no);
� Spalling condition (yes or no);
� Material type (steel or other);
� Collapse state (none, partial, or full);
� Component type (beam, column, wall, or other);
� Damage level (none, minor, moderate, or heavy); and 
� Damage type (none, flexural, shear, or combined). 

Competitors will test the classification accuracy of 
their algorithms at three levels of difficulty. The 
competition is scheduled to start on August 23 and close 
on November 25, 2018. The winner will be announced 
on December 15, 2018. 

Visit http://apps.peer.berkeley.edu/phichallenge/ 
for more information. 

is the generalization of the slope for functions with a vector of 
input dimensions, and it must be found using partial 
derivatives. While GD determines the direction in which the 
function has the steepest rate of change, the data engineer 
must determine how far the program should step. That is, the 
team developing the DL algorithm must heuristically set the 
learning rate for the algorithm. If the steps are too large, the 
algorithm may overshoot the optimal solution. If the steps are 
too small, the algorithm will take too long to find a solution or 
the algorithm might get stuck in a local minimum. 

Because modern DL algorithms have millions of weights, 
calculation of the GD and the updates of the weights is so 
computationally intensive that DL algorithms were long 
considered too slow and difficult to train. This changed when 
Rumelhart, Hinton, and Williams described how to improve 
the convergence rate using backpropagation.11 

Backpropagation is based on the chain rule and allows the 
calculation of the GD and the update of the input weights 
layer by layer. More details about back propagation are 
discussed in References 10 to 13. 

The benefit of backpropagation is that the derivatives can 
be calculated recursively and relatively quickly. Once the 
derivatives have been found, the weight on each neuron is 
adjusted proportionally, according to how fast that weight will 
lower the loss function. The output of the classifier and the 
gradients for each one of the neurons can be calculated to 
minimize the loss function in one step. After this update is 
finished, the forward and backward passes are repeated until 
the loss value has satisfied a defined minimum. The output of 
the final training step will be the set of weights that minimize 
the loss function. 

Deployment or inference 
The deployment step is much simpler than the training 

step. Once the training step is finished, the result is a set of 
weights that when multiplied by the input pixels will create 
the automatic classification (Fig. 1), this step mainly consists 
in floating point multiplications and does not need 
sophisticated hardware for intensive computation. Usually, 
when a new NN is trained we use a computer that has one or 
more GPUs, but the deployment can be executed by much 
simpler hardware, including smartphones, tablets, and smaller 
computing devices. 

Convolutional Neural Networks 
Convolutional neural networks (CNN) are a category of 

NN that have proven very effective in areas such as image 
recognition and classification. CNN derive their name from 
the “convolution” operator, which reduces the number of 
weights required to classify the input. Compared to a 
conventional NN, CNN networks reduce the computation 
in the hidden layers by not requiring them all to be fully 
connected. 

An image is a two-dimensional (2-D) matrix of pixel 
values that range in values from 0 to 255, a convolutional 
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filter is also a 2-D matrix, usually of 
odd size (for example, 3 x 3 or 5 x 5). 
A convolution operation is a 
mathematical operation obtained by 
“sliding” (indexing) the convolutional 
filter over every element in the input 
image matrix. At each position of the 
convolution filter the values in the filter 
matrix are multiplied with the near 
neighbors in the image matrix and the 
products are summed (Fig. 4). 
Convolutions have been traditionally 
used in image processing to detect 
edges and gradients. CNN algorithms 
are designed to learn the values of these 
convolution filters on their own during 
the training process. A common CNN 
configuration is illustrated in Fig. 5. 

In general, a CNN consists of a 
combination of the following layers:
� INPUT layer, which comprises raw 

pixel values of an input image;
� CONV layer, which will compute the 

Input 2D matrix Convolutional filter Output 2D matrix 

1 
1 

1-1 

-10 0  
0 

0 
0 
0 

0 

0 0  0 

1 

1 

3 3  
3 

2 

2 

2 
2-2 

4 

4 

4 

5 
5 

21 1  
6 6  

6 6
2 

2 

8 

1 1  
1 1  
1 1  

Output = 
-1˜1+ 
0˜4+ 
1˜0+ 

-2˜0+ 
0˜0+ 
2˜2+ 

-1˜1+ 
0˜2+ 

1˜4 = 6 

Fig. 4: An example of a convolution operation 

RE
LU

RE
LU No 

damage 
10 1 15 
0 

34 
11 

12 
21 

7 

30 

3122 6 
30 1 

20 

Input image Pixel values Input CONV CONV POOL Output 
8x8 pixel layer layer layer layer FC layer 

Fig. 5: A schematic of a CNN configuration 



 

 

 
  

 
 

    

     

  

Fig. 6: Bounding box classification results: shear damage to short/captive column 

output of neurons that are connected to local regions in the 
inputs (RELU is short for rectified linear unit, an activation 
function used in the computations);

� POOL layer, which will perform a downsampling operation 
along the spatial dimensions (width, height); and

� Fully Connected Output layer, which will compute the class 
scores for each category the algorithm is earning to recognize. 
The first work that widely popularized convolutional 

networks in computer vision was the AlexNet.14 The AlexNet 
was submitted to the ImageNet challenge in 2012,15 and it 
significantly outperformed previous implementations. In fact, it 
did so well, most of the DL algorithms for object classification 
are now CNN. CNN generalize well and can correctly classify 
different objects if enough preclassified input data can be 
provided for training. 

When creating a new NN to classify a new object, the data 
engineer must decide the number of layers, the number of 
neurons per layer, the learning rate, and numerous other 
parameters. However, in practice, most practitioners reuse 
previously trained CNN algorithms—they modify only a few 
of the parameters for a new data set. This technique is called 
transfer learning. 

One of the main goals of DL is to be 
able to automatically detect objects on 
image/video. This is based on the 
premise that if a human can see the 
difference and manually tag/recognize 
an object, then a DL algorithm should 
also be able to detect the same features 
and patterns needed to identify the 
object. In our application, the object to 
identify is a damage/structure pair on 
images taken after an earthquake. We 
have created a DL algorithm capable of 

recognizing earthquake-induced damage on concrete 
buildings. For this process, we use the object detection 
application programming interface for Tensorflow,15 a public 
domain software package. Our implementation uses the 
AlexNet configuration.14 The steps to develop the DL for 
damage/structure defect detection are provided in Reference 
15. The DL algorithm is capable of drawing a bounding box 
around short/captive column with shear damage, with an 
accuracy of 77%. Figure 6 presents a few examples of images 
the algorithm correctly tagged for this damage type. 

There are a few challenges with training for specific 
damage-structural member pairs that may explain the current 
level of accuracy. First, finding 200 high-quality images from 
reputable sources that accurately represent earthquake loading 
damage is a time-intensive process. Second, the research team 
is currently dependent on images tagged by only one expert. 
There is a need to use multiple experts to provide verification 
of the ground truth set. Nevertheless, the current level of 
accuracy is rather promising and we believe that with a larger 
set of training images labeled by at least two experts, the DL 
algorithm’s tagging performance would be comparable to a 
human expert. Output images would have additional metadata 
that includes the damage-structural member types and its 
locations in the images, which would enable large structural 
reconnaissance image repositories to become searchable using 
specific terms. 

Because this work is in the preliminary stages, we welcome 
contributions from experts in the field to help build a 
comprehensive database and implement and test the model. 

Summary and Application 
In this article, we presented an introduction to deep 

learning; specifically described is the use of a convolutional 
neural network and the supervised learning process. This 
approach is currently being applied to train a model that will 
enable professional structural engineers to automatically 
detect types of earthquake damage. Initial results are 
promising. Output images would have additional metadata 
that includes the damage-structural member types and their 
locations in the images, which would enable large structural 
reconnaissance image repositories to become searchable using 
specific terms. 

As mentioned previously, computer vision and deep 
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learning have advanced to the stage that they can make 
substantial improvement in many fields. DL solutions are 
currently being researched and implemented to solve civil 
engineering related problems, including autonomous 
inspection and inventory of civil infrastructure projects. 
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