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The management and combination of uncertain, imprecise, fuzzy and even paradoxical or highly

con°icting sources of information has always been, and still remains today, of primal importance

for the development of reliable modern information systems involving arti¯cial and approximate
reasoning. In this short paper, we present an introduction of our recent theory of plausible and

paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT), developed to deal with

imprecise, uncertain and con°icting sources of information. We focus our presentation on the

foundations of DSmT and on its most important rules of combination, rather than on browsing
speci¯c applications of DSmT available in literature. Several simple examples are given

throughout this presentation to show the e±ciency and the generality of this new theory.

Keywords: Dezert-Smarandache Theory; DSmT; quantitative and qualitative reasoning;

information fusion.

1. Introduction

The management and combination of uncertain, imprecise, fuzzy and even para-

doxical or highly con°icting sources of information has always been, and still remains

today, of primal importance for the development of reliable modern information

systems involving approximate reasoning. The combination (fusion) of information

arises in many ¯elds of applications nowadays (especially in defense, medicine,

¯nance, geo-science, economy, etc). When several sensors, observers or experts have

to be combined together to solve a problem, or if one wants to update our current

estimation of solutions for a given problem with some new information available, we

need powerful and solid mathematical tools for the fusion, specially when the infor-

mation one has to deal with is imprecise and uncertain. In this paper, we present a

short introduction of our recent theory of plausible and paradoxical reasoning, known
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as Dezert-Smarandache Theory (DSmT) in the literature, developed for approximate

reasoning with imprecise, uncertain and con°icting sources of information. Recent

publications have shown the interest and the ability of DSmT to solve problems

where other approaches fail, especially when con°ict between sources becomes high.

We focus here on the foundations of DSmT, and on the main important rules of

combination, than on browsing speci¯c applications of DSmT available in literature.

Successful applications of DSmT in target tracking, satellite surveillance, situation

analysis, robotics, medicine, biometrics, etc, can be found in Parts II of Refs. 20, 23,

25 and on the world wide web.26 Due to space limitation, we cannot give detailed

examples of our formulas, but they can be easily found in Refs. 20, 23, 25 and freely

available on the world wide web. An extended version of this paper is available in

Refs. 7, 25.

2. Foundations of DSmT

The development of DSmT (Dezert-Smarandache Theory of plausible and para-

doxical reasoning4,20) arises from the necessity to overcome the inherent limitations

of DST (Dempster-Shafer Theory18) which are closely related with the acceptance

of Shafer's model for the fusion problem under consideration (i.e. the frame of

discernment � is implicitly de¯ned as a ¯nite set of exhaustive and exclusive

hypotheses �i, i ¼ 1; . . . ;n since the masses of belief are de¯ned only on the power

set of �, see Sec. 2.1), the third middle excluded principle (i.e. the existence of the

complement for any elements/propositions belonging to the power set of �), and

the acceptance of Dempster's rule of combination (involving normalization) as the

framework for the combination of independent sources of evidence. Discussions on

limitations of DST and presentation of some alternative rules to Dempster's rule of

combination can be found in Refs. 8, 10�13, 15, 17, 20, 27, 30, 33�36 and therefore

they will be not reported in details in this introduction. We argue that these three

fundamental conditions of DST can be removed and another new mathematical

approach for combination of evidence is possible. This is the purpose of DSmT.

The basis of DSmT is the refutation of the principle of the third excluded middle

and Shafer's model, since for a wide class of fusion problems the intrinsic nature of

hypotheses can be only vague and imprecise in such a way that precise re¯nement is

just impossible to obtain in reality so that the exclusive elements �i cannot be

properly identi¯ed and precisely separated. Many problems involving fuzzy con-

tinuous and relative concepts described in natural language and having no absolute

interpretation like tallness/smallness, pleasure/pain, cold/hot, Sorites paradoxes,

etc, enter in this category. DSmT starts with the notion of free DSm model, denoted

Mfð�Þ, and considers � only as a frame of exhaustive elements �i, i ¼ 1; . . . ;n which

can potentially overlap. This model is free because no other assumption is done on

the hypotheses, but the weak exhaustivity constraint which can always be satis¯ed

according to the closure principle.20 No other constraint is involved in the free DSm

model. When the free DSm model holds, the commutative and associative classical
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DSm rule of combination, denoted by DSmC, corresponding to the conjunctive

consensus de¯ned on the free Dedekind's lattice is performed.

Depending on the intrinsic nature of the elements of the fusion problem under

consideration, it can however happen that the free model does not ¯t the reality

because some subsets of � can contain elements known to be truly exclusive but also

truly non existing at all at a given time (specially when working on dynamic fusion

problem where the frame � varies with time with the revision of the knowledge

available). These integrity constraints are then explicitly and formally introduced

into the free DSmmodelMfð�Þ in order to adapt it properly to ¯t as close as possible

with the reality and permit to construct a hybrid DSm model Mð�Þ on which the

combination will be e±ciently performed. Shafer's model, denoted M0ð�Þ, corre-
sponds to a very speci¯c hybrid DSm model including all possible exclusivity con-

straints. DST has been developed for working only with M0ð�Þ while DSmT has

been developed for working with any kind of hybrid model (including Shafer's model

and the free DSm model), to manage as e±ciently and precisely as possible imprecise,

uncertain and potentially highly con°icting sources of evidence while keeping in mind

the possible dynamicity of the information fusion problematic. The foundations of

DSmT are therefore totally di®erent from those of all existing approaches managing

uncertainties, imprecisions and con°icts. DSmT provides a new interesting way to

attack the information fusion problematic with a general framework in order to cover

a wide variety of problems.

DSmT refutes also the idea that sources of evidence provide their beliefs with the

same absolute interpretation of elements of the same frame � and the con°ict

between sources arises not only because of the possible unreliability of sources, but

also because of possible di®erent and relative interpretation of �, e.g. what is con-

sidered as good for somebody can be considered as bad for somebody else. There is

some unavoidable subjectivity in the belief of assignments provided by the sources of

evidence. Otherwise, it would mean that all bodies of evidence have a same objective

and universal interpretation (or measure) of the phenomena under consideration,

which unfortunately rarely occurs in reality, and only when basic belief assignments

(bba's) are based on some objective probabilities transformations. But in this last

case, probability theory can handle properly and e±ciently the information, and

DST, as well as DSmT, becomes useless. If we now get out of the probabilistic

background argumentation for the construction of bba, we claim that in most of

cases, the sources of evidence provide their beliefs about elements of the frame of the

fusion problem based only on their own limited knowledge and experience without

reference to the (inaccessible) absolute truth of the space of possibilities.

2.1. The power set, hyper-power set and super-power set

In DSmT, we take care about the model associated with the set � of hypotheses

where the solution of the problem is assumed to belong to. In particular, the three

main sets (power set, hyper-power set and super-power set) can be used depending on
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their ability to ¯t adequately with the nature of hypotheses. In the following, we

assume that � ¼ f�1; . . . ; �ng is a ¯nite set (called frame) of n exhaustive elements.a

If � ¼ f�1; . . . ; �ng is a priori not closed (� is said to be an open world/frame), one

can always include in it a closure element, say �nþ1 in such away that we can work

with a new closed world/frame f�1; . . . ; �n; �nþ1g. So without loss of generality, we

will always assume that we work in a closed world by considering the frame � as a

¯nite set of exhaustive elements. Before introducing the power set, the hyper-power

set and the super-power set, it is necessary to recall that subsets are regarded as

propositions in Dempster-Shafer Theory (see Chapter 218) and we adopt the same

approach in DSmT.

. Subsets as propositions: Glenn Shafer in pages 35–3718 considers the subsets as

propositions in the case we are concerned with the true value of some quantity �

taking its possible values in �. Then the propositions P�ðAÞ of interest are those of
the formb:

P�ðAÞ,The true value of � is in a subset A of �:

Any proposition P�ðAÞ is thus in one-to-one correspondence with the subset A of

�. Such correspondence is very useful since it translates the logical notions of

conjunction ^, disjunction _, implication ) and negation : into the set-theoretic

notions of intersection \, union [, inclusion � and complementation cð:Þ. Indeed, if
P�ðAÞ and P�ðBÞ are two propositions corresponding to subsets A and B of�, then

the conjunction P�ðAÞ ^ P�ðBÞ corresponds to the intersection A \ B and the

disjunction P�ðAÞ _ P�ðBÞ corresponds to the union A [B. A is a subset of B if

and only if P�ðAÞ ) P�ðBÞ and A is the set-theoretic complement of B with

respect to � (written A ¼ c�ðBÞ) if and only if P�ðAÞ ¼ :P�ðBÞ.
. Canonical form of a proposition: In DSmT, we consider all propositions/sets

in a canonical form. We take the disjunctive normal form, which is a disjunction

of conjunctions, and it is unique in Boolean algebra and simplest. For example,

X ¼ A \B \ ðA [B [ CÞ it is not in a canonical form, but we simplify the formula

and X ¼ A \ B is in a canonical form.

. The power set: 2� , ð�;[Þ
Besides Dempster's rule of combination, the power set is one of the corner stones of

Dempster-Shafer Theory (DST) since the basic belief assignments to combine are

de¯ned on the power set of the frame �. In mathematics, given a set �, the power

set of �, written 2�, is the set of all subsets of �. In Zermelo–Fraenkel set theory

with the axiom of choice (ZFC), the existence of the power set of any set is

postulated by the axiom of power set. In other words,� generates the power set 2�

with the [ (union) operator only. More precisely, the power set 2� is de¯ned as the

aWe do not assume here that elements �i are necessary exclusive, unless speci¯ed. There is no restriction on

�i but the exhaustivity.
bWe use the symbol , to mean equals by de¯nition; the right-hand side of the equation is the de¯nition of

the left-hand side.
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set of all composite propositions/subsets built from elements of � with [ operator

such that:

(1) ;; �1; . . . ; �n 2 2�.

(2) If A;B 2 2�, then A [B 2 2�.

(3) No other elements belong to 2�, except those obtained by using rules 1 and 2.

. The hyper-power set: D� , ð�;[;\Þ
One of the cornerstones of DSmT is the free Dedekind's lattice2 denoted as hyper-

power set in DSmT framework. Let� ¼ f�1; . . . ; �ng be a ¯nite set (called frame) of

n exhaustive elements. The hyper-power setD� is de¯ned as the set of all composite

propositions/subsets built from elements of � with [ and \ operators such that:

(1) ;; �1; . . . ; �n 2 D�.

(2) If A;B 2 D�, then A \B 2 D� and A [ B 2 D�.

(3) No other elements belong to D�, except those obtained by using rules 1 or 2.

Therefore by convention, we write D� ¼ ð�;[;\Þ which means that � generates

D� under operators [ and \. The dual (obtained by switching [ and \ in

expressions) of D� is itself. There are elements in D� which are self-dual (dual to

themselves), for example �8 for the case when n ¼ 3 in the following example. The

cardinality of D� is majored by 22n
when the cardinality of � equals n, i.e.

j�j ¼ n. The generation of hyper-power set D� is closely related with the famous

Dedekind's problem1,2 on enumerating the set of isotone Boolean functions. The

generation of the hyper-power set is presented.20 Since for any given ¯nite set �,

jD�j � j2�j we call D� the hyper-power set of �. The cardinality of the hyper-

power set D� for n � 1 follows the sequence of Dedekind's numbers,19 i.e. 1, 2, 5,

19, 167, 7580, 7828353,… and analytical expression of Dedekind's numbers has

been obtained recently by Tombak29 (see Ref. 20 for details on generation and

ordering of D�). Interesting investigations on the programming of the generation

of hyper-power sets for engineering applications have been done in Chapter 15.23,25

Shafer's model of a frame: More generally, when all the elements of a given

frame � are known (or are assumed to be) truly exclusive, then the hyper-power

set D� reduces to the classical power set 2�. Therefore, working on power set 2�

as Glenn Shafer has proposed in his Mathematical Theory of Evidence18 is

equivalent to work on hyper-power set D� with the assumption that all elements

of the frame are exclusive. This is what we call Shafer's model of the frame �,

written M0ð�Þ, even if such model/assumption has not been clearly stated

explicitly by Shafer himself in his milestone book.

. The super-power set: S� , ð�;[;\; cð:ÞÞ
The notion of super-power set has been introduced by Smarandache in Chapter

8.23 It corresponds actually to the theoretical construction of the power set of the

minimalc re¯ned frame �ref of �. � generates S� under operators [, \ and

cThe minimality refers here to the cardinality of the re¯ned frames.
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complementation cð:Þ. S� ¼ ð�;[;\; cð:ÞÞ is a Boolean algebra with respect to the

union, intersection and complementation. Therefore, working with the super-

power set is equivalent to work with a minimal theoretical re¯ned frame �ref

satisfying Shafer's model. More precisely, S� is de¯ned as the set of all composite

propositions/subsets built from elements of � with [, \ and cð:Þ operators such
that:

(1) ;; �1; . . . ; �n 2 S�.

(2) If A;B 2 S�, then A \ B 2 S�, A [ B 2 S�.

(3) If A 2 S�, then cðAÞ 2 S�.

(4) No other elements belong to S�, except those obtained by using rules 1, 2

and 3.

As reported in Ref. 21, a similar generalization has been previously used in 1993 by

Guan and Bell9 for the Dempster-Shafer rule using propositions in sequential logic

and reintroduced in 1994 by Paris in his book.14, p. 4 In summary, DSmT o®ers truly

the possibility to build and to work on re¯ned frames and to deal with the comp-

lement whenever necessary, but in most applications either the frame � is already

built/chosen to satisfy Shafer's model or the re¯ned granules have no clear physical

meaning. This does not allow to be considered/assessed individually so that working

on the hyper-power set is usually su±cient to deal with uncertain imprecise (quan-

titative or qualitative) and highly con°icting sources of evidences. Working with S�

is actually very similar to working with 2� in the sense that in both cases we work

with classical power sets; the only di®erence is that when working with S� we have

implicitly switched from the original frame � representation to a minimal re¯nement

�ref representation. Therefore, in the sequel, we focus our discussions based mainly

on hyper-power set rather than (super-) power set which has already been the basis

for the development of DST. But as already mentioned, DSmT can easily deal with

belief functions de¯ned on 2� or S� similarly as those de¯ned on D�. In the sequel,

we use the generic notation G� to denote the sets (power set, hyper-power set and

super-power set) on which the belief functions are de¯ned.

The main distinctions between DSmT and DST are summarized by the following

points:

(1) The re¯nement is not always (physically) possible, especially for elements from

the frame of discernment whose frontiers are not clear, such as: colors, vague sets,

unclear hypotheses, etc. in the frame of discernment; DST does not ¯t well for

working in such cases, while DSmT does;

(2) Even in the case when the frame of discernment can be re¯ned (i.e. the atomic

elements of the frame have all a distinct physical meaning), it is still easier to use

DSmT than DST since in DSmT framework the re¯nement is done automatically

by the mathematical construction of the super-power set;

(3) DSmT o®ers better fusion rules, for example Proportional Con°ict redistribu-

tion Rule # 5 (PCR5) — presented in the sequel — is better than Dempster's
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rule; hybrid DSm rule (DSmH) works for the dynamic fusion, while Dubois-

Prade fusion rule does not (DSmH is an extension of Dubois-Prade rule);

(4) DSmT o®ers the best qualitative operators (when working with labels) giving the

most accurate and coherent results;

(5) DSmT o®ers new interesting quantitative conditioning rules (BCRs) and

qualitative conditioning rules (QBCRs), di®erent from Shafer's conditioning rule

(SCR). SCR can be seen simply as a combination of a prior mass of belief with the

mass mðAÞ ¼ 1 whenever A is the conditioning event;

(6) DSmT proposes a new approach for working with imprecise quantitative or

qualitative information and not limited to interval-valued belief structures as

proposed generally in the literature.3,31

2.2. Notion of free and hybrid DSm models

Free DSm model: The elements �i, i ¼ 1; . . . ;n of � constitute the ¯nite set of

hypotheses/concepts characterizing the fusion problem under consideration. When

there is no constraint on the elements of the frame, we call this model the free DSm

model, written Mfð�Þ. This free DSm model allows to deal directly with fuzzy

concepts which depict a continuous and relative intrinsic nature and which cannot be

precisely re¯ned into ¯ner disjoint information granules having an absolute in-

terpretation because of the unreachable universal truth. In such case, the use of the

hyper-power set D� (without integrity constraints) is particularly well adapted for

de¯ning the belief functions one wants to combine.

Shafer's model: In some fusion problems involving discrete concepts, all the

elements �i, i ¼ 1; . . . ;n of � can be truly exclusive. In such case, all the exclusivity

constraints on �i, i ¼ 1; . . . ;n have to be included in the previous model to charac-

terize properly the true nature of the fusion problem and to ¯t it with the reality. By

doing this, the hyper-power set D� as well as the super-power set S� reduce natu-

rally to the classical power set 2� and this constitutes what we have called Shafer's

model, denoted M0ð�Þ. Shafer's model corresponds actually to the most restricted

hybrid DSm model.

Hybrid DSm models: Between the class of fusion problems corresponding to the

free DSm model Mfð�Þ and the class of fusion problems corresponding to Shafer's

model M0ð�Þ, there exists another wide class of hybrid fusion problems involving �

in both fuzzy continuous concepts and discrete hypotheses. In such (hybrid) class,

some exclusivity constraints and possibly some non-existential constraints (especially

when working on dynamicd fusion) have to be taken into account. Each hybrid fusion

problem of this class will then be characterized by a proper hybrid DSm model

denoted Mð�Þ with Mð�Þ 6¼ Mfð�Þ and Mð�Þ 6¼ M0ð�Þ.

d i.e. when the frame � and/or the model M is changing with time.
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In any fusion problems, we consider as primordial at the very beginning and before

combining information expressed as belief functions to de¯ne clearly the proper frame

� of the given problem and to choose explicitly its corresponding model one wants to

work with. Once this is done, the second important point is to select the proper set

2�, D� or S� on which the belief functions will be de¯ned. The third point concerns

the choice of an e±cient rule of combination of belief functions and ¯nally the criteria

adopted for decision-making.

2.3. Generalized belief functions

From a general frame �, we de¯ne a map mð:Þ : G� ! ½0; 1� associated to a given

body of evidence B as

mð;Þ ¼ 0 and
X
A2G�

mðAÞ ¼ 1: ð1Þ

The quantity mðAÞ is called the generalized basic belief assignment/mass (gbba) of

A. The generalized belief and plausibility functions are de¯ned in almost the same

manner as within DST, i.e.

BelðAÞ ¼
X
B�A
B2G�

mðBÞ PlðAÞ ¼
X

B\A6¼;
B2G�

mðBÞ: ð2Þ

We recall that G� is the generic notation for the set on which the gbba is de¯ned

(G� can be 2�, D� or even S� depending on the model chosen for �). G� is called

the fusion space. These de¯nitions are compatible with the de¯nitions of the

classical belief functions in DST framework when G� ¼ 2� for fusion problems where

Shafer's model M0ð�Þ holds. We still have 8A 2 G�; BelðAÞ � PlðAÞ. Note that

when working with the free DSm model Mfð�Þ, one has always PlðAÞ ¼ 1 8A 6¼ ; 2
ðG� ¼ D�Þ which is normal.

3. Combination of Belief Functions with the Proportional
Con°ict Redistribution Rule

In the development of DSmT, several rules have been proposed to combine distinct

sources of evidence providing their bba's de¯ned on the same fusion space G�. The

most simple one is the DSmC (Classical/conjunctive rule) when DSm free model

holds, or the DSmH (Hybrid rule) for working with DSm hybrid models of the

frame.20 DSmH is an extension of Dubois and Prade (DP) rule of combination,8 and

consists to apply a direct transfer of partial con°icts onto partial uncertainties. The

most recent and e®ective combination rule proposed in DSmT for managing the

con°icting mass of belief is the Proportional Con°ict Redistribution rule (PCR) that

is presented in this section. The idea behind PCR22,23 is to transfer (total or partial)

con°icting masses to non-empty sets involved in the con°icts proportionally with
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respect to the masses assigned to them by sources as follows:

(1) Calculation the conjunctive rule of the belief masses of sources;

(2) Calculation the total or partial con°icting masses (the product of bba's com-

mitted to the empty set);

(3) Redistribution of the (total or partial) con°icting masses to the non-empty sets

involved in the con°icts proportionally with respect to their masses assigned by

the sources.

The way the con°icting mass is redistributed yields actually several versions of

PCR rules. These PCR fusion rules work for any degree of con°ict, for any DSm

models (Shafer's model, free DSm model or any hybrid DSm model) and both in DST

and DSmT frameworks for static or dynamical fusion situations. We present below

only the most sophisticated proportional con°ict redistribution rule denoting PCR5

in Refs. 22 and 23. PCR5 rule is what we feel to be the most e±cient PCR fusion rule

developed so far. This rule redistributes the partial con°icting mass to the elements

involved in the partial con°ict, considering the conjunctive normal form of the partial

con°ict. PCR5 is what we think the most mathematically exact redistribution of

con°icting mass to non-empty sets following the logic of the conjunctive rule. It does

a better redistribution of the con°icting mass than Dempster's rule since PCR5 goes

backwards on the tracks of the conjunctive rule and redistributes the con°icting mass

only to the sets involved in the con°ict and proportionally to their masses put in the

con°ict. PCR5 rule is quasi-associative and preserves the neutral impact of the

vacuous belief assignment because in any partial con°ict, as well in the total con°ict

(which is a sum of all partial con°icts), the conjunctive normal form of each partial

con°ict does not include � since � is a neutral element for intersection (con°ict).

Therefore, � gets no mass after the redistribution of the con°icting mass. We

have proved in Ref. 23 the continuity property of the fusion result with continuous

variations of bba's to combine.

3.1. PCR formula

The PCR5 formula for the combination of two sources (s ¼ 2) is given by: mPCR5

ð;Þ ¼ 0 and 8X 2 G�nf;g

mPCR5ðXÞ ¼ m12ðXÞ þ
X

Y2G�nfXg
X\Y ¼ ;

m1ðXÞ2m2ðY Þ
m1ðXÞ þm2ðY Þ þ

m2ðXÞ2m1ðY Þ
m2ðXÞ þm1ðY Þ

� �
ð3Þ

where all sets involved in formula are in canonical form and where G� corresponds to

classical power set 2� if Shafer's model is used, or to a constrained hyper-power set

D� if any other hybrid DSmmodel is used instead, or to the super-power set S� if the

minimal re¯nement �ref of � is used; m12ðXÞ � m\ðXÞ corresponds to the con-

junctive consensus on X between the s ¼ 2 sources and where all denominators are

di®erent from zero. If a denominator is zero, that fraction is discarded. A general
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formula of PCR5 for the fusion of s > 2 sources has been proposed in Ref. 23, but a

more intuitive PCR formula (denoted PCR6) which provides good results in practice

has been proposed by Martin and Osswald.7,23, p. 69�88 m12...sðXÞ � m\ðXÞ corre-

sponds to the conjunctive consensus on X between the s > 2 sources. If a

denominator is zero, that fraction is discarded because all masses miðXiÞ ¼ 0 so the

numerator is also zero, i.e. no con°icting mass (nothing to redistribute). For two

sources (s ¼ 2), PCR5 and PCR6 formulas coincide. The implementation of PCR6 is

easier than PCR5 and can be found in Ref. 32.

We compare here the solutions for well-known Zadeh's example35,36 provided by

several fusion rules. A detailed presentation with more comparisons can be found in

Refs. 20 and 23. Let's consider � ¼ fM ;C;Tg as the frame of three potential origins

about possible diseases of a patient (M standing for meningitis, C for concussion and

T for tumor), the Shafer's model and the two following belief assignments provided

by two independent doctors after examination of the same patient: m1ðMÞ ¼ 0:9,

m1ðCÞ ¼ 0, m1ðT Þ ¼ 0:1 and m2ðMÞ ¼ 0, m2ðCÞ ¼ 0:9 and m2ðT Þ ¼ 0:1. The total

con°icting mass in this example is high since it is m1ðMÞm2ðCÞ þm1ðMÞm2ðT Þþ
m2ðCÞm1ðT Þ ¼ 0:99.

. with Dempster's rule (i.e. the normalized conjunctive rule) and Shafer's model

(DS), one gets the counter-intuitive result (see justi¯cations in Refs. 8, 20, 30, 34,

35): mDSðT Þ ¼ 1.

. with Yager's rule34 and Shafer's model, all the con°icting mass is transferred to the

total ignorance �, so that: mY ðM [ C [ T Þ ¼ 0:99 and mY ðT Þ ¼ 0:01.

. with DSmH and Shafer's model, the partial con°icting masses are transferred to

the corresponding partial ignorances: mDSmHðM [ CÞ ¼ 0:81, mDSmHðT Þ ¼ 0:01,

and mDSmHðM [ T Þ ¼ mDSmHðC [ T Þ ¼ 0:09.

. The Dubois & Prade's rule (DP)8 based on Shafer's model provides in Zadeh's

example the same result as DSmH, because DP and DSmH coincide in all static

fusion problems.e

. with PCR5 and Shafer's model: mPCR5ðMÞ ¼ mPCR5ðCÞ ¼ 0:486 and mPCR5ðT Þ ¼
0:028.

One sees that when the total con°ict between sources becomes high, DSmT is able

(upon authors opinion) to manage more adequately through DSmH or PCR5 rules

the combination of information than Dempster's rule, even when working with

Shafer's model — which is only a speci¯c hybrid model. DSmH rule is in agreement

with DP rule for the static fusion, but DSmH and DP rules di®er in general (for non

degenerate cases) for dynamic fusion while PCR5 rule is the most exact proportional

con°ict redistribution rule. Besides this particular example, we showed in Ref. 20

that there exist several in¯nite classes of counter-examples to Dempster's rule which

can be solved by DSmT.

eIndeed, DP rule has been developed for static fusion only while DSmH has been developed to take into

account the possible dynamicity of the frame itself and also its associated model.
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In summary, DST based on Dempster's rule provides counter-intuitive results in

Zadeh's example, or in non-Bayesian examples similar to Zadeh's and no result when

the con°ict is 1. Only ad hoc discounting techniques allow to circumvent troubles of

Dempster's rule or we need to switch to another model of representation/frame; in

the later case, the solution obtained doesn't ¯t with the Shafer's model one originally

wanted to work with. We want also to emphasize that in dynamic fusion when the

con°ict becomes high, both DST18 and Smets' Transferable Belief Model (TBM)28

approaches fail to respond to new information provided by new sources as shown in

Ref. 7.

4. The DSmP Transformation

In the theories of belief functions, the mapping from the belief to the probability

domain is a controversial issue. The original purpose of such mappings was to take

(hard) decision, but contrariwise to erroneous widespread idea/claim, this is not the

only interest for using such mappings nowadays. Actually the probabilistic trans-

formations of belief mass assignments are for example very useful in modern multi-

target multisensor tracking systems (or in any other systems) where one deals with

soft decisions (i.e. where all possible solutions are kept for state estimation with their

likelihoods). For example, in a Multiple Hypotheses Tracker using both kinematical

and attribute data, one needs to compute all probabilities values for deriving the

likelihoods of data association hypotheses and then mixing them altogether to esti-

mate states of targets. Therefore, it is very relevant to use a mapping which provides

a highly probabilistic information content (PIC), in order to reduce the uncertainty

and facilitate decision-making for expecting better performances in the systems. The

PIC is the dual of the normalized Shannon's entropy.7 In this section, we brie°y recall

a new probabilistic transformation, denotedDSmP introduced in DSmT.5 All details

on DSmP transformation can be found with examples in Ref. 25. DSmP is straight

and di®erent from other transformations. Its basic consists in a new way of

proportionalizations of the mass of each partial ignorance such as A1 [A2 or A1 [
ðA2 \A3Þ or ðA1 \ A2Þ [ ðA3 \ A4Þ, etc. and the mass of the total ignorance

A1 [ A2 [ . . . [ An, to the elements involved in the ignorances. DSmP takes into

account both the values of the masses and the cardinality of elements in the pro-

portional redistribution process.

Let's consider a discrete frame � with a given model (free DSm model, hybrid

DSm model or Shafer's model), theDSmP mapping is de¯ned byDSmP�ð;Þ ¼ 0 and

8X 2 G�nf;g by

DSmP�ðXÞ ¼
X
Y2G�

P
Z�X\Y
CðZÞ¼1

mðZÞ þ � � CðX \ Y Þ
P

Z�Y
CðZÞ¼1

mðZÞ þ � � CðY Þ mðY Þ ð4Þ

where � � 0 is a tuning parameter and G� corresponds to the generic set (2�, S� or

D� including eventually all the integrity constraints (if any) of the model M);
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CðX \ Y Þ and CðY Þ denote the DSm cardinalsf of the sets X \ Y and Y respectively.

The DSm cardinality of any element A of hyper-power set G�, denoted CMðAÞ,
corresponds to the number of parts of A in the corresponding fuzzy/vague Venn

diagram of the problem (model M) taking into account the set of integrity con-

straints (if any), i.e. all the possible intersections due to the nature of the elements �i.

This intrinsic cardinality depends on the model M (free, hybrid or Shafer's model).

M is the model that contains A, which depends both on the dimension n ¼ j�j and
on the number of non-empty intersections present in its associated Venn diagram.20

The DSm cardinality measures the complexity of any element of G� and we may say

that for the element �i not even j�j counts, but only its structure (= how many other

singletons intersect �i). Simple illustrative examples are given in Chapters 3 and 7.20

� allows to reach the maximum PIC value of the approximation of mð:Þ into a

subjective probability measure. The smaller �, the better/bigger PIC value. In some

particular degenerate cases however, the DSmP�¼0 values cannot be derived, but the

DSmP�>0 values can however always be derived by choosing � as a very small positive

number, say � ¼ 1=1000 for example in order to be as close as we want to the

maximum of the PIC. When � ¼ 1 and when the masses of all elements Z having

CðZÞ ¼ 1 are zero, (4) reduces to classical Smet's betting probability BetP .27, p. 284

The passage from a free DSm model to a Shafer's model involves the passage from a

structure to another one, and the cardinals change as well in formula (4). DSmP

works for all models (free, hybrid and Shafer's). In order to apply classical trans-

formation (Pignistic, Cuzzolin's one, Sudano's ones, etc.25), we need at ¯rst to re¯ne

the frame (on the cases when it is possible!) in order to work with Shafer's model, and

then apply their formulas. In the case where re¯nement makes sense, then one can

apply the other subjective probabilities on the re¯ned frame. DSmP works on the

re¯ned frame as well and gives the same result as it does on the non-re¯ned frame.

Thus DSmP with � > 0 works on any models and so is very general and appealing.

DSmP does a redistribution of the ignorance mass with respect to both the singleton

masses and the singletons' cardinals in the same time. Now, if all masses of singletons

involved in all ignorances are di®erent from zero, then we can take � ¼ 0, and DSmP

gives the best result, i.e. the best PIC value. In summary, DSmP does an

\improvement" over previous known probabilistic transformations in the sense that

DSmP mathematically makes a more accurate redistribution of the ignorance masses

to the singletons involved in ignorances. DSmP and BetP work in both theories:

DST (= Shafer's model) and DSmT (= free or hybrid models) as well.

5. Dealing with Imprecise Beliefs Assignments

In many fusion problems, it seems very di±cult (if not impossible) to have precise

sources of evidence generating precise basic belief assignments (especially when belief

functions are provided by human experts), and a more °exible plausible and

fWe have omitted the index of the model M for the notation convenience.
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paradoxical theory supporting imprecise information becomes necessary. DSmT

o®ers also the possibility to deal with admissible imprecise generalized basic belief

assignments mIð:Þ de¯ned as real subunitary intervals of ½0; 1�, or even more general

as real subunitary sets [i.e. sets, not necessarily intervals]. An imprecise belief

assignment mIð:Þ over G� is said admissible if and only if there exists for every

X 2 G� at least one real number mðXÞ 2 mIðXÞ such that
P

X2G� mðXÞ ¼ 1. To

manipulate imprecise bba's, we have introduced the following set operators

. Addition of sets: S1 ¢S2 ¼ S2 ¢S1 , fxjx ¼ s1 þ s2; s1 2 S1; s2 2 S2g

. Subtraction of sets: S1 ¯S2 , fxjx ¼ s1 � s2; s1 2 S1; s2 2 S2g

. Multiplication of sets: S1 ¡S2 , fxjx ¼ s1 � s2; s1 2 S1; s2 2 S2g

. Division of sets: If 0 doesn't belong to S2, S1
/WS2 , fxjx ¼ s1=s2; s1 2 S1;

s2 2 S2g
Based on these set operators, all the rules of combination developed in DST, or

DSmT for fusioning precise quantitative bba's can be directly extended to manip-

ulate and combine imprecise quantitative bba's. Details and examples can be found

in Ref. 20 (Chap. 6).

6. Dealing with Qualitative Beliefs Assignments

DSmT o®ers also the possibility to deal with qualitative belief assignments to model

beliefs of human experts expressed in natural language (with linguistic labels).

A detailed presentation can be found in Refs. 23 and 25. The derivations are based on

a new arithmetic on linguistic labels which allows a direct extension of all quanti-

tative rules of combination (and conditioning). Computing with words (CW) and

qualitative information is more vague, less precise than computing with numbers, but

it o®ers the advantage of robustness if done correctly. Here is a general arithmetic we

propose for computing with words (i.e. with linguistic labels). Let's consider a ¯nite

frame � ¼ f�1; . . . ; �ng of n (exhaustive) elements �i, i ¼ 1; 2; . . . ;n, with an as-

sociated model Mð�Þ on � (either Shafer's model M0ð�Þ, free-DSm model Mfð�Þ,
or more general any Hybrid-DSm model20). A model Mð�Þ is de¯ned by the set of

integrity constraints on elements of � (if any); Shafer's model M0ð�Þ assumes all

elements of � truly exclusive, while free-DSm model Mfð�Þ assumes no exclusivity

constraints between elements of the frame �. Let's de¯ne a ¯nite set of linguistic

labels ~L ¼ fL1;L2; . . . ;Lmg where m � 2 is an integer. ~L is endowed with a total

order relationship 	, so that L1 	 L2 	 � � � 	 Lm. To work on a close linguistic set

under linguistic addition and multiplication operators, we extends ~L with two

extreme values L0 and Lmþ1 where L0 corresponds to the minimal qualitative value

and Lmþ1 corresponds to the maximal qualitative value, in such a way that L0 	
L1 	 L2 	 � � � 	 Lm 	 Lmþ1, where 	 means inferior to, or less (in quality) than, or

smaller (in quality) than, etc. hence a relation of order from a qualitative point of

view. But if we make a correspondence between qualitative labels and quantitative
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values on the scale ½0; 1�, then Lmin ¼ L0 would correspond to the numerical value 0,

while Lmax ¼ Lmþ1 would correspond to the numerical value 1, and each Li would

belong to ½0; 1�, i.e. Lmin ¼ L0 < L1 < L2 < � � � < Lm < Lmþ1 ¼ Lmax. We work on

extended ordered set L of qualitative values L ¼ fL0; ~L;Lmþ1g ¼ fL0;L1;L2; . . . ;

Lm;Lmþ1g and we de¯ne the following accurate operators for qualitative labels (see

the chapter of Ref. 25 devoted on the DSm Field and Linear Algebra of Re¯ned

Labels (FLARL)). In FLARL, we can replace the \qualitative quasi-normalization"

of qualitative operators we used in our previous papers by \qualitative normal-

ization" since in FLARL we have exact qualitative calculations and exact normal-

ization. So, we use mainly the

. Label addition: La þ Lb ¼ Laþb since
a

mþ1 þ b
mþ1 ¼ aþb

mþ1.

. Label multiplication: La 
 Lb ¼ LðabÞ=ðmþ1Þ since a
mþ1 � b

mþ1 ¼ ðabÞ=ðmþ1Þ
mþ1 .

. Label division (when Lb 6¼ L0): La � Lb ¼ Lða=bÞðmþ1Þ since a
mþ1 � b

mþ1 ¼ a
b ¼ða=bÞðmþ1Þ

mþ1 .

If one really needs to stay within the original set of labels, an approximation

will be necessary at the very end of the calculations. A qualitative belief assign-

mentg (qba) is a mapping function qmð:Þ : G� 7!L where G� corresponds either to

2�, to D� or even to S� depending on the model of the frame � we choose to

work with. In the case when the labels are equidistant, i.e. the qualitative distance

between any two consecutive labels is the same, we get an exact qualitative result,

and a qualitative basic belief assignment (bba) is considered normalized if the sum

of all its qualitative masses is equal to Lmax ¼ Lmþ1. If the labels are not equidi-

stant, we still can use all qualitative operators de¯ned in the FLARL, but the

qualitative result is approximate, and a qualitative bba is considered quasi-nor-

malized if the sum of all its masses is equal to Lmax. Using the qualitative operator

of FLARL, we can easily extend all the combination and conditioning rules from

quantitative to qualitative. When dealing with qualitative beliefs within the DSm

Field and Linear Algebra of Re¯ned Labels25 we get an exact qualitative result no

matter what fusion rule is used (DSm fusion rules, Dempster's rule, Smets's rule,

Dubois-Prade's rule, etc.). The exact qualitative result will be a re¯ned label (but

the user can round it up or down to the closest integer index label). Examples of

qualitative PCR5 rule and qualitative DSmP transformation are found in Ref. 7

for convenience.

7. Belief Conditioning Rules

Until very recently, the most commonly used conditioning rule for belief revision was

the one proposed by Shafer18 and referred as Shafer's Conditioning Rule (SCR). It

consists in combining the prior bba mð:Þ with a speci¯c bba focused on A with

gWe call it also qualitative belief mass or q-mass for short.
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Dempster's rule of combination for transferring the con°icting mass to non-empty

sets in order to provide the revised bba. In other words, the conditioning by a

proposition A, is obtained by mSCRð:jAÞ ¼ ½m�mS �ð:Þ, where mð:Þ is the prior bba

to update, A is the conditioning event, mSð:Þ is the bba focused on A de¯ned by

mSðAÞ ¼ 1 and mSðXÞ ¼ 0 for all X 6¼ A and � denotes Dempster's rule of combi-

nation.18 The SCR approach remains subjective since actually in such belief revision

process both sources are subjective and in our opinions SCR doesn't manage satis-

factorily the objective nature/absolute truth carried by the conditioning term.

Indeed, when conditioning a priormassmð:Þ, knowing (or assuming) that the truth is

in A, means that we have in hands an absolute (not subjective) knowledge, i.e. the

truth in A has occurred (or is assumed to have occurred), thus A is realized (or is

assumed to be realized) and this is (or at least must be interpreted as) an absolute

truth. The conditioning term \Given A" must therefore be considered as an absolute

truth, whilemSðAÞ ¼ 1 introduced in SCR cannot refer to an absolute truth actually,

but only to a subjective certainty on the possible occurrence ofA from a virtual second

source of evidence. In DSmT, we have also proposed several approaches for belief

conditioning. The simplest approach consists to follow Shafer's idea but in changing

Dempster's rule by the more e±cient PCR5 rule.6 However, more sophisticated belief

conditioning rules (BCR) based on Hyper-Power Set Decomposition (HPSD) have

also been proposed and can be found in details with examples in Ref. 23. Of course

these BCR have also been extended to deal with imprecise or qualitative bba's as

well.7,24

8. Conclusion

A short presentation of the foundations of DSmT has been proposed in this

introduction. DSmT proposes new quantitative and qualitative rules of combi-

nation for uncertain, imprecise and highly con°icting sources of information. Sev-

eral applications of DSmT have been proposed recently in the literature and show

the potential and the e±ciency of this new theory. DSmT o®ers the possibility to

work in di®erent fusion spaces depending on the nature of problem under con-

sideration. Thus, one can work either in 2� ¼ ð�;[Þ (i.e. in the classical power set

as in DST framework), in D� ¼ ð�;[;\Þ (the hyper-power set — also known as

Dedekind's lattice) or in the super-power set S� ¼ ð�;[;\; cð:ÞÞ, which includes 2�

and D� and which represents the power set of the minimal re¯nement of the frame

� when the re¯nement is possible (because for vague elements whose frontiers are

not well known, the re¯nement is not possible). We have enriched the DSmT with a

subjective probability (DSmP�) that gets the best Probabilistic Information Con-

tent (PIC) in comparison with other existing subjective probabilities. Also, we have

de¯ned and developed the DSm Field and Linear Algebra of Re¯ned Labels that

permit the transformation of any fusion rule to a corresponding qualitative fusion

rule which gives an exact qualitative result (i.e. a re¯ned label), so far the best in

literature.
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