AN INTRODUCTION TO DYNAMIC METEOROLOGY

Fourth Edition

đ

JAMES R. HOLTON

Department of Atmospheric Sciences University of Washington Seattle, Washington

Amsterdam Boston Heidelberg London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo

PREFACE

٥

Chapter 1 Introduction

1.1	The Atmospheric Continuum	1
1.2	Physical Dimensions and Units	2
1.3	Scale Analysis	4
1.4	Fundamental Forces	4
1.5	Noninertial Reference Frames and "Apparent" Forces	10
1.6	Structure of the Static Atmosphere	19
	Problems	24
	MATLAB Exercises	26
	Suggested References	27

Chapter 2 Basic Conservation Laws

2.1	Total Differentiation	29
2.2	The Vectorial Form of the Momentum Equation in Rotating Coordinates	33
2.3	Component Equations in Spherical Coordinates	34
2.4	Scale Analysis of the Equations of Motion	38
2.5	The Continuity Equation	42
2.6	The Thermodynamic Energy Equation	46
2.7	Thermodynamics of the Dry Atmosphere	49

xi

CONTENTS

180

	Destilant	54
	Problems	54
	MATLAB Exercises	55
	Suggested References	56
Cha	apter 3 Elementary Applications of the Basic Equations	
3.1	Basic Equations in Isobaric Coordinates	57
3.2	Balanced Flow	60
3.3	Trajectories and Streamlines	68
3.4	The Thermal Wind	70
3.5	Vertical Motion	75
3.6	Surface Pressure Tendency	77
	Problems	79
	MATLAB Exercises	83
Cha	apter 4 Circulation and Vorticity	
4.1	The Circulation Theorem	86
4.2	Vorticity	91
4.3	Potential Vorticity	95
4.4	The Vorticity Equation	100
4.5	Vorticity in Barotropic Fluids	106
4.6	The Baroclinic (Ertel) Potential Vorticity Equation	108
	Problems	111
	MATLAB Exercises	113
	Suggested References	114
Cha	apter 5 The Planetary Boundary Layer	
5.1	Atmospheric Turbulence	116
5.2	Turbulent Kinetic Energy	120
5.3	Planetary Boundary Layer Momentum Equations	122
5.4	Secondary Circulations and Spin Down	131
	Problems	136
	MATLAB Exercises	137
	Suggested References	138
Cha	apter 6 Synoptic-Scale Motions I: Quasi-geostrophic Ana	alysis
6.1	The Observed Structure of Extratropical Circulations	140
6.2	•	
6.3	Quasi-geostrophic Prediction	155
6.4	Diagnosis of the Vertical Motion	164
6.5	Idealized Model of a Baroclinic Disturbance	174
	Problems	176
	MATLAB Exercises	178

vi

Suggested References

Chapter 7 Atmospheric Oscillations: Linear Perturbation Theory

7.1	The Perturbation Method	183
7.2	Properties of Waves	183
7.3	Simple Wave Types	188
7.4	Internal Gravity (Buoyancy) Waves	196
7.5	Gravity Waves Modified by Rotation	204
7.6	Adjustment to Geostrophic Balance	208
7.7	Rossby Waves	213
	Problems	220
	MATLAB Exercises	224
	Suggested References	226

Chapter 8 Synoptic-Scale Motions II: Baroclinic Instability

8.1	Hydrodynamic Instability	229
8.2	Normal Mode Baroclinic Instability: A Two-Layer Model	230
8.3	The Energetics of Baroclinic Waves	242
8.4	Baroclinic Instability of a Continuously Stratified Atmosphere	250
8.5	Growth and Propagation of Neutral Modes	260
	Problems	264
	[°] MATLAB Exercises	266
	Suggested References	267

Chapter 9 Mesoscale Circulations

9.1	Energy Sources for Mesoscale Circulations	269
9.2	Fronts and Frontogenesis	269
9.3	Symmetric Baroclinic Instability	279
9.4	Mountain Waves	284
9.5	Cumulus Convection	289
9.6	Convective Storms	298
9.7	Hurricanes	304
	Problems	309
	MATLAB Exercises	310
	Suggested References	311

Chapter 10 The General Circulation

10.1	The Nature of the Problem	314
10.2	The Zonally Averaged Circulation	316
10.3	The Angular Momentum Budget	329
10.4	The Lorenz Energy Cycle	337
10.5	Longitudinally Dependent Time-Averaged Flow	343
10.6	Low-Frequency Variability	349
10.7	Laboratory Simulation of the General Circulation	354
10.8	Numerical Simulation of the General Circulation	360
	Problems	366

CONTENTS

MATLAB Exercises	368
Suggested References	369

Chapter 11 Tropical Dynamics

The Observed Structure of Large-Scale Tropical Circulations	371
Scale Analysis of Large-Scale Tropical Motions	387
Condensation Heating	391
Equatorial Wave Theory	394
Steady Forced Equatorial Motions	400
Problems	403
MATLAB Exercises	404
Suggested References	406
	Scale Analysis of Large-Scale Tropical Motions Condensation Heating Equatorial Wave Theory Steady Forced Equatorial Motions Problems MATLAB Exercises

Chapter 12 Middle Atmosphere Dynamics

12.1	1 Structure and Circulation of the Middle Atmosphere	
12.2	The Zonal-Mean Circulation of the Middle Atmosphere	411
12.3	Vertically Propagating Planetary Waves	421
12.4	Sudden Stratospheric Warmings	424
12.5	Waves in the Equatorial Stratosphere	429
12.6	The Quasi-biennial Oscillation	435
12.7	Trace Constituent Transport	440
	Problems	445
	MATLAB Exercises	446
	Suggested References	447
		e . N

Chapter 13 Numerical Modeling and Prediction

13.1	Historical Background	449
13.2	Filtering Meteorological Noise	450
13.3	Numerical Approximation of the Equations of Motion	452
13.4	The Barotropic Vorticity Equation in Finite Differences	462
13.5	The Spectral Method	464
13.6	Primitive Equation Models	470
13.7	Data Assimilation	475
13.8	Predictability and Ensemble Prediction Systems	481
	Problems	485
	MATLAB Exercises	487
	Suggested References	490

CONTENTS

Q

Appendix A	Useful Constants and Parameters	491
Appendix B	List of Symbols	493
Appendix C	Vector Analysis	498
Appendix D	Moisture Variables	501
Appendix E	Standard Atmosphere Data	504
Appendix F	Symmetric Baroclinic Oscillations	506
ANSWERS TO SEE	lected Problems	509
BIBLIOGRAPHY		513
INDEX		519
INTERNATIONAL	GEOPHYSICS SERIES	531