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Abstract

This Teaching Resource provides lecture notes, slides, and a problem set that can assist in teaching

concepts related to dynamical systems tools for the analysis of ordinary differential equation

(ODE)–based models. The concepts are applied to familiar biological problems, and the material

is appropriate for graduate students or advanced undergraduates. The lecture explains how

equations describing biochemical signaling networks can be derived from diagrams that illustrate

the reactions in graphical form. Because such reactions are most frequently described using

systems of ODEs, the lecture discusses and illustrates the principles underlying the numerical

solution of ODEs. Methods for determining the stability of steady-state solutions of one or two-

dimensional ODE systems are covered and illustrated using standard graphical methods. The

concept of a bifurcation, a condition at which a system's behavior changes qualitatively, is also

introduced. A problem set is included that (i) requires students to implement an ODE model of

biochemical reactions using MATLAB and (ii) allows them to explore dynamical systems

concepts.
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Lecture Notes

Modeling Using Systems of Ordinary Differential Equations (ODEs)

Many biological processes can be represented mathematically using systems of ODEs (Slide

2). A signaling pathway, for instance, may consist of several coupled biochemical reactions.

In this case, each ODE represents the change in concentration with time of a particular

chemical species. The lecture begins by demonstrating how to obtain the ODEs appropriate

for a given system. The law of mass action is introduced, and the simple example of ligand

binding to a receptor is discussed (Slides 3 to 5). Enzyme-catalyzed reactions are covered

next (Slides 6 to 15). Because mathematical models frequently employ the Michaelis-

Menten equation to describe such reactions, this equation is derived, and the assumptions

underlying it, such as the assumption of excess substrate, are discussed (Slides 7 to 12). To

illustrate how Michaelis-Menten assumptions are translated into ODEs, a model of a

biochemical oscillator that uses Michaelis-Menten kinetics is described (Slides 13 to 15) (1,

2). In certain cases, however, a diagram provided in a paper or textbook provides

insufficient information for the relevant ODEs to be derived from the diagram (3). For

instance, important intermediate steps may be eliminated when the diagram is simplified for

easier display (Slides 16 and 17).

Numerical Solution of ODEs

The lecture next covers the principles underlying the numerical solution of ODEs and

illustrates how to implement such solutions in the scientific programming language

MATLAB (Slides 18 to 23). The slides explain Euler's method for solving differential

equations (Slide 18), which uses a numerical approximation of the derivative to compute the

next value of a function based on its current value, the time step, and the value of the

function's derivative. A simple MATLAB program that solves an ODE using this method is

presented and discussed (Slide 19 and 20). Students can use this program as a template for

the numerical solution of more complicated models. Numerical errors that can potentially

arise in the implementation of Euler's method, such as artificial fluctuations when the time

step is too large (Slides 21), are discussed, as are extensions of the method to systems of

ODEs (Slide 22). Because numerically challenging ODE models are frequently solved using

more sophisticated algorithms, such as the Runge-Kutta method, which computes function

derivatives at intermediate time points, methods for using such solvers in MATLAB are then

described (Slides 23 to 28).

Next the lecture covers principles of dynamical systems analysis, specifically how to

determine whether steady-state values in ODE systems are stable or unstable (Slides 29 to

40). By definition, a steady state is defined as the set of values at which all derivatives are

equal to zero. In an ODE system, the steady state is also referred to as a “fixed point.” When

the system variables are close to steady-state values, however, one of two things can happen.
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The variable values can move toward the steady-state values and eventually settle there, or

they can move away. The former situation describes a stable fixed point; the latter describes

an unstable fixed point. Graphical methods for determining whether fixed points are stable

or unstable are explained and illustrated with examples. For instance, the process of

electrical excitation in models of cardiac myocytes (4, 5) can be simplified and analyzed

using intuitive graphs that plot voltage on the abscissa and the derivative of voltage with

respect to time on the ordinate (Slides 31 and 32). Stability in two-variable systems can be

examined using phase plane techniques, in which one variable is plotted versus the other

variable rather than plotting variables versus time. These techniques are illustrated using the

example of yeast glycolytic oscillations (Slide 33) (6), as mathematically represented in a

simple model by Bier et al. (Slide 34) (7, 8). The Bier et al. model (8) contains two

variables, the intracellular concentrations of glucose and adenosine 5′-triphosphate (ATP),

and the model simulates transport of glucose into the cell, conversion of glucose to ATP via

glycolysis, and conversion of ATP to adenosine diphosphate (ADP) via energy-consuming

enzymes.

Principles that are illustrated through the analysis of model output include the following: (i)

plotting one variable versus the other in a phase plane (Slide 35); (ii) computing and plotting

a nullcline, the set of points at which one derivative is equal to zero (Slides 36 to 38); and

(iii) calculating fixed-point stability analytically. This last procedure involves: (i) calculating

the Jacobian, a matrix whose elements consist of the partial derivatives of each equation

with respect to each variable; (ii) evaluating the Jacobian at the fixed point; and then (iii)

solving for the eigenvalues of this matrix (Slides 39 and 40). The lecture concludes by

briefly introducing the concept of a bifurcation, or a parameter value at which the behavior

of the system changes qualitatively (Slide 41).

Slide 42 shows an example of model output generated with MATLAB that the students must

reproduce as part of the homework assignment.

Problem Set

Introductory Details

The homework assignment consists of two parts. The first requires the students to

implement a simple model of yeast glycolytic oscillations (8). This model calculates the

concentrations of two chemical species, glucose ([G]) and [ATP], according to the following

ODEs:

The Supplementary Materials contain a MATLAB script (euler.m) that can assist the

students in completing the homework assignment.
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Student Assignment: Part 1

The MATLAB script “euler.m” uses Euler's method to integrate the differential equation

dx/dt = a – bx, x(0) = c. Using this script as a template, implement the model of yeast

glycolytic oscillations (Slide 34) (8). Step-by-step hints for how to achieve this are as

follows:

1. Change the parameters defined at the top of the script from a, b, and c to those

relevant to the Bier et al. model: Vin, k1, kp, and Km. Control values are given on

Slide 34.

2. Replace the statement defining the initial condition for x with statements that assign

initial conditions of [G] and [ATP]. Good initial values are [ATP] = 4; [G] = 3.

3. Replace the differential equation describing dx/dt with two equations describing

d[ATP]/dt and d[G]/dt.

4. Replace the statement that updates x at each time step with statements that update

[ATP] and [G].

5. Alter the code so that it keeps track of values of [G] and [ATP] at all points in time.

6. Change the time of the simulation to one that is long enough to observe

oscillations. This is best determined by trial and error.

7. Remember that Euler's method can “blow up” if the time step is too large. You may

need to adjust the time step to make sure you have a stable solution. One way to

verify this is to start with a time step that gives “reasonable” output, then reduce the

time step by a factor of 2. If this gives the same output as the larger time step, then

the time step is small enough. (A mathematician might contend that this statement

cannot be proven correct, but it works in practice).

8. Plot [G] and [ATP] versus time in different colors on the same plot.

9. Visualize the trajectory in the phase plane—i.e., generate a plot of [ATP] versus

[G].

Student Assignment: Part 2

Once the model is working, you can simulate biologically meaningful changes to the system.

For instance, results presented in class showed the effects of changes in the Michaelis

constant (Km). Here, we will simulate a potentially important perturbation and investigate

how this alters the behavior of the model.

Simulate increases and decreases in the activity of phosphofructokinase (PFK). How do

these changes affect the amplitude and frequency of glycolytic oscillations? How do you

interpret these results?

If PFK activity becomes large enough, oscillations will cease. Plot time courses, and

trajectories in the phase plane, under both oscillating and nonoscillating conditions. How

large does PFK activity need to become to stop oscillations?
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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