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Abstract—A large variety of algorithms in coding, signal processing, and artificial intel-
ligence may be viewed as instances of the summary-product algorithm (or belief/probability
propagation algorithm), which operates by message passing in a graphical model. Spe-
cific instances of such algorithms include Kalman filtering and smoothing, the forward-
backward algorithm for hidden Markov models, probability propagation in Bayesian net-
works, and decoding algorithms for error correcting codes such as the Viterbi algorithm,
the BCJR algorithm, and the iterative decoding of turbo codes, low-density parity check
codes, and similar codes. New algorithms for complex detection and estimation problems
can also be derived as instances of the summary-product algorithm. In this paper, we
give an introduction to this unified perspective in terms of (Forney-style) factor graphs.

1 Introduction

Engineers have always liked graphical models such as circuit diagrams, signal flow graphs,
trellis diagrams, and a variety of block diagrams. In artificial intelligence, statistics, and
neural networks, stochastic models are often formulated as Bayesian networks or Markov
random fields. In coding theory, the iterative decoding of turbo codes and similar codes
may also be understood in terms of a graphical model of the code.

Graphical models are often associated with particular algorithms. For example, the
Viterbi decoding algorithm is naturally described by means of a trellis diagram, and
estimation problems in Markov random fields are often solved by Gibbs sampling.

This paper is an introduction to factor graphs and to the associated summary prop-
agation algorithms, which operate by passing “messages” (“summaries”) along the edges
of the graph. The origins of factor graphs lie in coding theory, but they offer an attractive
notation for a wide variety of signal processing problems. In particular, a large number of
practical algorithms for a wide variety of detection and estimation problems can be derived
as summary propagation algorithms. The algorithms derived in this way often include
the best previously known algorithms as special cases or as obvious approximations.

The two main summary propagation algorithms are the sum-product (or belief propaga-
tion or probability propagation) algorithm and the max-product (or min-sum) algorithm,
both of which have a long history. In the context of error correcting codes, the sum-
product algorithm was invented by Gallager [17] as a decoding algorithm for low-density
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parity check (LDPC) codes; it is still the standard decoding algorithm for such codes.
However, the full potential of LDPC codes was not yet realized at that time. Tanner [41]
explicitly introduced graphs to describe LDPC codes, generalized them (by replacing the
parity checks with more general component codes), and introduced the min-sum algo-
rithm.

Both the sum-product and the max-product algorithm have also another root in cod-
ing, viz. the BCJR algorithm [5] and the Viterbi algorithm [10], which both operate on
a trellis. Before the invention of turbo coding, the Viterbi algorithm used to be the
workhorse of many practical coding schemes. The BCJR algorithm, despite its equally
fundamental character, was not widely used; it therefore lingered in obscurity and was
independently re-invented several times.

The full power of iterative decoding was only realized by the breakthrough invention
of turbo coding by Berrou et al. [6], which was followed by the rediscovery of LDPC
codes [33]. Wiberg et al. [45], [46] observed that the decoding of turbo codes and LDPC
codes as well as the Viterbi and BCJR algorithms are instances of one single algorithm,
which operates by message passing in a generalized Tanner graph. From this perspective,
new applications such as, e.g., iterative decoding for channels with memory also became
obvious. The later introduction of factor graphs [15], [24] may be viewed as a further
elaboration of the ideas by Wiberg et al. In the present paper, we will use Forney-style
factor graphs, which were introduced in [13] (and there called “normal graphs”).

Meanwhile, the work of Pearl and others [38], [49], [50], [26] on probability prop-
agation (or belief propagation) in Bayesian networks had attracted much attention in
artificial intelligence and statistics. It was therefore exciting when, in the wake of turbo
coding, probability propagation and the sum-product algorithm were found to be the same
thing [14], [4]. In particular, the example of iterative decoding proved that probability
propagation, which had been used only for cycle-free graphs, could be used also for graphs
with cycles.

In signal processing, both hidden-Markov models (with the associated forward-backward
algorithm) and Kalman filtering (especially in the form of the RLS algorithm) have long
been serving as workhorses in a variety of applications, and it had gradually become
apparent that these two techniques are really the same abstract idea in two specific em-
bodiments. Today, these important algorithms may be seen as just two other instances of
the sum-product (probability propagation) algorithm. In fact, it was shown in [24] (see
also [4]) that even fast Fourier transform (FFT) algorithms may be viewed as instances
of the sum-product algorithm.

Graphical models such as factor graphs support a general trend in signal process-
ing from sequential processing to iterative processing. In communications, for example,
the advent of turbo coding has completely changed the design of receivers; formerly se-
quentially arranged subtasks such as synchronization, equalization, and decoding are now
designed to interact via multiple feedback loops. Another example of this trend are “fac-
torial hidden Markov models” [18], where the state space of traditional hidden Markov
models is split into the product of several state spaces. Again, virtually all such sig-
nal processing schemes are examples of summary propagation and may be systematically
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derived from suitable factor graphs.
The literature on graphical models and their applications is vast. The references men-

tioned in this paper are a somewhat arbitrary sample, very much biased by the author’s
personal perspective and interests. Some excellent papers on iterative coding and commu-
nications are contained in the special issues [1], [2], [3]; beautiful introductions to codes
on graphs and the corresponding algorithms are also given in [11], [12], [25]. Much of the
literature on graphical models appears under the umbrella of neural networks, cf. [22].
A much expected survey on graphical models other than factor graphs is the book by
Jordan [23].

This paper is structured as follows. In Section 2, we introduce factor graphs. (In the
main ideas, we will follow [24] and [13], but we will also adopt some details of notation
from [27] and [42].) The use of such graphs for error correcting codes is described in
Section 3. In Section 4.1, the pivotal issue of eliminating internal variables from a model
is considered. The summary-product algorithm is introduced in Section 4.2. The wide
area of signal processing by message passing is briefly addressed in Sections 4.3 and 4.4.
Some further topics, ranging from convergence issues to analog realizations of the sum-
product algorithm, are briefly touched in Section 5, and some conclusions are offered in
Section 6.

2 Factor Graphs

As mentioned, we will use Forney-style factor graphs (FFGs) rather than the original
factor graphs of [24] (cf. the box on page 9). An FFG is a diagram as in Fig. 1 that
represents the factorization of a function of several variables. Assume, for example, that
some function f(u, w, x, y, z) can be factored as

f(u, w, x, y, z) = f1(u, w, x)f2(x, y, z)f3(z). (1)

This factorization is expressed by the FFG shown in Fig. 1. In general, an FFG consists
of nodes, edges, and “half edges” (which are connected only to one node), and the FFG
is defined by the following rules:

• There is a (unique) node for every factor.

• There is a (unique) edge or half edge for every variable.

• The node representing some factor g is connected with the edge (or half edge)
representing some variable x if and only if g is a function of x.

Implicit in this definition is the assumption that no variable appears in more than two
factors. We will see below how this seemingly severe restriction is easily circumvented.

The factors are sometimes called local functions and their product is called the global
function. In (1), the global function is f , and f1, f2, f3 are the local functions.

A configuration is a particular assignment of values to all variables. The configuration
space Ω is the set of all configurations; it is the domain of the global function f . For
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Figure 1: A (Forney-style) factor graph (FFG).
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Figure 2: FFG of a Markov chain.

example, if all variables in Fig. 1 are binary, the configuration space Ω is the set {0, 1}5

of all binary 5-tuples; if all variables in Fig. 1 are real, the configuration space is R5.
We will primarily consider the case where f is a function from Ω to R+, the set of

nonnegative real numbers. In this case, a configuration ω ∈ Ω will be called valid if
f(ω) 6= 0.

In every fixed configuration ω ∈ Ω, every variable has some definite value. We may
therefore consider also the variables in a factor graph as functions with domain Ω. Mim-
icking the standard notation for random variables, we will denote such functions by capital
letters. E.g., if x takes values in some set X , we will write

X : Ω → X : ω 7→ x = X(ω). (2)

A main application of factor graphs are probabilistic models. (In this case, the sample
space can usually be identified with the configuration space Ω.) For example, let X, Y ,
and Z be random variables that form a Markov chain. Then their joint probability density
(or their joint probability mass function) pXY Z(x, y, z) can be written as

pXY Z(x, y, z) = pX(x) pY |X(y|x) pZ|Y (z|y). (3)

This factorization is expressed by the FFG of Fig. 2.
If the edge Y is removed from Fig. 2, the remaining graph consists of two unconnected

components, which corresponds to the Markov property

p(x, z|y) = p(x|y)p(z|y). (4)

In general, it is easy to prove the following:

Cut-Set Independence Theorem: Assume that an FFG represents the joint proba-
bility distribution (or the joint probability density) of several random variables.
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Figure 4: Branching point (left) becomes an equality constraint node (right).

Assume further that the edges corresponding to some variables Y1, . . . , Yn form a
cut-set of the graph (i.e., removing these edges cuts the graph into two unconnected
components). In this case, conditioned on Y1 = y1, . . . , Yn = yn (for any fixed
y1, . . . , yn), every random variable (or every set of random variables) in one compo-
nent of the graph is independent of every random variable (or every set of random
variables) in the other component.

This fact may be viewed as the “easy” direction of the Hammersley-Clifford Theorem for
Markov random fields [47, Ch. 3].

A deterministic block diagram may also be viewed as a factor graph. Consider, for
example, the block diagram of Fig. 3, which expresses the two equations

X = g(U,W ) (5)

Z = h(X, Y ). (6)

In the factor graph interpretation, the function block X = g(U,W ) in the block diagram
is interpreted as representing the factor δ

(
x− g(u, w)

)
, where δ(.) is the Kronecker delta

function if X is a discrete variable or the Dirac delta if X is a continuous variable. (The
distinction between these two cases is usually obvious in concrete examples.) Considered
as a factor graph, Fig. 3 thus expresses the factorization

f(u, w, x, y, z) = δ
(
x− g(u, w)

)
· δ
(
z − h(x, y)

)
. (7)

Note that this function is nonzero (i.e., the configuration is valid) if and only if the
configuration is consistent with both (5) and (6).

As in this example, it is often convenient to draw a factor graph with arrows on the
edges (cf. Figures 6 and 7).

A block diagram usually contains also branching points as shown in Fig. 4 (left). In
the corresponding FFG, such branching points become factor nodes on their own, as is
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Figure 5: Zero-sum constraint node.

illustrated in Fig. 4 (right). In doing so, there arise new variables (X ′ und X ′′ in Fig. 4)
and a new factor

f=(x, x′, x′′)
4
= δ(x− x′)δ(x− x′′) (8)

where, as above, δ(.) denotes either a Kronecker delta or a Dirac delta, depending on the
context. Note that X = X ′ = X ′′ holds for every valid configuration. By this device of
variable “cloning”, it is always possible to enforce the condition that a variable appears
in at most two factors (local functions).

Special symbols are also used for other frequently occuring local functions. For exam-
ple, we will use the zero-sum constraint node shown left in Fig. 5, which represents the
local function

f+(x, x′, x′′)
4
= δ(x + x′ + x′′). (9)

Clearly, X +X ′+X ′′ = 0 holds for every valid configuration. Both the equality constraint
and the zero-sum constraint can obviously be extended to more than three variables.

The constraint X+X ′ = X ′′ or, equivalently, the factor δ(x+x′−x′′) may be expressed,
e.g., as in Fig. 5 (middle) by adding a minus sign to the X ′′ port. In a block diagram with
arrows on the edges, the node in Fig. 5 (right) also represents the constraint X+X ′ = X ′′.

The FFG in Figure 6 with details in Fig. 7 represents a standard discrete-time linear
state space model

X[k] = AX[k − 1] + BU [k] (10)

Y [k] = CX[k] + W [k], (11)

with k ∈ Z, where U [k], W [k], X[k], and Y [k] are real vectors and where A, B, and
C are matrices of appropriate dimensions. If both U [.] and W [.] are assumed to be
white Gaussian (“noise”) processes, the corresponding nodes in these figures represent
Gaussian probability distributions. (For example, if U [k] is a scalar, the top left node in

Fig. 6 represents the function 1√
2πσ

exp(−u[k]2

2σ2 ).) The factor graph of Fig. 6 and 7 then
represents the joint probability density of all involved variables.

In this example, as in many similar examples, it is easy to pass from a priori proba-
bilities to a posteriori probabilities: if the variables Y [k] are observed, say Y [k] = y[k],
then these variables become constants; they may be absorbed into the involved factors
and the corresponding branches may be removed from the graph.
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In most applications, we are interested in the global function only up to a scale factor.
(This applies, in particular, if the global function is a probability mass function.) We may
then play freely with scale factors in the local functions. Indeed, the local functions are
often defined only up to a scale factor. In this case, we would read Fig. 1 as expressing

f(u, w, x, y, z) ∝ f1(u, w, x)f2(x, y, z)f3(z) (12)

instead of (1), where “∝” denotes equality up to a scale factor.
As exemplified by Figures 6 and 7, FFGs naturally support hierarchical modeling

(“boxes within boxes”). In this context, the distinction between “visible” external vari-
ables and “hidden” internal variables (state variables) is often important. In an FFG,
external variables are represented by half edges, and full edges represent state variables.
If some “big” system is represented as an interconnection of subsystems, the connecting
edges/variables are internal to the big system but external to (i.e., half edges of) the
involved subsystems.

The operation of “closing the box” around some subsystem, i.e., the elimination of
internal variables, is of central importance both conceptually and algorithmically. We will
return to this issue in Section 4.

3 Graphs of Codes

An error correcting block code of length n over some alphabet A is a subset C of An, the
set of n-tuples over A. A code is linear if A = F is a field (usually a finite field) and C
is a subspace of the vector space F n. A binary code is a code with F = F2, the set {0, 1}
with modulo-2 arithmetic. By some venerable tradition in coding theory, the elements
of F n are written as row vectors. By elementary linear algebra, any linear code can be
represented both as

C = {x ∈ F n : HxT = 0} (13)

and as
C = {uG : u ∈ F k}, (14)

where H and G are matrices over F and where k is the dimension of C (as a vector space
over F ). A matrix H as in (13) is called a parity check matrix for C, and a k × n matrix
G as in (14) is called a generator matrix for C. Equation (14) may be interpreted as an
encoding rule that maps a vector u ∈ F k of information symbols into the corresponding
codeword x = uG.

Consider, for example, the binary (7, 4, 3) Hamming code. (The notation “(7, 4, 3)”
means that the code has length n = 7, dimension k = 4, and minimum Hamming distance
3.) This code may be defined by the parity check matrix

H =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

 . (15)
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Other Graphical Models

The figures below show the representation of the factorization

p(u, w, x, y, z) = p(u)p(w)p(x|u, w)p(y|x)p(z|x)

in four different graphical models.

W
U

X
=

Y

Z

Forney-style factor graph (FFG).

m
W

mU

mX

mY

m
Z

Factor graph as in [24].

mW - mX

mU

?

?mY

- mZ

Bayesian network.

mW mX�
�
�
��

mU

mY

mZ

Markov random field (MRF).

Advantages of FFGs:

• Suited for hierarchical modeling (“boxes within boxes”).

• Compatible with standard block diagrams.

• Simplest formulation of the summary-product message update rule.

• Natural setting for Forney’s results on Fourier transforms and duality.
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It follows from (13) and (15) that the membership indicator function

IC : F n → {0, 1} : x 7→
{

1, if x ∈ C
0, else

(16)

of this code may be written as

IC(x1, . . . , xn) = δ(x1 ⊕ x2 ⊕ x3 ⊕ x5) · δ(x2 ⊕ x3 ⊕ x4 ⊕ x6) · δ(x3 ⊕ x4 ⊕ x5 ⊕ x7) (17)

where ⊕ denotes addition modulo 2. Note that each factor in (17) corresponds to one
row of the parity check matrix (15).

By a factor graph for some code C, we mean a factor graph for (some factorization
of) the membership indicator function of C. (Such a factor graph is essentially the same
as a Tanner graph for the code [41], [45].) For example, from (17), we obtain the FFG
shown in Fig. 8.

The above recipe to construct a factor graph (Tanner graph) from a parity check
matrix works for any linear code. However, not all factor graphs for a linear code can be
obtained in this way.

The dual code of a linear code C is C⊥ 4
= {y ∈ F n : y · xT = 0 for all x ∈ C}. The

following theorem (due to Kschischang) is a special case of a sweepingly general result on
the Fourier transform of an FFG [13] (cf. Section 5).

Duality Theorem for Binary Linear Codes: Consider an FFG for some binary lin-
ear code C. Assume that the FFG contains only parity check nodes and equality
constraint nodes, and assume that all code symbols x1, . . . , xn are external variables
(i.e., represented by half edges). Then an FFG for the dual code C⊥ is obtained
from the original FFG by replacing all parity check nodes with equality constraint
nodes and vice versa.

For example, Fig. 9 shows an FFG for the dual code of the (7, 4, 3) Hamming code.
A factor graph for a code may also be obtained as an abstraction and generalization

of a trellis diagram. For example, Fig. 10 shows a trellis for the (7, 4, 3) Hamming code.
Each codeword corresponds to a path from the leftmost node to the rightmost node,
where only movements towards the right are permitted; the codeword is read off from the
branch labels along the path. In the example of Fig. 10, a codeword thus read off from
the trellis is ordered as (x1, x4, x3, x2, x5, x6, x7); both this permutation of the variables
and the “bundling” of X2 with X5 in Fig. 10 lead to a simpler trellis.

Also shown in Fig. 10 is an FFG that may be viewed as an abstraction of the trellis
diagram. The variables S1, . . . , S6 in the FFG correspond to the trellis states. The nodes
in the FFG are {0, 1}-valued functions that indicate the allowed triples of left state,
code symbols, and right state. For example, if the trellis states at depth 1 (i.e., the set
{S1(ω) : ω ∈ Ω}, the range of S1) are labeled 0 and 1 (from bottom to top), and if the
trellis states at depth 2 (the range of S2) are labeled 0,1,2,3 (from bottom to top), then
the factor f(s1, x4, s2) in the FFG is

f(s1, x4, s2) =

{
1, if (s1, x4, s2) ∈ {(0, 0, 0), (0, 1, 2), (1, 1, 1), (1, 0, 3)}
0, else.

(18)
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Figure 8: An FFG for the (7, 4, 3) binary Hamming code.
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Figure 9: Dualizing Fig. 8 yields an FFG for the dual code.
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As mentioned in the introduction, the standard trellis-based decoding algorithms are
instances of the summary product algorithm, which works on any factor graph. In particu-
lar, when applied to a trellis, the sum-product algorithm becomes the BCJR algorithm [5]
and the max-product algorithm (or the min-sum algorithm applied in the logarithmic do-
main) becomes a soft-output version of the Viterbi algorithm [10].

The FFG of a general LDPC code is shown in Fig. 11. As in Fig. 8, this FFG
corresponds to a parity check matrix. The block length n is typically large; for n < 1000,
LDPC codes do not work very well. The defining property of an LDPC code is that the
parity check matrix is sparse: each parity check node is connected only to a small number
of equality constraint nodes, and vice versa. Usually, these connections are “random”.
The standard decoding algorithm for LDPC codes is the sum-product algorithm; the
max-product algorithm as well as various approximations of these algorithms are also
sometimes used. More about LDPC codes may be found in [1] and [3]; see also [36]
and [40].

The FFG of a generic turbo code is shown in Fig. 12. It consists of two trellises, which
share a number of common symbols via a “random” interleaver. Again, the standard
decoding algorithm is the sum-product algorithm, with alternating forward-backward
(BCJR) sweeps through the two trellises.

Other classes of codes that work well with iterative decoding such as repeat-accumulate
codes [8] and zigzag codes [37] have factor graphs similar to those of Fig. 11 and Fig. 12.

A channel model is a family p(y1, . . . , yn | x1, . . . , xn) of probability distributions over
a block y = (y1, . . . , yn) of channel output symbols given any block x = (x1, . . . , xn) of
channel input symbols. Connecting, as shown in Fig. 13, the factor graph (Tanner graph)
of a code C with the factor graph of a channel model p(y|x) results in a factor graph of
the joint likelihood function p(y|x)IC(x). If we assume that the codewords are equally
likely to be transmitted, we have for any fixed received block y

p(x|y) =
p(y|x)p(x)

p(y)
(19)

∝ p(y|x)IC(x). (20)

The joint code/channel factor graph thus represents the a posteriori joint probability of
the coded symbols X1, . . . , Xn.

Two examples of channel models are shown in Fig. 14 and Fig. 15. Fig. 14 shows a
memoryless channel with

p(y|x) =
n∏

k=1

p(yk|xk). (21)

Fig. 15 shows a state space representation with internal states S0, S1, . . . , Sn:

p(y, s |x) = p(s0)
n∏

k=1

p(yk, sk |xk, sk−1). (22)

Such a state space representation might be, e.g., a finite-state trellis or a linear model as
in Fig. 7.
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Figure 12: FFG of a parallel concatenated code (turbo code).
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4 Summary Propagation Algorithms

4.1 Closing Boxes: the Sum-Product Rule

So far, we have freely introduced auxiliary variables (state variables) in order to obtain
nicely structured models. Now we will consider the elimination of variables. For example,
for some discrete probability mass function f(x1, . . . , x8), we might be interested in the
marginal probability

p(x4) =
∑

x1,x2,x3,x5,x6,x7

f(x1, . . . , x8). (23)

Or, for some nonnegative function f(x1, . . . , x8), we might be interested in

ρ(x4)
4
= max

x1,x2,x3,x5,x6,x7

f(x1, . . . , x8). (24)

The general idea is to get rid of some variables by some “summary operator”, and the
most popular summary operators are summation (or integration) and maximization (or
minimization). Note that only the valid configurations contribute to a sum as in (23),
and (assuming that f is nonnegative) only the valid configurations contribute to a maxi-
mization as in (24).

Now assume that f has an FFG as in Fig. 16, i.e., f can be written as

f(x1, . . . , x8) =
(
f1(x1)f2(x2)f3(x1, x2, x3, x4)

)
·(

f4(x4, x5, x6)f5(x5)
(
f6(x6, x7, x8)f7(x7)

))
. (25)

Note that the brackets in (25) correspond to the dashed boxes in Fig. 16.
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Inserting (25) into (23) and applying the distributive law yields

p(x4) =

(∑
x1

∑
x2

∑
x3

f3(x1, x2, x3, x4)f1(x1)f2(x2)

)
︸ ︷︷ ︸

µf3→x4

·


∑
x5

∑
x6

f4(x4, x5, x6)f5(x5)

(∑
x7

∑
x8

f6(x6, x7, x8)f7(x7)

)
︸ ︷︷ ︸

µf6→x6


︸ ︷︷ ︸

µf4→x4

(26)

This expression can be interpreted as “closing” the dashed boxes in Fig. 16 by sum-
marizing over their internal variables. The factor µf3→x4 is the summary of the big dashed
box left in Fig. 16; it is a function of x4 only. The factor µf6→x6 is the summary of the
small dashed box right in Fig. 16; it is a function of x6 only. Finally, the factor µf4→x4

is the summary of the big dashed box right in Fig. 16; it is a function of x4 only. The
resulting expression

p(x4) = µf3→x4(x4) · µf4→x4(x4) (27)

corresponds to the FFG of Fig. 16 with the dashed boxes closed.
Replacing all sums in (26) by maximizations yields an analogous decomposition of

(24). In general, it is easy to prove the following fact.

Local Elimination Property: A “global” summary (by summation/integration or by
maximization) may be obtained by successive “local” summaries of subsystems.

It is now but a small step to the summary product algorithm. Towards this end, we
consider the summaries (i.e., the terms in brackets in (26)) as “messages” that are sent
out of the corresponding box, as is illustrated in Fig. 17. We also define the message out
of a terminal node (e.g., f1) as the corresponding function itself (e.g., f1(x1)). “Open”
half edges (such as x3) do not carry a message towards the (single) node attached to
them; alternatively, they may be thought of as carrying as message a neutral factor 1. It
is then easy to verify that all summaries/messages in Fig. 17 are formed according to the
following general rule.

Sum-Product Rule (see Fig. 18): The message out of some node g(x, y1, . . . , yn) along
the branch x is the function

µg→x(x)
4
=
∑
y1

. . .
∑
yn

g(x, y1, . . . , yn) µy1→g(y1) · · ·µyn→g(yn), (28)

where µyk→g (which is a function of yk) is the message that arrives at g along the
edge yk.
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Figure 17: “Summarized” factors as “messages” in the FFG.

If we use maximization as the summary operator, we have the analogous

Max-Product Rule (see Fig. 18): The message out of some node g(x, y1, . . . , yn) along
the branch x is the function

µg→x(x)
4
= max

y1

. . . max
yn

g(x, y1, . . . , yn) µy1→g(y1) · · ·µyn→g(yn). (29)

These two rules are instances of the following single rule.

Summary-Product Rule: The message out of a factor node g(x, . . .) along the edge
x is the product of g(x, . . .) and all messages towards g along all edges except x,
summarized over all variables except x.

We have thus seen that

1. Summaries/marginals such as (23) and (24) can be computed as the product of two
messages as in (27).

2. Such messages are summaries of the subsystem “behind” them.

3. All messages (except those out of terminal nodes) are computed from other messages
according to the summary-product rule.

It is easy to see that this procedure to compute summaries is not restricted to the example
of Fig. 16 but applies whenever the factor graph has no cycles.
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Figure 18: Messages along a generic edge.

4.2 The Summary-Product Algorithm

In its general form, the summary-product algorithm computes two messages for each edge
in the graph, one in each direction. Each message is computed according to the summary-
product rule (typically the sum-product rule (28) or the max-product rule (29)).

A sharp distinction divides graphs with cycles from graphs without cycles. If the graph
has no cycles, then it is efficient to begin the message computation from the leaves and
to successively compute messages as their required “input” messages become available.
In this way, each message is computed exactly once. It is then obvious from the previous
section that summaries/marginals as in (23) or (24) can be computed as the product of
messages as in (27) simultaneously for all variables.

A simple numerical example is worked out in the box on page 19. Fig. (a) of that
example shows an FFG of a toy code, a binary linear code of length n = 4 and dimension
k = 2. In Fig. (b), the FFG is extended to a joint code/channel model as in Fig. 13. The
channel output symbols Y` are binary, and the four nodes in the channel model represent
the factors

p(y`|x`) =

{
0.9, if y` = x`

0.1, if y` 6= x`
(30)

for ` = 1, . . . , 4. If (Y1, . . . , Y4) = (y1, . . . , y4) is known (fixed), the factor graph in Fig. (b)
represents the a posteriori probability p(x1, . . . , x4|y1, . . . , y4), up to a scale factor, cf. (20).

Figures (c)–(e) of the example show the messages as computed according to the sum-
product rule (28). (The message computations for such nodes are given in Table 1.) The
final result is the per-symbol a posteriori probability p(x`|y1, . . . , y4) for ` = 1, . . . , 4;
according to (27), this is obtained as (a suitably scaled version of) the product of the two
messages along the edge X`.

If a trellis code as in Fig. 10 is used with a memoryless channel as in Fig. 14, the overall
factor graph as in Fig. 13 (which represents the joint a posteriori probability p(x|y), up
to a scale factor) has no cycles. For such codes, the natural schedule for the message
computations consists of two independent recursions through the trellis, one (forward)
from left to right and the other (backward) from right to left. If the sum-product rule is
used, this procedure is identical with the BCJR algorithm [5], and we can obtain the a
posteriori marginal probability p(b|y) of every branch b of the trellis (and hence of every
information bit). If the max-product rule is used, the forward recursion is essentially
identical with the Viterbi algorithm, except that no paths are stored, but all messages
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Sum-Product (Belief Propagation) Algorithm: An Example

Consider a simple binary code

C =
{
(0, 0, 0, 0), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 0)

}
,

which is represented by the FFG in Fig. (a) below. Assume that a codeword
(X1, . . . , X4) is transmitted over a binary symmetric channel with crossover prob-
ability ε = 0.1 and assume that (Y1, . . . , Y4) = (0, 0, 1, 0) is received. The figures
below show the messages of the sum-product algorithm. The messages µ are rep-

resented as
(

µ(0)
µ(1)

)
, scaled such that µ(0) + µ(1) = 1. The final result in Fig. (f)

is the a posteriori probability p(x`|y1, . . . , y4) for ` = 1, . . . , 4.

X1 X2 X3 X4

⊕ =

a) FFG of the code.

⊕ =

X1

Y1

X2

Y2

X3

Y3

X4

Y4

b) Code/channel model.

⊕ =

6

(
0.9
0.1

)

0

6

(
0.9
0.1

)

0

6

(
0.1
0.9

)

1

6

(
0.9
0.1

)

0

c) Computing messages. . .

⊕ =
�

(
0.5
0.5

)

-(
0.82
0.18

)

d) Computing messages. . .

⊕ =

?

(
0.5
0.5

)

?

(
0.5
0.5

)

?

(
0.976
0.024

)

?

(
0.336
0.664

)

e) Computing messages. . .

⊕ =
(

0.9
0.1

) (
0.9
0.1

) (
0.82
0.18

) (
0.82
0.18

)

(f) A posteriori probabilities
obtained from (c) and (e).
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(branch metrics) must be stored; the backward recursion is formally identical with the

forward recursion; and we can obtain the quantity ρ(b|y)
4
= maxω∈Ω: b fixed p(ω|y) for every

branch b of the trellis (and hence for every information bit). As pointed out in [45], the
max-product algorithm may thus be viewed as a soft-output Viterbi algorithm, and the
Viterbi-algorithm [10] itself may be viewed as an efficient hard-decision-only version of
the max-product algorithm.

If the factor graph has cycles, we obtain iterative algorithms. First, all edges are
initialized with a neutral message, i.e., a factor µ(.) = 1. All messages are then repeatedly
updated, according to some schedule. The computation stops when the available time is
over or when some other stopping condition is satisfied (e.g., when a valid codeword was
found).

We still compute the final result as in (27), but on graphs with cycles, this result will
usually be only an approximation of the true summary/marginal. Nevertheless, when
applied to turbo codes as in Fig. 12 or LDPC codes as in Fig. 11, reliable performance
very near the Shannon capacity of the channel can be achieved!

If the rule (28) (or (29)) is implemented literally, the values of the messages/functions
µ(.) typically tend quickly to zero (or sometimes to infinity). In practice, therefore, the
messages often need to be scaled or normalized (as was done in the example on page 19):
instead of the message µ(.), a modified message

µ′(.)
4
= γµ(.) (31)

is computed, where the scale factor γ may be chosen freely for every message. The final
result (27) will then be known only up to a scale factor, which is usually no problem.

Table 1 shows the sum-product update rule (28) for the building blocks of low-density
parity check codes (see Fig. 11). It is quite popular to write these messages in terms of
the single parameters

LX
4
= log

µX(0)

µX(1)
, (32)

or ∆
4
=
(
µ(0)− µ(1)

)
/
(
µ(0) + µ(1)

)
, and the corresponding versions of the update rules

are also given in Table 1. Table 2 shows the max-product rules.
For the decoding of LDPC codes the typical update schedule alternates between up-

dating the messages out of equality constraint nodes and updating the messages out of
parity check nodes.
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δ(x− y) δ(x− z)

=X
-

Z
-

Y 6

(
µZ(0)

µZ(1)

)
=

(
µX(0) µY (0)

µX(1) µY (1)

)

∆Z =
∆X + ∆Y

1 + ∆X∆Y

LZ = LX + LY

δ(x⊕ y ⊕ z)

⊕X
-

Z
-

Y 6

(
µZ(0)

µZ(1)

)
=

(
µX(0) µY (0) + µX(1) µY (1)

µX(0) µY (1) + µX(1) µY (0)

)

∆Z = ∆X ·∆Y

tanh(LZ/2) = tanh(LX/2) · tanh(LY /2)

Table 1: Sum-product message update rules for binary parity-check codes.

δ(x− y) δ(x− z)

=X
-

Z
-

Y 6

(
µZ(0)

µZ(1)

)
=

(
µX(0) µY (0)

µX(1) µY (1)

)

LZ = LX + LY

δ(x⊕ y ⊕ z)

⊕X
-

Z
-

Y 6

(
µZ(0)

µZ(1)

)
=

(
max

{
µX(0) µY (0), µX(1) µY (1)

}
max

{
µX(0) µY (1), µX(1) µY (0)

} )

|LZ | = min
{
|LX |, |LY |

}
sgn(LZ) = sgn(LX) · sgn(LY )

Table 2: Max-product message update rules for binary parity-check codes.
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4.3 Kalman Filtering

An important standard form of the sum-product algorithm is Kalman filtering and smooth-
ing, which amounts to applying the algorithm to the state space model of Fig. 6 and 7
[27], [23]. In the traditional setup, it is assumed that Y [.] is observed and that both U [.]
and W [.] are white Gaussian noise. In its most narrow sense, Kalman filtering is then only
the forward sum-product recursion through the graph of Fig. 6 (cf. Fig. 19 left) and yields
the a posteriori probability distribution of the state X[k] given the observation sequence
Y [.] up to time k. By computing also the backwards messages (cf. Fig. 19 right), the a
posteriori probability of all quantities given the whole observation sequence Y [.] may be
obtained.

More generally, Kalman filtering amounts to the sum-product algorithm on any fac-
tor graph (or part of a factor graph) that consists of Gaussian factors and the linear
building blocks listed in Table 3. (It is remarkable that the sum-product algorithm and
the max-product algorithm coincide for such graphs.) All messages represent Gaussian
distributions. For the actual computation, each such message consists of a mean vector
m and a nonnegative definite “cost” matrix (or “potential” matrix) W or its inverse, a
covariance matrix V = W−1.

A set of rules for the computation of such messages is given in Table 3. As only one of
the two messages along any edge, say X, is considered, the corresponding mean vectors
and matrices are simply denoted mX , WX , etc.

In general, the matrices W and V are only required to be nonnegative definite, which
allows to express certainty in V and complete ignorance in W . However, whenever such
a matrix needs to be inverted, it had better be positive definite.

The direct application of the update rules in Table 3 may lead to frequent matrix
inversions. A key observation in Kalman filtering is that the inversion of large matrices
can often be avoided. In the factor graph, such simplifications may be achieved by using
the update rules for the composite blocks given in Table 4. (These rules may be derived
from those of Table 3 by means of the Matrix Inversion Lemma [19].) In particular, the
vectors U [k] and Z[k] in Fig. 6 have usually much smaller dimensions than the state vector
X[k]; in fact, they are often scalars. By working with composite blocks as in Fig. 19, the
forward recursion (left in Fig. 19) using the covariance matrix V = W−1 then requires no
inversion of a large matrix and the backward recursion (right in Fig. 19) using the cost
matrix W requires only one such inversion for each discrete time index.
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1

δ(x− y)δ(x− z)

=X
-

Z
-

Y 6

mZ =
(
WX + WY

)#
(WXmX + WY mY )

WZ = WX + WY

VZ = VX

(
VX + VY

)#
VY

2

δ(x + y + z)

+-X
-

� Z
-

6
Y 6

mZ = −mX −mY

VZ = VX + VY

WZ = WX

(
WX + WY

)#
WY

3

δ(y − Ax)

A-X
-

-Y
-

mY = AmX

VY = AVXAH

4

δ(x− Ay)

A�X
-

� Y
-

mY =
(
AHWXA

)#
AHWXmX

WY = AHWXA

If A has full row rank:

mY = AH
(
AAH

)−1
mX

Table 3: Update rules for messages consisting of mean vector m and covariance matrix
V or W = V −1. Notation: (.)H denotes Hermitian transposition and (.)# denotes the
Moore-Penrose pseudo-inverse.
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5

=X
-

Z
-

?
W 6

A

?Y 6

mZ = mX + VXAHG (mY − AmX)

VZ = VX − VXAHGAVX

with G
4
=
(
VY + AVXAH

)−1

6

+-X
-

� Z
-

6
W 6

A

6
Y 6

mZ = −mX − AmY

WZ = WX −WXAHAHWX

with H
4
=
(
WY + AHWXA

)−1

Table 4: Update rules for composite blocks.
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Figure 19: Use of composite-block update rules of Table 4.
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4.4 Designing New Algorithms

Factor graphs can be used to model complex real-world systems and to derive practical
message passing algorithms for the associated detection and estimation problems. A key
issue in most such applications is the coexistence of discrete and continuous variables;
another is the harmonic cooperation of a variety of different signal processing techniques.
The following design choices must be addressed in any such application.

Choice of the factor graph. In general, the graph (i.e., the equation system that de-
fines the model) is far from unique, and the choice affects the performance of message
passing algorithms.

Choice of message types and the corresponding update rules for continuous variables
(see below).

Scheduling of the message computations.

Discrete variables can usually be handled by literal application of the sum-product (or
max-product) rule, or by some obvious approximation of it. For continous variables, lit-
eral application of the sum-product or max-product update rules often leads to intractable
integrals. Dealing with continuous variables thus involves the choice of suitable message
types and of the corresponding (exact or approximate) update rules. The following mes-
sage types have proved useful.

Constant messages. The message is a “hard-decision” estimate of the variable. Using
this message type amounts to inserting decisions on the corresponding variables (as,
e.g., in a decision-feedback equalizer).

Quantized messages are an obvious choice. However, quantization is usually infeasible
in higher dimensions.

Mean and variance of (exact or assumed) Gaussian Messages. This is the realm of
Kalman filtering.

The derivative of the message at a single point is the data type used for gradient
methods [31].

List of samples. A probability distribution can be represented by a list of samples (”par-
ticles”) from the distribution. This data type is the basis of the particle filter [9]; its
use for message passing algorithms in general graphs seems to be largely unexplored,
but promising.

Compound messages consist of a combination (or “product”) of other message types.

Note that such messages are still summaries of everything “behind” them. With these
message types, it is possible to integrate most good known signal processing techniques
into summary propagation algorithms for factor graphs.
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5 A Glimpse at Some Further Topics

Convergence of Message Passing on Gaussian Graphs. In general, little is known
about the performance of message passing algorithms on graphs with cycles. How-
ever, in the important special case where the graph represents a Gaussian distri-
bution of many variables, Weiss and Freeman [44] and Rusmevichientong and Van
Roy [39] have proved the following: If sum-product message passing (probability
propagation) converges, then the calculated means are correct (but the variances
are optimistic).

Improved Message Passing on Graphs with Cycles. On graphs with many short
cycles, sum-product message passing as described does usually not work well. Some
improved (and more complex) message passing algorithms have recently been pro-
posed for such cases, see [51], [35]. A related idea is to use messages with some
nontrivial internal Markov structure [7].

Factor Graphs and Analog VLSI Decoders. As observed in [28] (see also [20]), fac-
tor graphs for codes (such as Fig. 8, Fig. 9, and Fig. 10) can be directly translated
into analog transistor circuits that perform sum-product message passing in parallel
and in continuous time. These circuits appear so natural that one is tempted to
conjecture that transistors prefer to compute with probabilities!

Such analog decoders may become useful when very high speed or very low power
consumption are required, or they might enable entirely new applications of coding.
A light introduction to such analog decoders was given in [29]. More extensive
accounts are [21], [30], [32]. For some recent progress reports, see [48], [16].

Gaussian Factor Graphs and Static Electrical Networks. Static electrical networks
consisting of voltage sources, current sources, and resistors are isomorphic with the
factor graphs of certain Gaussian distributions. The electrical network “solves” the
corresponding least-squares (or Kalman filtering) problem [42], [43].

Fourier Transform and Duality. Forney [13] and Mao and Kschischang [34] showed
that the Fourier transform of a multi-variable function can be carried out directly
in the FFG (which may have cycles) according to the following recipe:

• Replace each variable by its dual (“frequency”) variable.

• Replace each local function by its Fourier transform. If some local function
is the membership indicator function δV (.) of a vector space V , its “Fourier
transform” is the membership indicator function δV ⊥(.) of the orthogonal com-
plement V ⊥.

• For each edge, introduce a minus sign into one of the two adjacent factors.

For this recipe to work, all variables of interest must be external, i.e., represented
by half edges. For example, Fig. 20 illustrates the familiar fact that the Fourier
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Figure 20: The Fourier transform of pointwise multiplication (left) is convolution (right).

transform of the pointwise multiplication

f(x3) =
∑
x1,x2

f1(x1)f2(x2)δ(x1 − x3)δ(x2 − x3) (33)

= f1(x3)f2(x3) (34)

is the convolution

f̂(y3) =
∑
y1,y2

f̂1(y1)f̂2(y2)δ(y3 − y2 − y1) (35)

=
∑
y2

f̂1(y3 − y2)f̂2(y2). (36)

6 Conclusion

Graphical models such as factor graphs allow a unified approach to a number of key
topics in coding and signal processing: the iterative decoding of turbo codes, low-density
parity check codes, and similar codes; joint decoding and equalization; joint decoding
and parameter estimation; hidden-Markov models; Kalman filtering and recursive least
squares, and more. Graphical models can represent complex real-world systems, and
such representations help to derive practical detection/estimation algorithms in a wide
area of applications. Most good known signal processing techniques—including gradient
methods, Kalman filtering, and particle methods—can be used as components of such
algorithms. Other than most of the previous literature, we have used Forney-style factor
graphs, which support hierarchical modeling and are compatible with standard block
diagrams.
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