
July 3, 2009 15:39 World Scientific Review Volume - 9in x 6in ”WS-Fractional Diffusion”

Chapter 1

An Introduction to Fractional Diffusion
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The mathematical description of diffusion has a long history with many
different formulations including phenomenological models based on con-
servation of mass and constitutive laws; probabilistic models based on
random walks and central limit theorems; microscopic stochastic mod-
els based on Brownian motion and Langevin equations; and mesoscopic
stochastic models based on master equations and Fokker-Planck equa-
tions. A fundamental result common to the different approaches is that
the mean square displacement of a diffusing particle scales linearly with
time. However there have been numerous experimental measurements in
which the mean square displacement of diffusing particles scales as a frac-
tional order power law in time. In recent years a great deal of progress
has been made in extending the different models for diffusion to incorpo-
rate this fractional diffusion. The tools of fractional calculus have proven
very useful in these developments, linking together fractional constitu-
tive laws, continuous time random walks, fractional Langevin equations
and fractional Brownian motions. These notes provide a tutorial style
overview of standard and fractional diffusion processes.

1.1. Mathematical Models for Diffusion

1.1.1. Brownian Motion and the Langevin Equation

Having found motion in the particles of the pollen of all the
living plants which I had examined, I was led next to inquire
whether this property continued after the death of the plant, and
for what length of time it was retained.
Robert Brown (1828)1

1
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When microscopic particles are suspended in a fluid they appear to vi-

brate around randomly. This phenomenon was investigated systematically

by Robert Brown in 18271 after he observed the behaviour in pollen grains

suspended in water and viewed under a microscope. Brown’s interest at the

time was concerned with the mechanisms of fertilization in flowering plants.

Brown noticed that the pollen grains were in a continual motion that could

not be accounted for by currents in the fluid. One possibility favoured by

other scientists at the time was that this motion was evidence of life itself,

but Brown observed similar motion in pollen grains that had been dena-

tured in alcohol and in other non-living material (including “molecules in

the sand tubes, formed by lightning”1) .

The explanation for Brownian motion that is generally accepted among

scientists today was first put forward by Einstein in 1905.2 The motion of

the suspended particle (which, for simplicity, was considered in one spatial

direction) arises as a consequence of random buffeting from the thermal

motions of the enormous numbers of molecules that comprise the fluid.

This buffeting provides both the driving forces and the damping forces

(the effective viscosity of the fluid) that are experienced by the suspended

particle. The central result of Einstein’s theory is that in a given time t, the

mean square displacement r(t) of a suspended particle in a fluid is given by

〈r2(t)〉 = 2Dt (1.1)

where the angular brackets denote an ensemble average obtained by repeat-

ing the experiment many times and the constant

D =

(

RT

6Nπaη

)

=

(

kBT

γ

)

. (1.2)

Here T is the temperature of the fluid, R = NkB is the universal gas

constant, a is the radius of the suspended particle, η is the fluid viscosity,

N is Avogadro’s number (the number of molecules in an amount of mass

equal to the atomic weight in grams) and

γ = 6πηa (1.3)

is Stokes’ relation for the viscous drag coefficient. The results in Eqs. (1.1),

(1.2) are known as the Einstein relations. In an interesting footnote to this

literature, the Einstein relation in Eq. (1.2), was also derived independently

by Sutherland.3

A very simple derivation (infinitely more simple4) of the Einstein rela-

tions for motion in one spatial dimension was provided by Langevin a few
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years later4 based on Newton’s second law applied to a spherical particle in

a fluid. The mass times the acceleration is the sum of the random driving

force and the frictional viscous force, both arising from the thermal motions

of the molecules of the fluid:

m
d2x

dt2
= F (t) − γ

dx

dt
. (1.4)

The random driving force is assumed to have zero mean, 〈F (t)〉 = 0, and

to be uncorrelated with position, 〈xF (t)〉 = 〈x〉〈F (t)〉 = 0. Equation (1.4)

can be simplified by multiplying by x(t), re-writing the left hand side as

mx
d2x

dt2
= m

d

dt

(

x
dx

dt

)

−m

(

dx

dt

)2

(1.5)

and then taking the ensemble average. This results in

m

〈

d

dt

(

x
dx

dt

)〉

−m

〈

(

dx

dt

)2
〉

= −γ
〈

x
dx

dt

〉

. (1.6)

A further simplification can be made using Boltzmann’s Principle of

Equipartition of Energy5 which asserts that the average kinetic energy of

each particle in the fluid is proportional to the temperature of the fluid; in-

dependent of the mass of the particle. The suspended particle being much

larger in mass than the molecules of the fluid will have much smaller ve-

locity according to this result. Applying this principle to the suspended

particle we have

1

2
m

〈

(

dx

dt

)2
〉

=
1

2
kBT (1.7)

and Eq. (1.6) can be rearranged as

dy

dt
+
γ

m
y =

kBT

m
(1.8)

where

y =

〈

x
dx

dt

〉

. (1.9)

Equation (1.8) is straightforward to integrate yielding

y =
kBT

γ

(

1 − exp(− γ

m
t)
)

. (1.10)

To proceed further we note that

y ≡
〈

x
dx

dt

〉

=
1

2

d

dt
〈x2〉,
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so that

d

dt
〈x2〉 =

2kBT

γ

(

1 − exp(− γ

m
t)
)

.

For a Brownian particle that is large relative to the average separation

between particles in the fluid, Langevin notes that
(

γ
m

)

≈ 108 and so after

observational times t≫ 10−8 we have

d

dt
〈x2〉 ≈ 2kBT

γ

and hence

〈x2〉 ∼
(

2kBT

γ

)

t = 2Dt (1.11)

in agreement with the Einstein relations in Eqs. (1.1), (1.2). In three spatial

dimensions there are three kinetic degrees of freedom and the mean square

displacement is 〈r2〉 ∼ 6Dt.

1.1.2. Random Walks and the Central Limit Theorem

The lesson of Lord Rayleigh’s solution is that in open country
the most probable place to find a drunken man who is at all
capable of keeping on his feet is somewhere near his starting
point!
Karl Pearson (1905)6

The Brownian motion of the suspended particle in a fluid can also be

modelled as a random walk, a term first introduced by Pearson in 19056

who sought the probability that a random walker would be at a certain

distance from their starting point after a given number of random steps.

The problem was solved shortly after by Lord Rayleigh.7 The idea of a

random walk had been introduced earlier though by Bachelier in 1900 in his

doctoral thesis (under the guidance of Poincaré) entitled La Theorie de la

Speculation.8 In this thesis Bachelier developed a mathematical theory for

stock price movements as random walks, noting that ... the consideration

of true prices permits the statement of the fundamental principle – The

mathematical expectation of the speculator is zero.8

1.1.2.1. Random Walks and the Binomial Distribution

In the simplest problem of a random walk along a line in one-dimension the

particle starts from an origin and at each time step ∆t the particle has an

equal probability of jumping an equal distance ∆x to the left or the right.
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The probability Pm,n that the particle will be at position x = m∆x at time

t = n∆t is governed by the recurrence equation:

Pm,n =
1

2
Pm−1,n−1 +

1

2
Pm+1,n−1, (1.12)

with P0,0 = 1. Note too that after any time k the sum of the probabilities

must add up to unity and the largest possible excursion of the random

walker after n time steps is to position ±n∆x so that

k
∑

j=−k

Pj,k = 1 where k = 0, 1, 2, . . . n. (1.13)

The recurrence equation, Eq. (1.12) is a partial difference equation and

although a solution could be sought using the method of separation of

variables this generally results in complicated algebraic expressions.

An alternate method is to enumerate the number of possible paths in

an n step walk from 0 to m. Without loss of generality this occurs through

k steps to the right and n− k = k−m steps to the left. The k steps to the

right can occur anywhere among the n steps. There are

C(n, k) =

(

n

k

)

=
n!

k!(n− k)!

ways of distributing these k steps among the n steps. There are 2n possible

paths in an n step walk so that the probability of an n step walk that starts

at 0 and ends at m with k steps to the right is given by

p(m,n) =
C(n, k)

2n
where k =

n+m

2
.

This simplifies to

p(m,n) =
n!

2n
(

n+m
2

)

!
(

n−m
2

)

!
. (1.14)

Note that we require n+m and n−m to be even which is consistent with

the recognition that it is not possible to get from the origin to an even

(odd) lattice site m in an odd (even) number of steps n.

The above result assumes an equal probability of steps to the left and

right but it is easy to generalize with a probability r to step to the right

and a probability 1− r to step to the left. The probability of k steps to the

right in an n step walk in this case is

P (k) =

(

n

k

)

rk(1 − r)n−k. (1.15)
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This is the probability mass function for the binomial distribution, i.e., if

X is a random variable that follows the binomial distribution B(n, k) then

P (k) = Prob(X = k). Note that in this biased random walk generalization

we have

p(m,n) =
n!

(

n+m
2

)

!
(

n−m
2

)

!
r

n+m
2 (1 − r)

n−m
2 . (1.16)

1.1.2.2. Random Walks and the Normal Distribution

Most of the results in this article are concerned with long time behaviours.

In the case of p(m,n) we consider n large and n > m but m2/n nonvan-

ishing. It is worthwhile considering the behaviour of p(m,n) in this limit.

Here we consider the simple case of the unbiased random walk, Eq. (1.14),

but the analysis can readily be generalized.10 The mean number of steps to

the right is 〈k〉 = n/2 and we consider the distribution for the fluctuations

X = k − 〈k〉 = m/2. We now have

p(m(X), n) =
n!

(n
2 −X)!(n

2 +X)!2n
(1.17)

which can be expanded using the De Moivre-Stirling approximation9

n! ≈
√

2πnnne−n (1.18)

to give

P (X,n) =

√

2
nπ

(

1 − 2X
n

)( n
2 −X+ 1

2 ) (
1 + 2X

n

)( n
2 +X+ 1

2 )

=

√

2
nπ

exp
[

(n
2 −X + 1

2 ) ln(1 − 2X
n ) + (n

2 +X + 1
2 ) ln(1 + 2X

n )
] .

The long time behaviour is now found after carrying out a series expansion

of the log terms in powers of 2X
n . The result is

P (X,n) ∼
√

2

nπ
e−

2X2

n =

√

2

nπ
e−

m2

2n . (1.19)

Thus the probability density function for unbiased random walks in the

long time limit is the Gaussian or normal distribution.
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1.1.2.3. Random Walks in the Continuum Approximation

Further insights into the random walk description can be found by employ-

ing a continuum approximation in the limit ∆x → 0 and ∆t → 0. In this

approximation we first write P (m,n) = P (x, t) and then re-write Eq. (1.12)

as follows:

P (x, t) =
1

2
P (x− ∆x, t− ∆t) +

1

2
P (x+ ∆x, t− ∆t). (1.20)

Now expand the terms on the right hand side as Taylor series in x, t:

P (x± ∆x, t− ∆t) ≈ P (x, t) ∓ ∆x
∂P

∂x
− ∆t

∂P

∂t
+

(∆x)2

2

∂2P

∂x2
+

(∆t)2

2

∂2P

∂t2

+∆t∆x
∂2P

∂x∂t
+O((∆t)3) ∓O((∆x)3).

If we substitute these expansions into Eq. (1.20) and retain only leading

order terms in ∆t and ∆x, then after rearranging

∂P

∂t
= D

∂2P

∂x2
(1.21)

where

D = lim
∆t→0,∆x→0

(∆x)2

2∆t
(1.22)

is a constant with dimensions of m2s−1. The above partial differential

equation is known as the diffusion equation (see below).

The continuum approximation for the probability conservation law in

Eq. (1.13) is

∫ +∞

−∞

P (x, t)dx = 1 (1.23)

where the limits to infinity are consistent with taking the spacing between

steps ∆x→ 0.

The fundamental Green’s solution G(x, t) of the diffusion equation with

initial conditionG(x, 0) = δ(x) can readily be obtained using classical meth-

ods. The Fourier transform of the diffusion equation yields

dĜ(q, t)

dt
= −Dq2Ĝ(q, t)

with solution

Ĝ(q, t) = e−Dq2t. (1.24)
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where we have used the result that Ĝ(q, 0) = δ̂(q) = 1. The inverse Fourier

transform now results in

G(x, t) =
1

2π

∫ +∞

−∞

e−Dq2t+iqx dq =
1

2π
e−

x2

4Dt

∫ +∞

−∞

e−Dt(q− ix
2Dt )2 dq

which simplifies to

G(x, t) =
1√

4πDt
e−

x2

4Dt . (1.25)

The mean square displacement can be evaluated directly from

〈x2〉 =

∫ +∞

−∞

x2G(x, t) dx (1.26)

or indirectly from

〈x2〉 = lim
q→0

− d2

dq2
Ĝ(q, t) (1.27)

yielding the familiar result 〈x2〉 = 2Dt.

1.1.2.4. Central Limit Theorem

The fundamental solution, Eq. (1.25), is an example of the Gaussian normal

distribution

P (X ∈ dz) =
1√

2πσ2
exp

(

− (z − µ)2

2σ2

)

(1.28)

for random variables X with mean

µ = 〈X〉 (1.29)

and variance

σ2 = 〈X2〉 − 〈X〉2 = 〈X2〉 − µ2. (1.30)

The Gaussian probability distribution, Eq. (1.25), can be derived indepen-

dently for random walks by appealing to the Central Limit Theorem (CLT):

The sum of N independent and identically distributed random variables

with mean µ and variance σ2 is a Gaussian probability density function

with mean Nµ and variance Nσ2. In the case of random walks, each

step ∆x is a random variable with mean µ = 〈∆x〉 = 0 and variance

σ2 = 〈∆x2〉− 〈∆x〉2 = 〈∆x2〉. The sum of N such random variables is x so

that from the CLT we have

P (x ∈ dz) =
1

√

2πN〈∆x2〉
exp

(

− z2

2N〈∆x2〉

)

. (1.31)
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But 〈∆x2〉 = 2D〈∆t〉 and N = t/∆t so that we recover Eq. (1.25) for

X = x.

This treatment of random walks using the CLT can be applied even if

the step length ∆x varies between jumps, provided that the step lengths

∆x(t) are independent identically distributed random variables, i.e.,

〈∆xi∆xj〉 = δi,j〈∆xi〉2.

In an N step walk with jumps at discrete times ti = (i−1)∆t we can define

the average drift over time t = N∆t as

〈x(t)〉 =

N
∑

i=1

〈∆xi〉

and an average drift velocity as

v =
〈x(t)〉
∆t

.

The variance of the random walk is

〈x(t)2〉 − 〈x(t)〉2 =

N
∑

i=1

N
∑

j=1

(〈∆xi∆xj〉 − 〈∆xi〉〈∆xj〉) .

Since the walks are uncorrelated this simplifies to

〈x(t)2〉 − 〈x(t)〉2 = N
(

〈∆x2〉 − 〈∆x〉2
)

= Nσ2 = 2Dt. (1.32)

Note that if the walk is biased then the drift velocity is non-zero and the

probability density function is the solution of an advective-diffusion equa-

tion (see below).

1.1.3. Fick’s Law and the Diffusion Equation

Equation (1.25) governing the probability of a random walker at position x

after time t is the probability distribution that should result if we measured

the positions of a large number of particles in many separate experiments.

However if the particles did not interact then we could perform measure-

ments of their positions in the one experiment. The number of particles per

unit volume at position x and time t is the concentration c(x, t). If there are

N non-interacting walkers in total then they all have the same probability

of being at x at time t and hence the concentration c(x, t) = NP (x, t) also

satisfies the diffusion equation

∂c

∂t
= D

∂2c

∂x2
. (1.33)
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We now consider a macroscopic derivation of the diffusion equation

based on the conservation of matter and an empirical result known as

Fick’s Law. The derivation is given in one spatial dimension for simplicity

(this may describe diffusion in a three dimensional domain but with one-

dimensional flow). In addition to the concentration c(x, t) other macro-

scopic quantities of interest are the mean velocity u(x, t) of diffusing par-

ticles, and the flux q(x, t) which, in one spatial dimension, is the number

of particles per unit time that pass through a test area perpendicular to

the flow in the positive x direction. The three macroscopic quantities are

related through the equation

q(x, t) = c(x, t)u(x, t). (1.34)

Note that while the concentration is a scalar quantity both the mean ve-

locity and the flux are vectors.

If no particles are added or removed from the system then, considering

a small test volume V of uniform cross-sectional area A and extension δx

we have conservation of matter,




number of particles

in volume V

at time t+ δt



 =





number of particles

in volume V

at time t



+





net number of particles

entering volume V

between t and t+ δt





so that

c(x, t+ δt)Aδx = c(x, t)Aδx + q(x, t)Aδt − q(x+ δx, t)Aδt. (1.35)

Now divide by Aδtδx and re-arrange terms then

c(x, t+ δt) − c(x, t)

δt
= −q(x+ δx) − q(x, t)

δx
(1.36)

and in the limit δt→ 0, δx→ 0,

∂c

∂t
= − ∂q

∂x
. (1.37)

The equation of conservation of matter (1.37) for flow in one spatial dimen-

sion is also called the continuity equation.

Fick’s Law11 asserts that the net flow of diffusing particles is from re-

gions of high concentration to regions of low concentration and the magni-

tude of this flow is proportional to the concentration gradient. Thus

q(x, t) = −D ∂c

∂x
, (1.38)

in analogy with Fourier’s Law of heat conduction and Ohm’s Law for ionic

conduction. The minus sign expresses the result that if the concentration
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is increasing in the x direction (i.e., ∂c
∂x > 0) then the flow of particles is

in the negative x direction. The constant of proportionality is the diffusion

coefficient. If we combine the equation of conservation of matter, Eq. (1.37),

with Fick’s Law, Eq. (1.38), then we obtain

∂c

∂t
=

∂

∂x

(

D
∂c

∂x

)

= D
∂2c

∂x2
for constant D. (1.39)

One of the most significant aspects of Einstein’s results for Brownian motion

is that the diffusivity can be related to macroscopic physical properties of

the fluid and the particle, as in Eq. (1.2).

1.1.3.1. Generalized Diffusion Equations

The macroscopic diffusion equation is easy to generalize to higher dimen-

sions and other co-ordinate systems. Examples are the diffusion equation

in radially symmetric co-ordinates in d dimensional space

∂c

∂t
=

1

rd−1

∂

∂r

(

rd−1D
∂c

∂r

)

. (1.40)

Other generalizations of the macroscopic diffusion equation are possible

by modifying Fick’s law. If the media is spatially heterogeneous then an ad-

hoc generalization would be to replace the diffusion constant in Fick’s law

with a space dependent function, ie., D = D(x). Concentration dependent

diffusivities and time dependent diffusivities have also been considered.

If the diffusing species are immersed in a fluid that is moving with

velocity v(x, t) then this will produce an advective flux

qA(x, t) = c(x, t)v(x, t). (1.41)

which, when combined with the Fickian flux, Eq. (1.38) and the continuity

equation, Eq. (1.37), results in the advective-diffusion equation,

∂c

∂t
= D

∂2c

∂x2
− ∂

∂x
(v c) . (1.42)

A possible generalization of the above equation for spatially inhomogeneous

systems is then

∂c

∂t
=

∂

∂x

(

D(x)
∂c

∂x

)

− ∂

∂x
(v(x) c) . (1.43)

If there are chemicals that attract or repel the diffusing species there

will be a chemotactic flux. The term (chemo) taxis means directed motion

towards or away from an external (chemical) stimulus. The chemotactic flux
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is modelled by assuming that species move in the direction of a chemical

gradient, thus

qC(x, t) = χc(x, t)
∂

∂x
u(x, t), (1.44)

where u(x, t) is the concentration of the chemical species that is driving

the chemotactic flux. This flux term is positive if the associated flow is

from regions of low concentration to high concentration (chemoattractant,

χ > 0) and negative otherwise (chemorepellant, χ < 0). The chemotactic

diffusion equation in one dimension is

∂c

∂t
= D

∂2c

∂x2
− χ

∂

∂x

(

c
∂u

∂x

)

. (1.45)

1.1.4. Master Equations and the Fokker-Planck Equation

In his classic 1905 paper on Brownian motion, Einstein2 derived the diffu-

sion equation from an integral equation conservation law or master equa-

tion. The master equation describes the evolution of the probability density

function P (x, t) for a random walker taking jumps at discrete time inter-

vals ∆t to be at position x at time t. We let λ(∆x) denote the probability

density function for a jump of length ∆x then

P (x, t) =

∫ +∞

−∞

λ(∆x)P (x − ∆x, t− ∆t) d∆x (1.46)

expresses the conservation law that the probability for a walker to be at

x at time t is the probability that the walker was at position x − ∆x at

an earlier time t − ∆t and then the walker jumped with step length ∆x.

The integral sums over all possible starting points at the earlier time. The

correspondence between the master equation and the diffusion equation

(or a more general Fokker-Planck equation) can be found by considering

continuum approximations in the limit ∆t→ 0 and ∆x→ 0, thus

P |(x,t−∆t) + ∆t
∂P

∂t

∣

∣

∣

∣

(x,t−∆t)

≈
∫ +∞

−∞

λ(∆x)

(

P |(x,t−∆t) − ∆x
∂P

∂x

∣

∣

∣

∣

(x,t−∆t)

+
(∆x)2

2

∂2P

∂x2

∣

∣

∣

∣

(x,t−∆t)

)

d∆x.

The integral over ∆x is simplified by noting that
∫ +∞

−∞

(∆x)
n
λ(∆x) d∆x = 〈∆xn〉, n ∈ N.
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Thus in the continuum limit the master equation yields the Fokker-Planck

equation (also called the Kolmogorov forward equation)

∂P

∂t
≈ 〈∆x2〉

2∆t

∂2P

∂x2
− 〈∆x〉

∆t

∂P

∂x
, (1.47)

with drift velocity

v = lim
∆x→0,∆t→0

〈∆x〉
∆t

, (1.48)

and diffusion coefficient

D = lim
∆x→0,∆t→0

〈∆x2〉 − 〈∆x〉2
2∆t

= lim
∆x→0,∆t→0

〈∆x2〉
2∆t

+O

( 〈∆x〉2
∆t

)

(1.49)

so that

∂P

∂t
≈ D

∂2P

∂x2
− v

∂P

∂x
. (1.50)

1.1.4.1. Generalized Fokker-Planck Equation

If the step length probability density function is also dependent on position

then the master equation generalizes to

P (x, t) =

∫ +∞

−∞

λ(∆x, x − ∆x)P (x − ∆x, t− ∆t) d∆x. (1.51)

In the continuum limit we proceed as above but with the additional expan-

sion

λ(∆x, x − ∆x) ≈ λ|(∆x,x) − ∆x
∂λ

∂x

∣

∣

∣

∣

(∆x,x)

+
∆x2

2

∂2λ

∂x2

∣

∣

∣

∣

(∆x,x)

, (1.52)

and
∫ +∞

−∞

∆xn λ(∆x, x) d∆x = 〈∆xn(x)〉,

which leads to the general Fokker-Planck equation

∂P

∂t
=

∂2

∂x2
(D(x)P (x, t)) − ∂

∂x
(v(x)P (x, t)) , (1.53)

with drift

v(x) = lim
∆x→0,∆t→0

〈∆x(x)〉
∆t

, (1.54)

and diffusivity

D(x) = lim
∆x→0,∆t→0

〈∆x2(x)〉 − 〈∆x(x)〉2
2∆t

= lim
∆x→0,∆t→0

〈∆x2(x)〉
2∆t

.
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The generalized Fokker-Planck equation, Eq. (1.53) is slightly different

to the generalized Fickian equation, Eq. (1.43) (see further comments in

Vlahos et al12 and references therein).

1.1.5. The Chapman-Kolmogorov Equation and Markov

Processes

The sequence of jumps {Xt} in a random walk defines a stochastic pro-

cess. A realization of this stochastic process defines a trajectory x(t). A

stochastic process has the Markov property if at any time t the distribu-

tion of all Xu, u > t only depends on the value Xt and not on any value

Xs, s < t. Let p(x, t) denote the probability density function for Xt and let

q(x, t|x′, t′) denote the conditional probability that Xt lies in the interval

x, x+ dx given that Xt′ starts at x′. A first order Markov process has the

property that

q(x, t|x′′, t′′) =

∫

q(x, t|x′, t′)q(x′, t′|x′′, t′′) dx′. (1.55)

This equation, which was introduced by Bachelier in his PhD thesis,8 is

commonly referred to as the Chapman-Kolmogorov equation, in recogni-

tion of the more general equation derived independently by Chapman and

Kolmogorov for probability density functions in stochastic processes. We

will refer to the special case as the Bachelier equation. Note that if we

multiply the Bachelier equation by p(x′′, t′′) and integrate over x′′ then
∫

p(x′′, t′′)q(x, t|x′′, t′′) dx′′

=

∫

p(x′′, t′′)

(
∫

q(x, t|x′, t′)q(x′, t′|x′′, t′′) dx′
)

dx′′

=

∫
(
∫

p(x′′, t′′)q(x′, t′|x′′, t′′) dx′′
)

q(x, t|x′, t′) dx′

so that

p(x′, t′) =

∫

p(x′′, t′′)q(x′, t′|x′′, t′′) dx′′

or equivalently

p(x, t) =

∫

p(x′, t′)q(x, t|x′, t′) dx′. (1.56)

Note that in the above we consider the times t > t′ > t′′ to be discrete

times. There are many different examples of Markov processes that satisfy

Eq. (1.55) and Eq. (1.56).
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1.1.5.1. Wiener Process

It is easy to confirm by substitution that the conditional probability

q(x, t|x′, t′) =
1

√

2π(t− t′)
e
− (x−x′)2

2(t−t′) , t > t′ (1.57)

is a solution of the Bachelier equation and

p(x, t) =
1√
2πt

e−
x2

2t (1.58)

is a solution of Eq. (1.56) with this conditional probability. The corre-

sponding Markov process is referred to as the Wiener process or Brownian

motion. It is the limiting behaviour of a random walk in the limit where

the time increment approaches zero. That this limit exists was proven by

Norbert Wiener in 1923.13

The Brownian motion stochastic process Bt satisfies the following prop-

erties:

(i) B0 = 0 and Bt is defined for times t ≥ 0.

(ii) Realizations xB(t) of the process are continuous but nowhere differ-

entiable. The graph of xB(t) versus t is a fractal with fractal dimension

d = 3/2.

(iii) The increments Bt − Bt′ are normally distributed random variables

with mean 0 and variance t− t′ for t > t′.

(iv) The increments Bt−Bt′ and Bs−Bs′ are independent random variables

for t > t′ ≥ s ≥ s′ ≥ 0.

1.1.5.2. Poisson Process

Another important Markov process is the Poisson point process. Here the

spatial variable is replaced with a discrete variable labelling the occurrence

of events (e.g., the numbers of encounters with injured animals on a road

trip). The defining equations are

q(n, t|n′, t′) =
(α(t − t′))

n−n′

(n− n′)!
e−α(t−t′), t > t′ (1.59)

and

p(n, t) =
(αt)n

n!
e−αt, (1.60)

where α is called the intensity of the process. The latter equation is inter-

preted as the probability that n events have occurred in the interval [0, t]
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and αt is the expected number of events in this interval. For example in an

n step random walk the expected number of steps to the right in time t is

np = t
∆tp where p is the probability to step to the right and ∆t is the time

interval between steps. From the Poisson distribution the probability of k

steps to the right is

p(k, t) =
( p
∆tt)

k

k!
e−( p

∆t t). (1.61)

This can be reconciled with the Binomial distribution Eq. (1.15) by con-

sidering the limit n→ ∞ but np and k finite. Note that this requires that

the probability p of a step to the right must be very small, p→ 0, and the

Poisson distribution is thus the distribution law for rare events.

1.2. Fractional Diffusion

In the theory of Brownian motion the first concern has always
been the calculation of the mean square displacement of the par-
ticle, because this could be immediately observed.
George Uhlenbeck and Leonard Orntstein (1930)14

Central results in Einstein’s theory of Brownian motion are that the mean

square displacement of the Brownian particle scales linearly with time and

the probability density function for Brownian motion is the Gaussian nor-

mal distribution. These characteristic signatures of standard diffusion are

consistent across many different mathematical descriptions; random walks,

central limit theorem, Langevin equation, master equation, diffusion equa-

tion, Wiener processes. The results have also been verified in numerous ex-

periments including Perrin’s measurements of mean square displacements15

to determine Avogadro’s number (the constant number of molecules in any

mole of substance) thus consolidating the atomistic description of nature.

Despite the ubiquity of standard diffusion it is not universal. There

have been numerous experimental measurements of fractional diffusion in

which the mean square displacement scales as a fractional power law in

time (see Table 1.1). The fractional diffusion is referred to as subdiffusion

if the fractional power is less than unity and superdiffusion if the fractional

power is greater than unity. Fractional diffusion has been the subject of

several highly cited reviews,16–18 and pedagogic lecture notes,12,19 in recent

decades. Fractional diffusion has been found to occur as the norm in;

spatially disordered systems (such as porous media and fractal media), in

turbulent fluids and plasmas, and in biological media with traps, binding

sites or macro-molecular crowding.
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In the remainder of these notes we describe theoretical frameworks based

around the physics of continuous time random walks and the mathematics

of fractional calculus to model fractional diffusion. For a more complete de-

scription the reader should again consult the review articles and references

therein.

Table 1.1. Summary table of scaling laws for fractional diffusion

scaling diffusion process environment

〈∆X2〉 ∼ t (ln t)κ ultraslow diffusion Sinai diffusion
1 < κ < 4 deterministic diffusion

〈∆X2〉 ∼ tα subdiffusion disordered solids
0 < α < 1 biological media

fractal media
porous media

〈∆X2〉 ∼



tα t < τ
t t > τ

transient subdiffusion biological media

0 < α < 1

〈∆X2〉 ∼ t standard diffusion homogeneous media

〈∆X2〉 ∼ tβ superdiffusion turbulent plasmas
1 < β < 2 transport in polymers

Lévy flights

〈∆X2〉 ∼ t3 Richardson diffusion21 atmospheric turbulence

1.2.1. Diffusion on Fractals

Experimental simulations and theoretical results have shown that diffusion

on self-similar fractal lattices with fractal dimension df is anomalous sub-

diffusion with scaling20

〈r2〉 ∼ t
2

dw , dw > 2. (1.62)

The scaling exponent dw is referred to as the dimension of the walk. For

standard random walks on Euclidean lattices in d = 2 the dimension of the

walk is also dw = 2. Equation (1.62) can be re-written as

〈r2〉 ∼ D(r)t (1.63)

where the diffusion constant is replaced by the space dependent diffusion

coefficent D(r). The results in Eq. (1.62) and Eq. (1.63) are consistent
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provided that

D(r) = r2−dw . (1.64)

If we now reconsider the radially symmetric diffusion equation, Eq. (1.40),

but replace the space dimension d with the fractal dimension df and re-

place the diffusion constant D with the spatially varying diffusion coeffi-

cientD(r) then we arrive at the O’Shaugnessy Procaccia fractional diffusion

equation22

∂c

∂t
=

1

rdf−1

∂

∂r

(

rdf−1 r2−dw
∂c

∂r

)

. (1.65)

1.2.2. Fractional Brownian Motion

One of the easiest ways to model anomalous subdiffusion is to replace the

constant diffusivity with a time dependent diffusivity D(t) = αtα−1D. The

evolution equation for the concentration in this case is given by

∂c

∂t
= αtα−1D

∂2c

∂x2
. (1.66)

The solution is a Gaussian distribution

c(x, t) =
1√

4πDtα
exp

(

− x2

4Dtα

)

. (1.67)

The probability density function for this stochastic process is non-

Markovian due to the power law diffusivity. The mean square displacement

is given by

〈x2〉 = 2Dtα = 2Dt2H (1.68)

where H is the Hurst exponent. The fractional diffusion equation in

Eq. (1.66) describes the probability density function for fractional Brow-

nian motion.23 As an aside it is interesting to note that the power law

diffusivity may be expressed as a fractional derivative of a constant,

D(t) =0 D1−α
t (Γ(α)D) , (1.69)

where 0D1−α
t denotes a Riemann-Liouville derivative of order 1 − α (see

further details in the Appendix, Eq.(1.166)).

Starting with Mandelbrot and Van Ness24 there is a vast literature on

fractional Brownian motion as a stochastic process. If we let BH(t) denote

a fractional Brownian motion stochastic process with Hurst exponent H ∈
[0, 1] then three properties of particular note are:
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(i) Correlations

E(BH(t)BH(s)) =
1

2

(

|t|2H + |s|2H − |t− s|2H
)

,

(ii) Self similarity

BH(at) ∼ |a|HBH(t),

(iii) Realizations xB(t) of the process are continuous but nowhere dif-

ferentiable. The graph of xB(t) versus t is a fractal with fractal

dimension d = 2 −H .

Fractional Brownian motion can also be described by an evolution equa-

tion of the form

x(t) = x0 +0 D−α
t F (t). (1.70)

In this equation x(t) denotes the position of a random walker at time t

given that it started at x0 and F (t) is Gaussian white noise with autocor-

relation 〈F (t)F (s)〉 = δ(t− s). The evolution equation, Eq. (1.70), defines

fractional Brownian motion x(t)−x0 as a fractional integral (see Appendix

Eq.(1.158)), of order α, of white noise; and standard Brownian motion as

an ordinary integral of white noise.

Fractional Brownian motion can also be derived from a microscopic

fractional Langevin equation25,26

m
dv

dt
= FH(t) −m

∫ t

0

γ(t− t′)v(t′) dt′ (1.71)

where FH(t) denotes coloured noise with vanishing mean and correla-

tion related to the dissipative memory kernel γ(t) through a fluctuation-

dissipation theorem25

〈FH(t)FH(0)〉 = mkbTγ(t). (1.72)

In the particular case γ(t) = Dα

mkBT t
−α the fractional Langevin equation

m
dv

dt
= FH(t) −m 0Dα−1

t v(t) (1.73)

describes subdiffusion for 0 < α < 1. The probability density function for

trajectories that satisfy the fractional Langevin equation has been shown

to be23,27 the fractional Brownian motion diffusion equation, Eq. (1.66).

The fractional integral in Eq.(1.73) is a power law weighted average of

the velocity over its entire previous history. This aspect of the dynamics
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is referred to as temporal memory and it is related to the non-Markovian

property. The mathematics of fractional calculus has a long history dating

back to Leibniz (1965) but it has only been in recent decades that frac-

tional calculus has permeated mainstream physics literature. The recent

interest in fractional calculus in physics is largely due to the relevance of

fractional calculus for the physical problem of anomalous diffusion. The

keen student would be well advised to acquaint themselves with some of

the general mathematical results on fractional calculus in the Appendix

before proceeding with the remainder of these notes on fractional diffusion.

1.2.3. Continuous Time Random Walks and Power Laws

It was the man from Ironbark who struck the Sydney town, he
wandered over street and park, he wandered up and down. He
loitered here, he loitered there ...
A.B “Banjo” Paterson
The Bulletin, 17 December 1892.

1.2.3.1. CTRW Master Equations

In the standard random walk the step length is a fixed distance ∆x and the

steps occur at discrete times separated by a fixed time interval ∆t. A more

general random walk can be obtained by choosing a waiting time from a

waiting time probability density before each step and then choosing the step

length from a step length probability density. These more general walks

are Continuous Time Random Walks (CTRWs) . They were introduced by

Montroll and Weiss in 196528 (see also Scher and Lax29 and Montroll and

Shlesinger30).

The fundamental quantity to calculate is the conditional probability

density p(x, t|x0, t0) that a walker starting from position x0 at time t = 0,

is at position x at time t. The conditional probability density qn(x, t|x0, t0)

that after n steps a walker starting at x0 at time t = 0 arrives at position

x at time t satisfies the recursion relation

qn+1(x, t|x0, 0) =

∫ +∞

−∞

(
∫ t

0

Ψ(x− x′, t− t′)qn(x′, t′|x0, 0) dt′
)

dx′

(1.74)

where Ψ(x − x′, t − t′) is the probability density that in a single step a

random walker steps a distance x − x′ after waiting a time t − t′. This

arrival density q satisfies the initial condition

q0(x, t|x0, 0) = δx,x0δ(t)
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and the normalization
∫ +∞

−∞

∫ ∞

0

q0(x
′, t′|x0, 0) dt′ dx′ = 1.

The conditional probability density that a walker arrives at position x

at time t after any number of steps is given by

q(x, t|x0, 0) =

∞
∑

n=0

qn(x, t|x0, 0). (1.75)

After summing over n, and using the initial condition, in the recursion

equation, Eq. (1.74), we can write29

q(x, t|x0, 0) =

∫ +∞

−∞

∫ t

0

Ψ(x′, t′)q(x− x′, t− t′|x0, 0) dt′ dx′ + δ(t)δx,x0 .

(1.76)

In the theory of CTRWs it is assumed that waiting times are indepen-

dent and identically distributed random variables with density ψ(t), t > 0

and step lengths are independent and identically distributed random vari-

ables with density λ(x), x ∈ R. It is further assumed that the waiting times

and step lengths are independent of each other so that

Ψ(x− x′, t− t′) = λ(x− x′)ψ(t− t′). (1.77)

It follows from the normalization of the probability density functions that

ψ(t) =

∫ +∞

−∞

Ψ(x′, t) dx′ (1.78)

and

λ(x) =

∫ ∞

0

Ψ(x, t′) dt′. (1.79)

It is also useful to define the survival probability

Φ(t) = 1 −
∫ t

0

ψ(t′) dt′ =

∫ ∞

t

ψ(t′) dt′ (1.80)

which is the probability that the walker does not step during time interval

t (i.e., the waiting time is greater than t).

The conditional probability density that a walker starting from the ori-

gin at time zero is at position x at time t is now given by28

p(x, t|x0, 0) =

∫ t

0

q(x, t− t′|x0, 0)Φ(t′) dt′. (1.81)
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The right hand side considers all walkers that arrived at x at an earlier

time t′ and thereafter did not step.

The results for the conditional probability densities in Eq. (1.76) and

Eq. (1.81) can be combined to yield the fundamental master equation for

CTRWs,

p(x, t|x0, 0) = Φ(t)δx,x0 +

∫ t

0

ψ(t− t′)

∫ +∞

−∞

λ(x− x′)p(x′, t′|x0, 0) dx′ dt′.

(1.82)

The master equation can be justified using temporal Laplace transforms.

The Laplace transform of Eq. (1.76) yields

q̂(x, u|x0, 0) =

∫ +∞

−∞

Ψ̂(x′, u)q̂(x− x′, u|x0, 0) dx′ + δx,x0 .

The Laplace transform of Eq. (1.81) now yields

p̂(x, u|x0, 0) = q̂(x, u|x0, 0)Φ̂(u)

=

∫ +∞

−∞

Ψ̂(x′, u)Φ̂(u)q̂(x − x′, u|x0, 0) dx′ + Φ̂(u)δx,x0

=

∫ +∞

−∞

Ψ̂(x′, u)p̂(x− x′, u|x0, 0) dx′ + Φ̂(u)δx,x0 .

The master equation, Eq. (1.82), is the inverse Laplace transform of the

above equation. The master equation can also be justified using probability

arguments. The first term represents the persistence of the walker at the

initial position and the second term considers walkers that were at other

positions x′ at time t′ but then stepped to x at time t after waiting a time

t− t′.

In the original formulation of the master equation the steps were as-

sumed to take place on a discrete lattice, so that

p(x, t|x0, 0) = Φ(t)δx,x0 +
∑

x′

∫ t

0

ψ(t− t′)λ(x− x′)p(x′, t′|x0, 0) dt′. (1.83)

The CTRW can also be described using a generalized (gain-loss) master

equation of the form30

dP (x, t)

dt
=

∫ t

0

∑

x′

(K(x, x′; t− t′)P (x′, t′) −K(x′, x; t− t′)P (x, t′)) dt′.

(1.84)

In this equation P (x, t) is the probability for a walker to be at x at time t

and K(x, x′; t− t′) is the probability per unit time for a walker to make a
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transition from x to x′ during time t− t′. The CTRW master equation can

be shown to be equivalent to the generalized master equation if30

K(x, x′; t− t′) = λ(x − x′)φ(t− t′) (1.85)

and

φ̂(u) =
uψ̂(u)

1 − ψ̂(u)
. (1.86)

It is straightforward to extend the CTRW master equation by consid-

ering walkers starting from different starting points. The master equation

for the expected concentration of walkers at position x and t is then31

n(x, t) = Φ(t)n(x, 0) +

∫ +∞

−∞

∫ t

0

n(x′, t′)ψ(t− t′)λ(x− x′) dt′ dx′. (1.87)

We now consider different choices for the densities ψ(t) and λ(x) which

result in different (possibly fractional) diffusion equations. The approach

is as follows; decouple the convolution integrals in the master equation,

Eq. (1.87), use a Fourier transform in space and a Laplace transform in time;

consider asymptotic expansions of the transformed equation for small val-

ues of the Fourier and Laplace variables; carry out inverse Fourier-Laplace

transforms using fractional order differential operators (if needed). Some

general results on fractional order derivatives are provided in the appendix.

Here we introduce the operators as needed.

1.2.3.2. Exponential Waiting Times and Standard Diffusion

The Fourier-Laplace transform of the CTRW master equation yields

ˆ̂n(q, u) = Φ̂(u)n̂(q, 0) + ψ̂(u)λ̂(q)̂̂n(q, u) (1.88)

where q is the Fourier variable and u is the Laplace variable.

The Laplace transform of the survival probability can be written as

Φ̂(u) =
1

u
− ψ̂(u)

u
. (1.89)

To proceed further we assume asymptotic properties for the step length

density and the waiting time density. To begin with we assume that the

step length density has the asymptotic expansion

λ̂(q) ∼ 1 − q2σ2

2
+O(q4), (1.90)
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where

σ2 =

∫

r2λ(r) dr, (1.91)

is finite. This is a general expansion for any even function λ(x) = λ(−x)
with a finite variance σ2. An example of such a density is the Gaussian

density

λ(x) =
1√

2πσ2
exp

(

− x2

2σ2

)

. (1.92)

The Fourier-Laplace CTRW master equation can now be written as

û̂n(q, u) = (1 − ψ̂(u))n̂(q, 0) + uψ̂(u)

(

1 − q2σ2

2

)

ˆ̂n(q, u) (1.93)

Now consider a waiting time density with a finite mean τ then

ψ̂(u) = 1 − τu +O(u2). (1.94)

An example of such a density is the exponential density

ψ(t) =
1

τ
exp

(

− t

τ

)

. (1.95)

It is easy to verify the (memoryless) Markov property that the probability

of waiting a time T > t+ s conditioned on having waited a time T > s is

equivalent to the probability of waiting a time T > t at the outset:

P (T > t) =

∫ ∞

t

1

τ
exp

(

− t
′

τ

)

dt′ = e−
t
τ

so that

P (T > t+ s|T > s) =
P (T > t+ s)

P (T > s)
= e−

t
τ = P (T > t).

Using the exponential waiting time density we now have, to leading

order,

uˆ̂n(q, u) = τun̂(q, 0) + (u− τu2)

(

1 − q2σ2

2

)

ˆ̂n(q, u) (1.96)

which simplifies to

û̂n(q, u) − n̂(q, 0) = −σ
2q2

2τ
n̂(q, u). (1.97)

The inverse Fourier and Laplace transforms now yield the standard diffusion

equation

∂n

∂t
= D

∂2n

∂x2
(1.98)



July 3, 2009 15:39 World Scientific Review Volume - 9in x 6in ”WS-Fractional Diffusion”

An Introduction to Fractional Diffusion 25

where

D =
σ2

2τ
. (1.99)

1.2.3.3. Power Law Waiting Times and Fractional Subdiffusion

The Markovian property of the exponential waiting time density contrasts

with that of a Pareto waiting time density

ψ(t) =
ατα

t1+α
t ∈ [τ,∞], 0 < α < 1. (1.100)

The cummulative distribution is a power law, 1−
(

τ
t

)α
. Three properties of

note are; (i) the mean waiting time is infinite, (ii) the probability of waiting

a time T > t + s, conditioned on having waited a time T > s, is greater

than the probability of waiting a time T > t at the outset (the waiting time

density has a temporal memory ) and (iii) the waiting time density is scale

invariant, ψ(γt) = γ−(1+α)ψ(t).

The asymptotic Laplace transform for the Pareto density is given by a

Tauberian (Abelian) theorem as (see, e.g., Berkowitz et al32)

ψ̂(u) ∼ 1 − Γ(1 − α)ταuα. (1.101)

Again we assume that the step length density is an even function with finite

variance and we substitute the above expansion into the Fourier-Laplace

master equation, Eq. (1.93), retaining only leading order terms. This results

in

uˆ̂n(q, u) − n̂(q, 0) = − q2σ2

2ταΓ(1 − α)
u1−αˆ̂n(q, u), (1.102)

and after carrying out the inverse Fourier-Laplace transform

∂n(x, t)

∂t
= DL−1

(

u1−α∂
2n̂(x, u)

∂x2

)

(1.103)

where

D =
σ2

2ταΓ(1 − α)
. (1.104)

This can be simplified further by using a standard result in fractional cal-

culus33 (see Appendix, Eq.(1.167)),

u1−α ∂
2n̂(x, u)

∂x2
= L

(

0D1−α
t n(x, t)

)

+

(

0D−α
t

∂2n(x, t)

∂x2

∣

∣

∣

∣

t=0

)

. (1.105)
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In this equation 0D1−α
t denotes a Riemann-Liouville fractional derivative of

order α and 0D−α
t denotes a fractional integral of order α. The fractional

integral on the far right hand side of Eq. (1.105) can be shown to be zero

under fairly general conditions34 so that using Eq. (1.105) in Eq. (1.103)

we obtain the celebrated fractional subdiffusion equation

∂n(x, t)

∂t
= D

(

0D1−α
t

∂2n(x, t)

∂x2

)

. (1.106)

This equation can be obtained phenomenologically by combining the con-

tinuity equation

∂n

∂t
= − ∂q

∂x

with an ad-hoc fractional Fick’s law

q(x, t) = −D
(

0D1−α
t

∂n(x, t)

∂x

)

.

The fractional integral in this expression provides a weighted average of the

concentration gradient over the prior history.

The Green’s solution for the subdiffusion equation can be written in

closed form using Fox H functions17 (see Table 1.2). The special case α =

1/2 is more amenable to analysis since the solution in this case can be

written in terms of Meijer G-functions

G(x, t) =
1

√

8πDt
1
2

G3,0
0,3

[

x2

16Dt
1
2

∣

∣

∣

∣ 0, 1
4 ,

1
2

]

(1.107)

that are included as special functions in packages such as Maple and Math-

ematica.

In general the Green’s solution for linear fractional diffusion equations

can be obtained using Fourier-Laplace transform methods. The first step is

to carry out a Fourier transform in space and a Laplace transform in time

using the known results for the Laplace transform of Riemann-Liouville

fractional derivatives. The transformed solution is then obtained as the

solution of an algebraic problem in Fourier-Laplace space. The next step

is to carry out the inverse transforms. In fractional subdiffusion equations

the inverse Fourier transform is straightforward. The inverse Laplace trans-

form can be obtained by first expanding the Laplace transform as a series

expansion in Fox H functions and then perform a term by term inverse

Laplace transform. The advantage of using Fox H functions in this way

is that derivatives of Fox H functions, and (inverse) Laplace transforms of

Fox H functions can be evaluated using index shifting properties.35 The
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review article by Metzler and Klafter17 contains a useful summary of Fox

H function properties including a computable alternating series for their

evaluation.

We now consider the mean square displacement

〈x2(t)〉 =

∫ ∞

−∞

x2G(x, t) dx (1.108)

which can be evaluated using the Fourier-Laplace representation

〈x2(t)〉 = L−1

(

lim
q→0

− d2

dq2
ˆ̂
G(q, u)

)

. (1.109)

After rearranging Eq. (1.102) and using the result that Ĝ(q, 0) = 1 we have

ˆ̂
G(q, u) =

1

u+ q2Du1−α
(1.110)

and then using Eq. (1.109)

〈x2(t)〉 = L−1
(

2Dαu
−1−α

)

=
2D

Γ(1 + α)
tα. (1.111)

1.2.3.4. Subordinated Diffusion

The asymptotic subdiffusion that arises from a CTRW with power law wait-

ing times can be considered as a subordinated Brownian motion stochastic

process. If B(t) denotes a Brownian motion stochastic process then a sub-

ordinated Brownian motion stochastic process B(E(t)) can be generated

from a non-decreasing stochastic process E(t) with values in [0,∞) which

is independent of B(t) and which starts at E(0) = 0. Meerschaert and

Scheffler,36 have shown that there is a one-to-one correspondence between

CTRWs with radially symmetric jumps of finite variance, and processes

of the form B(E(t)), where E(t) is the generalized inverse of a strictly

increasing Lévy process S(t) on [0,∞).

In particular it is a straightforward exercise to show that if n(x, t) is the

Green’s solution of the time fractional subdiffusion equation,

∂n

∂t
=0 D1−α

t

∂2n

∂x2

then

n(x, t) =

∫ ∞

0

n⋆(x, τ)T (τ, t) dτ (1.112)
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where n⋆(x, τ) is the Green’s solution of the standard diffusion equation

∂n

∂τ
=
∂2n

∂x2

and T (τ, t) is defined through the Laplace transform, with respect to t,17

T̂ (τ, u) = uα−1e−τuα

. (1.113)

The density T (τ, t) is related to the one-sided Lévy α-stable density ℓα(z)

through37

T (τ, t) =
t

ατ
α+1

α

ℓα

(

t

τ
1
α

)

. (1.114)

Equation (1.112) defines a subordination process for n(x, t) in terms of

the operational time τ and the physical time t. The operational time is

essentially the number of steps in the walk. In the standard random walk

the number of steps is proportional to the physical time but in the CTRW

with infinite mean waiting times the number of steps is a random variable.

The solution of the time fractional diffusion equation at physical time t is a

weighted average over the operational time of the solution of the standard

diffusion equation.

1.2.3.5. Lévy Flights and Fractional Superdiffusion

We now consider CTRWs with an exponential (Markovian) waiting time

density but a Lévy step length density with power law asymptotics

λ(x) ∼ Aα

σα
|x|−1−α, 1 < α < 2. (1.115)

The Lévy step length density enables walks on all spatial scales.

Our starting point is the Fourier-Laplace transformed master equation,

Eq. (1.88), combined with the Laplace transform of the survival probability,

Eq. (1.89), i.e.,

uˆ̂n(q, u) = (1 − ψ̂(u))n̂(q, 0) + uψ̂(u) λ̂(q)̂̂n(q, u). (1.116)

The exponential waiting time density has a finite mean τ so that ψ̂(u) ∼
1 − τu and then

uˆ̂n(q, u) = τu n̂(q, 0) +
(

u− τu2
)

λ̂(q)̂̂n(q, u). (1.117)

The Fourier transform of the Lévy step length density is given by17

λ̂(q) = exp(−σα|q|α) ∼ 1 − σα|q|α. (1.118)
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The Lévy density can be expressed in terms of Fox H functions38 through

the inverse Fourier transform (see Appendix, Eq.(1.190). If we substitute

Eq. (1.118) into Eq. (1.117) and retain leading order terms then we obtain

uˆ̂n(q, u) − u n̂(q, 0) = −σ
α|q|α
τ

ˆ̂n(q, u), (1.119)

and then after inversion of the Laplace transform

∂ n̂(q, t)

∂t
= −σ

α|q|α
τ

n̂(q, t). (1.120)

It remains to invert the Fourier transform and this can be done using

another standard result of fractional calculus

F
(

∇α
|x|n(x, t)

)

= −|q|α n̂(q, t) (1.121)

where ∇µ
|x| is the Riesz fractional derivative (see Appendix, Eq.(1.173)) and

F denotes the Fourier transform operator. The evolution equation for the

probability density function is now given by

∂n

∂t
= D∇α

|x|n (1.122)

with the diffusion coefficient

D =
σα

τ
. (1.123)

The solution, which can be expressed in terms of Fox H functions (see Table

2), has the asymptotic behaviour17

n(x, t) ∼ σαt

τ |x|1+α
, 1 < α < 2. (1.124)

The mean square displacement diverges in this model, i.e., 〈x2(t)〉 → ∞.

This is an unphysical result but it is partly ameliorated by a non-divergent

pseudo mean square displacement,

〈[x2(t)]〉 ∼ t
2
α , (1.125)

which can be inferred from the finite fractional moment scaling17

〈|x|δ〉 ∼ t
δ
α , 0 < δ < α < 2. (1.126)

The pseudo mean square displacement, Eq. (1.125) characterizes superdif-

fusion scaling for 1 < α < 2.
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1.2.4. Simulating Random Walks for Fractional Diffusion

In this section we describe Monte Carlo methods to simulate random walk

trajectories (and thus generate probability density functions) for standard

diffusion, fractional Brownian motion, subdiffusion, and superdiffusion. Al-

gebraic expressions for the probability density functions are summarized in

Table 1.2.

Table 1.2. Probability density functions for standard and fractional diffu-
sion equations.

Diffusion Process Probability Density Function

standard 1√
4πDt

e−
x2

4Dt Markovian

Gaussian

fBm 1√
4πDtα

e−
x2

4Dtα Non-Markovian

Gaussian

subdiffusion 1√
4πDtα

H2,0
1,2

»

x2

4Dtα

˛

˛

˛

˛

(1 − α/2, α)
(0, 1) (1/2, 1)

–

Non-Markovian

Non-Gaussian

superdiffusion 1
α|x|H

1,1
2,2

»

|x|
(Dt)1/α

˛

˛

˛

˛

(1, 1/α) (1, 1/2)
(1, 1) (1, 1/2)

–

Markovian

Non-Gaussian

The general procedure for simulating a single trajectory is as follows:

(1) Set the starting position of the particle, x, and jump-time, t, to zero.

(2) Generate a random waiting-time, δt, and jump-length, δx, from appro-

priate waiting-time and jump-length densities, ψ(t) and λ(x) respec-

tively.

(3) Update the position of the particle x(t+ δt) = x(t) + δx.

(4) Update the jump-time t = t + δt of the particle. For non-constant

waiting-times (e.g. subdiffusion) both the position of the particle and

its jump-time need to be stored.

(5) Repeat steps 1 to 4 until the new jump-time reaches or exceeds the

required simulation run-time.

The probability density for finding the particle at a particular time and

position can be constructed from an ensemble average over a large number
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of random walk simulations.

1.2.4.1. Generation of waiting-times

In the subdiffusive case we take the waiting-time density as the (shifted)

Pareto law39

ψ (t) =
α/τ

(1 + t/τ)
1+α . (1.127)

The parameters α and τ are the anomalous exponent and the characteristic

time respectively. This probability density function has the asymptotic

scaling

ψ (t) ∼ α

τ

(

t

τ

)−1−α

(1.128)

for long times. A random waiting-time that satisfies the waiting-time den-

sity, Eq. (1.127) can be generated from a uniform distribution ρ(r) dr =

1 dr, r ∈ [0, 1] as follows:

ρ(r) dr = ρ(r(t))
dr

dt
dt = ψ(t) dt (1.129)

but ρ(r(t)) = 1 so that

dr

dt
= ψ(t). (1.130)

The solution of Eq. (1.130), using Eq. (1.127), and the initial condition

r(0) = 0 is given by

r(t) = 1 −
(

1 +
t

τ

)−γ

. (1.131)

We can now invert this equation to find the random waiting time t = δt in

terms of the random number r. This yields

δt = τ
(

(1 − r)
− 1

α − 1
)

(1.132)

where r ∈ (0, 1) is a uniform random number.

For the non-subdiffusive cases we take for simplicity a constant waiting-

time of δt = τ between jumps. The density for this case is simply

ψ(t) = δ(t− τ) (1.133)

though the exponential density

ψ(t) =
1

τ
e−

t
τ (1.134)
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could also be used. In this latter case the generated random waiting-time

is given by

δt = −τ ln(1 − r). (1.135)

1.2.4.2. Generation of jump-lengths

In the case of superdiffusion we generate a jump-length from the Lévy

α-stable probability density using the transformation method described

in:40,41

δx = σ

( − lnu cosφ

cos ((1 − α)φ)

)1− 1
α sin (αφ)

cosφ
(1.136)

where φ = π(v − 1/2), σ is jump-length scale parameter, and u, v ∈ (0, 1)

are two independent uniform random numbers.

For simplicity, the jumps in the non-superdiffusive cases are taken to

the nearest-neighbour grid points only. For the standard diffusion and

subdiffusive cases the particle, after waiting, has to jump either to the left

or right a distance of ∆x. The jump-length, for these cases, is generated

from

δx =







∆x, 0 ≤ r < 1
2

−∆x, 1
2 ≤ r < 1

(1.137)

where r ∈ (0, 1) is uniform random number. The jump density in this case

is

λ(x) =
1

2
δ(x− ∆x) +

1

2
δ(x+ ∆x). (1.138)

In the fractional Brownian case the particle may jump to the left or

right or not jump at all. In this case Eq. (1.137) is modified to (where

0 < α < 1)

δx =























∆x, 0 ≤ r < αnα−1

−∆x, αnα−1 ≤ r < 2αnα−1

0, 2αnα−1 ≤ r < 1

(1.139)

where n is the current step number for the time t = nτ .
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1.2.4.3. Calculation of the Mean-Squared Displacement

To calculate the mean-squared displacement for the non-superdiffusive cases

we simply evaluate the ensemble average of the particles position, x(t), at

each time-step tn = nτ . For simulations with a non-constant waiting time,

this requires a bit of book-keeping as the particles do not necessarily jump at

these times. However the position of the particle for a particular trajectory

can be found from the stored jump-times noting the particles wait at their

current location until the next jump-time. The mean-squared displacement

is estimated using

〈

x2(tn)
〉

≃ 1

M

M
∑

j

[x(tn)]
2

(1.140)

where M is the number of trajectories averaged. This can be compared

with the algebraic expressions for the mean square displacements for subd-

iffusion, Eq. (1.111), and standard diffusion (γ = 1) once the constant D is

estimated. In the case of fractional Brownian motion, we can also compare

with Eq. (1.111) but with denominator set to unity.

In the case of superdiffusion, where the mean-squared displacement di-

verges, we have computed the ensemble average

〈

|x|δ (tn)
〉

≃ 1

M

M
∑

j

[x(tn)]
δ

0 < δ < α (1.141)

to compare with17

〈

|x|δ (t)
〉

=
2

α
(Dt)δ/α Γ (−δ/α) Γ (1 + δ)

Γ (−δ/2)Γ (1 + δ/2)
. (1.142)

1.2.4.4. Probability Density Functions

The waiting-times, δt, and step-lengths, δx, for simulating standard and

fractional diffusion processes are listed in Table 1.3. The diffusion constants

are also listed for the purposes of comparisons with the algebraic formulae

in Table 1.2.

For the simulations presented here we take the relevant length scales

to be ∆x = 1 and σ = 1 and the waiting-time scales τ = 1 for the non-

subdiffusive simulations and τ = 0.1 for the subdiffusive simulations. An

ensemble average of 100,000 trajectories were used to generate the sim-

ulation results for both the mean-squared displacement and probability
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Table 1.3. Waiting times, step lengths and diffusion constants for simulating fractional
diffusion random walks.

random walk δt δx D

standard τ
∆x if 0 ≤ r < 1

2
−∆x if 1

2
≤ r < 1

∆x2

2τ

fBm τ
∆x if 0 ≤ r < αnα−1

−∆x if αnα−1 ≤ r < 2αnα−1

0 if 2αnα−1 ≤ r < 1

∆x2

τα

subdiffusion τ
“

(1 − r)−
1
α − 1

” ∆x if 0 ≤ r < 1
2

−∆x if 1
2
≤ r < 1

∆x2

2ταΓ(1 − α)

superdiffusion τ ∆x

„

− ln u cos φ

cos ((1 − α) φ)

«1− 1
α σα

τ

×
sin (αφ)

cos φ

In the table, r, u, v ∈ (0, 1) are independent random numbers and φ = π(v−1/2), n = t/τ .

densities shown in these notes. In the fractional Brownian motion and sub-

diffusion we took α = 1/2. For the superdiffusive case we used α = 3/2

and calculated the average Eq. (1.141) using δ = 3/4 = α/2. The results

of the simulations are compared with algebraic results in Figs. 1.1–1.4.

Note the log− log scales in the mean-squared displacement plots. The data

values correspond to logarithms of the numbers shown on the axes. In each

case the results of the simulations (open circles) agree with the theoretical

results (solid lines).

1.2.5. Fractional Fokker-Planck Equations

In the CTRWs described above we considered unbiased walks i.e., there was

an equal probability to step left or right in a given step. It is possible to

generalize the analysis to permit a bias, for example the step length density

could be chosen to be a function of position to model the effects of CTRWs

in a space varying force field. The biased CTRWs lead to fractional Fokker-

Planck equations. In these notes we summarize key results that have been

obtained and refer the reader to the original journal articles for details.

In the case of anomalous subdiffusion in an external force field f(x, t)
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Fig. 1.1. Sample trajectories (top left), probability density function (right) and mean-
squared displacement (lower left) for standard diffusion.

two fractional Fokker-Planck equations that have been considered are

∂n(x, t)

∂t
= 0D1−α

t D∇2n(x, t) − 0D1−α
t ∇

(

1

η
f(x, t)n(x, t)

)

(1.143)

and

∂n(x, t)

∂t
= 0D1−α

t D∇2n(x, t) −∇
(

1

η
f(x, t) 0D1−α

t ∇n(x, t)

)

(1.144)

where D is the diffusion coefficient for subdiffusion, Eq. (1.104), and the

coefficents D and η are related through a generalized Einstein relation

D =
kBT

mη
. (1.145)

Neither of the above equations have been derived from CTRWs in the gen-

eral case f = f(x, t). However in the case of subdiffusion in a time inde-

pendent external force field f = f(x) the fractional Fokker-Planck equation
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Fig. 1.2. Sample trajectories (top left), probability density function (right) and log-log
mean-squared displacement (lower left) for fractional Brownian motion with α = 1/2.

Eq. (1.143) has been derived from biased CTRWs42 and in the case of sub-

diffusion in a space independent external force field f = f(t) the second

fractional Fokker-Planck equation Eq. (1.144) has been derived from a gen-

eralized master equation formulation of CTRWs.43

Given that both equations are equivalent in the case of time independent

force fields this suggests that the second formulation might be preferred

for generalizing to f = f(x, t). Another argument in favour of this is

that temporal variations in the external force field occur in physical time

which is different to the operational time for subdiffusion whereas the first

formulation produces a subordination over the same operational time scale.

However if the force field is generated internally (e.g., by ionic concentration

gradients or chemotaxis) then this subordination may be appropriate.

The derivation of a generalized fractional diffusion equation to describe
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Fig. 1.3. Sample trajectories (top left), probability density function (right) and log-log
mean-squared displacement (lower left) for fractional subdiffusion with α = 1/2.

fractional diffusion in an external (or internal) time and space varying force

field is still an open problem.

1.2.6. Fractional Reaction-Diffusion Equations

The CTRW formalism can also be extended to accommodate source or sink

terms arising from reactions. These generalized CTRWs lead to fractional

reaction-diffusion equations. Again, in these notes we simply summarize

key results and refer the reader to the original journal articles for details.

In early CTRW formulations of fractional reaction-diffusion44 a time

fractional derivative was applied to the spatial diffusion term but not the

reaction terms. However in other studies it was suggested that the time

fractional derivative should operate equally on both terms.39,45 This second

formulation was motivated by considerations of subordination where reac-
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Fig. 1.4. Sample trajectories (top left), probability density function (right) and log-log
pseudo mean-squared displacement with δ = 3/4 (lower left) for fractional superdiffusion
with α = 3/2.

tions and diffusions are affected by the same operational time scales. More

recently, at least in the case of linear reaction dynamics, it was shown31,46

that neither approach properly describes subdiffusion with prescribed lin-

ear reaction kinetics. In the particular case where the reaction dynamics

models exponential growth (+k) or decay (−k) during the CTRW waiting

time intervals the CTRW master equation yields the balance equation31

n(x, t) = Φ(t)e±ktn(x, 0)+

∫ ∞

−∞

∫ t

0

n(x′, t′)e±k(t−t′)ψ(t−t′)λ(x−x′) dt′ dx′

(1.146)

and the governing fractional reaction diffusion equation is given by31

∂n

∂t
= D e±kt

0D1−α
t

(

e∓kt ∂
2n

∂x2

)

± kn. (1.147)
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The above formalism has also been extended to multispecies subdiffusion

with linear reaction kinetics.47 Although some progress has been made in

extending CTRWs to include nonlinear reaction kinetics48 the derivation

of general nonlinear fractional reaction diffusion equations is still an open

problem. A possible generalization of the balance equation, Eq.(1.146), for

nonlinear reactions is to replace the linear evolution operator e±kt in this

equation with a nonlinear evolution operator.

1.2.7. Fractional Diffusion Based Models

In addition to the fractional diffusion equations derived from CTRWs there

are numerous other fractional diffusion equations that have been studied

as models for physical, social or economic systems, with varying levels of

justification. Examples include:

Space-time fractional Fokker-Planck equation17

∂w

∂t
= D1−α

t

(

∂

∂x

V ′(x)

η
+K∇|x|µ

)

w. (1.148)

Space-time fractional diffusion model for plasmas49

Dβ
t P = χ∇|x|αP. (1.149)

Fractional Black-Scholes model for option prices50

rV (x, t) =
∂V (x, t)

∂t
+
(

r + σα sec(
απ

2
)
) ∂V

∂x
− σα sec(

απ

2
)Dα

xV. (1.150)

Fractional cable equation for nerve cells51

rmcm
∂V

∂t
=

drm
4rL(γ)

D1−γ
t

(

∂2V

∂x2

)

−D1−κ
t (V − rmie). (1.151)

1.2.8. Power Laws and Fractional Diffusion

An average individual who seeks a friend twice his height would fail. On
the other hand, one who has an average income will have no trouble in
discovering a richer person with twice his income, and that richer person
may, with a little diligence, locate a third party with twice his income,
etc.
Elliot Montroll and Michael Shlesinger (1984)30

In the above sections we showed how CTRWs with asymptotic power

law waiting time densities result in subdiffusion and CTRWs with asymp-

totic power law step length densities result in superdiffusion. We conclude

these notes by commenting on possible origins of these power laws. As
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a first general remark, power laws f(x) are scale invariant functions, i.e.,

f(λx) = λαf(x) for some exponent α and all scale factors λ. Power law

scaling is a characteristic feature of fractals, and power law distributions

have been found to characterize numerous real world data sets52 in which

the complexity might be expected to extend over a large range of spatial

or temporal scales.

A possible mechanism that has been suggested for power law waiting

time densities in CTRWs53 is that the random walker moves in an environ-

ment with an exponential distribution of trap binding energies

ρ(E) =
1

E0
e−

E
E0 (1.152)

with thermally activated trapping times

τ = e
E

kBT . (1.153)

The waiting time density follows as

ψ(τ)dτ = ρ(E)
dE

dτ
dτ

=
1

E0
e
− E

E0

(

kBT

τ

)

dτ

=
1

E0
τ−

kT
E0

(

kBT

τ

)

dτ

=

(

kBT

E0

)

τ−
kT
E0

−1 dτ,

so that

ψ(t) = αt−1−α. (1.154)

Power law step length densities describe so called Lévy flights and they

can be motivated by considering a generalized Central Limit Theorem.54 In

the standard Central Limit Theorem the normal distribution is the limiting

stable law for the distribution of the normalized sum of random variables

X1 +X2 + . . .XN

N
1
2

.

The proof of this is dependent on the X having a finite mean 〈X〉 and vari-

ance 〈X2〉. The probability density for the normalized sum of the random

variables is the probability density for the position of the walker after N

steps.

If the X do not have a finite variance then the sum of N steps also has

infinite variance. It is then natural to seek a probability step length density
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with the same form as the probability density for the normalized sum of

N steps in the limit of large N . This suggests a scale invariant function,

and Paul Lévy was able to show that, if the variance is infinite, then the

normalized sum

X1 +X2 + . . . XN

Nα

is governed by a symmetric stable law that does not decay exponentially

as |x| → ∞ but instead it has a power law tail ∼ C|x|−1−α. The variance

is infinite for 0 < α < 2. The mean is infinite 0 < α < 1 and this is

unphysical so the range is restricted to 1 < α < 2. The solution of the

space fractional diffusion equation, Eq. (1.122), is precisely the Lévy stable

distribution, represented as a Fox H function in Table 1.2 (also see the

Appendix, Eq.(1.190)).

1.3. Appendix: Introduction to Fractional Calculus

One can ask what would be a differential having as its exponent a fraction.
Although this seems removed from Geometry . . . it appears that one day
these paradoxes will yield useful consequences.
Gottfried Leibniz (1695)

There are different possible ways to define fractional derivatives, all

based on generalizing well known results in the ordinary calculus. Here we

focus attention on the Riemann-Liouville definition although other defini-

tions will be introduced through Fourier and Laplace transform involving

fractional powers of the transform variables. Further details can be found

in the excellent reference books by Oldham and Spanier (1974),33 Miller

and Ross (1993)55 and Podlubny (1999).56

As a first introduction it is constructive to consider ordinary derivatives

of power laws f(x) = xp then for integer n > 0

dnf

dxn
= p(p− 1) . . . (p− n− 1)xp−n

=
p!

(p− n)!
xp−n

=
Γ(p+ 1)xp−n

Γ(p− n+ 1)
(1.155)

where we have used the definition of the Gamma function

Γ(α+ 1) =

∫ ∞

0

e−ttα dt ∀α ∈ R (1.156)
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and the result that n! = Γ(n + 1), n ∈ N. The result on the right hand

side of Eq. (1.155) is well defined for n ∈ R
+ and if n is non-integer this

can be considered as a fractional derivative of a power law. An example is

d
1
2

dx
1
2

xp =
Γ(p+ 1)xp− 1

2

Γ(p+ 1
2 )

A more general definition of a fractional derivative (that reproduces the

above results for power laws) is the so called Riemann-Liouville fractional

derivative which is in turn based on a Riemann-Liouville fractional integral.

1.3.1. Riemann-Liouville Fractional Integral

Consider the n fold integral (n ∈ N)

d−nf(x)

dx−n
=

∫ x

0

(
∫ xn−1

0

. . .

(
∫ x2

0

(
∫ x1

0

f(x0)dx0

)

dx1

)

. . .

)

dxn−1

=
1

Γ(n)

∫ x

0

f(y)

(x − y)−n+1
dy (1.157)

where the compact expression on the right hand side is known as Cauchy’s

formula. This single integral is well defined for certain non-integer values

of n which leads to the Riemann-Liouville definition of a fractional integral

0D−q
x =

d−qf(x)

dx−q
=

1

Γ(q)

∫ x

0

f(y)

(x − y)−q+1
dy, q ∈ R

+. (1.158)

The integral is improper for q < 1 but converges for 0 < q < 1. Note too

that the integral diverges if q ≤ 0 so the above formula will not work for a

fractional derivative Dα
x with α > 0.

The formula for the fractional integral in Eq. (1.158) defines a weighted

average of the function using a power law weighting function. A geometric

interpretation of the fractional integral has recently been given by Pod-

lubny.57 Consider an auxiliary function

g(y) =
1

Γ(q + 1)
(xq − (x− y)q) (1.159)

and plot g(y) versus y for 0 < y < x. For each y along this curve construct a

fence with a height f(y). The standard integral
∫ x

0
f(y) dy is the area of the

projection of this fence onto the (y, f(y)) plane and the fractional integral

0D−q
x f is the area of the projection of the fence onto the (g(y), f(y)) plane.
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The Riemann-Liouville integral defined above is called a left-sided frac-

tional integral. The right-sided Riemann-Liouville integral is defined as

xD−q
a =

d−qf(x)

dx−q
=

1

Γ(q)

∫ a

x

f(y)

(x − y)−q+1
dy q ∈ R

+. (1.160)

Usually we will deal with a left-sided fractional integral and omit the zero

subscript.

1.3.2. Riemann-Liouville Fractional Derivative

The Riemann-Liouville definition of a fractional derivative is the ordinary

derivative of a fractional integral. Formally we define the Riemann-Liouville

fractional derivative

Dq
xf(x) =

dqf(x)

dxq
=

dn

dxn

(

d−(n−q)f(x)

dx−(n−q)

)

q ∈ R
+, n = ⌊q⌋ + 1.

(1.161)

Examples

D
1
2
x x

p =
d

1
2 xp

dx
1
2

=
d

dx

(

d−
1
2 xp

dx−
1
2

)

=
d

dx

(

1

Γ(1
2 )

∫ x

0

yp

(x − y)
1
2

dy

)

=
Γ(p+ 1)xp− 1

2

Γ(p+ 1
2 )

D
1
2
x e

x =
x−

1
2

Γ(1
2 )

1F1(1,
1

2
, x)

Dα
x (constant) =

x−α

Γ(1 − α)
(constant)

Dα
xx

p =
Γ(p+ 1)

Γ(p− α+ 1)
xp−α

1.3.2.1. Tautochrone Problem

One of the earliest applications of fractional calculus was in Abel’s (1823)

solution of the tautochrone problem (see for example Miller and Ross55); to

find the shape of wire x(y) such that the time of descent, τ , of a frictionless

bead falling under gravity is a constant independent of the starting point.

Conservation of energy for this problem yields

1

2
v2 = g(h− y) ⇒ v =

√

2g(h− y).
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The velocity v can also be related to the arc length s and thus the shape

of the wire by

v =
ds

dt
=

(

√

1 +
(

dx
dy

)2
)

dy

dt
.

After equating the two expressions for the velocity we now have

√

2g(h− y) =

(

√

1 +
(

dx
dy

)2
)

dy

dt
.

This is separable and thus

∫ τ

0

√

2g dt =

∫ h

0

√

1 +
(

dx
dy

)2

√
h− y

dy =

∫ h

0

f(y)

(h− y)
1
2

dy

where the shape of the wire x(y) is governed by the differential equation

dx

dy
=
√

f2(y) − 1. (1.162)

The steps to find f(y) now follow as

√

2gτ =

∫ h

0

f(y)

(h− y)
1
2

dy

=
√
πD− 1

2

h f(h)

⇒ D
1
2

h

√

2gτ =
√
πD 1

2
hD

− 1
2

h f(h) =
√
πf(h)

(

1
√
π
√
h

)

√

2gτ =
√
πf(h)

f(y) =

√
2g

π

√

τ2

y
.

Of particular note in this application is that the fractional derivative w.r.t.

h of the constant
√

2gτ , yields a non-zero function of h.

The differential equation for the shape of the wire can now be written

as

dx

dy
=

√

2gτ2

π2y
− 1, (1.163)
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with parametric solution

x = a(θ + sin θ)

y = a(1 − cos(θ))

which describes a cycloid. The cycloid is also the solution to the brachis-

tochrone problem – the shape of the wire that results in the fastest path

from the point of release.

1.3.3. Basic Properties of Fractional Calculus

The Riemann-Liouville fractional derivative Dq
xf(x) satisfies the following

properties:

(i) D0
xf(x) = f(x) identity property.

(ii) Dq
xf(x) = f(x) is a standard derivative if q ∈ N.

(iii) Dq
x [af(x) + bg(x)] = aDq

xf(x) + bDq
xg(x) linearity property.

(iv) Dα
x [f(x)g(x)] =

∞
∑

m=0

(

α

m

)

Dm
x [f(x)]Dα−m

x [g(x)] Leibniz product rule.

The Riemann-Liouville fractional integral D−q
x f(x) q > 0 satisfies the

above properties together with

D−q
x (D−p

x f(x)) = D−q−p
x f(x) semi-group property.

1.3.4. Fourier and Laplace Transforms and Fractional Cal-

culus

Here we use the notation; L to denote a Laplace transform with Laplace

variable u; F to denote a Fourier transform with Fourier variable q; Dα
t to

denote a generic fractional derivative w.r.t. t of order α.

The Fourier transform pairs are

ŷ(q) =

∫ +∞

−∞

eiqxy(x) dx, y(x) =
1

2π

∫ +∞

−∞

e−iqxŷ(q) dx, (1.164)

and the Laplace transform pairs are

ŷ(u) =

∫ ∞

0

e−uty(t) dt, y(t) =

∫ c+i∞

c−i∞

eutŷ(u) du. (1.165)

Some transform results for fractional derivatives are as follows:
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(i) Riemann-Liouville

Dα
t y(t) =

d

dt

(

1

Γ(α)

∫ t

0

y(s)

(t− s)1−α
ds

)

0 < α < 1 (1.166)

L (Dα
t y(t)) = uαŷ(u) −

(

Dα−1
t y(t)

)
∣

∣

t=0
(1.167)

F (Dα
x y(x)) = (iq)αŷ(q) (1.168)

(ii) Grunwald-Letnikov

Dα
t y(t) = lim

h→0

1

hα

∞
∑

j=0

(−1)j Γ(α+ 1)

Γ(j + 1)Γ(α− j + 1)
y(t− jh) (1.169)

L (Dα
t y(t)) = uαŷ(u) (1.170)

(iii) Caputo

Dα
t y(t) =

(

1

Γ(1 − α)

∫ t

0

d
dsy(s)

(t− s)α
ds

)

0 < α < 1 (1.171)

L (Dα
t y(t)) = uαŷ(u) −

(

uα−1y(0)
)

(1.172)

(iv) Riesz

∇α
|x|y(x) = − 1

2 cos(πα
2 )

(−∞Dα
x y(x) +x Dα

∞y(x)) , 1 < α < 2 (1.173)

where −∞Dα
x and xDα

∞ are left-sided and right-sided Riemann-Liouville

fractional derivatives and

F
(

∇α
|x|y(x)

)

= −|q|αŷ(q). (1.174)

1.3.5. Special Functions for Fractional Calculus

Mittag-Leffler Function

Eα(z) =

∞
∑

k=0

zk

Γ(αk + 1)
α > 0 (1.175)

L
(

Eα(−
(

t

τ

)α

)

)

=
1

u+ u1−α

τα

α > 0 (1.176)
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E1(z) =

∞
∑

k=0

zk

Γ(k + 1)
=

∞
∑

k=0

zk

k!
= ez

Asymptotics

Eα

(

−
(

t

τ

)α)

∼ exp

(

− 1

Γ(1 + α)

(

t

τ

)α)

t≪ τ, 0 < α < 1

(1.177)

Eα

(

−
(

t

τ

)α)

∼ 1

Γ(1 − α)

(

t

τ

)−α

t≫ τ, 0 < α < 1 (1.178)

Generalized Mittag-Leffler Function

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
α > 0, β > 0 (1.179)

E1,1(z) = ez (1.180)

E1,2(z) =
ez − 1

z
(1.181)

E2,2(z) =
sinh(

√
z)√

z
(1.182)

L
(

tαk+β−1E
(k)
α,β(±atα)

)

=
k!uα−β

(uα ∓ a)k+1
(1.183)

where (k) denotes the kth derivative with respect to z.

L
(

t
k−1
2 E

(k)
1
2 , 12

(±a
√
t)
)

=
k!

(
√
u∓ a)k+1

(1.184)

Example: The fractional differential equation

D
1
2
t y(t) = y(t)

with initial condition

D− 1
2

t y(t)
∣

∣

∣

t=0
= C
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has solution t−
1
2E 1

2 , 1
2
(
√
t). This can be shown as follows

L
(

D
1
2
t y(t)

)

= L (y(t))

u
1
2 ŷ(u) − D− 1

2
t y(t)

∣

∣

∣

t=0
= ŷ(u)

⇒ ŷ(u) =
C

u
1
2 − 1

⇒ y(t) = L−1

(

C

u
1
2 − 1

)

= t−
1
2E 1

2 , 1
2
(
√
t)

.

Fox H Function.17,35

Hm,n
p,q (z) ≡ 1

2πi

∫

C

∏n
k=1 Γ(1 − aj +Ajζ)

∏m
j=1 Γ(bj −Bjζ)

∏q
j=m+1 Γ(1 − bj +Bjζ)

∏p
j=n+1 Γ(aj −Ajζ)

zζ dζ

= Hm,n
p,q

[

z

∣

∣

∣

∣

(a1, A1) . . . (ap, Ap)

(b1, B1) . . . (bq, Bq)

]

(1.185)

Miscellaneous Results

(i)

H1,0
0,1

[

z

∣

∣

∣

∣ (b, 1)

]

= zbe−z (1.186)

(ii)

H1,1
1,2

[

z

∣

∣

∣

∣

(0, 1)

(0, 1), (1 − β, α)

]

= Eα,β(−z) (1.187)

(iii)

L
{

tωHm,n
p,q

[

zt−σ

∣

∣

∣

∣

(ap, Ap)

(bq, Bq)

]}

= u−ω−1Hm+1,n
p,q+1

[

zuσ

∣

∣

∣

∣

(ap, Ap)

(1 + ω, σ) (bq, Bq)

]

(1.188)

(iv)

0Dν
z

{

zαHm,n
p,q

[

(az)β

∣

∣

∣

∣

(ap, Ap)

(bq, Bq)

]}

= zα−νHm,n+1
p+1,q+1

[

(az)β

∣

∣

∣

∣

(−α, β), (ap, Ap)

(bq, Bq) (ν − α, β)

]

(1.189)
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(v)

F−1 (exp(−Dαt|q|α)) =
1

α|x|H
1,1
2,2

[ |x|
(Dαt)

1
α

∣

∣

∣

∣

(1, 1
α ), (1, 1

2 )

(1, 1) (1, 1
2 )

]

(1.190)

The final result above defines the Lévy stable density in terms of Fox H

functions.38
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