
An Introduction to Golay Complementary Sequences

Elana Kalashnikov
Department of Mathematics, University of Alberta

INTRODUCTION

Golay Complementary Sequences were first intro-
duced by Marcel Golay in 1949, but were formally de-
fined in his 1960 article “Complementary Series” [2].
They have many applications: Golay used them in in-
frared multislit spectrometry, and more recently, they
have been applied to Orthogonal Frequency-Division
Multiplexing [19]. Aside from the applications, they
are of mathematic interest because of the “deep seated
symmetries which characterize them,” [2] and because
of the challenge they present in both constructing them
and enumerating them. There are still many open ques-
tions about both Golay sequences and their extensions.
In this paper, I will discuss the development of Golay
sequences over the last decades, and present the main
results.

First, I will discuss Golay sequences as Golay him-
self defined them, presenting his results on their lengths
and his direct and recursive constructions. I will then
discuss the broadest generalization yet defined, Golay
array pairs. It is fruitful to understand complementary
sequences as a special case of Golay array pairs, rather
than Golay array pairs simply as an extension of the
more fundamental complementary sequences. First, I
will discuss their basic properties, and then the ways in
which they can be transformed into higher or lower di-
mensional arrays. Secondly, within the context of Go-
lay array pairs, I will discuss the other main general-
izations and developments, beginning with Jedwab and
Davis’ non-recursive structure, which led to the division
of standard and non-standard Golay sequences, both of
which I will discuss. Thirdly, I will present the basic ex-
tensions of Golay sequences: Golay sets, and multiple
L-shift complementary sequences.

1. ORIGINAL GOLAY SEQUENCES

1.1. Definitions

Golay defined his “complementary series”, which we
call sequences, in his 1961 paper ([2]) in three equivalent
ways. A proof of equivalence will follow the definitions.

For the first definition, we need the notion of a separa-
tion of a sequence. A separation of length j of sequence
a=
(
a0 a1 · · · an−1

)
, are the pairs (ai, ai+j) – that is,

pairs of elements of the sequence separated by j.
Definition 1.1.1: Let a=

(
a0 a1 · · · an−1

)
and

b=
(
b0 b1 · · · bn−1

)
be two length n sequences with

ak, bk ∈ {−1, 1} ∀ 0 ≤ k ≤ n − 1. Then (a, b) are a Go-

lay complementary pairs if, under any given separation
j, the number of like pairs in a is equal to the number of
unlike pairs in b. a and b are then Golay sequences.

Example 1.1.2:
(

1 1 −1 1
)

and
(

1 1 1 −1
)

are a
Golay complementary pair.

This definition, however, cannot easily accommodate
important extensions (such as Golay sequences in non-
binary alphabets). Thus, the second definition,

Definition 1.1.3: Let a =
(
a0 a1 · · · an−1

)
and

b =
(
b0 b1 · · · bn−1

)
be two length n sequences with

ak, bk ∈ {−1,+1} ∀ 0 ≤ k ≤ n− 1. Let

Ca (j) :=

n−1−j∑
k=0

akak+j

Then (a, b) are a Golay complementary pair if for every
0 < j ≤ n− 1.

Ca (j) + Cb (j) = 0

For a=
(
a0 a1 · · · an−1

)
a length n sequences, the

polynomial in z ∈ C associated with a is a (z) =∑n−1
k=0 akz

kThis leads to a third definition of the original
Golay Complementary Pairs.

Definition 1.1.4: Let a =
(
a0 a1 · · · an−1

)
and

b=
(
b0 b1 · · · bn−1

)
be two length n sequences with

ak, bk ∈ {−1,+1} ∀ 0 ≤ k ≤ n − 1. Then (a, b) are
a Golay complementary pair if

a (z) a
(
z−1
)

+ b (z) b
(
z−1
)

= 2n

For a sequence a, let oaj be the number of unlike pairs,
and eaj the number of like pairs, of elements of sequence
a under separation j for 0 < j ≤ n− 1.

These three definitions are equivalent, and are use-
ful in different contexts. The first definition is primar-
ily useful as an intuitive way of seeing the properties of
such pairs of sequences, without formulas.

Proposition 1.1.5: Definitions 1.1.1, 1.1.3, and 1.1.4 are
equivalent

Proof: Let a =
(
a0 a1 · · · an−1

)
and b =(

b0 b1 · · · bn−1
)

be two length n sequences with
ak, bk ∈ {−1,+1} ∀ 0 ≤ k ≤ n − 1. Assume Definition
1. By assumption, there are oaj like pairs for sequence
b under the same separation, and n − 1 − j−oaj unlike
pairs of sequence b. There are n − 1 − j− oaj like pairs
for sequence a. Then

n−1−j∑
k=0

akak+j +

n−1−j∑
k=0

bkbk+j

= (n− 1− j − oaj−oaj) + (oaj − (n− 1− j − oaj)) = 0
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So (a,b) are a Golay pair by Definition 3. Now note that

a (z) a
(
z−1
)

=

(
n−1∑
k=0

akz
k

)(
n−1∑
k=0

akz
−k

)

=

n−1∑
k=0

a2k +

n−1∑
j=1

n−1−j∑
k=0

akak+j(z
j

+ z−j)

= n+

n−1∑
j=1

n−1−j∑
k=0

akak+j(z
j

+ z−j)

Thus,

a (z) a
(
z−1
)

+ b (z) b
(
z−1
)

= n+

n−1∑
j=1

n−1−j∑
k=0

akak+j(z
j

+ z−j)

+ n+

n−1∑
j=1

n−1−j∑
k=0

bkbk+j(z
j

+ z−j)

= 2n+

n−1∑
j=1

n−1−j∑
k=0

(akak+j + bkbk+j)(z
j

+ z−j)

= 2n

So a and b satisfy Definition 4.
Now suppose that a and b are a Golay pair by Def-

inition 4. I will show that this means they are a Go-
lay Pair by Definition 1. As we see from above, if
a (z) a

(
z−1
)

+ b (z) b
(
z−1
)

= 2n, then

2n+

n−1∑
k=1

n−1−j∑
j=0

(akak+j + bkbk+j)(z
j

+ z−j) = 2n

So
n−1−j∑
j=0

(akak+j + bkbk+j)(z
j

+ z−j) = 0 for all z ∈ C

which implies that

n−1−j∑
k=0

akak+j +

n−1−j∑
k=0

bkbk+j

= n− 1− oaj − oaj + ebj − (n− 1− ebj)
= 0 for every 0 < j ≤ n− 1

Thus, oaj = ebj , so a and b are a Golay pair by Defini-
tion 1.

1.2. Lengths for which Golay Sequences exist

Golay sequences can only exist for certain lengths, a
fact which may be somewhat surprising at first glance.

While a chief difficulty is finding Golay sequences, it is
helpful to find some necessary conditions on the lengths
of Golay sequences. Thus, as part of the project of dis-
covering which length Golay sequences exist, we will
present some basic restrictions on possible lengths.

Proposition 1.2.1: If (a,b) are a Golay pair of length n,
then

a. n is the sum of two integer squares [2]

b. n is even [2]

c. n is not divisible by integer p, where p is a prime
number and p ≡ 3 mod 4 [17].

Proof: Let a and b be a Golay complementary pair.

a. Using definition 1.1.4 of a Golay complementary
pair, we find

a (z) a
(
z−1
)

+ b (z) b
(
z−1
)

= 2n

a (1)
2

+ b (1)
2

= 2n

(
a (1) + b (1)

2

)2

+

(
a (1)− b (1)

2

)2

= n

a (1) = oa1 (1 + (−1)) + n1 (1 + 1) +
n2 (−1 + (−1)) = 2 (n1 − n2) , where n1 + n2 =
n − 1, and n1, n2 ∈ Z and positive. Similarly for
b(1). Thus

a (1) + b (1)

2
,
a (1)− b (1)

2
∈ Z

So this gives us that the length of a Golay sequence
must be the sum of two integer squares.

b. From [16], [5],

oaj + eaj = n− j

and

Ca (j) = eaj − oaj

and

n−1−j∏
k=0

akak+j = (−1)
oa = (−1)

(n−j−Ca(j))/2

∏n−2
k=0 akak+1

∏0
k=0 akak+n−1

= (a0a1) (a1a2) (a2a3) · · · (an−2an−1) (a0an−1)

= a20a
2
1 · · · a2n−1 = 1
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= (−1)
(n−1−Ca(1))/2(−1)

(n−(n−1)−Ca(n−1))/2

= (−1)
(n−Ca(1)−Ca(n−1))/2

Ca (1) + Ca (n− 1) = n (mod 4)

This also holds for b, the Golay complementary se-
quence which pairs with a. Thus

Ca (1)+Ca (n− 1)+Cb (1)+Cb (n− 1) = 0 = 2n (mod 4)

So n is even.

c. Because of its length, the proof of this is not in-
cluded. Refer to [17].

1.3. Recursive Methods of Producing Golay Sequences

Golay sequences, however, are useful only if they ex-
ist. Necessary conditions on the lengths of Golay se-
quences do not help with producing them. One way to
actually find Golay sequences is to produce them from
already known Golay sequences, that is, recursively. Be-
low, I begin by reviewing some operations on sequences
in order to make notation simpler when I discuss the re-
cursive methods.

Let a =
(
a0 a1 · · · an−1

)
be a length n sequence, b =(

b0 b1 · · · bm−1
)

a length m sequence.

• Multiplication by a constant:
ca :=

(
ca0 ca1 · · · can−1

)
, for c a constant

• Reversal:
ã :=

(
an−1 an−2 · · · a0

)
• Altering:
ǎ:=

(
(−1)

0
a0 (−1)

1
a1 · · · (−1)

n−1
an−1

)
• Concatenation:
a|b :=

(
a0 a1 · · · an−1 b0 b1 · · · bm−1

)
• Interleaving:
a ∼ b :=

(
a0 b0 a1 b1 · · · an−1 bm−1

)
• Tensor product:
a⊗b :=

(
a0b a1b · · · an−1b

)
a sequence of length

mn

• Addition (take m = n):
a+ b :=

(
a0 + b0 a1 + b1 · · · an−1 + bn−1

)
Result 1.3.1 Let a =

(
a0 a1 · · · an−1

)
and b =(

b0 b1 · · · bn−1
)
be two length n sequences that form

a Golay Complementary pair. Then reversing, negat-
ing (multiplying by c = −1), or altering either a or b,
or both, still gives a Golay pair. Also, pairs (a |b, a| (−b))
and (a ∼ b, a ∼ (−b)) form Golay pairs of length 2n.

Thus, from Golay sequences of length n, we can find
Golay sequences of length 2n. These basic methods al-
low us quickly extend the number of known Golay se-
quences.

Theorem 1.3.2 Let (a, b) and (c, d) be Golay pairs of
length n and length m respectively. Then (e, f) form a
Golay pair of length mn, where

e (z) =
a (zm) (c (z) + d (z)) + zm(n−1)b (z−m) (c (z)− d (z))

2

f (z) =
b (zm) (c (z) + d (z)) + zm(n−1)a (z−m) (c (z)− d (z))

2

Alternatively, using tensor products,

e =
1

2

[
(c+ d)⊗ a+ (c− d)⊗ b̃

]
and

f =
1

2
[(c+ d)⊗ b− (c− d)⊗ ã]

Proof: Details are omitted, but one should show that
e (z) e

(
z−1
)
+f (z) f

(
z−1
)

= 2n by using the above con-
struction.

There are Golay sequence pairs of length 2, 10, and
26 (see [2] for examples). From the above theorem, we
then know that there are Golay sequence pairs of length
2a10b26c, for all a, b, c ∈ Z, a, b, c ≥ 0. Giving them
explicitly is another problem, however. Golay, in his
original paper [2], provided a direct construction using
Boolean functions for length n=2m, which may be of in-
terest to the reader.

Thus far, we have defined Golay complementary
sequences, proven some necessary conditions on the
length of such sequences, and given recursive methods
for finding more such sequences. Much of this was done
by Golay early on. Now we move on to a more general
construction.

2. GOLAY ARRAY PAIRS

In [10], Fiedler, Jedwab, and Parker argue that a “Go-
lay complementary sequence is naturally viewed as a
projection of a multi-dimensional Golay array.” A Go-
lay complementary sequence is the simplest example of
a Golay array pair (for the explicit relation between ar-
rays and sequences, see Definition 2.1.3). Because this
is among the most recent and most significant general-
izations, I will use the Golay array structure in order to
introduce the other extensions of Golay complementary
sequences. A Golay array pair generalizes a Golay se-
quences both in terms of its dimensions and in terms of
the entries of the sequence.
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2.1. Definitions

Definition 2.1.1 An n1 × n2 × · · · × nr array is
an r-dimensional matrix with complex entries A =
(A [i1, · · · , ir]); i1, · · · , ir ∈ Z where A [i1, · · · , ir] =
0 if ∃ j such that ij < 0 or ij ≥ nj . The in-range en-
tries are {A [i1, · · · , ir] | ∀l, 0 ≤ il < nl}. Often, the in-
range entries are constrained to lie in a certain alpha-
bet. If this alphabet is SH =

{
1, E , . . . , EH−1

}
for H

an even integer and E = e
2p
√
−1

H , then we say that it is
an H-phase array. All in-range entries are of the form
A [i1, · · · , ir] = Ea[i1,··· ,ir], a[i1, · · · , ir] ∈ ZH . Then
A′ = a [i1, · · · , ir] is the array over ZH corresponding
to A.

For z a complex number, let z be its complex conju-
gate.

Definition 2.1.2 The aperiodic autocorrelation func-
tion of an n1 × n2 × · · · × nr H-phase array is

CA (u1, · · · , ur)

=
∑
i1

· · ·
∑
ir

A [i1, · · · , ir]A [i1 + u1, · · · , ir + ur]

Definition 2.1.3 An n1 × n2 × · · · × nr Golay array
pair (GAP) is two n1 × n2 × · · · × nr arrays A, B with
the property that CA (u1, · · · , ur) + CB (u1, · · · , ur) =
0, ∀ (u1, · · · , ur) 6= (0, . . . , 0). Clearly, if H=2 and r=1,
then an n1 Golay array pair is an original Golay comple-
mentary sequence pair.

Just as we defined the single variable polynomial as-
sociated with a Golay sequence, we define the poly-
nomial associated with the n1 × n2 × · · · × nr array
A = (A [i1, · · · , ir]) to be

A (z1, . . . zr) =
∑
i1

· · ·
∑
ir

(A [i1, · · · , ir] z1i1 . . . zrir )

For an analogous reason as that for the orig-
inal Golay sequences, an equivalent condi-
tion for A, B (as above) to be a Golay ar-
ray pair is that A (z1, . . . zr)A

(
z−11 , . . . z−1r

)
+

B (z1, . . . zr)B
(
z−11 , . . . z−1r

)
be a constant.

Let A = (A [i1, · · · , ir]) be an n1 × n2 × · · · × nr array.
If A is an H-phase array, define A∗ = (A∗ [i1, · · · , ir])
where

A∗ [i1, · · · , ir] = A [n1 − 1− i1, · · · , nr − 1− ir]

If A is an array over ZH , define

A∗ [i1, · · · , ir] = −A [n1 − 1− i1, · · · , nr − 1− ir]

2.2. Restrictions on Length

Golay complementary sequences were previously
shown to be quite restricted in terms of possible length.

Similarly, there are restrictions on the dimensions of Go-
lay Array Pairs. What about a simpler case: restriction
on lengths in the case of r=1, that is, polyphase Golay
complementary sequences? They are not the same as
those for binary Golay sequences. Already with H=4 (so
that S = {1,−1, i, −i}), we see that there can be odd
length Golay sequences:

Example 2.2.1 [1] Sequences
(

1 1 1 −i i
)

and(
1 i −1 1 −i

)
form a 4-phase Golay sequence pair.

In fact, for lengths less than 13, the only (non trivial)
lengths for which 4-phase Golay sequences do not exist
are lengths 7 and 9 (see [1]).

There is little known about the restrictions on lengths
for polyphase sequences (and arrays of any dimension),
because of the difficulty of performing effective com-
puter searches at higher lengths.

2.3. Recursive Means of Producing Golay Array Pairs

As with Golay complementary sequences, we are con-
cerned with finding Golay array pairs, and one way to
do this is to use known pairs to create more. In fact, we
can use complementary sequences to create Golay array
pairs, and vice versa. The results of this section are taken
from [5] and [10], where proofs are also to be found.

Let n := n1×n2×· · ·×nr;m := m1×m2×· · ·×mr; i :=
i1, i2, · · · , ir; j := j1, j2, · · · , js

Theorem 2.3.1 Suppose there exists binary Golay
complementary sequence pairs of lengths n1, n2, . . . nr.
Then there exists an n1×n2×· · ·×nr binary Golay array
pair.

Because we know that binary Golay complementary
sequence pairs exists for all lengths in the form of
2a10b26c, a, b, c ∈ Z, a, b, c ≥ 0, this theorem gives us
that there exists a binary n1 × n2 × · · · × nr Golay array
pair where ni = 2ai10bi26ci , ai, bi, ci ∈ Z, ai, bi, ci ≥
0, ∀i.

We also have the converse:
Theorem 2.3.2 Suppose there exists an n1×n2×· · ·×nr

binary Golay array pair. Then there exists binary Golay
complementary sequence pairs of lengths n1, n2, . . . nr.

This theorem leads to some obvious restrictions on the
dimensions of binary Golay array pairs. The product of
all the dimensions must either be even or equal to one,
and no dimension can have a prime factor congruent to
3 modulo 4.

The next theorems are used in Jedwab’s three stage
process of producing families of Golay complementary
sequences [10].

For a positive integer n, let n(r) :=

r times︷ ︸︸ ︷
n× · · · × n.

Theorem 2.3.3 Let n ≥ 1 be an integer. Then let
x := x1, x2, . . . xn, and for 0 ≤ k ≤ n an integer, let
ik := ik,1, ik,2, . . . ik,rk and sk := sk,1 × sk,2 × · · · × sk,rk .
Suppose that Ak = (ak [ik]) , Bk = (bk [ik]) form a
Golay array pair over ZH of size sk. Then the arrays
Fn = (fn [i0, i1, . . . , in, x]) , Gn = (gn[i0, i1, . . . , in, x])
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form a Golay array pair of size s0 × s1 × · · · × sn × 2(m)

over ZH where

fn [i0, i1, . . . , in, x]

:=
∑n−1
k=1

(
ak [ik] + a∗k [ik]− bk [ik]− b∗k [ik] + H

2

)
xkxk+1

+
∑n
k=1

(
b∗k−1 [ik−1] + bk [ik]− ak−1 [ik−1]− ak [ik]

)
xk

+
∑n
k=0 ak [ik]

gn [i0, i1, . . . , in, x] := f
′

n [i0, i1, . . . , in, x] + H
2 x1

Where f
′

n [i0, i1, . . . , in, x] is fn [i0, i1, . . . , in, x] with
a0 [i0] and a∗0 [i0] interchanged, and b0 [i0] and b∗0 [i0] in-
terchanged.

This theorem gives a way of taking lower dimensional
arrays and using them to construct suitable higher di-
mensional array pairs. It is the first step by which Jed-
wab produces Golay complementary sequences from
the original Golay array pair. From these higher dimen-
sional arrays, the next step is to produce more such pairs
using affine offsets.

Theorem 2.3.4 Let A = (A [i1, · · · , ir]) and B =
(B [i1, · · · , ir]) be an n1 × n2 × · · · × nr Golay array pair
over ZH . Then for all ek, e

′

0 ∈ ZH , k = 0, 1, . . . , r ,
A′ = (A

′
[i1, · · · , ir]) and B′ = (B

′
[i1, · · · , ir]) form a

Golay array pair, where

A
′
[i1, · · · , ir] = A [i1, · · · , ir] +

r∑
k=1

ekik + e0

B
′
[i1, · · · , ir] = B [i1, · · · , ir] +

r∑
k=1

ekik + e
′

0

This gives us affine offsets of a higher dimensional Go-
lay array pair.

Let φj,k be the projection mapping from r dimen-
sions to r − 1 dimensions which takes an n1 × n2 ×
· · · × nr array A = (A [i1, · · · , ir]) over ZH to
the n1 × · · · × nj−1 × nj+1 × · · · × nk−1×njnk ×
nk+1 × · · · × nr array φj,k (A) = B, where
B [i1, . . . , ij−1, ij+1, . . . , ik−1, ij + sjik, ik+1, . . . , ir] =
A [i1, · · · , ir].

Theorem 2.3.5 Let A = (A [i1, · · · , ir]) and B =
(B [i1, · · · , ir]) be an n1 × n2 × · · · × nr Golay array pair
over ZH . Then φj,k (A) and φj,k (B) are an n1 × · · · ×
nj−1 × nj+1 × · · · × nk−1×njnk × nk+1 × · · · × nr Golay
array pair over ZH .

This theorem allows Golay sequences to be produced
from these higher dimensional Golay array pairs and
their affine offsets. Fiedler, Jedwab, and Parker addi-
tionally prove that the resulting lower dimension array
is independent of the order of the projections (of the
form in Theorem 2.34). This means that a succession of
r − 1 projection mappings applied to an r dimensional
array can be uniquely described by a directed path that
is formed by labeling r vertices 1, 2, . . . , r, and joining
vertices j and k if one of the projection mappings is φj,k.

Thus, the directed path is

φ (1) −→ φ (2) −→ · · · −→ φ(r)

Where φ is a permutation of {1, 2, . . . , r}.
This is the final step that Fiedler, Jedwab, and Parker

present. They use it to generate infinite families of Go-
lay complementary sequences. Of the infinite families
of Golay sequences that they generate, there are two
types – standard, and nonstandard. Standard Golay se-
quences arose from the discovery of the connection of
Golay sequences to the Reed-Muller code, and were first
introduced in [13].

3. STANDARD GOLAY SEQUENCES

3.1. Introduction to OFDM and Peak to Mean Envelope
Power Ratio Reduction

In order to understand the motivation behind the cre-
ation of large sets of Golay complementary sequences,
we must look at orthogonal frequency-division multi-
plexing (OFDM) and the PMEPR (peak to mean enve-
lope power ratio) of Golay complementary sequences.
OFDM is way of transmitting data using multicarriers
which are all orthogonal to each other [8]. The chief
practical difficulty of OFDM is that the peak envelope
power over n carriers can be as much n times the mean
envelope power. It is advantageous to find codes with
have a low PMEPR. Codes, generally speaking, are the
rules by which a piece of information is encoded. Here,
they are chiefly represented as sequences. The code rate
is “the ratio of the number of information bits to the
number of coded bits” [13].

Suppose there are n carriers. As done in [13], let
ai ∈ ZH denote the value of the ith carrier over a certain
symbol period, and fi the frequency of the ith carrier.
Then ai(t) is constant over the symbol period. The se-
quence

(
a0 a1 · · · an−1

)
is a codeword for each sym-

bol period. Let f be a constant and 4f an integer mul-
tiple of the code rate. In order that the fi be orthogonal,
they are constrained by the relation fi = f + i4f . As
before, let E = e

2p
√
−1

H . The OFDM signal that is trans-
mitted is the real part of

s (t) =

n−1∑
i=0

Eai(t)+Hfit

The envelope power Pa(t) of the sequence
a = (a0 a1 . . . an−1) is

Pa (t)
= n+

∑
u 6=0

∑
i Eai(t)−ai+u(t)−Hu4ft

= n+
∑
u 6=0 E−Hu4ftCa (u)

Note that Pa (t) =
∣∣ sa (t)

∣∣2 The peak envelope power
(PEP)of a sequence a is the supremum of Pa (t) over a
symbol period. The PMEPR is PEP/n.
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Claim 3.1.1 A sequence which is a member of Golay
complementary pair has PMEPR less than 2.

Proof: Let a =
(
a0 a1 · · · an−1

)
and b =(

b0 b1 · · · bn−1
)

be a Golay complementary pair. So
we have Ca (u) + Cb (u) = 0. Thus,

Pa (t) + Pb (t) = 2n+
∑
u 6=0

E−Hu4ft[Ca (u) + Cb (u)] = 2n

As Pa (t) =
∣∣ sa (t)

∣∣2 ≥ 0, Pb (t) ≤ 2n. So the PMEPR of
b is less than 2.

3.2. The Reed Muller Code and Generalizations

The Reed Muller Code is an error correcting code.
They are high related to Golay complementary se-
quences, indeed, the Reed Muller Code gives a family
of Golay complementary sequences known as Standard
Golay Complementary Sequences.

Definition 3.2.1 A Generalized Boolean func-
tion is a mapping {0, 1}m→ZH in m {0,1}-valued
variables x1, x2, . . . , xm. It is easily proved that
all generalized Boolean functions can be repre-
sented as a ZH linear combination of the monomi-
als x1, x2, . . . , xm, x1x2, x1x3, . . . , x1x2 · · ·xm.
With every Boolean function f there is an associated
sequence of length 2m:

(
f0 f1 · · · f2m−1

)
. For a

nonnegative integer i ≤ 2m − 1, let i =
∑m−1
k=0 ik2k,

so that
(
i0 i1 · · · im−1

)
is the binary form of i.

Then fi = f( i0 i1 · · · im−1 ) in the vector associated
with f . Alternatively, given a sequence of length 2m,
its algebraic normal form is the generalized Boolean
function associated with it.

Definition 3.2.2 The rth order generalized Reed
Muller code over is the linear code generated (over
ZH , H even) by the Boolean monomials in x1, x2, . . . , xm
of degree at most r. It is denoted RMH(r,m).

For a (non-binary) code, the Lee weight of a codeword
a =

(
a0 a1 · · · an−1

)
in ZH is

wtL (a) =

n−1∑
i=0

min {ai, H − ai mod H }

The Lee distance between two codewords a and b is
dL (a, b) = wtL (a− b mod H)

Theorem 3.2.3 ([4], Theorem 4) The minimum Lee dis-
tance of the RMH(r,m) code is 2m−r.

3.3. Standard Golay Sequences

Davis and Jedwab, in [13], were the first to recog-
nize the connection between Golay complementary se-
quences and the Reed Muller (RM) Codes: that is, stan-
dard Golay sequences are cosets of the first order RM
Code in the second order RM Code.

Theorem 3.3.1 ([10], Theorem 9) Let m ≥ 1, m ∈ Z,
φ be a permutation of {1, 2, . . . ,m}, and
ek, e

′

0 ∈ ZH , k = 0, 1, . . . ,m. Then the sequences a and
b whose algebraic normal forms are a(x1, x2, . . . , xm)
and b(x1, x2, . . . , xm) respectively form a Golay comple-
mentary sequence pair, where

a (x1, x2, . . . , xm)

= H
2

∑m−1
k=1 xφ(k)xφ(k+1) +

∑m
k=1 ekxφ(k) + e0

b (x1, x2, . . . , xm)

= H
2

∑m−1
k=1 xφ(k)xφ(k+1) +

∑m
k=1 ekxφ(k) + e

′

0 + H
2 xφ(1)

For m = 1, there are H2 Golay sequences of length 2m

over ZH of this form, and for m > 1, there are Hm+1m!
2

such sequences.
Paterson, who in [4] generalized the results of Davis

and Jedwab ([13]), used an inductive proof for this the-
orem, which – while less concise than that of Davis and
Jedwab – suggests that standard Golay sequences can be
seen as arising from an “iterative construction method
applied to Golay complementary pairs of length 2”. The
proof of Theorem 3.13 in [10] is, in a way, an extension
of this idea, because it uses the three stage process of
Fiedler, Jedwab, and Parker discussed above. I won’t
discuss the details of the proof, but just the general out-
line.

Stage 1: Clearly, the sequences a and b whose
algebraic normal forms are a (x1, x2, . . . , xm)
and b (x1, x2, . . . , xm) are those that, for all
(x1, x2, . . . , xm) ∈ Zm2 , satisfy
a
(
xm + 2xm−1 + · · ·+ 2m−1x1

)
= H

2

∑m−1
k=1 xφ(k)xφ(k+1) +

∑m
k=1 ekxφ(k) + e0

b
(
xm + 2xm−1 + · · ·+ 2m−1x1

)
= H

2

∑m−1
k=1 xφ(k)xφ(k+1) +

∑m
k=1 ekxφ(k) + e

′

0 + H
2 xφ(1)

Using Theorem 2.33, with input pairs Ak = (0) and
Bk = (0) for all k = 0, 1, . . . , n, we get arrays Fn
and Gn of size 1(n+1) × 2(n) over ZH . Remove all di-
mensions of size 1. We get F ′ = F

′
[x1, · · · , xn] and

G′ = G
′
[x1, · · · , xn] of size 2(n) over ZH , which, for all

(x1, x2, . . . , xn) ∈ Zn2 , satisfy

F
′
[x1, · · · , xn] =

n−1∑
k=1

H

2
xkxk+1

G
′
[x1, · · · , xn] =

n−1∑
k=1

H

2
xkxk+1 +

H

2
x1

So F ′ and G′ form a Golay array pair.
The second step is to use Theorem 2.34, and take affine

offsets. Thus, we know that for all ek, e
′

0 ∈ ZH ,
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k = 0, 1, . . . , n,

f
′
[x1, · · · , xn] =

n−1∑
k=1

H

2
xkxk+1 +

n∑
k=1

xkik + e0

g
′
[x1, · · · , xn] =

n−1∑
k=1

H

2
xkxk+1 +

n∑
k=1

xkik + e
′

0 +
H

2
x1

Then
(
f
′
[x1, · · · , xn]

)
and

(
g
′
[x1, · · · , xn]

)
form a Go-

lay array pair of size 2(n) over ZH . The third stage re-
quires more results given in [10], and so we won’t in-
clude all the steps here. It should be fairly clear, how-
ever, that these arrays can be mapped to the Golay se-
quence pairs of Theorem 3.13.

Despite the advantages of the Reed Muller code, this
construction does not guarantee a low code rate.

Later on, when we consider complementary sets and
multiple L-shift sequences, we will discuss the ways
they have been used to further the ideas in this section.
For now, however, we will turn to non-Standard Golay
sequences.

3.4. Non-Standard Golay Sequences

Until Li and Chu’s 2005 paper [9], it was believed
that standard Golay sequences were the only Golay se-
quences that existed for lengths 2m over Z2k . How-
ever, through exhaustive computer searches, Li and Chu
found 1024 quaternary Golay sequences of length 16
that could not be produced by Theorem 3.31. This dis-
covery prompted investigation into the structure of this
family of Golay sequences (see [6] and [14]), and later
to other families of non-standard Golay sequences (see
[12]).

Lemma 3.4.1 Let A = (A [i1, · · · , ir]) be an
n1×n2×· · ·×nr array over ZH . LetA′ = (A

′
[i1, · · · , ir])

where A
′
[i1, · · · , ir] = A [i1, · · · , ir] + c; c ∈ ZH , and let

A∗ = (A∗ [i1, · · · , ir]) be as usual. Then

CA (u1, · · · , ur) = CA′ (u1, · · · , ur) = CA∗ (u1, · · · , ur),
∀ (u1, · · · , ur) 6= (0, · · · , 0)

Proof: Let (u1, · · · , ur) 6= (0, · · · , 0)

CA′ (u1, · · · , ur)
=
∑
i1
· · ·
∑
ir
EA[i1,··· ,ir]+c−A[i1+u1,··· ,ir+ur]−c

=
∑
i1
· · ·
∑
ir
EA[i1,··· ,ir]−A[i1+u1,··· ,ir+ur]

= CA (u1, · · · , ur)

CA∗ (u1, · · · , ur)
=
∑
i1
· · ·
∑
ir
E−A[n1−1−i1,··· ,nr−1−ir]

+A[n1−1−i1+u1,··· ,nr−1−ir+ur]

=
∑
i1
· · ·
∑
ir
EA[i1,··· ,ir]−A[i1+u1,··· ,ir+ur]

= CA (u1, · · · , ur)

Let A = (A [i1, · · · , ir]) be an n1 × n2 × · · · × nr array
over ZH .

E (A)

:= {(A [i1, · · · , ir] + c | c ∈ ZH)}∪{(A∗ [i1, · · · , ir] + c) |c ∈ ZH}

All arrays in E (A) have identical autocorrelation func-
tions. The number of arrays in E (A) is H or 2H , if
A [i1, · · · , ir] + c = A∗ [i1, · · · , ir] for some c ∈ ZH or
not, respectively.

This construction allows us to formulate the auto-
correlation crossover property, which is how the afore-
mentioned nonstandard quaternary Golay sequences of
length 16 are produced.

Suppose A, A′ , B, and B′ are arrays and that
CA (u1, · · · , ur) = CA′ (u1, · · · , ur) and CB (u1, · · · , ur) =
CB′ (u1, · · · , ur) for all (u1, · · · , ur) 6= (0, · · · , 0). Addi-
tionally, suppose that E (A) 6= E(A′), E (B) 6= E(B′),
and that (A,B) and (A′ ,B′) are Golay array pairs. Then
(A,A′) are called a cross over pair. The cross over prop-
erty then applies – in other words, we know that any
F ∈ E (A) and G ∈ E(B′) form a Golay pair. Similarly,
any F ∈ E

(
A′
)

and G ∈ E(B) form a Golay pair.
We have seen that standard Golay sequences can be

generated using the three stage process with trivial in-
puts in the first stage. Quaternary nonstandard Golay
sequences of length 2m can be produced using the three
stage process – but their inputs are not trivial, but rather
must come from the following cross-over sequences:

Example 3.4.2 (Thm 12) Let a =(
0 0 0 2 0 0 2 0

)
and b =

(
0 1 1 2 0 3 3 2

)
.

Then each of the pairs in the following set is a cross
over pair.

{(a, b) ; (a∗, b) ; (a, b∗) ; (a∗, b∗) ; (b, a) ; (b, a∗) ; (b∗, a) ; (b∗, a∗)}

Additionally, all quaternary Golay cross over pairs of
length 8 are formed by affine offsets of these pairs (see
[14]).

4. FURTHER EXTENSIONS OF GOLAY
COMPLEMENTARY SEQUENCES

4.1. Complementary Sets

Definition 4.1.1 Let A1, A2, . . . ,An be n n1 × n2 ×
· · · × nr arrays over ZH . Then they are called a Golay
complementary set if

n∑
i=1

CAi
(u1, · · · , ur) = 0

One of the earlier and more significant papers on Golay
complementary sets of sequences is [3].
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Theorem 4.1.2 [3] A binary complementary set of se-
quences contains an even number of sequences.

Theorem 4.1.3
Let {Ai = Ai [i1, · · · , ir] | i = 1, 2, . . . , n} be a Golay
complementary set of n n1 × n2 × · · · × nr arrays over
ZH . Let ek, bj ∈ ZH , k = 0, 1, . . . , r, j = 1, 2, . . . n .

A
′

i [i1, · · · , ir] = Ai [i1, · · · , ir] +

r∑
k=1

ekik + bi

Then replacing any Ai with A∗i = (Ai
∗ [i1, · · · , ir])

still leaves a complementary set. Additionally,{
A′i = A

′

i [i1, · · · , ir] | i = 1, 2, . . . , n
}

is a Golay comple-
mentary set where

A
′

i [i1, · · · , ir] = Ai [i1, · · · , ir] +

r∑
k=1

ekik + bi

Proof: We know that
CAi

(u1, · · · , ur) = CA∗i (u1, · · · , ur),
∀ (u1, · · · , ur) 6= (0, · · · , 0)

Thus, the first statement in the theorem is trivial. Let
(u1, · · · , ur) 6= (0, · · · , 0). Then
CA′i (u1, · · · , ur)
=
∑
i1
· · ·
∑
ir
EAi[i1,··· ,ir]+

∑r
k=1 ekik+bi−(A[i1+u1,··· ,ir+ur]

+
∑r

k=1 ek(ik+uk)+bi)

=
∑
i1
· · ·
∑
ir
EAi[i1,··· ,ir]−A[i1+u1,··· ,ir+ur]−

∑r
k=1 ekuk

= E−
∑r

k=1 ekukCAi
(u1, · · · , ur)

Thus,∑n
i=1 CA′i (u1, · · · , ur)

=
∑n
i=1 E−

∑r
k=1 ekukCAi (u1, · · · , ur)

= E−
∑r

k=1 ekuk
∑n
i=1 CAi (u1, · · · , ur)

= 0

This proves the second part of the statement.
Claim 4.1.4 A sequence which is a member of Golay

complementary set of size k where each sequence is of
length n has PMEPR less than k.

Proof: Let {ai|i = 1, 2, . . . k} and be a Golay comple-
mentary set. So we have

k∑
i=1

Cai (u) = 0

Thus,

k∑
i=1

Pai (t) = kn+
∑
u 6=0

[E−Hu4ft
k∑
i=1

Cai (u)] = kn

As Pai (t) =
∣∣ sai (t)

∣∣2 ≥ 0, Pai (t) ≤ kn. So the PMEPR
of ai is less than k.

Because the code rate of standard Golay sequences
rapidly approaches 0 as the length of the sequences in-
creases, it can be advantageous to use Golay comple-
mentary sets that are related to Reed-Muller Codes in

a similar way. See Theorem 1 in [18] for a family of Go-
lay complementary sets. For more information, see [4],
[15], and [18].

4.2. Multiple L-Shift Complementary Sequences

Multiple L-shift complementary sequences were in-
troduced as an alternative to Golay complementary sets
as a way of increasing the code rate of standard se-
quences.

Definition 4.2.1 Let a and b be H-phase sequences of
length n, and L ∈ Z. If

Ca (u) + Cb (u) = 0, for u = 0 mod L, u 6= 0

Then a and b are said to be a multiple L-shift comple-
mentary sequence pair.

I have extended this definition to arrays.
Definition 4.2.2 Let A and B be n1 × n2 × · · · × nr

H-phase arrays and L ∈ Z. If

CA (u1, · · · , ur) + CB (u1, · · · , ur) = 0
for (u1, · · · , ur) = (0, . . . , 0)modL, (u1, · · · , ur) 6=
(0, . . . , 0)

Then A and B are multiple L-shift complementary ar-
ray pair.

This is a broader definition than that for Golay array
pairs. As for Golay array pairs, replacing a multiple L-
shift complementary array pair A and B with A∗ and
B∗ or with affine offsets of A and B does not change the
complementary property.

Claim 4.2.4 [Theorem 1, 7] A sequence which is a
member of multiple L-shift complementary pair has
PMEPR less than 2L.

Theorem 4.2.5 [Theorem 2, 7] Let L = 2d, φ a permu-
tation of {1, 2, . . . ,m− d}, and ek,l, e

′

l ∈ ZH . Let

f (x1, x2, . . . , xm)

= H
2

∑m−d
k=1 xφ(k)xφ(k+1)

+
∑m
k=1, k 6=l

∑m
l=m−d+1 ek,lxkxl +

∑m
l=1 elxl

Let e, e
′ ∈ ZH Then the sequences a and b

whose algebraic normal forms are a(x1, x2, . . . , xm) and
b(x1, x2, . . . , xm) respectively form a multiple L-shift
complementary sequence pair, where

a (x1, x2, . . . , xm) = f (x1, x2, . . . , xm) + e

b (x1, x2, . . . , xm) = f (x1, x2, . . . , xm) + e
′
+ 2h−1xφ(1)

Clearly, these are related to standard Golay sequences.
There are a number of known results on the possi-

ble lengths of multiple L-shift complementary sequence
pairs. For example, they exist for length n where L ≤
n ≤ 2L, and the length must be the sum of at most 2L
squares. For the proofs of these and other results, see
[11].
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CONCLUSION

Golay complementary sequences, from their begin-
ning in Golay’s paper, have been developed and gener-
alized considerably. It is interesting to see the develop-
ments that have occurred over the years. Golay’s ideas
have been generalized from pairs of binary sequences
to sets of arrays with entries over ZH . Questions in the
area focus on possible lengths of Golay sequences, their
enumeration, and methods of construction, particularly
within the newer the constructions of Golay arrays and
Golay sets. In this paper, we have focused on the ap-
plications within coding theory of Golay complemen-
tary sequences, because much of the development of
the theory of Golay sequences has been within this con-
text. However, Golay complementary sequences have
been used in many fields, including in Ising spin sys-
tems (physics), infrared spectrometry, Hadamard matri-
ces, and various communications systems [19]. Thus,
they have both important applications, as well as in-
volving interesting mathematics.
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