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PREFACE

This book presents a unified view of high-frequency time series methods
with a particular emphasis on foreign exchange markets as well as interest
rate spot and futures markets. The scope of this book is also applicable

to other markets, such as equity and commodity markets.
As the archetype of financial markets, the foreign exchange market is the

largest financial market worldwide. It involves dealers in different geographic loca-
tions, time zones, and working hours who have different time horizons, home cur-
rencies, information access, transaction costs, and other institutional constraints.
The time horizons vary from intraday dealers, who close their positions every
evening, to long-term investors and central banks. In this highly complex and
heterogeneous market structure, the market participants are faced with different
constraints and use different strategies to reach their financial goals, such as by
maximizing their profits or maximizing their utility function after adjusting for
market risk.

This book provides a framework to the analysis, modeling, and inference of
high-frequency financial time series. It begins with the elementary foundations
and definitions needed for studying the fundamental properties of high-frequency
financial time series. It extends into the adaptive data-cleaning issues, treatment
of seasonal volatility, and modeling of intraday volatility. Fractal properties of the
high-frequency financial time series are found and explored, and an intrinsic time
is used to construct forecasting models. The book provides a detailed study of how
the adopted framework can be effectively utilized to build econometric models of

xxi



xxii PREFACE

the price-formation process. Going beyond the price-formation process, the book
presents the techniques to construct real-time trading models for financial assets.

It is designed for those who might be starting research in the area as well as for
those who are interested in appreciating the statistical and econometric theory that
underlies high-frequency financial time series modeling. The targeted audience
includes finance professionals, including risk managers and research profession-
als in the public and private sectors; those taking graduate courses in finance,
economics, econometrics, statistics, and time series analysis; and advanced MBA
students. Because the high-frequency finance field is relatively new and the lit-
erature is scattered in a wide range of academic and nonacademic platforms, this
book aims to provide a uniform treatment of the field and an easily accessible
platform to high-frequency financial time series analysis — an exciting new field
of research.

With the development of this field, a huge new area of research has been
initiated, where work has hardly started. This work could not be more fascinating,
and a number of discoveries are waiting to be made. We expect research to increase
in this field, as people start to understand how these insights can dramatically
improve risk-adjusted performances in asset management, market making, and
treasury functions and be the foundation for other applications, such as an early
warning system of financial markets.

Michel M. Dacorogna

Ramazan Genc¸ay

Ulrich A. Müller

Richard B. Olsen

Olivier V. Pictet
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1
INTRODUCTION

1.1 MARKETS: THE SOURCE OF HIGH-FREQUENCY DATA

A famous climber, when asked why he was willing to put his life in danger to
climb dangerous summits, answered: “Because they are there.” We would be
tempted to give the same answer when people ask us why we take so much pain in
dealing with high-frequency data. The reason is simple: financial markets are the
source of high-frequency data. The original form of market prices is tick-by-tick
data: each “tick” is one logical unit of information, like a quote or a transaction
price (see Section 2.1). By nature these data are irregularly spaced in time. Liquid
markets generate hundreds or thousands of ticks per business day. Data vendors
like Reuters transmit more than 275,000 prices per day for foreign exchange spot
rates alone.

Thus high-frequency data should be the primary object of research for those
who are interested in understanding financial markets. Especially so, because
practitioners determine their trading decisions by observing high-frequency or
tick-by-tick data. Yet most of the studies published in the financial literature
deal with low-frequency, regularly spaced data. There are two main reasons for
this. First, it is still rather costly and time-consuming to collect, collate, store,
retrieve, and manipulate high-frequency data. That is why most of the available

1
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financial data are at daily or lower frequency. The second reason is somehow
more subtle but still quite important: most of the statistical apparatus has been
developed and thought for homogeneous (i.e., equally spaced in time) time series.
There is little work done to adapt the methods to data that arrive at random time
intervals. Unfortunately in finance, regularly spaced data are not original data but
artifacts derived from the original market prices. Nowadays with the development
of computer technology, data availability is becoming less and less of a problem.
For instance, most of the exchanges and especially those that trade electronically
would gladly provide tick-by-tick data to interested parties. Data vendors have
themselves improved their data structures and provide their users with tools to
collect data for over-the-counter (OTC) markets. Slowly, high-frequency data are
becoming a fantastic experimental bench for understanding market microstructure
and more generally for analyzing financial markets.

That leaves the researcher with the problems of dealing with such vast amounts
of data using the right mathematical tools and models. This is precisely the subject
of this book.

1.2 METHODOLOGY OF HIGH-FREQUENCY RESEARCH

From the beginning, our approach has been to apply the experimental method
which has been highly successful in “hard” sciences.1 It consists of three steps,
the first one being to explore the data in order to discover the fundamental sta-
tistical properties they exhibit with a minimum set of assumptions. This is often
called finding the “stylized facts” in the econometric or finance literature. This first
step was in fact not so important in the economic literature, because the sparse-
ness of data made it either relatively simple or uninteresting due to the statistical
uncertainty.

The second step is to use all of these empirical facts to formulate adequate
models. By adequate models, we do not mean models that come from hand-waving
arguments about the markets, but rather models that are directly inspired by the
empirical regularities encountered in the data. It is the point where our under-
standing of market behavior and reality of the data properties should meet. There
have been many debates between the time series approach and microstructure
approach. The first one relying more on modeling the statistical properties of the
data and the latter concentrating on modeling market behavior. Both approaches
have their value and high-frequency data might be able to reconcile them by en-
abling us to actually test the microstructure models, Hasbrouck (1998); Rydberg
and Shephard (1998).

The third step, of course, is to verify whether these models satisfactorily
reproduce the stylized facts found in the data. The ultimate goal is not only a
good descriptive model but the ability to produce reasonablepredictionsof future
movements or risks and to integrate these tools into practical applications, such

1 We refer here to experimental sciences such as physics, chemistry, or biology.
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as risk management tools or option pricing algorithms. For decades, practitioners
have been developing so-called technical analysis, which is a kind of empirical
time series analysis based on rudimentary analytical tools. Although some new
academic research has analyzed these trading rules,2 they remain controversial and
are looked down upon. We hope that this book will put on a new footing many
ideas that have been developed in technical analysis.

We have organized this book along the same lines, we first present the empiri-
cal regularities, then we construct models, and lastly we test their power to predict
market outcomes.

The novelty of high-frequency data demands to take such an approach. This
was not usual in econometrics because so little data were available until the late
1980s. It was quite natural that the researcher’s emphasis was to make sure that
the methodology was correct in order to obtain the most information out of the
sparse data that were available. Only recently the research community in this field
has recognized the importance of the first step: finding empirical facts. This step
can already be good research in its own right. A good example is the recent paper
by Andersenet al. (2001), where the authors explore in detail the distributional
properties of volatility computed from high-frequency data.

Thanks to the development of electronic trading and the existence of various
data providers also on the Internet, it is now possible to follow the price formation
in real-time. Ideally, the analysis and modeling of the price-generation process
should, in real-time, produce results that add value to the raw data. There is strong
demand from the market to have, next to the current price, a good assessment of
the current risk of the financial asset as well as a reasonable prediction of its future
movement. This means that the models should be made amenable to real-time
computations and updates. Techniques for doing so will be presented in the re-
mainder of the book. It is possible to develop methods that allow for the easy
computation of models and can thus provide almost instantaneous reaction to mar-
ket events. Although quite popular among practitioners who want to analyze the
past developments of prices, those techniques have had little echo, until now, in the
academic world. Very few research papers have studied the statistical foundations
and properties of those “technical indicators.” In this book (Chapter 3) we provide
a unified platform for these methods.

1.3 DATA FREQUENCY AND MARKET INFORMATION

Relating the type of data available for researchers, the effects and the models that
are discovered and developed with these different samples, provides insight into
the development of research in finance. Figure 1.1 illustrates the sample size versus
the measurement frequency of some well-known data sets used in finance. The

2 Among others, here is a list of interesting papers on the issue of technical trading models: Neftci
(1991), Brocket al.(1992), Taylor and Allen (1992), Levich and Thomas (1993b), Genc¸ay and Stengos
(1998), Genc¸ay (1998a,b), Frances and van Griensven (1998), Allen and Karjalainen (1999), Genc¸ay
(1999), LeBaron (1999a), Sullivanet al. (1999), and Genc¸ayet al. (2001c, 2002).
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FIGURE 1.1 Available data samples with their typical sizes and frequency. The sample
size and the frequency are plotted on a logarithmic scale. The first point corresponds to
the O&A database, the last one to the 700 years of yearly data analyzed by Froot et al.
(1995), the second to its left to the cotton price data of Mandelbrot (1963), and the daily
data are computed from the sample used in Ding et al.(1993) to show long memory in the
S&P 500. The text refers to the effects discovered and analyzed in the different segments
of these samples.

double logarithmic scale makes the points lie almost on a straight line. The data
sample with the lowest frequency is the one used by Frootet al. (1995) of 700
years of annual commodity price data from England and Holland. Beyond 700
years, one is unlikely to find reliable economic or financial data.3 The data with the
highest frequency is the Olsen & Associates (O&A) dataset of more than 14 years
of high-frequency foreign exchange data. The tick-by-tick data are the highest
frequency available. Between those two extremes, one finds the daily series of
the Standard & Poors 500 from 1928 to 1991 used by Dinget al. (1993) or the
monthly cotton prices used by Mandelbrot (1963) from 1880 to 1940. On this
graph, we superimpose those effects that have been identified at these different
time scales. One of the questions with data collected over very long periods is
whether they really refer to the same phenomenon. Stock indices, for example,
change their composition through time due to mergers or the demise of companies.
When analyzing the price history of stock indices, the impact of these changes in

3 Data can be found in natural sciences such as weather data up to a few hundred thousand years.
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FIGURE 1.2 Available data samples with their typical sizes and frequency. The sample
size and the frequency are plotted on a logarithmic scale. The text refers to the models
developed and tested in the different segments of these samples.

composition is not obvious. We call this phenomenon the “breakdown of the
permanence hypothesis.” It is difficult to assess the quality of any inference as the
underlying process is not stationary over decades or centuries. At the other end
of the frequency spectrum (i.e. with high-frequency data), we are confronted with
the details of the price generation process, where other effects, such as how the
data are transmitted and recorded in the data-base (see Chapter 4) have an impact.
With data at frequencies of the order of one hour, a new problem arises, due to
the fact that the earth turns and the impact of time zones, where the seasonality of
volatility becomes very important (as we shall see in Chapter 5) and overshadows
all other effects.

Figure 1.2 relates the data to the models that are typically developed and
tested with them. The high-frequency data have opened great possibilities to test
market microstructure models, while traditionally low-frequency data are used
for testing macroeconomic models. In between lies the whole area of financial
and time series modeling, which is typically studied with daily or monthly data as,
for instance, option pricing or GARCH models. It is clear from this figure that we
have a continuum of both samples and models. The antagonism that is sometimes
encountered between time series and market microstructure approaches should
slowly vanish with more and more studies combining both with high-frequency
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data. Yet the challenge is still open to build models that are simple to implement
and describe to a reasonable degree the empirical behavior of the data at all time
scales.

1.4 NEW LEVELS OF SIGNIFICANCE

High-frequency data means a very large amount of data. The number of observa-
tions in one single day of a liquid market is equivalent to the number of daily data
within 30 years. Statistically, the higher the number of independently measured
observations, the higher is the degrees of freedom, which implies more precise
estimators. The large amount of data allows us to distinguish between differ-
ent models (model validation) with a higher statistical precision. New statistical
methods become possible, for example, tail statistics to examine the probability of
extreme events. Almost by definition, extreme events are rare and doing statistics
on such extreme events is a challenge. With high-frequency data one can have
samples with as many as 400,000 independent observations4 to study the 0.25%
percentile and still have 1,000 observations with which to work. We shall see how
important this is when we present the estimation of tail indices for return distri-
butions. Similarly, when different models have to be ranked, the availability of a
few hundred thousand observations allows us to find beyond a doubt which model
provides the best description of the data-generating process (Müller et al., 1997a).

Figure 1.3 demonstrates the importance of high-frequency data in model se-
lection and inference within the context of Value-at-Risk (VaR) calculations. We
report three different calculations all of which use the J. P. Morgan (1996) volatility
model, which is in fact a 1-day volatility forecast as further discussed in Section 9.2.
The three calculations differ in terms of the sampling and the data frequency. The
Japanese volatility calculations are based on prices observeddaily at 7 a.m. GMT,
which corresponds to the afternoon Japanese time. The U.K. volatility calculations
are based on prices measureddaily at 5 p.m. GMT, which is the afternoon in the
U. K. The high-frequency volatility calculations are based on the high-frequency
tick-by-tick data recorded continuously on a 24-hour cycle. The top panel in Fig-
ure 1.3 reports the annualized volatility calculations and the bottom panel shows
the underlying prices for January and February 1999. The top panel demonstrates
that volatility can be extremely different depending on the time of the day at which
it is measured with daily data. If observations are picked randomly once a day,
the underlying volatility can be as small as 15% or as large as 22% for a given
day and for the same currency. In mid-January 1999, the U.S. Dollar - Japanese
Yen (USD-JPY) investors in the U.K. are assumed to be facing the risk of losing
56,676,400 USD in a portfolio of a hundred million USD with a 1% probability.
In Japan, this risk would be reduced to 38,643,000 USD for the same day and for
the same currency, a difference of approximately 18,000,000 USD between the
two geographical locations! The utilization of high frequency leads to more robust

4 This approximately corresponds to 10 years of returns measured over 10 minutes.
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FIGURE 1.3 Top panel: Annualized USD-JPY volatility computed with daily prices
observed at 7 a.m. GMT (afternoon Japan, circles), 5 p.m. GMT (afternoon U.K., diamonds)
and with high-frequency data (solid line). The data period is from January 1999 to February
1999. Bottom panel: The USD-JPY high-frequency price series from January 1999 to
February 1999.

annualized volatility estimations by minimizing the influence of the random noise
in the market.

Another aspect of this is the choice of model. With few data, one tends to
favor the simpler models because they contain few parameters and because tests
like the likelihood ratio test would strongly penalize the increase of parameters.
Of course, simplicity is a desirable feature of theoretical models, but one should
not seek simplicity at the cost of missing important features of the data-generating
process. Sometimes, it is useful to explore more complicated (nonlinear) mod-
els, which may contain more parameters. This increasing complexity is strongly
penalized when explored with low-frequency data because of the loss of degrees
of freedom. In the case of high-frequency data, however, the penalty is relatively
small because the abundance of the independently measured observations approx-
imates an asymptotic environment.
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Researchers who want to use many observations with low-frequency data are
using, for instance, daily observations of the Dow Jones Industrials from January
1897 like Dinget al. (1993) or LeBaron (1999a). In such a case, one is enti-
tled to ask if the authors are actually analyzing the same market over the years.
The huge technological changes that we experienced during this century have cer-
tainly affected the New York Stock Exchange and one is never sure, how this and
any reconfiguration of the index has affected the results. To the contrary, high-
frequency studies can be done for limited sampling periods with reasonably large
samples. The market properties within such periods are nearly unchanged. The
results are less affected by structural breaks or shifts in the overall economy than
low-frequency studies with samples of many years. This is clearly an advantage
when determining microstructure effects but also when examining the stability of
some properties over time.

1.5 INTERRELATING DIFFERENT TIME SCALES

High-frequency data open the way for studying financial markets at very different
time scales, from minutes to years. This represents an aggregation factor of four
to five orders of magnitude.5 Some empirical properties are similar at different
scales, leading to fractal behaviors. Stylized facts observed for daily or weekly
data gain additional weight when also observed with high significance for intraday
data. An example of this is the long memory effect in 20-min absolute returns
studied by Dacorognaet al. (1993). At the time, similar hyperbolic decay of the
autocorrelation function was observed on daily returns in Dinget al. (1993). It is
very difficult to distinguish rigorously in the data between long memory effects
and regime shifts. Many mathematicians are working precisely on this problem
such as Mansfieldet al. (1999) and Mikosch and Starica (1999). Yet the fact that
hyperbolic decay is empirically found at time scales that differ by two orders of
magnitude in aggregation is definitely a sign that the process must include some
long range dependence or that there are regime shifts atall time scales, which is
equivalent.

Scaling properties and scaling laws have been new objects of study since the
early work of Mandelbrot (1963) on cotton prices. In 1990, the research group of
O&A published empirical studies of scaling properties extending from a few min-
utes to a few years (M̈uller et al., 1990). These properties have shown remarkable
stability over time (Guillaumeet al., 1997) and were found in other financial in-
struments like interest rates (Piccinatoet al., 1997). Mantegna and Stanley (1995)
also found scaling behavior in the stock indices examined at high frequency. In a
set of recent papers, Mandelbrotet al.(1997), Fisheret al.(1997) and Calvetet al.
(1997) have derived a multifractal model based on the empirical scaling laws of
different moments of the return distributions. Works on the scaling law of return

5 By order of magnitude we mean the number of times the time horizon must be multiplied by 10 to
achieve the lower frequency. For instance, a weekly frequency is aggregated three orders of magnitude
from 10 minutes data (one week is 1008 times 10 minutes).
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volatility have been flourishing in the past few years often coming from physicists
who started venturing in the field of finance calling themselves “econophysicists.”
It is a sign that the field is moving toward a better understanding of aggregation
properties. Unfortunately, the mathematical theory behind these empirical studies
is not yet completely mature and there is still controversy regarding the signifi-
cance of the scaling properties (LeBaron, 1999a; Bouchaudet al., 2000). Thanks
to high-frequency data, this kind of debate can now take place. The challenge is to
develop models that simultaneously characterize the short-termandthe long-term
behaviors of a time series.


