
An Introduction to High Performance Fortran

JOHN MERLIN AND ANTHONY HEY

Department of Electronics and Computer Science, University of Southampton, Southampton, SOJ7 JB], U.K.

ABSTRACT

High Performance Fortran (HPF) is an informal standard for extensions to Fortran 90 to

assist its implementation on parallel architectures, particularly for data-parallel compu­

tation. Among other things, it includes directives for specifying data distribution across

multiple memories, and concurrent execution features. This article provides a tutorial

introduction to the main features of HPF. © 1995 John Wiley & Sons, Inc.

1 INTRODUCTION

High Performance Fortran (HPF) is an informal

standard for extensions to Fortran 90 to assist its

implementation on parallel computers, particu­

larly for data-parallel computations. Foremost

among these extensions are directives for specify­

ing how data are to be distributed over the "pro­

cessor memories" of a multiprocessor architec­

ture, for instance, over the local memories of a

distributed memory message-passing machine. a

single instruction multiple data (SI~1D) machine

or a workstation network. or the caches of a

shared memory machine. HPF also provides ex­

tensions for expressing data parallelism and con­

currency, and a number of other new features.

The language was developed between \larch

1992 and \lay 1993 by the High Performance

Fortran Forum, a working group comprising rep­

resentatives of most parallel computer manufac­

turers, several compiler vendors, and a number of

Received l\"ovember 19'J:3
Revised November 1994

e-mail: jhn@ecs.soton.ac. uk

Any opinions and rccomrnendations containPd hPrPin arT

those of the authors. and do not nece"arih repreH"nt the vir·w,

of the High Perforrnancc Fortran Forum.

© 1995 bv John \'Ciltev & Sons. Inc.

Scientific Programming, Vol. 4, pp. 87-11 :l i1995

CCC 1058-9244/%/020087-27

government and university research groups in the

field of parallel computation. The formal language

definition is contained in the "High Performance

Fortran Language Specification,"' which was

published in this journal [1]. A textbook on HPF

has also been published [21.
This article provides a tutorial introduction to

HPF, especially to its data distribution features.

On many architecture~ the performance of an

HPF program will depend critically on its data dis­

tribution, and to a lesser t>xtent on its use of the

facilities for expressing data parallt>lism and con­

currency. Therefore we aim to give the reader an

understanding of how to ust> these features pffpc­

tively. To this end, we attempt to give some insight

into how these features may typically be imple­

mented. and in some cases also discuss the ra­

tionale for their introduction. For reference. de­

tailed pointers are given throughout this article to

relevant text in the '·High Performance Fortran

Language Specification·· [11. for examplE'. [HPF

p. 41 (28-48)]. where the numbers in parenthe­

ses are lines nurnberc;.

The HPF features are demonstrated u~ing two

main examples. Jacobi iteration and Gaussian

elimination, as well as by a n umbt>r of ,;mallt>r ex­

amples. The examplt>s use a number of Fortran

90 features that are not in Fortran 77. such as free

source form. simple array syntax. and new-style

declarations. Array syntax in particular helps to

make the examples concise. and also has the ad-

88 MERLIN AND HEY

vantage of explicitly expressing the potential for

data parallelism. However, we tn1st that the ex­

amples should be understandable by readers who

do not have a detailed knowledge of Fortran 90.

An official subset of the language, "Subset

HPF" has been defined to facilitate rapid initial

implementation [HPF §8]. Some Subset HPF im­

plementations (i.e., compilers or translators) are

already available and many more are expected to

appear in the near future, while it may be some

time before full HPF is widely supported. Subset

HPF is based on a subset of Fortran 90, which is,

broadly speaking, Fortran 77 plus Fortran 90's

noncharacter array features and intrinsics, dy­

namic memory allocation, nongeneric interface

blocks, optional and keyword arguments, new­

style type declarations, and various lexical and

syntactic improvements [HPF §8.1]. It also in­

cludes just a subset of the HPF extensions. All of

the features described in this article are in Subset

HPF unless otherwise stated.

This article is organized as follows. Section 2

outlines the background and motivations for the

development of HPF and gives an overview of the

HPF programming model. Sections 3-5 describe

various aspects of the data distribution exten­

sions, namely basic data distribution, dummy ar­

gument distribution, and dynamic redistribution,

respectively. Section 6 describes HPF's exten­

sions for expressing data parallelism and concur­

rency. Section 7 summarizes the remaining HPF

extensions, and Section 8 discusses some pros

and cons of the HPF approach.

2 WHY HPF?

A major motivation for the development of HPF

was to simplify the programming of distributed

memory message-passing systems. an architec­

tural category that includes distributed memory

multiple instruction multiple data (:\1IMD) ma­

chines and, more recently, networks of worksta­

tions. These have proved cost-effective, scalable,

versatile and capable of high performance, but

have also proved very difficult to program, as we

shall now describe.

2.1 SPMD Programming Model

The most popular programming model for mas­

sively parallel distributed memory architectures

(i.e., those with a large number of processors) is

the single program multiple data (SPYID) model.

The same program, though not necessarily the

same instruction stream, is executed by every pro­

cessor, each operating on a part of the data.

To develop such a program, the application's

data arrays must be partitioned into segments

which are mapped to the processor memories, a

procedure known as distributing the arrays. Then

the computations are also distributed over the

processors; typically each processor performs only

those computations that define data elements that

are "owned" by it, i.e., stored in its local memory.

If the program running on one processor requires

data that are stored in the local memory of an­

other processor, the data must be communicated

by inserting explicit send and receive statements

at appropriate points in the program. which is

called message passing. Typically, accesses to lo­

cal data are much faster than nonlocal accesses

(i.e., communications). Therefore, for efficiency it

is important to partition the data and computa­

tions in a way that attempts to minimize commun­

ications and maximize data parallelism.

For example, consider the fragment of Fortran

90 code shown in Figure 1. This uses Jacobi's

method to approximate the solution of a partial

differential equation (Laplace's equation) dis­

cretized on a two-dimensional grid a. The bound­

ary values of a are given, and the interior values

are computed by an iterative procedure as follows.

Starting from arbitrary initial values, in each itera­

tion the value at every interior grid point is re­

placed by the average of the values of its nearest

neighbors in the previous iteration, and this is re­

peated until none of the values change signifi­

candy from one iteration to the next. Our conver­

gence criterion is that the change at every grid

point is less than 10-~ of its previous value.

To adapt this to an SP.\fD program for a dis­

tributed memory message-passing architecture it

must be modified as follows:

1. The arravs a and new_a must be distrib­

uted over the processor memories. For ex­

ample. if there are 16 processors which are

regarded as being logically arranged as a

4 X 4 processor array, a and new_a may

each be partitioned into 16 blocks of size

([m/ 41, r nl 41). each of which is stored on

the corresponding processor.

2. The program is modified to compute and

update only the locally stored segments of

the arravs.

3. Message passing is inserted to communicate

data where necessarv. In this example ..

HIGI I PERFOR\1Al\'CE FORTRA~ 89

REAL a (m, n), new_a (m, n)

a= 0.0

CALL init (new_a)

new_a (2:m-1, 2:n-1) 0.0

set boundary elements of 'new_a'

!initialise interior of 'new_a' to 0.0

DO WHILE (ANY (new_a- a> lE-07 *a))
a = new_a

new_a (2:m-1, 2:n-1) 0.25 * (a (l:m-2, 2:n-1) +a (3:m, 2:n-1) &

+a (2:m-1, l:n-2) +a (2:m-1, 3:n))

END DO

FIGURE 1

since the update of each point depends on

the values of its four nearest neighbors, the

"edge" values of each segment must be

swapped between processors in every it era­

tion. Care must be taken about special

cases; for instance, the outside edges of the

overall arrav are not communicated. ~les­

sages must also be exchanged to evaluate

the global termination condition "ANY

(new_a- a> lE-7 *a)."

Chapman et al. [3] showed a simplified version of

the message passing involved in a single update

step.

The need to explicitly partition data, insert

message passing, handle boundary cases, etc., is

a very complicated, time-consuming, and error­

prone task, and it also impairs the adaptability

and portability of the resulting program. Indeed,

the difficulty of programming distributed memory

message-passing systems has so far been a big

obstacle to using them.

This situation has motivated much research in

recent years towards the goal of automatic paral­

lelisation, i.e., the automatic transformation of

data parallel applications written in a standard

sequential language like Fortran into SPYlD mes­

sage-passing programs. It has become clear that

this can be at least partly achieved: If the required

data distribution is specified, a compiler can auto­

matically partition the data and computations ac­

cording to this specification, and insert the neces­

sary communications [4-6].
The really difficult part of fully automatic par­

allelization is to automatically determine a suit­

able data distribution. As we have said, an effi­

cient data distribution must spread out the data

arrays over the processors (rather than storing a

copy on each processor) as much as possible in

Jacobi iteration.

order to maximize the potential parallelism, while

distributing them in such a way as to minimize

communications. To determine a suitable distri­

bution therefore requires global analysis of the

program's data access patterns and their relative

importance. Often this information cannot be de­

termined statically. Much research is being con­

ducted on this problem, but currently no satisfac­

tory conclusion has been reached.

This situation has led to the research and de­

velopment of a number of prototype paralleliza­

tion systems based on language extensions for

specifying data distribution such as Fortran D and

Fortran 90D [7, 8], Vienna Fortran [3], Distrib­

uted Fortran 90 [9, 10], and Pandore C [11].

Ideas from these (particularly the first three) and

other research projects, as well as from Fortran

dialects and proposals from vendors such as Digi­

tal, Convex, Cray. IBM, Ylaspar, and Thinking

Machines, together with inputs from a variety of

other sources, have all contributed to the develop­

ment of the HPF informal standard. [1] and [2]

provide more detailed background and refer­

ences.

2.2 HPF Features and Model

As we have indicated. the central idea of HPF is to

augment a standard Fortran program with specifi­

cations describing how its data are to be distrib­

uted across multiple memories. For a MIMD

multiprocessor architecture. an HPF compiler

transforms this program into an SPMD code by

partitioning and distributing its data as specified,

allocating computation to processors according to

the locality of the data references involved. and

inserting any necessary data communications in

an implementation-dependent manner, e.g., by

message passing or by a shared memory mecha­

nism.

90 MERLIN AND HEY

An HPF program is largely single threaded, i.e.,

all processors execute the same code. However, a

few HPF features can express "functional" paral­

lelism, whereby different processors may execute

different code, as we shall point out later in this

article.

Although we have concentrated on the applica­

tion of HPF to distributed memory message-pass­

ing systems, it is largely architecture independent.

It can be implemented across the whole spectrum

of parallel architectures: distributed and shared

memory MIMD, SIMD, vector, workstation net­

works, etc.

Data distribution is specified by directives.

These are structured Fortran comments that are

distinguished by starting with the characters HPF$

immediately after the comment character. Being

structured comments they are ignored by a stan­

dard Fortran compiler and only recognized by an

HPF compiler, so an HPF program can even be

compiled for a single processor machine. This is

acceptable as they do not affect the semantics of a

program, i.e., they do not change its computations

or results (except for possibly affecting the order of

computations when it is not defined by the lan­

guage, for instance the order of the elemental as­

signments that comprise an array assignment).

The data distribution directives only affect a pro­

gram's performance, not its meaning.

HPF also contains a few actual svntax exten­

sions to Fortran 90, such as a FORALL statement

and construct, so an HPF program cannot be

compiled by a standard Fortran 90 compiler if it

uses these extensions. However, nearly all of

HPF's syntax extensions will be included in the

next revision of the official Fortran standard due

in 1995 or 1996 [12].*

Having given a general introduction to HPF, we

shall now describe it in more detail.

3 DATA MAPPING DECLARATIONS

Data mapping is the HPF term for allocating data

to multiple memories. In generaL this mapping

may be specified in two stages:

1. Data objects may be aligned with other data

objects or with templates-special virtual

objects that occupy no storage, which are

* It is likely that all HPF svntax extensions except for the

EXTRINSIC attribute will be included in the next Fortran nevi­

sian.

described and motivated later. This sets up

a relation between the elements of the

aligned objects, such that aligned elements

are guaranteed to be mapped to the same

processor(s). Thus if an array A is aligned

with an array or template B, the distribution

of A is determined by that of B, and only the

latter is specified. In this example A is called

an alignee and B the align target.

2. Templates or data objects that are not

alignees are distributed over abstract pro­

cessors. Distribution is the mapping of the

elements of a data object or template to the

memories of the abstract processors. The

distribution of an align target also deter­

mines that of all the objects that are aligned

with it.

A third implementation-dependent level may

also be involved: associating abstract processors

with real physical processors. This allows imple­

mentations the freedom to abstract the processors

declared in HPF from the physical processors; for

instance, the former may actually be processes,

and an implementation may be able to execute

multiple processes concurrently on each physical

processor.

As we said in the last section, data mapping in

HPF is specified by directives [HPF §2.3].

3.1 Alignment and Distribution

To convert the Jacobi iteration code of Figure 1 to

HPF, using the data distribution described in Sec­

tion 2.1, the following directives can be added to

the declarations part of the program-no other

changes are necessary:

!HPF$PROCESSORS (4, 4)
!HPF$ALIGNa (:,:) WITHnew_a (:,:)
!HPF$DISTRIBUTEnew_a (BLOCK, BLOCK) ONTOp

We shall now explain these directives.

The PROCESSORS Directive

The PROCESSORS directive [HPF §3. 7] declares

and names one or more abstract processor ar­

rangements, where a processor arrangement

means a processor array or a scalar (i.e., single)

processor. In this case a set of 16 abstract proces­

sors is declared, which are regarded as being ar­

ranged in a 4 X 4 array called p.

Abstract processor arrays with different shapes

may be declared, in which case an HPF imple­

mentation may map them in an implementation­

dependent manner onto the real physical proces­

sors. However.. the only processor arrangemPnts

that are guaranteed to he ,;upported are scalar

processorfi and processor arrays with the same

number of elements as there are physical proces­

sors. Proee,;sor arrays with the same ,;hape are

equivalent .. i.e .. corresponding elements refer to

the same abstract processor. but otherwise there is

no defined relation between different processor

arrangements.

Processor arrangements are not !in.;t-dass ob­

jects in HPF -they may not appear in COMMON

blocks nor be pas:,;ed a,.; argument,; to functions or

subroutines. The onlv wav for a PROCESSORS di­

rective to be visible in several program units is to

declare it in a module which is USEd by the pro­

grarn units. Otherwise. proces,;or arrangements

must be declared locally in every program unit in

which thev are used.

The ALIGN Directive

The ALIGN directive [HPF §>l.4] relates the ele­

ments of a data arrav to the elements of another

data array or a template Ito be described later).

such that elements that are aligned with each

other are guaranteed to be mapped to the same

abstract processor(s) regardle,.;s of the distribution

directives.

The given ALIGN directive:

1 HPF$ ALIGN a (:, :) WITH new_a (:,:)

specifies that each element of a is aligned with the

corresponding element of new_a. which means

that for all ,.;ubscript ,·alue,.; i and j. element

a (i, j) is mapped to the same ah:-;tract proces­

sor(s) as new_a (i, j) .

An operation on two or more data element:,; i"

likely to be executed much faster if they are

aligned. as it can be performed without communi­

cations by the processor that stores them locally.

On the other hand. independent operations may

potentially be executed in parallel if they involve

data that are stored in different processor memo­

ries. Therefore, alignment should be cho:,;en so as

to try to keep elements that are accessed together

in the same operation stored together (i.e ..

aligned) to minimize communication. while keep­

ing elements that can be operated on indepen­

dently apart to maximize data parallelism. ln this

lllGII PERFOR:\IA:\CE FORTRAI'\ 91

simple case the same result could be achieved by

distributing the two arrays alike, but in general it is

not possible to achieve arbitrary linear alignments

of arrays (e.g., where the elements of one array are

aligned with a subset of the elements of another)

by distribution directives alone. In any case, when

alignment of arrays is intended it is clearer and

safer to specify it explicitly rather than relying on it

being achieved as a side effect of distribution.

In this example, a (: , :) and new_a (: , :)

denote the whole of arrays a and new_a, using

Fortran 90's subscript triplet notation. Cnfortu­

nately, this form of the ALIGN directive requires

that the name immediately following the ALIGN

keyword (the alignee) must be followed by paren­

theses, so the Fortran 90 shorthand for specifying

a whole array by just giving its name cannot be

used here. t However, it can be used in another

form of the ALIGN directive that we shall intro­

duce later.

The alignee (a (: , :)) must be a whole array.

but in general the align target (new_ a (: , :)) may

be a regular section of an array. provided that it

conforms with (i.e., has the same shape as) the

alignee. This allows an array to be aligned with a

regular subset of the elements of another array or

template. \\·e shall give examples of this later.

The DISTRIBUTE Directive

The DISTRIBUTE directive iHPF §3.3J specifies

how a data object or template is to be distributed

over an abstract proce~sor arrangement. A data

object that has been aligned (i.e .. has appeared as

an alignee) cannot be distributed: only an align

target that is not itself aligned with anything else.

or an object that has not appeared in an ALIGN

directive. can be distributed. Thus. in this exam­

ple only new_a can be distributed, and its distri­

bution determines that of a. which is aligned with

it.

The given DISTRIBUTE directive:

! HPF$ DISTRIBUTE new_ a (BLOCK, BLOCK) ONTO p

states that each dimension of new_a is block dis­

tributed over the corresponding dimension of the

t ParPnthescs are needed after the alignee name to avoid

ambiguity if blanks arc insi!(nificant. as thev are in Fortran 90

fixed source form. For example, without thP parentheses.

'·ALIGN T (:) WITH TWITHEAD (:) .. could be interpreted as

'·ALIGN TWITHT WITH EAD··~

92 MERLIN AND HEY

processor array p. In general, so-called distribu­

tion format is specified for each dimension of the

distributee (i.e., the object that is distributed),

which can be either BLOCK[(blocksize)],

CYCLIC[(blocksize)] or*, where [...] encloses

an optional item. Their meanings are as follows,

where for simplicity we describe the case of a one­

dimensional array distributed over a one-dimen­

sional processor array.

1. BLOCK means that the elements are divided

into blocks of consecutive elements, and the

nth block is allocated to the nth processor. If

the number of elements, N, is exactly divis­

ble by the number of processors, P, then the

blocks are of equal size NIP. Otherwise

blocks of size b = rN I Pl are allocated to the

first lNibj processors, the remaining N\P

elements form a small block which is allo­

cated to the next processor, and no ele­

ments are allocated to any remaining pro­

cessors.

An explicit blocksize b can be given in

parentheses after the BLOCK keyword, but it

must be such that the elements do not

"wrap around" the processor array. To al­

low wrap around a CYCLIC distribution

must be specified. We advise against explic­

itly specifying b, except in special cases, as

it can give rise to errors (if N > bP, requiring

wrap around) or inefficient processor utili­

zation (if N q bP). If b is specified, we rec­

ommend that it should depend on N and P.

directly or indirectly, to avoid these prob­

lems if N or P is changed.

2. CYCLIC means that the first element is allo­

cated to the first processor. the second to

the second processor, etc. If there are more

elements than processors then the distribu­

tion "wraps around" the processor array

cyclically until all the elements are allo­

cated.

An explicit blocksize may be specified in

parentheses after the CYCLIC keyword, as

for the BLOCK distribution. (By definition.

CYCLIC means the same as CYCLIC (1) .) ln

this case. however. the elements are allowed

to wrap around the processor array. in

which case the distribution is often called

block-c.Yclic. CYCLIC(b) is the most general

type of distribution available: BLOCK (b) is

just a special case of it in which there is no

wrap around. If that is the case, however.

then it is more efficient to specify BLOCK(b).

as the extra information that there is no

wrap around considerably simplifies ad­

dress calculations.

Cyclic distributions are useful for spread­

ing the computation load uniformly over

processors in cases where computation is

only performed on a subset of array ele­

ments or is otherwise irregular over an ar­

ray. An example of this, Gaussian elimina­

tion, is shown later.

3. * means that the corresponding distributee

dimension is collapsed, i.e., not distributed.

These descriptions generalize straightforwardly

to multidimensional distributees and processor

arrays, with the words "element" and '·proces­

sor" replaced by "subscript value" and "proces­

sor subscript value."

A distribution format must he specified for

every dimension of a distributee. The number of

BLOCK and CYCLIC entries (with or without a

blocksize) must equal the number of processor ar­

ray dimensions, and the nth distributee dimension

with such an entry is distributed over the nth pro­

cessor array dimension. [HPF. pp. 28-29] gives

some illustrated examples of distribution.

The ONTO clause mav be omitted from the DIS­

TRIBUTE directive. in which case the distribution

is onto an implementation-dependent processor

arrangement. Although the HPF specification

says nothing on this point. it is conceivable that

some implementations rna~· allow a default pro­

cessor arrangement to be specified by a command

line argument or environment \·ariable when the

HPF compiler is invoked: others may have a built­

in default: and yet others may require a ,.;ingle

PROCESSORS declaration in each program unit to

provide the default.

Experimenting with Data Mappings

Returning to the Jacobi iteration example. with tlw

given data mapping directives the arrays a and

new_a are distributed over processors a,.; shown in

Figure 2.

ln general. to achieve optimum performance of

this code fragment we should partition the arrays

into blocks that are a,.; nearly square as possible.

since thi,.; maximizes the ratio of calculation to

communication (as the former is proportional to

the total number of points in a block. and the

latter to the number of its boundarv points).

Therefore, depending on the array ,.;izes (i.e .. the

n
~ ~

elements

I
a and m

pu P1.2 pu PH

p2.1 P22 P2.'l P2.-+

new_a elements P31 P3.2 P3.'l P,1.-+

1 P4.1 P4.2 P4 .. 1 P4.4

FIGURE 2 Distribution over a 2-dimensional proces­
sor arrangement.

values of m and n) and the number of processors

available, other distributions may be optimal. For

instance, if m «i nit might be preferable to confi­

gure the processors as a one-dimensional arrav

and distribute only the second dimension of a and

new_a (Fig. 3):

!HPF$PROCESSORSp (NUMBER_OF_PROCESSORS())

! HPF$ DISTRIBUTE new_a (*,BLOCK) ONTO p

This demonstrates a benefit of the two-level

mapping of data onto processors: The optimal

alignment (i.e., ALIGN and TEMPLATE directives)

is usually problem dependent, while the optimal

distribution (i.e., DISTRIBUTE and PROCESSORS

directives) often depends on the problem size and

target architecture. Therefore to port an HPF pro­

gram to a different architecture or optimize it for a

particular problem size typically involves modify­

ing only its distribution directives, not its align­

ment directives. Observe also that experimenting

with different data mappings is much easier in

HPF than it would be in a message-passing pro­

gram!

HPF System Enquiry Functions and
Specification Expressions

The last example used the function NUMBER_

OF _PROCESSORS. This is a new S}··stem enquiry

i
a and m

new_a elements
1,

n
~ elements ____,.

FIGURE 3 Distribution over a 1-dimensional proces­

sor arrangement.

HIGH PERFORMANCE FORTRAN 93

intrinsic function introduced by HPF that returns

the total number of physical (as distinct from ab­

stract) processors on which the program is exe­

cuted, or, with an optional integer argument DIM,

the number of processors along a specified dim en­

sion of the physical processor array [HPF §5.2,

5. 6. 4]. Another HPF system enquiry intrinsic

function is PROCESSORS_SHAPE [HPF §5.2,

5.6.5], which returns the shape of the physical

processor array. These functions return the same

results throughout the duration of one program

execution. They may be used in specification ex­

pressions (e.g., to declare array bounds), or in­

deed in any nonconstant expression. However,

they cannot be used in initialization expressions

(i.e., compile-time constant expressions used, for

example, to initialize variables or named con­

stants, or to declare array bounds for common

block variables), as they are not necessarily com­

pile-time constants-an HPF program may be

compiled for a machine whose configuration is not

known at compile time.

Parameters in data mapping declarations, such

as processor array sizes and blocksize in DIS­

TRIBUTE, must be specification expressions as

defined by Fortran 90, but with the extension of

allowing the above HPF system enquiry intrinsic

functions. In general they need not be constant.

However, the mapping of common block and

SAVEd variables must be constant/or the duration

of a program run. This is less stringent than re­

quiring their mapping parameters be initialization

expressions, as it allows the system enquiry func­

tions NUMBER-OF __FROCESSORS and PROCES­

SORS_SHAPE to be used [HPF pp. 41 (28-48),
43(43)-44(12)j.

Alternative Syntax

Finally, we mention that there is an alternative

syntactic form for these mapping directives, anal­

ogous to Fortran 90's new style of declarations

[HPF §3.2]. This form allows a number of attrib­

utes to be combined in the same directive, sepa­

rated bv a double colon (: :) from the list of identi­

fiers declared. For example, alternative forms of

the directives at the start of this section are:

! HPF$ ALIGN WITH new_ a: :a

! HPF$ PROCESSORS, DIMENSION (4, 4):: p

! HPF$ DISTRIBUTE (BLOCK, BLOCK) ONTO p:: new_a

This form is more concise when several objects

have to be given the same dimensions, alignment,

94 MERLI!'I AJ\D HEY

or distribution, as a list of names can follow the

"::." Notice also that this form of the ALIGN di­

rective allows a whole arrav or template to be

specified by just giving its name.

3.2 Templates

In the above example we aligned a with new_a
and distributed the latter, i.e., we chose new_a as

the align target. Since an identity alignment is in­

volved, we could equally well have reversed the

roles of a and new_a, and chosen a as the align

target.

When several arrays have to be related by an

identity alignment. rather than arbitrarily ch<HJs­

ing one of them as the align target and aligning the

others with it, or chaining them together in an ar­

bitrary order (e.g., ALIGN a WITH b; ALIGN b

WITH c; . .), an alternative is to align them all

with a template of the same size as the data ar­

rays, for example:

! HPF$ TEMPLATE t (m, n)

! HPF$ ALIGN WITH t : : a, new_a

! HPF$ DISTRIBUTE t (BLOCK, BLOCK) ONTO p

A template in HPF is a virtual scalar or array. in

other words one that occupies no storage [HPF

§3.8]. Templates are declared by a TEMPLATE di­

rective as above. Their sole function is to provide

abstract objects with which data objects can be

aligned and which can then be distributed, i.e .. to

provide intermediaries in the mapping of data ob­

jects to abstract processors. As we have seen, it is

not mandatory to use templates for this purpose­

data objects can be aligned directly with other

data objects, and can also be distributed directly.

However, there are often stylistic advantages to

using templates rather than arrays a,; align target,;,

as we have just indicated.

For example, when arrays are aligned with

other arrays, an arbitrarily complicated alignment

tree can be constructed (see Fig. 4), which can

make it difficult to identify the root object with

B D E

/ '\../
C F

~/
G

FIGURE 4 An alignment tree.

which a given array is ultimate~y aligned. Further­

more. it can be difficult to work out the ultimate

alignment of arrays that are indirectly aligned with

the root, and even more difficult to establish the

relative alignments of arrays on different branches

of the tree. Bv contrast. if arravs are alwavs . . .
aligned with templates, the alignment tree is re-

stricted to a depth of one, and the ultimate align­

ment of all arrays is obvious-it is exactly as writ­

ten in the ALIGN directive,;. This follows because

templates cannot themselves be aligned: they can

only be align targets.

Another point is that the root object of an align­

ment tree indicates the maximum data paralleli,;m

that can in principle be achieved for the given pro­

gram with the given alignments. This is an impor­

tant characteristic of the program. so it is de,;ir­

able to give the object that bear,; this information a

separate identity, to distinguish it from the data

objects. ~laking it a template serve,.; that purpose.

Quite apart from these stylistic rt>asons for us­

ing templates, they turn out to be virtually indis­

pensable in some situations. as we shall see latPr.

Like processor arrangements. templates are not

first class objects in HPF. The restrictions on the

use of processor arrangements described in Sec­

tion 3.1 also apply to template,.;.

3.3 Gaussian Elimination

The other main example code that we shall use to

illustrate HPF is the forward elimination pha,;e of

Gaussian elimination (Fig .. ')). Since this code may

look a little unfamiliar we briefh describe what it

does. Gaussian elimination is used to solve a set of

linear equations AX = B. where A i,; an m X m

matrix of coefficients, and B and X are m X m'

matrices composed, respectively. of a ,..;et of right­

hand side vectors {Q_i, i = 1. m'} and a corre,;pond­

ing set of solution vectors {::!:i· i = L m'}. The for­

ward elimination stage reduces A to upper

triangular form by iterating over its rows r. ln in­

teration r, row r of A is divided by A (r, r). and then

each row i > r has (A (i, r) X row r) subtractt>d from

it (potentially in parallel over the rows i). Thi:-; sets

the column below the diagonal element A (r, r) to

0, so iteration over r produces the desired upper

triangular form. The same operations must also

be performed on B. which is done by augmenting

matrix A with B as extra columns, giving the

(m X n) matrix A that appears in the code. An­

other refinement is that in interation r only the

sections [r + 1 :n J of the rows are operated upon.

as by definition the other elements become 0 (ex-

HICII PERFOR\1A'-iCE FORTRA~ 95

INTEGER m, n, r, r1
REAL A (m, n)

!--!
! Forward Gaussian elimination of augmented matrix 'A'

(without pivoting). The result overwrites 'A'.

!--!
DO r = 1, m

r1 = r+1
A(r, r1:n)
A(r1:m, r1:n)

A(r, r1;n) 1 A(r, r)
A(r1:m, r1:n) - (SPREAD (A(r1:m, r), 2, n-r) &

*SPREAD (A(r, r1:n), 1, m-r))
END DO

(a): Code

1

r

r1

m

1 r r1

I I

A(rJr)l

--
" --

A(r1 :m

"'
r)

'

n

A(r, r1:n)

A(r1 :m,r1 :n)

(b): Array sections referenced in iteration r of above code

FIGURE 5 Forward dimination phasP of Gaussian elimination 1without piYoting;'.

cept for A (r, r), which becomes 1). For brevity this

example omits pivoting, which would normally be

used to improve numerical stability, and also

omits to check that diagonal elements are non­

zero.

Incidentally, notice that in order to update the

whole section A (r+1: m, r+1: n) in a single data

parallel operation using Fortran 90 array syntax,

the SPREAD intrinsic function must be used to

replicate row A (r, r + 1: n) and column

A (r+1: m, r) into two-dimensional arrays that

conform with (i.e., have the same shape as)

A (r+1: m, r+1: n) . This is rather cumbersome,

and HPF introduces a data parallel FORALL state­

ment which allows it to be expressed more con­

cisely, as we shall see later.

CYCLIC Distribution

Notice that the section of A that is inYolved in the

computation diminishes as the execution prog­

resses, i.e., iteration r only involves the section

A (r: m, r: n) -see Figure 5. Therefore, if A were

block distributed over the two-dimensional pro­

cessor array, the area of the processor array that is

utilized would diminish correspondingly. This ex­

ample is therefore a candidate for cyclic distribu­

tion:

!HPF$ DISTRIBUTE A (CYCLIC, CYCLIC)

Assuming that A is larger than the processor array,

this helps to spread out the workload.

Unspecified Mapping

The mapping of any data object may be left un­

specified in an HPF program, in which case it will

be implementation dependent. In particular, we

expect that the mapping will often not be specified

for scalar objects such as m, n, r, and r1 in the

Gaussian elimination example. Although the de­

fault mapping for scalars is implementation de­

pendent, on distributed memory YIIMD architec-

96 MERLIN AND HEY

tures it is likely that they will be replicated, i.e.,

every processor will store a copy of them. This is

certainly a sensible mapping for scalars as their

values are often needed by all processors, for in­

stance, if they are used to govern control flow (as

DO-loop indices, or in DO-loop control expres­

sions, IF and DO WHILE conditions, etc.), or re­

ferenced in specification expressions, subscript

expressions, etc. We shall say more about replica­

tion later.

A small refinement of this default mapping

strategy is that, if the scalar is used as a DO-loop

index and the implementation partitions the DO­

loop iterations, allocating different iterations to

different processors, the index may well be privat­

ized for the scope of the loop. However, this will be

transparent to the user, and the implementation

will ensure that all copies of the scalar receive the

same, correct value on termination of the DO-loop

so as to preserve the program's semantics.

4 DUMMY ARGUMENT MAPPING

So far we have only considered the mapping of

data objects that have their own storage, such as

local and global variables. The situation is more

complicated for dummy arguments. as they do not

necessarily receive fresh storage, but instead serve

as placeholders that are associated with a number

of other objects, the actual arguments, during

program execution.

HPF actually provides a number of mecha­

nisms for specifying the mapping of a dummy ar­

gument. It can be given a prescriptive mapping,

which forces the actual argument to acquire the

INTEGER m, n, r, r1

REAL A (m,n)

DO r = 1, m

r1 = r+1

specified mapping, or a descriptive mapping,

which asserts that the actual argument is already

mapped as described, or it can inherit its mapping

from the actual argument. In fact, the mapping

can be specified using any combination of these

forms.

We shall demonstrate these mappings using a

modified version of the Gaussian elimination code

(Fig. 6), in which the update in each iteration is

performed by calling a subroutine Gauss_i tn.

We shall now address the quation of how to spec­

ify the mapping of Gauss_i tn's dummy argu­

ments.

4.1 Prescriptive Mapping

The mapping of a dummy argument can be speci­

fied in the same way as for other data objects,

using the directives already described. This con­

stitutes a command to make the associated actual

argument have the specified mapping.. and is

called prescriptive mapping [HPF pp. 48(18-21),
51 (33-36)]. If the actual argument is not mapped

as prescribed, it is automatically copied or re­

mapped on entry to the procedure to satisfy the

dummy's mapping directives. and copied or re­

mapped back on return (unless the latter is known

to be unnecessary, e.g .. if the dummy argument's

value is unchanged). ·we emphasize that the argu­

ment's mapping is always restored on return, so a

data object is never permanently remapped as a

side effect of passing it as an argument to a proce­

dure [HPF p. 53(19-31):.
There are several rea:,;ons why HPF provides

the prescriptive mapping facility. The mo,;t obvi­

ous is that a dummy argument may be associated

CALL Gauss_itn (A(r1:m, r1:n), A(r1:m, r), A(r, r1:n), A(r,r), m-r, n-r)

END DO

SUBROUTINE Gauss_itn (matrix, col, row, elem, n1, n2)

INTEGER n1, n2

REAL matrix (n1, n2), col (n1), row (n2), elem

row = row I elem

matrix = matrix SPREAD (col, 2, n2) * SPREAD (row, 1, n1)

END SUBROUTINE

FIGURE 6 Gaussian elimination with each itt>ration dorw by a subroutine call.

with a number of different actual arguments with

different mappings, so if a particular mapping is

specified for the dummy argument, some actual

arguments may have to be remapped in order to

satisfy it. Another reason is that in general expres­

sions in HPF have no defined mappings, so if an

actual argument is an expression it may not be

possible to predict and declare its mapping. Fi­

nally, procedure boundaries are a clean and natu­

ral place for data to be remapped, as a procedure

encapsulates a segment of computation for which

the optimal data mapping may be different from

that elsewhere.

For example, the dummy arguments of

Gauss_i tn in Figure 6 could be mapped as fol­

lows:

!HPF$ ALIGN col (: l WITH matrix (:, *l

!HPF$ ALIGN row (:) WITH matrix (*, :)

!HPF$ ALIGN elem WITH matrix (*, *l

!HPF$ PROCESSORS p (4,4)

! HPF$ DISTRIBUTE matrix (BLOCK, BLOCK) ONTO p

Dummy argument matrix is associated with

the actual argument A (rl: m, rl: n), which is a

regular section of an array. For the time being

suppose that A is distributed (BLOCK, BLOCK) in

the caller. Then in general A (rl: m, rl: n) occu­

pies only a subset of the processors (i.e .. the corre­

sponding regular section of the processor array).

However, specifying that dummy argument ma­

trix is distributed (BLOCK, BLOCK) means that

it is treated as a whole array which is distributed

uniformly. or as uniformly as possible. over the

whole processsor array, as described in Section

3.1. To acquire this mapping. A (rl: m, rl: n)

will generally be copied to a temporary array with

the required mapping on entry to Gauss_i tn.

and copied back on return.

In many first-generation HPF implPmenta­

tions .. the value assigned to an array clement is

computed by the processor(s) that own(s) it. i.e ...

store(s) it in its local memory. This is called the

ownercompules rule.ln that case .. the distribution

specified for rna tr ix spreads the computation

uniformly over the processor array. whereas the

original distribution of the actual argument would

concentrate it on the subset of processors storing

A (rl: m, rl: n) . Therefore .. the remapping re­

duces the computation time. as the \York is dis­

tributed over n1ore processors so each has less to

do. \Ve say that the processors are well load bal­

anced. However. to this computation time must

be added the time for the data remapping at the

HIGH PERFORMANCE FORTRAI\' 97

beginning and end of Gauss_i tn, so it is uncer­

tain whether the remapping reduces the overall

execution time-that can only be determined by

measurement or estimation. It would certainly not

be reduced if A were distributed (CYCLIC, CY­

CLIC) in the caller, as we suggested in Section 3.3,
since then the section A (rl: m, rl: n) would al­

readv be distributed as uniformly as possible over

the processors so the overhead of data remapping

would not be offset by an improved load balance.

In that case it would be better for matrix to in­

herit its mapping from the actual argument so that

no data movement occurs. Sections 4.2 and 4.3
will explain how to specify that.

Replication

col, row, and elem are aligned with matrix.

The ' * ' s that appear as dimension entries in their

ALIGN directives mean that the alignment is inde­

pendent of the subscript values in those dimen­

sions. lncidentially, this feature of the ALIGN di­

rective is not specific to dummy arguments-it

can be used in anv context.

For example,

!HPF$ ALIGN col (:) WITH matrix (:, *)

means that col (i) is aligned with matrix (i, j)

for all subscipt values i and j, i.e., each element

of col is aligned with a whole row of matrix. This

in turn means that when matrix is distributed.

col is copied, or replicated. over the processor

arrav dimension that the second dimension of ma­

trix is distributed over [HPF pp. 34(42)-
35(40)]. With the given DISTRIBUTE directive.

co 1 is distributed over the first dimension of pro­

cessor array p in the same manner as the first

dimension of matrix, but is replicated over the

second dimension ofp. so each column of the pro­

cessor array stores a complete copy of col. This is

shown in Figure 7. using a 2 X 2 processor array

for simplicity.:j: Similarly. the other ALIGN direc­

tives mean that row is replicated over the first di­

mension of p (so each row of p has its own copy of

row) and elem is replicated over both dimensions

ofp (so every processor has its own copy of elem).

:j: lncidentallv. the ALIGN directive should not lw taken too

literally in the case of replication. For example. if" matrix has

size :4.4). the ALIGN directive in Fi!(ure-: su!(gesb that each

processor stores two identical copies of part of col I:C.i(··

(p (1, 1) stores two copies of col (1: 2). etc.-see Figure 7
;.

There is an obvious optimization~

98 YIERLI~ A'\D HEY

Pu P12

Pn P21

col matrix

!HPF$ ALIGI col (:) WITH matrix (: ,*)

!HPF$ PROCESSORS p (2,2)
!HPF$ DISTRIBUTE matrix (BLOCK, BLOCK) OITO p

FIGURE 7 Replicating col over the second dimen­

sion of matrix (and thu~ processor array p).

Replicating row. col. and elem in this way

means that the boch of Gauss_i tn can be exe­

cuted without any communications. The array a,;­

signments in Gauss_i tn are equivalent to the fol­

lowing elemental assignments performed for all

values of subscripts i and j :

row (i) = row (i) 1 elem
matrix (i,j) =matrix (i,j) -col (i) *row (j)

The given alignments ensure that for every ele­

ment assigned. the variables referenced in the

right-hand side expression are stored on the :-;arne

processor. JncleecL the SPREAD intrinsic functions

in the original array assignments are a strong hint

that replication is called for.

Replicating a variable has the advantage that its

value can be read by multiple processors without

communication, but may complicate its updating.

as all copies must be updated. This is necessary

because all copies must be kept consistent. i.e ..

they must all have the ,;arne value at any point in

the program, because semantically there is ju>'t

one copy of any given variable in the HPF pro­

gram. For example. con:-;ider the first assignment

above, to vector row. Each row of the processor

array stores a copy of it. and all copies must be

updated. If the HPF implementation uses the

owner computes n1le. then every proces:-;or com­

putes the right-hand side expreo;sions for all ele­

ments of row that it owns. so identical computa­

tions are performed by every row of the processor

array. In this particular case that i:o not a draw­

back, however. as the execution time i,.; the same

as it would be if only one row of processors stored

and updated row (e.g., if "ALIGN row (:) WITH

matrix (1, :) " were specified). since all rows of

the processor array do this operation in parallel.

As was the case for dummy argument matrix.

the actual arguments associated with row, col.

and elem do not have the prescribed mapping

and so must be copied into and out ofGauss_i tn

(though an optimizing implementation might not

copy back col and elem as they are not up­

dated).

Incidentally, one might intuitively expect to

be able to replicate an object by means of a

DISTRIBUTE directive alone. but HPF svntax

does not allow for that. To replicate an object it

must first be aligned with a higher-climensional

object, as above. lf there is no suitable data object

to serve as the align targeL a template can be de­

clared for this purpose.

Collapsing

While we are on the subject, we shall briefly di­

gress to mention a few remaining aspects of' the

ALIGN directive. First. ·'*'' can appear as a di­

mension entry in an alignee, as well as an align

target, with the >'ame meaning-the alignment is

independent of subscript values in that dimen­

sion. For example, consider:

!HPF$ ALIGN matrix (:, *) WITH col (:)

!HPF$ ALIGN row (*) WITH col (*)
!HPF$ ALIGN elem WITH col (*)
!HPF$ PROCESSORS p (16)

1 HPF$ DISTRIBUTE col (BLOCK) ONTO p

The first directive mean" that rna tr ix (i, j) is

aligned with col (i) for all subscript valm~,; i and

j. i.e .. a whole row of matrix i,; aligned with each

element of col. Therefore. everT element in a

given row of matrix will be mapped to the same

proeessor(s) (since the row is aligned with a ,.,ingle

element of coL which cannot he split across mul­

tiple processors whatever col's clistribution: ,.;ee

Fig. 8). This is called collapsing the rows of ma­

trix [HPF p. :32(28-:33)1. It means that opera­

tions and assignments involving different elements

in the same row will be performed with,Jut com­

munications. at the expense of preventing concur­

rent operations and assignments on the element,.;

of a row.

Collapsing and replication may be combined as

in the second clirective above. which means that

row (i) is aligned with co 1 (j) for all i and j .

i.e., every element of row is aligned with each ele­

ment of col. In other worcls. row is collapsed and

Pl

P2

matrix col

!HPF$ 1LIGI aatrix (:,•) WITH col(:)
!HPF$ PROCESSORS p (2)
!HPF$ DISTRIBUTE col (BLOCK) OITO p

FIGURE 8 Collapsing row~ of matrix onto col .and
thus processor arrav p).

then replicated (JYer col. Therefore. every proces­

sor over which col is distributed will store a com­

plete copy of row.

col is distributed over a one-dimensional pro­

cessor arrav .. so the net effect of the above direc­

tives is to di:-;tribute the dummy arf!:uments over a

one-dimensional proce:-;:-;or array in such a way

that Gauss_i tn can execute without communi­

cations.

Cnlike replication, collapsing can he expressed

directly by the DISTRIBUTE directive as well as

via alignment. For example:

!HPF$ ALIGN matrix (:, *) WITH col (:)
!HPF$ DISTRIBUTE col (BLOCK)

is equivalent to:

1 HPF$ DISTRIBUTE matrix (BLOCK. *)

!HPF$ DISTRIBUTE col (BLOCK)

In fact. the whole set of directive" above is equiva­

lent to the first set given in this section, with the

modifications of distributing matrix (BLOCK, *)

rather than (BLOCK, BLOCK) and changing the

PROCESSORS declaration.

ALIGN Dummy Variables

Finally. an alternative to u,;ing ··: · · and · · * as

dimension entries in alignees is to usc dummy

variables (e.g .. i and j). as we did informally

above to explain the meaning of ··*·· [HPF pp.

:H(1)-36(3). Different dummy variables mu:-;t he

used in different alignee dimensions. If a dummy

variable appears in the alignee but not the align

target it is equivalent to a "* · · in that alignee di­

mension. (HoweveL it is not possible to replace a

"*" in an alip:n target by a dummy variable:

IIIGH PERFOR~IA'\CE FORTRA'\ 99

[HPF p. 35(15-33)] explains why.) If a dummy

variable d replaces a '·:" in the alignee. then one

dimension of the align target must contain an ex­

pressionj(d) that is linear in d. This means that

subscript value s in the relevant dimension of the

alignee is aligned with subscript value f(s) in the

corresponding dimension of the align target. Since

f(s) is linear in s. it generates a regular section

when applied to the complete range of subscripts ..

so this form is equivalent to the subscript triplet

form that we have used so far. For example, with

the declarations REAL a (8), b (8), c (64):

!HPF$ ALIGN a (i) WITH b (i)

! means ALIGN a(:) WITH b(:)

!HPF$ ALIGN b (i) WITH c (3*i + 21)

! means ALIGN b(:) WITH c(24:45:3)

since i takes subscript values in the range [1 :81

for a and b.

Dummy variables need not appear in the same

order in the alignee and align target. so it is possi­

ble to permute dimensions in the alignment map­

ping. e.g.:

!HPF$ ALIGN c (i, j) WITH d(j, i)

Thi,; cannot be specified using subscript triplets

alone. as ": ·· s in the alignee are matched with

subscript triplets in the align target in order of ap­

pearance. This is the main reason for using

dummv variables-otherwise the ": · · and · · * · ·
notation is often clearer and more succinct. Both

forms can be mixed in the same directive. so the

use of dummy variables can be restricted to just

those dimensions where it is required for dimen­

sional permutation.

Having digressed to discuss some features of

alignment. we shall now return to the main subject

of this section-dummy argument mapping.

4.2 Descriptive Mapping

An asterisk may precede certain clauses in map­

ping directives for dummy· arguments. namely the

align target in an ALIGN directive, e.g.:

! HPF$ ALIGN d (:) WITH *t (:)

and the distribution format list and/or processors

name in a DISTRIBUTE directive. e.g.:

!HPF$ DISTRIBUTEd *(BLOCK) ONTO *P

100 MERLIN AND HEY

where d must be a dummy argument name in both

examples. Such clauses are called descriptive,

and constitute an assertion that any actual argu­

ment associated with that particular dummy argu­

ment already has the described mapping charac­

teristics. No run-time checking or remapping is

performed within the procedure to satisfy these

descriptive clauses. If the actual does not have the

described mapping, the program is erroneous and

its behavior is undefined [HPF pp. 48(23-32),
50(13)-51 (28), 52(1-24)].

For example, suppose that in the Gaussian

elimination example of Figure 6, array A is distrib­

uted as follows:

!HPF$ PROCESSORS p (10,10)

!HPF$ DISTRIBUTE A(CYCLIC,CYCLIC) ONTO p

Sections of A are passed as actual arguments to

subroutine Gauss_i tn, where they are associated

with dummy arguments matrix, col, row, and

elem. The mapping of these dummy arguments

can be described with the help of a template, as

shown in Figure 9, so that it corresponds exactly

with that of the array section actual arguments. To

help describe the mapping we have modified

Gauss_i tn's argument list slightly, passing in

three arguments m, n, and r rather than the two

array size arguments n1 and n2 used before.

This example features more general cases of

alignment than we have encountered_ before, in

which the alignee is aligned with a regular section

of the align target, specified using the normal For­

tran 90 subscript triplet notation. Incidentally,

one cannot specify a regular section of the

alignee-only of the align target. Ignoring dimen­

sions containing"*" entries or align dummy vari­

ables, the alignee must conform with the specified

regular section of the align target (i.e., corre­

sponding dimensions must have the same number

of elements), and each element of the alignee is

aligned with the corresponding element of the tar­

get. As normal for Fortran 90 regular sections, any

dimension of the align target can contain a scalar

subscript rather than a subscript triplet, which al­

lows a data object to be embedded in a higher

dimensional array or template (e.g., "ALIGN

col (:) WITH t (r+1: m, r)" in Fig. 9). Also as

normal for regular sections, a subscript triplet can

specify a stride, and this may even be negative so

SUBROUTINE Gauss_itn (matrix, col, row,

INTEGER m, n, r

elem, m, n, r)

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

!HPF$

REAL matrix (m-r, n-r), col (m-r), row

TEMPLATE t (m, n)

ALIGN matrix (:,:)

ALIGN col (:)

WITH * t

WITH * t

WITH * t ALIGN row (:)

ALIGN elem

PROCESSORS

WITH * t

p (10, 10)

(r+1: m, r+1: n)

(r+1: m, r)

(r, r+1: n)

(r, r)

DISTRIBUTE t (CYCLIC, CYCLIC) ONTO p

(a): Code

1 r n

1
.&. (or tl) I

elem I I

--
r r-. row

--
col

" ~ matrix

m

(n-r) , elem

(b): Layout of dummy arguments with respect to array .&. (or template t)

FIGURE 9 Descriptive mapping of Gauss_i tn's dummy argument.

as to reverse the sense of the mapping (e.g.,

"ALIGN a(:) WITH b (10: 2: -2) ").An identity

alignment (e.g., "ALIGN a (: , :) WITH new_ a

(: , :) ") is just a special case in which the regu­

lar section selected from the align target is the

whole of the target array. At the opposite extreme,

a scalar can be aligned with a single element of

an array or template (e.g., "ALIGN elem WITH

t (r, r) " in Fig. 9).

Notice that the use of a template is almost in­

dispensable in this example. The dummy argu­

ments are associated with regular sections of an

array A, so their mapping can only be described by

aligning them with equivalent regular sections of

an array with the same dimensions as A. (In gen­

eral they cannot be described by DISTRIBUTE di­

rectives alone, for instance). However, there is no

such data array within Gauss_i tn to serve as the

align target. One possible solution would be to de­

clare such an array within Gauss_i tn specially

for this purpose, but that would waste storage,

obscure the code, and perhaps cause the compiler

to warn that a variable is declared but not used!

Another possibility would be to pass the whole of

array A itself into Gauss_i tn as another argu­

ment, but that would make it pointless to also pass

sections of it. Therefore, a template can be de­

clared to serve this purpose, avoiding all of these

drawbacks: It occupies no storage, and has no ac­

tual existence as a real data object in the program.

Mixing Descriptive and
Prescriptive Directives

It is possible for some dummy arguments to have

descriptive mapping while others have prescrip­

tive mapping. For example:

!HPF$ TEMPLATE t (m, n)
!HPF$ ALIGN matrix(:,:)WITH*t(r+l:m,r+l:n)
!HPF$ ALIGN col (:) WITH matrix (:' *)
!HPF$ ALIGN row (:) WITH matrix (*' :)

!HPF$ ALIGN elem WITH matrix (*, *)

describes the mapping of the actual argument as­

sociated with dummy argument matrix, but pre­

scribes that dummy arguments col, row, and

elem are replicated over matrix as they were in

Section 4.1 (which implies that the corresponding

actual arguments have to be copied in and out,

but avoids communications within the body of

Gauss_i tn).

HIGH PERFORMANCE FORTRAN 101

Pros and Cons of Descriptive Mapping

The only reason to use descriptive rather than

prescriptive directives is for optimization pur­

poses. The above examples could equally well

have used prescriptive directives, by omitting the

"*"s in front of the various clauses; remapping

would still not occur as the actual arguments al­

ready have the prescribed mapping. The only dif­

ference is that without the "*"s the dummy argu­

ment mapping would typically be checked on

entry to determine whether remapping is neces­

sary, while this check is omitted in the descriptive

case, obtaining a small time saving. However, de­

scriptive directives must be used with care; since

they assert the mapping, they can introduce errors

into an otherwise correct program.

Having said this, we shall see in Section 4.4
that descriptive directives can be used safely if the

procedure in which they appear has an explicit

interface wherever it is called.

4.3 Inherited and Transcriptive Mapping

Suppose that Gauss_i tn is a library routine and

that we want it to accept any mapping for its argu­

ments and not to remap them. In other words, we

want the dummy arguments to inherit their map­

ping from the corresponding actual arguments.

This can be specified by the INHERIT directive

[HPF §3.9]:

!HPF$ INHERIT matrix, col, row, elem

If no other information is provided about these

dummy arguments, the associated actual argu­

ments can have any mapping and will not be re­

mapped-even if they are array elements or sec­

tions. In general, the compilation system will

generate code to handle any mapping for the ar­

guments (unless it can determine the possible ac­

tual argument mappings).

Some dummy arguments may have inherited

mapping while others have prescriptive or de­

scriptive mapping. Other data objects, including

other dummy arguments, can be aligned with

dummy arguments with inherited mapping. For

example:

!HPF$ INHERIT matrix

!HPF$ ALIGN col (:) WITH matrix (:, *)

!HPF$ ALIGN row (:) WITH matrix (*, :)

!HPF$ ALIGN elem WITH matrix (*, *)

102 .VIERLT:\" A'-.;D HEY

inherits the mappinf! of rna tr ix and replicates

col, row. and elem over dimensions of it.

The basic idea of inherited mapping is straight­

forward and very useful. However, this concept i,;

considerably complicated by the possibilities al­

lowed in HPF of inheriting some characteri,;;tics of

a dummy argument"'s mapping and prescribing or

describing others., which we now describe. I;nfor­

tunately Subset HPF only include,.; the case where

INHERITed dummy arguments have their distri­

bution explicitly prescribed or described. which

we shall consider next.

Specifying Both INHERIT and DISTRIBUTE

A dummy for which INHERIT is specified ma~· op­

tionally al,.;o appear in a DISTRIBUTE directive.

thought it may not be aligned (i.e .. appear as an

alignee!. In that case. the DISTRIBUTE directive

refers to the distribution of the trmplote to which

the actual argument is ultimote(1· aligned. rather

than the distribution of the actual argument it­

self.~ The alignment of tlw actual argument to its

ultimate template is not changed. even if the ac­

tual argument is an array element or regular sec­

tion: in fact, that is the essential meaninf(of the

INHERIT directive [HPF pp. -±5(:3"7)-47:-±1; .

For example. dummy argument matrix is as­

sociated with an actual argument that is a n~gular

section of an array. namely A (rl: m, rl: n).

Since A is not explicitly aligned (as it is distributed

directly-see the second paragraph of Section

4.2), it is considered to be ultimately aligned with

itself, and thus its ultimate template is also the

array A itself lHPF p. 22(42-43r. Therefore if

"INHERIT matrix·· is specified. then any

DISTRIBUTE directive for matrix actuallv refers

to the arrav A. Thu:-;:

!HPF$ DISTRIBUTE matrix *(CYCLIC, CYCLIC)

asserts that A has a cvclic distribution. while

!HPF$ DISTRIBUTE matrix (BLOCK, BLOCK)

sets up a template with the same dimen:-;ions as A

but with (BLOCK, BLOCK) distribution. and aligns

§ Cltimat~ ali1mment i,; <explained in St•<'tion :1.:2 and in

[HPF p. 22. last paragraph-.

a copy of A (rl: m, rl: n) with it in the same way

that A (rl: m, rl: n) is aligned with A. Therefore.

this combination of directive" allows the alif!n­

ment of an argument to its ultimate template to be

preserved, but the distribution of that templatto to

be asserted or changed.ll

Actually. it turns out that DISTRIBUTE can

only be used in conjunction with INHERIT when

the dummy has the same rank as the actual argu­

ment';; ultimate template. For example. the scalar

dummy arf(urnent elem is associated with the ac­

tual argument A (r, r) whose ultimate template is

the two-dimensional arrav A. However. it is ille­

gal to specify ''DISTRIBUTE elem (BLOCK,

BLOCK)," as elem itself is scalar [IIPF p. 2b. 4th

constraint l. The same applie,.; to the one-dimen­

sional arguments col and row. This limit,; the

usefulness of this combination of directives'

Transcriptive Distribution

The reverse combination. inheriting distribution

characteristics but not necessarily alif(nment. i,.;

catered for by using asterisks in the DISTRIBUTE

directive in place of the distribution format and/ or

processors name. For exan1ple:

!HPF$ DISTRIBUTE matrix * ONTO *

means that matrix· s distribution format and the

processor arrangement m·er which it is distributed

are inherited from the actual argument. i_However

if INHERIT is not specified. and the actual is a

ref(ular section or is otherwise embedded into a

template. its alif!nment will chanf!'e so that it is

spread out over the processor array. as thouf!h a

new arrav were declared.; Clauses in a DISTRIB­

UTE dire~tive consisting of just asterisks are called

transcriptive [HPF pp. 48(:-33!-4-9(42):. They are

not included in Subset HPF.

Transeriptive and other forms can be mixed.

For example:

!HPF$ PROCESSORS p (5,20)

!HPF$ DISTRIBUTE matrix * ONTO p

means that matrix inherits its distribution format

but is distributed 0\ er a prc,;crihed processor ar-

II If changed. the di,tribution io n·otored on return l'nnn tlw

proc~dure :~:-;e•· the b<'[!inninf! of ~ection -+.1.,

rangement p. i.e .. the actual mav have been dis­

tributed over a different processor arrangement.

in which case it will be redistributed over p using

the same distribution format as before.

!HPF$ PROCESSORS p (10,10)

!HPF$ DISTRIBUTE matrix * ONTO *P

asserts that the actual is distributed over proces­

sor arrangement p. but its distribution format is

inherited and could be anything.

1 HPF$ DISTRIBUTE matrix (BLOCK, BLOCK) ONTO *

means that matrix i,; to be prescriptively block

distributed onto whatever procps:-;or arrangement

the actual wa,.; distributed onto.

These three fonn,.; of dumrny argument n1ap­

ping. prescriptive. descriptive. and transcriptive

or inherited. can be mixed fr·ecly. except that a

dummy argument appearing as an alignee in

an ALIGN directivP cannot also appear in an

INHERIT or DISTRIBUTE din~ctin~.

4.4 Explicit Interfaces

Finally .. we consider argument mapping from the

viewpoint of the caller of a procedure. Fortran 90

introduces to Fortran the possibility of makinf! the

interface of a procedure explicit in the caller.. i.e ..

of providing the caller with complete information

about the procedure· s dummy arguments and. for

a function. its result !such as their types. shapes.

whether they are used as input and/ or output ar­

guments. etc.). The interfacP is automatically ex­

plicit for internal and module procedures. and can

be made explicit for external procedures by dt>­

claring an .. INFERFACE block .. that contains the

required information.

In HPF. if an explicit interface includes the

mapping directives for the dummy arg-ument>;.

then the caller will automatically rPmap or copy

the actual arguments (for the duration of the pro­

cedure call) as necessary to sati,o;f~, them. Thi:'i ap­

plies even if the mapping dirPctives are descrip­

tive; the caller treats them a,; prescriptive and

performs any remapping necessary to satisfy

them. Therefore. within the procedure the de­

scriptive directives are guaranteed to be :oatisfied

and so cannot be in error lHPF p. 4;) !):3-2"7):.

This suggests a '·dean .. optimization that pro­

grammers can apply to their HPF programs: en-

liiCH PERFOR~L\f\CE FORTRA" 103

sure that all procedure calls have an explicit inter­

face that includes the dummy argument mapping

directives. and change all prescriptive directives

for dummy arguments to descriptive ones.

5 DYNAMIC REMAPPING

The directives that we have considered so far are

declarations. There are also executable forms of

the ALIGN and DISTRIBUTE directiws, namely

REALIGN and REDISTRIBUTE, which dynami­

cally remap data during program execution. They

can only appear among the executable state­

ments. Only the standard. prescriptive. forms of

the directives are allowed: for dummy arguments.

the descriptive and transcriptive forms cannot be

used (as they would not make sense in the context

of remapping). If a dummy argument is dynami­

cally remapped. its original mapping is automati­

cally restored before the procedure return,.;. so an

actual argument cannot be remapped as a side

effect of a procedure call l HPF p. 53 (19-:31)].

This does not apply to variables declared in mod­

ules .. however: if they are dynamically remapped

within a procedure. their new mapping is pre­

served when the procedure return,.;. Cornmon

block and SAVEd variables cannot be dvnamicallv . .
remapped lHPF p. 3"7 (20-25).

An object that has lwen aligned cannot be RE­

DISTRIBUTEd, .iust as it cannot appear in a DIS­

TRIBUTE directive. Therefore an object appearing

in an ALIGN directi,·e can onlv be redistributed if

it is at the root of its particular alignment tree

[HPF p. 22 (46-48) . \\hen :ouch an objt>ct is

redistributed it ''carries .. with it all the arravs

aligned to it. so the alignment relation:,; are pre­

served [HPF p. 2;:) <:44-48)]. Therefore. REDIS­

TRIBUTE may potentially rPsult in a lot of data

movement~

Conversely. an object cannot be REALIGNed if

it is the root of an alig-nment tree (i.e., if anything

else is ultimate(v aligrwd with it). Alignees, includ­

ing interior nodes of an alignment tree, and ob­

jects not explicitly aligned can be realigned [HPF

p. 22 (46-48);. Realignment of a data object only

affects that object-if it is an interior node of an

alignment tree. it does not ·'carry·' the objects that

were aligned with iL as they are regarded as being

actually aligned with the root of the alignment tree

rather than with the object in question, the latter

serving only as an intermediary in the description

of the alignment lHPF p. 22 (3"7-41)j.

104 MERLIN AND HEY

Any object that may be subject to REALIGN or

REDISTRIBUTE directives must be specified in a

DYNAMIC directive [HPF §3.5], e.g.:

! HPF$ DYNAMIC A, B

As a toy example of dynamic remapping, con­

sider the following. We have already indicated

that block distribution is optimal for Jacobi itera­

tion, while cyclic distribution is better for Gaus­

sian elimination. Suppose that for some reason we

wished to perform a phase of Jacobi iteration fol­

lowed by a phase of Gaussian elimination on the

same array. Then it may well be worthwhile to

redistribute the array between these phases so

that it is optimally mapped for each:

REAL a (m, n)

!HPF$ DYNAMIC, DISTRIBUTE(BLOCK,BLOCK): :a

... Jacobi iteration phase
!HPF$ REDISTRIBUTE a (CYCLIC, CYCLIC)

. . . Gaussian elimination phase

Because dynamic remapping is potentially such

an expensive operation it is only likely to be worth­

while between fairly large phases of computation,

as in the above example. It is unlikely to be worth­

while just for the sake of a single array assign­

ment. In general it is better to rely on the HPF

implementation to generate the necessary com­

munications for that, rather than to explicitly re­

map the data in order to minimize those commun­

ications, since explicit remapping moves the

whole of an array while only a relatively small

amount of data may need to be communicated to

implement the assignment. However, as always,

experiment is the best judge of the optimal map­

ping and remapping strategy.

The REALIGN, REDISTRIBUTE, and DYNAMIC

directives are not in Subset HPF.

Allocatable Arrays and Pointers

Variables with the ALLOCATABLE or POINTER at­

tribute may appear in ALIGN and DISTRIBUTE

directives, in which case the mapping directives

take effect when storage is allocated for the vari­

ables in an ALLOCATE statement. If the default

mapping provided by such directives is inappro­

priate, an ALLOCATE statement mav be immedi­

ately followed by a REALIGN or RE.DISTRIBUTE

directive which will override the declared default.~

In that case the variable must have the HPF DY­

NAMIC attribute.

Figure 10 shows an example of the use of allo­

catable arrays. Recall that in Section 4.1 we redis­

tributed sections of an array by passing them as

arguments to a procedure whose corresponding

dummy arguments had prescriptive mapping di­

rectives. This can be achieved without a proce­

dure call by allocating arrays with the appropriate

size and distribution and assigning the array sec­

tions to them. (We must assign the sections to

whole arrays because one cannot directly remap

sections of an array, and the destination arrays

must be allocatabl~ because they have differe~t
sizes in different iterations.) Thi~ example is not

very elegant, however, since copying the array sec­

tions to and from new variables serves no purpose

except for its side effect of remapping them. It is

less obtrusive to achieve the remapping via the

procedure interface as in Section 4.1.

HPF §3.6 gives more details about mapping

pointers and allocatable arrays in HPF. Inciden­

tally, pointers are not in the Fortran 90 subset

included in Subset HPF.

6 CONCURRENT EXECUTION FEATURES

Fortran 90 already contains a rich set of features

for expressing data parallelism, namely its array

syntax and elemental and array intrinsic func­

tions. Since data parallelism and concurrent exe­

cution are central to HPF, it introduces a number

of extra facilities for expressing them, namely a

FORALL statement and construct, PURE proce­

dures, and an INDEPENDENT directive. We shall

describe them in this section.

6.1 FORALL Statement and Construct

The FORALL statement [HPF §4 .1] allows a data

parallel assignment to a group of array elements to

be expressed in terms of its constituent elemental

assignments. For example:

FORALL (i=l:lO) A(i) = B(i) + C(i+2)

~ Admittedly this prescription is somewhat inelegant. It was

devised because of a desire to restrict the ALIGN and DIS­

TRIBUTE directives to the declarations part of a program unit,

thus preventing their use in conjunction with an ALLOCATE

statement.

HIGH PERFORMANCE FORTRAN 105

INTEGER m, n, r, r1

REAL A (m,n), elem

REAL, ALLOCATABLE :: matrix (:,:), row (:), col (:)

!HPF$ ALIGN col (:) WITH matrix (:, *)

!HPF$ ALIGN row (:) WITH matrix (*, :)
!HPF$ DISTRIBUTE matrix (BLOCK, BLOCK)

DO r = 1, m

r1 = r+1

ALLOCATE (matrix (m-r, n-r), col (m-r), row (n-r))

matrix A (r1:m, r1:n)

col A (r1:m, r)

row A (r, r1:n)

elem A (r,r)

row = row I elem

matrix = matrix - SPREAD (col, 2, n-r) * SPREAD (row, 1, m-r)

A (r1:m, r1:n) =matrix

A (r, r1:n) =row

DEALLOCATE (matrix, col, row)

END DO

FIGURE 10 Using allocatable arrays to remap array sections.

has the same meaning as the array assignment

A(1:10) =B(1:10) +C(3:12).

It is helpful to introduce some terminology for

the parts of a FORALL statement. In the last exam­

ple, i is called the FORALL index, the part in

parentheses which declares the FORALL index and

its range of values is called the FORALL header,

and assignment statement governed by the

FORALL header is called the FORALL assignment.

A FORALL looks somewhat like a DO-loop over

array element assignments (or at least, a FORALL

construct looks like that!). However, it has the

same semantics as an array assignment: The ex­

pression on the right-hand side of the FORALL as­

signment is evaluated in parallel for all FORALL

index values, and then the results are assigned in

parallel to the corresponding variables, so the

right-hand side expression always uses old values

of array elements. Thus:

FORALL (i=2: 9) &

A(i) = 0.5 * (A(i-1) +A(i+1))

sets each of the elements A (2) -A (9) equal to the

average of the old values of its nearest neighbors.

It is equivalent to the array assignment:

A(2:9) =0.5 * (A(1:8) +A(3:10))

but not to the apparently similar DO-loop:

DO i=2,9

A(i) 0.5 * (A(i-1) + A(i+1))

END DO

Incidentally, it is misleading to use the term "it­

erations" for the executions of the individual

FORALL assignments, as that term implies se­

quential rather than parallel execution. In this ar­

ticle we use the term instance for this purpose,

namely to mean an execution of a FORALL assign­

ment or the body of a FORALL construct for a par­

ticular combination ofFORALL index values, but it

is not in standard usage-currently there does not

appear to be a generally accepted term for this

purpose.

The FORALL header can declare multiple in­

dices. The general form for specifying the range of

values of a FORALL index is I: u[: s], where /, u,

and s are scalar integer expressions for the lower

bound, upper bound, and stride, respectively,

and [...] denotes an optional item. I, u, and s must

not depend on FORALL indices, so the "index

space" is rectangular (although this can select

nonrectangular array sections as we shall see).

A FORALL assignment need not be scalar-it

can be an array assignment. Furthermore, sub-

106 MERLl~ A~D HEY

scripts in a FORALL assignment can be general

expressions-they are not constrained in any way.

The only condition is that a FORALL statement

must not assign multiple values to any element.

This condition is imposed because FORALL state­

ments and constructs are intended to be dPtermi­

nistic, as are Fortran 90 array assignments.

meaning that the value assigned to each Plement

of the assignment variable is wPll defined even

though the order of the elemental assignments is

undefined. The corresponding condition for array

assignments in Fortran 90 is that. if an irregular

section is assigned, all of its elements must be dis­

tinct. Thus:

FORALL (i=1:10) A(index(i)) = B(i)

is legal only if indx contains no n~peated values.

FORALL (i=1:10, j=1:5) A(10*i+j) =C(i)

is legal (assuming that the generated subscripts

are in range) as there are no duplicated Plements

on the left-hand side. lt should be apparent that

quite general sets of elements canlw as,igned by a

FORALL statement~

The FORALL header can also contain a scalar

logical expression called a mask expression. in

which case the FORALL assignment. including the

evaluation of its right-hand side, is only executed

for those combinations of index values for which

the mask expression evaluates to . TRUE. . This

gives the FORALL statement a similar functionality

to the WHERE statement. Thus:

FORALL (i=1: 10, A(i) > 0.0) &
A(i) = 1.0 I A(i)

is equivalent to:

WHERE(A(1: 10)>0.0)A(1: 10)=1.0/A(1:10)

It may seem that FORALL duplicates the func­

tionality already provided by Fortran 9()" s array

syntax. However. the FORALL statement is often

clearer and more concise. and actually provides

greater functionality, allowing more general array

regions, access patterns. and expressions to be

described. Therefore, it allows the explicit expres­

sion of data parallel assignment in more general

cases than array syntax can handle. \\"ithout it.

the programmer would be forced to use sequential

syntax (such as elemental assignments in DO­

loops) in these cases, which hides the data para!-

lelism and requires that a compiler perform exten­

sive analysis to reveal it. This reduces the chances

of concurrent execution, as it is often impossible

for a compiler to determine statically whether DO­

loop iterations can be performed concurrPntly.

The following are some examples of situations

where FORALL is either more ccmvenient than ar­

ray syntax, or indispensable. for expressinf! data

parallel assignments:

1. \Vhen dimensional permutation is involved.

For example:

FORALL (i=1:n, j=1:n, k=1:n) &
A(i,j,k) = B(k,j, i)

is clearer than the Fortran 90 Pquivalent.

which requires the RESHAPE intrinsic:

A= RESHAPE (B, ORDER= (/3, 2, 1/))

2. To avoid the conformance rules for array

assignments. For example. the followinf! ar­

ray assignment from the Gaus:,ian elimina­

tion code of Figure .~ requires the use of the

SPREAD intrinsic function so that all arraY

sections conforn1:

A(r1:m, r1:n) = A(r1:m, r1:n)

(SPREAD (A(r1:m, r), 2, n-r) &
* SPREAD (A(r, r1:n), 1, m-r))

It can be expressed more simply usmg a

FORALL:

FORALL (i = r1:m, j = r1:n) &
A(i,j) = A(i,j) - A(i,r) * A(r,j)

3. To express subscript-dependent YaluPs. For

example. the following sets. each element

even (i , j) of a lof!ical array to . TRUE. if

(i + j) is even and . FALSE. otherwise:

FORALL (i=1:m, j=1:n) &
even(i,j) = (MOD (i+j, 2) 0)

even

Subscript-dependent exprPssions are Yery

cumbersome to express in array :'iyntax. The

Fortran 90 equivalent of the above is:

(MOD(SPREA0((/(i,i=1,m/), 2, n) &
+ SPREAD ((/ (j , j = 1 , n/) , 1 , m l , 2)

4. To express nonrectangular array sections:

FORALL (i=l: n) ... A(i, i)

FORALL (i=l:n, j=l:n, j >= i) ... A (i, j)

.5. To express more general array access pat­

terns. ln fact. it is possible to select elements

from an array in any fashion to form an­

other array of any shape. For example:

FORALL (i=l: 1, j=l:m, k=l:n) &
. A (i vee (i, j, k) , j vee (i, j, k))

forms a three-dimensional "irregular sec­

tion" from the two-dimensional arrav A.

Fortran 90 vector subscript notation c~mld
only form a one or two-dimensional section

from A. in which i vee and j vee each de­

pends on only one FORALL index (a differ­

ent one for each dimension).

The next example expresses an array ao;­

signment whose right-hand side is a product

of two n X n arravs. one formed frorn an

array A by cyclically shifting each row i left

by i places. the other formed from an array

B by cyclically shifting each column) up byj

places. This cannot be written as an arrav

assignment. however. as this pattern of rm~·
and column shifts cannot be expressed by

array sections. The subscript ranges are de­

clared as 0 : n - 1.

FORALL (i=O:n-1, j=O:n-1) &
C(i,j)=A(i,MOD(i+j,n))*B(MOD(i+j,n) ,j)

lf this is repeated rz times, with the cvclic

shifts increased bv one each time. and the

results are accum~lated into C. the matrix

product C = AB is produced.

6. Finally .. a FORALL statement must be used

when the constituent elemental a,.;signment

involves a reference to a nonelen1ental func­

tion. For example. the following is a com­

pletely data parallel expression of the ma­

trix multiplication C = AB. where A. B. and

C have arbitrary sizes (m X k;. (k X rz::. and

(m X rz). respectively:

FORALL (i=l:m, j=l:n) &
C(i,j) = DQT_PRODUCT(A(i,:), B(: ,j))

This cannot be written as an array as,.;ign­

ment to the whole of C because of the refer-

HIGI I PERFOR\IA"'CE FORTRAI\ 107

diagonal of array

upper triangle

ence to the nonelemental intrinsic function

DOT_FRODUCT. Without FORALL. the as­

signment to C (i , j) would therefore have to

be enclosed in DO-loops over i and j.

·we shall see in the next section that

FORALL assignments can also reference

user-defined functions. subject to certain

constraints.

A FORALL construct is also provided [HPF

§4.2]. This allows a single FORALL header to gov­

ern a sequence of statements. which may be as­

signment statements. FORALL statements and

constructs. and WHERE statements and constructs.

Incidentally. FORALL index bounds and strides

carz depend on the FORALL indices of an enclosing

FORALL construct. The FORALL construct is not

included in Subset HPF. though the FORALL

statement is. For completeness we mention that

an assignment in a FORALL statement or construct

may be a pointer assignment rather than a normal

assignment.

6.2 PURE Procedures

The order of execution of the individual assign­

ments in a FORALL statement is undefined-ide­

ally they should all execute in parallel. Therefore,

if a FORALL assignment contains a function refer­

ence, the function mav be invoked concurrently

for all FORALL index v~lues. In addition to return~
ing a value, an ordinarv user-defined Fortran

function can contain a va;iety of side effects. such

as modifying dummy arguments or variables in

common blocks, or performing I/0. Whenever

such side effects can occur it is preferable that

they should happen in a well-defined order .. oth­

erwise the net result may be nondeterministic. For

example .. if one function invocation writes to a

variable that another reads, or two invocations

write different values to the same variable, then

the overall behavior depends on the order of the

invocations. We have already indicated that a de­

sign objective of FORALL is that it should be deter­

ministic, so this suggests that functions referenced

in FORALL assignments should be side effect free.

Another consideration is implementation. In

general, a function referenced in a FORALL as­

signment might be executed on a subset of the

108 MERLIN AND HEY

processors that are allocated to the program, or

even on a single processor; this would allow multi­

ple references (for a set of FORALL instances) to be

executed simultaneously on different processors.

If the function can contain arbitrary data mapping

directives, it might access variables stored in the

local memories of processors that it is not execut­

ing on. This cannot be implemented on distrib­

uted memory architectures using pure message

passing, as message passing requires that the pro­

cessors at both ends of a communication execute

the communication instruction. To support this

behavior requires some degree of shared memory

support, either in hardware or software.

For both of these reasons (but principally the

first) it is forbidden to reference ordinarv user­

defined functions in a FORALL assigm~ent or

mask expression.#

However, HPF introduces a new class of func­

tions called pure functions, which are guaranteed

to be side effect free and which can be used in

these contexts [HPF §4. 3] . They are denoted by

adding the keyword PURE before the FUNCTION

keyword in the function header statement, and

must satisfy a number of constraints, which are

checkable at compile-time, to ensure that they are

both side effect free and efficiently implementable

under concurrent reference.

In outline, the constraints to ensure side effect

freedom are as follows [HPF §4. 3. 1. 1 J. A pure

function must not contain any operation that

might conceivably change the value or pointer as­

sociation of a dummy argument or global variable

([HPF p. 73, 3rd constraint] gives a full list of

disallowed operations), or SAVE local variables, or

reference nonpure procedures, or contain any ex­

temal 1/0, PAUSE, STOP, or dynamic remapping

operations. Note the use of the word conceivably

above; it is not sufficient for a function merely to

be side effect free in practice. For example, a

function that contains an assignment to a global

variable but in a branch that is not executed is

nevertheless not pure. This strictness is necessary

to allow side effect freedom to be checked at com­

pile-time. Data mapping is also restricted in a

pure function, as we shall describe shortly.

Pure subroutines may also be defined, and

must satisfy the same constraints except that they

may modify their dummy arguments. They are

However, the bound and stride expressions that define

FORALL index ranges can reference normal functions (unless

they are within an enclosing FORALL construct), as thev are

evaluated only once.

useful for a variety of purposes, for example so

that subroutines can be called from within pure

functions, and so that FORALL assignments can

be defined assignments, both of which require the

use of a pure subroutine.

A pure procedure (i.e., function or subroutine)

can be used anywhere that a normal procedure

can. However, a procedure must be pure if it is

used in any of the following contexts:

1. In a FORALL assignment or mask expres­

sion, or a statement in a FORALL construct

2. Within the body of a pure procedure

3. As an actual argument in a pure procedure

reference

When a procedure is used in any of these con­

texts, its interface must be explicit, and both its

interface and definition must specify the PURE

keyword and the INTENT** of its nonpointer and

nonprocedure dummy arguments (though admit­

tedly this is redundant for a pure function as its

arguments must be INTENT (IN) by definition).

Intrinsic functions, including the new HPF intrin­

sic functions, are always pure and require no ex­

plicit declaration of this fact. Of the intrinsic sub­

routines, only MVBITS is pure; the others are not

as they perform II 0. A statement function is pure

if all functions that it references are pure. The

PURE attribute is not included in Subset HPF.

Functional Parallelism

As an example of the use of pure functions, Figure

11 shows a program which plots the Mandelbri::it

set over a grid of points by calling a pure function

man de 1 concurrently at every point from a

FORALL statement. Note that, apart from prohib­

iting PAUSE and STOP statements, pure functions

have no constraints on their internal control flow.

Therefore, when referenced in a FORALL, they al­

low Junctional parallelism in an HPF program, as

different concurrent invocations can execute dif­

ferent code.tt Thus in Figure 11, different invoca­

tions of mandel will execute different numbers of

iterations of the WHILE loop, and some will exe­

cute the assignment in the IF statement while

others do not. Apart from pure function references

in FORALL, functional parallelism can also arise

** Dummy arguments can be specified as INTENT (IN) ,

(OUT) , or (INOUT), meaning, respectively. that thev are

read. written, or both.

tt Of course, SIMD architectures cannot fully exploit this

potential.

REAL n (-100:50, -50:50)

!HPF$ DISTRIBUTE n (BLOCK, BLOCK)

INTERFACE

HIGH PERFORMANCE FORTRAN 109

#itns to diverge to ([z[> 2)

PURE INTEGER FUNCTION mandel (c)

COMPLEX, INTENT (IN) :: c

END FUNCTION mandel

END INTERFACE

FORALL (i= -100:50, j= -50:50) n(i,j) mandel (0.02*CMPLX (i,j))

PURE INTEGER FUNCTION mandel (c)

COMPLEX, INTENT (IN) :: c

COMPLEX :: z

!---!

Returns the number of iterations for [z[to become> 2 under

z -> z**2 + c, starting at z =c. If ([z[<= 2) after 100

iterations it is assumed to remain so (i.e. 'c' is in the

Mandelbrot set) and the special value -1 is returned.

!---!

z = c

mandel = 0

DO WHILE (ABS (z) <= 2.0 .AND. mandel < 100)

z = z*z + c

mandel = mandel + 1

END DO

IF (ABS (z) <= 2.0) mandel -1

END FUNCTION mandel

FIGURE 11 Using a PURE function to plot the Mandelbri:it set.

via "independent" DO-loops and "extrinsic" pro­

cedure references, both of which are briefly intro­

duced later.

Data Mapping in PURE Procedures

Data mapping is also restricted within pure proce­

dures. The dummy arguments and result can be

aligned among themselves, and local objects can

be aligned among themselves or with the dummy

arguments or result, but otherwise local and

dummy objects may not be subject to any other

type of mapping directives. The mapping of global

variables is not constrained however.

These restrictions are imposed because multi­

ple invocations of the procedure may be active

simultaneously, each executing on a subset of the

processors. As we have explained, on multipro­

cessor systems without shared memory support,

the data accessed by a procedure must be con­

tained in the local memories of the set of proces­

sors that are executing it. For efficiency the caller

should have the freedom to choose the processor

subset on which to execute any particular pure

procedure reference, e.g., to maximize concur­

rency in a FORALL, and/ or to reduce communica­

tion, taking into account the mappings of other

terms in an expression or assignment. This im­

plies that, on nonshared memory platforms, it

must also have the freedom to map the proce­

dure's actual arguments, result, and local vari­

ables to the chosen processor subset, just as it has

this freedom generally for variables in an expres­

sion. Therefore, a dummy argument or result may

not appear in any mapping directive that fixes its

location with respect to the processor array. For

example, it may not be aligned with a global vari­

able or template, or be explicitly distributed, or

even INHERIT its mapping, all of which would

remove the caller's freedom to choose the actual's

mapping. The only type of mapping information

that may be specified for the dummy arguments

and result is their alignment with each other,

which may provide useful information to the caller

110 ~1ERLII' A~D HEY

INTEGER rn, n, r, r1

REAL A (rn, n)

!HPF$ DISTRIBUTE A (CYCLIC, CYCLIC)

DO r = 1, rn

r1 = r+1

A(r, r1:n) = A(r, r1:n) I A (r, r)

FORALL (i=r1:rn) A(i,r1:n) update_row (A(i,r1:n), A(i,r), A(r,r1:n))

END DO

CONTAINS

PURE FUNCTION update_row (row, factor, ref_row)

REAL, INTENT (IN) row (:), factor, ref_row (SIZE (row))

REAL update_row (SIZE (row))

!HPF$ ALIGN WITH row ref_row, update_row

update_row row - factor * ref_row

END FUNCTION

FIGURE 12 Gaussian elimination with ea<'h row updated In a pun' function <'all.

about their required relative mappings. For the

same reasons. local variables may he aligned with

the dummy arguments or result. but may not have

arbitrary mappings.:j::j:

This is not to say that the actual arguments of a

pure procedure cannot be distributed. Indeed.

they can have any mapping. The constraint,.; sim­

ply restrict the specification of their mapping

within the pure procedure. so the implementation

can remap them as it sees fit. This is one place

where the programmer is largely relieved of the

burden of worrying about data mapping (expres­

sions being another).

We can illustrate these points hy considering

one last version of the Gaussian elimination code.

shown in Figure 12. This time each row of

matrix A is updated hy calling a pure function

update_row, and this is done in parallel over all

the rows in a FORALL statement. A is distributed

cyclically over a two-dimensional processor array.

(Incidentally, in this example update_row is a

Fortran 90 internal function whose interface is

automatically explicit in the caller. Internal func­

tions are not included in Subset HPF .I

An efficient implementation of the FORALL

might broadcast row A (r, r 1: n) so that it is

aligned with every row A (i, r1: n). i > r. accord­

ing to the alignment specified in the pure fum:-

:j::f: 1--l(_nvever. thP iinpleinPntation of non~han·d nwJnory

platforms is still complicated hY the fact that pur<> procedun's

can access cornrnon block and module variables wiHht" map­

ping is fixed with respect to the pron·ssor arrav

tion.§§ and then execute each instance i of the

FORALL on the processors that own the relevant

assignment variable (and argument:' A (i, r1: n).

narnely, on a subset of one row of the processor

array. Therefore different rows of processors will

update different row,.; of A in parallel.. and multiple

invocations of update_row will be active simulta­

neouslv.

This implementation might easily he ruled out

if the programmer could specify arbitrary map­

pings for update_row's argument,; and local

variables. For instance. if ··INHERIT ref_row'·

were specified, then E"trictly speaking it would pre­

vent the corresponding actual argument A (r,

r1: n) from being broadcast, ,.;o every innH:ation

of update_row would have to be activated on the

same subset of processors-namely those owning

A (r, r1: n) -thus sequentializing the FORALL

instances.

In general each individual invocation of

update_row is distributed across multiple pro­

cessors-namely the row of processor,.; owning the

argument A (i, r 1: n) -so upda te_row exploits

parallelism both internally and via concurrent ref­

erence. Since a pure function may be executed on

multiple processors .. it is useful to be able to spec­

ify how its arguments should be aligned relative to

each other. This enables the caller to map them in

§§The callp,r is aware uf the dunn11y ar~urnPnt rnappintr

specified in pure function update_row because its interface i.-;

explicit. as it must be when a function is referenred in a

FORALL.

a manner that is efficient for the operations per­

formed within the function.

6.3 INDEPENDENT Directive

HPF also introduces an INDEPENDENT directive.

which can precede a DO-loop or FORALL state­

ment or construct [HPF §-± .41.
If it precedes a DO-loop it asserts that the loop

iterations are independent, meaning that they can

be executed in anv order. and therefore concur­

rently. without changing the semantics of the loop.

The conditions that must be satisfied for this to

apply are listed in [HPF pp. 81-82 1 . Cnlike the

case for PURE procedures. these are assertions

about behavior, and do not imply any syntactic

constraints. The DO-loop may contain procedure

calls. branches in control flow. etc .. so different

iterations may execute different code. givinf!: scope

for functional parallelism. An example is:

! HPF$ INDEPENDENT

DO i=1, 100

a (p (i)) b (i)

END DO

which asserts that p (1: 100) does not contain

any repeated entries (otherwise the same element

of a would be assigned by more than one iteration

and the result would depend on their execution

order). This is therefore equivalent to the arrav

assignment:

a (p(1: 100)) = b (1: 100)

which implies the same condition on p.

\Vhen it precedes a DO-loop .. the INDEPENDENT

directive also has an optional NEW clause to spec­

ify that certain variables must be regarded as pri­

vate to each iteration in order to make the itera­

tions independent. That is, each iteration must be

given a new .. independent copy of the variable

which is undefined at the start of the iteration and

becomes undefined again at the end. This clause

is only valid if this modification does not change

the meaning of the program. i.e., if the private

variables do not carrv values from one iteration to

another, or into or out of the loop.

\Ve should point out that. except in simple

cases, the iterations of an independent DO-loop

mav onlv be concurrently executable on shared . . .
memory ~II~ID machines. (Indeed, this particular

feature has its origin in Fortran dialects for such

machines.) This is because of the complete gener-

IIICH PEH.FOH\LA.'ICE FOHTHAN 111

ality of data references allowed within them.

which may inhibit concurrent execution on pure

message-passing systems. and of control flow,

which may prevent concurrent execution on SlMD

machines. Therefore. if a program is intended to

be run on nonshared memor-v achitectures. we

recommend the use of array or FORALL syntax

rather than independent DO-loops whenever pos­

sible.

If it precedes a FORALL statement or construct.

the INDEPENDENT directive asserts that the vari­

able(s) written for one combination ofFORALL in­

dices are not referenced (i.e .. read or written) for

any other combination ofFORALL indices. For ex­

ample:

! HPF$ INDEPENDENT

FORALL (i=1:m) a (i) =a (i+n)

asserts that the arrav sections a (1: m) and

a (1+n: m+n) are either equivalent (i.e .. n = 0) or

completely disjoint (i.e., n s -m. or n 2: m). This

condition means that the various synchronization

points implicit in a FORALL's semantics-namely

between evaluating the right-hand sides and per­

forming the assignments of an assignment state­

ment. and between successive statements in a

FORALL constn1ct-are unnecessary and can be

removed. In particular this means that FORALL

assignments can proceed directly rather than via

temporary intermediate storage, which is a useful

optimization.

As with all directives that provide information

about program behavior, the INDEPENDENT di­

rective should onlv be used to assert actual behav­

ior and not to try to change that behavior. If the

information asserted bv the directive is incorrect

then the program is erroneou,; and its behavior is

undefined.

7 OTHER HPF EXTENSIONS

HPF includes a number of other extensions which

we summarize here. \v·e do not describe them in

detail due to lack of space. but instead indicate

where full details can be found in the '·High Per­

formance Fortran Language Specification."

HPF introduces three new intrinsic functions.

They are the system enquiry intrinsic functions

NUMBER-OF _FROCESSORS and PROCESSORS_

SHAPE [HPF §5.2, 5.6.4, 5.6.5], which were in­

troduced in Section 3. Land a new computational

intrinsic function ILEN [HPF §5.6.1j. It also ex-

112 MERLIN AND HEY

tends the Fortran 90 intrinsic functions MINLOC

and MAXLOC by giving them an extra optional ar­

gument DIM for finding the locations of the maxi­

mum and minimum elements along a given di­

mension [HPF §5.6.2, 5.6.3]. In Subset HPF this

argument, if specified, must be an initialization

expression.

HPF defines a standard library of procedures

in a module called HPF _LIBRARY [HPF §5.4 and

5.7]. It contains:

1. Subroutines for enquiring about data map­

ping: HPF_ALIGNMENT, HPF_TEMPLATE,

and HPF _DISTRIBUTION

2. New array reduction functions IALL, IANY,

!PARITY, and PARITY, which apply the

operators lAND, lOR, IEOR (i.e., bitwise

AND, OR, EOR), and . NEQV. (logical

EOR), respectively

3. Array "combining scatter" functions xxx_

SCATTER, and "parallel prefix" and "suffix

functions'' xxx_pREF IX and xxx_sUFF IX,

where XXX is any of the available reduction

operations

4. Array sorting functions: GRADE_UP and

GRADE_DOWN

5. Bit manipulation functions: LEADZ,

POPCNT, and POPP AR

This module is not included in Subset HPF.

It is possible to escape from HPF to another

programming model and/ or language by calling

non-HPF procedures called extrinsic procedures

[HPF §6]. Their interface must be explicit and

must specify "EXTRINSIC (model-name)" in the

procedure header statement, where model-name

is the name of an implementation-dependent pro­

gramming model or language. For example, on a

distributed memory MIMD machine this might al­

low an HPF program to invoke message-passing

code in order to obtain forms of MIMD parallelism

that cannot be achieved in HPF, or to hand-tune

critical kernels, at the expense of nonportability.

The EXTRINSIC mechanism is not included in

Subset HPF.

HPF defines one particular type of extrinsic

model, called "HPF_LOCAL" [HPF Annex A].

This is basically Fortran 90 operating on the local

data on each processor, together with a library of

procedures for relating the local and HPF views of

data and enquiring about abstract processor coor­

dinates. However, this is an optional part of the

standard, as it may not be implementable on

SIMD architectures.

Finally, all variables and common blocks that

are subject to sequence and/ or storage associa­

tion must be identified by a SEQUENCE directive.

This is the only respect in which a standard-con­

forming Fortran 90 program is not a standard­

conforming HPF program unless it is modified.

These associations imply restrictions on the map­

ping of the variables concerned [HPF §7].

8 DISCUSSION AND CONCLUSIONS

HPF has some obvious advantages over explicit

SPMD programming with message passing. It is

closer to the style of programming familiar to ordi­

nary Fortran programmers and offers a relatively

simple migration path for existing Fortran codes.

Because HPF programs are not cluttered with

message-passing details they are shorter, clearer,

and easier to develop and modify than their mes­

sage-passing equivalents. The performance of an

SPMD program depends critically on its data

mapping, and it is easier to experiment with dif­

ferent data mappings by changing the directives in

an HPF program than by recoding a message­

passing program.

Furthermore, this higher-level programming

style does not necessarily incur lower perfor­

mance, because by and large HPF has been de­

signed to permit direct message-passing imple­

mentation on distributed memory systems,

generally avoiding the overheads of simulated

shared memory. Indeed, it is arguable that in the

long term HPF can actually be more efficient than

explicit message-passing programming, because

an HPF compiler can directly target low-level ma­

chine instructions for communications rather than

going through message-passing portability layers.

It can also employ optimization techniques such

as overlap areas, code reordering, and message

vectorization and coalescing, that the programmer

may not have the expertise or inclination to use.

Further research and development in HPF com­

pilation will doubtless improve performance fur­

ther.

Having said this, writing efficient HPF pro­

grams will not necessarily be a trivial task. Indeed,

the high -level nature of the language means that it

will be very easy to write hugely inefficient code.

Deceptively simple operations can translate into

code involving enormous amounts of communica­

tion. The programmer will need a good under­

standing of the program and of the meaning of

HPF's mapping directives (which we hope this ar-

tide has helped to impart) in order to map data

effectively. In addition, we anticipate that some

old "dusty deck" Fortran programs may need to

be significantly rewritten to convert them to effi­

cient HPF programs, in particular making use of

some of the new features of Fortran 90 and HPF,

e.g., using array and FORALL syntax rather than

DO-loops where possible, removing sequence and

storage associations, etc. Fortunately all of these

optimizations are "clean," in that they should im­

prove code legibility as well as efficiency.

ACKNOWLEDGMENTS

We would like to thank Bryan Carpenter for providing

the Gaussian elimination example, John Eastmond for

critically reading the manuscript, and Jerry Wagener for

providing information and references about Fortran 95.

The authors gratefully acknowledge support from

the Engineering and Physical Sciences Research Coun­

cil under grant number GR/J89507.

REFERENCES

[1] High Performance Fortran Forum, "High Perfor­

mance Fortran language specification," Sci.

Prog., Vol. 2, pp. 1-170, 1993.

[2] C. H. Koelbel, D. B. Loveman, R. S. Schreiber,

G. L. Steele, Jr., and M. E. Zosel, The High Per­

formance Fortran Handbook. MIT Press, Cam­

bridge, 1994.

[3] B. Chapman, P. Mehrotra, and H. Zima. "Pro­

gramming in Vienna Fortran,'' Sci. Pro g., Vol. 1,

pp. 31-50, 1992.

[4] H. Zima, H. Bast, and M. Gemdt, "Superb: A

HIGH PERFORMANCE FORTRAN 113

tool for semi-automatic MIMD/SIMD paralleliza­

tion," Parallel Comput. Vol. 6 pp. 1-18, 1988.

[5] C. Koelbel and P. Mehrotra, "Compiling global

name-space parallel loops for distributed execu­

tion," IEEE Trans. Parallel Distrib. Systems. Vol.

2,pp.440-451, 1991.

[6] Pacific Sierra Research Corp., MIMDizer User's

Guide, version 7. 02. Placerville, CA: Pacific Si­

erra Research Corporation, 1991.

[7] G. Fox, S. Hirananadani, K. Kennedy, C.

Koelbel, U. Kremer, C.-W. Tseng and M-Y. Wu.

"Fortran D language specifiation," Technical

Reports COMP TR90-141, Department of Com­

puter Science, Rice University, Houston, TX, De­

cember 1990, and SCCS-42c, Syracuse Center

for Computer Science, Syracuse University, Syra­

cuse, NY, April 1991.

[8] M-Y. Wu and G. Fox, "Fortran 90D compiler for

distributed memory MIMD parallel computers,"

Technical Report SCCS-88b, Syracuse Center for

Computer Science, Syracuse University, Syra­

cuse, NY, July 1991.

[9] J. H. Merlin, "ADAPTing Fortran 90 array pro­

grams for distributed memory architectures,"

Proc. 1st International Conference of the ACPC,

Salzburg, October 1991.

[10] J. H. Merlin. "Techniques for the automatic

parallelisation of Distributed Fortran 90," Tech­

nical Report SNARC 92-02, Department of Elec­

tronics and Computer Science, University of

Southampton, November 1991.

[11] F. Andre, J.-L. Pazat, and H. Thomas, Proc. of

1990 ACM International Conference on Super­

computing, 1990, Amsterdam, Netherlands, pp.

380-388.

[12] ANSI X3J3 document 94-009 (revision 2), 11

July 1994. Available by anonymous ftp from the

x3j3 directory at ftp.ncsa.uiuc.edu or

ftp.dfrf.nasa.gov.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

