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ABSTRACT 

High Performance Fortran (HPF) is an informal standard for extensions to Fortran 90 to 

assist its implementation on parallel architectures, particularly for data-parallel compu­

tation. Among other things, it includes directives for specifying data distribution across 

multiple memories, and concurrent execution features. This article provides a tutorial 

introduction to the main features of HPF. © 1995 John Wiley & Sons, Inc. 

1 INTRODUCTION 

High Performance Fortran (HPF) is an informal 

standard for extensions to Fortran 90 to assist its 

implementation on parallel computers, particu­

larly for data-parallel computations. Foremost 

among these extensions are directives for specify­

ing how data are to be distributed over the "pro­

cessor memories" of a multiprocessor architec­

ture, for instance, over the local memories of a 

distributed memory message-passing machine. a 

single instruction multiple data (SI~1D) machine 

or a workstation network. or the caches of a 

shared memory machine. HPF also provides ex­

tensions for expressing data parallelism and con­

currency, and a number of other new features. 

The language was developed between \larch 

1992 and \lay 1993 by the High Performance 

Fortran Forum, a working group comprising rep­

resentatives of most parallel computer manufac­

turers, several compiler vendors, and a number of 
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government and university research groups in the 

field of parallel computation. The formal language 

definition is contained in the "High Performance 

Fortran Language Specification,"' which was 

published in this journal [1]. A textbook on HPF 

has also been published [ 21. 
This article provides a tutorial introduction to 

HPF, especially to its data distribution features. 

On many architecture~ the performance of an 

HPF program will depend critically on its data dis­

tribution, and to a lesser t>xtent on its use of the 

facilities for expressing data parallt>lism and con­

currency. Therefore we aim to give the reader an 

understanding of how to ust> these features pffpc­

tively. To this end, we attempt to give some insight 

into how these features may typically be imple­

mented. and in some cases also discuss the ra­

tionale for their introduction. For reference. de­

tailed pointers are given throughout this article to 

relevant text in the '·High Performance Fortran 

Language Specification·· [ 11. for examplE'. [HPF 

p. 41 (28-48)]. where the numbers in parenthe­

ses are lines nurnberc;. 

The HPF features are demonstrated u~ing two 

main examples. Jacobi iteration and Gaussian 

elimination, as well as by a n umbt>r of ,;mallt>r ex­

amples. The examplt>s use a number of Fortran 

90 features that are not in Fortran 77. such as free 

source form. simple array syntax. and new-style 

declarations. Array syntax in particular helps to 

make the examples concise. and also has the ad-
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vantage of explicitly expressing the potential for 

data parallelism. However, we tn1st that the ex­

amples should be understandable by readers who 

do not have a detailed knowledge of Fortran 90. 

An official subset of the language, "Subset 

HPF" has been defined to facilitate rapid initial 

implementation [HPF §8]. Some Subset HPF im­

plementations (i.e., compilers or translators) are 

already available and many more are expected to 

appear in the near future, while it may be some 

time before full HPF is widely supported. Subset 

HPF is based on a subset of Fortran 90, which is, 

broadly speaking, Fortran 77 plus Fortran 90's 

noncharacter array features and intrinsics, dy­

namic memory allocation, nongeneric interface 

blocks, optional and keyword arguments, new­

style type declarations, and various lexical and 

syntactic improvements [HPF §8.1]. It also in­

cludes just a subset of the HPF extensions. All of 

the features described in this article are in Subset 

HPF unless otherwise stated. 

This article is organized as follows. Section 2 

outlines the background and motivations for the 

development of HPF and gives an overview of the 

HPF programming model. Sections 3-5 describe 

various aspects of the data distribution exten­

sions, namely basic data distribution, dummy ar­

gument distribution, and dynamic redistribution, 

respectively. Section 6 describes HPF's exten­

sions for expressing data parallelism and concur­

rency. Section 7 summarizes the remaining HPF 

extensions, and Section 8 discusses some pros 

and cons of the HPF approach. 

2 WHY HPF? 

A major motivation for the development of HPF 

was to simplify the programming of distributed 

memory message-passing systems. an architec­

tural category that includes distributed memory 

multiple instruction multiple data (:\1IMD) ma­

chines and, more recently, networks of worksta­

tions. These have proved cost-effective, scalable, 

versatile and capable of high performance, but 

have also proved very difficult to program, as we 

shall now describe. 

2.1 SPMD Programming Model 

The most popular programming model for mas­

sively parallel distributed memory architectures 

(i.e., those with a large number of processors) is 

the single program multiple data (SPYID) model. 

The same program, though not necessarily the 

same instruction stream, is executed by every pro­

cessor, each operating on a part of the data. 

To develop such a program, the application's 

data arrays must be partitioned into segments 

which are mapped to the processor memories, a 

procedure known as distributing the arrays. Then 

the computations are also distributed over the 

processors; typically each processor performs only 

those computations that define data elements that 

are "owned" by it, i.e., stored in its local memory. 

If the program running on one processor requires 

data that are stored in the local memory of an­

other processor, the data must be communicated 

by inserting explicit send and receive statements 

at appropriate points in the program. which is 

called message passing. Typically, accesses to lo­

cal data are much faster than nonlocal accesses 

(i.e., communications). Therefore, for efficiency it 

is important to partition the data and computa­

tions in a way that attempts to minimize commun­

ications and maximize data parallelism. 

For example, consider the fragment of Fortran 

90 code shown in Figure 1. This uses Jacobi's 

method to approximate the solution of a partial 

differential equation (Laplace's equation) dis­

cretized on a two-dimensional grid a. The bound­

ary values of a are given, and the interior values 

are computed by an iterative procedure as follows. 

Starting from arbitrary initial values, in each itera­

tion the value at every interior grid point is re­

placed by the average of the values of its nearest 

neighbors in the previous iteration, and this is re­

peated until none of the values change signifi­

candy from one iteration to the next. Our conver­

gence criterion is that the change at every grid 

point is less than 10-~ of its previous value. 

To adapt this to an SP.\fD program for a dis­

tributed memory message-passing architecture it 

must be modified as follows: 

1. The arravs a and new_a must be distrib­

uted over the processor memories. For ex­

ample. if there are 16 processors which are 

regarded as being logically arranged as a 

4 X 4 processor array, a and new_a may 

each be partitioned into 16 blocks of size 

([ m/ 41, r nl 41). each of which is stored on 

the corresponding processor. 

2. The program is modified to compute and 

update only the locally stored segments of 

the arravs. 

3. Message passing is inserted to communicate 

data where necessarv. In this example .. 
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REAL a (m, n), new_a (m, n) 

a= 0.0 

CALL init (new_a) 

new_a (2:m-1, 2:n-1) 0.0 

set boundary elements of 'new_a' 

!initialise interior of 'new_a' to 0.0 

DO WHILE (ANY (new_a- a> lE-07 *a)) 
a = new_a 

new_a (2:m-1, 2:n-1) 0.25 * (a (l:m-2, 2:n-1) +a (3:m, 2:n-1) & 

+a (2:m-1, l:n-2) +a (2:m-1, 3:n)) 

END DO 

FIGURE 1 

since the update of each point depends on 

the values of its four nearest neighbors, the 

"edge" values of each segment must be 

swapped between processors in every it era­

tion. Care must be taken about special 

cases; for instance, the outside edges of the 

overall arrav are not communicated. ~les­

sages must also be exchanged to evaluate 

the global termination condition "ANY 

(new_a- a> lE-7 *a)." 

Chapman et al. [3] showed a simplified version of 

the message passing involved in a single update 

step. 

The need to explicitly partition data, insert 

message passing, handle boundary cases, etc., is 

a very complicated, time-consuming, and error­

prone task, and it also impairs the adaptability 

and portability of the resulting program. Indeed, 

the difficulty of programming distributed memory 

message-passing systems has so far been a big 

obstacle to using them. 

This situation has motivated much research in 

recent years towards the goal of automatic paral­

lelisation, i.e., the automatic transformation of 

data parallel applications written in a standard 

sequential language like Fortran into SPYlD mes­

sage-passing programs. It has become clear that 

this can be at least partly achieved: If the required 

data distribution is specified, a compiler can auto­

matically partition the data and computations ac­

cording to this specification, and insert the neces­

sary communications [ 4-6]. 
The really difficult part of fully automatic par­

allelization is to automatically determine a suit­

able data distribution. As we have said, an effi­

cient data distribution must spread out the data 

arrays over the processors (rather than storing a 

copy on each processor) as much as possible in 

Jacobi iteration. 

order to maximize the potential parallelism, while 

distributing them in such a way as to minimize 

communications. To determine a suitable distri­

bution therefore requires global analysis of the 

program's data access patterns and their relative 

importance. Often this information cannot be de­

termined statically. Much research is being con­

ducted on this problem, but currently no satisfac­

tory conclusion has been reached. 

This situation has led to the research and de­

velopment of a number of prototype paralleliza­

tion systems based on language extensions for 

specifying data distribution such as Fortran D and 

Fortran 90D [7, 8], Vienna Fortran [3], Distrib­

uted Fortran 90 [9, 10], and Pandore C [11]. 

Ideas from these (particularly the first three) and 

other research projects, as well as from Fortran 

dialects and proposals from vendors such as Digi­

tal, Convex, Cray. IBM, Ylaspar, and Thinking 

Machines, together with inputs from a variety of 

other sources, have all contributed to the develop­

ment of the HPF informal standard. [1] and [2] 

provide more detailed background and refer­

ences. 

2.2 HPF Features and Model 

As we have indicated. the central idea of HPF is to 

augment a standard Fortran program with specifi­

cations describing how its data are to be distrib­

uted across multiple memories. For a MIMD 

multiprocessor architecture. an HPF compiler 

transforms this program into an SPMD code by 

partitioning and distributing its data as specified, 

allocating computation to processors according to 

the locality of the data references involved. and 

inserting any necessary data communications in 

an implementation-dependent manner, e.g., by 

message passing or by a shared memory mecha­

nism. 
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An HPF program is largely single threaded, i.e., 

all processors execute the same code. However, a 

few HPF features can express "functional" paral­

lelism, whereby different processors may execute 

different code, as we shall point out later in this 

article. 

Although we have concentrated on the applica­

tion of HPF to distributed memory message-pass­

ing systems, it is largely architecture independent. 

It can be implemented across the whole spectrum 

of parallel architectures: distributed and shared 

memory MIMD, SIMD, vector, workstation net­

works, etc. 

Data distribution is specified by directives. 

These are structured Fortran comments that are 

distinguished by starting with the characters HPF$ 

immediately after the comment character. Being 

structured comments they are ignored by a stan­

dard Fortran compiler and only recognized by an 

HPF compiler, so an HPF program can even be 

compiled for a single processor machine. This is 

acceptable as they do not affect the semantics of a 

program, i.e., they do not change its computations 

or results (except for possibly affecting the order of 

computations when it is not defined by the lan­

guage, for instance the order of the elemental as­

signments that comprise an array assignment). 

The data distribution directives only affect a pro­

gram's performance, not its meaning. 

HPF also contains a few actual svntax exten­

sions to Fortran 90, such as a FORALL statement 

and construct, so an HPF program cannot be 

compiled by a standard Fortran 90 compiler if it 

uses these extensions. However, nearly all of 

HPF's syntax extensions will be included in the 

next revision of the official Fortran standard due 

in 1995 or 1996 [12].* 

Having given a general introduction to HPF, we 

shall now describe it in more detail. 

3 DATA MAPPING DECLARATIONS 

Data mapping is the HPF term for allocating data 

to multiple memories. In generaL this mapping 

may be specified in two stages: 

1. Data objects may be aligned with other data 

objects or with templates-special virtual 

objects that occupy no storage, which are 

* It is likely that all HPF svntax extensions except for the 

EXTRINSIC attribute will be included in the next Fortran nevi­

sian. 

described and motivated later. This sets up 

a relation between the elements of the 

aligned objects, such that aligned elements 

are guaranteed to be mapped to the same 

processor(s). Thus if an array A is aligned 

with an array or template B, the distribution 

of A is determined by that of B, and only the 

latter is specified. In this example A is called 

an alignee and B the align target. 

2. Templates or data objects that are not 

alignees are distributed over abstract pro­

cessors. Distribution is the mapping of the 

elements of a data object or template to the 

memories of the abstract processors. The 

distribution of an align target also deter­

mines that of all the objects that are aligned 

with it. 

A third implementation-dependent level may 

also be involved: associating abstract processors 

with real physical processors. This allows imple­

mentations the freedom to abstract the processors 

declared in HPF from the physical processors; for 

instance, the former may actually be processes, 

and an implementation may be able to execute 

multiple processes concurrently on each physical 

processor. 

As we said in the last section, data mapping in 

HPF is specified by directives [HPF §2.3]. 

3.1 Alignment and Distribution 

To convert the Jacobi iteration code of Figure 1 to 

HPF, using the data distribution described in Sec­

tion 2.1, the following directives can be added to 

the declarations part of the program-no other 

changes are necessary: 

!HPF$PROCESSORS (4, 4) 
!HPF$ALIGNa (:,:) WITHnew_a (:,:) 
!HPF$DISTRIBUTEnew_a (BLOCK, BLOCK) ONTOp 

We shall now explain these directives. 

The PROCESSORS Directive 

The PROCESSORS directive [HPF §3. 7] declares 

and names one or more abstract processor ar­

rangements, where a processor arrangement 

means a processor array or a scalar (i.e., single) 

processor. In this case a set of 16 abstract proces­

sors is declared, which are regarded as being ar­

ranged in a 4 X 4 array called p. 



Abstract processor arrays with different shapes 

may be declared, in which case an HPF imple­

mentation may map them in an implementation­

dependent manner onto the real physical proces­

sors. However.. the only processor arrangemPnts 

that are guaranteed to he ,;upported are scalar 

processorfi and processor arrays with the same 

number of elements as there are physical proces­

sors. Proee,;sor arrays with the same ,;hape are 

equivalent .. i.e .. corresponding elements refer to 

the same abstract processor. but otherwise there is 

no defined relation between different processor 

arrangements. 

Processor arrangements are not !in.;t-dass ob­

jects in HPF -they may not appear in COMMON 

blocks nor be pas:,;ed a,.; argument,; to functions or 

subroutines. The onlv wav for a PROCESSORS di­

rective to be visible in several program units is to 

declare it in a module which is USEd by the pro­

grarn units. Otherwise. proces,;or arrangements 

must be declared locally in every program unit in 

which thev are used. 

The ALIGN Directive 

The ALIGN directive [HPF §>l.4] relates the ele­

ments of a data arrav to the elements of another 

data array or a template Ito be described later). 

such that elements that are aligned with each 

other are guaranteed to be mapped to the same 

abstract processor(s) regardle,.;s of the distribution 

directives. 

The given ALIGN directive: 

1 HPF$ ALIGN a (:, :) WITH new_a (:,:) 

specifies that each element of a is aligned with the 

corresponding element of new_a. which means 

that for all ,.;ubscript ,·alue,.; i and j. element 

a ( i, j ) is mapped to the same ah:-;tract proces­

sor(s) as new_a ( i, j) . 

An operation on two or more data element:,; i" 

likely to be executed much faster if they are 

aligned. as it can be performed without communi­

cations by the processor that stores them locally. 

On the other hand. independent operations may 

potentially be executed in parallel if they involve 

data that are stored in different processor memo­

ries. Therefore, alignment should be cho:,;en so as 

to try to keep elements that are accessed together 

in the same operation stored together (i.e .. 

aligned) to minimize communication. while keep­

ing elements that can be operated on indepen­

dently apart to maximize data parallelism. ln this 
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simple case the same result could be achieved by 

distributing the two arrays alike, but in general it is 

not possible to achieve arbitrary linear alignments 

of arrays (e.g., where the elements of one array are 

aligned with a subset of the elements of another) 

by distribution directives alone. In any case, when 

alignment of arrays is intended it is clearer and 

safer to specify it explicitly rather than relying on it 

being achieved as a side effect of distribution. 

In this example, a (: , : ) and new_a (: , : ) 

denote the whole of arrays a and new_a, using 

Fortran 90's subscript triplet notation. Cnfortu­

nately, this form of the ALIGN directive requires 

that the name immediately following the ALIGN 

keyword (the alignee) must be followed by paren­

theses, so the Fortran 90 shorthand for specifying 

a whole array by just giving its name cannot be 

used here. t However, it can be used in another 

form of the ALIGN directive that we shall intro­

duce later. 

The alignee (a (: , : ) ) must be a whole array. 

but in general the align target (new_ a (: , : ) ) may 

be a regular section of an array. provided that it 

conforms with (i.e., has the same shape as) the 

alignee. This allows an array to be aligned with a 

regular subset of the elements of another array or 

template. \\·e shall give examples of this later. 

The DISTRIBUTE Directive 

The DISTRIBUTE directive iHPF §3.3J specifies 

how a data object or template is to be distributed 

over an abstract proce~sor arrangement. A data 

object that has been aligned (i.e .. has appeared as 

an alignee) cannot be distributed: only an align 

target that is not itself aligned with anything else. 

or an object that has not appeared in an ALIGN 

directive. can be distributed. Thus. in this exam­

ple only new_a can be distributed, and its distri­

bution determines that of a. which is aligned with 

it. 

The given DISTRIBUTE directive: 

! HPF$ DISTRIBUTE new_ a (BLOCK, BLOCK) ONTO p 

states that each dimension of new_a is block dis­

tributed over the corresponding dimension of the 

t ParPnthescs are needed after the alignee name to avoid 

ambiguity if blanks arc insi!(nificant. as thev are in Fortran 90 

fixed source form. For example, without thP parentheses. 

'·ALIGN T (: ) WITH TWITHEAD (: ) .. could be interpreted as 

'·ALIGN TWITHT WITH EAD··~ 
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processor array p. In general, so-called distribu­

tion format is specified for each dimension of the 

distributee (i.e., the object that is distributed), 

which can be either BLOCK[(blocksize)], 

CYCLIC[(blocksize)] or*, where [ ... ] encloses 

an optional item. Their meanings are as follows, 

where for simplicity we describe the case of a one­

dimensional array distributed over a one-dimen­

sional processor array. 

1. BLOCK means that the elements are divided 

into blocks of consecutive elements, and the 

nth block is allocated to the nth processor. If 

the number of elements, N, is exactly divis­

ble by the number of processors, P, then the 

blocks are of equal size NIP. Otherwise 

blocks of size b = rN I Pl are allocated to the 

first lNibj processors, the remaining N\P 

elements form a small block which is allo­

cated to the next processor, and no ele­

ments are allocated to any remaining pro­

cessors. 

An explicit blocksize b can be given in 

parentheses after the BLOCK keyword, but it 

must be such that the elements do not 

"wrap around" the processor array. To al­

low wrap around a CYCLIC distribution 

must be specified. We advise against explic­

itly specifying b, except in special cases, as 

it can give rise to errors (if N > bP, requiring 

wrap around) or inefficient processor utili­

zation (if N q bP). If b is specified, we rec­

ommend that it should depend on N and P. 

directly or indirectly, to avoid these prob­

lems if N or P is changed. 

2. CYCLIC means that the first element is allo­

cated to the first processor. the second to 

the second processor, etc. If there are more 

elements than processors then the distribu­

tion "wraps around" the processor array 

cyclically until all the elements are allo­

cated. 

An explicit blocksize may be specified in 

parentheses after the CYCLIC keyword, as 

for the BLOCK distribution. (By definition. 

CYCLIC means the same as CYCLIC ( 1) . ) ln 

this case. however. the elements are allowed 

to wrap around the processor array. in 

which case the distribution is often called 

block-c.Yclic. CYCLIC(b) is the most general 

type of distribution available: BLOCK (b) is 

just a special case of it in which there is no 

wrap around. If that is the case, however. 

then it is more efficient to specify BLOCK(b). 

as the extra information that there is no 

wrap around considerably simplifies ad­

dress calculations. 

Cyclic distributions are useful for spread­

ing the computation load uniformly over 

processors in cases where computation is 

only performed on a subset of array ele­

ments or is otherwise irregular over an ar­

ray. An example of this, Gaussian elimina­

tion, is shown later. 

3. * means that the corresponding distributee 

dimension is collapsed, i.e., not distributed. 

These descriptions generalize straightforwardly 

to multidimensional distributees and processor 

arrays, with the words "element" and '·proces­

sor" replaced by "subscript value" and "proces­

sor subscript value." 

A distribution format must he specified for 

every dimension of a distributee. The number of 

BLOCK and CYCLIC entries (with or without a 

blocksize) must equal the number of processor ar­

ray dimensions, and the nth distributee dimension 

with such an entry is distributed over the nth pro­

cessor array dimension. [HPF. pp. 28-29] gives 

some illustrated examples of distribution. 

The ONTO clause mav be omitted from the DIS­

TRIBUTE directive. in which case the distribution 

is onto an implementation-dependent processor 

arrangement. Although the HPF specification 

says nothing on this point. it is conceivable that 

some implementations rna~· allow a default pro­

cessor arrangement to be specified by a command 

line argument or environment \·ariable when the 

HPF compiler is invoked: others may have a built­

in default: and yet others may require a ,.;ingle 

PROCESSORS declaration in each program unit to 

provide the default. 

Experimenting with Data Mappings 

Returning to the Jacobi iteration example. with tlw 

given data mapping directives the arrays a and 

new_a are distributed over processors a,.; shown in 

Figure 2. 

ln general. to achieve optimum performance of 

this code fragment we should partition the arrays 

into blocks that are a,.; nearly square as possible. 

since thi,.; maximizes the ratio of calculation to 

communication (as the former is proportional to 

the total number of points in a block. and the 

latter to the number of its boundarv points). 

Therefore, depending on the array ,.;izes (i.e .. the 
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FIGURE 2 Distribution over a 2-dimensional proces­
sor arrangement. 

values of m and n) and the number of processors 

available, other distributions may be optimal. For 

instance, if m «i nit might be preferable to confi­

gure the processors as a one-dimensional arrav 

and distribute only the second dimension of a and 

new_a (Fig. 3): 

!HPF$PROCESSORSp (NUMBER_OF_PROCESSORS()) 

! HPF$ DISTRIBUTE new_a (*,BLOCK) ONTO p 

This demonstrates a benefit of the two-level 

mapping of data onto processors: The optimal 

alignment (i.e., ALIGN and TEMPLATE directives) 

is usually problem dependent, while the optimal 

distribution (i.e., DISTRIBUTE and PROCESSORS 

directives) often depends on the problem size and 

target architecture. Therefore to port an HPF pro­

gram to a different architecture or optimize it for a 

particular problem size typically involves modify­

ing only its distribution directives, not its align­

ment directives. Observe also that experimenting 

with different data mappings is much easier in 

HPF than it would be in a message-passing pro­

gram! 

HPF System Enquiry Functions and 
Specification Expressions 

The last example used the function NUMBER_ 

OF _PROCESSORS. This is a new S}··stem enquiry 

i 
a and m 

new_a elements 
1, 

n 
~ elements ____,. 

FIGURE 3 Distribution over a 1-dimensional proces­

sor arrangement. 
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intrinsic function introduced by HPF that returns 

the total number of physical (as distinct from ab­

stract) processors on which the program is exe­

cuted, or, with an optional integer argument DIM, 

the number of processors along a specified dim en­

sion of the physical processor array [HPF §5.2, 

5. 6. 4]. Another HPF system enquiry intrinsic 

function is PROCESSORS_SHAPE [HPF §5.2, 

5.6.5], which returns the shape of the physical 

processor array. These functions return the same 

results throughout the duration of one program 

execution. They may be used in specification ex­

pressions (e.g., to declare array bounds), or in­

deed in any nonconstant expression. However, 

they cannot be used in initialization expressions 

(i.e., compile-time constant expressions used, for 

example, to initialize variables or named con­

stants, or to declare array bounds for common 

block variables), as they are not necessarily com­

pile-time constants-an HPF program may be 

compiled for a machine whose configuration is not 

known at compile time. 

Parameters in data mapping declarations, such 

as processor array sizes and blocksize in DIS­

TRIBUTE, must be specification expressions as 

defined by Fortran 90, but with the extension of 

allowing the above HPF system enquiry intrinsic 

functions. In general they need not be constant. 

However, the mapping of common block and 

SAVEd variables must be constant/or the duration 

of a program run. This is less stringent than re­

quiring their mapping parameters be initialization 

expressions, as it allows the system enquiry func­

tions NUMBER-OF __FROCESSORS and PROCES­

SORS_SHAPE to be used [HPF pp. 41 (28-48), 
43(43)-44(12)j. 

Alternative Syntax 

Finally, we mention that there is an alternative 

syntactic form for these mapping directives, anal­

ogous to Fortran 90's new style of declarations 

[HPF §3.2]. This form allows a number of attrib­

utes to be combined in the same directive, sepa­

rated bv a double colon (: : ) from the list of identi­

fiers declared. For example, alternative forms of 

the directives at the start of this section are: 

! HPF$ ALIGN WITH new_ a: :a 

! HPF$ PROCESSORS, DIMENSION (4, 4):: p 

! HPF$ DISTRIBUTE (BLOCK, BLOCK) ONTO p:: new_a 

This form is more concise when several objects 

have to be given the same dimensions, alignment, 



94 MERLI!'I AJ\D HEY 

or distribution, as a list of names can follow the 

"::." Notice also that this form of the ALIGN di­

rective allows a whole arrav or template to be 

specified by just giving its name. 

3.2 Templates 

In the above example we aligned a with new_a 
and distributed the latter, i.e., we chose new_a as 

the align target. Since an identity alignment is in­

volved, we could equally well have reversed the 

roles of a and new_a, and chosen a as the align 

target. 

When several arrays have to be related by an 

identity alignment. rather than arbitrarily ch<HJs­

ing one of them as the align target and aligning the 

others with it, or chaining them together in an ar­

bitrary order (e.g., ALIGN a WITH b; ALIGN b 

WITH c; . . ), an alternative is to align them all 

with a template of the same size as the data ar­

rays, for example: 

! HPF$ TEMPLATE t (m, n) 

! HPF$ ALIGN WITH t : : a, new_a 

! HPF$ DISTRIBUTE t (BLOCK, BLOCK) ONTO p 

A template in HPF is a virtual scalar or array. in 

other words one that occupies no storage [HPF 

§3.8]. Templates are declared by a TEMPLATE di­

rective as above. Their sole function is to provide 

abstract objects with which data objects can be 

aligned and which can then be distributed, i.e .. to 

provide intermediaries in the mapping of data ob­

jects to abstract processors. As we have seen, it is 

not mandatory to use templates for this purpose­

data objects can be aligned directly with other 

data objects, and can also be distributed directly. 

However, there are often stylistic advantages to 

using templates rather than arrays a,; align target,;, 

as we have just indicated. 

For example, when arrays are aligned with 

other arrays, an arbitrarily complicated alignment 

tree can be constructed (see Fig. 4), which can 

make it difficult to identify the root object with 
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/ '\../ 
C F 

~/ 
G 

FIGURE 4 An alignment tree. 

which a given array is ultimate~y aligned. Further­

more. it can be difficult to work out the ultimate 

alignment of arrays that are indirectly aligned with 

the root, and even more difficult to establish the 

relative alignments of arrays on different branches 

of the tree. Bv contrast. if arravs are alwavs . . . 
aligned with templates, the alignment tree is re-

stricted to a depth of one, and the ultimate align­

ment of all arrays is obvious-it is exactly as writ­

ten in the ALIGN directive,;. This follows because 

templates cannot themselves be aligned: they can 

only be align targets. 

Another point is that the root object of an align­

ment tree indicates the maximum data paralleli,;m 

that can in principle be achieved for the given pro­

gram with the given alignments. This is an impor­

tant characteristic of the program. so it is de,;ir­

able to give the object that bear,; this information a 

separate identity, to distinguish it from the data 

objects. ~laking it a template serve,.; that purpose. 

Quite apart from these stylistic rt>asons for us­

ing templates, they turn out to be virtually indis­

pensable in some situations. as we shall see latPr. 

Like processor arrangements. templates are not 

first class objects in HPF. The restrictions on the 

use of processor arrangements described in Sec­

tion 3.1 also apply to template,.;. 

3.3 Gaussian Elimination 

The other main example code that we shall use to 

illustrate HPF is the forward elimination pha,;e of 

Gaussian elimination (Fig .. ') ). Since this code may 

look a little unfamiliar we briefh describe what it 

does. Gaussian elimination is used to solve a set of 

linear equations AX = B. where A i,; an m X m 

matrix of coefficients, and B and X are m X m' 

matrices composed, respectively. of a ,..;et of right­

hand side vectors {Q_i, i = 1. m'} and a corre,;pond­

ing set of solution vectors {::!:i· i = L m'}. The for­

ward elimination stage reduces A to upper 

triangular form by iterating over its rows r. ln in­

teration r, row r of A is divided by A (r, r). and then 

each row i > r has (A (i, r) X row r) subtractt>d from 

it (potentially in parallel over the rows i). Thi:-; sets 

the column below the diagonal element A (r, r) to 

0, so iteration over r produces the desired upper 

triangular form. The same operations must also 

be performed on B. which is done by augmenting 

matrix A with B as extra columns, giving the 

(m X n) matrix A that appears in the code. An­

other refinement is that in interation r only the 

sections [r + 1 :n J of the rows are operated upon. 

as by definition the other elements become 0 (ex-
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INTEGER m, n, r, r1 
REAL A (m, n) 

!------------------------------------------------------! 
! Forward Gaussian elimination of augmented matrix 'A' 

(without pivoting). The result overwrites 'A'. 

!------------------------------------------------------! 
DO r = 1, m 

r1 = r+1 
A(r, r1:n) 
A(r1:m, r1:n) 

A(r, r1;n) 1 A(r, r) 
A(r1:m, r1:n) - (SPREAD (A(r1:m, r), 2, n-r) & 

*SPREAD (A(r, r1:n), 1, m-r)) 
END DO 

(a): Code 

1 

r 

r1 

m 

1 r r1 

I I 

A(rJr)l 

--
" --

A(r1 :m 

"' 
r) 

' 

n 

A(r, r1:n) 

A(r1 :m,r1 :n) 

(b): Array sections referenced in iteration r of above code 

FIGURE 5 Forward dimination phasP of Gaussian elimination 1without piYoting;'. 

cept for A (r, r), which becomes 1 ). For brevity this 

example omits pivoting, which would normally be 

used to improve numerical stability, and also 

omits to check that diagonal elements are non­

zero. 

Incidentally, notice that in order to update the 

whole section A (r+1: m, r+1: n) in a single data 

parallel operation using Fortran 90 array syntax, 

the SPREAD intrinsic function must be used to 

replicate row A (r, r + 1: n) and column 

A (r+1: m, r) into two-dimensional arrays that 

conform with (i.e., have the same shape as) 

A (r+1: m, r+1: n) . This is rather cumbersome, 

and HPF introduces a data parallel FORALL state­

ment which allows it to be expressed more con­

cisely, as we shall see later. 

CYCLIC Distribution 

Notice that the section of A that is inYolved in the 

computation diminishes as the execution prog­

resses, i.e., iteration r only involves the section 

A (r: m, r: n) -see Figure 5. Therefore, if A were 

block distributed over the two-dimensional pro­

cessor array, the area of the processor array that is 

utilized would diminish correspondingly. This ex­

ample is therefore a candidate for cyclic distribu­

tion: 

!HPF$ DISTRIBUTE A (CYCLIC, CYCLIC) 

Assuming that A is larger than the processor array, 

this helps to spread out the workload. 

Unspecified Mapping 

The mapping of any data object may be left un­

specified in an HPF program, in which case it will 

be implementation dependent. In particular, we 

expect that the mapping will often not be specified 

for scalar objects such as m, n, r, and r1 in the 

Gaussian elimination example. Although the de­

fault mapping for scalars is implementation de­

pendent, on distributed memory YIIMD architec-
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tures it is likely that they will be replicated, i.e., 

every processor will store a copy of them. This is 

certainly a sensible mapping for scalars as their 

values are often needed by all processors, for in­

stance, if they are used to govern control flow (as 

DO-loop indices, or in DO-loop control expres­

sions, IF and DO WHILE conditions, etc.), or re­

ferenced in specification expressions, subscript 

expressions, etc. We shall say more about replica­

tion later. 

A small refinement of this default mapping 

strategy is that, if the scalar is used as a DO-loop 

index and the implementation partitions the DO­

loop iterations, allocating different iterations to 

different processors, the index may well be privat­

ized for the scope of the loop. However, this will be 

transparent to the user, and the implementation 

will ensure that all copies of the scalar receive the 

same, correct value on termination of the DO-loop 

so as to preserve the program's semantics. 

4 DUMMY ARGUMENT MAPPING 

So far we have only considered the mapping of 

data objects that have their own storage, such as 

local and global variables. The situation is more 

complicated for dummy arguments. as they do not 

necessarily receive fresh storage, but instead serve 

as placeholders that are associated with a number 

of other objects, the actual arguments, during 

program execution. 

HPF actually provides a number of mecha­

nisms for specifying the mapping of a dummy ar­

gument. It can be given a prescriptive mapping, 

which forces the actual argument to acquire the 

INTEGER m, n, r, r1 

REAL A (m,n) 

DO r = 1, m 

r1 = r+1 

specified mapping, or a descriptive mapping, 

which asserts that the actual argument is already 

mapped as described, or it can inherit its mapping 

from the actual argument. In fact, the mapping 

can be specified using any combination of these 

forms. 

We shall demonstrate these mappings using a 

modified version of the Gaussian elimination code 

(Fig. 6), in which the update in each iteration is 

performed by calling a subroutine Gauss_i tn. 

We shall now address the quation of how to spec­

ify the mapping of Gauss_i tn's dummy argu­

ments. 

4.1 Prescriptive Mapping 

The mapping of a dummy argument can be speci­

fied in the same way as for other data objects, 

using the directives already described. This con­

stitutes a command to make the associated actual 

argument have the specified mapping.. and is 

called prescriptive mapping [HPF pp. 48(18-21), 
51 (33-36) ]. If the actual argument is not mapped 

as prescribed, it is automatically copied or re­

mapped on entry to the procedure to satisfy the 

dummy's mapping directives. and copied or re­

mapped back on return (unless the latter is known 

to be unnecessary, e.g .. if the dummy argument's 

value is unchanged). ·we emphasize that the argu­

ment's mapping is always restored on return, so a 

data object is never permanently remapped as a 

side effect of passing it as an argument to a proce­

dure [HPF p. 53(19-31):. 
There are several rea:,;ons why HPF provides 

the prescriptive mapping facility. The mo,;t obvi­

ous is that a dummy argument may be associated 

CALL Gauss_itn (A(r1:m, r1:n), A(r1:m, r), A(r, r1:n), A(r,r), m-r, n-r) 

END DO 

SUBROUTINE Gauss_itn (matrix, col, row, elem, n1, n2) 

INTEGER n1, n2 

REAL matrix (n1, n2), col (n1), row (n2), elem 

row = row I elem 

matrix = matrix SPREAD (col, 2, n2) * SPREAD (row, 1, n1) 

END SUBROUTINE 

FIGURE 6 Gaussian elimination with each itt>ration dorw by a subroutine call. 



with a number of different actual arguments with 

different mappings, so if a particular mapping is 

specified for the dummy argument, some actual 

arguments may have to be remapped in order to 

satisfy it. Another reason is that in general expres­

sions in HPF have no defined mappings, so if an 

actual argument is an expression it may not be 

possible to predict and declare its mapping. Fi­

nally, procedure boundaries are a clean and natu­

ral place for data to be remapped, as a procedure 

encapsulates a segment of computation for which 

the optimal data mapping may be different from 

that elsewhere. 

For example, the dummy arguments of 

Gauss_i tn in Figure 6 could be mapped as fol­

lows: 

!HPF$ ALIGN col (: l WITH matrix (:, *l 

!HPF$ ALIGN row (:) WITH matrix (*, :) 

!HPF$ ALIGN elem WITH matrix (*, *l 

!HPF$ PROCESSORS p (4,4) 

! HPF$ DISTRIBUTE matrix (BLOCK, BLOCK) ONTO p 

Dummy argument matrix is associated with 

the actual argument A (rl: m, rl: n), which is a 

regular section of an array. For the time being 

suppose that A is distributed (BLOCK, BLOCK) in 

the caller. Then in general A (rl: m, rl: n) occu­

pies only a subset of the processors (i.e .. the corre­

sponding regular section of the processor array). 

However, specifying that dummy argument ma­

trix is distributed (BLOCK, BLOCK) means that 

it is treated as a whole array which is distributed 

uniformly. or as uniformly as possible. over the 

whole processsor array, as described in Section 

3.1. To acquire this mapping. A (rl: m, rl: n) 

will generally be copied to a temporary array with 

the required mapping on entry to Gauss_i tn. 

and copied back on return. 

In many first-generation HPF implPmenta­

tions .. the value assigned to an array clement is 

computed by the processor(s) that own(s) it. i.e ... 

store(s) it in its local memory. This is called the 

ownercompules rule.ln that case .. the distribution 

specified for rna tr ix spreads the computation 

uniformly over the processor array. whereas the 

original distribution of the actual argument would 

concentrate it on the subset of processors storing 

A (rl: m, rl: n) . Therefore .. the remapping re­

duces the computation time. as the \York is dis­

tributed over n1ore processors so each has less to 

do. \Ve say that the processors are well load bal­

anced. However. to this computation time must 

be added the time for the data remapping at the 
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beginning and end of Gauss_i tn, so it is uncer­

tain whether the remapping reduces the overall 

execution time-that can only be determined by 

measurement or estimation. It would certainly not 

be reduced if A were distributed (CYCLIC, CY­

CLIC) in the caller, as we suggested in Section 3.3, 
since then the section A (rl: m, rl: n) would al­

readv be distributed as uniformly as possible over 

the processors so the overhead of data remapping 

would not be offset by an improved load balance. 

In that case it would be better for matrix to in­

herit its mapping from the actual argument so that 

no data movement occurs. Sections 4.2 and 4.3 
will explain how to specify that. 

Replication 

col, row, and elem are aligned with matrix. 

The ' * ' s that appear as dimension entries in their 

ALIGN directives mean that the alignment is inde­

pendent of the subscript values in those dimen­

sions. lncidentially, this feature of the ALIGN di­

rective is not specific to dummy arguments-it 

can be used in anv context. 

For example, 

!HPF$ ALIGN col (:) WITH matrix (:, *) 

means that col (i) is aligned with matrix (i, j) 

for all subscipt values i and j, i.e., each element 

of col is aligned with a whole row of matrix. This 

in turn means that when matrix is distributed. 

col is copied, or replicated. over the processor 

arrav dimension that the second dimension of ma­

trix is distributed over [HPF pp. 34(42)-
35(40)]. With the given DISTRIBUTE directive. 

co 1 is distributed over the first dimension of pro­

cessor array p in the same manner as the first 

dimension of matrix, but is replicated over the 

second dimension ofp. so each column of the pro­

cessor array stores a complete copy of col. This is 

shown in Figure 7. using a 2 X 2 processor array 

for simplicity.:j: Similarly. the other ALIGN direc­

tives mean that row is replicated over the first di­

mension of p (so each row of p has its own copy of 

row) and elem is replicated over both dimensions 

ofp (so every processor has its own copy of elem). 

:j: lncidentallv. the ALIGN directive should not lw taken too 

literally in the case of replication. For example. if" matrix has 

size :4.4). the ALIGN directive in Fi!(ure-: su!(gesb that each 

processor stores two identical copies of part of col I:C.i(·· 

(p (1, 1) stores two copies of col (1: 2). etc.-see Figure 7
;. 

There is an obvious optimization~ 



98 YIERLI~ A'\D HEY 

Pu P12 

Pn P21 

col matrix 

!HPF$ ALIGI col (:) WITH matrix (: ,*) 

!HPF$ PROCESSORS p (2,2) 
!HPF$ DISTRIBUTE matrix (BLOCK, BLOCK) OITO p 

FIGURE 7 Replicating col over the second dimen­

sion of matrix (and thu~ processor array p ). 

Replicating row. col. and elem in this way 

means that the boch of Gauss_i tn can be exe­

cuted without any communications. The array a,;­

signments in Gauss_i tn are equivalent to the fol­

lowing elemental assignments performed for all 

values of subscripts i and j : 

row (i) = row (i) 1 elem 
matrix (i,j) =matrix (i,j) -col (i) *row (j) 

The given alignments ensure that for every ele­

ment assigned. the variables referenced in the 

right-hand side expression are stored on the :-;arne 

processor. JncleecL the SPREAD intrinsic functions 

in the original array assignments are a strong hint 

that replication is called for. 

Replicating a variable has the advantage that its 

value can be read by multiple processors without 

communication, but may complicate its updating. 

as all copies must be updated. This is necessary 

because all copies must be kept consistent. i.e .. 

they must all have the ,;arne value at any point in 

the program, because semantically there is ju>'t 

one copy of any given variable in the HPF pro­

gram. For example. con:-;ider the first assignment 

above, to vector row. Each row of the processor 

array stores a copy of it. and all copies must be 

updated. If the HPF implementation uses the 

owner computes n1le. then every proces:-;or com­

putes the right-hand side expreo;sions for all ele­

ments of row that it owns. so identical computa­

tions are performed by every row of the processor 

array. In this particular case that i:o not a draw­

back, however. as the execution time i,.; the same 

as it would be if only one row of processors stored 

and updated row (e.g., if "ALIGN row (:) WITH 

matrix ( 1, : ) " were specified). since all rows of 

the processor array do this operation in parallel. 

As was the case for dummy argument matrix. 

the actual arguments associated with row, col. 

and elem do not have the prescribed mapping 

and so must be copied into and out ofGauss_i tn 

(though an optimizing implementation might not 

copy back col and elem as they are not up­

dated). 

Incidentally, one might intuitively expect to 

be able to replicate an object by means of a 

DISTRIBUTE directive alone. but HPF svntax 

does not allow for that. To replicate an object it 

must first be aligned with a higher-climensional 

object, as above. lf there is no suitable data object 

to serve as the align targeL a template can be de­

clared for this purpose. 

Collapsing 

While we are on the subject, we shall briefly di­

gress to mention a few remaining aspects of' the 

ALIGN directive. First. ·'*'' can appear as a di­

mension entry in an alignee, as well as an align 

target, with the >'ame meaning-the alignment is 

independent of subscript values in that dimen­

sion. For example, consider: 

!HPF$ ALIGN matrix (:, *) WITH col (:) 

!HPF$ ALIGN row (*) WITH col (*) 
!HPF$ ALIGN elem WITH col (*) 
!HPF$ PROCESSORS p (16) 

1 HPF$ DISTRIBUTE col (BLOCK) ONTO p 

The first directive mean" that rna tr ix ( i, j ) is 

aligned with col ( i) for all subscript valm~,; i and 

j. i.e .. a whole row of matrix i,; aligned with each 

element of col. Therefore. everT element in a 

given row of matrix will be mapped to the same 

proeessor(s) (since the row is aligned with a ,.,ingle 

element of coL which cannot he split across mul­

tiple processors whatever col's clistribution: ,.;ee 

Fig. 8). This is called collapsing the rows of ma­

trix [HPF p. :32(28-:33)1. It means that opera­

tions and assignments involving different elements 

in the same row will be performed with,Jut com­

munications. at the expense of preventing concur­

rent operations and assignments on the element,.; 

of a row. 

Collapsing and replication may be combined as 

in the second clirective above. which means that 

row ( i) is aligned with co 1 (j ) for all i and j . 

i.e., every element of row is aligned with each ele­

ment of col. In other worcls. row is collapsed and 
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!HPF$ 1LIGI aatrix (:,•) WITH col(:) 
!HPF$ PROCESSORS p (2) 
!HPF$ DISTRIBUTE col (BLOCK) OITO p 

FIGURE 8 Collapsing row~ of matrix onto col .and 
thus processor arrav p). 

then replicated (JYer col. Therefore. every proces­

sor over which col is distributed will store a com­

plete copy of row. 

col is distributed over a one-dimensional pro­

cessor arrav .. so the net effect of the above direc­

tives is to di:-;tribute the dummy arf!:uments over a 

one-dimensional proce:-;:-;or array in such a way 

that Gauss_i tn can execute without communi­

cations. 

Cnlike replication, collapsing can he expressed 

directly by the DISTRIBUTE directive as well as 

via alignment. For example: 

!HPF$ ALIGN matrix (:, *) WITH col (:) 
!HPF$ DISTRIBUTE col (BLOCK) 

is equivalent to: 

1 HPF$ DISTRIBUTE matrix (BLOCK. *) 

!HPF$ DISTRIBUTE col (BLOCK) 

In fact. the whole set of directive" above is equiva­

lent to the first set given in this section, with the 

modifications of distributing matrix (BLOCK, *) 

rather than (BLOCK, BLOCK) and changing the 

PROCESSORS declaration. 

ALIGN Dummy Variables 

Finally. an alternative to u,;ing ··: · · and · · * as 

dimension entries in alignees is to usc dummy 

variables (e.g .. i and j ). as we did informally 

above to explain the meaning of ··*·· [HPF pp. 

:H(1)-36(3). Different dummy variables mu:-;t he 

used in different alignee dimensions. If a dummy 

variable appears in the alignee but not the align 

target it is equivalent to a "* · · in that alignee di­

mension. (HoweveL it is not possible to replace a 

"*" in an alip:n target by a dummy variable: 
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[HPF p. 35(15-33)] explains why.) If a dummy 

variable d replaces a '·:" in the alignee. then one 

dimension of the align target must contain an ex­

pressionj(d) that is linear in d. This means that 

subscript value s in the relevant dimension of the 

alignee is aligned with subscript value f(s) in the 

corresponding dimension of the align target. Since 

f(s) is linear in s. it generates a regular section 

when applied to the complete range of subscripts .. 

so this form is equivalent to the subscript triplet 

form that we have used so far. For example, with 

the declarations REAL a (8), b (8), c (64): 

!HPF$ ALIGN a (i) WITH b (i) 

! means ALIGN a(:) WITH b(:) 

!HPF$ ALIGN b (i) WITH c (3*i + 21) 

! means ALIGN b(:) WITH c(24:45:3) 

since i takes subscript values in the range [1 :81 

for a and b. 

Dummy variables need not appear in the same 

order in the alignee and align target. so it is possi­

ble to permute dimensions in the alignment map­

ping. e.g.: 

!HPF$ ALIGN c (i, j) WITH d(j, i) 

Thi,; cannot be specified using subscript triplets 

alone. as ": ·· s in the alignee are matched with 

subscript triplets in the align target in order of ap­

pearance. This is the main reason for using 

dummv variables-otherwise the ": · · and · · * · · 
notation is often clearer and more succinct. Both 

forms can be mixed in the same directive. so the 

use of dummy variables can be restricted to just 

those dimensions where it is required for dimen­

sional permutation. 

Having digressed to discuss some features of 

alignment. we shall now return to the main subject 

of this section-dummy argument mapping. 

4.2 Descriptive Mapping 

An asterisk may precede certain clauses in map­

ping directives for dummy· arguments. namely the 

align target in an ALIGN directive, e.g.: 

! HPF$ ALIGN d (:) WITH *t (:) 

and the distribution format list and/or processors 

name in a DISTRIBUTE directive. e.g.: 

!HPF$ DISTRIBUTEd *(BLOCK) ONTO *P 
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where d must be a dummy argument name in both 

examples. Such clauses are called descriptive, 

and constitute an assertion that any actual argu­

ment associated with that particular dummy argu­

ment already has the described mapping charac­

teristics. No run-time checking or remapping is 

performed within the procedure to satisfy these 

descriptive clauses. If the actual does not have the 

described mapping, the program is erroneous and 

its behavior is undefined [HPF pp. 48(23-32), 
50(13)-51 (28), 52(1-24)]. 

For example, suppose that in the Gaussian 

elimination example of Figure 6, array A is distrib­

uted as follows: 

!HPF$ PROCESSORS p (10,10) 

!HPF$ DISTRIBUTE A(CYCLIC,CYCLIC) ONTO p 

Sections of A are passed as actual arguments to 

subroutine Gauss_i tn, where they are associated 

with dummy arguments matrix, col, row, and 

elem. The mapping of these dummy arguments 

can be described with the help of a template, as 

shown in Figure 9, so that it corresponds exactly 

with that of the array section actual arguments. To 

help describe the mapping we have modified 

Gauss_i tn's argument list slightly, passing in 

three arguments m, n, and r rather than the two 

array size arguments n1 and n2 used before. 

This example features more general cases of 

alignment than we have encountered_ before, in 

which the alignee is aligned with a regular section 

of the align target, specified using the normal For­

tran 90 subscript triplet notation. Incidentally, 

one cannot specify a regular section of the 

alignee-only of the align target. Ignoring dimen­

sions containing"*" entries or align dummy vari­

ables, the alignee must conform with the specified 

regular section of the align target (i.e., corre­

sponding dimensions must have the same number 

of elements), and each element of the alignee is 

aligned with the corresponding element of the tar­

get. As normal for Fortran 90 regular sections, any 

dimension of the align target can contain a scalar 

subscript rather than a subscript triplet, which al­

lows a data object to be embedded in a higher 

dimensional array or template (e.g., "ALIGN 

col (: ) WITH t (r+1: m, r)" in Fig. 9). Also as 

normal for regular sections, a subscript triplet can 

specify a stride, and this may even be negative so 

SUBROUTINE Gauss_itn (matrix, col, row, 

INTEGER m, n, r 

elem, m, n, r) 

!HPF$ 

!HPF$ 

!HPF$ 

!HPF$ 

!HPF$ 

!HPF$ 

!HPF$ 

REAL matrix (m-r, n-r), col (m-r), row 

TEMPLATE t (m, n) 

ALIGN matrix (:,:) 

ALIGN col (: ) 

WITH * t 

WITH * t 

WITH * t ALIGN row (:) 

ALIGN elem 

PROCESSORS 

WITH * t 

p (10, 10) 

(r+1: m, r+1: n) 

(r+1: m, r) 

(r, r+1: n) 

(r, r) 

DISTRIBUTE t (CYCLIC, CYCLIC) ONTO p 

(a): Code 

1 r n 

1 
.&. (or tl) I 

elem I I 

--
r r-. row 

--
col 

" ~ matrix 

m 

(n-r) , elem 

(b): Layout of dummy arguments with respect to array .&. (or template t) 

FIGURE 9 Descriptive mapping of Gauss_i tn's dummy argument. 



as to reverse the sense of the mapping (e.g., 

"ALIGN a(:) WITH b (10: 2: -2) ").An identity 

alignment (e.g., "ALIGN a (: , : ) WITH new_ a 

(: , : ) ") is just a special case in which the regu­

lar section selected from the align target is the 

whole of the target array. At the opposite extreme, 

a scalar can be aligned with a single element of 

an array or template (e.g., "ALIGN elem WITH 

t (r, r) " in Fig. 9). 

Notice that the use of a template is almost in­

dispensable in this example. The dummy argu­

ments are associated with regular sections of an 

array A, so their mapping can only be described by 

aligning them with equivalent regular sections of 

an array with the same dimensions as A. (In gen­

eral they cannot be described by DISTRIBUTE di­

rectives alone, for instance). However, there is no 

such data array within Gauss_i tn to serve as the 

align target. One possible solution would be to de­

clare such an array within Gauss_i tn specially 

for this purpose, but that would waste storage, 

obscure the code, and perhaps cause the compiler 

to warn that a variable is declared but not used! 

Another possibility would be to pass the whole of 

array A itself into Gauss_i tn as another argu­

ment, but that would make it pointless to also pass 

sections of it. Therefore, a template can be de­

clared to serve this purpose, avoiding all of these 

drawbacks: It occupies no storage, and has no ac­

tual existence as a real data object in the program. 

Mixing Descriptive and 
Prescriptive Directives 

It is possible for some dummy arguments to have 

descriptive mapping while others have prescrip­

tive mapping. For example: 

!HPF$ TEMPLATE t (m, n) 
!HPF$ ALIGN matrix(:,: )WITH*t(r+l:m,r+l:n) 
!HPF$ ALIGN col (:) WITH matrix (:' *) 
!HPF$ ALIGN row (:) WITH matrix (*' :) 

!HPF$ ALIGN elem WITH matrix (*, *) 

describes the mapping of the actual argument as­

sociated with dummy argument matrix, but pre­

scribes that dummy arguments col, row, and 

elem are replicated over matrix as they were in 

Section 4.1 (which implies that the corresponding 

actual arguments have to be copied in and out, 

but avoids communications within the body of 

Gauss_i tn). 
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Pros and Cons of Descriptive Mapping 

The only reason to use descriptive rather than 

prescriptive directives is for optimization pur­

poses. The above examples could equally well 

have used prescriptive directives, by omitting the 

"*"s in front of the various clauses; remapping 

would still not occur as the actual arguments al­

ready have the prescribed mapping. The only dif­

ference is that without the "*"s the dummy argu­

ment mapping would typically be checked on 

entry to determine whether remapping is neces­

sary, while this check is omitted in the descriptive 

case, obtaining a small time saving. However, de­

scriptive directives must be used with care; since 

they assert the mapping, they can introduce errors 

into an otherwise correct program. 

Having said this, we shall see in Section 4.4 
that descriptive directives can be used safely if the 

procedure in which they appear has an explicit 

interface wherever it is called. 

4.3 Inherited and Transcriptive Mapping 

Suppose that Gauss_i tn is a library routine and 

that we want it to accept any mapping for its argu­

ments and not to remap them. In other words, we 

want the dummy arguments to inherit their map­

ping from the corresponding actual arguments. 

This can be specified by the INHERIT directive 

[HPF §3.9]: 

!HPF$ INHERIT matrix, col, row, elem 

If no other information is provided about these 

dummy arguments, the associated actual argu­

ments can have any mapping and will not be re­

mapped-even if they are array elements or sec­

tions. In general, the compilation system will 

generate code to handle any mapping for the ar­

guments (unless it can determine the possible ac­

tual argument mappings). 

Some dummy arguments may have inherited 

mapping while others have prescriptive or de­

scriptive mapping. Other data objects, including 

other dummy arguments, can be aligned with 

dummy arguments with inherited mapping. For 

example: 

!HPF$ INHERIT matrix 

!HPF$ ALIGN col (:) WITH matrix (:, *) 

!HPF$ ALIGN row (:) WITH matrix (*, :) 

!HPF$ ALIGN elem WITH matrix (*, *) 
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inherits the mappinf! of rna tr ix and replicates 

col, row. and elem over dimensions of it. 

The basic idea of inherited mapping is straight­

forward and very useful. However, this concept i,; 

considerably complicated by the possibilities al­

lowed in HPF of inheriting some characteri,;;tics of 

a dummy argument"'s mapping and prescribing or 

describing others., which we now describe. I;nfor­

tunately Subset HPF only include,.; the case where 

INHERITed dummy arguments have their distri­

bution explicitly prescribed or described. which 

we shall consider next. 

Specifying Both INHERIT and DISTRIBUTE 

A dummy for which INHERIT is specified ma~· op­

tionally al,.;o appear in a DISTRIBUTE directive. 

thought it may not be aligned (i.e .. appear as an 

alignee!. In that case. the DISTRIBUTE directive 

refers to the distribution of the trmplote to which 

the actual argument is ultimote(1· aligned. rather 

than the distribution of the actual argument it­

self.~ The alignment of tlw actual argument to its 

ultimate template is not changed. even if the ac­

tual argument is an array element or regular sec­

tion: in fact, that is the essential meaninf( of the 

INHERIT directive [HPF pp. -±5(:3"7)-47:-±1; . 

For example. dummy argument matrix is as­

sociated with an actual argument that is a n~gular 

section of an array. namely A (rl: m, rl: n). 

Since A is not explicitly aligned (as it is distributed 

directly-see the second paragraph of Section 

4.2), it is considered to be ultimately aligned with 

itself, and thus its ultimate template is also the 

array A itself lHPF p. 22(42-43r. Therefore if 

"INHERIT matrix·· is specified. then any 

DISTRIBUTE directive for matrix actuallv refers 

to the arrav A. Thu:-;: 

!HPF$ DISTRIBUTE matrix *(CYCLIC, CYCLIC) 

asserts that A has a cvclic distribution. while 

!HPF$ DISTRIBUTE matrix (BLOCK, BLOCK) 

sets up a template with the same dimen:-;ions as A 

but with (BLOCK, BLOCK) distribution. and aligns 

§ Cltimat~ ali1mment i,; <explained in St•<'tion :1.:2 and in 

[HPF p. 22. last paragraph-. 

a copy of A (rl: m, rl: n) with it in the same way 

that A (rl: m, rl: n) is aligned with A. Therefore. 

this combination of directive" allows the alif!n­

ment of an argument to its ultimate template to be 

preserved, but the distribution of that templatto to 

be asserted or changed.ll 

Actually. it turns out that DISTRIBUTE can 

only be used in conjunction with INHERIT when 

the dummy has the same rank as the actual argu­

ment';; ultimate template. For example. the scalar 

dummy arf(urnent elem is associated with the ac­

tual argument A (r, r) whose ultimate template is 

the two-dimensional arrav A. However. it is ille­

gal to specify ''DISTRIBUTE elem (BLOCK, 

BLOCK)," as elem itself is scalar [IIPF p. 2b. 4th 

constraint l. The same applie,.; to the one-dimen­

sional arguments col and row. This limit,; the 

usefulness of this combination of directives' 

Transcriptive Distribution 

The reverse combination. inheriting distribution 

characteristics but not necessarily alif(nment. i,.; 

catered for by using asterisks in the DISTRIBUTE 

directive in place of the distribution format and/ or 

processors name. For exan1ple: 

!HPF$ DISTRIBUTE matrix * ONTO * 

means that matrix· s distribution format and the 

processor arrangement m·er which it is distributed 

are inherited from the actual argument. i_However 

if INHERIT is not specified. and the actual is a 

ref(ular section or is otherwise embedded into a 

template. its alif!nment will chanf!'e so that it is 

spread out over the processor array. as thouf!h a 

new arrav were declared.; Clauses in a DISTRIB­

UTE dire~tive consisting of just asterisks are called 

transcriptive [HPF pp. 48(:-33!-4-9(42):. They are 

not included in Subset HPF. 

Transeriptive and other forms can be mixed. 

For example: 

!HPF$ PROCESSORS p (5,20) 

!HPF$ DISTRIBUTE matrix * ONTO p 

means that matrix inherits its distribution format 

but is distributed 0\ er a prc,;crihed processor ar-

II If changed. the di,tribution io n·otored on return l'nnn tlw 

proc~dure :~:-;e•· the b<'[!inninf! of ~ection -+.1., 



rangement p. i.e .. the actual mav have been dis­

tributed over a different processor arrangement. 

in which case it will be redistributed over p using 

the same distribution format as before. 

!HPF$ PROCESSORS p (10,10) 

!HPF$ DISTRIBUTE matrix * ONTO *P 

asserts that the actual is distributed over proces­

sor arrangement p. but its distribution format is 

inherited and could be anything. 

1 HPF$ DISTRIBUTE matrix (BLOCK, BLOCK) ONTO * 

means that matrix i,; to be prescriptively block 

distributed onto whatever procps:-;or arrangement 

the actual wa,.; distributed onto. 

These three fonn,.; of dumrny argument n1ap­

ping. prescriptive. descriptive. and transcriptive 

or inherited. can be mixed fr·ecly. except that a 

dummy argument appearing as an alignee in 

an ALIGN directivP cannot also appear in an 

INHERIT or DISTRIBUTE din~ctin~. 

4.4 Explicit Interfaces 

Finally .. we consider argument mapping from the 

viewpoint of the caller of a procedure. Fortran 90 

introduces to Fortran the possibility of makinf! the 

interface of a procedure explicit in the caller.. i.e .. 

of providing the caller with complete information 

about the procedure· s dummy arguments and. for 

a function. its result !such as their types. shapes. 

whether they are used as input and/ or output ar­

guments. etc.). The interfacP is automatically ex­

plicit for internal and module procedures. and can 

be made explicit for external procedures by dt>­

claring an .. INFERFACE block .. that contains the 

required information. 

In HPF. if an explicit interface includes the 

mapping directives for the dummy arg-ument>;. 

then the caller will automatically rPmap or copy 

the actual arguments (for the duration of the pro­

cedure call) as necessary to sati,o;f~, them. Thi:'i ap­

plies even if the mapping dirPctives are descrip­

tive; the caller treats them a,; prescriptive and 

performs any remapping necessary to satisfy 

them. Therefore. within the procedure the de­

scriptive directives are guaranteed to be :oatisfied 

and so cannot be in error lHPF p. 4;) !):3-2"7):. 

This suggests a '·dean .. optimization that pro­

grammers can apply to their HPF programs: en-
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sure that all procedure calls have an explicit inter­

face that includes the dummy argument mapping 

directives. and change all prescriptive directives 

for dummy arguments to descriptive ones. 

5 DYNAMIC REMAPPING 

The directives that we have considered so far are 

declarations. There are also executable forms of 

the ALIGN and DISTRIBUTE directiws, namely 

REALIGN and REDISTRIBUTE, which dynami­

cally remap data during program execution. They 

can only appear among the executable state­

ments. Only the standard. prescriptive. forms of 

the directives are allowed: for dummy arguments. 

the descriptive and transcriptive forms cannot be 

used (as they would not make sense in the context 

of remapping). If a dummy argument is dynami­

cally remapped. its original mapping is automati­

cally restored before the procedure return,.;. so an 

actual argument cannot be remapped as a side 

effect of a procedure call l HPF p. 53 (19-:31 )]. 

This does not apply to variables declared in mod­

ules .. however: if they are dynamically remapped 

within a procedure. their new mapping is pre­

served when the procedure return,.;. Cornmon 

block and SAVEd variables cannot be dvnamicallv . . 
remapped lHPF p. 3"7 (20-25). 

An object that has lwen aligned cannot be RE­

DISTRIBUTEd, .iust as it cannot appear in a DIS­

TRIBUTE directive. Therefore an object appearing 

in an ALIGN directi,·e can onlv be redistributed if 

it is at the root of its particular alignment tree 

[HPF p. 22 (46-48) . \\hen :ouch an objt>ct is 

redistributed it ''carries .. with it all the arravs 

aligned to it. so the alignment relation:,; are pre­

served [HPF p. 2;:) <:44-48)]. Therefore. REDIS­

TRIBUTE may potentially rPsult in a lot of data 

movement~ 

Conversely. an object cannot be REALIGNed if 

it is the root of an alig-nment tree (i.e., if anything 

else is ultimate(v aligrwd with it). Alignees, includ­

ing interior nodes of an alignment tree, and ob­

jects not explicitly aligned can be realigned [HPF 

p. 22 (46-48);. Realignment of a data object only 

affects that object-if it is an interior node of an 

alignment tree. it does not ·'carry·' the objects that 

were aligned with iL as they are regarded as being 

actually aligned with the root of the alignment tree 

rather than with the object in question, the latter 

serving only as an intermediary in the description 

of the alignment lHPF p. 22 (3"7-41)j. 
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Any object that may be subject to REALIGN or 

REDISTRIBUTE directives must be specified in a 

DYNAMIC directive [HPF §3.5], e.g.: 

! HPF$ DYNAMIC A, B 

As a toy example of dynamic remapping, con­

sider the following. We have already indicated 

that block distribution is optimal for Jacobi itera­

tion, while cyclic distribution is better for Gaus­

sian elimination. Suppose that for some reason we 

wished to perform a phase of Jacobi iteration fol­

lowed by a phase of Gaussian elimination on the 

same array. Then it may well be worthwhile to 

redistribute the array between these phases so 

that it is optimally mapped for each: 

REAL a (m, n) 

!HPF$ DYNAMIC, DISTRIBUTE(BLOCK,BLOCK): :a 

... Jacobi iteration phase 
!HPF$ REDISTRIBUTE a (CYCLIC, CYCLIC) 

. . . Gaussian elimination phase 

Because dynamic remapping is potentially such 

an expensive operation it is only likely to be worth­

while between fairly large phases of computation, 

as in the above example. It is unlikely to be worth­

while just for the sake of a single array assign­

ment. In general it is better to rely on the HPF 

implementation to generate the necessary com­

munications for that, rather than to explicitly re­

map the data in order to minimize those commun­

ications, since explicit remapping moves the 

whole of an array while only a relatively small 

amount of data may need to be communicated to 

implement the assignment. However, as always, 

experiment is the best judge of the optimal map­

ping and remapping strategy. 

The REALIGN, REDISTRIBUTE, and DYNAMIC 

directives are not in Subset HPF. 

Allocatable Arrays and Pointers 

Variables with the ALLOCATABLE or POINTER at­

tribute may appear in ALIGN and DISTRIBUTE 

directives, in which case the mapping directives 

take effect when storage is allocated for the vari­

ables in an ALLOCATE statement. If the default 

mapping provided by such directives is inappro­

priate, an ALLOCATE statement mav be immedi­

ately followed by a REALIGN or RE.DISTRIBUTE 

directive which will override the declared default.~ 

In that case the variable must have the HPF DY­

NAMIC attribute. 

Figure 10 shows an example of the use of allo­

catable arrays. Recall that in Section 4.1 we redis­

tributed sections of an array by passing them as 

arguments to a procedure whose corresponding 

dummy arguments had prescriptive mapping di­

rectives. This can be achieved without a proce­

dure call by allocating arrays with the appropriate 

size and distribution and assigning the array sec­

tions to them. (We must assign the sections to 

whole arrays because one cannot directly remap 

sections of an array, and the destination arrays 

must be allocatabl~ because they have differe~t 
sizes in different iterations.) Thi~ example is not 

very elegant, however, since copying the array sec­

tions to and from new variables serves no purpose 

except for its side effect of remapping them. It is 

less obtrusive to achieve the remapping via the 

procedure interface as in Section 4.1. 

HPF §3.6 gives more details about mapping 

pointers and allocatable arrays in HPF. Inciden­

tally, pointers are not in the Fortran 90 subset 

included in Subset HPF. 

6 CONCURRENT EXECUTION FEATURES 

Fortran 90 already contains a rich set of features 

for expressing data parallelism, namely its array 

syntax and elemental and array intrinsic func­

tions. Since data parallelism and concurrent exe­

cution are central to HPF, it introduces a number 

of extra facilities for expressing them, namely a 

FORALL statement and construct, PURE proce­

dures, and an INDEPENDENT directive. We shall 

describe them in this section. 

6.1 FORALL Statement and Construct 

The FORALL statement [HPF §4 .1] allows a data 

parallel assignment to a group of array elements to 

be expressed in terms of its constituent elemental 

assignments. For example: 

FORALL (i=l:lO) A(i) = B(i) + C(i+2) 

~ Admittedly this prescription is somewhat inelegant. It was 

devised because of a desire to restrict the ALIGN and DIS­

TRIBUTE directives to the declarations part of a program unit, 

thus preventing their use in conjunction with an ALLOCATE 

statement. 
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INTEGER m, n, r, r1 

REAL A (m,n), elem 

REAL, ALLOCATABLE :: matrix (:,:), row (:), col (:) 

!HPF$ ALIGN col (:) WITH matrix (:, *) 

!HPF$ ALIGN row (:) WITH matrix (*, :) 
!HPF$ DISTRIBUTE matrix (BLOCK, BLOCK) 

DO r = 1, m 

r1 = r+1 

ALLOCATE (matrix (m-r, n-r), col (m-r), row (n-r)) 

matrix A (r1:m, r1:n) 

col A (r1:m, r) 

row A (r, r1:n) 

elem A (r,r) 

row = row I elem 

matrix = matrix - SPREAD (col, 2, n-r) * SPREAD (row, 1, m-r) 

A (r1:m, r1:n) =matrix 

A (r, r1:n) =row 

DEALLOCATE (matrix, col, row) 

END DO 

FIGURE 10 Using allocatable arrays to remap array sections. 

has the same meaning as the array assignment 

A(1:10) =B(1:10) +C(3:12). 

It is helpful to introduce some terminology for 

the parts of a FORALL statement. In the last exam­

ple, i is called the FORALL index, the part in 

parentheses which declares the FORALL index and 

its range of values is called the FORALL header, 

and assignment statement governed by the 

FORALL header is called the FORALL assignment. 

A FORALL looks somewhat like a DO-loop over 

array element assignments (or at least, a FORALL 

construct looks like that!). However, it has the 

same semantics as an array assignment: The ex­

pression on the right-hand side of the FORALL as­

signment is evaluated in parallel for all FORALL 

index values, and then the results are assigned in 

parallel to the corresponding variables, so the 

right-hand side expression always uses old values 

of array elements. Thus: 

FORALL (i=2: 9) & 

A(i) = 0.5 * (A(i-1) +A(i+1)) 

sets each of the elements A ( 2) -A ( 9) equal to the 

average of the old values of its nearest neighbors. 

It is equivalent to the array assignment: 

A(2:9) =0.5 * (A(1:8) +A(3:10)) 

but not to the apparently similar DO-loop: 

DO i=2,9 

A(i) 0.5 * (A(i-1) + A(i+1)) 

END DO 

Incidentally, it is misleading to use the term "it­

erations" for the executions of the individual 

FORALL assignments, as that term implies se­

quential rather than parallel execution. In this ar­

ticle we use the term instance for this purpose, 

namely to mean an execution of a FORALL assign­

ment or the body of a FORALL construct for a par­

ticular combination ofFORALL index values, but it 

is not in standard usage-currently there does not 

appear to be a generally accepted term for this 

purpose. 

The FORALL header can declare multiple in­

dices. The general form for specifying the range of 

values of a FORALL index is I: u[: s], where /, u, 

and s are scalar integer expressions for the lower 

bound, upper bound, and stride, respectively, 

and [ ... ] denotes an optional item. I, u, and s must 

not depend on FORALL indices, so the "index 

space" is rectangular (although this can select 

nonrectangular array sections as we shall see). 

A FORALL assignment need not be scalar-it 

can be an array assignment. Furthermore, sub-
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scripts in a FORALL assignment can be general 

expressions-they are not constrained in any way. 

The only condition is that a FORALL statement 

must not assign multiple values to any element. 

This condition is imposed because FORALL state­

ments and constructs are intended to be dPtermi­

nistic, as are Fortran 90 array assignments. 

meaning that the value assigned to each Plement 

of the assignment variable is wPll defined even 

though the order of the elemental assignments is 

undefined. The corresponding condition for array 

assignments in Fortran 90 is that. if an irregular 

section is assigned, all of its elements must be dis­

tinct. Thus: 

FORALL (i=1:10) A(index(i)) = B(i) 

is legal only if indx contains no n~peated values. 

FORALL (i=1:10, j=1:5) A(10*i+j) =C(i) 

is legal (assuming that the generated subscripts 

are in range) as there are no duplicated Plements 

on the left-hand side. lt should be apparent that 

quite general sets of elements canlw as,igned by a 

FORALL statement~ 

The FORALL header can also contain a scalar 

logical expression called a mask expression. in 

which case the FORALL assignment. including the 

evaluation of its right-hand side, is only executed 

for those combinations of index values for which 

the mask expression evaluates to . TRUE. . This 

gives the FORALL statement a similar functionality 

to the WHERE statement. Thus: 

FORALL (i=1: 10, A(i) > 0.0) & 
A(i) = 1.0 I A(i) 

is equivalent to: 

WHERE(A(1: 10)>0.0)A(1: 10)=1.0/A(1:10) 

It may seem that FORALL duplicates the func­

tionality already provided by Fortran 9()" s array 

syntax. However. the FORALL statement is often 

clearer and more concise. and actually provides 

greater functionality, allowing more general array 

regions, access patterns. and expressions to be 

described. Therefore, it allows the explicit expres­

sion of data parallel assignment in more general 

cases than array syntax can handle. \\"ithout it. 

the programmer would be forced to use sequential 

syntax (such as elemental assignments in DO­

loops) in these cases, which hides the data para!-

lelism and requires that a compiler perform exten­

sive analysis to reveal it. This reduces the chances 

of concurrent execution, as it is often impossible 

for a compiler to determine statically whether DO­

loop iterations can be performed concurrPntly. 

The following are some examples of situations 

where FORALL is either more ccmvenient than ar­

ray syntax, or indispensable. for expressinf! data 

parallel assignments: 

1. \Vhen dimensional permutation is involved. 

For example: 

FORALL (i=1:n, j=1:n, k=1:n) & 
A(i,j,k) = B(k,j, i) 

is clearer than the Fortran 90 Pquivalent. 

which requires the RESHAPE intrinsic: 

A= RESHAPE (B, ORDER= (/3, 2, 1/)) 

2. To avoid the conformance rules for array 

assignments. For example. the followinf! ar­

ray assignment from the Gaus:,ian elimina­

tion code of Figure .~ requires the use of the 

SPREAD intrinsic function so that all arraY 

sections conforn1: 

A(r1:m, r1:n) = A(r1:m, r1:n) 

(SPREAD (A(r1:m, r), 2, n-r) & 
* SPREAD (A(r, r1:n), 1, m-r)) 

It can be expressed more simply usmg a 

FORALL: 

FORALL (i = r1:m, j = r1:n) & 
A(i,j) = A(i,j) - A(i,r) * A(r,j) 

3. To express subscript-dependent YaluPs. For 

example. the following sets. each element 

even ( i , j ) of a lof!ical array to . TRUE. if 

(i + j) is even and . FALSE. otherwise: 

FORALL (i=1:m, j=1:n) & 
even(i,j) = (MOD (i+j, 2) 0) 

even 

Subscript-dependent exprPssions are Yery 

cumbersome to express in array :'iyntax. The 

Fortran 90 equivalent of the above is: 

(MOD(SPREA0((/(i,i=1,m/), 2, n) & 
+ SPREAD ( ( / ( j , j = 1 , n/) , 1 , m l , 2) 



4. To express nonrectangular array sections: 

FORALL (i=l: n) ... A(i, i) 

FORALL (i=l:n, j=l:n, j >= i) ... A (i, j) 

.5. To express more general array access pat­

terns. ln fact. it is possible to select elements 

from an array in any fashion to form an­

other array of any shape. For example: 

FORALL (i=l: 1, j=l:m, k=l:n) & 
. A ( i vee ( i, j, k) , j vee ( i, j, k)) 

forms a three-dimensional "irregular sec­

tion" from the two-dimensional arrav A. 

Fortran 90 vector subscript notation c~mld 
only form a one or two-dimensional section 

from A. in which i vee and j vee each de­

pends on only one FORALL index (a differ­

ent one for each dimension). 

The next example expresses an array ao;­

signment whose right-hand side is a product 

of two n X n arravs. one formed frorn an 

array A by cyclically shifting each row i left 

by i places. the other formed from an array 

B by cyclically shifting each column) up byj 

places. This cannot be written as an arrav 

assignment. however. as this pattern of rm~· 
and column shifts cannot be expressed by 

array sections. The subscript ranges are de­

clared as 0 : n - 1. 

FORALL (i=O:n-1, j=O:n-1) & 
C(i,j)=A(i,MOD(i+j,n) )*B(MOD(i+j,n) ,j) 

lf this is repeated rz times, with the cvclic 

shifts increased bv one each time. and the 

results are accum~lated into C. the matrix 

product C = AB is produced. 

6. Finally .. a FORALL statement must be used 

when the constituent elemental a,.;signment 

involves a reference to a nonelen1ental func­

tion. For example. the following is a com­

pletely data parallel expression of the ma­

trix multiplication C = AB. where A. B. and 

C have arbitrary sizes (m X k;. (k X rz::. and 

(m X rz). respectively: 

FORALL (i=l:m, j=l:n) & 
C(i,j) = DQT_PRODUCT(A(i,:), B(: ,j)) 

This cannot be written as an array as,.;ign­

ment to the whole of C because of the refer-
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diagonal of array 

upper triangle 

ence to the nonelemental intrinsic function 

DOT_FRODUCT. Without FORALL. the as­

signment to C ( i , j ) would therefore have to 

be enclosed in DO-loops over i and j. 

·we shall see in the next section that 

FORALL assignments can also reference 

user-defined functions. subject to certain 

constraints. 

A FORALL construct is also provided [HPF 

§4.2]. This allows a single FORALL header to gov­

ern a sequence of statements. which may be as­

signment statements. FORALL statements and 

constructs. and WHERE statements and constructs. 

Incidentally. FORALL index bounds and strides 

carz depend on the FORALL indices of an enclosing 

FORALL construct. The FORALL construct is not 

included in Subset HPF. though the FORALL 

statement is. For completeness we mention that 

an assignment in a FORALL statement or construct 

may be a pointer assignment rather than a normal 

assignment. 

6.2 PURE Procedures 

The order of execution of the individual assign­

ments in a FORALL statement is undefined-ide­

ally they should all execute in parallel. Therefore, 

if a FORALL assignment contains a function refer­

ence, the function mav be invoked concurrently 

for all FORALL index v~lues. In addition to return~ 
ing a value, an ordinarv user-defined Fortran 

function can contain a va;iety of side effects. such 

as modifying dummy arguments or variables in 

common blocks, or performing I/0. Whenever 

such side effects can occur it is preferable that 

they should happen in a well-defined order .. oth­

erwise the net result may be nondeterministic. For 

example .. if one function invocation writes to a 

variable that another reads, or two invocations 

write different values to the same variable, then 

the overall behavior depends on the order of the 

invocations. We have already indicated that a de­

sign objective of FORALL is that it should be deter­

ministic, so this suggests that functions referenced 

in FORALL assignments should be side effect free. 

Another consideration is implementation. In 

general, a function referenced in a FORALL as­

signment might be executed on a subset of the 
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processors that are allocated to the program, or 

even on a single processor; this would allow multi­

ple references (for a set of FORALL instances) to be 

executed simultaneously on different processors. 

If the function can contain arbitrary data mapping 

directives, it might access variables stored in the 

local memories of processors that it is not execut­

ing on. This cannot be implemented on distrib­

uted memory architectures using pure message 

passing, as message passing requires that the pro­

cessors at both ends of a communication execute 

the communication instruction. To support this 

behavior requires some degree of shared memory 

support, either in hardware or software. 

For both of these reasons (but principally the 

first) it is forbidden to reference ordinarv user­

defined functions in a FORALL assigm~ent or 

mask expression.# 

However, HPF introduces a new class of func­

tions called pure functions, which are guaranteed 

to be side effect free and which can be used in 

these contexts [HPF §4. 3] . They are denoted by 

adding the keyword PURE before the FUNCTION 

keyword in the function header statement, and 

must satisfy a number of constraints, which are 

checkable at compile-time, to ensure that they are 

both side effect free and efficiently implementable 

under concurrent reference. 

In outline, the constraints to ensure side effect 

freedom are as follows [HPF §4. 3. 1. 1 J. A pure 

function must not contain any operation that 

might conceivably change the value or pointer as­

sociation of a dummy argument or global variable 

([HPF p. 73, 3rd constraint] gives a full list of 

disallowed operations), or SAVE local variables, or 

reference nonpure procedures, or contain any ex­

temal 1/0, PAUSE, STOP, or dynamic remapping 

operations. Note the use of the word conceivably 

above; it is not sufficient for a function merely to 

be side effect free in practice. For example, a 

function that contains an assignment to a global 

variable but in a branch that is not executed is 

nevertheless not pure. This strictness is necessary 

to allow side effect freedom to be checked at com­

pile-time. Data mapping is also restricted in a 

pure function, as we shall describe shortly. 

Pure subroutines may also be defined, and 

must satisfy the same constraints except that they 

may modify their dummy arguments. They are 

# However, the bound and stride expressions that define 

FORALL index ranges can reference normal functions (unless 

they are within an enclosing FORALL construct), as thev are 

evaluated only once. 

useful for a variety of purposes, for example so 

that subroutines can be called from within pure 

functions, and so that FORALL assignments can 

be defined assignments, both of which require the 

use of a pure subroutine. 

A pure procedure (i.e., function or subroutine) 

can be used anywhere that a normal procedure 

can. However, a procedure must be pure if it is 

used in any of the following contexts: 

1. In a FORALL assignment or mask expres­

sion, or a statement in a FORALL construct 

2. Within the body of a pure procedure 

3. As an actual argument in a pure procedure 

reference 

When a procedure is used in any of these con­

texts, its interface must be explicit, and both its 

interface and definition must specify the PURE 

keyword and the INTENT** of its nonpointer and 

nonprocedure dummy arguments (though admit­

tedly this is redundant for a pure function as its 

arguments must be INTENT (IN) by definition). 

Intrinsic functions, including the new HPF intrin­

sic functions, are always pure and require no ex­

plicit declaration of this fact. Of the intrinsic sub­

routines, only MVBITS is pure; the others are not 

as they perform II 0. A statement function is pure 

if all functions that it references are pure. The 

PURE attribute is not included in Subset HPF. 

Functional Parallelism 

As an example of the use of pure functions, Figure 

11 shows a program which plots the Mandelbri::it 

set over a grid of points by calling a pure function 

man de 1 concurrently at every point from a 

FORALL statement. Note that, apart from prohib­

iting PAUSE and STOP statements, pure functions 

have no constraints on their internal control flow. 

Therefore, when referenced in a FORALL, they al­

low Junctional parallelism in an HPF program, as 

different concurrent invocations can execute dif­

ferent code.tt Thus in Figure 11, different invoca­

tions of mandel will execute different numbers of 

iterations of the WHILE loop, and some will exe­

cute the assignment in the IF statement while 

others do not. Apart from pure function references 

in FORALL, functional parallelism can also arise 

** Dummy arguments can be specified as INTENT (IN) , 

(OUT) , or ( INOUT), meaning, respectively. that thev are 

read. written, or both. 

tt Of course, SIMD architectures cannot fully exploit this 

potential. 



REAL n (-100:50, -50:50) 

!HPF$ DISTRIBUTE n (BLOCK, BLOCK) 

INTERFACE 
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#itns to diverge to ([z[ > 2) 

PURE INTEGER FUNCTION mandel (c) 

COMPLEX, INTENT (IN) :: c 

END FUNCTION mandel 

END INTERFACE 

FORALL (i= -100:50, j= -50:50) n(i,j) mandel (0.02*CMPLX (i,j)) 

PURE INTEGER FUNCTION mandel (c) 

COMPLEX, INTENT (IN) :: c 

COMPLEX :: z 

!---------------------------------------------------------------! 

Returns the number of iterations for [z[ to become> 2 under 

z -> z**2 + c, starting at z =c. If ([z[ <= 2) after 100 

iterations it is assumed to remain so (i.e. 'c' is in the 

Mandelbrot set) and the special value -1 is returned. 

!---------------------------------------------------------------! 

z = c 

mandel = 0 

DO WHILE (ABS (z) <= 2.0 .AND. mandel < 100) 

z = z*z + c 

mandel = mandel + 1 

END DO 

IF (ABS (z) <= 2.0) mandel -1 

END FUNCTION mandel 

FIGURE 11 Using a PURE function to plot the Mandelbri:it set. 

via "independent" DO-loops and "extrinsic" pro­

cedure references, both of which are briefly intro­

duced later. 

Data Mapping in PURE Procedures 

Data mapping is also restricted within pure proce­

dures. The dummy arguments and result can be 

aligned among themselves, and local objects can 

be aligned among themselves or with the dummy 

arguments or result, but otherwise local and 

dummy objects may not be subject to any other 

type of mapping directives. The mapping of global 

variables is not constrained however. 

These restrictions are imposed because multi­

ple invocations of the procedure may be active 

simultaneously, each executing on a subset of the 

processors. As we have explained, on multipro­

cessor systems without shared memory support, 

the data accessed by a procedure must be con­

tained in the local memories of the set of proces­

sors that are executing it. For efficiency the caller 

should have the freedom to choose the processor 

subset on which to execute any particular pure 

procedure reference, e.g., to maximize concur­

rency in a FORALL, and/ or to reduce communica­

tion, taking into account the mappings of other 

terms in an expression or assignment. This im­

plies that, on nonshared memory platforms, it 

must also have the freedom to map the proce­

dure's actual arguments, result, and local vari­

ables to the chosen processor subset, just as it has 

this freedom generally for variables in an expres­

sion. Therefore, a dummy argument or result may 

not appear in any mapping directive that fixes its 

location with respect to the processor array. For 

example, it may not be aligned with a global vari­

able or template, or be explicitly distributed, or 

even INHERIT its mapping, all of which would 

remove the caller's freedom to choose the actual's 

mapping. The only type of mapping information 

that may be specified for the dummy arguments 

and result is their alignment with each other, 

which may provide useful information to the caller 
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INTEGER rn, n, r, r1 

REAL A (rn, n) 

!HPF$ DISTRIBUTE A (CYCLIC, CYCLIC) 

DO r = 1, rn 

r1 = r+1 

A(r, r1:n) = A(r, r1:n) I A (r, r) 

FORALL (i=r1:rn) A(i,r1:n) update_row (A(i,r1:n), A(i,r), A(r,r1:n)) 

END DO 

CONTAINS 

PURE FUNCTION update_row (row, factor, ref_row) 

REAL, INTENT (IN) row (:), factor, ref_row (SIZE (row)) 

REAL update_row (SIZE (row)) 

!HPF$ ALIGN WITH row ref_row, update_row 

update_row row - factor * ref_row 

END FUNCTION 

FIGURE 12 Gaussian elimination with ea<'h row updated In a pun' function <'all. 

about their required relative mappings. For the 

same reasons. local variables may he aligned with 

the dummy arguments or result. but may not have 

arbitrary mappings.:j::j: 

This is not to say that the actual arguments of a 

pure procedure cannot be distributed. Indeed. 

they can have any mapping. The constraint,.; sim­

ply restrict the specification of their mapping 

within the pure procedure. so the implementation 

can remap them as it sees fit. This is one place 

where the programmer is largely relieved of the 

burden of worrying about data mapping (expres­

sions being another). 

We can illustrate these points hy considering 

one last version of the Gaussian elimination code. 

shown in Figure 12. This time each row of 

matrix A is updated hy calling a pure function 

update_row, and this is done in parallel over all 

the rows in a FORALL statement. A is distributed 

cyclically over a two-dimensional processor array. 

(Incidentally, in this example update_row is a 

Fortran 90 internal function whose interface is 

automatically explicit in the caller. Internal func­

tions are not included in Subset HPF .I 

An efficient implementation of the FORALL 

might broadcast row A (r, r 1: n) so that it is 

aligned with every row A ( i, r1: n). i > r. accord­

ing to the alignment specified in the pure fum:-

:j::f: 1--l(_nvever. thP iinpleinPntation of non~han·d nwJnory 

platforms is still complicated hY the fact that pur<> procedun's 

can access cornrnon block and module variables wiHht" map­

ping is fixed with respect to the pron·ssor arrav 

tion.§§ and then execute each instance i of the 

FORALL on the processors that own the relevant 

assignment variable (and argument:' A ( i, r1: n). 

narnely, on a subset of one row of the processor 

array. Therefore different rows of processors will 

update different row,.; of A in parallel.. and multiple 

invocations of update_row will be active simulta­

neouslv. 

This implementation might easily he ruled out 

if the programmer could specify arbitrary map­

pings for update_row's argument,; and local 

variables. For instance. if ··INHERIT ref_row'· 

were specified, then E"trictly speaking it would pre­

vent the corresponding actual argument A (r, 

r1: n) from being broadcast, ,.;o every innH:ation 

of update_row would have to be activated on the 

same subset of processors-namely those owning 

A (r, r1: n) -thus sequentializing the FORALL 

instances. 

In general each individual invocation of 

update_row is distributed across multiple pro­

cessors-namely the row of processor,.; owning the 

argument A ( i, r 1: n) -so upda te_row exploits 

parallelism both internally and via concurrent ref­

erence. Since a pure function may be executed on 

multiple processors .. it is useful to be able to spec­

ify how its arguments should be aligned relative to 

each other. This enables the caller to map them in 

§§The callp,r is aware uf the dunn11y ar~urnPnt rnappintr 

specified in pure function update_row because its interface i.-; 

explicit. as it must be when a function is referenred in a 

FORALL. 



a manner that is efficient for the operations per­

formed within the function. 

6.3 INDEPENDENT Directive 

HPF also introduces an INDEPENDENT directive. 

which can precede a DO-loop or FORALL state­

ment or construct [HPF §-± .41. 
If it precedes a DO-loop it asserts that the loop 

iterations are independent, meaning that they can 

be executed in anv order. and therefore concur­

rently. without changing the semantics of the loop. 

The conditions that must be satisfied for this to 

apply are listed in [HPF pp. 81-82 1 . Cnlike the 

case for PURE procedures. these are assertions 

about behavior, and do not imply any syntactic 

constraints. The DO-loop may contain procedure 

calls. branches in control flow. etc .. so different 

iterations may execute different code. givinf!: scope 

for functional parallelism. An example is: 

! HPF$ INDEPENDENT 

DO i=1, 100 

a (p ( i) ) b ( i) 

END DO 

which asserts that p (1: 100) does not contain 

any repeated entries (otherwise the same element 

of a would be assigned by more than one iteration 

and the result would depend on their execution 

order). This is therefore equivalent to the arrav 

assignment: 

a (p(1: 100)) = b (1: 100) 

which implies the same condition on p. 

\Vhen it precedes a DO-loop .. the INDEPENDENT 

directive also has an optional NEW clause to spec­

ify that certain variables must be regarded as pri­

vate to each iteration in order to make the itera­

tions independent. That is, each iteration must be 

given a new .. independent copy of the variable 

which is undefined at the start of the iteration and 

becomes undefined again at the end. This clause 

is only valid if this modification does not change 

the meaning of the program. i.e., if the private 

variables do not carrv values from one iteration to 

another, or into or out of the loop. 

\Ve should point out that. except in simple 

cases, the iterations of an independent DO-loop 

mav onlv be concurrently executable on shared . . . 
memory ~II~ID machines. (Indeed, this particular 

feature has its origin in Fortran dialects for such 

machines.) This is because of the complete gener-
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ality of data references allowed within them. 

which may inhibit concurrent execution on pure 

message-passing systems. and of control flow, 

which may prevent concurrent execution on SlMD 

machines. Therefore. if a program is intended to 

be run on nonshared memor-v achitectures. we 

recommend the use of array or FORALL syntax 

rather than independent DO-loops whenever pos­

sible. 

If it precedes a FORALL statement or construct. 

the INDEPENDENT directive asserts that the vari­

able(s) written for one combination ofFORALL in­

dices are not referenced (i.e .. read or written) for 

any other combination ofFORALL indices. For ex­

ample: 

! HPF$ INDEPENDENT 

FORALL (i=1:m) a (i) =a (i+n) 

asserts that the arrav sections a ( 1: m) and 

a (1+n: m+n) are either equivalent (i.e .. n = 0) or 

completely disjoint (i.e., n s -m. or n 2: m). This 

condition means that the various synchronization 

points implicit in a FORALL's semantics-namely 

between evaluating the right-hand sides and per­

forming the assignments of an assignment state­

ment. and between successive statements in a 

FORALL constn1ct-are unnecessary and can be 

removed. In particular this means that FORALL 

assignments can proceed directly rather than via 

temporary intermediate storage, which is a useful 

optimization. 

As with all directives that provide information 

about program behavior, the INDEPENDENT di­

rective should onlv be used to assert actual behav­

ior and not to try to change that behavior. If the 

information asserted bv the directive is incorrect 

then the program is erroneou,; and its behavior is 

undefined. 

7 OTHER HPF EXTENSIONS 

HPF includes a number of other extensions which 

we summarize here. \v·e do not describe them in 

detail due to lack of space. but instead indicate 

where full details can be found in the '·High Per­

formance Fortran Language Specification." 

HPF introduces three new intrinsic functions. 

They are the system enquiry intrinsic functions 

NUMBER-OF _FROCESSORS and PROCESSORS_ 

SHAPE [HPF §5.2, 5.6.4, 5.6.5], which were in­

troduced in Section 3. Land a new computational 

intrinsic function ILEN [HPF §5.6.1j. It also ex-
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tends the Fortran 90 intrinsic functions MINLOC 

and MAXLOC by giving them an extra optional ar­

gument DIM for finding the locations of the maxi­

mum and minimum elements along a given di­

mension [HPF §5.6.2, 5.6.3]. In Subset HPF this 

argument, if specified, must be an initialization 

expression. 

HPF defines a standard library of procedures 

in a module called HPF _LIBRARY [HPF §5.4 and 

5.7]. It contains: 

1. Subroutines for enquiring about data map­

ping: HPF_ALIGNMENT, HPF_TEMPLATE, 

and HPF _DISTRIBUTION 

2. New array reduction functions IALL, IANY, 

!PARITY, and PARITY, which apply the 

operators lAND, lOR, IEOR (i.e., bitwise 

AND, OR, EOR), and . NEQV. (logical 

EOR), respectively 

3. Array "combining scatter" functions xxx_ 

SCATTER, and "parallel prefix" and "suffix 

functions'' xxx_pREF IX and xxx_sUFF IX, 

where XXX is any of the available reduction 

operations 

4. Array sorting functions: GRADE_UP and 

GRADE_DOWN 

5. Bit manipulation functions: LEADZ, 

POPCNT, and POPP AR 

This module is not included in Subset HPF. 

It is possible to escape from HPF to another 

programming model and/ or language by calling 

non-HPF procedures called extrinsic procedures 

[HPF §6]. Their interface must be explicit and 

must specify "EXTRINSIC (model-name)" in the 

procedure header statement, where model-name 

is the name of an implementation-dependent pro­

gramming model or language. For example, on a 

distributed memory MIMD machine this might al­

low an HPF program to invoke message-passing 

code in order to obtain forms of MIMD parallelism 

that cannot be achieved in HPF, or to hand-tune 

critical kernels, at the expense of nonportability. 

The EXTRINSIC mechanism is not included in 

Subset HPF. 

HPF defines one particular type of extrinsic 

model, called "HPF_LOCAL" [HPF Annex A]. 

This is basically Fortran 90 operating on the local 

data on each processor, together with a library of 

procedures for relating the local and HPF views of 

data and enquiring about abstract processor coor­

dinates. However, this is an optional part of the 

standard, as it may not be implementable on 

SIMD architectures. 

Finally, all variables and common blocks that 

are subject to sequence and/ or storage associa­

tion must be identified by a SEQUENCE directive. 

This is the only respect in which a standard-con­

forming Fortran 90 program is not a standard­

conforming HPF program unless it is modified. 

These associations imply restrictions on the map­

ping of the variables concerned [HPF §7]. 

8 DISCUSSION AND CONCLUSIONS 

HPF has some obvious advantages over explicit 

SPMD programming with message passing. It is 

closer to the style of programming familiar to ordi­

nary Fortran programmers and offers a relatively 

simple migration path for existing Fortran codes. 

Because HPF programs are not cluttered with 

message-passing details they are shorter, clearer, 

and easier to develop and modify than their mes­

sage-passing equivalents. The performance of an 

SPMD program depends critically on its data 

mapping, and it is easier to experiment with dif­

ferent data mappings by changing the directives in 

an HPF program than by recoding a message­

passing program. 

Furthermore, this higher-level programming 

style does not necessarily incur lower perfor­

mance, because by and large HPF has been de­

signed to permit direct message-passing imple­

mentation on distributed memory systems, 

generally avoiding the overheads of simulated 

shared memory. Indeed, it is arguable that in the 

long term HPF can actually be more efficient than 

explicit message-passing programming, because 

an HPF compiler can directly target low-level ma­

chine instructions for communications rather than 

going through message-passing portability layers. 

It can also employ optimization techniques such 

as overlap areas, code reordering, and message 

vectorization and coalescing, that the programmer 

may not have the expertise or inclination to use. 

Further research and development in HPF com­

pilation will doubtless improve performance fur­

ther. 

Having said this, writing efficient HPF pro­

grams will not necessarily be a trivial task. Indeed, 

the high -level nature of the language means that it 

will be very easy to write hugely inefficient code. 

Deceptively simple operations can translate into 

code involving enormous amounts of communica­

tion. The programmer will need a good under­

standing of the program and of the meaning of 

HPF's mapping directives (which we hope this ar-



tide has helped to impart) in order to map data 

effectively. In addition, we anticipate that some 

old "dusty deck" Fortran programs may need to 

be significantly rewritten to convert them to effi­

cient HPF programs, in particular making use of 

some of the new features of Fortran 90 and HPF, 

e.g., using array and FORALL syntax rather than 

DO-loops where possible, removing sequence and 

storage associations, etc. Fortunately all of these 

optimizations are "clean," in that they should im­

prove code legibility as well as efficiency. 
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