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Abstract

The growing emphasis on patient-centered care has accelerated the demand for high-quality data 

from patient-reported outcome (PRO) measures. Traditionally, the development and validation of 

these measures has been guided by classical test theory. However, item response theory (IRT), an 

alternate measurement framework, offers promise for addressing practical measurement problems 

found in health-related research that have been difficult to solve through classical methods. This 

paper introduces foundational concepts in IRT, as well as commonly used models and their 

assumptions. Existing data on a combined sample (n = 636) of Korean American and Vietnamese 

American adults who responded to the High Blood Pressure Health Literacy Scale and the Patient 

Health Questionnaire-9 are used to exemplify typical applications of IRT. These examples 

illustrate how IRT can be used to improve the development, refinement, and evaluation of PRO 

measures. Greater use of methods based on this framework can increase the accuracy and 

efficiency with which PROs are measured.

1 Introduction

Patient-reported outcomes (PROs) have long been a staple of clinical research [1, 2]. For 

many years, funding agencies and regulatory bodies such as the US Federal Drug 

Administration, Centers for Medicare & Medicaid Services, the British National Health 

Services, and more recently, the Patient Centered Outcomes Research Initiative, have 
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pushed for a greater focus on outcomes that matter to patients as part of product testing, 

intervention trials, and evaluation of quality of care [3–5]. In recent years, the growing 

prominence of patient-centered care and value purchasing based on improving population 

health has accelerated the demand for high-quality data from PRO measures. PROs 

emphasize concepts such as quality of life, fatigue, and depression, which are best reported 

by patients themselves. Traditionally, the construction, scoring, refinement, and validation 

of PRO measures have been guided by classical test theory [6–8]. However, an alternative 

model-based theory called item response theory (IRT) offers promise for addressing 

practical measurement problems found in health-related research that have been difficult to 

solve through classical methods [9–11]. Used extensively in educational testing applications 

[12], this measurement framework has garnered great interest among health researchers. 

However, the key assumptions, properties, and potential applications of IRT for health-

related research are not broadly known.

This paper aims to (i) provide an overview of IRT, and (ii) demonstrate its applications to 

PRO measures for readers unfamiliar with IRT. The overview will introduce the reader to 

foundational concepts in IRT, as well as commonly used IRT models and their assumptions. 

IRT applications for PRO measure development, refinement, and the evaluation of metric 

equivalence will be illustrated using existing data on 636 adults who responded to the 

Patient Health Questionnaire-9 (PHQ-9) Depression Scale and the 43-item High Blood 

Pressure related Health Literacy Scale (HBP-HL). For researchers and clinicians already 

familiar with IRT who wish to gain technical skills sufficient to conduct IRT analysis or 

address advanced analytic topics, more comprehensive texts are available [11, 13, 14].

2 Overview of Item Response Theory (IRT)

2.1 What IRT Offers Patient-Reported Outcome (PRO) Measures

The advantages that IRT confers over classical test theory are well documented [9, 10, 15]. 

First, by modeling the relationship of individual items to the construct being measured, IRT 

provides a much richer description of the performance of each item, which is useful during 

PRO measure development or refinement to ensure that the best items are selected. Second, 

IRT can provide greater detail on a measure’s precision than classical test theory, where a 

single estimate, such as a Cronbach’s α, is used to describe a measure’s reliability. In 

contrast, information functions provided through IRT describe how precision may vary 

across different levels of the construct at the item or scale level. Third, scores estimated 

using IRT methods are independent of the items used as compared with observed scores 

from classical methods, which are dependent on a specific set of items. For example, under 

classical test theory, if an individual answers items on an ‘easy’ diabetes-related knowledge 

measure, their observed score will likely be higher than if they were administered a measure 

with ‘harder’ items, even though that individual’s underlying diabetes knowledge remains 

constant. In contrast, the IRT estimate of the individual’s underlying diabetes knowledge 

should be very similar regardless of the measure used because the difficulty of the items on 

each measure is factored in during scoring. This property is called invariance in ability. 

Lastly, when key assumptions are met, IRT offers the property of item invariance, in which 

item parameters are constant even if estimated in different samples. In contrast, a measure’s 
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properties under classical test theory can differ by sample, requiring new evaluations of 

measure performance, such as reliability testing, when the scale is used in a new population. 

Used appropriately, IRT can greatly improve the efficiency and accuracy of measuring 

PROs. A glossary is provided in Table 1 to help the reader navigate new terminology.

2.2 IRT: The Basics

2.2.1 The Item Characteristic Curve (ICC)—In essence, IRT is a set of mathematical 

models that describe the relationship between an individual’s ‘ability’ or ‘trait’ and how they 

respond to items on a scale. This relationship is depicted by an item characteristic curve 

(ICC). The ICC is a probability curve that is monotonic, or continuously increasing, in 

nature. As an individual’s trait level increases, the probability of endorsing an item also 

increases. An ICC for a dichotomous item is shown in Fig. 1. Theta (θ), a variable used to 

express an individual’s underlying trait level, is measured along the x-axis. Higher values of 

θ are associated with greater levels of the underlying trait. The y axis indicates the 

probability of endorsing an item and is scaled from 0.0 to 1.0. In Fig. 1, an individual with a 

trait level of −1 has a lower probability, 16 %, of endorsing an item than an individual with a 

trait level of 1, 84 %. When an item has polytomous (i.e. >2) response options, the 

interpretation of ICCs is slightly different in that the ICC plots the expected item score over 

the range of the trait. To depict the probability of endorsing each response category for a 

polytomous item, categorical response curves (CRCs) can be plotted, one curve for each 

response category. Figure 2a, b illustrates the CRCs for items #2 and #3 on the PHQ-9 

Depression Scale, both of which have four response categories. Based on the ideal that 

CRCs should have distinct peaks, item #2 generally performs better than item #3. This is 

because, for the most part, item #2 is able to more precisely predict which response category 

an individual of a certain trait level will endorse. For example, at a trait level of 1.0 on item 

#2, Fig. 2a, the probability of endorsing the second response category is relatively high, 60 

%, whereas the probability of endorsing the third or fourth response category is relatively 

low, 6 and 2 %, respectively. In comparison, at a trait level of 1.0, the probability of 

endorsing the second, third, or fourth response categories are 41, 17, and 18 %, respectively, 

for item #3, Fig. 2b.

2.2.2 IRT Parameters—The key parameters under IRT are item location, discrimination, 

guessing, and trait score. Item location, or difficulty, typically denoted b, describes where 

the item functions best along the trait scale. In the simplest binary case, b is defined as the 

location on the latent trait where the probability of endorsing an item is 50 % (Fig. 1). This 

definition can be derived from the mathematical equation associated with several IRT 

models, including the Rasch model. Items with lower b values are considered to be ‘easier’ 

and expected to be endorsed at lower trait levels. Item discrimination, denoted a, describes 

how well an item can differentiate between examinees at different trait levels. In the 

simplest binary case, it is defined as the slope of the ICC at b, Fig. 1. The steeper the curve, 

the better the item can discriminate between individuals with different levels of the trait. If 

the response to an item involves guessing, as possible in health knowledge tests, a guessing 

parameter may be modeled. This parameter, typically denoted c, describes the probability 

that the response to an item is due to guessing, and can range from 0.0 to 1.0 along the y 

axis. Items with c > 0.35 are traditionally viewed as unacceptable [16]. For most PRO 
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measures, such as those for quality of life or physical functioning, guessing is assumed not 

to be applicable and is typically not modeled. After an individual responds to a number of 

items, their response set is used to calculate a trait score or theta (θ), which estimates their 

position along the underlying trait.

2.2.3 Information Function and Standard Error of the Estimate—The concept of 

information is used in IRT to reflect how precisely an item or scale can measure the 

underlying trait. Greater information is associated with greater measurement precision. 

Information is inversely related to the standard error of the estimate, so, at any theta (θ), 

greater information will result in a smaller standard error associated with the estimated θ 

score. Over the range of the underlying trait, an information function curve can be derived 

for each item to reveal how measurement precision can vary across different levels of the 

trait. Item information is typically highest in the region of the trait near the location 

parameter, b; items with greater discrimination contribute more information. At the scale 

level, individual information function curves of all the items on a PRO measure can be 

summed to create a test information function curve. These curves can be used to compare 

measure precision offered by different versions of a scale. Generally, a scale with more 

items will have more information. However, depending on the location and discrimination 

of the included items, different measures will have distinct test information function curves. 

A test information curve with a horizontal line at a relatively high information value would 

indicate that all ability levels would be estimated accurately and with the same level of 

precision.

2.2.4 IRT Models—A variety of IRT models are available to accommodate different 

measurement situations. The most commonly used models are summarized here and in 

Table 2. The decision to use one model over another depends on several factors, including 

the items’ response format, whether the discrimination parameter can be held constant 

across items, whether guessing is plausible, and whether different category response 

parameters must be estimated for each item on a scale. Examining the format of item 

response categories is an important first step.

For items with dichotomous response options, the Rasch, 2 parameter logistic (2PL), or 3 

parameter logistic (3PL) models can be used [17, 18]. The Rasch model only estimates a 

location parameter for each item and assumes that the discrimination parameter is constant 

across all items [19]. If the assumption of equal discrimination does not hold, the 2PL model 

can be used to estimate (i) a location and (ii) a discrimination parameter for each item. When 

guessing is plausible, the 3PL model can be used to estimate the (i) location, (ii) 

discrimination, and (iii) guessing parameters. There are advantages to each of these types of 

IRT models. The main advantage of the Rasch model is its parsimony, allowing models to 

be fit with smaller samples sizes. In addition, the location parameters of any two items can 

be compared regardless of the group of subjects involved, and any two individuals’ trait 

score can be compared irrespective of the set of items being used [20]. However, these 

properties are true only if the model fits the data. In many situations, the assumptions of the 

Rasch model do not hold, and more complex models, such as the 2PL, which estimates 

separate discrimination parameters, would be appropriate [21]. The 3PL model is most 
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useful for item content that tests ability, such as health knowledge, as it is plausible that one 

could correctly endorse an item by guessing.

For items with polytomous response options (e.g. Likert scales), a format typical of many 

PRO measures, several widely used models include the graded response, generalized partial 

credit, partial credit, rating scale, and Bock’s nominal models [20, 22–26]. The graded 

response and generalized partial credit models are the most flexible polytomous IRT models 

because they have fewer assumptions, which allow for separate discrimination parameters 

and separate category response parameters to be estimated for each item. As a result of this 

flexibility, these models are more likely to fit data generated from PROs. However, with 

more parameters that need to be estimated, the sample size requirements are typically larger 

than for simpler models. The partial credit and rating scale models estimate fewer 

parameters than the previous two models because they make the assumption that the 

discrimination parameter is equal across all items (for this reason, the partial credit and 

rating scale models belong to the ‘Rasch family’). The difference between the two models is 

that the partial credit model estimates separate category response parameters for each item, 

while the rating scale model further assumes that the thresholds for category response are 

also equal across items. The assumptions of equal discrimination and equal thresholds make 

the rating scale model among the more restrictive IRT models. Therefore, careful 

consideration of its appropriateness to the data under consideration is needed. For measures 

with items that have different category labels or scale anchors, the rating scale model may 

be less appropriate. For items with unordered response categories, Bock’s nominal model 

may be used, but these types of items are rarely used in PRO measures. Consequently, the 

application of the nominal model to PROs has been limited [26]. More complete description 

of available IRT models can be found in Hambleton et al. [11], van der Linden and 

Hambleton [13], Embretson and Reise [21].

2.2.5 Assessing Model and Item Fit—Once a model that is determined to be 

appropriate for the data has been selected, tests of model and item fit are necessary. There is 

currently no consensus on how to assess model and item fit. However, a number of methods 

have been suggested [11]. To assess model fit, techniques such as (i) comparing nested 

models, (ii) providing evidence that the model assumptions are met to a reasonable degree 

by the test data, (iii) determining if model properties such as trait and item invariance are 

obtained by the test data, and (iv) assessing the accuracy of model predictions using the test 

data, have been used [11, 27–30]. When comparing nested models (e.g. 2PL vs. 3PL), the 

null hypothesis is that the more parsimonious model fits well. This is tested by examining 

the difference in −2*log-liklihood (−2*LL) of the two model calibrations, which is 

distributed as a Chi-square with degrees of freedom equal to the difference in the number of 

estimated parameters between the two models [11]. Significant differences indicate that the 

additional parameters provide better fit to the data than the more parsimonious model. 

Techniques to check specific model assumptions are discussed in the next section. To test 

for invariance in trait scores, one can compare individuals’ estimated trait scores using 

different items within a calibrated item set, preferably with items that vary widely in 

difficulty. If the model fits, a plot of the pairs of trait estimates should support a strong linear 

relationship. To test for item invariance, the estimated item parameters can be compared 
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using two different groups (e.g. high-trait vs. low-trait groups or by gender). If the model 

fits, item calibrations using different groups should yield similar parameter estimates.

To assess fit at the item level, a variety of fit statistics that measure deviations between 

predicted and observed responses have been developed [20, 31]. For the Rasch family of 

models, mean square fit statistics can be used to describe the fit of the item to the model. 

Two commonly used mean square fit statistics include the infit (weighted) and outfit (un-

weighted) statistic. The infit and outfit statistics are often converted into an approximately 

normalized t statistic, with an expected value of 0 and standard deviation of 1. Values 

greater than ±2 are interpreted as demonstrating more variation than predicted by the Rasch 

model, in which case the item is considered not to conform to the unidimensionality 

requirement [32]. The following citations provide additional fit statistics that have been 

developed for the Rasch family of models [33–35]. For non-Rasch models, alternative fit 

indices such as the S−χ2 statistic have been developed [36]. When interpreting these fit 

statistics, the null hypothesis is that the item fits well, therefore, a significant result would 

indicate poor item fit. However, these ‘goodness-of-fit’ indices are sensitive to sample size 

[11]. If a sample is sufficiently large, even negligible differences will produce a result 

indicating poor fit. Additional details on approaches to assess model and item fit may be 

found in Hambleton et al. [11], van der Linden and Hambleton [13], Embretson and Reise 

[21], and Orlando and Thissen [36].

2.2.6 Key IRT Assumptions—Several key assumptions underlie the IRT framework, 

including (i) unidimensionality of the measured trait, (ii) local independence, (iii) 

monotonicity, and (iv) item invariance. Unidimensionality assumes that a set of items on a 

scale measure just one thing in common. Evaluation of unidimensionality may be done in 

different ways. Some researchers suggest using factor analysis, a widely used data reduction 

method that draws upon correlation among items to derive a smaller set of factors or 

domains. Under IRT, the factor analysis should ideally result in a 1-factor solution [20, 27, 

28]. If multiple factors emerge, evidence of a ‘dominant’ factor (i.e. demonstrating that the 

first factor accounts for at least 20 % of the variance) is needed [11, 21, 27, 37]. Others 

recommend conducting tests of model fit to determine unidimensionality [29, 30, 38]. If 

misfit is detected in any item, it may indicate that the item is not closely related to the 

overall latent trait or that there is lack of clarity in the item, causing respondents to interpret 

it differently.

Local independence means that each and every item on a PRO measure is statistically 

independent of responses to all other items on the measure, conditional upon the latent trait. 

In other words, items within a measure should not be related except for the fact that they 

measure the same underlying trait [11]. Therefore, controlling for the trait level, any two 

items should be uncorrelated. Violations can occur when a set of items have a similar stem 

(e.g. a series of questions referring to the same graph on a mathematical ability test), rely on 

similar content, or are presented sequentially [39]. One way to test this assumption is to 

examine the discrimination parameter, a. If items display excess covariation, or dependence, 

they may have very high slopes (e.g. >4) relative to other items in the measure [11, 39]. 

Residual correlation matrices may also be examined to identify item clusters with excessive 
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co-variation that may indicate violation of this assumption [20]. Several software programs 

also offer test statistics to identify violations to the local independence assumption.

Monotonicity, as described earlier, refers to the phenomenon in which the probability of 

endorsing an item will continuously increase as an individual’s trait level increases. For 

example, an individual with a trait score of 1.9 will have a higher probability of endorsing 

an item than an individual with a trait score of 1.7, and in turn that individual with a trait 

score of 1.7 will have a higher probability of endorsing the same item than an individual 

with a trait score of 1.5.

Item invariance is another underlying assumption of IRT. It can be described as the 

phenomenon in which estimated item parameters are constant across different populations. 

This allows for unbiased estimates of item parameters to be obtained from unrepresentative 

samples (e.g. low-trait groups vs. high-trait groups), so long as the data fit the model [9]. 

While the assumption of item invariance should theoretically hold in all cases, in real life, 

the data do not always support this. This may be due to poorly written items or items that are 

interpreted differently by different samples. When item parameters behave differently in 

subgroups after controlling for ability, an item is considered to have differential item 

functioning (DIF) [11]. DIF can occur in item location or discrimination. Items with DIF 

will reveal distinct ICCs or sets of CRCs for different subgroups. For items without DIF, 

only one ICC or one set of CRCs would be observed for both subgroups. To test for DIF’, it 

is important to first identify anchor items, which serve to ‘bridge’ or equate the underlying 

scale in the two groups. Using the anchor items, the remaining items on a measure can be 

tested for DIF. It is critical that these anchor items, show no DIF in the a and b parameters 

between two groups, as the ability estimates can be biased if the anchor items are affected by 

DIF [14, 40]. Anchor items can be identified using an iterative item purification process 

available from the IRTLRDIF® software program.

2.2.7 Sample Size Requirements—There is currently little consensus around the 

sample size requirements for IRT parameter estimations, but general guidelines have been 

published [39]. First, larger sample sizes are needed for more complex models. For simple 

Rasch models, sample sizes as small as 100 have been shown to be adequate [41], but there 

is debate about sample size requirements for more complex models, with estimates ranging 

from 200 to 500 [42–44]. Second, sample size requirements may vary with regard to the 

underlying purpose, since different levels of precision may be acceptable for different 

applications. For example, if item parameters will be used for high-stakes applications like 

large-scale accountability or pay-for-performance programs, large sample sizes are needed 

to ensure accurate estimates with low standard errors. However, smaller sample sizes may 

be adequate in preliminary evaluations of questionnaire properties [39]. Lastly, sample 

distribution can impact sample size requirements. A smaller sample distributed evenly 

across the trait levels of interest can produce more robust parameter estimates than a larger 

sample with narrower trait coverage, as regions of the trait with few individuals have limited 

information to generate estimates and will produce higher standard errors [20].
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3 Applications of IRT to PRO Measures

To demonstrate how IRT can be used for PRO measures, existing data on 636 Korean and 

Vietnamese American adults who responded to the HBP-HL and the PHQ-9 were used. 

From these data, we illustrate two major applications of IRT: (i) how to use parameter 

estimates, ICCs, and information function curves for scale development or refinement, and 

(ii) how item invariance can be examined across different samples by testing for DIF. We 

also describe major initiatives that have applied IRT to PROs.

Briefly, the HBP-HLS is a 43-item measure that assesses health literacy (HL) in the context 

of high blood pressure, targeting those with limited English proficiency [45]. Each item is 

scored as correct or incorrect. Total scores can range from 0 to 43, with higher scores 

associated with higher HL. Initial psychometric evaluation using classical testing methods 

demonstrated high reliability (α = 0.98). The PHQ-9 is a 9-item depression scale [46]. Each 

item on the questionnaire asks “Over the last two weeks, how often have you been bothered 

with the following problems,” and is scored ‘0’ (not at all), ‘1’ (several days), ‘2’ (at least 

half of the days), or ‘3’ (nearly every day). The reported reliability of the PHQ-9 was also 

strong (Cronbach’s α = 0.89–0.86) [46, 47]. Total PHQ scores can range from 0 to 27, with 

scores >5 corresponding to mild depression. These measures illustrate two response formats, 

binary (HBP-HLS) and ordered Likert (PHQ-9), typically used in PRO measures. The 2PL 

model was used to calibrate the item parameter estimates for the HBP-HLS given its 

dichotomous response format. The graded response model was used to calibrate item 

parameter estimates for the PHQ-9 given its ordered polytomous response format.

Model fit and model assumption testing were conducted for both measures. However, for 

brevity, we report results only for the PHQ-9. The fit of the PHQ-9 to the graded response 

model versus the generalized partial credit model was tested based on item level fit results. 

The graded response model demonstrated better fit. Using the polytomous extension of the S

−χ2 statistic [36], none of the items were identified as misfitting at p < 0.05 for the graded 

response model after controlling for type 1 error rates with the Benjamini–Hochberg 

adjustment [48], while one of the nine items demonstrated misfit with the generalized partial 

credit model. To test the assumption of unidimensionality, the eigenvalues from a principal 

components exploratory factor analysis on the PHQ-9 supported a 1-factor solution. To 

assess potential violations to the local independence assumption, the discrimination 

parameter, a, was evaluated to see if items displayed high slopes (e.g. >4.0) relative to other 

items on the measure. Based on a calibration of the PHQ-9 with the graded response model, 

none of the discrimination parameters exceeded 4.0 (Table 4). In addition, the standardized 

local dependence chi-square (LD χ2) statistic provided by IRT-PRO® was evaluated to 

further assess for local independence [49]. LD χ2 values that exceeded 10.0 are highly 

suggestive of excess dependence between items. Based on the analysis, no item pairs had 

LD χ2 that exceeded 10.0, which further supports the assumption of local independence 

among items on the PHQ-9. Therefore, it was concluded that the calibration of the PHQ-9 

using a graded response model had good fit, was sufficiently unidimensional, and robust to 

possible violations to the local independence assumption.
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3.1 How to Use Parameter Estimates, ICCs/Categorical Response Curves (CRCs), and 

Information Function Curves for Scale Development or Refinement

During scale development and refinement, item selection is generally guided by the 

underlying goal. If the goal is to create a scale that can be used to make meaningful 

interpretations in group differences or change over time, items should be selected such that 

there is an even distribution of items across a range of locations on the Θ scale. Having even 

item density ensures that changes in scores can be interpreted fairly, particularly if summed 

scores are used over IRT scores, as score gains among some individuals may be inflated if 

there are high concentrations of items in certain regions of the underlying trait [50]. For 

example, Table 3 displays the parameter estimates of select items on the HBP-HLS, sorted 

by their b values. The location estimates of the items shown in the table range from −0.66 to 

1.04, indicating modest variation in item location, with the ‘easiest’ item listed first (“Is this 

Normal BP?”) and ‘hardest’ item listed last (“Time for 2nd Tablet”). We also observe a 

cluster of four items in a narrow region of the HL trait (b = 0.22–0.28). Given our 

measurement goal, we would want to retain the best performing item within this region (i.e. 

item with the highest a value or best discrimination). Based on this criterion, item #27 

‘Monitoring’ is the best candidate because it is most discriminating. However, other factors, 

including the importance of item content, may be considered during item selection. For 

example, if ‘monitoring’ blood pressure is conceptually covered by other items within the 

HBP-HLS, the developers may choose to retain item #24 ‘Circulation’ instead, which may 

not be covered by any other item. Examining the ICC and information function curves can 

further aid item selection. Based on Fig. 3a, the ICCs for ‘Circulation,’ ‘Potassium,’ and 

‘Monitoring’ overlap, indicating redundancy. Furthermore, ‘Obesity’ displays the lowest 

level of discrimination (i.e. flattest slope). The information function curves of these four 

items, Fig. 3b, also indicates that ‘Monitoring’ provides the most information and ‘Obesity’ 

provides the least. It is worth noting that if ‘Circulation’ was retained rather than 

‘Monitoring,’ as proposed above, the loss of information (i.e. area under the curve where no 

other item covers) would be minimal, Fig. 3c. Applying this strategy across all 43 items on 

the HBP-HLS (Fig. 4a), a ten-item shortened scale similar to Fig. 4b can be obtained that 

maximizes content coverage, minimizes loss of precision, and ensures that changes or 

differences in scores can be interpreted fairly.

If two studies intend to target groups at different ranges of the trait, item selection should be 

made to ensure that measurement precision is maximized in the specific trait ranges for each 

group. Let us hypothetically propose to shorten the PHQ-9 for a mild depression group (Θ = 

−1 to 1) versus a moderate to severe depression group (Θ = 1–3) for two different studies. 

Table 4 displays the parameter estimates and the associated standard errors of all the items 

on the PHQ-9. Since the graded response model was used for the PHQ-9, (i) a 

discrimination and (ii) three location parameters (four response categories−1) were 

estimated for each item. Based on Table 4, the slope estimates range from 1.38 to 2.55, 

indicating modest variation in item discrimination. As expected, higher categories have 

higher item locations, indicating endorsement of more severe depression, b1 = (0.73–1.65), 

b2 = (1.53–2.95), and b3 = (2.11–3.28).
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To help identify which items to select to optimize measurement precision between the two 

depression groups, let us compare items #3 (“Trouble falling or staying asleep”) and item #9 

(“Thoughts that you would be better off dead”). Based on Table 4, the first category is 

endorsed at lower trait levels for item #3 than item #9 (b1 = 0.26 vs. 1.63, respectively), and 

this trend is consistent across all the response categories (b2 = 1.53 vs. 2.79; b3 = 2.11 vs. 

3.16). This suggests that item #9 targets higher trait levels of depression than item #3. The 

information function curves on Fig. 5 demonstrate that item #9 provides more information at 

higher trait levels of depression, and item #3 provides more information at lower trait levels 

of depression. Therefore, item #9 should be selected when the goal is to optimize a scale to 

measure moderate to severe depression (Θ = 1–3), while item #3 should be selected when 

the goal is to optimize a scale to measure mild depression (Θ = −1 to 1).

When the information function curves of all the items across a scale are summed, a total test 

information function curve can be computed and plotted. The test information function 

curves of two different versions of a shortened PHQ-9 scale are displayed in Fig. 6. The 

solid curve represents a shortened scale that includes items #1–4, while the dotted curve 

represents a shortened scale that includes items #5–9. Based on the solid curve, high levels 

of information can be gained along the trait region associated with Θ = 1.0–3.0, while less 

information can be gained in regions below Θ = 0.0. This suggests that a shortened scale 

with items #5–9 is good at assessing individuals with moderate to high levels of depression, 

and is not as good in assessing those with lower levels of depression. On the other hand, a 

shortened scale that includes items #1–4 provides more information in lower trait regions, 

and is more appropriate when the goal is to optimally measure trait levels at the Θ = −1 to 1 

range versus the Θ = 0–3 range. Computing and comparing test information function curves 

of scales with different items can be helpful when developing and refining PRO measures to 

ensure that precision is optimized in the desired trait regions.

3.2 How to Use Differential Item Functions to Test for Item Invariance

Measure invariance (i.e. item invariance), where all items have the same measurement 

properties across different samples, is an important property of good scales. When item 

parameters behave differently in subgroups after controlling for ability, an item is 

considered to have DIF. As noted earlier, DIF can occur due to differential interpretation, 

group norms in response style (e.g., avoidance of extreme categories), or other factors (how 

items are administered). Therefore, assessing for DIF can be particularly useful in detecting 

items that display cultural bias, and can be targeted for revision or removal. The 43-item 

HBP-HLS will be used to demonstrate how to test for DIF. As noted earlier, it is important 

to first identify anchor items, which serve to ‘bridge’ or equate the underlying scale in the 

two groups. Using IRTLRDIFF®, four non-DIF items were identified. The four non-DIF 

‘bridge’ items were then used to test all other items on the scale for DIF. The results of that 

test revealed that eight of the 43 HBP-HLS items demonstrated significant DIF by ethnic 

group (Korean American vs. Vietnamese American). As an example, Fig. 7a displays item 

#24 (‘Circulation’) which does not demonstrate DIF, and Fig. 7b displays item #35 (“Is this 

Normal BP?”), which demonstrated DIF in location and discrimination. Specifically, Fig. 7b 

shows that item #35 is less discriminating (flatter slope) for Vietnamese Americans than for 

Korean Americans. In addition, the location of item #35 is lower for Vietnamese than 
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Korean Americans. This suggests that the item was harder for Korean Americans, since 

many Vietnamese American respondents with lower HL can get this item correct. A possible 

reason for observing DIF in this item was how the item was administered. Within the 

Vietnamese American sample, the HBP-HLS was administered after taking respondents’ 

blood pressure; and many of the respondents inquired about normal blood pressure values 

upon receiving their readings. On the other hand, this scale was administered before taking 

blood pressure measurements in the Korean American sample. Therefore, correctly 

responding to #35 (“Is this normal PB?”) may have been easier for individuals in the 

Vietnamese American subgroup. While it is ideal to only retain non-DIF items, DIF can be 

accounted for and modeled if items with DIF are absolutely necessary.

3.3 CAT

More recently, there has been significant interest in utilizing IRT to support CAT for PRO 

domains. IRT makes CAT possible by calibrating all items for a particular domain (e.g., 

physical function) along a common scale. Once calibrated, an algorithm may be applied to 

this set of items, also known as an item bank, so that items can be adaptively administered to 

target the estimated trait level of the respondent. For example, if an individual endorses an 

item on a CAT that indicates a moderate level of physical functioning, the next administered 

item would assess a higher level of physical functioning than the prior item. If the individual 

did not endorse the original item, an item indicating a lower level of functioning would be 

administered. This process is repeated until a specified number of items or specific standard 

error for the individual’s score is attained. This approach is appealing, as it allows for 

greater measurement precision while reducing respondent burden, as less informative or less 

relevant questions are not asked [51]. Moreover, since items are aligned on a common scale, 

IRT scores across different individuals can be compared even though individuals may be 

administered a different subset of items.

Efforts to implement PRO measures on CAT platforms have already begun. For example, 

the National Institutes of Health (NIH) has engaged in ambitious multi-institute roadmap 

initiatives to re-engineer the clinical infrastructure [52, 53]. The Patient Reported Outcome 

Measurement Information System (PROMIS) and Neurology Quality of Life (Neuro-QoL) 

initiatives aim to build and validate item banks and CATs that measure important symptoms 

and health concepts such as physical functioning, pain, depression, and quality of life. Many 

of the item banks and CATs are available in multiple languages, including English, Spanish, 

Portuguese, and Chinese. The results from the first set of validated item banks have been 

promising, supporting the ability to field fewer questions to participants without loss of scale 

precision, and the possibility for data comparison across studies [54, 55].

3.4 IRT Software Programs

Existing software programs are available to conduct IRT analysis. Some of the most 

commonly used programs include PARSCALE®, Multilog®, IRTPRO®, BILOG®, M-

PLUS®, flexMIRT®, RUMM2030®, and Winsteps® [56–63]. STATA® may be used to run 

some IRT models [64]. There are also two free statistical packages for R® that conduct IRT 

analyses, they include ‘ltm’ for IRT models and ‘eRm’ for Rasch models [65, 66]. A 

thorough discussion of these programs is beyond the scope of this paper, but more 
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information may be offered by the software vendors and a few publications with more 

details on these programs exist [67, 68].

4 Conclusions

IRT offers great potential for addressing important measurement problems found in health-

related research. We have highlighted important applications of IRT, including how it may 

be used in item selection during the development and refinement of PRO measures, as well 

as how it may be used to identify items that do not perform comparably in different groups. 

Finally, IRT provides the theoretical and computational underpinning that drives CAT 

applications, such as for PROMIS and Neuro-QoL, which can increase the precision and 

standardization of PRO measures while limiting respondent burden. With broader 

understanding of IRT and its applications, we expect that the tools and methods based on 

this framework can significantly improve the measurement of PROs.
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Key Points for Decision Makers

• Using item response theory as compared with traditional classical test theory 

provides much richer and more accurate descriptions of item- and scale-level 

performance.

• Item response theory is a useful tool because it can help identify (i) the best 

items to use based on the purpose of a measure, (ii) where along the underlying 

trait continuum an item, as well as the overall measure, performs best, and (iii) 

measure equivalence across different subgroups.

• Item response theory provides the theoretical and computational underpinning 

that drives computerized adaptive testing (CAT) applications (e.g. Graduate 

Record Examinations [GRE]); and has recently been used to develop 

computerized adaptive tests for patient-reported outcome domains. This 

technology allows for the ability to field fewer questions to participants without 

loss of measurement precision, and the possibility for data comparison across 

studies.

• Broader understanding of item response theory and its applications can lead to 

increased utilization of this measurement framework, and ultimately improve 

the quality of patient-reported outcome measures.
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Fig. 1. 

Item characteristic curve
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Fig. 2. 

a Category response curve for PHQ-9, Item #2. b Category response curve for PHQ-9, Item 

#3. PHQ-9 Patient Health Questionnaire-9 Depression Scale
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Fig. 3. 

a Item characteristic curves of four items on the HBP-HLS. b Information function curves of 

four items on the HBP-HLS. c Information loss from retaining ‘Circulation’ vs. 

‘Monitoring’. HBP-HLS High Blood Pressure related Health Literacy Scale
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Fig. 4. 

a ICCs of all 43 items on the HBP-HLS. b ICCs of a shortened ten-item HBP-HLS. HBP-

HLS High Blood Pressure related Health Literacy Scale, ICC item characteristic curve
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Fig. 5. 

Information function curves, PHQ-9 item 3 vs. item 9. PHQ-9 Patient Health 

Questionnaire-9 Depression Scale
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Fig. 6. 

Test information function curves, PHQ-9 items (1–4) vs. (5–9). PHQ-9 Patient Health 

Questionnaire-9 Depression Scale
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Fig. 7. 

a HBP-HLS item #24, No DIF. b HBP-HLS item #35, DIF in the location and 

discrimination parameters. DIF differential item functioning, HBP-HLS High Blood 

Pressure related Health Literacy Scale
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Table 1

Glossary of item response theory-related terms

Term Description

Computerized adaptive testing (CAT) A form of computer-based testing that selects specific items for each individual based on their prior 
response to an item with the goal of maximizing precision (e.g. MCAT, GRE, NCLEX)

Ability invariance Property in IRT in which ability scores remain constant, despite the administration of different items; 
driving force behind CAT

Item invariance Property in IRT in which estimated item parameters are constant across different samples (i.e. measure 
equivalence)

Differential item functioning (DIF) Measurement bias that occurs when individuals from different groups respond differently to an item, 
resulting in estimated parameter(s) that vary even after controlling for the underlying trait level

Item characteristic curve (ICC) A probability curve that is monotonic, or continuously increasing, in nature that describes the 
relationship between an individual’s underlying trait and how they respond to a dichotomous item

Categorical response curves (CRC) A set of probability curves that describes the relationship between an individual’s underlying trait and 
how they respond to a polytomous item (i.e. plots out the most likely categorical response across trait 
levels)

Polytomous item An item with more than two response options (e.g. Likert-type)

Theta (θ) A variable used to express an individual’s underlying trait or ability level (e.g. health literacy 
knowledge, quality of life, depression)

Trait score A value that identifies an individual’s trait level along the Θ scale based on their response to a set of 
items

Item location parameter (b) Point on the trait scale, Θ, where the probability of endorsing an item is 50 %; also referred to as item 
difficulty

Item discrimination parameter (a) The slope of the ICC at b; describes how well an item can differentiate between individuals at different 
trait levels

Item guessing parameter (c) The probability of correctly endorsing an item due to guessing

Information function curve A plotted curve that characterizes the precision of an item across different levels of the latent trait

Test information function curve A plotted curve that sums the information functions of all the items on a scale, and describes the 
precision of the scale across different levels of the latent trait

Test calibration A process in which an IRT model is used to estimate item parameters and individuals’ trait score

Unidimensionality assumption A requisite that items within a scale measure a single latent trait

Local independence assumption A requisite that the response to an item is independent of responses to other items (i.e. items within a 
scale are not related) except for the fact that they measure the same underlying trait

Monotonicity Phenomenon where the probability of endorsing an item continuously increases as trait level increases

IRT item response theory

Patient. Author manuscript; available in PMC 2015 July 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nguyen et al. Page 25

Table 2

Common item response theory (IRT) models

IRT model Item response format Model characteristicsa

Rasch model Dichotomous Equal discrimination across all items; location parameter estimated for each item

Two parameter logistic (2PL) Dichotomous Discrimination and location parameters estimated for each item

Three parameter logistic (3PL) Dichotomous Discrimination, location, and guessing parameters estimated for each item

Graded response model Polytomous Used for ordered responses. Discrimination varies across items

Generalized partial credit model Polytomous Used for ordered responses. Discrimination varies across items. Can be used as an 
alternative to graded response model

Partial credit model Polytomous Equal discrimination across all items. Separate category location parameters 
estimated for each item

Rating scale model Polytomous Equal discrimination across all items. A single set of categorical location 
parameters estimated for all items

Bock’s nominal model Polytomous Used for unordered responses. Discrimination allowed to vary across items

a
Refer to Hambleton et al. [11, 15] and Reeve [11, 15] for additional details
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