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The purpose of kinetic equations is the description of dilute particle gases
at an intermediate scale between the microscopic scale and the hydrodynamical
scale. By dilute gases, one has to understand a system with a large number
of particles, for which a description of the position and of the velocity of each
particle is irrelevant, but for which the decription cannot be reduced to the
computation of an average velocity at any time t∈ IR and any position x∈ IRd:
one wants to take into account more than one possible velocity at each point,
and the description has therefore to be done at the level of the phase space – at
a statistical level – by a distribution function f(t,x,v).

This course is intended to make an introductory review of the literature on
kinetic equations. Only the most important ideas of the proofs will be given.
The two main examples we shall use are the Vlasov-Poisson system and the
Boltzmann equation in the whole space.

1 Introduction

1.1 The distribution function

The main object of kinetic theory is the distribution function f(t,x,v) which is
a nonnegative function depending on the time: t∈ IR, the position: x∈ IRd, the
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velocity: v∈ IRd or the impulsion ξ). A basic requirement is that f(t,.,.) belongs
to L1

loc (IRd× IRd) and from a physical point of view f(t,x,v)dxdv represents
“the probability of finding particles in an element of volume dxdv, at time t, at
the point (x,v) in the (one-particle) phase space”.

f describes the statistical evolution of the system of particles: f has to
be constant along the characteristics (X(t),V (t)) in the phase space given by
Newton’s law:

Ẋ=
dX

dt
=V , V̇ =

dV

dt
=F (t,X(t))=−∂xU(t,X)

if F derives from a potntial U .

0=
d

dt
f
(
t,X(t),V (t)

)
=∂tf+V (t) ·∂xf+F

(
t,X(t)

)
·∂vf

and satisfies therefore the transport equation:

∂tf+v.∂xf+F (t,x) ·∂vf =0 (1.1)

with the notations: ∂tf = ∂f
∂ǫ , ∂xf =∇xf =

(
∂f
∂x1

, ∂f
∂x1

, ... ∂f
∂xd

)
, ∂vf =∇vf =

(
∂f
∂v1

, ∂f
∂v2

, ... ∂f
∂vd

)
.

1.2 Mean field approximation and collisions

A mean field approximation corresponds to the case where the force itself de-
pends on some average of the distribution function, for instance

F (t,x)= (∂xV0 ∗x ρ)(t,x) , ρ(t,x)=

∫

IRd

f(t,x,v)dv .

The Vlasov-Poisson system is given by V0(z)= 1
4π|z| (in dimension d=3), or

divxF =ρ in general.
Another limit corresponds to short range two-body potentials, for which the

effects of the interaction can be considered as a collision: it occurs at a fixed time
t for a given position x and acts only on the velocities (in the thermodynamical
limit). For dilute gases,no more than two particles are involved in a collision.
The fundamental example is the Boltzmann equation:

∂tf+v.∂xf = Q(f,f) (t,x,v)∈ IR× IRd× IRd (BE)

where the collision kernel takes the form

Q(f,f) =

∫ ∫

IRd×Sd−1

B(v−v∗,ω)(f ′f ′
∗−ff∗)dv∗dω , (1.2)

f = f(t,x,v) , f∗ = f(t,x,v∗) , f
′ = f(t,x,v′∗) , f

′
∗ = f(t,x,v′∗) ,

2



v and v∗ are the velocities of the incoming particles (before collision), v′ and
v′∗ are the velocities of the outgoing particles (after collision) and are given in
terms of v and v∗ by

v′ = v−
(
(v−v∗).ω

)
ω ,

v′∗ = v∗+
(
(v−v∗).ω

)
ω ,

for some ω∈Sd−1 which parametrizes the set of admissible outgoing velocities
under the constraints v+v∗ = v′+v′∗ and |v|2 + |v∗|2 = |v′|2 + |v′∗|2 and B(v−
v∗,ω) is the differential cross-section, which measures the probability of the
collision process (v,v∗) 7→ (v′,v′∗)=Tω(v,v∗). Note that the collision operator is
local in (t,x) and has two parts:

• “the incoming part”: Q−(f,f)=
∫ ∫

B(v−v∗,ω)ff∗dv∗dω,

• “the outgoing part”: Q+(f,f)=
∫ ∫

B(v−v∗,ω)f ′f ′
∗ dv∗dω,

and we may write: Q(f,f)=Q+(f,f)−Q−(f,f).

1.3 Conservation of mass

Consider a solution f(t,x,v) of the linear transport equation (1.1) or of the
Boltzmann equation (BE) and formally perform an integration w.r.t. v: if the
mass flux is defined by

j(t,x) =

∫

IRd

f(t,x,v)v dv ,

then one obtains:
∂tρ(t,x)+divx(j(t,x)) = 0 (1.3)

since the force term is in divergence in v form or since
∫
Q(f,f)dv=0 (of course,

one has to assume a sufficient decay of f to justify this computation). This
expresses the local conservation of mass (or of the number of the particles).

If the problem is stated in the whole space (x∈Ω=IRd), performing one
more integration w.r.t. x and provided f has a sufficient decay in x too, then:

d

dt

∫ ∫

IRd×IRd

f(t,x,v)dxdv=
d

dt

∫

IRd

ρ(t,x)dx = 0

This relation is the global conservation of the mass.

1.4 A priori energy estimates

Consider a solution of

∂tf + v.∂xf − ∂xU.∂vf = 0 . (1.4)
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Multiplying equation (1.4) by |v|2
2 and integrating w.r.t. x and v, we get

d

dt

∫ ∫ |v|2
2
f(t,x,v)dxdv−

∫ ∫
∂xU.∂vf

|v|2
2
dxdv

because v.∂xf
|v|2
2 =divx

(
v
|v|2
2 f
)

is in divergence form in x. Performing one

integration by parts w.r.t. v and an other w.r.t. v, we get

d

dt

∫ ∫ |v|2
2
f(t,x,v)dxdv−

∫
U(t,x)divx

[∫
f(t,x,v)vdv

]
=0 (1.5)

which combined with (1.3) gives the conservation of the energy

d

dt

∫ ∫
f(t,x,v)

( |v|2
2

+U(t,x)
)
dxdv=0 . (1.6)

Let us consider now the following simple nonlinear Vlasov equation, where the
potential U (which may depend on t) is given in the mean field approach by the
convolution of ρ with some smooth compactly supported kernel K(x):

U(t,x) = K ∗x ρ(t,x)=

∫
K(x−y)ρ(t,y)dy .

The Vlasov equation is now nonlinear (quadratic) and nonlocal:

∂tf+v.∂xf−∂x(K ∗ρ).∂vf = 0 (1.7)

and this can also be seen at the level of the energy: exactly as before, combining
(1.3) and (1.5), we obtain

d

∂t

∫ ∫ |v|2
2
f(t,x,v)dxdv = −

∫
U(t,x)∂tρ(t,x)dx

= −
∫ ∫

dxdyK(x−y)ρ(t,y)∂tρ(t,x)

= −1

2

d

dt

∫ ∫
dxdyK(x−y)ρ(t,y)ρ(t,x)

which provides the conservation of the energy:

d

dt

[∫ ∫
f(t,x,v)

|v|2
2
dxdv+

1

2

∫
ρ(t,x)U(t,x)

]
= 0 .

Note here the factor 1
2 in front of the potential energy term.
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1.5 Velocity averaging lemmas

Velocity averaging lemmas are a basic tool to obtain some compactness in the
framework of kinetic equations with distribution functions in C([0,T ],L1(IRd×
IRd)). We follow the presentation given in [21] and [7], but the basic reference
is [23] and also more recent papers by Lions and al. These results together with
the notion of renormalization are two crucial steps in the construction of the
renormalized solutions for the Boltzmann equation by DiPerna and Lions.

Lemma 1.1 Let f ∈L2(IR× IRd× IRd) with f having – uniformly in (t,x) – a
compact support in v and assume that

Tf = ∂tf+v.∂xf

belongs to L2(IR× IRd× IRd). Then ρ=
∫
f(., .,v)dv is bounded in H1/2(IRd×

IRd).

Proof: Consider f̂(τ,z,v) the Fourier transform of f w.r.t. t and x and

consider A=
√
τ2 +z2, (τ0,z0)= 1

A(τ,z)∈Sd.
∫
f̂(τ,z,v)dv= I1 +I2 where I1 =∫

|τ0+vz0|< 1
A
f̂(τ,z,v)dv and I2 =

∫
|τ0+vz0|≥ 1

A
f̂(τ,z,v)dv. Because of the assump-

tion on the support of f , there exists C>0 such that

I2
1 ≤

∫
|f̂ |2(τ,z,v)dv.meas

{
v : |z0 +z0v|<

1

A

}
≤ C

A
,

I2
2 ≤

1

A2

∫
|τ0 +z0v|−2 dv ·

∫
|τ+zv|2 |f̂ |2(τ,z,v)dv ,

where the integral 1
A2

∫
|τ0 +z0v|−2 dv has to be taken over the set

{
u∈ supp(f) : |τ0 +z0.v|≥

1

A

}

and is of order A. Putting I1 and I2 together, we get
∫

IR×IRd

√
1+τ2 + |z|2 · |

∫

IRd

f̂(τ,z,v)dv|2 dzdτ <+∞.

2

We can also state the result in the form which is appropriate for solutions to
kinetic equations in L1 (see [21] or [7] for a proof).

Corollary 1.2 Assume that (gn)n∈IN converges weakly in L1([0,T ]× IRd× IRd)
and that (Tgn)n∈IN is weakly relatively compact in L1([0,T ]× IRd× IRd). Then
if ψn is a bounded sequence in L∞([0,T ]× IRd× IRd) that converges a.e. to some
function ψ,

lim
n→+∞

∥∥∥
∫

IRd

(gnψn)(t,x,v)dv−
∫

IRd

(gψ)(t,x,v)dv
∥∥∥

L1([0,T ]×IRd)
=0 . (1.8)
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1.6 Interpolation lemmas

In the two following lemmas, the relations between the norms and the exponents
are easily recovered using scalings in x and v. The first lemma can be found
for instance in [31, 32]. The second one is a generalization of the first lemma
to higher moments. These lemmas are related to the estimates used by B.
Perthame [34] or R. Illner & G. Rein [27] for the study of the dispersion of the
Vlasov-Poisson system in dimension three. See [15] for a complete proof.

Lemma 1.3 Let f be a nonnegative function belonging to Lp(IRd× IRd) for
some p∈]1,+∞] such that x 7→

∫
IRd×IRd f(x,v) |v|k dv belongs to Lr(IRd) for some

(r,k)∈ [1,+∞[×]0,+∞[. Then the function x 7→ρ(x)=
∫
IRd f(x,v)dv belongs to

Lq(IRd) with q= r · d(p−1)+kp
d(p−1)+kr and satisfies

‖ρ‖Lq(IRd)≤C(d,p,k) ·‖f‖α
Lp(IRd×IRd) ·‖

∫

IRd

f(x,v) |v|k dv‖1−α
Lr(IRd)

,

with α= kp
d(p−1)+kp , r∈ (1,+∞), q∈ (1+ k(p−1)

d(p−1)+k ,p+ d(p−1)
k ) and

C(n,p,k)=

(
|Sd−1|

) k(p−1)
d(p−1)+kp

·
( ( kp

p−1

) d(p−1)

d(p−1)+kp

d
(p−1)(d(p−2)+kp)

p(d(p−1)+kp)

+
d

k
d(p−1)+kp

(
kp

p−1

) kp
d(p−1)+kp

)
.

Proof: Assume to simplify that p<+∞ and consider the integral defining ρ:

ρ(x)=

∫

|v|<R

f(x,v)dv+

∫

|v|≥R

f(x,v)dv ,

∫

|v|<R

f(x,v)dv≤
(

1

d
|Sd−1|Rd

)1−1/p

·
(∫

IRd

|f(x,v)|p dv
)1/p

,

∫

|v|≥R

f(x,v)dv≤ 1

Rk

∫

IRd

f(x,v) |v|k dv .

If we optimize on R, then we get

ρ(x)≤C(d,p,k) ·
(∫

IRd

|f(x,v)|p dv
) k

d(p−1)+kp

·
(∫

IRd

f(x,v) |v|k dv
) d(p−1)

d(p−1)+kp

.

The Lq-norm of ρ is now bounded and using Hölder’s inequality, we obtain the
result for a convenient choice of the exponents. 2

Lemma 1.4 Let f be a nonnegative function belonging to Lp(IRd× IRd) for
some p∈]1,+∞] such that x 7→

∫
IRd×IRd f(x,v) |v|k dv belongs to Lr(IRd) for some

(r,k)∈ [1,+∞[×]0,+∞[. Let m∈ [0,k] and assume that m< p−1
p−r ·(d(r−1)+kr)
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if r<p. Then the function x 7→
∫
IRd f(x,v)|v|m dv belongs to Lu(IRd) with u=

r · d(p−1)+kp
d(p−1)+m(p−r)+kr and satisfies for β= (k−m)p

d(p−1)+kp

‖
∫

IRd

f(x,v) |v|m dv‖Lu(IRd)≤K ·‖f‖β
Lp(IRd×IRd)

·‖
∫

IRd

f(x,v) |v|k dv‖1−β
Lr(IRd)

,

K=

(
|Sd−1|

) (k−m)(p−1)

d(p−1)+kp

·
( ( kp

p−1

) d(p−1)
d(p−1)+kp

d
(p−1)(d(p−2)+kp)

p(d(p−1)+kp)

+
d

k
d(p−1)+kp

(
kp

p−1

) kp
d(p−1)+kp

)(k−m)/k

.

2 The Vlasov-Poisson system

In this section we consider the Vlasov-Poisson system

∂tf+v.∂xf−∂xU.∂vf = 0 t>0, x,v∈ IRd (2.1)

∆U = γρ = γ

∫

IRd

f(t,x,v)dv (2.2)

in dimension d (with d=3 unless it is specified; for d=2, see [15]) and with
γ=−1 (plasma physics or eletrostatic case) or γ=+1 (gravitational case). The
global existence of weak solutions goes back to Arsen’ev [3] and is now known
under weak assumptions like:

f ∈L1∩L∞(IR6),

∫ ∫

IR3×IR3

f(t,x,v)|v|2 dxdη<+∞

Here we will rather focuse on strong solutions – solutions for which the charac-
teristics are defined in a classical sense – or even classical C1 solutions for which
each of the terms makes sense as a continuous function (and ∂xU as a Lispchitz
function). For stationary solutions, see [4], [15], [16], [19].

2.1 Classical solutions and characteristics

We present here in dimension d=3 a result which has been established first by
K. Pfaffelmoser [35] and then improved by several authors, in the version given
by R. Glassey in [22] (initially given by Schaeffer in [37]). The main ingredient of
this approach is to start with a solution which is initially compactly supported
and to control the growth of the size of the support. Let

Q(t)=1+sup
{
|v| :∃(t,x)∈ (0,t)× IR3s.t. f(t,x,v) 6=0

}
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Theorem 2.1 Let f0 be a non negative C1 compactly supported function. Then
the Cauchy problem for (2.1) has a unique C1 solution and

Q(t) ≤ Cp(1+ t)p with p>
33

17
.

Note that the rate of growth has been improved but its optimal value is still
unknown.
Proof: The proof relies on the iteration scheme




∂xfn+1 +v.∂xfn+1−∂xUn.∂vfn+1 =0
+∆Un =γ

∫
IR3 fn dv

fn+1(t=0, ., .)= f0

which is solved at each step by the characteristics method. Passing to the limit
is easy after proving the right uniform bounds (energy estimates, bounds on
the field and its derivatives, bounds on the derivatives of f) which are easily
obtained as soon as one has a uniform estimate of the size of the support of f
(whatever it is).

To simplify the notation, we shall forget the index n and work directly with
a solution. The main step to estimate Q(t) is then to compute for any t>0,
∆∈]0,t[ the quantity:

∫ t

t−∆

∣∣∣E(s,X̄(s))
∣∣∣ds = c

∫ t

t−∆

ds

∫ ∫

IR3×IR3

f(s,y,w)

|X̄(s)−y|2 dydw

(2.3)

= c

∫ t

t−∆

ds

∫ ∫

IR3×IR3

f(s,y,v)

|X̄(s)−X(s,t,y,v)|2 dydv

using the fact that the map (x,v) 7→ (X(s,t,x,v), V (s,t,x,v)) given by

dX

ds
=V ,

dV

ds
=−∂xU(s,X) , (X,V )(t,t,x,v)= (x,v)

is measure preversing (here X̄(s)) denotes any fixed given characteristics): it is
indeed deriving from the flow of an hamiltonian system.

The nexlastt step is to split the integral in (2.3) into the integral over three
sets (usually called the “good”, the “bad” and the “ugly”) and to optimize on
the parameters defining these sets, thus obtaining

1

∆

∫ t

t−∆

|E(s,X̄(s))|ds ≤ CQ(t)16/33|logQ(t)|1/2 .

2
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Remark 2.2 The proof is valid in the gravitational case as well as in the plasma
physics case since both parts of the energy (kinetic and self consistent potential
parts) are uniformly bounded (for some fixed term interval [0,T ]) even in the
gravitational case, where they enter in the energy with opposite signs. The reason
is the following.

According to Hardy-Littlewood-Sobolev inequalities

∥∥∥|x|−λ ∗φ
∥∥∥

LP (IRN )
≤ C

∥∥∥φ
∥∥∥

Lq(IRN )
,

with 0 < 1
p = 1

q + λ
N −1, we can control ||∂xU ||L2 by

∥∥∥∂xU
∥∥∥

L2(IR3)
≤ C

∥∥∥ 1

|x|2 ∗ρ
∥∥∥

L2(IR3)
≤ C

∥∥∥ρ
∥∥∥

L6/5(IR3)
.

Then, using Hölder’s inequality, we get

‖ρ‖L6/5(IR3) ≤ ‖ρ‖7/12

L1(IR3)
·‖ρ‖5/12

L5/3(IR3)

and the L5/3-norm is controlled by the following interpolation identity (which is
a limit case of Lemma 1.3):

∥∥∥ρ
∥∥∥

L5/3(IR3)
≤ C.

∥∥∥f
∥∥∥

2/5

L∞([0,T ]×IR3×IR3)

(∫ ∫
f(t,x,v)|v|2 dxdv

)3/5

.

If K(t)=
∫∫

f(t,x,v) |v|
2

2 dxdv and P (t)= 1
2

∫
|∂xU(t,x)|2 dx are the kinetic

energy and the potential energy respectively, then the total energy is

Const = K(t)−γP (t) ≥ K−CK10/12

proving therefore that K and also P are uniformly bounded (in t) in terms of f0.

2.2 The Lions and Perthame approach for strong solutions

An alternating approach to find strong solutions in dimension d=3 when the
initial data is not compactly supported has been developped by Lions and
Perthame in [32]. It is mainly based on a priori estimates for the field ∂xU

and for moments of order m>3.

Theorem 2.3 Let f0≥0 be a function in L1∩L∞(IR3× IR3) and assume that

∫ ∫

IR3×IR3

f(t,x,v)|v|m0 dxdv < +∞
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for some m0>3. Then there exists a solution of (2.1)-(2.2) in C(IR+,Lp(IR3×
IR3))∩L∞(IR+× IR3× IR3) for any p∈ [1,+∞[ satisfying

sup
t∈(0,T )

∫ ∫

IR3×IR3

f(t,x,v)|v|m0 dxdv ≤ C(T ) for any T >0 ,

ρ(t,x)=

∫

IR3

f(t,x,v)dv∈C(IR+,Lq(IR3)) , 1≤ q< 3+m0

3
,

∂xU(t,x)∈C(IR+,Lq(IR3)) ,
3

2
< q < 3

3+m0

6−m0
.

Proof: The main estimate is the propagation of moments.

f(t,x,v) =

∫ t

0

divv(E)(t−s,x−vs)f(t−s,x−vs,v)ds+f0(x−vt,v)

=

∫ t

0

divv

[
Ef(t−s,x−vs,v)

]
ds

+

∫ t

0

sdivx

[
Ef(t−s,x−vs,v)

]
ds+f0(x−vt,v) .

If ρ0(t,x)=
∫
f0(x−vt,v)dv, then

ρ(t,x)=ρ0(t,x)+

∫ t

0

sdivx

[
Ef(t−s,x−vs,v)

]
ds

and according to Hardy-Littlewood-Sobolev inequalities with 1
p = 1

r − 1
3 , 3

2 <p<

+∞,

∥∥∥E(t,.)
∥∥∥

Lp(dx)
≤
∥∥∥ρ0(t,.)

∥∥∥
Lr

+C
∥∥∥
∫ t

0

s

∫

IR3

Ef(t−s,x−vs,v)dvdx
∥∥∥

Lp
.

For p=m+3, r= 3(m+3)
m+6 , m≥3,

∥∥∥ρ0(t,.)
∥∥∥

Lr
≤C

(∫ ∫

IR3×IR3

f0(x,v)|v|m dxdv
) 3

m+3

= const.

and
∥∥∥E(t)

∥∥∥
Lm+3(IR3)

≤ C
(
1+
∥∥∥
∫ t

0 s
∫
IR3Ef(t−s,x−vs,v)dvds

∥∥∥
Lm+3(IR3)

)
. But

d

dt

(∫ ∫
|v|kf(t,x,v)dxdv

)
≤C

∥∥∥E(t)
∥∥∥

Lk+3

(∫ ∫
|v|kf(t,x,v)dxdv

) k+2
k+3

which (roughly spoken) closes the system of Gronwall estimates. 2

10



2.3 Time-dependent rescalings and dispersion

In this section, we introduce as in [20] the time-dependent rescalings for kinetic
equations on the example of the Vlasov-Poisson system (2.1)-(2.2) (see also [17],
[18]) and show in dimension d=3 how this provides the dispersion estimates
found independently by Perthame and Illner & Rein (see [34] and [27]).

Consider the Vlasov-Poisson system and compute the transformation of vari-
ables given by A(t), R(t), G(t) as follow:

dt=A2(t)dτ, x=R(t)ξ .

Assuming that t 7→x(t) and τ 7→ ξ(τ) respectively satisfy dx
dt = v and dξ

dτ = η, the
new velocity variable η has to satisfy

v=
dx

dt
= Ṙ(t)ξ+R(t)

dξ

dτ

dτ

dt
= Ṙ(t)ξ+

R(t)

A2(t)
η .

Here ˙ always denotes derivative with respect to t. Let F be the rescaled
distribution function: f(t,x,v)=G(t)F (τ,ξ,η). The aim is to choose this trans-
formation in such a way that the rescaled Vlasov equation is still a transport
equation on the phase space and contains a given, external force and a friction
term. If the rescaled potential is given by

−∆W =

∫
F dη ,

the Vlasov equation transforms into

∂τF +η ·∂ξF +2A2(
Ȧ

A
−Ṙ
R

)η ·∂ηF − R̈A4

R
ξ ·∂ηF − RdG

A2d−4
∂ξW ·∂ηF +A2 Ġ

G
F =0.

We want F to be a conservation law on (ξ,η)-space (preservation of the L1-

norm), so we require Ȧ
A − Ṙ

R = 1
2d

Ġ
G which holds if and only if G=

(
A
R

)2d
(up to

a multiplicative constant) and the Vlasov equation becomes

∂τF +η ·∂ξF +divη

[(
1

d
A2 Ġ

G
η−R̈A

4

R
ξ−RdGA4−2d∂ξW

)
F

]
=0.

Next we require that the external force in the above Vlasov equation becomes
time independent and that there is no time-dependent factor in front of the
nonlinear term. We therefore require

R̈
A4

R
=−γc0 , RdGA4−2d =1,

where c0>0 is an arbitrary constant. Thus we get A=Rd/4, G=R
d−4
2 d and R

has to solve
R̈=−γc0R1−d .

11



Without any restriction, we may asume that c0 =1, R(0)=1 and Ṙ(0)=0:

F (τ =0,ξ,η)= f(t=0,ξ,η)= f0(ξ,η) .

By considering for F the derivative of the energy

E(τ)=
1

2

∫ ∫ (
|η|2 +W (τ,ξ)−γ|ξ|2

)
F (τ,ξ,η)dηdξ .

with respect to τ :

dE

dτ
=(d−4)R

d
2−1Ṙ · 1

2

∫ ∫
|η|2F (τ,ξ,η)dηdξ, ,

and writing L(t)=E(τ(t)) in terms of the original variables, we obtain the

Proposition 2.4 The function t 7→L(t) given by

L(t)=Rd−2(t)

∫ ∫

IRd×IRd

∣∣∣∣∣v−
Ṙ

R
x

∣∣∣∣∣

2

f dvdx+Rd−2(t)

∫

IRd

(
U−γ |x|2

Rd(t)

)
ρdx

is decreasing for d=2, 3, 4.

In dimension d=3, if γ=−1, R(t) behaves as t→∞ as t, which essentially
proves that

∫ ∫
f(t,x,v)|x−vt|2 dxdv=O(t). By an interpolation between this

moment and the L∞-norm of f , Perthame and Illner & Rein (see [34] and [27])
proved the following decay estimate.

Corollary 2.5 Consider a solution of the Vlasov-Poisson system in the elec-
trostatic case (γ=−1) corresponding to a nonnegative initial data f0∈L1∩
L∞(IR3× IR3) such that

∫ ∫
f0(x,v)[|x|2 + |x|2]dxdv is bounded. Then

‖ρ(t,.)‖L5/3(IR3) =O(t−3/5) .

Further estimates on ∂xU for instance can also be obtained. The method
introduced in [20] provides refined estimates and explain how to obtain Lya-
punov functionals using time-dependent rescalings in various related systems
of fluid dynamics or quantum mechanics, and what is the relation with the
pseudo-conformal law.

3 Introduction to the Boltzmann equation

For Sections 3.1 and 3.3, we essentially follow the presentation of B. Perhame in
[9]. For a detailed study of the hard spheres case we shall refer to [7] and for a
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more classical theory of perturbations, to [22]. The results on the homogeneous
case (and the limit of grazing collisions) are directly collected from the original
papers. The dispersion results for renormalized solutions are new results. For
the moment, there is no book covering all the mathematical aspects of the
Boltzmann equation, the most complete at this time beeing probably the book
by Cercignani, Illner and Pulvirenti [7] (hard sphere case only).

3.1 The Boltzmann equation

The non homogeneous Boltzmann equation (BE) in IRd describes a cloud of
particles expanding in the vacuum. It is an integro-differential equation where
the integral part is the Boltzmann collision operator is given by (1.2). We are
assuming that the particles have the same mass and are affected only by (binary)
elastic collisions, so that the conservation of the impulsion and of the kinetic
energy respectively give

v′+v′∗ = v+v∗ , (3.1)

|v′|2 + |v′∗|2 = |v|2 + |v∗|2 , (3.2)

where v and v∗ are the incoming velocities, v′ and v′∗ the outgoing velocities.
These relations can be solved into

v′ = v−
[
(v−v∗) ·ω

]
ω ,

v′∗ = v−∗+
[
(v−v∗) ·ω

]
ω .

for any ω∈Sd−1. We denote by Tω the operator acting on IRd× IRd such that

(v′,v′∗)=Tω(v,v∗)

The differential cross-section B is a measurement of the probability of a collision
corresponding to a given ω. Physical considerations (microreversibility, galilean
invariance) allow to consider B depending only on |v−v∗| and (v−v∗) ·ω, and
further formal considerations show that for power-like two body potentials

u0(r) = k r1−s ,

B takes the form
B(z,ω)= |z|.β(cosθ)

with cosθ= z
|z| ·ω and γ= s−5

s−1 . β has a singularity for θ= π
2 :

β(cosθ) ∼
(π

2
−θ
)− s+1

s−1

(see [5], [25], [38]). The limit case s=+∞ corresponds to the hard-spheres
model and it is customary to speak of hard potentials for s>5 (γ>0) and soft

13



potentials for 2≤ s≤5 (−3≤γ≤0), the limits s=2 and s=5 corresponding to
the Coulomb potential and to the “Maxwellian molecules” (no dependence in
|z|) respectively.

The operator Tω has the following properties, which are usually referred as
“detailed balance”:

i) Tω ◦Tω =Id: Microreversibility of the collisions,

ii) det (Tω)=1: dv′dv′∗ = dvdv∗,

iii) Tω(v∗,v) = (v′∗,v
′),

iv) The collision invariants, i.e. the functions ϕ such that

ϕ+ϕ∗ = ϕ′+ϕ′
∗

where ϕ∗, ϕ′ and ϕ′
∗ respectively stand for ϕ(v∗),ϕ(v′) and ϕ(v′∗), are

given by:

ϕ(v)=a+b.v+c|v|2 for some constants (a,b,c)∈ IR× IRd× IR .

provided ϕ is continuous at one point: see [22] for instance for a detailed
proof (we shall see another proof in Section 3.3).

Unless it is explicitely specified, we shall assume that d=3. The classical as-
sumptions on the collision kernel are:

• “ weak angular cut-off ” (Grad): B∈L1
loc(IR

3×S2)

• “ mild growth condition”

lim
|z|→+∞

1

1+ |z|2
∫

|z−v|<R

(∫

Sd

B(v,ω)dω
)
dv=0 ∀R>0

• positivity of B almost everywhere in (z,ω)∈ IRd×Sd−1.

In the case of a power-law interaction, the first two assumptions respectively
mean:

(
γ>−3 (or s>2) and b∈L1(S2)

)
and

(
γ<2 or s>1)

)

3.2 Conservation laws and H-theorem

For any functions f , ϕ such that all the involved quantities are well defined,
∫

IRd

Q(f,f)ϕ(v)dv=−1

4

∫ ∫ ∫
B(f ′f ′

∗−ff∗)(ϕ′ +ϕ′
∗−ϕ−ϕ∗)dvdv∗dω (3.3)

As a consequence, we have the

14



Lemma 3.1 (i) Conservation of mass:

∫

IRd

Q(f,f)dv = 0

(ii) Conservation of impulsion:

∫
Q(f,f)v dv = 0

(iii) Conservation of kinetic energy:

∫
Q(f,f)|v|2 dv = 0

(iv) Production of entropy:

∫
Q(f,f)logf dv=−1

4

∫ ∫ ∫
B(v−v∗,ω)(f ′f ′

∗−ff∗)log
(f ′f ′

∗
ff∗

)
dvdv∗dω≤0

These identities are easily proved by applying (3.3) with ϕ=1, v, |v|2, logf ,
and using identities (3.1) and (3.2) for (ii) and (iii). The last estimate proves
the decay of the entropy, since (x−y)log(x

y )≤0 ∀(x,y)∈]0,+∞]2. It is known

as Boltzmann’s H-theorem: for a solution f of (BE),

d

dt

∫ ∫

IRd×IRd

f(t,x,v)logf(t,x,v)dxdy ≤ 0

Consider now a solution f(t,x,v) of (BE) and the following “macroscopic”
quantities, which describe the system at the fluid mechanics level:

• spatial density : ρ(t,x)=
∫
IRd f(t,x,v)dv,

• momentum density : u(t,x)= 1
ρ(t,x)

∫
IRd f(t,x,v)v dv,

• stress tensor: pik(t,x)=
∫
IRd ũi(t,x,v)ũk(t,x,v)f(t,x,v)dv where

ũ(t,x,v)=u(t,x)−v,

• energy density : 1
2

∫
IRd f(t,x,v)|v|2 dv,

• internal energy : e(t,x)= 1
2ρ(t,x)

d∑

i=1

pii(t,x),

• heat flux tensor: q=− 1
2

∫
IRd ũk|ũ|2f(t,x,v)dv,
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The pressure: p(t,x)= 1
3

d∑

i=1

pii(t,x) obeys to the equation of state:

p =
2

3
ρe . (3.4)

The multiplication of (BE) by 1,v and |v|2 and an integration w.r.t. v gives at
least formally





∂tρ+∂x(ρu) = 0
∂t(ρu)+∂x(p+ρu⊗u) = 0

∂t

[
p(ρ+ 1

2 |u|2)+∂x.
[
ρu(e+ 1

2 |u|2)+up+q
]

= 0

These equations and the equation of state (3.4) provide 6 scalar equations for
13 unknowns and we need to impose “constitutive equations” to relate those
quantities and to close the system. We may for instance consider the following
cases:

• Euler equations for ideal fluids: pij(t,x)=p(t,x)δij , qi =0

• Navier Stokes equations for viscous fluids :

pij(t,x)=p(t,x)δij −µ
(∂uj

∂xi
+
∂ui

∂xj

)
−λ(∂x.u)δij ,

qi =−k ∂T
∂xi

.

• Grad hierarchy : f(t,x,v)=Mρ,u,TP (v) where Mρ,u,T is a local Maxwel-
lian having the same moments in 1,v,|v|2 as f , and P is a well choosen
polynomial. However, this system is not hyperbolic (see [8]).

• Levermore hierarchy : f(t,x,v)= ept,x(v). The closure of this hierarchy is
not explicit, but the first nontrivial system (with 17 moments) is hyper-
bolic (see [28]).

Note that we may derive a macroscopic entropy inequality

∂

∂t
(S(t,x))+div(η(t,x)) ≤ 0

S(t,x) =

∫
f(t,x,v)log f(t,x,v)dv ,

η(t,x) =

∫
f(t,x,v)log f(t,x,v)v dv ,

which is fundamental to describe the shocks in the fluid limit.
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3.3 Equilibriums are Maxwellian

Proposition 3.2 Let f(v) satisfy
∫
IRd(1+ |v|2)f(v)dv<+∞ and assume that:

f ′f ′
∗ = ff∗ ∀ω∈Sd−1 .

Then f is a Maxwellian: ∃(ρ,T,u)∈ IR+×]0,+∞[×IR3

f(v) =
ρ

(2πT )d/2
e−

|v−u|2

2T .

Proof: Assume that
∫
IRd f(v)dv=1 and

∫
IRd f(v)v dv=0. Consider g(k)=∫

IRd f(v)eiv·k dv:

0= g(k)g(k∗)−
∫ ∫

IRd×IRd

f(v)f(v∗)e
i(kv+k∗.v∗) ei[(k−k∗).ω][(v−v∗).ω] dv∗dv

If ω= ω0+ǫη√
1+ǫ2

for some (η,ω0)∈ (Sd−1)2 such that ω0.(k−k∗)=0, ω0.η=0, then a

development at the first order gives: ω0.
(
∇k(gg∗)−∇k∗(gg∗)

)
=0 and ω0.∇kg=

0. Assume that k∗ =0: g is radially symmetric and ∇k logg−∇k∗ logg∗ is pro-

portional to k−k∗ : g(k)= e−β|k|2. 2

3.4 Stability, existence of renormalized solutions to the

Boltzmann equation

In this section, we consider the Boltzmann equation under the weak (Grad)
angular cut-off, the mild growth condition and the positivity (and symmetry)
assumptions of Section 3.1. The global existence of solution to the Cauchy
problem for arbitrarily large initial data has been proved by DiPerna and Lions
in [13] and [14] (see also [21] and [29]) in the framework of the renormalized
solutions. We assume that the initial data f0 is a nonnegative L1(IRd× IRd)
function such that

(x,v) 7→f0(x,v)(|x|2 +log |v|2 + |logf0|)dxdv belongs to L1(IRd× IRd). (3.5)

As a consequence of the a priori estimate

∫ ∫
f(t,x,v)|x− tv|2 dxdv =

∫ ∫
f0(x,v)|v|2 dxdv

which holds because the Boltzmann collision kernel is local in (t,x), and because
of the H-theorem:

S(t)=

∫ ∫

IRd×IRd

f(t,x,v)log
(
f(t,x,v)

)
dxdv is decreasing ,
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S(t) is bounded from below. To prove it, we may use Jensen’s inequality
∫ ∫

IRd×IRd

f(t,x,v)
[
logf(t,x,v)+ |v|2 + |x− tv|2

]
dxdv

≥
∥∥∥f
∥∥∥

L1(IRd×IRd)
· log

(
||f ||L1(IRd×IRd)∫ ∫

IRd×IRd e−(|v|2+|x−tv|2) dxdv

)
>−∞ ∀t>0 .

The main difficulty of the Boltzmann equation is to give a sense to the products
f(t,x,v)f(t,x,v∗) and to f(t,x,v′)f(t,x,v′∗) when f is only a L1 function. Even
for a bounded collision kernel B, if we write the simplest possible estimate:

∫

IRd

Q+(f,f)dv =

∫

IRd

Q−(f,f)dv

=
∥∥∥
∫ Sd−1

B(z,ω)dω
∥∥∥

L∞(IRd,dz)
.
(∫

IRd

f(t,x,v)dv
)2

,

we can see that (t,x) 7→
(∫

IRd f(t,x,v)dv
)2

still does not make much sense.

The main idea of renormalized solutions is to replace the equation by a
renormalized equation and write that

Q+(f,f)

1+f
belongs to L∞(R+,L1(IRd×K))

for any compact setK in IRd
v. A nonnegative distribution function f is said to be

a renormalized solution of the Boltzmann equation if f ∈C0(IR+,L1(IRd× IRd))
is such that

∫ ∫

IRd×IRd

f(t,x,v)
(
1+ |v|2 + |x− tv|2 + |log

(
f(t,x,v)

)
|
)
dxdv<+∞

for any t>0, and if for any β∈C1(IR+,IR+) such that β′(t)(1+ t) is bounded
in IR+,

( ∂
∂t

+v.∂x

)
β(f)=β′(f)Q(f,f) in D′(IR+× IRd× IRd) (RBE)

Theorem 3.3 (DiPerna & Lions) Under the above assumptions, there exists a
global in time renormalized solution to the Boltzmann equation.

This result is obtained through compactness arguments and appropriate reg-
ularization, so that an almost equivalent result is the following stability result.

Theorem 3.4 (DiPerna & Lions) Consider a sequence of initial data fn
0 con-

verging in L1(IRd× IRd) to some f0 such that (3.5) is uniformly satisfied. Then
the corresponding renormalized solutions fn converge up to the extraction of a
subsequence to a renormalized solution to the Cauchy problem associated to f0.
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These results are uncomplete from several points of view: the conservation
of the energy is not established, the H-theorem holds as an inequality and the
question of the uniqueness is open.

The boundary problem has been studied by Hamdache [26], Arkeryd and
Cercignani [1]. One should also mention the study of the large time asymptotics
by Desvillettes [11] and Cercignani [6] (in a bounded domain). For the theory
of small classical solutions or perturbations of a stationary solution, we refer to
[9] and [22]. An overview of the results in the homogeneous case will be given
the next Section. Let us finally mention the existence results recently given by
Arkeryd and Nouri in [2] for stationary solutions in a bounded domain.

3.5 The homogeneous Boltzmann equation

In the case where the distribution function does not depend on x, the situation
is much simpler and better results have been proved for already a long time.
The general framework is given by L1-spaces with weights: consider L1

s and
L logL such that

f ∈L1
s(IR

d) ⇐⇒ f ∈L1(IRd) and
∥∥f
∥∥

L1
s
=

∫

IRd

|f(v)|
(
1+ |v|2

)s/2

dv<+∞,

f ∈L logL(IRd) ⇐⇒ f ∈L1(IRd) and

∫

IRd

|f(v)log(f(v))|dv<+∞ .

Consider now the Cauchy problem for the homogeneous Boltzmann equation





∂tf =Q(f,f)

(t,v)∈ IR× IRd

f(t=0, ., .)= f0

(HBE)

3.5.1 L1 theory for the hard spheres case (d=3)

The hard spheres collision kernel is

Q(f,f)=

∫ ∫

IRd×Sd−1

∣∣∣(v−v∗) ·ω
∣∣∣(f ′f ′

∗−ff∗)dv∗dω

We follow here the presentation of [7].

Theorem 3.5 Let f0≥0 be an initial data such that f0∈L1
4∩L logL. Then

there exists a unique solution f in C0(IR+,L1(IR3)). Moreover, f ∈L1
4(IR

3) and

∫

IR3

f(t,v)logf(t,v)dv≤
∫

IR3

f0(v)logf0(v)dv .
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Proof: First one considers the collision kernel truncated for large velocities:

QM (f,g)=
1

2

∫ ∫
χM (v−v∗)|(v−v∗) ·ω|(f ′g′∗+g′f ′

∗−fg∗−f∗g)dv∗ dω

where χM is the characteristic function of [0,M ].

∥∥∥QM (f,f)
∥∥∥

L1(IR3)
≤ CM

∥∥∥f
∥∥∥

2

L1(IR3)
,

∥∥∥QM (f,f)−QM (g,g)
∥∥∥

L1(IR3)
≤ C

∥∥∥f+g
∥∥∥

L1(IR3)
·
∥∥∥f−g

∥∥∥
L1(IR3)

.

With these inequalities, the iteration scheme given by

fM
n+1(t,v)= f0(v)+

∫ t

0

Q
(
fM

n ,fM
n

)
(S,v)ds

converges to a function fM in C1
(
[0,T ],L1(IR3)

)
provided T is small enough.

Next, one has to prove that fM is nonnegative, which is obtained by proving
that fM solves {

∂tg+µg = ΓMg

g(t=0, .) = f0

where ΓM (g)=QM(g,g)+µg
∫
g(v)dv is a positive monotone operator for µ

large.

Lemma 3.6 (Povzner [36]) Suppose that s≥2, f,g∈L1
s, f ≥0, g≥0. Then∫

IR3(1+ |v|2)s/2

Q(f,g)dv≤ c(s)
(
‖f‖1,s‖g‖1,2+‖f‖1,2‖g‖1,s

)
.

By a Gronwall inequality and the conservation of the energy,

∥∥∥fM (t)
∥∥∥

1,s
is bounded for any t∈ [0,T ]

and an elementary computation shows that:

‖QM
+ (f,f)‖1,2 ≤ C

(
‖f‖1,4 ·‖f‖L1 +‖f‖2

1,2

)
.

By Dunford-Pettis’ criterion, fM (t) converges up to the extraction of a subse-
quence to f(t) for all t∈ [0,T ] and a direct computation shows the convergence
of the collision term. Uniqueness follows from a Gronwall argument and the
H-theorem is given by the convexity of the entropy. 2

Note that the assumption f0∈L1
2 is sufficient for the conservation of the en-

ergy [33].
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3.5.2 Soft potentials

To illustrate the case opposite to the hard spheres case, we consider the case of
the soft potentials in IR3 (2<s≤5⇐⇒−3<γ<0):

B(z,ω) = |s|γ(s) ·ζ(θ)
ζ(θ) = β(cosθ) with the notations of Section 3.1

This case corresponds to potentials like r1−s. We shall consider

• weak solutions for 0≥γ≥−2 (1≥ s≥ 7
3 ): see the independent papers by

Goudon and Villani [24] and [39].

• H-solutions (introduced by Villani) for −3≤γ<2.

Theorem 3.7 Let f0 be a nonnegative function such that

v 7→f0[v(1+ |v|2 +logf0(v)] belongs to L1(IR3) .

Then there exists a weak solution of (HBE) in the sense that f is nonnegative,
belongs to L∞(IR+(L1

2∩L logL)∩C0(IR+,L1(IR3)∩L1([0,T ],L1
2,γ(IR

3)) and
∫

IR3

f(t,v)logf(t,v)dv ≤
∫

IR3

f0(v)logf0(v)dv ∀t>0

and for any ϕ∈D(IR3), for any s,t≥0

∫
f(t,v)ϕ(v)dv−

∫
f(s,v)ϕ(v)dv =

∫ t

s

dτ

∫
Q(f,f)(τ,v)ϕ(v)dv . (3.6)

The main point is to notice that in the weak formulation, one may write
∫
Q(f,f)ϕdv=−1

4

∫ ∫ ∫
B(v−v∗,ω)(f ′f ′

∗−ff∗)(ϕ′ +ϕ′
∗−ϕ−ϕ∗)dvdv∗dω.

(3.7)
and that for z= v−v∗ close to 0, the term (ϕ′+ϕ′

∗−ϕ−ϕ∗) provides a term of
order |z|2 after averaging on φ∈S1 (if we write dω=sinθ dθdφ).

N.B. the right hand side in (3.6) has to be understood in the sense (3.7).

To go further, i.e. to soft potentials corresponding to −2≤ s≤ 7
3 Villani

introduced in [39] the notion of H-solutions which is based on the following
remark. Denoting by F and F ′ the tensor function ff∗ and f ′f ′

∗, we may write:
∫
Q(f,f)dv=

1

4

∫ √
B(

√
F ′−

√
F ).

√
B(

√
F ′+

√
F )(ϕ′ +ϕ′

∗−ϕ−ϕ∗)dvdv∗dω

(3.8)
Using the inequality (x−y)log(x

y )≥4(
√
x−√

y), the entropy dissipation term

indeed controls
√
B(

√
F ′−

√
F ) in L2(IR3), and the cancellations in ϕ′+ϕ′

∗−
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ϕ−ϕ∗ allow to give a sense to the weak formulation whenever the right hand
side in (3.6) is replaced by expression (3.8).

A similar study can be done for the Landau equation and this framework is
very convenient to consider the limit of grazing collisions which corrresponds to
concentration of ζ(θ) at θ=0. The Landau equation appears then as a Taylor
development at order 2 of the Boltzmann equation (see [10], [24], [39]).

3.5.3 Gain of moments and regularizing effects for collision kernel
without cut-offs

Consider the case of hard potentials and assume that the initial data is bounded
in L1

2+δ with δ>0. According to Povzner inequality

∫ T

0

dτ

∫
f(τ,v)|v|2+γ+δ dv≤C1

∫
f0(v) |v|2+δ dv+C2T

(∫
f0(v) |v|2 dv

)2

(see [12], [33]). In other words, f ∈L1([0,T ], L1
2+δ+γ) for any δ>0. Thus by

iteration any moment becomes finite for any positive time.
More interesting probably are the regularization properties of the Boltzmann

collision kernel. For forces with an infinite range, and especially for inverse power
laws, the weak angular cut-off assumption is not satisfied: if B(z,ω) = |z|γ ζ(θ),
then ζ has a singularity of order s+1

s−1 =1+ν. P.-L. Lions proved in [30] that

√
f(t)∈Hr

loc(IR
d) ∀r< ν

2

( 1

1+ ν
d−1

)

using the smoothing properties of Q+. Recently, further results have been given
by Villani, and Desvillettes and Wennberg.

3.6 Dispersion for the renormalized solutions

We conclude this introduction to the Boltzmann equation by giving a dispersion
result for the renormalized solutions. A preliminary result has been obtained by
B. Perthame in [34], but we follow here the approach of [17] based on Jensen’s
inequality.

Theorem 3.8 Under the same assumptions as in Section 3.4, consider a renor-
malized solution f ∈C0(IR+,L1(IR3× IR3)) corresponding to an initial datum
f0∈L1(IR3× IR3) such that f0(|x|2 + |v|2 + |logf0|) is bounded in L1(IR3× IR3).
Then

(1+ t2)

∫ ∫
f |v− t

1+ t2
x|2 dxdv+

1

1+ t2

∫ ∫
f |x|2 dxdv+

∫ ∫
f logf dxdv

≤
∫ ∫

f0(|x|2 + |v|2)dxdv+

∫ ∫
f0 logf0 dxdv , (3.9)
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and there exists a positive constant C=C(f0) which depends only on f0 such
that for any r>0,

m(r,t) :=

∫

|x|<r

[

∫

IR3

f(t,x,v)dv]dx≤ C(f0)

log

(√
1+t2

r

) . (3.10)

Proof: We may first notice that

(1+ t2)

∫ ∫
f |v− t

1+ t2
x|2 dxdv+

1

1+ t2

∫ ∫
f |x|2 dxdv

=

∫ ∫
f |v|2 dxdv+

∫ ∫
f |x−vt|2 dxdv

We now use (3.10) to obtain a dispersion relation via an interpolation which
is in a sense the limit case (see Section 1.6) as p→1 of an interpolation between
moments and an Lp-norm. The result is obtained using several times Jensen’s
inequality: if f and g are two nonnegative L1(Ω) solutions such that f(|logf |+
|logg|) belongs to L1(Ω), Jensen’s inequality applied to t 7→ t logt= s(t) with the

measure dµ(y)= g(y)dy∫
Ω

g(y)dy
gives

∫
Ω
f log(f

g )dy
∫
Ω
g(y)dy

=

∫

Ω

s(
f

g
)dµ(y)≥ s

(∫

Ω

f

g
dµ(y)

)
=

∫
Ω
f(y)dy∫

Ω
g(y)dy

log

(∫
Ω
f(y)dy∫

Ω
g(y)dy

)
.

(3.11)

Applying first this inequality to g= e
−(1+t2)|v− t

1+t2
x|2

with y= v, Ω=IR3,
and then integrating w.r.t. x, we get

∫
ρ logρdx (3.12)

≤
∫ ∫

f logf dxdv+(1+ t2)

∫ ∫
f |v− t

1+ t2
x|2 dxdv− 3M

2
log

(
1+ t2

π

)

where M =m(∞,t)=
∫ ∫

IR3×IR3 f(t,x,v)dxdv=
∫
IR3 ρ(t,x)dx. Applying now

(3.11) to Ω=B(0,R), g≡1, y=x, we find

m(r,t)logm(r,t)≤m(r,t)log(
4π

3
r3)+

∫

|x|<r

ρ(t,x)logρ(t,x)dx . (3.13)

But
∫

|x|<r

ρ(t,x)logρ(t,x)dx=

∫

IR3

ρ(t,x)logρ(t,x)dx−
∫

|x|>r

ρ(t,x)logρ(t,x)dx .

(3.14)
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Applying again (3.11) to Ω=IR3 \B(0,r), y=x, we find for m=m(r,t)

−
∫

|x|>r

ρ logρdx ≤
∫

|x|>r

ρ
|x|2

1+ t2
dx

−(M−m)log(M−m)+
3

2
(M−m)log[π(1+ t2)] .

Combining (3.12), (3.13), (3.14) and (3.15), we obtain (3.10). 2
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