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Latent variable mixture modeling (LVMM) is a flexible 
analytic tool that allows researchers to investigate ques-

tions about patterns of data and to determine the extent 

to which identified patterns relate to important vari-
ables. For example, do patterns of co-occurring develop-

mental and medical diagnoses influence the severity of 
pediatric feeding problems (Berlin, Lobato, Pinkos, Cer-

ezo, & LeLeiko, 2011)? Do differential longitudinal tra-

jectories of glycemic control exist among youth with 

type 1 diabetes (Helgeson et al., 2010) or do differential 

trajectories of adherence among youth newly diagnosed 

with epilepsy exist (Modi, Rausch, & Glauser, 2011), 

and if so, do psychosocial and demographic variables 

predict these patterns? Do patterns of perceived stress-

ors among youth with type 1 diabetes differentially af-

fect glycemic control (Berlin, Rabideau, & Hains, 2012)? 

Each of these questions is relevant to pediatric psychol-

ogy and has been explored using LVMM. The purpose 

of this two-part article is to offer a nontechnical over-

view and introduction to cross-sectional (Part 1) and 

longitudinal mixture modeling (Part 2; Berlin, Parra, & 

Williams, 2013) to facilitate applications of this promis-

ing approach within the field of pediatric psychology. 
We begin with a general overview of LVMM to high-

light notable strengths of this analytic approach, and 

then provide step-by-step examples illustrating three 

prominent types of mixture modeling: Latent class, la-

tent profile, and growth mixture modeling. 
Conceptually, LVMM is a person-centered analytic 

tool that focuses on similarities and differences among 

people instead of relations among variables (Muthén & 

Muthén, 1998). The primary goal of LVMM is to iden-
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Abstract

Objective — Pediatric psychologists are often interested in finding patterns in heterogeneous cross-sectional data. 
Latent variable mixture modeling is an emerging person-centered statistical approach that models heterogene-
ity by classifying individuals into unobserved groupings (latent classes) with similar (more homogenous) pat-
terns. The purpose of this article is to offer a nontechnical introduction to cross-sectional mixture modeling. 

Method — An overview of latent variable mixture modeling is provided and 2 cross-sectional examples are re-
viewed and distinguished. 

Results — Step-by-step pediatric psychology examples of latent class and latent profile analyses are provided using 
the Early Childhood Longitudinal Study–Kindergarten Class of 1998–1999 data file. 

Conclusions — Latent variable mixture modeling is a technique that is useful to pediatric psychologists who wish 
to find groupings of individuals who share similar data patterns to determine the extent to which these patterns 
may relate to variables of interest. 

Keywords: cross-sectional data analysis, latent class, latent profile, person-centered, statistical analysis, structural 
equation modeling

1



2 Be r l i n ,  W i l l i a m s ,  & Pa r r a  i n  Jo u r n a l  o f  Pe d i at r i c  Ps y c h o l o g y  (2013) 

tify homogenous subgroups of individuals, with each 

subgroup possessing a unique set of characteristics that 

differentiates it from other subgroups. In LVMM, sub-

group membership is not observed and must be in-

ferred from the data. 

Most broadly, LVMM refers to a collection of statis-

tical approaches in which individuals are classified into 
unobserved subpopulations or latent classes. The latent 

classes are represented by a categorical latent variable. 

Individuals are classified into latent classes based on 
similar patterns of observed cross-sectional and/or lon-

gitudinal data. For any given variable(s), the observed 

distribution of values may be a “mixture” of two or 

more subpopulations whose membership is unknown. 

As such, the goal of mixture modeling is to probabilis-

tically assign individuals into subpopulations by infer-

ring each individual’s membership to latent classes from 

the data. As a by-product of mixture modeling, every 

individual in the data set has his/her own probabilities 

calculated for his/her membership in all of the latent 

classes estimated (when summed they equal 1). Latent 

classes are based on these probabilities, and each indi-

vidual is allowed fractional membership in all classes to 

reflect the varying degrees of certainty and precision of 
classification. Said differently, by adjusting for uncer-

tainty and measurement error, these classes become la-

tent (Asparouhov & Muthén, 2007; Muthén, 2001). 

LVMM is part of a latent variable modeling frame-

work (Muthén & Muthén, 1998; Muthén, 2001) and is 

flexible with regard to the type of data that can be an-

alyzed. Observed variables used to determine la-

tent classes can be continuous, censored, binary, or-

dered/unordered categorical counts, or combinations 

of these variable types, and the data can be collected in 

a cross-sectional and/or longitudinal manner (Muthén 

& Muthén, 1998). Consequently, a diverse array of re-

search questions involving latent classes can be investi-

gated. For example, hypotheses can focus on predicting 

class membership, identifying mean differences in out-

comes across latent classes, or describing the extent to 

which latent class membership moderates the relation-

ship between two or more variables. The literature has 

used many names to describe mixture modeling, or fi-

nite mixture modeling as it is known in the statistics lit-

erature (McLachlan & Peel, 2000). Names vary accord-

ing to the type of data used for indicators (continuous 

vs. categorical, akin to cross-sectional latent profile anal-
ysis vs. latent class analysis, etc.), whether continuous 

latent variables are included with categorical latent class 

variables (cross-sectional factor mixture models, longi-

tudinal growth mixture models), whether the data were 

collected cross-sectionally or longitudinally (latent class 

vs. latent transition), and whether variability is allowed 

within the latent classes (latent class growth modeling 

vs. growth mixture modeling; Muthén, 2008). Although 

there are many types of models that can be examined, 

we begin in Part 1 by focusing on cross-sectional exam-

ples using latent class analysis and latent profile anal-
ysis. In Part 2, we focus on longitudinal LVMM and 

present examples of latent class growth modeling and 

growth mixture modeling. For both articles, we orga-

nize our discussion and examples using the four steps 

recommended by Ram and Grimm (2009): (a) problem 

definition, (b) model specification, (c) model estimation, 
and (d) model selection and interpretation. 

An important issue when considering whether to 

use LVMM is sample size. As with other analytic tech-

niques, the proper sample size is important for obtain-

ing adequate statistical power as well as reducing bias 

related to parameter and standard error estimates. An 

insufficient sample size can be particularly problematic 
when conducting mixture analyses because it is often 

associated with (a) convergence issues, (b) improper so-

lutions, and (c) the inability to identify small but mean-

ingful subgroups. Unfortunately, determining the sam-

ple size needed to conduct a mixture analysis is not 

straightforward. “Rules of thumb” (e.g., 5 or 10 obser-

vations per estimated parameter) are commonly used to 

justify a particular sample size. However, research in-

dicates that these rules are not particularly useful and 

likely lead to over- or underestimating sample size re-

quirements (for discussion, see Wolf et al., 2013). This is 

because “the sample size needed for a study depends on 

many factors, including the size of the model, distribu-

tion of the variables, amount of missing data, reliability 

of the variables, and strength of the relations among the 

variables” (Muthén & Muthén, 2002, pp. 599–600). 

In recent years, the Monte Carlo simulation method 

has emerged as a promising approach for estimating 

sample size in the context of structural equation mod-

eling in general and LVMM in particular (Muthén & 

Muthén, 1998–2012, 2002; Wolf et al., 2013). This ap-

proach can estimate the sample size needed for a spec-

ified model by simulating the analysis a large number 
of times. Monte Carlo simulation research is likely to 

be encouraging for pediatric psychologists who do not 

have large samples because it demonstrates that small 

samples can be sufficient depending on several factors 
such as model complexity and missing data (Wolf et 

al., 2013). Fortunately, several examples of Monte Carlo 

simulations designed to estimate sample size are cur-

rently available (Muthén & Muthén, 1998–2012 [exam-

ple 12.3 in particular]; see also Muthén & Muthén, 2002; 

Wolf et al., 2013). 
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Problem Definition

The problem definition stage includes three steps. The 
first step is to formulate hypotheses about the nature of 
unobserved subgroups. This is done by considering the-

ory and previous research. Second, raw individual-level 

data and descriptive statistics across primary study vari-

ables are examined to help researchers determine the 

best estimator for their data (e.g., maximum likelihood 

estimation, weighted least-squares estimator for cen-

sored or categorical data) and whether there is a need to 

take into account nesting of data (via multilevel model-

ing and/or adjusting the standard errors) and non-nor-

mal distributions (e.g., through robust strategies, like ro-

bust maximum likelihood estimation). The third step 

is to determine whether to include covariates and al-

low continuous measures to correlate. For longitudinal 

LVMM, this step establishes a single-group model that 

best represents the nature of change over time. If SEM 

is used, goodness-of-fit statistics and other indices are 
then reviewed to establish the best way of modeling re-

lationships among study variables. We encourage those 

interested in an overview of Structural Equation Model-

ing (SEM) specific to pediatric psychology to review the 
article by Nelson, Aylward, and Steele (2008). 

Model Specification

In the model specification stage, researchers deter-

mine how many classes will be investigated. Ram and 

Grimm (2009) recommend estimating one more class 

than is expected. Alternatively, researchers may take 

an exploratory approach to model specification and es-

timate as many classes as the data will allow (i.e., addi-

tional classes are estimated until a statistically proper 

and/or practical solution is no longer obtained). The 

exploratory approach may be more or less justifiable 
depending on theory and previous research. At this 

stage, researchers also should decide which parame-

ters are expected to be stable across groups and which 

parameters are expected to vary across groups. For ex-

ample, in estimating a latent profile model in which 
the continuous indicators of the latent class are al-

lowed to correlate, researchers must make decisions 

about whether the strength/direction of these correla-

tions (and/or covariance and variances) will be freely 

estimated or fixed to be equal across classes. These 
decisions can be based on theory, previous research, 

and/or practical considerations (model convergence, 

etc.). Generally, more restrictive models (e.g., having 

various parameters equal across classes) tend to have 

fewer statistical problems, and as such may be wise 

starting points for investigators. These initial analy-

ses may then be followed-up by assessing the extent to 

which freeing parameters (preferably one at a time) af-

fects model fit and the substantive meaning of the so-

lutions obtained. 

Model Estimation

In this stage, data are fit to models specifying different 
numbers of classes. Before fitting data to the models, a 
decision is made about which estimation method will be 

used. Guidance about the most appropriate estimation 

method can be found in most introductory SEM texts. 

One important aspect of model estimation in the con-

text of LVMM is the concept of local maxima or a lo-

cal solution. In nontechnical terms, this means that care 

must be taken to ensure that the researcher’s statistical 

software has provided the “best” solution to estimate 

how the data fit each particular model. This “best” solu-

tion is generally determined by a number called the log-

likelihood, with the “best” solution providing the log-

likelihood closest to 0, or said differently, being at the 

maximum (the plural of which is maxima). In the con-

text of LVMM models, multiple maxima of the likeli-

hood often exist, this is in part due to where the soft-

ware begins the estimation and the start values used. 

The potential consequence is that the final solution may 
be a “local solution” and the best given those start val-

ues—but not the “best” global solution given a range of 

possible start values. For all LVMM, it is therefore im-

portant to use multiple sets of starting values to find the 
global maximum (i.e., replicate the highest log-likeli-

hood). Most commercially available software do this au-

tomatically, with many providing messages if the log-

likelihood is not replicated. If the best log-likelihood 

value is not replicated in at least two final-stage solu-

tions, this may be a sign of a local solution and/or prob-

lems with the model. In cases in which the log-likeli-

hood is not replicated, the investigators should increase 

the number of random starts until they are confident 
that they are not at local maxima. 

Model Selection and Interpretation

The final stage of conducting LVMM involves a series of 
steps to identify the best fitting model. This is one of the 
most challenging aspects of the analyses and has been 

described as “an art – informed by theory, past find-

ings, past experience, and a variety of statistical fit in-

dices” (Ram & Grimm, 2009, p. 571). Ram and Grimm 

(2009) provide a helpful flowchart for making decisions 
about model selection. Their first step is examining the 
output of each model estimated for potential problems 

(e.g., software-generated error messages and warnings, 



4 Be r l i n ,  W i l l i a m s ,  & Pa r r a  i n  Jo u r n a l  o f  Pe d i at r i c  Ps y c h o l o g y  (2013) 

estimation problems, local maxima, negative variances, 

out-of-range values, correlations >±1). Second, mod-

els with different numbers of classes are compared us-

ing information criteria (IC)-based fit statistics. These in-

clude the Bayesian Information Criteria (BIC; Schwartz, 

1978), Akaike Information Criteria (AIC; Akaike, 1987), 

and Adjusted BIC (Sclove, 1987). Lower values on these 

fit statistics indicate better model fit. Third, the accu-

racy with which models classify individuals into their 

most likely class is examined. Entropy is a type of sta-

tistic that assesses this accuracy, and can range from 0 

to 1, with higher scores representing greater classifica-

tion accuracy. Fourth, statistical model comparison like-

lihood ratio tests and bootstrapping procedures should 

be used, such as the Lo–Mendell–Rubin test (LMR; Lo, 

Mendell, & Rubin, 2001) and the Bootstrap Likelihood 

Ratio Test (BLRT; McLachlan & Peel, 2000). The LMR 

and BLRT tests compare the improvement between 

neighboring class models (i.e., comparing models with 

two vs. three classes, and three vs. four, etc.) and pro-

vide p-values that can be used to determine if there is a 

statistically significant improvement in fit for the inclu-

sion of one more class. Among the information criterion 

measures, the BIC is generally preferred, as is the BLRT 

for statistical model comparisons (Nylund, Asparouhov, 

& Muthen, 2007). An additional consideration is the size 

of the smallest class. Although a four-class model might 

provide the best fit to the data, if this additional class is 
composed of a relatively small number (e.g., proportion-

ally, <1.0% and/or numerically n < 25) of members, the 

researcher must be able to defend what is gained by the 

addition of this class given the possibility of low power 

and precision relative to the other, larger classes (Lubke 

& Neale, 2006). In summary, deciding on the number 

of classes can be difficult, and should involve consider-

ation of the research question, fit indices, the substan-

tive meaning of each solution, parsimony, and/or the-

ory (Bauer & Curran, 2003). 

Use of Latent Variables Representing Class 

Membership

While describing and determining the optimal num-

ber of classes may be of substantive interest, research-

ers are often interested in investigating hypotheses re-

lated to predictors of latent classes and whether there 

are significant mean differences across the latent classes 
on outcome variables. These hypotheses will often use 

“auxiliary” variables that are not included in the model 

to retain some “independence” between the classes and 

the variables of interest. If these predictor and/or crite-

rion variables were included in the model, they would 

influence the formation of the latent classes and would, 
in essence, become indicators of those latent classes 

(Asparouhov & Muthén, 2013; Clark & Muthén, 2009). 

This may or may not be a problem given the research 

question(s). In those instances in which researchers 

want to form classes independent of hypothesized pre-

dictors or outcomes, a common strategy (after having 

chosen the preferred model) is to export each individu-

al’s posterior probabilities for each class using the most 

likely class membership (i.e., the class with the highest/

maximum posterior probability; Nagin, 2005) and then 

use traditional analyses, such as logistic regression or 

analysis of variance. This strategy is equivalent to fixing 
individuals’ probabilities of their highest class to 1 and 

all others equal to 0. However, this strategy can be prob-

lematic because it may introduce error and decrease 

precision, and by doing so, turns the latent class (which 

corrects for “error” by modeling this uncertainty) into 

an observed variable. 

One alternative to analysis of variance and logistic re-

gression using the most likely class membership is pos-

terior probability-based multiple imputation (pseudo-

class draws; Asparouhov & Muthén, 2007; Wang, 

Brown, & Bandeen-Roche, 2005). Pseudo-class draws 

take into account differing individual probabilities of 

latent class membership by taking random samples in 

which individuals are permitted to flip into neighbor-

ing classes at a rate specified by the posterior probabil-
ities. Pseudo-class draws are similar to multiple impu-

tation in missing data analysis (Little, Jorgensen, Lang, 

& Moore, 2013), except in this case, the latent classes 

are what is missing. Using this strategy, tests of cate-

gorical latent variable multinomial logistic regression 

(to predict classes) and equality tests of means across 

latent classes (to assess mean differences) can be com-

puted based on pseudo-class draws, thereby providing 

less biased estimates by retaining the “latent” nature of 

the classes (Asparouhov & Muthén, 2013; Wang et al., 

2005). Simulation studies show that this approach works 

well when entropy is high and class separation is large 

(Clark & Muthén, 2009). Although conceptually supe-

rior to the maximum posterior probability approach, 

pseudo-class draws have recently been criticized as po-

tentially attenuating the relations between class and 

outcomes (Lanza, Tan, & Bray, 2013). Predictors and 

distal outcomes of latent classes are active areas of in-

quiry, with some emerging techniques such as the three-

step (Asparouhov & Muthén, 2013; Vermunt, 2010) and 

stepwise (Lanza, Flaherty, & Collins, 2003) approaches 

showing promise in certain situations in terms of po-

tentially being more robust and less biased than either 

pseudo-class draws or maximum posterior probability 
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strategies. Interested readers are encouraged to review 

Asparouhov and Muthén’s 2013 simulations compar-

ing these approaches. All of these approaches are avail-

able in Mplus and can be easily implemented by declar-

ing auxiliary variables in the syntax (see Supplementary 

Data for examples) and placing, for example for pseudo-

class draws, either an “(e)” for mean difference or a “(r)” 

for predictors of class. Having provided an overview of 

mixture modeling and strategies to determine the opti-

mal number of classes, we now turn our attention to il-

lustrative examples. The Mplus syntax for these analy-

ses is available in the Supplementary Data. 

Example Data

Participants

Data were obtained from the Early Childhood Longitu-

dinal Study, Kindergarten Class of 1998–1999 (ECLS-

K) data file. The ECLS-K is a longitudinal study that 
followed a nationally representative sample of chil-

dren, their parents, teachers, and schools from across 

the United States. Data were collected in the fall and the 

spring of children’s kindergarten year (1998–1999), the 

fall and spring of first grade (1999–2000), the spring of 
third grade (2002), the spring of fifth grade (2004), and 
the spring of eighth grade (2007). Children in the ECLS-K 

came from public and private schools and attended both 

full-day and part-day kindergarten programs. Children 

also came from diverse socioeconomic and racial/eth-

nic backgrounds; however, the examples presented later 

will concentrate on non-Hispanic Black girls and boys, 

given their heightened risk for obesity/overweight (Da-

vison & Birch, 2001; Ogden, Carroll, Kit, & Flegal, 2012). 

Child race and gender were assessed during baseline in-

terviews with parents. At the first time point, there were 
n = 3,169 non-Hispanic Black children (50.2% male), and 

during the eighth-grade assessment, there were n = 951 

non-Hispanic Black children (50.4% male). 

Measures

Body Mass Index

Heights and weights were assessed at six time points: 

Fall and spring of the kindergarten year (1998–1999), 

spring of first grade (1999–2000), spring of third grade 
(2002), spring of fifth grade (2004), and spring of eighth 
grade (2007). These data were used to calculate age- and 

sex-specific body mass index (BMI) scores using tables 
provided by the Centers for Disease Control and Pre-

vention/National Center for Health Statistics (CDC, 

2010). The CDC suggests that BMI is a reliable proxy in-

dicator of adiposity for most children and teens, given 

research showing that BMI scores correlate to direct 

measures of body fat (Mei et al., 2002). For descriptive 

purposes, the present project will employ the ≥85th to 
<95th percentile for age- and gender-specific BMI cut-
off points for overweight classifications and the ≥95th 
percentile of age- and gender-specific cutoff points for 
obese weight status classifications (CDC, 2010). In addi-
tion, a standardized BMI score (BMI z-score) was calcu-

lated for each child participant following guidelines es-

tablished by the CDC. 

Socioeconomic Status

The ECLS-K computed a composite standardized socio-

economic status score using information on parent edu-

cation, occupation, and income that was gathered dur-

ing parent interviews. Higher scores reflect higher levels 
of educational attainment, occupational prestige, and 

income. 

School Food Environment

The availability of foods at school that are associated 

with an increased risk for overweight and obesity was 

assessed by asking youth whether they can purchase 

sweets (e.g., candy, ice cream, cookies), salty snacks 

(e.g., potato chips, corn chips, popcorn, crackers), and 

soda, sports drinks, or fruit drinks that are not 100% 

juice (e.g., Coke, Gatorade, Hi-C) at their school. 

Dietary Intake

Youth were asked a series of questions assessing how 

frequently they consumed the following specific foods 
during meals or as snacks in the 7 days before the sur-

vey: (a) milk; (b) 100% fruit juices; (c) soda, sports 

drinks, or fruit drinks that are not 100% juice; (d) green 

salad; (e) potatoes, not including French fries, fried po-

tatoes, or potato chips; (f) carrots; (g) vegetables, not in-

cluding green salad, potatoes, or carrots; and (h) fruit, 

not including fruit juices. Answer choices for all food 

items ranged from none (e.g., “I did not eat carrots dur-

ing the past 7 days”) to four or more times per day. 

Physical Activity

Four questions included in the eighth-grade child ques-

tionnaire assessed engagement in physical activity. 

Youth were asked if they participated in school sports 

during the current school year (answer choices were 

“Did not participate” and two options we combined, 

“Participated”, and “Participated as an officer, leader, 
or captain”). Youth also indicated the frequency of their 

engagement in nonschool sports (“Rarely or never,” 

“Less than once a week,” “Once or twice a week,” or 

“Every day or almost every day”). Days of exercise was 

determined by asking youth to indicate how many of 

the past 7 days they exercised or participated in vigor-
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ous physical activity for a minimum of 20 min (range: 

0–7 days). Days of physical education classes was de-

termined by responses to a question asking youth to se-

lect the number of days (ranging from 0 to 5) they at-

tend physical education classes during an average week 

when they are in school. 

Sedentary Behavior

Sedentary behavior habits were determined by three, 

two-part questions on the ECLS-K child survey. These 

questions asked youth to indicate how many hours per 

day they usually spend watching television (includ-

ing videotapes and DVDs), playing computer or video 

games, and using the Internet, on weekdays and week-

ends. Youth were also asked to indicate (Yes or No) 

whether they have a television in their bedroom. 

Cross-Sectional Latent Variable Mixture Model 

Examples

For our examples, all models were estimated in Mp-

lus version 7 (Muthén & Muthén, 1998–2012), under 

missing data theory using all available data and ro-

bust (Full Information) maximum likelihood estima-

tion. This strategy for handling missing data is a mod-

ern method of modeling with missing data that makes 

use of all available data points (see Little et al., 2013). 

This approach also adjusts the standard errors and 

scales chi-square statistics to account for non-normally 

distributed data. Alternative modern approaches to 

handling missing data were considered but not chosen 

because they are not available within a mixture model-

ing framework (i.e., using auxiliary variables to predict 

missingness in conjunction with Full Information Max-

imum Likelihood) or would limit the availability of in-

dices to determine the optimal number of classes (e.g., 

model comparison tests are not available with multiple 

imputation techniques). 

Latent Class Analysis Example

The goal of latent class analysis is to classify individu-

als from a heterogeneous population into smaller, more 

homogenous, subgroups called latent classes. Because 

individuals’ memberships in latent classes are not ob-

served directly, they must be inferred from their indi-

vidually varying patterns of responses present in the 

data. Latent class models can be depicted graphically 

(see Figure 1, where c is a categorical latent variable, 

which gives rise (points) to the binary indicators. The ar-

rows pointing from c to the variables imply that the item 

probabilities/thresholds vary across the latent classes of 

“c”). We now provide a step-by-step description of a la-

tent class analysis. 

Problem Definition
The availability of sweet and salty snacks and sugar-

sweetened beverages in the schools (Hollar et al., 2010; 

Fox, Dodd, Wilson, & Gleason, 2009), participation in 

physical activities (Janssen & Leblanc, 2010), and televi-

sion in a child’s room (Feng, Reed, Esperat, & Uchida, 

2011; Dennison, Erb, & Jenkins, 2002) have been associ-

ated with weight status in children and adolescents. The 

extent to which individually varying patterns across the 

presence versus absence factors exist and contribute to 

higher BMI among non-Hispanic Black youth is unclear, 

hence the purpose of this example. 

Model Specification
An exploratory approach was taken to identify the 

number of school/home obesity risk environment la-

tent classes that may exist for Black youth in the eighth 

grade. Latent classes with higher probabilities of risk 

were hypothesized to have higher BMI values. Because 

gender differences in BMI values were expected, gen-

der was included in the model to control for this poten-

tial confound. The influence of gender on binary latent 
class indicators was assumed to be equal across classes. 

Because variables included in the estimation of latent 

classes influence the formation of these classes, BMI was 
considered as an auxiliary variable. 

Model Estimation

Several models were fit to the data, specifying one 
through four latent classes. The IC, entropy, and likeli-

hood ratio tests are presented in Table I. For each model 

(k number of classes), replication of the best log-like-

lihood was verified to avoid local maxima. For models 
with greater than two classes, it was verified that the null 
model (k-1) log-likelihood for the BLRT tests was equal 

to the best log-likelihood value of the model with one 

Figure 1.  A graphical representation of a latent class model.
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less class. In Mplus, the three- and four-class solution 

generated the following error messages: “one or more 

parameters were fixed to avoid singularity of the infor-

mation matrix. The singularity is most likely because 

the mode is not identified, or because of empty cells in 
the join distribution of the categorical variables in the 

model.” Because none of the youth in Class 1 and all of 

the youth in Class 2 participated in school sports, there 

was no variability in these two estimates, so the standard 

error of their respective thresholds was fixed to 0. Too 
many of these “boundary estimates” may be a sign of lo-

cal maximum, and/or the extraction of too many classes 

(Geiser, 2012). Furthermore, the log-likelihood was not 

replicated initially. To address this issue, the number of 

initial and final stage random sets of starting values was 
increased, resulting in a model in which the log-likeli-

hood value was replicated four times. 

Model Selection and Interpretation

Determining the optimal class solution is not typically 

a clear-cut process, as researchers must often reconcile 

conflicts between the various indices and/or their guid-

ing theories. To determine the most optimal number 

of classes for our example, we began by reviewing the 

IC indices [AIC, BIC, and sample-size-adjusted (SSA)-

BIC] presented in Table I. The various indices each sug-

gested a different optimal number of classes, with the 

BIC, AIC, and SSA-BIC suggesting a three-, four-, and 

two-class model, respectively. Statistical model compar-

isons (the LMR and BLRT) in this case both suggested 

that the three-class model provides a significantly better 
fit than a two-class model, and that a four-class model 
does not provide a statistically significant improvement 
over the three-class model. On inspection of Figure 2, it 

appeared that the four-class model contributes one ad-

ditional small class with about 3.4% of the sample. 

Other tools to aid in model selection include the en-

tropy values and mean class assignment probabilities 

(Table I). For our example, the best entropy value was for 

the four-class model. On review of the average class (di-

agonal) probabilities, all were more than 0.85, suggesting 

some degree of adequacy. In the three-class model, there 

appears to be a relatively higher proportion of youth in 

Class 3 whose most likely class is not Class 3. The differ-

Table I. Latent Class Example: Information Criteria, Entropy, Likelihood Ratio Tests, and Tests of Mean Differences Across 

Classes, Average Class Probabilities for Most Likely Class Membership by Latent Class 

Fit statistics 1 Class 2 Class 3 Class 4 Class

Log-likelihood (number of replications) −2,575.487 (50/50) −2,446.885 (50/50) −2,439.481 (43/50) −2,436.700 (4/100)
AIC 5,164.97 4,919.77 4,916.96 4,915.40

BIC 5,198.98 4,982.93 5,009.28 5,017.43

SSA-BIC 5,176.75 4,941.64 4,948.93 4,950.74

Entropy N/A 0.66 0.79 0.83

LMR test N/A 251.10 14.46 5.46

LMR, p-value  N/A <0.0001 0.01 0.55

BLRT test N/A 257.20 14.81 5.56

BLRT p-value for  NA <0.0001 0.05 0.72

Error messages? No No Yes Yes

Z-BMI differences across class N/A χ2 (1) = 0.09, p = 0.77  χ2 (2) = 3.940, p = 0.14  χ2 (3) = 3.984, p = 0.26 

Two-class model 1 2  

    1, n = 258.9, 27.1%  0.885 0.115  

    2, n = 693.1,72.8%  0.088 0.912  

Three-class model 1 2 3 

    1, n = 82.23, 8.6%  0.861 0.000 0.139 

    2, n = 173.2, 18.1%  0.009 0.873 0.118 

    3, n = 696.6, 73.2%  0.017 0.068 0.915 

Four-class model 1 2 3 4

    1, n = 82.12, 8.63%  0.860 0.000 0.129 0.011

    2, n = 143.7, 15.1%  0.011 0.867 0.115 0.007

    3, n = 693.6, 72.9%  0.018 0.057 0.917 0.008

    4, n = 32.6, 3.4%  0.000 0.000 0.138 0.862

AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; SSA-BIC = Sample-Size-Adjusted BIC; LMR = Lo–

Mendell–Rubin test; BLRT = Bootstrap Likelihood Ratio Test.  N = 952.   
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ences across these values for a three- versus four-class 

model appeared negligible. This, coupled with a pref-

erence for the BIC, BLRT values, and parsimony, led 

us (with these data and no compelling theoretical con-

straints) to choose a three-class model. If additional valid-

ity or cross-validation data were available for this exam-

ple, they could be used to support our decision. Validity 

data could come in the form of theoretically important 

predictors of classes and/or mean differences in variables 

thought to be important in distinguishing the classes. 

Figure 2. One-, two-, three-, and four-class models of home and school obesity risk.
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Having decided on the three-class model, the next 

step is to interpret these classes. As the indicators are bi-

nary (yes/no), the values in Figure 2 can be interpreted 

as the percent of that class’ members who positively en-

dorsed that particular item. For example, the majority of 

participants reported that they had televisions in their 

rooms (see one-class model: 87%). As such and given 

the patterns of risk, the largest class was named High 

Environmental/Moderate Behavioral Risk (Class 3, 73% 

of sample), which was characterized by high rates of 

television in bedrooms (87%), moderate levels of school 

sport participation (43%), and the highest availability of 

sweet/salty snacks and drinks at school (between 75% 

and 93%). The second largest class (Class 2, 18%), named 

Low Environmental/High Behavioral Risk, was charac-

terized by having a television in the bedroom (83%), no 

school sport participation (0%), and the low to moder-

ate availability of sweet/salty snacks (28%/33%) and 

drinks at school (38%). The smallest class (Class 1, 9%) 

was named Low Environmental/Low Behavioral Risk, 

characterized by having a television in the bedroom 

(91%), high participation in school sports (100%), and 

the lowest availability of sweet/salty snacks (28%/33%) 

and drinks (38%) at school. For our example data, it was 

hypothesized that these differential risk patterns are as-

sociated with different BMI z-scores; however, no over-

all differences were found with regard to BMI z-scores 

for the three-class model (χ2 (2) = 3.940, p = 0.14): Class 

1 M = 1.05, SE = 0.13; Class 2: M = 0.79, SE = 0.09; and 

Class 3: M = 0.92, SE = 0.04. This suggests that the im-

pact of these factors might be small in magnitude given 

their distal influence and/or that a more comprehensive 
assessment of these constructs is needed (rather than 

yes/no answers to single items). 

Latent Profile Analysis Example
The goal of latent profile analysis is to classify individu-

als from a heterogeneous population into smaller, more 

homogenous subgroups based on individuals’ values 

on continuous variables. It is important to note that ex-

tensions of latent profiles are not limited to continuous 
variables, but can include combinations of continuous, 

count, and categorical variables as indicators of latent 

class, as well as allowing these indicators to relate to one 

another. While mixture models are flexible with regard 
to the inclusion of noncontinuous variables, this tends 

to increase model complexity and may introduce issues 

with convergence if the scales are too dissimilar. Similar 

to an Latent Class Analysis (LCA), a latent profile model 
can be depicted graphically (Figure 3), where the arrows 

pointing from the categorical latent variables “c” to the 

variables implies that the item means of continuous in-

dicators can vary across the latent classes of “c.” Below, 

we illustrate an example of a latent profile analysis, us-

ing the last wave of data collection. 

Problem Definition
Low levels of physical activity, high rates of seden-

tary behavior (playing video games, watching televi-

sion, etc.), and suboptimal nutrition (fast food with little 

fruit/vegetable intake, consumption of sugar-sweet-

ened soda, etc.) are associated with increased adiposity 

in youth (Davison & Birch, 2001). The extent to which 

individually varying patterns of risk across these vari-

ables exist and relate to youth’s BMI, gender, and Socio-

economic Status (SES) is unclear. 

Model Specification
An exploratory approach was taken to identify patterns 

of physical activity, sedentary behaviors, and nutritional 

risk that may exist for non-Hispanic Black youth in the 

eighth grade. Latent profiles characterized by low phys-

ical activity, high sedentary behavior, and suboptimal 

nutrition are hypothesized to have higher BMI. To de-

termine the extent to which SES and gender predict la-

tent class, pseudo-class draws were used for a posterior-

probability-based multinomial logistic regression of the 

latent class variable on SES and gender. Pseudo-class 

draws and equality tests of means via the chi-square sta-

tistic were used to determine differences in BMI z-scores 

across the latent classes. 

Model Estimation

Several models were fit to the data, specifying one 
through four latent profiles. Data were not transformed 
or standardized for these analyses. The IC, entropy, and 

likelihood ratio tests are presented in Table II. For each 

model, replication of the best log-likelihood was veri-

fied to avoid local maxima. For models with more than 
two classes, it was verified that the null model log-likeli-
hood for the BLRT tests was equal to the best log-likeli-

hood value of the model with one less class. 

Model Selection and Interpretation

The IC indices (AIC, BIC, and SSA-BIC) are presented in 

Table II, all suggested that four or more classes were pre-

ferred. Consistent with the IC, the BLRT suggested that 

each successive model above a one-class model provided 

statistical improvement (e.g., four-class was better than 

a three-class, which was better than a two-class, model). 

The LMR test, however, suggested that a one-class model 

was the preferred solution. At this point, review of the 

entropy, interpretability of the various solutions, sample 

sizes, and theoretical considerations is useful. 

For our example, all entropy values were acceptable 

with the two- and three-class solutions having the high-
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est values. The diagonal class probabilities presented in 

Table II were all acceptable and ranged from 0.903 to 

0.994, averaging 0.973, 0.970, and 0.946 (diagonals), and 

off-diagonal averages of 0.03, 0.02, and 0.02, for the two-, 

three-, and four-class solutions, respectively. These val-

ues suggest either a two- or three-class model. While the 

data were modeled in their original scales, these profiles 
are presented in Figure 2 using z-scores given the large 

differences in scales of measurement. Unlike the previ-

ous latent class example, the values plotted in the fig-

ure represent the means of each indicator (rather than 

the percentage of class members endorsing a particular 

item). On inspection of Figure 2 and class sample sizes 

in Table II, it appears that the four-class model contrib-

utes one additional small class (n = 18.1) consisting of 

about 1.9% of the sample that is marginally different 

from the other classes. Although not presented here, re-

searchers interested in the statistical differences across 

the means of each profile/class’s indicators could treat 
additional copies of these variables as auxiliary, and 

conduct the appropriate statistical tests for equality of 

means. All things considered, the three-class model was 

chosen based on the fit statistics, data, sample size, and 
parsimony. Although more classes may provide a statis-

tical benefit, a three-class model is adequate. 

The largest class was named Average Activity, Mod-

erate Screen, Above Average Diet (Class 1, 89.4%). The 

second largest (Class 2, 8.3%) was named Average Risk/

Resource, as the majority of the scores were around a 

z-score of 0. The smallest class (Class 3, 2.3%) named 

Mixed Risk/Resource was an unusual mix of high levels 

of school sports, screen-time, salad, and soda. For our 

example data, it was hypothesized that differential risk 

patterns may be associated with different BMI z-scores; 

however, no differences were found overall with regard 

to BMI z-scores for the three-class model, χ2 (2) = 0.29, p 

= 0.87. With regard to predictors of latent class, classes 

were equal in terms of gender (p ranged from 0.15 to 

0.98), and the Mixed Risk/Resource Class had lower re-

ported SES (p = 0.04) relative to Average Risk/Resource. 

Conclusions

LVMM is a powerful yet underutilized research tool. 

Practical guidance for conducting LVMM analyses may 

facilitate the use of this analytic technique by pediatric 

psychologists. This article was designed to provide pe-

diatric psychologists with step-by-step instructions for 

carrying out two types of LVMMs. Concrete examples 

of latent class analysis and latent profile analysis were 
described. For each of these examples, we delineated 

Figure 3. Two-, three-, and four-class models of physical activity, sedentary behaviors, and nutritional obesity risk behaviors.
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the specific procedures for conducting the analyses and 
discussed key decisions researchers often must make 

to estimate an LVMM. We also highlighted several is-

sues/challenges that often arise at different stages of the 

model fitting processes and provided possible solutions. 
We hope the latter information will facilitate research-

ers’ ability to work through common mixture modeling 

problems. It is important to note that LVMM, like all an-

alytic techniques, has limitations. These include diffi-

culties deciding on the most optimal number of classes, 

model convergence issues, and the need for relatively 

large sample sizes. Important other considerations 

that are relevant to pediatric psychology research and 

LVMM include, but are not limited to, small pediatric 

sample sizes, heterogeneity of important sample factors 

(i.e., different types of cancer, injury, age-range), time-

varying assessments, time-varying covariates (such as 

surgery, medication), and clustering of nonindepen-

dent individuals in certain contexts (i.e., group interven-

tions, families), and nonrandom attrition (such as due to 

Figure 3. Continued.
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mortality). Although beyond the scope of this introduc-

tion, many of these considerations (time-varying assess-

ments/covariates, nesting, censored data, sample het-

erogeneity, etc.) can either be modeled directly or as a 

research question that lends itself to an LVMM (illness 

and demographic heterogeneity). Despite these limita-

tions and considerations, we believe that LVMM is an an-

alytic tool that can be useful to pediatric psychologists who 

wish to identify subgroups of individuals who share simi-

lar data patterns and determine the extent to which subgroup 

membership relates to variables of interest. 

Supplementary Data is presented following the Refer-

ences.
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MIXTURE MODELING 1 

SUPPLEMENT: EXAMPLE SYNTAX  

 

! Test beginning with a “!” are comments, unnecessary portion of coding removed 

TITLE: LCA Example Obesity Risk  

DATA: FILE IS "riskprofilesFS.dat"; 

VARIABLE: 

NAMES ARE !Lists variable names 

IDNUMB GENDER KURBAN_R RACE WKSESL W8SESL  C7DESCWT C7TRYWT P7OVERWT 

zbmi1c zbmi2c zbmi4c zbmi5c zbmi6c zbmi7c AGE1 AGE2 AGE4 AGE5 AGE6 AGE7 

C5SDQEXR C5SDQINR C6SDQEXT C6SDQINT C7SDQRDC C7SDQMTC C7SDQINT C7LOCUS C7CONCPT 

gender 

C7TVROOM C7SWEETS C7DRINKS C7SNACKS C7SPORTS; 

IDVARIABLE = IDNUMB; 

CATEGORICAL ARE C7TVROOM C7SWEETS C7DRINKS C7SNACKS C7SPORTS; 

AUXILIARY = (e) zbmi7c pbmi7c BMI7C C7SDQINT C7LOCUS C7CONCPT; 

USEVARIABLES ARE 

Gender C7TVROOM C7SWEETS C7DRINKS C7SNACKS C7SPORTS; 

USEOBSERVATIONS ARE RACE ==2; 

 

MISSING ARE ALL (-99, -9, -8, -7, -1);! Declares which values are missing 

 

CLASSES = c (3); 

DEFINE: CUT C7SPORTS (1);! Make this variable dichotomous rather than original nominal coding 

 

ANALYSIS: 

TYPE IS MIXTURE; 

lrtbootstrap = 500; !Number of bootstaps for BLRT 

lrtstarts = 50 20 50 20; !increases starts for BLRT, tech14 

 

MODEL: 

%OVERALL% 

 

C7TVROOM C7SWEETS C7DRINKS C7SNACKS C7SPORTS on gender; 

 

OUTPUT: SAMPSTAT TECH11 TECH14; 

 

PLOT: TYPE IS PLOT3; 

SERIES = C7TVROOM (0) C7SWEETS (1) C7DRINKS (2) C7SNACKS (3) C7SPORTS(4); 



MIXTURE MODELING 2 

 

TITLE: LPA example for JPP 

DATA: FILE IS "LPA.dat"; 

VARIABLE: 

NAMES ARE 

IDNUMB GENDER KURBAN RACE 

WKSESL C5SDQEXR C5SDQINR C6SDQEXT C6SDQINT 

C7SDQINT C7LOCUS C7CONCPT C7FITIN 

C7SPORTS C7OTHSPT 

C7TVWKDY C7TVWKEN C7VIDWKD C7VIDWKN C7INTWKD C7INTWKN 

C7EXERCS C7DAYSPE 

C7MILK C7JUICE C7SDAJUC C7SALAD C7POTATO C7CARROT C7OTHVEG C7FRUITS C7FSFOOD 

zbmi135c zbmi235c zbmi435c zbmi535c zbmi635c zbmi7c35c; 

USEVARIABLES ARE 

C7OTHSPT c7sportsBN C7EXERCS C7DAYSPE 

C7TVWKDY C7TVWKEN C7VIDWKD C7VIDWKN C7INTWKD C7INTWKN 

C7FSFOOD C7SDAJUC 

C7POTATO C7MILK C7JUICE C7SALAD C7CARROT C7OTHVEG C7FRUITS; 

AUXILIARY = (e) !test equality of means; 

gender BzNSSprt BzSSprtBN BzTVWD BzTVwe 

BzVGwd BzVGwe BzINwd BzINwe BzdayEX BzPE 

BzMilk BzJuice BzSoda BzSalad BzPotato BzCarot BzOveg BzFruit BzFASTF 

; 

MISSING ARE ALL (-99); 

CATEGORICAL ARE c7sportsBN C7OTHSPT; 

CLASSES = c(3); 

IDVARIABLE = IDNUMB; 

USEOBSERVATIONS ARE (RACE==2); 

ANALYSIS: 

TYPE IS MIXTURE; 

STARTS = 5000 500; STITERATIONS = 20;! Increases random starts to avoid local maxima 

LRTBOOTSTRAP = 100; 

LRTSTARTS = 0 0 5000 100; 

k-1STARTS = 5000 100; ! increases stage starts/final stage optimizations for the k-1 class model BLRT; 

 

MODEL: 

!If desired, researchers can use covariates and/or allow indicators to correlate, and/or specify which of 

these relations vary across class; 

 

OUTPUT: TECH4 TECH11 TECH14 SAMPSTAT RESIDUAL; 

SAVEDATA: FILE IS lpa3.dat; SAVE = CPROBABILITIES;!exports data and class membership information 

PLOT: TYPE = PLOT3;  

SERIES = C7EXERCS C7DAYSPE C7TVWKDY C7TVWKEN C7VIDWKD C7VIDWKN C7INTWKD C7INTWKN 

C7FSFOOD C7SDAJUC C7POTATO C7MILK C7JUICE C7SALAD C7CARROT C7OTHVEG C7FRUITS (*) 

| c7sportsBN(1) C7OTHSPT(2); 
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