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INTRODUCTION

Multivariable methods of statistical analysis commonly appear in 

general health science literature (Bagley, White, & Golomb, 2001). The 

terms “multivariate analysis” and “multivariable analysis” are often used 

interchangeably in the literature. In the strict sense, multivariate analysis 

refers to simultaneously predicting multiple outcomes and multivariable 

analysis uses multiple variables to predict a single outcome (Katz, 1999). 

The multivariable methods explore a relation between two or more 

predictor (independent) variables and one outcome (dependent) vari-

able. The model describing the relationship expresses the predicted value 

of the outcome variable as a sum of products, each product formed by 

multiplying the value and coefficient of the independent variable. The 

coefficients are obtained as the best mathematical fit for the specified 

model. A coefficient indicates the impact of each independent variable 

on the outcome variable adjusting for all other independent variables. 

The model serves two purposes: (1) it can predict the value of the depen-

dent variable for new values of the independent variables, and (2) it can 

help describe the relative contribution of each independent variable to 

the dependent variable, controlling for the influences of the other inde-

pendent variables. The four main multivariable methods used in health 

science are linear regression, logistic regression, discriminant analysis, 

and proportional hazard regression.

The four multivariable methods have many mathematical similarities 

but differ in the expression and format of the outcome variable. In linear 

regression, the outcome variable is a continuous quantity, such as blood 

pressure. In logistic regression, the outcome variable is usually a binary 

event, such as alive versus dead, or case versus control. In discriminant 

analysis, the outcome variable is a category or group to which a subject 

belongs. For only two categories, discriminant analysis produces results 

similar to logistic regression. In proportional hazards regression, the out-

come variable is the duration of time to the occurrence of a binary “fail-
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ure” event (for example, death) during a follow-up period of observation.  

The logistic regression is the most popular multivariable method used 

in health science (Tetrault, Sauler, Wells, & Concato, 2008). In this article 

logistic regression (LR) will be presented from basic concepts to inter-

pretation. In addition, the use of LR in nursing literature will be exam-

ined by comparing the actual use of LR with published criteria for use 

and reporting.

CONCEPTS RELATED TO LOGISTIC REGRESSION 

Logistic regression sometimes called the logistic model or logit model, 

analyzes the relationship between multiple independent variables and a 

categorical dependent variable, and estimates the probability of occur-

rence of an event by fitting data to a logistic curve. There are two models 

of logistic regression, binary logistic regression and multinomial logistic 

regression. Binary logistic regression is typically used when the depen-

dent variable is dichotomous and the independent variables are either 

continuous or categorical. When the dependent variable is not dichoto-

mous and is comprised of more than two categories, a multinomial lo-

gistic regression can be employed. 

As an illustrative example, consider how coronary heart disease (CHD) 

can be predicted by the level of serum cholesterol. The probability of CHD 

increases with the serum cholesterol level. However, the relationship be-

tween CHD and serum cholesterol is nonlinear and the probability of 

CHD changes very little at the low or high extremes of serum cholesterol. 

This pattern is typical because probabilities cannot lie outside the range 

from 0 to 1. The relationship can be described as an ‘S’-shaped curve. The 

logistic model is popular because the logistic function, on which the logis-

tic regression model is based, provides estimates in the range 0 to 1 and an 

appealing S-shaped description of the combined effect of several risk fac-

tors on the risk for an event (Kleinbaum & Klein, 2010). 

1. Odds 

Odds of an event are the ratio of the probability that an event will oc-

cur to the probability that it will not occur. If the probability of an event 

occurring is p, the probability of the event not occurring is (1-p). Then 

the corresponding odds is a value given by 

odds of {Event}=
p

1-p

Since logistic regression calculates the probability of an event occur-

ring over the probability of an event not occurring, the impact of inde-

pendent variables is usually explained in terms of odds. With logistic re-

gression the mean of the response variable p in terms of an explanatory 

variable x is modeled relating p and x through the equation p= α+βx. 

Unfortunately, this is not a good model because extreme values of x will 

give values of α+βx that does not fall between 0 and 1. The logistic regres-

sion solution to this problem is to transform the odds using the natural 

logarithm (Peng, Lee &  Ingersoll, 2002). With logistic regression we 

model the natural log odds as a linear function of the explanatory variable:

logit (y)= ln (odds)= ln                =a +  βχ                   (1)
p

1-p(               )

where p is the probability of interested outcome and x is the explanatory 

variable. The parameters of the logistic regression are α and β. This is the 

simple logistic model.

Taking the antilog of equation (1) on both sides, one can derive an 

equation for the prediction of the probability of the occurrence of inter-

ested outcome as

p=P (Y= interested outcome/X= χ, a specific vlaue)

    =                       =ea+βχ

1 +  ea+βχ
1

1 +  e-(a+βχ)

Extending the logic of the simple logistic regression to multiple pre-

dictors, one may construct a complex logistic regression as 

logit (y)= ln                =a +  β1 χ1 +  ... +βk χk 
p

1-p(               )

Therefore, 

p=P (Y= interested outcome/X1 = χ1, ... Xk = χk)

    =                           =ea+β1χ1 +  ... +βkχk

1 +  ea+β1χ1 +  ... +βkχk

1
1 +  e-(a+β1χ1 +  ... +βkχk)

2. Odds ratio

The odds ratio (OR) is a comparative measure of two odds relative to 

different events. For two events A and B, the corresponding odds of A 

occurring relative to B occurring is 

odds ratio {A vs.B}=        =  
pA ⁄ (1-pA)
pB ⁄ (1-pB)

odds {A}
odds {B}

An OR is a measure of association between an exposure and an out-
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y =      =
ex

1 +  ex

1
1 +  e-x

which is graphed in Figure 1. 

To provide flexibility, the logistic function can be extended to the form 

y =                       =ea+βχ

1 +  ea+βχ
1

1 +  e-(a+βχ)

where α and β determine the logistic intercept and slope. 

Logistic regression fits α and β, the regression coefficients. Figure 1 

shows logistic function when α and β are 0 and 1, respectively. The logis-

tic or logit function is used to transform an ‘S’-shaped curve into an ap-

proximately straight line and to change the range of the proportion from 

0 – 1 to -∞ - +∞ as

p
1-p(               )logit (y)= ln (odds)=  ln                  =α +  βχ 

where p is the probability of interested outcome, α is the intercept pa-

rameter, β is a regression coefficient, and χ is a predictor. 

ASSUMPTIONS OF LOGISTIC REGRESSION

Logistic regression does not require many of the principle assump-

tions of linear regression models that are based on ordinary least squares 

method–particularly regarding linearity of relationship between the de-

pendent and independent variables, normality of the error distribution, 

homoscedasticity of the errors, and measurement level of the indepen-

dent variables. Logistic regression can handle non-linear relationships 

between the dependent and independent variables, because it applies a 

non-linear log transformation of the linear regression. The error terms 

come. The OR represents the odds that an outcome (e.g. disease or disor-

der) will occur given a particular exposure (e.g. health behavior, medical 

history), compared to the odds of the outcome occurring in the absence 

of that exposure. 

When a logistic regression is calculated, the regression coefficient (b1) is 

the estimated increase in the logged odds of the outcome per unit increase 

in the value of the independent variable. In other words, the exponential 

function of the regression coefficient (eb1) is the OR associated with a one-

unit increase in the independent variable. The OR can also be used to de-

termine whether a particular exposure is a risk factor for a particular out-

come, and to compare the magnitude of various risk factors for that out-

come. OR=1 indicates exposure does not affect odds of outcome. OR>1 

indicates exposure associated with higher odds of outcome. OR<1 indi-

cates exposure associated with lower odds of outcome. For example, the 

variable smoking is coded as 0 (=no smoking) and 1 (=smoking), and 

the odds ratio for this variable is 3.2. Then, the odds for a positive outcome 

in smoking cases are 3.2 times higher than in non-smoking cases.

Logistic regression is one way to generalize the OR beyond two binary 

variables (Peng & So, 2002). Suppose we have a binary response variable Y 

and a binary predictor variable X, and in addition we have other predictor 

variables Z1, ..., Zk that may or may not be binary. If we use multiple logistic 

regression to regress Y on X, Z1, ..., Zk, then the estimated coefficient βx for 

X is related to a conditional OR. Specifically, at the population level

eβx =
P (Y=1│X=1, Z1, …, Zk) / P (Y= 0│X=1, Z1, …, Zk)
P (Y=1│X= 0, Z1, …, Zk) / P (Y= 0│X= 0, Z1, …, Zk)

so eβx is an estimate of this conditional odds ratio. The interpretation of 

eβx is as an estimate of the OR between Y and X when the values of Z1, ..., 

Zk are held fixed. 

3. The logistic curve 

Logistic regression is a method for fitting a regression curve, y = f(x), 

when y consists of binary coded (0, 1- -failure, success) data. When the 

response is a binary (dichotomous) variable and x is numerical, logistic 

regression fits a logistic curve to the relationship between x and y. Logis-

tic curve is an S-shaped or sigmoid curve, often used to model popula-

tion growth (Eberhardt & Breiwick, 2012). A logistic curve starts with 

slow, linear growth, followed by exponential growth, which then slows 

again to a stable rate.

A simple logistic function is defined by the formula

ex
p

(x
)/

(1
+

ex
p

(x
))

-6     -4      -2       0       2       4       6
x

0.
8

0.
4

0.
0

Figure 1. Graph of logistic curve where α=0 and β=1.
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(the residuals) do not need to be multivariate normally distributed–al-

though multivariate normality yields a more stable solution. The vari-

ance of errors can be heteroscedastic for each level of the independent 

variables. Logistic regression can handle not only continuous data but 

also discrete data as independent variables.  

However, some other assumptions still apply (Bewick, Cheek, & Ball, 

2005; Peng & So, 2002): First, logistic regression requires the dependent 

variable to be discrete mostly dichotomous. Second, since logistic regres-

sion estimates the probability of the event occurring (P(Y=1)), it is neces-

sary to code the dependent variable accordingly. That is the desired out-

come should be coded to be 1. Third, the model should be fitted cor-

rectly. It should not be over fitted with the meaningless variables in-

cluded. Also it should not be under fitted with meaningful variable not 

included. Fourth, logistic regression requires each observation to be in-

dependent. Also the model should have little or no multicollinear-

ity. That is, independent variables are not linear functions of each other. 

Fifth, whilst logistic regression does not require a linear relationship be-

tween the dependent and independent variables, it requires that the in-

dependent variables are linearly related to the log odds of an event. Lastly, 

logistic regression requires large sample sizes because maximum likeli-

hood estimates are less powerful than ordinary least squares used for es-

timating the unknown parameters in a linear regression model. 

STUDY DESIGN OF LOGISTIC REGRESSION

Logistic regression model corresponds to data from either a cross-sec-

tional, prospective, or retrospective case-control study (Hsieh, Bloch & 

Larsen, 1998). In the cross-sectional studies a random sample is taken 

from a population, and outcome and explanatory variables are collected si-

multaneously. The fitted probabilities from a logistic regression model are 

then estimates of proportions of an outcome in the underlying population. 

In the prospective studies, a set of subjects are selected and the ex-

planatory variables are observed. Subjects are then followed over some 

standard period (e.g. a month or a year) or episode (hospital stay) to de-

termine the response outcome. In this case, the fitted probabilities are 

estimates of the probability of the response outcomes occurring. 

In the retrospective case-control studies, separate samples of case and 

control groups are first assembled and potential explanatory variables 

are collected later often through their recollections. In this case the fitted 

probabilities do not have a direct interpretation since they are deter-

mined by the relative sample sizes for case and control groups. However, 

odds ratios can be estimated based on logistic regression.

SAMPLE SIZE FOR LOGISTIC REGRESSION

Sample size calculation for logistic regression is a complicated prob-

lem, because there are so many factors involved in determining sample 

size such as statistical power, number of parameters to estimate, percent-

age of 1’s, effect size, and standard error. There are many researchers sug-

gesting different methods to calculate the required sample size for logis-

tic regression (Hosmer & Lemeshow, 2000; Hsieh et al., 1998). 

Hsieh et al. (1998) proposed a sample size formula for a simple logistic 

regression with a continuous variable with a normal distribution:

n=
(Z1-α ⁄2 +Z1-β)2

P1 (1-P1) β*2

where n is the required total sample size, β* is the effect size to be tested 

the null hypothesis H0 : β1 = 0 against the alternative H1 : β1 = β*, where β*

≠0, P1 is the overall event rate at the mean of X, and Zu is the upper uth 

percentiles of the standard normal distribution. 

When the covariate is a binary variable, the sample size formula for 

the total sample size required for comparing two independent event 

rates has the following form

(                                                                                            )
n=

(P1 -P2)2 (1-B)

Z1-α ⁄2                   +Z1-β
     P1(1-P1)+P2(1-P2)P(1-P)

B
(1-B)

B

2

where P =  (1-B)P1 +BP2 is the overall event rate; B is the proportion of 

the sample with X=1; P1 and P2 are the event rates at X= 0 and X=1, re-

spectively. 

For multiple logistic regression, Peduzzi , Concato, Kemper, Holford, & 

Feinstein (1996) suggested a very simple guideline for a minimum number 

of cases for logistic regression study. Let p be the smallest of the propor-

tions of negative or positive cases in the population and k the number of 

independent variables, then the minimum number of cases to include is:

N=10 k / p

For example, if there are 5 explanatory variables to include in the 

model and the proportion of positive cases in the population is 0.25 

(25%). The minimum number of cases required is

N=10 x 5 / 0.25=200

Long (1997) suggested that if the resulting number is less than 100 it 

should be increased to 100.  
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FITTING THE LOGISTIC REGRESSION MODEL

Although logistic regression model, logit (y)=α+βχ looks similar to a 

simple linear regression model, the underlying distribution is binomial 

and the parameters, α and β cannot be estimated in the same way as for 

simple linear regression. Instead, the parameters are usually estimated 

using the method of maximum likelihood of observing the sample val-

ues (Menard, 2001). Maximum likelihood will provide values of α and β

which maximize the probability of obtaining the data set. It requires it-

erative computing with computer software.

The likelihood function is used to estimate the probability of observing 

the data, given the unknown parameters (α and β). A “likelihood” is a prob-

ability that the observed values of the dependent variable may be predicted 

from the observed values of the independent variables. The likelihood var-

ies from 0 to 1 like any other probabilities. Practically, it is easier to work 

with the logarithm of the likelihood function. This function is known as 

the log-likelihood. Log-likelihood will be used for inference testing when 

comparing several models. The log likelihood varies from 0 to -∞ (it is neg-

ative because the natural log of any number less than 1 is negative).

In logistic regression, we observe binary outcome and predictors, and 

we wish to draw inferences about the probability of an event in the popu-

lation. Suppose in a population from which we are sampling, each indi-

vidual has the same probability p, that an event occurs. For each individ-

ual in our sample of size n, Yi =1 indicates that an event occurs for the ith 

subject, otherwise, Yi =0. The observed data are Y1, . . . , Yn and X1, . . .  , Xn 

The joint probability of the data (the likelihood) is given by 

i=1

n
L=∏ p (y⁄x)Yi (1-p (y⁄x))1-Yi =p (y⁄x)         (1-p (y⁄x))n-

n∑i=1Yi n∑i=1Yi

Natural logarithm of the likelihood is 

(               )
i=1 i=1

n n

l= log (L)=∑ Yi log [p (y⁄x)]+   n-∑ Yi   log [1-p (y⁄x)] 

In which 

p (y⁄x)=                      ea+βχ

1 +  ea+βχ

Estimating the parameters α and β is done using the first derivatives of 

log-likelihood, and solving them for α and β. For this, iterative computing is 

used. An arbitrary value for the coefficients (usually 0) is first chosen. Then 

log-likelihood is computed and variation of coefficients values observed. 

Reiteration is then performed until maximization of l (equivalent to maxi-

mizing L). The results are the maximum likelihood estimates of α and β.

EVALUATION OF A LOGISTIC REGRESSION MODEL

There are several parts involved in the evaluation of the logistic regres-

sion model. First, the overall model (relationship between all of the inde-

pendent variables and dependent variable) needs to be assessed. Second, 

the importance of each of the independent variables needs to be as-

sessed. Third, predictive accuracy or discriminating ability of the model 

needs to be evaluated. Finally, the model needs to be validated.

1. Overall model evaluation

1)�The�likelihood�ratio�test

Overall fit of a model shows how strong a relationship between all of the 

independent variables, taken together, and dependent variable is. It can be 

assessed by comparing the fit of the two models with and without the in-

dependent variables. A logistic regression model with the k independent 

variables (the given model) is said to provide a better fit to the data if it 

demonstrates an improvement over the model with no independent vari-

ables (the null model). The overall fit of the model with k coefficients can 

be examined via a likelihood ratio test which tests the null hypothesis 

H0 : β1 = β2 = . . .= βk = 0.

To do this, the deviance with just the intercept (-2 log likelihood of 

the null model) is compared to the deviance when the k independent 

variables have been added (-2 log likelihood of the given model). Likeli-

hood of the null model is the likelihood of obtaining the observation if 

the independent variables had no effect on the outcome. Likelihood of 

the given model is the likelihood of obtaining the observations with all 

independent variables incorporated in the model. 

The difference of these two yields a goodness of fit index G, χ2 statistic 

with k degrees of freedom (Bewick, Cheek, & Ball, 2005). This is a mea-

sure of how well all of the independent variables affect the outcome or 

dependent variable. 

G= χ2 = (-2 log likelihood of null model)-(-2 log likelihood of given model)

An equivalent formula sometimes presented in the literature is 

=  -2 log    likelihood of the null model
                    likelihood of the given model

where the ratio of the maximum likelihood is calculated before taking 

the natural logarithm and multiplying by -2. The term ‘likelihood ratio 

test’ is used to describe this test. If the p-value for the overall model fit 

statistic is less than the conventional 0.05, then reject H0 with the conclu-
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sion that there is evidence that at least one of the independent variables 

contributes to the prediction of the outcome. 

2)�Chi-Square�Goodness�of�Fit�Tests�

With logistic regression, instead of R2 as the statistics for overall fit of 

the linear regression model, deviance between observed values from the 

expected values is used. In linear regression, residuals can be defined as 

yi -ŷi, where yi is the observed dependent variable for the ith subject, and 

ŷi the corresponding prediction from the model. The same concept ap-

plies to logistic regression, where yi is equal to either 1 or 0, and the cor-

responding prediction from the model is as

ŷi =
exp (α+β1xi1 +. . .+βkxik) 

1+ exp (α+β1xi1 +. . .+βkxik)

Chi-square test can be based on the residuals, yi -ŷi (Peng & So, 2002). 

A standardized residual can be defined as

ri =
yi -ŷi

ŷi (1-ŷi )

where the standard deviation of the residuals is ŷi(1-ŷi). One can then 

form a χ2 statistic as

i=1

n
χ2 =∑ ri

2

This statistic follows a  χ2 distribution with n−(k+1) degrees of freedom, 

so that p-values can be calculated.  

3)�Hosmer�-�Lemeshow�test

The Hosmer–Lemeshow test is to examine whether the observed pro-

portions of events are similar to the predicted probabilities of occurrence 

in subgroups of the model population. The Hosmer-Lemeshow test is 

performed by dividing the predicted probabilities into deciles (10 groups 

based on percentile ranks) and then computing a Pearson Chi-square that 

compares the predicted to the observed frequencies in a 2-by-10 table. 

The value of the test statistics is 

 

g =1

10

H=∑ (Og -Eg)2

Eg 

where Og and Eg denote the observed events, and expected events for the 

gth risk decile group. The test statistic asymptotically follows a χ2 distri-

bution with 8 (number of groups -2) degrees of freedom. Small values 

(with large p-value closer to 1) indicate a good fit to the data, therefore, 

good overall model fit. Large values (with p< .05) indicate a poor fit to 

the data. Hosmer and Lemeshow do not recommend the use of this test 

when there is a small n less than 400 (Hosmer & Lemeshow, 2000).

2. Statistical significance of individual regression coefficients

If the overall model works well, the next question is how important each 

of the independent variables is. The logistic regression coefficient for the 

ith independent variable shows the change in the predicted log odds of 

having an outcome for one unit change in the ith independent variable, all 

other things being equal. That is, if the ith independent variable is changed 

1 unit while all of the other predictors are held constant, log odds of out-

come is expected to change bi units. There are a couple of different tests de-

signed to assess the significance of an independent variable in logistic re-

gression, the likelihood ratio test and the Wald statistic (Menard, 2001).  

1)�Likelihood�ratio�test

The likelihood-ratio test used to assess overall model fit can also be 

used to assess the contribution of individual predictors to a given model. 

The likelihood ratio test for a particular parameter compares the likeli-

hood of obtaining the data when the parameter is zero (L0) with the like-

lihood (L1) of obtaining the data evaluated at the MLE of the parameter. 

The test statistic is calculated as follows:

G= -2 ln         = -2 (ln L0 -ln L1)
L0

L1 

This statistics is compared with a χ2 distribution with 1 degree of free-

dom. To assess the contribution of individual predictors one can enter 

the predictors hierarchically, then compare each new model with the 

previous model to determine the contribution of each predictor. 

2)�Wald�statistic

The Wald statistic can be used to assess the contribution of individual 

predictors or the significance of individual coefficients in a given model 

(Bewick et al., 2005). The Wald statistic is the ratio of the square of the 

regression coefficient to the square of the standard error of the coeffi-

cient. The Wald statistic is asymptotically distributed as a Chi-square 

distribution.

Wj =  
βj 2

SEβj 
2 

Each Wald statistic is compared with a Chi-square with 1 degree of 
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freedom. Wald statistics are easy to calculate but their reliability is ques-

tionable. 

3)�Odds�ratios�with�95%�CI

Odds ratio with 95% confidence interval (CI) can be used to assess the 

contribution of individual predictors (Katz, 1999). It is important to note 

however, that unlike the p value, the 95% CI does not report a measure’s 

statistical significance. It is used as a proxy for the presence of statistical 

significance if it does not overlap the null value (e.g. OR=1). 

The 95% CI is used to estimate the precision of the OR. A large CI in-

dicates a low level of precision of the OR, whereas a small CI indicates a 

higher precision of the OR. An approximate confidence interval for the 

population log odds ratio is 

95% CI for the In (OR)= In (OR)±1.96×{SE In (OR)}

where ln(OR) is the sample log odds ratio, and SE ln(OR) is the standard 

error of the log odds ratio(Morris & Gardner, 1988). Taking the antilog, 

we get the 95% confidence interval for the odds ratio:

95% CI for OR= eIn (OR)±1.96×{SE In (OR)}

3. Predictive Accuracy and Discrimination 

1)�Classification�table

The classification table is a method to evaluate the predictive accuracy 

of the logistic regression model (Peng & So, 2002). In this table the ob-

served values for the dependent outcome and the predicted values (at a 

user defined cut-off value) are cross-classified. For example, if a cutoff 

value is 0.5, all predicted values above 0.5 can be classified as predicting 

an event, and all below 0.5 as not predicting the event. Then a two-by-

two table of data can be constructed with dichotomous observed out-

comes, and dichotomous predicted outcomes. 

The table has following form.

If the logistic regression model has a good fit, we expect to see many 

counts in the a and d cells, and few in the b and c cells. In an analogy 

with medical diagnostic testing, we can consider sensitivity =a/(a+b) 

and specificity =d/(c +d). Higher sensitivity and specificity indicate a 

better fit of the model.

2)�Discrimination�with�ROC�curves

Extending the above two-by-two table idea, rather than selecting a 

single cutoff, the full range of cutoff values from 0 to 1 can be examined. 

For each possible cutoff value, a two-by-two table can be formed. Plot-

ting the pairs of sensitivity and one minus specificity on a scatter plot 

provides an ROC (Receiver Operating Characteristic) curve. The area 

under this curve (AUC) provides an overall measure of fit of the model 

(Bewick, Cheek, & Ball, 2004). The AUC varies from 0.5 (no predictive 

ability) to 1.0 (perfect predictive ability). Larger AUC indicates better 

predictability of the model. Points above the diagonal dividing the ROC 

space represent good classification results (better than random), while 

points below represent the poor results (worse than random).

4. Validation of the logistic regression

Logistic regression models are frequently used to predict a dependent 

variable from a set of independent variables. An important question is 

whether results of the logistic regression analysis on the sample can be 

extended to the population the sample has been chosen from. This ques-

tion is referred as model validation. In practice, a model cab be validated 

by deriving a model and estimating its coefficients in one data set, and 

then using this model to predict the outcome variable from the second 

data set, then check the residuals, and so on.

When a model is validated using the data on which the model was de-

veloped, it is likely to be over-estimated. Thus, the validity of model 

should be assessed by carrying out tests of goodness of fit and discrimi-

nation on a different data set (Giancristofaro & Salmaso, 2003). If the 

model is developed with a sub sample of observations and validated with 

the remaining sample, it is called internal validation. The most widely 

used methods for obtaining a good internal validation are data-split-

ting, repeated data-splitting, jackknife technique and bootstrapping 

(Harrell, Lee, & Mark, 1996).

If the validity is tested with a new independent data set from the same 

population or from a similar population, it is called external validation. 

Obtaining a new data set allows us to check the model in a different con-

Table 1. Sample Classification Table 

Observed
Predicted

1 0

1 a b

0 c d

a, b, c, and d are number of observations in the corresponding cells.
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text. If the first model fits the second data set, there is some assurance of 

generalizability of the model. However, if the model does not fit the sec-

ond data, the lack of fit can be either due to the different contexts of the 

two data sets, or true lack of fit of the first model. 

REPORTING AND INTERPRETING LOGISTIC 

REGRESSION RESULTS

In presenting the logistic regression results, following four types of infor-

mation should be included: a) an overall evaluation of the logistic model; b) 

statistical tests of individual predictors; c) goodness-of-fit statistics; and d) 

an assessment of the predicted probabilities. Table 2, 3, and 4 are examples 

to illustrate the presentation of these four types of information. 

Table 2 presents the statistical significance of individual regression co-

efficients (βs) tested using the Wald Chi-square statistic. According to 

Table 2, Cholesterol was a significant predictor for event (p< .05). The 

slope coefficient 1.48 represents the change in the log odds for a one unit 

increase in cholesterol. The test of the intercept (p< .05) was significant 

suggesting that the intercept should be included in the model. Odd ratio 

4.04 indicates that the odds for a event increase 4.04 times when the 

value of the cholesterol is increased by 1 unit.

Table 3 presents three inferential statistical tests for overall model 

evaluation: the likelihood ratio, score, and Wald tests. All three tests 

yield similar conclusions for the given data set, namely that given logistic 

model with independent variables was more effective than the null 

model. Table 3 also presents an inferential goodness-of-fit test, the 

Hosmer-Lemeshow test. Hosmer-Lemeshow test statistics 7.76 was in-

significant (p>.05), suggesting that the model was fit to the data well. 

Table 4 presents the degree to which predicted probabilities agree with 

actual outcomes in a classification table. The overall correct prediction, 

66.84% shows an improvement over the chance level which is 50%. With 

the classification table, sensitivity, specificity, false positive and false neg-

ative can be measured. Sensitivity measures the proportion of correctly 

classified events, whereas specificity measures the proportion of cor-

rectly classified nonevents. The false positive measures the proportion of 

observations misclassified as events over all of those classified as events. 

The false negative therefore measures the proportion of observations 

misclassified as nonevents over all of those classified as nonevents.

CAUTIONS AND CONSIDERATIONS

In logistic regression no assumptions are made about the distribu-

tions of the independent variables. However, the independent variables 

should not be highly correlated with one another because this could 

cause problems with estimation. 

Studies with small to moderate samples size employing logistic regres-

sion overestimate the effect measure. Thus, large sample sizes are re-

quired for logistic regression to provide sufficient numbers in both cate-

gories of the outcome variable. Also, the more independent variables 

were included, the larger the sample size is required. With small sample 

sizes, the Hosmer–Lemeshow test has low power and is unlikely to de-

tect subtle deviations from the logistic model. Hosmer and Lemeshow 

recommend sample sizes greater than 400 (Hosmer & Lemeshow, 2000).

Table 2. Example Output from Logistic Regression: Statistical Tests of Individual Predictors

Predictor   ß SE (ß) Wald’s χ2 df p eß (OR)
95% CI for OR

Lower Upper

Cholesterol  1.48 0.45 10.98 1 < .001 4.04 1.83 10.58

Constant -12.78 1.98 44.82 1 < .001

CI=Confidence interval; df=Degrees of freedom; OR=Odds ratio; SE=Standard error.

Table 3. Example Output from Logistic Regression: Overall Model 
Evaluation and Goodness-of-Fit Statistics

Test Categories   χ2 df p

Overall model evaluation Likelihood ratio test 12.02 2 .002

Score test 11.52 2 .003

Wald test 11.06 2 .004

Goodness-of-fit test Hosmer & Lemeshow  7.76 8 .457

Table 4. Example Output from Logistic Regression: A Classification Table

Observed
Predicted

% Correct
Yes No

Yes 3 57  5.00

No 6 124 95.48

Overall % correct 66.84

Sensitivity=3/(3+57)=5.00%; Specificity=124/(6+124)=95.48%;
False positive=6/(6+124)=4.62%; False negative=57/(3+57)=95.00%.
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ANALYSIS OF USE OF LOGISTIC REGRESSION IN NURSING

Original research articles containing explicit mention of LR were 

searched in the Journal of Korean Academy of Nursing published be-

tween 2010 and 2012. In total 23 articles were identified. There are 11 ar-

ticles performed logistic regression with secondary data from large sur-

veys, six articles from the cross-sectional survey, four articles from the 

prospective studies and two from the retrospective case-control studies. 

To evaluate the research reports, a list of criteria from Bagley et al.’s 

(2001) study was used. None of the studies reported any interaction and 

only one study reported a validation of the model with threefold cross 

validation technique, so those columns have been omitted. 

Table 5 shows the adherence to the guidelines for using and reporting 

LR for each of the 23 articles. Although it is important the logistic regres-

sion model includes all relevant variables, it is also important the model 

not start with more variables than are justified for the given number of 

observations (Peduzzi et al., 1996). Peduzzi et al. suggested that the num-

ber of the less common of the two possible outcomes divided by the 

number of independent variables should be at least 10 as a useful rule of 

thumb. For analysis of 23 articles, the number of events-per-variable 

ranged from 0.7 to 16409. Sixteen of 23 of the analyses had an events-

per-variable ratio above 10. Sample size calculation was mentioned in 

11 articles. Five out of 11 used G*Power to calculate the sample size. 

For best results from the use of logistic regression, any given change in 

a continuous independent variable should have the same effect on the 

log-odds of a positive outcome. However, in all the studies with contin-

uous or ordinal independent variables, none tested the conformity with 

the linear gradient for continuous variables. As noted before, no interac-

tions were reported in any of 23 studies. However, it is unclear whether 

interactions were considered but not found to be significant or whether 

interactions were not considered. If two highly correlated variables are 

included in the model, then their estimated contributions may be impre-

cise. Thus collinearity should be tested. However, only 5 of the 23 studies 

mentioned collinearity with the details of testing. Again it is not clear 

whether collinearities was considered but not found to be significant or 

whether collinearities were not considered. As noted before, only one 

study reported the model validation. 

All of the studies reported measures of statistical significance, typi-

cally confidence intervals and P-values for each of the independent 

variables. Sometimes, these statistics were reported only for those vari-

ables found to be significant. The statistical significance for the entire 

model was reported for 13 of the 23 analyses. Goodness of fit measures 

describing how well the entire model matches the observed values were 

reported in 9 articles. 

Nearly all the articles explained how variables were selected for inclu-

sion in the model. Most of the articles selected variables based on the lit-

erature review. However, 15 of 23 reported performing the statistical 

tests (such as bivariate analyses) before considering the variable for the 

models. None of the articles provided complete details on the coding for 

all the variables. However, it was possible to infer the coding from the 

textual description in all cases. Eight studies explicitly stated the fitting 

procedure. In one study the variables included in the model was deter-

mined in hierarchically grouped subsets. 

CONCLUSION

Logistic regression is a type of multivariable analyses used with in-

creasing frequency in the nursing domain because of its ability to model 

the relationship between dichotomous dependent variable and one or 

more independent variables. In this paper, logistic regression from basic 

concepts to interpretation of analysis results was introduced. In addition, 

twenty-three articles published between 2010 and 2011 in the Journal of 

Korean Academy of Nursing were examined to see if logistic regressions 

were properly used and reported.  

It was found that there were substantial shortcomings in the use and 

reporting of logistical regression results. Most notably, one-thirds of the 

studies had not enough sample size with events-per-variables ratios be-

low 10, suggesting that the regression results may not be reliable. Only 

one study reported internal validation analysis. Validation is a crucial 

step to test the regression model captured essential relationships in the 

domain of study. Another problem is that only five studies reported tests 

for collinearity. If there is high correlation between two independent 

variables, variance of the coefficients of these variables will be increased, 

with a consequent loss of statistical significance. In addition, none re-

ported tests for any conformity with the linear gradient for continuous 

independent variables, and tests for interactions. These problems repre-

sent failures to perform important aspect of the analysis or failures to re-

port details of the analyses. It is hard to distinguish these two possibili-

ties by reviewing published articles. 

Thus, proper use and report of this powerful and sophisticated model-

ing technique requires considerable care both in the specification of the 

model and in the estimation and interpretation of the model’s coefficients. 
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Table 5. Adherence to Guidelines for Using and Reporting Logistic Regression

Author Event per 
variable Collinearity Statistical test Goodness  

of fit
Variable 
selection

Coding of 
variables

Fitting 
procedure

Number of 
observations

Sample size 
calculation Type of study

Jung & Lee 262/7=29.1 Mentioned, 
tested by VIF

Variables: OR, CI, p 
Model: Hosmer-  

Lemeshow

Hosmer-
Lemeshow

Yes, p< .05 Yes Stepwise 1,458 No Secondary analysis of 4th 
Korean National Health 
and Nutrition Examination 
Survey

Cho & Chung 205/17=12.1 NR Variables: B, CI, p 
Model: Wald Chi-square, 

AIC, R2, Hosmer-
Lemeshow Goodness     
of fit test

Hosmer-
Lemeshow

Yes, p< .05 No Forward 
stepwise

3,348 No Retrospective cohort study

Lee, Jung, Yun, 
Um, & Jee

142/4=35.5 NR Variables: B, SE, Wald, OR, 
CI, p 

Model: Hosmer-Lemeshow 
Goodness of fit test, Chi-
Square, ROC curve, 
Correct prediction, 
Nagelkerke R2

Hosmer-
Lemeshow

Yes, p< .05 No Forward 
stepwise

401 Mentioned
(Tabachnick & 

Fidell)

Secondary Analysis of Survey

Kim & Kim 114863/7=

  16409
NR Variables: B, SE, OR, CI, p 

Model: NR
NR Informal No Generalized 

estimating 
equation 
logistic 
regression

254,414 No National Health Insurance 
Data

Yi, Yi, & Jung 2700/20=135 NR Variables: OR, CI 
Model: NR

NR Yes, p< .001 Yes NR 17783 No Korea Youth Health Risk 
Behavior Web-based 
Survey

Yeoum & Lee 181/4=43 Mentioned, 
tested by 
Collinearity 
statistics 
Tolereance, 
VIF

Variables: OR, CI, p 
Model: -2LL, Chi-Square, 

AUC

NR Yes, p< .05 Yes NR 732 No Survey

Cha, Cho, & 
Yoo

26/3=8.7 NR Variables: OR, CI, p 
Model: NR

NR Yes, p< .05 Stepwise 103 Mentioned
(Korinek)

Retrospective case-control 
study

Choi & Lee 123/20=6.1 NR Variables: OR, CI, p 
Model: Hosmer-Lemeshow 

Goodness of fit test, 
Nagelkerke R2, Correct 
prediction

Hosmer-
Lemeshow

Informal Yes NR 246 Mentioned
(Biderman, 

Fried & 
Galinsky)

Case-control study 
Interview and survey with 

secondary data from public 
health center records

Choi, Jung, 
Kim, & Park

318/15=21.2 Mentioned, 
tested by VIF

Variables: OR, CI, p 
Model: Hosmer-  Lemeshow 

Goodness of fit test

Hosmer-
Lemeshow

Informal Hierarchical,  
in 3 blocks

9094 NR Secondary analysis 
of  Korean Working            
Condition Survey

Park, & Jung 60/4=15 Mentioned, 
tested by 
Collinearity 
statistics 
Tolereance, 
VIF

Variables: OR, CI 
Model: NR

Yes, p< .05 NR 804 NR Survey

Kim & Park 756/2=378 NR Variables: OR, CI, p 
Model: NR

Informal NR 6,521 NR Secondary Analysis of  
Health Interview and Health 
Behavior Surveys

Cho & Yoo 
Yang & 

88/3=29.3 NR Variables: OR, CI, p 
Model: -2LL, AIC, Score

Yes, p< .05 NR 276 G*Power Survey

Kim 103/8=12.9 NR Variables: OR, CI, p 
Model: NR

Yes, p< .05 NR 324 G*Power Survey

Choi, Park,      
& Lee

249/9=  27.7 NR Variables: B, SE, Wald, OR, 
CI, p 

Model: NR

Yes, p< .05 NR 3,024 Mentioned Secondary Analysis of  
Survey

Yeon et al. 451/11=  41 NR Variables: OR, CI 
Model: NR

Yes, p< .05 NR 2,639 NR Secondary Analysis of 
Community Health Survey
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Table 5. Adherence to Guidelines for Using and Reporting Logistic Regression (Continued)

Author Event per 
variable Collinearity Statistical test Goodness  

of fit
Variable 
selection

Coding of 
variables

Fitting 
procedure

Number of 
observations

Sample size 
calculation Type of study

Kim, Cho,   
Cho, & Kim

17/2=  8.5 NR Variables: b, OR, CI, p 
Model: Hosmer-Lemeshow 

Goodness of fit test, 
Correct classification, 
Nagelkerke R2

Yes, p< .05 NR 175 NR Prospective descriptive  
study

Sung et al. 5/5=1 NR Variables: b, OR, CI, p 
Model: -2LL, Chi-Square, 

Hosmer-Lemeshow 
Goodness of fit test, 
Correct prediction

Informal NR 145 Mentioned Randomized Prospective 
study

Kim & Jung 11/6=1.8 NR Variables: RR, CI, p 
Model: Hosmer-Lemeshow 

Goodness of fit test, 
Correct prediction

Yes, p< .05 NR 197 G*Power Prospective cohort study

Hyun & Cho 122/7=17.4 NR Variables: OR, CI, p 
Model: -2LL,                         

Max- rescaled R2

Yes, p< .05 NR 508 G*Power Survey

Kim et al. 1053/12=87.8 NR Variables: OR, CI, p 
Model: NR

Informal Generalized 
estimating 
equation 
Logistic 
regression

111,491 NR National Health Insurance 
Data

Jang & Park 13/19=0.7 Mentioned, 
tested by VIF

Variables: OR, CI, p 
Model: Hosmer-Lemeshow 

Goodness of fit test. 
Nagelkerke R2

Informal Stepwise 416 NR Survey

Oak & Lee 8494/12=
797.8

NR Variables: b, SE, Wald, OR, CI, p 
Model: -2LL, Chi-Square, Cor-

rect prediction, Negelkerke R2

NR 37,570 NR Secondary analysis 

Cho, Lee, 
Mark, & Lee

192/7=2.7 NR Variables: OR, CI, p
Model: NR

Informal NR 507 NR Public Survey Data

NR=Not reported; VIF=Variance inflation factor; AUC=Area under curve; ROC=Receiver operationg characteristic; AIC=Akaike's information criterion; LL=Log- likelihood CI=Confidence 
interval; df=Degrees of freedom; OR=Odds ratio; SE=Standard error.


