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Summary and Purpose

Markov models are useful for modeling the complex behavior associated with fault tolerant systems. This tutorial will adopt

an intuitive approach to understanding Markov models (allowing the attendee to understand the underlying assumptions and

implications of the Markov modeling technique) without highlighting the mathematical foundations of stochastic processes or

the numerical analysis issues involved in the solution of Markov models. This introduction to Markov modeling stresses the

following topics: an intuitive conceptual understanding of how system behavior can be represented with a set of states and inter-

state transitions, the characteristics and limitations of Markov models, and when use of a Markov model is and is not preferable

to another type of modeling technique. Homogeneous, non-homogeneous and semi-Markov models will be discussed with ex-

amples. Use of Markov models for various comparatively sophisticated modeling situations that are commonly found in state-

of-the-art fault-tolerant computing systems will also be discussed (specifically: repair, standby spares, sequence dependent be-

havior, transient and intermittent faults, imperfect fault coverage, and complex fault/error handling) with simple examples to il-

lustrate each modeling situation covered.

This tutorial will be aimed at systems engineers/project leads/managers who need to include reliability or availability consid-

erations in their design decisions, and who consequently would benefit from an intuitive description of what Markov modeling

could do for them (in terms of what types of system behaviors can be captured and why they might want to use Markov model-

ing rather than some other modeling technique) to aid in designing/evaluating their systems. It will be assumed that the audi-

ence will have a background in undergraduate mathematics (calculus and elementary probability); previous exposure to Markov

processes and elementary reliability/availability modeling will be helpful but not essential, and will not be assumed.
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Introduction

Markov modeling is a modeling technique that is widely

useful for dependability analysis of complex fault tolerant sys-

tems. It is very flexible in the type of systems and system

behavior it can model, it is not, however, the most appropri-

ate modeling technique for every modeling situation. The

first task in obtaining a reliability or availability estimate for a

system is selecting which modeling technique is most appro-

priate to the situation at hand. A person performing a depend-

ability analysis must confront the question: is Markov mod-

eling most appropriate to the system under consideration, or

should another technique be used instead? The need to an-

swer this gives rise to other more basic questions regarding

Markov modeling: what are the capabilities and limitations of

Markov modeling as a modeling technique? How does it re-

late to other modeling techniques? What kind of system be-

havior can it model? What kinds of software tools are avail-

able for performing dependability analyses with Markov mod-

eling techniques? These questions and others will be ad-
dressed in this tutorial.

Intended Audience

• Engineers, managers, students, etc., with an interest in

modeling systems for reliability

• Light or no background in modeling, reliability, or

probability theory

• Could benefit from an intuitive presentation of Markov

modeling:

- How Markov models represent system behavior

- Types of system behavior that can be represented

- Why use Markov models rather than some other type of
model?

- Differences between the 3 types of Markov models

Slide I

Slide I: Intended A udience

The purpose of this tutorial is to provide a gentle introduc-

tion to Markov modeling for dependability (i.e. reliability

and/or availability) prediction for fault tolerant systems. The

intended audience are those persons who are more application

oriented than theory oriented and who have an interest in

learning the capabilities and limitations of Markov modeling

as a dependability analysis technique. This includes engi-

neers responsible for system design, managers responsible for

overseeing a design project and for ensuring that dependability

requirements are met, students studying engineering or de-

pendability analysis, and others who have a need or interest to

be familiar with the use of Markov models for dependability

analysis. The audience will be assumed to familiar with cal-

culus and elementary concepts of probability at no more than

an undergraduate level. Beyond that, little or no background

in modeling, dependability, or probability theory will be as-

sumed on the part of the audience. In short, this tutorial is

intended for anyone who could benefit from an intuitive pres-

entation of the basics of Markov models and their application

for dependability analysis.
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Outline 2

hTtroduction

• Role of reliability/availability modeling in system design and
validation

• Place of Markov models in the spectrum of modeling methods

Basics of Markov Models

• How Markov models represent system behavior:
- states
- transitions

• 3 types of Markov models:

- Homogeneous

- Non-homogeneous
Semi-Markov

• Example model: Hypercube Multiprocessor

/Io_ diff,.re, n! m.d,',%',c ,_ wm;prio_, ,eivr, ri_e tr, ,/iffi'rcnt cvFev
.[ ,,_4a&,,v ._odr/_

Slide 2

Outline (cont)

Uses of Markov Models for Dependabili O, Analysis

• Major advantages and disadvantages of Markov modeling

• How Selected System Behaviors can be Modeled with Markov
Models:

- Complex Repair

- Standby Spares (Hot, Warm, Cold)

- System has Sequence Dependent Behavior

System is subject to Transient/Intermittent Faults

- System has complex hnperfect Coverage of Faults

- System has complex Fault/Error Handling and Recovery

Additional Issues
• Model generation and validation

• Stiffness

• State space size - state reduction techniques

Selected Software Tools fi." Markot, Modeling

Summa O' and Conchtsion

Slide 3

Slides 2 & 3: Outline of Tutorial

This tutorial will be organized in the following way: we

will begin with a discussion of the role that reliability model-

ing in general plays in system design and validation and the

place that Markov modeling in particular occupies within the

spectrum of the various modeling techniques that are widely

used. We will then offer an intuitive description of generic

Markov models and show how they can represent system be-

havior through appropriate use of states and inter-state transi-

tions. Three types of Markov models of increasing complex-

ity are then introduced: homogeneous, non-homogeneous,

and semi-Markov models. An example, consisting of a fault-

tolerant hypercube multiprocessor system, is then offered to

show how different assumptions regarding system characteris-

tics (such as component failure rates and standby spare policy)

translate into different types of Markov models. This is fol-

lowed by a discussion of the advantages and disadvantages

that Markov modeling offers over other types of modeling

methods, and the consequent factors that would indicate to an

analyst when and when not to select Markov modeling over

the other modeling methods. Next, a series of slides is pre-

sented showing how selected specific system behaviors can be
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modeled with Markov models. We then discuss some addi-

tional issues arising from the use of Markov modeling which

must be considered. These include options for generating and

validating Marker models, the difficulties presented by stiff-

ness in Markov models and methods for overcoming them,

and the problems caused by excessive model size (i.e. too

many states) and ways to reduce the number of states in a

model. Finally, we provide an overview of some selected

software tools for Markov modeling that have been developed

in recent years, some of which are available for general use.

System Design and Validation 4
Given: A target application with specified reliability and performance

requirements

Engineer's Task:
Design a system to satisfy the intended application which meets

the specified reliability, performance, and other (weight, power

consumption, size, etc.) requirements

Ilow doyou estimate the reliability, availahiliO', saJety, and

peJJbrmtttwe era system that haxt_ 't bet, tr built yet?

With Dependability Models:

/k_tract

Real-World System

Mathematical Model

Slide 4

Slide 4: Role of Dependability Modeling in System Design
and Validation

The process of designing and building a system often be-

gins when a team of design engineers is presented with a tar-

get application by an outside agency (for example, NASA, the

DoD, or a commercial customer) or by their management.

This target application may have specified dependability and

performance requirements, particularly if the application is a

safety-critical system (dependability is an umbrella term

which encompasses reliability, availability, safety, etc.[l]).

The engineers' task then is to design a system (or subsystem)

which satisfies the requirements of the application (including

function, performance, and dependability) while simultane-

ously adhering to other constraints such as limits on weight,

power consumption, physical size, etc. The required function

may be able to be satisfied by any one of a number of different

designs, each of which may have different characteristics.

Typically it is desirable to maximize performance and depend-

ability while minimizing cost, weight, size, and power.

Characteristics like cost, weight, and power are relatively easy

to predict for a given design because they tend to be straight-

forward functions of the numbers and properties of the individ-

ual components used to construct the overall system. Per-

formance and dependability are more difficult to predict be-

cause they depend heavily on the configuration in which the

components are arranged. They may also depend on the work

load imposed on the system and the environment in which the

system operates. Short of actually building each proposed

design and observing the performance and dependability from

real-life experience (an option which is impractical), the sys-

tem designers need tools with which to predict the perform-

RF #98RM-31

ance and dependability of their candidate designs and assist

them in selecting which design to actually build.

Non-optimal (but common) use

of Dependability Analysis in

System Design

Performed after design is committed based on

other constraint criteria (cost, weight, etc.)

Used for post-mortem confirmation that the design

meets the minimal reliability requirements

Often performed by modeling specialists

(reliability analysts) on designs "thrown over the

transom", rather than by the design engineers

themselves as the design is evolving

Slide 5

6
Use of Dependability Analysis for

Post-Design-Cycle Validation Only

(No n- Opti in al Use)

System

Design

tternre

Debug Design

Dependability

ale sMisfit-d to.' salety.

(for V&V) reliability, availability,
mairR,_ina bilit y. performance

Slide 6

Slides 5 & 6." Non-Optimal (Post-Design-Phase Only) Use of

Dependability Modeling for System Design and
Validation

Mathematical modeling (of which Markov modeling is one

method) provides such tools that can assist in providing the

needed performance and dependability predictions. Often the

design process is evolutionary, proceeding in a series of itera-

tive refinements which may give rise to a sequence of decision

points for component/subsystem configuration arrangements.

Subsequent decision points may depend on earlier ones. ide-

ally, the system designers should be able to use dependability

modeling throughout the entire design process to provide the

dependability predictions required to make the best configura-

tion selections at all decision points at all levels of system

refinement. Having dependability modeling tools continu-

ously available for use on a "what-if" basis by the system de-

signers is important because of the exploratory nature that

tends to characterize human creative work.

However, in practice the use of dependability modeling in

the design of systems often falls short of this ideal. Instead of
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playing a role as an integral part of the design process, it may

be used, after the design has been selected and committed,

simply as a method for providing officially recognized evi-

dence that the design meets contractually mandated depend-

ability requirements, in this capacity, it is often performed by

modeling specialists (i.e., reliability analysts) rather than by

the design engineers.

This strategy for using dependability modeling has several

disadvantages. The system designers are not given the benefit

of the insight into the candidate designs that dependability

modeling could provide while the design is still in its forma-

tive stage. The result may be that an acceptable design

might be produced which meets the specified dependability

requirements, but it is less likely that the best design will be

produced than if dependability modeling was used throughout

the design process. The use of dependability modeling during

design rather than afterward can improve the quality of the sys-

tem design that is produced.

Another disadvantage arises when the dependability analysis

is performed by modeling specialists rather than by the design

engineers. Modeling a system requires intimate knowledge of

the system and how it operates. The design engineers have

this more than anyone else. For a modeling specialist to

model the system, the engineers must essentially teach the

modeling specialist the technical subtleties of the system.

Often these fall in a technical field that is outside the expertise

of the modeling specialist. The engineers may not know ex-

actly what information is important to give to the specialist,

and the specialist may not know enough to ask for all the ap-

propriate information. The result can be that important details

may be omitted from the system model, and the reliability

prediction obtained from the model may not be completely

accurate or appropriate. Even if the information transfer from

the designers to the modeling specialist is eventually ade-

quate, there may be delays from false starts and errors (caught

and corrected) that arise during the communication and are due

to the unfamiliarity of each professional with the field of the
other.

Slides 7 & 8: Optimal Use of Dependability Modeling for

System Design and Validation: as an Integral

Part of the Systems Engineering Design Cycle

For these reasons, it is generally preferable for the design

engineers themselves to do as much as possible of the initial

modeling (particularly the "what-if' modeling) of their system

rather than to pass the full modeling job to a modeling spe-

cialist. The engineer may consult the modeling specialist if

questions arise about the modeling process. The advent of

sophisticated general-use reliability modeling computer pro-

grams, which insulate the user from much of the mathematical

details and subtleties involved in modeling, has helped quite

a bit to grant design engineers this kind of independence to do

their own modeling.

it should be noted, however, that dependability modeling is

still quite a bit of an art and can involve some subtle aspects

that can be overlooked or misunderstood by inexperienced

modelers. This is particularly true when Markov modeling

techniques are used, and is especially true when performing

the validation analysis on the final design. Even the most

recent reliability modeling programs do not yet have robust

RF

capabilities for guarding against inadvertent application of in-

appropriate modeling techniques. For this reason it is wise

for a design engineer to have a modeling specialist review any

dependability model upon which important design decisions

depend. Hopefully this double-checking will be less impor-

tant as dependability modeling computer programs develop

more sophisticated checking capabilities. But the current state

of the art for these programs makes it still prudent to include a

modeling specialist in the loop in this verification role.

Optimal Use of Dependability 7

Analysis in System Design

Dependability Modeling should be an.Bz/£g/_al part of the
System Design Process:

• Used throughout the design process at all levels of system evolution
and refinement

• Used on a "what-if' basis by the Design Engineers to compare
competing design options

Benefits:

• When modeling is done by the Design Engineers as much as possible:

- Reduces delays and errors due to communication problems

between the Design Engineers and the Modeling Specialists

- Can help the Design Engineers gain new insights into the system
and understand it better

• Can help produce not just a minimally acceptable design, but the..he.xt
design possible

Slide 7

8

Integration of Dependability Analysis into

the Systems Engineering Design Process

Start I Sy

De

rDependabilit y

! analysis

I F

Re

De

lediale

' ,_ COlItBcN_III eYlllU411lJO_,SeklCt chartres Io iltcrlNil_ s41_ety,;;x 1--I:..-..,....-I--I-,-,,.--, I
I I t mllnlldnabiltty, ore. J

Final

Verification that requirements

,,1 | Dependability [ ...... isf.,, f.... .... ]

°" I a.a,,.i, t ...........J;ign J (for V_.V} _ reli.'lbillty, avail:lbilily.

Slide 8

Slide 9: The Place of Markov Modeling in the Spectrum of

Modeling Methods

The range and capabilities of available methods for mathe-

matical modeling have increased greatly over the last several

decades. A dependability analyst has a full spectrum of meth-

ods from which to choose. Generally, the best strategy is to

match the modeling method to the characteristics and required

level of detail in the behavior of the system that must be mod-

eled. It is important to select the simplest modeling method

that will suffice. For this reason, it is helpful to have a

knowledge of the characteristics, capabilities, and limitations

of all modeling methods in the spectrum. While obtaining a

thorough knowledge of all of this would be very time-

consuming, it is possible to make a good selection with only
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a general working familiarity with the various modeling

methods. The spectrum (depicted in the slide) extends from

the simplest types of models on the left up through the most

complex on the right. The more complex techniques on the

right generally encompass _the simpler techniques on the left

with respect to the range of system behavior that can be mod-

eled. The further to the right a modeling technique appears in

the diagram, the more sophisticated it tends to be relative to

those to its left, and the wider the range of system behavior it

can model. This capability is not without cost, however.

The more sophisticated a method is, the more sophisticated

the evaluation technique required to solve the model usually

is. This occasionally means that solving the model will re-

quire more execution time than that needed to solve a simpler

model of comparable size. Also, the more complex the mod-

eling technique the harder it usually is for the user to specify

the model, and the easier it is to make errors during model

construction, in addition, it is generally more difficult to use

the more sophisticated modeling techniques correctly, requir-

ing greater modeling knowledge and experience on the part of

the analyst. In summary, the decision of which modeling

technique to use to model a system involves a tradeoffof

simplicity vs. flexibility. This fact provides the motivation to

use the simplest modeling technique that suffices to model the

system for the required level of detail.

Spectrum oI Modeling Methods
Combinatonal Models

 .e,,ab.,IyS,oc. ia rams,

 au.Tree.I

I_ :ac,va=:,._cc.,_,_:_::__:_,a:c.:,=c..a,:s, .
Digrephs Dyna_rnic Generalize_ Stochastic Simu_tion

Fault Trees Petd Nels (GSPNs)

Techniques on right generally (but not strictly) encompass the techniques

on their left wrt complexity of system behavior thai can be modeled

('./_ahiiily to mod_.l m< rca_i.:.,Iv ,Omld<V vystem hehm,ie)i tmp/ie_:

Benefits:

• Increased "modeling power", more sophisticated modeling technique

• Able to model a wider range of systems than less sophisticated techniques

Drawbacks:

* Usually requir¢s more sophisticated solution methods

• Harder to specify model: more modeling expertise required; easier to make

errors in the model

Slide 9

The leftmost modeling techniques appearing in the spec-

trum shown in the slide are the combinatorial modeling tech-

niques, digraphs and fault trees[2] (included with fault trees

This is not to say that the more complex techniques on the

right strictly encompass the simpler techniques on the left; it

is only a general tendency. There are cases where a technique

can model a certain type of system behavior that a technique

farther to the right cannot, or can model only awkwardly. For

example, digraphs are the only modeling technique in the

spectrum that can model fault propagation elegantly. As a

further example, combinatorial models can model system be-

havior which is combinatorial in nature but for which compo-

nent lifetimes have a general (i.e. non-exponential) distribu-

tion; Markov models cannot model this type of system behav-

ior at all.

RF

are similar techniques like reliability block diagrams). These

techniques model the system by expressing system behavior

in terms of the combinations of individual events (for exam-

ple, component failures) which cause the system to fail (for

failure space models) or to operate correctly (for success space

models). Models of these types are usually the easiest to con-

struct and solve compared to the other more complex tech-

niques. However, they are relatively limited in the types of

system behavior they can model compared to the other tech-

niques. More complex are dynamic fault trees[3, 4], which

are a generalization of traditional fault trees that allow se-

quence dependent system behavior to be included in the

model (sequence dependent behavior is behavior that depends

in some way on the order in which events occur). Next on the

scale are the Markov modeling techniques which are the topic

of this tutorial. In addition to being able to model much of

the combinatorial and sequence dependent behavior that the

previous model types can, they can model a wide range of be-

havior that arises from many techniques used in present state-

of-the-art fault tolerant systems, including the use of complex

repair strategies, dynamic reconfiguration using spares, and

complex fault/error recovery procedures that are not always

perfectly effective. Next are hybrid and hierarchical modeling

techniques. These essentially provide methods for combining

models of the types already mentioned together into larger

models. At the top of the scale is simulation. Simulation

provides the ability to capture the most detailed system be-

havior of all the other modeling techniques, but at a cost of

greater relative difficulty in constructing and validating the

model, and also much greater execution time required to ob-

tain highly accurate evaluations of the model.

The reader may note that Markov modeling techniques are

approximately midway along the complexity spectrum of

modeling techniques, and this indicates their place relative to

the other modeling techniques. However, the reader should be

cautioned that the spectrum in the slide is not to scale with

respect to an absolute measure of modeling complexity and

sophistication, and moreover the reference to Markov models

itself represents several modeling techniques which cover a

range of system behavior. These Markov modeling tech-

niques will be discussed in the remainder of this tutorial.

Basics of Markov Models

A discussion of Markov modeling begins with the basic

components of Markov models: states and transitions. Also

to be considered are the topics of how the states and transi-

tions are used to express system behavior, what "solving" a

Markov model involves, and how reliability/availability esti-

mates may be obtained from the solution ofa Markov model.

In addition, it is important to know the advantages and disad-

vantages of Markov modeling compared to other modeling

techniques, and when Markov modeling is and is not preferred

over other modeling techniques.

Slide I0: Markov Models - Basic Model Components and Be-
havior

There are two basic components common to all of the

Markov models discussed in this tutorial: a set of states, and

a set of transitions between the states. The models consid-

ered here are limited to those having a countable number
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(possibly infinite) of states. The model operates in the follow-

ing way: the system is envisioned as being in one of the

states at all times throughout the time period of interest. The

system can be in only one state at a time, and from time to

time it makes a transition from one state to another state by

following one of the set of inter-state transitions. There are

two types of models that can be considered at this point, de-

pending on how the transitions are permitted to occur in the

time domain. If the transitions are restricted to occur only at

fixed, unit time intervals with a transition required at each in-

terval, then the model is called a Discrete Time Markov Chain

(DTMC). If, however, this restriction is relaxed and the tran-

sitions are permitted to occur at any real-valued time interval,

the model is called a Continuous Time Markov Chain

(CTMC). The time between transitions is called the state

holding time. This tutorial will be concerned only with the

latter type, i.e. CTMCs.

Markov Models: Model Components

and Model Behavior

Basic Model Components:

• A set of states (discrete, countable)

• A set of transitions between the states

How the Model Operates:

• The system must be in one of the states at all times

• The system may be in only one state at a time

• From time to time, the system makes a transition from one state to

another

Discrete Time:

10

inter-state transition times (state

holding times) have unit values

Cnntinu_lus Time: state holding times may be any
real-valued time interval

Slide ! 0

11
Markov Models: Model Components and

Model Behavior (eont)

Analogy --

Imagine a frog in a lily pond:

Lily pads = _tlttcs

Frog = _yslem's utlrl':.'nl <l,_itus

Frog hopping from one lily pad to another = tiansition

Time frog spends on a lily pad before hopping = :_hlic holding tilnc

From any specific lily pad, may be possible to hop to only a certain

subset of the other lily pads _ _lalc_ otl{_oing,/ran_iliims

May not be possible to leave certain lily pads _ "'ahvwhin_- _l;ne¢'

(usually represent failure states)

Slide 1I

Slide I1: Markov Models - A Simple Analogy

An analogy may help with envisioning how the Markov

model works: imagine a frog in a lily pond where he is free to

hop among the lily pads in the pond, and with the further

provision that he never falls into the water[5]. The lily pads

in the pond correspond to states in a Markov model. The frog

corresponds to the system's current status or state of being.
RF #9gRM-31

The frog hopping from one lily pad to another corresponds to

the system making a transition from one state to another in

the Markov model. The time that the frog spends sitting on a

lily pad before making a hop corresponds to the state holding

time. From any specific lily pad, the frog may be able to hop

to only a specific subset of the other lily pads in the pond

(some may be too far away, some may have a log or other ob-

stacle barring the way). The lily pads to which hopping is

possible correspond to the set of outgoing transitions each

state has that specify' which other states are directly reachable

from the given state. In the pond there may be some lily pads

from which the frog cannot leave once he hops there. These

correspond to what are called absorbing states in a Markov

model. These states usually correspond to system failure

states in a Markov model of a system.

Modeling System Behavior
States --

• Often represent system configurations or operational status of the

system' s components

• Can represent instances where the system is:

- operational, failed

- experienced specific sequences ofevenis

- undergoing recover/repair

- operating in a degraded me.de, etc.

Transitions --

• Define where it's possible to go from one state to another

• Transition rates: govern the lengths of time between transitions
between states

• Transition rates may be constant or time dependent

• Transition rates are often related to failure rates and repair rates of

system components

12

Slide 12

Slide 12: Markov Models - Modeling System Behavior

When Markov models are used as dependability models of

systems, the states frequently represent some configuration or

functional status of the system. They can actually represent

almost anything, but usually they represent something like an

enumeration of the components that are working and/or failed

in the system. Often the construction ofa Markov model be-

gins with a simple representation for the states like this, and

then additional criteria or characteristics that need to be repre-

sented are added to the state meanings. A state can represent

situations such as instances where the system is operational,

failed, undergoing recovery or repair, operating in a degraded

mode, having experienced some specific sequence of events,
etc.

The transitions define where it's possible to go directly from

one state to another. The transitions are labeled in various

ways depending on the type of model and the convention be-

ing used. A common practice used for reliability modeling is

to label each transition with a transition rate which governs

the length of the time that elapses before the system moves

from the originating state to the target state of the transition

(the state holding time). These transition rates may be either

constant or functions of time, and they often are related to the

collective influence of failure and repair rates of individual

components on the transition between states.
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Slide13: TheOutputFromtheMarkovModel

The reliability, R,(t) of a system after an elapsed mission

time t may be defined as the probability that the system has

not failed at any time from the start of the mission at time t =

0 until time t. Reliability is usually the measure of interest

for non-repairable systems because failures for such systems are

permanent for the remainder of the mission. Markov models

for such systems have no cycles (i.e. are acyclic ). For sys-

tems for which repair of failed components or subsystems is

possible, the measure that is most frequently of interest is the

system availability at time t, A_(t). System availability may

be defined as the probability that the system is operating at

time t. Note that this definition admits the possibility that

the system may have failed one or more times since the be-

ginning of the mission and has been repaired. Repair is repre-

sented in the Markov model of such systems by the presence

of cycles depicting the loss and then restoration of the func-

tionality of a component or subsystem. The term dependabil-

ity encompasses both reliability and availability, and a refer-

ence to dependability as a measure will be interpreted in this

tutorial to mean whichever measure (reliability or availability)

is appropriate to the context of the" discussion.

The Output fi-om the Markov Model 13

Definition: System Reliab lily R.,(t)

The _,,_7,_ that a system has not failed in the time
interval [O,t]

tlotl-vt'pdlilaia](' ,_ V,_'i_'tH J

Definition: System Availability AJt)

The _,-,. ::li .. that a system is operating at time t
(vvvtem nmv have *ait_,dand hee,__epaired_

What we want from a Markov model: , ;w,,h:,hiJh>

"Solving "'a Markov model _ I'_.:i d:ri tiv. of being in each of
the model's states at time t

Let P, (t) denote the probability the system is in state i at time t

g.......................1 .. I

Slide 13

These definitions indicate that, whatever the measure of in-

terest, the desired output of an evaluation ofa Markov depend-

ability model is a numeric value which is a probability. It

happens that the process of"solving" a Markov model pro-

duces as output the probabilities of being in each of the states

of the model at time t (for transient analysis). Since the

events of being in each state of the Markov model are mutu-

ally exclusive (the system cannot be in more than one state at

a time) and collectively exhaustive (the system always must

be in at least one of the states), it follows that the sum of the

probabilities of being in any subset of the Markov model's

states is also a valid probability. The states of any Markov

model that models a system may be partitioned into two sets:

one set containing states that represent situations where the

system is operating correctly (either with full functionality or

in some type of degraded mode), and the other set containing

states that represent situations where the operation of the sys-

tem has degraded so much that the system must be considered

failed. The reliability/availability of the system may then be

RF

taken to be the sum of the probabilities of being in one of the

operational states at time t, and the complement (unreliability

or unavailability) is the sum of the probabilities of being in

one of the failure states at time t.

Visualizing Probability Migration 14
Among the States

Examp/e using a non-repairable system:

1) Identify an initial state, say state I, which the system is in at time t = 0:

P[(O)= I

2) As t increases, probability migrates from the initial slate to other states

via the transitions according to the transition rates

E.ramld('." 3P2B
3>..Z 2_

Slide 14

Slide 14: Visualizing Probability Migration Among the

States

As a mission progresses, the system's dependability behav-

ior is reflected in the probabilities of being in each of the states

in the Markov model. The probabilities of being in the states

change over time and reflect the expected behavior of the sys-

tem over a very large number of missions. A useful device to

aid in visualizing the changing of the state probabilities over

time is to imagine the probability as a limited quantity of a

fluid material such as a gas, the states as receptacles, and the

transitions as unidirectional pipes through which the gas can

diffuse. Often a Markov model of a system will contain a sin-

gle initial state which represents a fully operational system.

At the start of the mission all the probability (gas) is con-

tained in the initial state. As time progresses, the probability

migrates from this initial state to other states in the model, as

a gas might diffuse, through the transitions at a rate deter-

mined by the transition rates that label the transitions. This

analogy is not exact, since the gas diffusion model does not

take into account some of the stochastic properties of the

Markov model (i.e. the Markov property, etc.). However, the

analogy is useful for visualizing a picture of what is happen-

ing to the state probabilities over time at a conceptual level.

The example shown in the slide serves to illustrate the

probability migration process. Consider a system consisting

of three redundant processors which communicate with each

other and other components over two redundant busses. In

order for the system to be operational, at least one processor

must be able to communicate correctly over at least one bus.

Assume also that repair of failed components is not possible

during a mission. A Markov model for this system appears to

the right of the system diagram in the slide. Initially, all

processors and both busses are assumed to be working cor-

rectly, The initial state is labeled {3,2} to denote three work-

ing processors and two working busses, ifa processor fails,

the system moves to state {2,2} which denotes two working

processors and two working busses. If instead a bus fails, the

#98RM-313 page 6 RF

To Be Presented at the 1998 Reliability and Maintainability Symposium, Janua o, 16-19, I998, Anahiem, CA



system moves to state _3,1} which denotes three working

processors and one working bus. Subsequent failures cause
further transitions as indicated in the Markov chain. As time

progresses, probability density migrates from the initial state

[3,2} down to the other states in the model. Since this is a

non-repairable system, as t ---_,,_the system must eventually

fail. This is represented in the model by the system eventu-

ally reaching one of the two failure states (labeled IF1} and

IF2}). The relative rates of probability density migration will

be consistent with the transition rates that label the transi-

tions. For example, since the failure rate for the processors (_,)

is ten times greater than the failure rate for the busses (It), the

system generally will migrate to the states on the left of the

Markov chain more quickly than to the states on the right.

"Solvin, " the Markov Model

Focus on the c'halT,,e iJ_prrd_ahili(v for individual states:

incoming outgoing
change in probability = probability probability

for state i from all other to all other

states slates

• System of n simultaneous differential

equations (one for each state)

• Usually solved numerically by computer

• Solved model gives probability of the

system being in state i at time t

15

Slide 15

Slide 15." "Solving" the Markov Model

ira dependability analyst is familiar with the stochastic

properties and underlying assumptions of a Markovian model-

ing technique, then a thorough knowledge of the numerical

methods needed for solving that type of Markovian model is

generally unnecessary in order to use the modeling technique

for dependability analysis in an effective way provided that the

analyst has access to an appropriate software tool that can

evaluate the model. For this reason, a detailed discussion of

the methods for solving Markov models is beyond the scope

of this tutorial. It is useful, however, to be aware of how cer-

tain limitations inherent in the solution techniques may affect

the construction of the model and influence the type of system

behavior that can feasibly be represented in the model. We

will touch on this topic later in the tutorial. For now, it is

helpful to give, in very general terms, a brief description of
what is done to "solve" a Markov model.

The previous slide showed how probability density mi-

grates among the states in the Markov model over time. The

key element in finding a procedure for determining the prob-

ability of the individual states at a particular point in time is

to focus on the change in probability with respect to time for

each state i. Intuitively, the change in the probability for a

given state is simply the difference between the amount of

probability coming into the state from all other states and the

amount of probability going out of the state to other states in

RF

the model. This is expressed in terms of a differential equa-

tion which includes terms consisting of products of transition

rates with state probabilities. The result is an n×n system of

simultaneous differential equations (one differential equation

for each state). The solution of this system of differential

equations is a vector of state probabilities at the specified time

t. The solution of the differential equations is usually done

numerically with a computer.

Slide 16: The Markov Property: Blessing and Curse

A fundamental property that is shared in one form or another

by all the Markovian models discussed in this tutorial is the

"Markov property". This property is really a simplifying as-

sumption. In the most general discrete-state stochastic proc-

ess, the probability of arriving in a statej by a certain time t

depends on conditional probabilities which are associated with

sequences of states (paths) through which the stochastic proc-

ess passes on its way to statej. It also depends on the times

to < tl < ... < t,, < t at which the process arrives at those in-

termediate states. A complete accounting for all possible

paths and all possible combinations of times would be very

complex and usually is not feasible. The problem of evaluat-

ing all of the state probabilities in the resulting stochastic

process generally is not tractable. The Markov property al-

lows a dramatic simplification both in the defining of the sto-

chastic process (i.e. the specification of the conditional prob-

abilities) and in the evaluation of the state probabilities. It

does this by allowing one to assume that the probability of

arriving in a statej by a time t is dependent only on the con-

ditional probabilities of the transitions into statej from states

immediately preceding statej on the transition paths and not

on all the transitions along each entire path to statej. An-

other way of saying this is that the future behavior of the sim-

plified stochastic process (i.e. Markov model) is dependent

only on the present state and not on how or when the process

arrived in the present state.

The Markov Properly: Blessing and Curse 16

Let X, denote the stare the system is in at time t

For all times t° < t_ < ... < t. < t

P[X, =jlX,. =k,X,, = rn,....X, =i}= P[X, = j l X,. = i]

_l'eviOIl_ tl';lll_iti(lll f);Ith Ih_tt ;lrl'i_,'tfft ;it tl_c i)I'_,.,4_,111 _,l:l|c, i

Advantage:

•S'imzTli[]_ itto_ a_'_tonpti#lr', . drama ica ly smp ties both the j'ob of specifying the

ransttlon probabdmes'mTff he ma hematlcs of evaluating the MarKov mode

• Helps make evaluation of the Markov model tractable

Drawback:

Assumption is very restrictive and may not be valid for many real-world systems -
I]IC (lllll[y_'l DII($I Ift]_'e c(Ire. I

If the assumption is not reasonably valid for a system, can't model the system with

Markov models (won't get a meaningful result), and another modeling technique

Slide 16

The great benefit of the Markov property is that it helps

make the evaluation of Markovian models tractable. It is

something of a mixed blessing, however, in that it is a very

restrictive assumption that is not always consistent with the

reality of real-world system behavior. Real systems do tend
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to have their future behavior depend in various ways on what

they have experienced in the past. There are common situa-

tions where the Markov property is even counter-intuitive. As

an example, consider a situation where a component in a sys-

tem breaks down and is repaired on the fly during some mis-
sion. If this is modeled with a Markov model for which the

failure rates of the components are assumed to be constant, the

underlying assumption derived from the Markov property is

that the repaired component must end up being "as good as

new" after the repair and from then on behaves just like a

brand new component, regardless of how long the component

had been in service before it failed and regardless of how much

environmental stress it experienced. There are many situa-

tions where this is just not an accurate representation of real-

ity. A dependability analyst using Markov models must be

aware of the implications of the Markov property and always

keep in mind the limitations it places on the system behavior

that can be modeled with Markov models. As with any mod-

eling technique that relies on underlying assumptions, if the

assumptions are too inconsistent with the characteristics of the

real system, then any dependability estimates for the system

obtained from the model are not meaningful and cannot be

used to represent or predict the behavior of the real system.

Three Types of Markov Models

We now introduce three types of Markov models that will

be described in this tutorial.

Slides 17 & 18." 3 Types of Markov Models

The simplest and most commonly used Markov model type

is the homogeneous Continuous Time Markov Chain

(CTMC). For this type of Markov model, the "Markov"

property holds at all times. Recall that, intuitively, the

Markov property states that the selection of the transition to

the next state, and indeed all future behavior of the model, de-

pends only on the present state the system is in and not on

the previous transition path that led the system to be in the

present state. In terms of the frog-hopping analogy, this can

be described by stating that the lily pad that the frog next de-

cides to hop to depends solely on which lily pad he is pres-

ently sitting on and not on the sequence of lily pads he visited

before arriving on the present one, nor even on whether he has

ever visited the present lily pad before. A second property is

that the state holding times in a homogeneous CTMC are ex-

ponentially distributed and do not depend on previous or fu-

ture transitions. To say that a state holding time is exponen-

tially distributed means that, if the system is in state i at time

r, the probability that the next transition (leading out of state

i) will occur at or before a time t units in the future (say at

time r + t) is given by 1 - e -z_' (or, conversely, the prob-

ability that the next transition will occur at or after time z + t

is given by e -ai', where _,_is the sum of all the rates of the

transitions going out from state 0- The second property says

that this is true for a//states in the CTMC. In terms of the

frog analogy, the second property says that the length of time

the frog sits on a lily pad is exponentially distributed. Fur-

thermore, the length of time the frog sits on the lily pad is the

same regardless of: the sequence of lily pads the frog followed

in order to arrive at the present one, the amount of time it

took to get to the current lily pad, and which lily pad he hops

RF

to next. A third property, which is a consequence of the ex-

ponentially distributed holding times, is that interstate transi-

tion rates are all constant[6]. A fourth property, which is also

a consequence of the exponentially distributed state holding

times, is that the time to the next transition is not influenced

by the time already spent in the state. This means that, re-

gardless of whether the system has just entered state i or has

been in state i for some time already, the probability that the
next transition will occur at or before some time t units into

the future remains the same (for the frog, this means that re-

gardless of whether he has just landed on the present lily pad

or has been sitting on the lily pad for some time already, the

probability that he will hop to a new lily pad at or before

some time t units into the future remains the same). This

property is a consequence of a property of the exponential dis-

tribution, called the "memoryless property"[6].

3 Types of Markov Models

• H(_mogenetms CTMCs

- Simplest, most commonly used

- Markov property always holds

- Transition rates are constant

- State holding times are exponentially
distributed

- "Memoryless Property" - Time to next

transition is not influenced by the time

already spent in the state

• N_m-homogeneou_ CTMC_

- more complex

- Markov property always holds

- transition rates are generalized to be

functions of time - dependent on a
"global clock"

17

E_ample: 2c;i_

E-_"ml_te: 2c_t)

2(l-c)_ft_J._t)

Slide 17

18

3 Type of Markov Models (cont)

Semi-Markov Model s

- Most complex

- Markov property only holds at certain

times (i.e. only when transitions occur)

- Transition rates can be functions of state-

specific (i.e. local) clocks, not the

mission time (global) clock

- State holding times have distributions

that:

• can be general (i.e. non-exponential)

• can depend on the nexl state

- Semi-Markov models can result when

detailed fault/error handling is included

in a system model

Slide 18

The simple example model shown in the slide will be used

to illustrate the differences between the three different Markov

model types. This example is convenient because, despite

having only three states, it can be used to demonstrate repair,

imperfect fault coverage, and all three types of Markov models

(imperfect fault coverage and repair will be discussed shortly).

The example model works like this: imagine a control sys-
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tern consisting of two identical active processors. In the event

of the failure of one of the active processors, the failure must be

detected, and the faulty processor must be identifed and

switched off-line. The process of switching out the faulty

processor is not perfectly reliable. This is represented by a

probability (denoted by c) that the switching out reconfigura-

tion process succeeds, and another probability (denoted by 1 -

c) that the reconfiguration process will not succeed and leads

to an immediate failure of the system. Upon the failure of one

of the processors, one repair person is available to fix the failed

processor and return it to service. If one of the processors is

being repaired and the second processor fails before the repair

of the first is complete, the system will fail immediately.

The diagrams at the right of the slide shows the Markov

model in terms of the states and interstate transitions. The

state labeled {2} denotes the state in which both processors are

functioning correctly, the state labeled [1} denotes the state in

which one of the two processors has failed and is undergoing

repair while the other processor continues to function cor-

rectly, and the state labeled {F} denotes the state in which

both processors have failed, causing the system itself to fail.

The system begins its mission in state {2} with both proces-

sors functioning correctly. If one of the processors fails dur-

ing the mission and the remaining processor is able to con-

tinue performing the control functions of the system success-

fully, the system moves to state {1} and repair begins on the

failed processor. If the repair of the failed processor is com-

pleted, the system returns to state 1"2}with two fully opera-

tional processors. However, if the second processor fails be-

fore the repair of the first failed processor is successfully com-

pleted, the system will fail immediately and move to state

[F}. lfa processor fails while the system is in state 1'2} (both

processors functioning correctly) and the remaining processor

is unable to continue performing the control functions of the

system (reconfiguration unsuccessful), the system also will fail

immediately and move to state {F}.

The characteristics of the homogeneous CTMC model type

may be illustrated using the example control system as fol-

lows. Let _,be the (constant) rate of failure of a processor, _t

be the (constant) rate at which the repair person can repair a

failed processor, and c be the probability that the system re-

sponse to a processor failure permits it to continue operating

(i.e. reconfigures successfully if necessary). Since there are

two processors functioning when the system is in state {21, the

total rate at which failures occur and cause the system to leave

state {2} is 2_. When such a failure occurs, with probability c

the system successfully reconfigures and moves to state 1'11, so

the rate that the system moves to state {1} is given by 2c_,.

Conversely, with probability 1 - c the system is unable to re-

configure, so the rate that the system moves from state 1'2} di-

rectly to state {F} is given by 2(1 - c)_,. Once the system ar-

rives in state 1'1}, a subsequent failure of the other processor

(which occurs at rate ;_) causes the system to fail and move to

state IF}. On the other hand, the repair person fixes the failed

processor at rate l.t, and if the repair is successfully completed

before the other processor fails the system will return to state

1'2}. Note that when the system is in state {2] its behavior is

the same whether it has experienced one or more failures or

none at all, i.e. whether it has made a round trip to state {I}

and back does not affect the future behavior of the system at

all. It is as if the system, having experienced a processor fail-

RF

ure and had the failed processor repaired, promptly "forgets"

that the processor had ever failed. This is a consequence of

the Markov property.

A non-homogeneous CTMC is obtained when a homoge-

neous CTMC is generalized to permit the transition rates to

be functions of time as measured by a "global clock", such as

the elapsed mission time, rather than requiring them to be

constant. The Markov property still holds at all times for

non-homogeneous CTMCs: the selection of the transition to

the next state depends only on the present state the system is

in and not on the previous transition path that lead the system

to be in the present state. The state holding times also do not

depend on previous or future transitions, as was the case for

homogeneous CTMCs. In general, the transition rates may

be any function of global time.

In terms of the frog analogy, the frog's situation remains the

same as before except that the rates at which the frog hops may

now change with time. The rate at which the frog hops may

decrease the longer he spends in the pond (perhaps he is get-

ting tired); alternatively, it may increase the longer he spends

in the pond (perhaps the sun is setting and he is becoming

more active as night approaches).

The example control system model may again be used to il-

lustrate the differences between non-homogeneous CTMCs

and homogeneous CTMCs in terms of the state-transition

diagrams. Let _, and I,t again denote the rates of processor

failure and repair, respectively, except that now they are func-

tions of the mission time. The non-homogeneous CTMC

shown in the slide is the same as the one for the homogeneous

CTMC, except that the transition rates are now all functions

of the mission time.

The final model type to be considered is the semi-Markov

model. It is the most complex of the three. It is called a

semi-Markov model because the Markov property does not

hold at all times. Rather, it holds only at the times when

transitions occur. The behavior of the semi-Markov model is

the same as the others in that the selection of the transition to

the next state does not depend on the previous transition path

that brought the system to the present state. However, it dif-

fers from the others in that the state holding times can have

distributions that can be completely general (non-exponential)

and also can depend on the next state. In terms of the frog

analogy, the behavior of the semi-Markov model can be de-

scribed as follows: the frog hops between lily pads in the

pond as before. However, as soon as he lands on a new lily

pad he selects the next lily pad to which he plans to hop ac-

cording to the Markovian transition probabilities for that lily

pad's outgoing transitions. Then, before hopping again, he

waits a period of time that has a distribution that depends on

which lily pad he has selected as his next one[5]. This wait-

ing time need not be exponentially distributed ... it can have

any general distribution. As a consequence of the generally

distributed state holding times, the inter-state transition rates

can be a function of time as measured by "local clocks". A

"local clock" in this context would be a timer that begins

counting the passage of time at the moment the state is en-

tered. This is in contrast to a "global clock", which would

be a timer that begins counting the passage of time at the

moment that the mission begins and is independent of the

time spent in any one state.
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The control system example may again be used to illustrate

the difference between a semi-Markov model and the previous

two types of Markov models. Assume that the failure rate of a

processor is again constant. Now, however, assume that the

repair duration is a function of the time ('t_) that the processor

has been under repair. The state-transition diagram for the

resulting semi-Markov model is shown in the slide. It is

identical to that for the homogeneous CTMC case except that

the repair transition rate is a function of the time z_ that the

processor has been under repair (i.e. the time that the system

has been in state [I]).

Semi-Markov models require the most computational effort

of all the Markov model types to solve. They are often pro-

duced when detailed fault/error handling is included in a

Markov model. This is the case because non-constant transi-

tions between states that model fault handling often depend on

the time elapsed since the fault occurred and handling/recovery

commenced rather than on the elapsed mission time.

Relative Modeling Power of the

DiffErent Markov Model Types

Partial Order with respect to "Modeling Power":

TRs func|ion of

19

constant TRs TRs funclion of

local and global lime

- > fn, Jca._ing ,ll_dc/(','m_ldc.lft 3 .m" "'3h,dclm;. I',,_ c_ ' - >

Slide 19

Slide 19: Relative Modeling Power of the Different Markov

Model Types

The diagram in the slide gives a pictorial image of the rela-

tionship between the various Markov model types with re-

spect to model type complexity and modeling "power". This

can be considered to be a type of partial order, with homoge-

neous CTMCs being the simplest and lowest on the scale of

modeling power because of the requirement for constant inter-

state transition rates. To model more complex behavior than

can be accommodated by homogeneous CTMCs, the inter-

state transition rates may be permitted to be nonconstant by

allowing them either to be functions of global time (non-

homogeneous CTMCs), or functions of state local time (semi-

Markov models). Semi-Markov models can model behavior

that is in some senses more complex than that which can be

modeled by non-homogeneous CTMCs, and so semi-Markov

models can be considered to be more sophisticated than non-

homogeneous CTMCs. However, there are things that non-

homogeneous CTMCs can model which semi-Markov models

cannot, so semi-Markov models are not an encompassing gen-

eralization of non-homogeneous CTMCs. However, an ex-

ample of a model type that does encompass both non-

homogeneous CTMCs and semi-Markov models is one which

has inter-state transition rates that are functions of global and

local time both within the same model. Such a model is non-

Markovian. Models of this type are very difficult to solve ana-

lytically (numerically) and often require more flexible evalua-

tion techniques like simulation.

Slide 20: An Example: A Fault Tolerant Hypercube

To illustrate how differing assumptions about the character-

istics of a system such as component failure rates and recon-

figuration processes can translate into different Markov model

types, consider the example system shown in the slide. Spe-

cifically, consider a three dimensional fault-tolerant hypercube

multiprocessor whose processing nodes are themselves fault

tolerant multiprocessors consisting of four active processors

and a spare processor as shown in the slide[3, 7]. tfthe proc-

essors in all processing nodes are assumed to have constant

failure rates, the resulting Markov model of the system will be

a homogeneous CTMC regardless of whether the spare proces-

sors in the processing nodes are hot or cold. However, if the

processors are all assumed to have either increasing or decreas-

ing failure rates, then the resulting Markov model will be non-

homogeneous provided the spare processors in the processing

nodes are hot spares. If they are cold spares instead of hot

spares, then the resulting model is no longer a Markov model.

It is instead a non-Markovian model because the failure rates

of the originally active processors are functions of the mission

time (global clock), whereas the failure rates of any of the ini-

tially cold spare processors are functions of time measured

since the processor was activated rather than the global mis-

sion time. Such a model may require simulation to evalu-

ate[8].

Fault Tolerant Hypercube Example z0

How different modeling assumptiol v give rise to d(fferent

: Upes ofMarl,'ov m_,deh'." _,

Processors have conslanl

FRs, hot & cold spares:

Ii it<into<,, e_,',,t*, ("['rl(

Processors have IFRs/DFR:

hol spares:

Processors have IFR:+/DFR

r,oi. ,_.l,¢r;.,_ r_ti m,..', ;

Slide 20

Use of Markov Models for Dependability

Analysis

We now consider the topic when Markov modeling is an

appropriate modeling technique of choice for dependability

analysis, including: the advantages and disadvantages of us-

ing Markov models for dependability analysis, the types of

system behavior that Markov models are well-suited to

model, and when Markov modeling is not preferred.
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Slide 21: Advantages of Markov Modeling

Compared to other modeling methods, Markov modeling

offers certain advantages and disadvantages. The primary ad-

vantage lies in its great flexibility in expressing dynamic sys-

tem behavior. Markov models can model most kinds of sys-

tem behavior that combinatorial models can (with the excep-

tion that, because they are limited by the Markov property

assumption and assumptions on the distributions of compo-

nent lifetimes, they cannot model situations which can be

modeled by combinatorial models with generally distributed

(non-exponential) component lifetimes). In addition, Markov

models can model in a natural way types of behavior which

traditional combinatorial models can express only awkwardly

or not at all 2. These types of behavior include:

Advantages of Markov Modeling

• Can model most kinds of system behavior that can be
modeled by combinatorial models (i.e. reliability block
diagrams, fault trees, etc.)

Can model repair in a natural way:

- Repairs of individual components and groups
- Variable number of repair persons

- Sequential repair; Partial repair (degraded components)

Can model standby spares (hot, warm, cold)

Can model sequence dependencies:

- Functional dependencies

- Priority-AND
- Sequence enforcement

• Can model imperfect coverage more naturally than
combinatorial models

• Can model fault/error handling and recovery at a detailed
level

21

Slide 21

• Behavior involving complex repair: This includes situa-

tions consisting of repairs of either individual components or

groups of components, the presence of any number of repair

persons assigned in any arbitrary way to repair activities,

repair procedures that must follow a specific sequence, and

any degree of partial repair (possibly resulting in subsystems

or components with degraded performance).

• The use of standby spares: This includes hot, warm, and

cold spares. Hot spares are spare units that are powered up

throughout the mission and are immediately available to

take over from a failed active unit, but which are also subject

to failure at the same rate as the active unit. Warm spares

are units which are powered up throughout the mission, but

which fail at a lower rate than an active unit until called

upon to take over for a failed active unit. Cold spares are

units that are powered offuntil activated to take over for a

failed active unit. Cold spares are assumed not to fail while

they are powered down, but once activated can fail at the

same rate as an active unit.

: Recent research in fault tree modeling[3, 4, 9-12] has lead to

advances that enable sequence dependency behavior, standby

spares, and imperfect fault coverage to be modeled conven-

iently in fault trees, thereby eliminating many of the advan-

tages that Markov modeling techniques formerly had over

combinatorial models in these areas. A tutorial presented at

this conference in 1996 and 1997, "New Results in Fault

Trees"[13, 14] gives an overview of this work.
RF

• Sequence dependent behavior: Sequence dependent be-

havior is behavior that depends on the sequence in which

certain events occur. Examples include: fimctional depend-

encies, where the failure of one component may render other

components unavailable for further use by the system; Prior-

iO,-AND, where behavior differs depending on whether one

event happens before or after another; and sequenceenforce-

merit, where it is simply not possible for certain events to

occur before certain other events have occurred.

•lm perfect fault coverage: Imperfect fault coverage arises

when a dynamic reconfiguration process that is invoked in

response to a fault or component failure has a chance of not

completing successfully, leading to a single point failure of

the system despite the presence of redundancy intended to

survive failures of the type that has occurred. When this can

happen, the fault is said to be imperfectly covered, and the

probabilities that the system reconfiguration is successful or

not are called coverage factors.

If detailed representation of fault/error handling is required in

the model, Markov modeling techniques can easily represent

such behavior also. Care should be used with this, however,

because under some circumstances the inclusion of fault/error

handling in the Markov model can cause numerical difficulties

to arise during the solution of the model (for example, stiff-

ness, which will be discussed later in this tutorial).

Disadvantages of Markov Modeling

• Can require a large number of states

• Model can be difficult to construct and validate

• "Markov" Property assumption and component failure

distribution assumptions may be invalid for the system

being modeled

• Model types of greatest complexity require solution

techniques that are currently feasible only for small

models

• Model is often not structurally similar to the physical or

logical organization of the system

(atl m,d.c im,'t,,tiq'c mtcpT>1<'.a_.,t_ O/ tkc re<M<'/dil_i(1_,,)
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Slide 22

Slide 22: Disadvantages of Markov Modeling

Markov modeling techniques do have some disadvantages

which make them not appropriate for some modeling situa-

tions. The two most important disadvantages involve state

space size and model construction. Realistic models of state-

of-the-art systems can require a very large number of states (for

example, on the order of thousands to hundreds of thousands).

Solving models with so many states can challenge the compu-

tational resources of memory and execution time offered by

computers that are currently widely available. Also, the prob-

lem of correctly specifying states and inter-state transitions is

generally difficult and awkward. This is especially so if the

model is very large. It may be very difficult for the analyst to

construct a model of a large system and verify that it is cor-

rect. Recall that the "Markov" property assumption is restric-

tive and may not be appropriate for many systems. If this is

the case for an individual system, then Markov modeling is

#98RM-313 page I 1 RF

To Be Presented at the 1998 Reliabili O, and Maintainabili O, S),mposium. ,]anua_ 3, 16-19. 1998, Anahiem, CA



not an appropriate modeling technique for that system because

any dependability estimate obtained from evaluating the

model will not be meaningful. Of less importance, but still

significant problems, are issues involving solution of the more

complex types of Markov models and the form of the Markov

model itself. The more sophisticated Markov model types

can express much more complex system behavior than the

simplest type. However, they require more complex solution

techniques that require much more execution time to solve

than the simplest Markov model type requires. Conse-

quently, it is currently feasible to solve only relatively small

Markov models of the more complex types. Finally, the form

of the Markov model (states and transitions) often does not

have much of a physical correspondence with the system's

physical or logical organization. This may make it compara-

tively difficult for an analyst to obtain a quick intuitive visual

interpretation of a model's evaluation in the same way as may

be done with, for example, a digraph.

23

When N_O_T_To Use Markov Modeling

• System can be satisfactorily modeled with simpler

combinatorial methods

- Model may be smaller and/or more easily constructed

- Model solution may be computationally more efficient

- Model may be easier to understand

• System requires a very large number of states

• System behavior is too detailed or complex to be expressed

in a Markov/semi-Markov model (_imtt/,,,i, ,, i._/crr_d_

• Estimate of detailed performance behavior is required

__U,,k,,ti,n l,_ !?rrc,]!

Slide 23

Slide 23: When NOT to Select Markov Modeling fi)r Depend-

abili O, Analysis

It is important to know when to select Markov modeling as

the modeling method of preference. It is equally important to

know when not to select Markov modeling and to select a

different modeling method instead. In general, Markov mod-

eling is not the preferred modeling method whenever one of

the following conditions arise:

• If the system can be satisfactorily modeled with a simpler

combinatorial method, then use of Markov modeling may be

overkill and the simpler method should be used instead.

There are several motivations for this: a combinatorial

model may be smaller and may be more easily constructed

than a Markov model of the system. It may be more com-

putationally efficient to solve a combinatorial model than a

Markov model. Also, the combinatorial model may be eas-

ier for the analyst to understand, especially if the analyst is

not a specialist in modeling.

• If the system requires a very large Markov model, then the

effort required to generate or solve the Markov model may be

excessive and an alternate modeling method should be con-

sidered. This is especially the case if the model is one of

the more sophisticated types of Markov models which re-

quire comparatively large amounts of execution time to

RF

solve. Use of hierarchical or hybrid modeling techniques

may help subdivide the model and alleviate problems caused

by too many states in the model.

If the system behavior to be modeled is too complex or de-

tailed to be expressed in a Markov type model, then an al-

ternate method capable of representing the behavior of inter-

est should be used instead of Markov modeling. Here, "too

complex" includes system behavior that can not be modeled

because of limitations due to the Markov property or as-

sumptions about transition rates. Although sometimes hier-

archical/hybrid methods are sufficient when Markov model-

ing cannot be used, often simulation is needed to capture

behavior that is too complex for Markov models. This also

holds true when detailed performance behavior must be

modeled instead of or in addition to dependability. Markov

models can capture performance behavior through what are

called Markov reward models[ 15], but these are more lim-

ited in flexibility and range of performance behavior that can

be represented than simulation. With simulation, the level

of detail in the performance or dependability behavior that

can be expressed is limited only by the level of detail of the

model, which itself is limited only by the abilities and pa-

tience of the analyst who builds, validates, and evaluates the
model.

How Selected System Behaviors Can Be

Modeled

We next present several examples that demonstrate how

some selected system behaviors can be modeled with Markov

models.

Slide 24. Repair

Markov modeling is very well suited to modeling repair

situations, in general, the occurrence of failures causes loss of

function and/or redundancy. Repair involves the restoration of

functionality and/or redundancy that has been lost. Restora-

tion of full functionality is usually assumed 3, taking the sys-

tem back to a state it had occupied earlier. For this reason,

modeling repair usually" add_ cycles to a Markov model. The

example 3-state model in the diagram at the top of the slide

illustrates this concept. The Markov chain in the slide repre-

sents a system with two active redundant components. In the

state labeled {2}, both components are functioning properly.

A failure occurs in one or the other of the two components at a

rate of 2k, taking the system to state {!1 where only one com-

ponent remains functional. The occurrence of a second failure

(at failure rate k) takes the system to a failure state, lfa repair

person is available, then upon the first failure he/she can begin

repairing the component that failed. This is represented in the

diagram by the transition from state [I} to state {2} labeled

with a rate of repair g. Assuming the repair restores full func-

tionality to the component that failed, upon completion of the

repair the system will again have two fully functionality com-

ponents, indicating that it will have returned to state {2}.

Occasionally only partial restoration of functionality is

achieved by the repair activity. This can be modeled in a

Markov model by having the repair transition take the system

to another state which represents a degraded functionality,

rather than back to the state representing full functionality.
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Note that the result of adding this repair activity to the model

has resulted in the addition of a cycle between states [2} and

{II.

How Selected S\'stem Bch;lvior,; Can Be N1odclcd: 24

Repair

Adding repair adds _ to the Markov Chain:

3 Processor, 2 Bus Example (3P2B): J ..-.-._ -..,.,3_p.... r,_ 2p

' , ,_.J processor cards can be _ ,_ _,.

swapped to, effect a

repair of a processor

failure (busses are built

in (o the e)ectronics rack

chassis and carlno( be

P

Slide 24

This basic procedure for modeling repair in Markov models

can be generalized to handle a wide range of variations in re-

pair resources and procedures. This includes such variations

as:

• several available repair persons instead of just one

• the requirement that some components must be repaired be-

foreothers

• the policy that a certain number of failures must occur before

repair activities are initiated

• the policy that, once a system has reached a failure state, a

specific number(s) of components of specific types must suc-

cessfully be repaired before the system may return to being

operational

As an example of the last bulleted case, suppose that, in the 3-

state example discussed above, it is the policy that no repair

will be performed until the system has reached the failure

state, and that both components are typically repaired before

the system will be declared operational. This criteria might

apply to a low-safety-critical or non-time-critical application

for which there is a significant cost involved in initiating the

repair activity. An example from a household-oriented do-

main might be a house with two bathtubs/showers in which a

"failure" would be a bathtub drain getting seriously clogged.

Considering the time and expense of calling in a professional

plumber to clear out the entire drain piping system, the

household members might well opt to wait until both bath-

tubs become unusably clogged before calling a plumber to fix

both drains in one service trip. In this case, the repair transi-

tion would go from the system failure state labeled [F} di-

rectly to the state labeled {2}, and the repair rate IJ would rep-

resent the time required to clean out the entire drain piping

system for the house.

All of the above generalizations of the repair modeling proc-

ess paragraph are possible in Markov models because of the

great flexibility that the Markov modeling technique offers the

analyst in: I) specifying transitions between any arbitrary

pairs of states, 2) labeling the transitions with any arbitrary

RF

combinations of repair (transition) rates, and 3) the interpreta-

tion of what each Markov model state represents.

All of these concepts for modeling repair situations can be

generalized from the simple 3-state Markov model to larger

and more complex Markov models. An example is shown in
the Markov model shown at the bottom of the slide. Here

repair has been added to the basic model of failure events for

the 3P2B system that was first introduced in Slide 14. As-

sume that the processors reside on individual electronics cards

(with one processor to a card) that are mounted in a chassis in

an electronics rack, and that the chassis has the two redundant

busses built in to it. The overall 3P2B system would then

consist of three processor cards mounted in the chassis. With

this physical configuration, repairing a failed processor is rela-

tively easy: it is as simple as swapping out a bad card for a

new spare card and can be performed at a rate 9. Repairing a

failed bus, however, is a much more complex and difficult

procedure (the entire chassis must be replaced and reconfig-

ured), and is not considered feasible during a mission (this

would be the case if the 3P2B system is, for example, part of a

control system for an aircraft). The model shown in the dia-

gram at the bottom of the slide shows the repair arcs, labeled

with the repair rate 9, that model the repair activity (i.e. the

swapping of a spare processor board for a failed one) that

brings the system back from each degraded state to the state

with one more functional processor. This introduces cycles

into the Markov model between each pair of states connected

by a transition representing a processor failure. Because repair

of the busses is not considered feasible, there are no corre-

sponding repair transitions (and no resulting cycles) between

pairs of states connected by a transition representing a bus

failure. Any generalizations of the repair policy for processors

(such as those that were listed earlier) would be included in

the 3P2B Markov model in a same manner, and may result in

different repair transition rates and/or repair transitions going

to different states in the Markov model than has been produced

by the basic repair policy illustrated in the slide.

Slides 25 and 26: Standby Spares

Markov models also are well suited to modeling standby

spares. As in the case of modeling repair, this capability also

may be traced to the flexibility that Markov modeling affords

the analyst both for specifying the transition rates on individ-

ual transitions and for interpreting what the states represent in

the model. The diagrams in these two slides illustrate how

Markov models can be used to model all three types of

standby spares: hot, warm, and cold.

In general, a standby spare is a component (similar or iden-

tical in construction and/or functionality and performance to a

primao, active component) which is held in reserve to take

over for a primary active component should the primary com-

ponent experience a failure. As soon as a failure occurs in a

primary active component for which spares remain available, a

spare unit is switched in to take over for the failed primary

unit, and the system moves to a state that represents the pres-

ence of one less redundant component of that type (or a failure

state, if all redundancy for that component type has been ex-

hausted). The failure rate at which such a transition occurs is

the sum of the failure rates for all active components of that

type.
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Flo,a., Selected S3,,_tem Behaviors Can Be Modeled: 25

Standby Spares
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Slide 25

How Selected System Behaviors Can Be Modeled: 26

Standby Spares !cont i
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Slide 26

The modeling of hot standby spares is essentially what has

been used in both major examples discussed in this tutorial so

far (i.e. the 3P2B example and the 3-state model(s)). A hot

standby spare is a component that remains in a fully, powered,

operations-ready state (possibly even shadowing the opera-

tions of the primary active unit) during normal system opera-

tion so that it can take over as quickly as possible should the

primary active unit experience a failure. As a consequence, it

is assumed to be vulnerable to failures at the same failure rate

as if it were a primary active unit. The Markov model in the

diagram at the top of Slide 25 shows how hot standby' spares

are modeled. Since any of the hot spares or the primary active

unit could fail at any time, the failure rate at which a failure

occurs is the sum of the failure rates for all active components

of that type (i.e. all the hot spares and the primary' active

unit). For example, in the Markov model in the diagram at

the top of Slide 25, the transition from the initial state that

represents a processor failure has a transition (failure) rate of

3_., since there is one primary active unit and 2 hot spare

units, making a total of three components vulnerable to fail-

ure, each of which have a failure rate of_.. Note that, since the

use of standby spares involves a detection-and-reconfiguration

process which may not be perfectly reliable, a more detailed

modeling of the use of standby spares than shown in these

slides would include coverage probabilities. An example of

this for the 3P2B system for hot spares is shown in Slide 29

and is discussed in more detail below in the commentary' for

that slide.

A cold standby spare is a component that is powered down

until it is needed to take over for a failed primary unit. At

that time, it is powered up, initialized (if necessary), and takes

over the operations for which the failed primary unit formerly,

was responsible. The usual assumption is that the cold spare

is not vulnerable to failure at all while it is powered down,

but that after it has been activated itcan fail at any time at the

failure rate that characterizes its fully active state.

The Markov model in the diagram at the bottom of Slide 25

shows how the model would change if the spare processors are

cold spares rather than hot spares. This Markov model uses a

slightly different state labeling method in order to be able to

track the status of the standby spare processors. Specifically,

the part of the state label representing the processors is ex-

panded to include both the number of active primary units

(which in this case will always be one for all operational

states) and the number of available spares remaining (shown in

the parentheses). For example, the label of the initial state,

{1(2),2}, indicates that there is one active primary processor

functioning, two cold standby spares available, and two func-

tioning busses. A transition resulting from a processor failure

necessarily implies that it is the active primary unit that has

failed (since none of the unpowered spare units are allowed to

fail), and that, when the state at the destination of the transi-

tion is reached, one of the unpowered spare units will have
been activated and will have taken over for the failed former

primary unit. This will necessarily cause the count of avail-

able standby, spares to decrease by one. For example, the la-

bel of the state at the end of the transition from the initial

state,{l(2),2}, to the state representing recovery from a proces-

sor failure, {1(D,2}, indicates one fewer spare processor is
available than before the failure. The transition rate for this

transition is )v (rather than 3_Vas in the case for hot spares)

because only the active primary unit can fail (the two unpow-

ered cold spare processors cannot fail as long as they remain

unpowered). For similar reasons, all transitions representing

processor failures in the model have a transition rate of_, re-

gardless of how many spare processors remain available.

Finally, a warm standby spare is a component that remains

powered during normal operation of the primary active unit,

however it is assumed to operate in a manner that subjects it

to less environmental and/or operational stress than a fully

active primary unit until it is needed to take over for a failed

primary unit. As a consequence, the usual assumption is that

the warm spare is vulnerable to failure at a lesser failure rate

than when it is in its fully' active state, but that after it has

been activated it can fail at any time at the failure rate that

characterizes its fully active state. Since the warm spares are

active and therefore vulnerable to failure, the failure rate(s) of

the warm spares contribute to the transition rate of a transition

representing the failure of a particular component type. More

specifically, the transition (failure) rate of a transition repre-

senting the failure of a particular component type is the sum of

the failure rates of all active components, which includes the

warm spares as well as the fully active units.

The Markov model in the diagram of Slide 26 shows how

the model would change if the spare processors are warm

spares rather than hot spares. The same state labeling method

that was used for the cold spare Markov model is also used

here in the warm spare Markov model. The initial state repre-
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sents one primary processor that is fully active and two warm

spare processors that are <'partially active" from a failure per-

spective. The failure rate for the transition representing a

processor failure is therefore the sum of the failure rate of the

fully active processor, X,, and the failure rates of all the warm

spare processors, 2o3, giving a total failure rate of k + 2o3 as

shown in the diagram in the slide. The resulting state after

the transition occurs represents a situation where the system is

operating with one fully active processor and one remaining

warm spare. Note that this is the case regardless of whether it

was the primary unit processor that failed or one of the warm

spares.

How Selected Syslem Behaviors Can Be Modeled 27

Sequence Dependent Behavior: t'riorily-AND

I [
I eowe, I

Supply 2 I

' ' m, • ai _

Slide 2 7

,glide 27. • Sequence Dependent Behca, ior: PrioriO,-AND

Because Markov models fundamentally are comprised of se-

quences of states connected by transitions, they are a natural

vehicle for modeling sequence dependent behavior. Sequence

dependent behavior is behavior that depends in some way on

the sequence in which events occur. Examples include:

• Situations where certain events cannot take place until other

events have occurred. A special case of this is the cold

spare, where (because of the assumption that the cold spare

cannot fail while it is powered down) the failure of an ini-

tially cold spare component cannot occur until the compo-

nent has been activated to take over for a failed primary unit.

• Situations where certain events cause certain other events to

occur, or preclude certain other events from occurring. This

has been called functional dependency[3, 4]. It is easily

modeled with Markov models because of the flexibility in

specifying which pairs of states are connected by transitions,
and what the transition rates are for individual transitions.

• Situations where future behavior differs depending on the
order in which two or more certain events occur.

The situations described in the last bullet have long been

modeled in fault trees using what are called Priority-AND

gates[16]. In a fault tree, a Priority-AND gate is an AND gate

in which the output event of the gate occurs only if all input

events occur aria'they occur in a specific order. If all input

events occur but in an incorrect order, the output event of the

gate does not occur. In terms ofa Markov model, a Priority-

AND type of situation is one which requires the specific order

of event occurrences to be included in what (at least some of)

RF

the states represent. This is easily done because of the flexi-

bility that Markov modeling offers in assigning interpretations

(meanings) to individual states in the model.

The slide shows an example of how a Priority-AND type of

sequence dependency (i.e. one that requires that sequences of

events be "remembered" in the interpretations of the state

meanings) can be modeled with a Markov model. Suppose a

power subsystem consists of two redundant power supplies

connected to the rest of the system by a simple toggle switch.

Initially, Power Supply 1 is supplying power to the system,

and Power Supply 2 is a hot spare backup. If Power Supply 1

fails, the system is supposed to automatically reconfigure itself

to switch to Power Supply 2 so that no loss of power is expe-

rienced as a result of the failure of Power Supply 1. Hence,

the system would experience a loss of power only after Power

Supply 2 failed. However, different outcomes may occur de-

pending on the sequence in which the three components (the

_'o power supplies and the switch) fail.

The Markov model in the diagram at the bottom of the

slide depicts the sequence dependent alternatives and shows

how they can be modeled. The initial state represents the

situation where all components are working properly and

Power Supply 1 is supplying power tothe rest of the system.

The following situations may arise, depending on the order in

which the components fail:

• If the switch fails first (the leftmost transition out of the ini-

tial state), there is no immediate effect on the operation of

the system - Power Supply 1 continues to supply power to

the rest of the system. However, the redundancy protection

offered by Power Supply 2 is lost, because the system can

no longer switch over to Power Supply 2 ifa failure occurs

in Power Supply 1. The system will now lose power as

soon as Power Supply 1 fails (the failure of Power Supply 2

will have no effect on the operation of the system).

• If Power Supply 1 fails first (the center transition out of the

initial state), the switch would reconfigure the power subsys-

tem so that Power Supply 2 would supply power to the sys-

tem instead (this reconfiguration process could be modeled

in more detail by considering the probability of success or

failure of the reconfiguration using a coverage probability

(see Slide 29)). Since this is a non-repairable system in this

example, after the reconfiguration to use Power Supply 2 oc-

curs, the failure of the switch no longer has an effect on the

operation of the system. The system would lose power as

soon as Power Supply 2 fails, whether the switch fails or

not.

• If Power Supply 2 fails first (the rightmost transition out of

the initial state), there is no immediate effect on the opera-

tion of the system - Power Supply I continues to supply

power to the rest of the system. However, the redundancy

protection offered by Power Supply 2 is lost, because the

system can no longer switch over to Power Supply 2 if a

failure occurs in Power Supply I. The system will now

lose power as soon as Power Supply 1 fails (the failure of the

switch will have no effect on the operation of the system).

Note that, even though there are four states labeled "PS1

Supplies Power" in the Markov model, these four states are

distinct states and are NOT the same state. This is because

each of these states represents not only the situation that

Power Supply 1 is supplying power, but they also implicitly
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represent the sequence of component failures that occurred in

order to reach the state (this could be more explicitly indicated

in the state label than it has been in the state labeling policy

used for this example). This exalnple is simple enough that

the exact sequence of component failures does not have great

importance; however, the reader should be able to recognize

that other examples may be constructed in which the order in

which the components have failed could be of critical impor-

tance. The bottom line is: Markov models can model such

situations by allowing such "memory" of event sequences be

part of the interpretation of the meaning of each state.

Hmv Selected System Behaviors Can Be Modeled: 28

Transient and/or lntemlittant Faults
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Slide 28: Transient and�or Intermittent Faults

Markov models are also adept at modeling situations in-

volving transient and/or intermittent faults. A transient fault

is a fault that enters and remains in an active state (and is thus

capable of causing a malfunction) for a finite time t, after which

it spontaneously and permanently disappears or enters a be-

nign state (in which it can no longer cause a malfunction)[I 7].

An example might be a transient in a power line, or a stray

gamma ray that causes a bit to flip in a memory storage loca-

tion. An intermittent fault is a fault that randomly oscillates

between active and benign states[l 7]. An example might be a
loose wire connection.

The Markov model in the diagram in the slide shows an

example that illustrates how both transient and intermittent

faults can be modeled (it is based on a modified version of the

coverage model used in the CARE Ill reliability prediction

program[6, 17]). Suppose a subsystem consists of a processor

and a memory communicating with each other and other com-

ponents in the system over a bus. For the sake of simplicity,

we will model failures in the processor and memory only (this

is equivalent to assuming that the bus does not fail). The

processor fails at rate _.. There is simple error recovery im-

plemented for it sufficient to recover from transient failures (for

example, retry of instruction executions and/or i/O requests

that fail a parity check). If the recovery procedure (i,e. retry)

succeeds (with probability r), then the system moves back to

the initial {no failure} state at rate rrt. If the recover3, proce-

dure was unsuccessful (with probability l-r, indicating a per-

manent fault), then the system goes to the state labeled

{processor failure} at rate (1-r)rt. This illustrates an example

RF

of modeling of a transient fault (shown in the dotted box la-

beled "Transient fault").

A more complex error recovery procedure is implemented

for memory failures. Suppose that the memory module expe-

riences faults at a rate it. This will cause the system to move

from the [no failures] state to the {active fault in memory

module} state. If the fault is an intermittent fault, the system

may oscillate between the active and inactive states as shown

in the slide in the box labeled "Intermittent fault oscillation",

moving from the active state to the inactive state at rate or,

and back again from the inactive state to the active state at rate

13. The remainder of the fault handling procedure for the

memory unit is implemented as shown by the remaining

states in the slide.

Slide 29." Complex hnpetfc, ct Coverage of Faults

lfa reconfiguration process (invoked in response to a failure

of an active component) can itself fail to be completed suc-

cessfully, then the fault that caused the reconfiguration to be

initiated is called an intperfectly covered fault, and the prob-

abilities that reconfiguration is or is not successful are called

coverageprobabilities. Imperfect fault coverage is expressed

in Markov models through the use of two outgoing transitions

for each imperfectly covered fault that can occur while the sys-

tem is in a particular operational state. One of these transi-

tions represents the successful completion ofreconfiguration.

This transition leads to a state in which the system is operat-

ing after reconfiguration has been achieved, and its transition

rate is the product of the probability of successful reconfigura-

tion (say, c) and the rate of occurrence of the imperfectly cov-

ered fault. The second transition represents an unsuccessful

reconfiguration attempt. This second transition leads to a

state in which the system has failed due to an uncovered fault,

and its transition rate is the product of the probability the re-

configuration does not succeed (l-c) and the rate of occurrence

of the imperfectly covered fault.

Complex Imperfect Coverage of Faults

3P2B Z --_

c,,,,,,,,<..,-</<,<.,t<,,, ......

/ U "

How Selected System Behaviors Can Be Modeled: 29

Slide 29

The Markov models in the slide illustrate how imperfect

coverage of faults can be added to the Markov model for the

3P213 example system introduced in Slide 14. For example,

the transition from the initial state for an imperfectly covered

processor fault is separated into two transitions: one repre-
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senting the successful reconfiguration which goes to state {2,2}

at rate 3c1_ (where c/is the probability of a successful proces-

sorreconfiguration), and one representing a failed reconfigura-

tion attempt that goes to a coverage failure state at rate 3(1-

c_))_. Likewise, the transition from the initial state for an im-

perfectly covered bus fault is separated into two transitions:

one representing the successful reconfiguration which goes to

state {3,1} at rate 2c,g (where c: is the probability of a suc-

cessful bus reconfiguration), and one representing a failed re-

configuration attempt that goes to a coverage failure state at

rate 2(l-c.,)_t. (Note that the two coverage failure states for the

individual processor and bus components can be merged to-

gether into one failure state, with a transition rate that is the

sum of the transition rates to the two formerly independent

coverage failure states (i.e. with a new transition rate of 3(1-

c¢)_. + 2(1-c:)_).

There is more than one way to add coverage to a Markov

model, depending on what assumptions are made about the

reconfiguration process. For example, the two Markov mod-

els in the slide show two different ways to assign values to

coverage probabilities. The simpler of the two methods is to

assume that each component type has a specific probability

that a reconfiguration will succeed. This results in the

Markov model on the left hand side of the slide. If the recon-

figuration process is modeled in more detail, however, one

will find that coverage probabilities (even for the same com-

ponent type) actually tend to vary from state to state 4 (see

Slide 35). The Markov model on the right hand side of the

slide shows bow this more general situation can be modeled.

The bottom line is that, because of the flexibility in specifying

transition rates for transitions, Markov models are capable of

modeling imperfect fault coverage to any level of complexity

achievable with coverage probabilities.

Slide 30." Complex Fault�Error HandlhTg and Recover),

The flexibility in specifying the interpretations for individ-

ual states makes Markov models well suited for modeling

complex fault/error handling behavior. The Markov model in

the slide provides an example. Consider a subsystem consist-

ing of three redundant processors which communicate with

each other and the rest of the system over a common bus. As-

suming that the system implements error recovery procedures

for both the processors and the bus, the Markov model shows

how such error recover), procedures can be modeled.

Ifa fault occurs in a processor, it is initially undetected and

could potentially cause a system crash before it is detected.

The first step in recovery is the detection of the fault (which, if

not successful, could cause a system crash), followed by the

isolation of the fault to determine which processor has experi-

enced the fault and to switch it off-line (an unsuccessful out-

come of this step could also cause a system crash). Once the

failing processor has been identified and switched off-line, the

system will have achieved a successful reconfiguration and can

continue operating in a state of degraded operation. Each of

these steps are denoted by shadowed states on the right hand

4 The details of the reason behind this fact are beyond the

scope of this tutorial, but the essence of the reason for this is

that the coverage probabilities depend partially on the number

of components vulnerable to failure, which of course varies
from state to state.

RF

side of the slide, and transitions between these states will take

place at specific rates (which are not shown in the slide for the

sake of simplifying the diagram).

I-low Selected Syslem Behaviors Can Be Modeled: 30

Complex Fauh/Error Handling and Recovery

3 Redundant Processors: [

Slide 30

lfa fault occurs in the bus during an I/O operation, it is ini-

tially undetected and could potentially cause a system crash

before it is detected. The first step in recovery is the detection

of the fault (which, if not successful, could cause a system

crash). Since there is no redundancy for busses in this exam-

ple, recovery from a bus fault is limited to attempting retries

of the i/O operation in order to recover from transient and in-

termittent faults. Hence, the next step is to retry the I/O op-

eration (which can cause a system crash if not successful). If

the retry is successful, the system may continue operation in

the state it was in before the bus fault occurred. Each of these

steps are denoted by shadowed states on the left hand side of

the slide, and transitions between these states will take place

at specific rates (which are not shown in the slide for the sake

of simplifying the diagram).

Typically the transition rates between states for fault/error

handling are much faster (often by orders of magnitude)than

the transition rates for transitions that represent the occurrence

of failures (e.g. 3_and g in the case of this example). Conse-

quently, adding fault/error handling to a Markov model in the

fashion has the potential of adding stiffness to the model (see

Slide 32 and Slide 35, so the analyst should take care in using

this modeling technique. Slide 35 discusses one method for

mitigating this problem.

Additional Issues

There are some additional issues that must be considered by

a dependability analyst who is intending to use Markov mod-

eling to predict the dependability of a system. They are im-

portant because they can impose limitations on the applicabil-

ity of Markov modeling as a modeling technique. These is-

sues are discussed in the next several slides.

Slide 31: Model Generation and Validation

One of the most troublesome aspects of using Markov mod-

eling for dependability analysis is the fact that it is generally
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difficult to construct and validate Markov models. This is

especially true for large models. An analyst has several op-

tions for building a Markov model of a system. The most

basic is to draw the model by hand. This is a very error

prone method and usually is practical only for very small

models - those with 50 states or less. The next best option is

to write a customized computer program to generate the

Markov model from infornlation about the system that can be

coded in a standard programming language like FORTRAN

or C. This may also be a troublesome method to use because

of the difficulty in debugging the program and ensuring that a

correct Markov model is generated. Again, this is particularly

true if the model is large (has many states). However, before

the advent of generalized analysis programs designed for

Markov modeling and analysis, this method was often the

only one available to a dependability analyst. The recent past

has seen the development of several generalized dependability

analysis programs designed to implement sophisticated

Markov modeling techniques. The generation of the Markov

model has been a common obstacle for all of the developers of

such programs. Consequently several of these programs have

included features for automatically generating the Markov

models from alternate specifications as an integral part of the

program. Three different approaches taken by several impor-

tant modeling programs will be described here.

Model Generation and Validation

Generally, it is difficult to construct and validate Markov models

Model Bmldin,_ Methods:
• By hand

-- [iHll[t'V] IIi <_ ¢,( M:IIC _- \_.'1) L'l[c'q t)l/in(,

• Customized (user written computer program)
- ma', hc dilfi.uh to '.alidatc ic,mhing M;trk,w m_,dcl

• Generate by converting an alternate model type into an
equivalent Markov model

1. '_ I 1 II][1,f_ ' g,

• Fault Trees to Markov Chains (11 ,!',)
• Generalized Stochastic Petri Nets to Markov Chains ( " )

• Generate using a specialized language for describing
transition criteria

l:",mT,l,'u ASSIST, SHARPE, MOSEL

• Generate directly from a system level representation
t:_.%,_/c. CAME
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One method for automatically generating a Markov model is

to automatically convert a model of a different type into an

equivalent Markov model. This approach has been taken by

the Hybrid Automated Reliability Predictor (HARP) pro-

gram[18] (now part of the HiRel package of reliability analysis

programs[19]) and the Stochastic Petri Net Package

(SPNP)[20], both of which were developed at Duke Univer-

sity. HARP converts a dynamic fault tree model into an

equivalent Markov model[21]; SPNP converts a generalized

stochastic Petri net (GSPN) into an equivalent Markov model.

This approach provides an advantage if the alternate model

type offers a more concise representation of the system or one

which is more familiar to the analyst than Markov models (as

is often the case for fault trees), or if the alternate model type is

able to more easily represent certain system behavior of inter-

est than Markov models (as is the case with Petri Nets with

respect to, for example, representing concurrent events). A

RF

second method for automatically generating a Markov model

is to use a specialized computer programming language for

describing transition criteria. This approach is used by the

Abstract Semi-Markov Specification Interface to the SURE

Tool (ASSIST) program developed at NASA Langley Re-

search Center[22]. This approach offers an advantage to those

analysts who are more comfortable with specifying system be-

havior in a computer programming language format rather than

formats offered by other modeling methods. A third method

that has been developed generates a Markov model directly

from a system level description. This technique is used by

the Computer Aided Markov Evaluator program (CAME)[23]

developed at C. S. Draper Laboratories.

Slide 32. StiffiTess

Another difficult), that arises when Markov models are used

to analyze fault tolerant systems is a characteristic called st/f_

hess. Stiffness appears in a Markov model which has transi-

tion rates that differ by, several orders of magnitude. Stiffness

is a problem because it causes numerical difficulties durin_ the

solution of the ordinary differential equations (ODEs) that-

arise from the Markov model. Stiffness often appears when

fault/error handling behavior is included in the Markov model.

Fault/error handling causes large differences in transition rates

within the model by virtue of the difference in the time scales

associated with failure processes and fault handling processes.

Failures of components typically occur in a time frame ranging

from months to ),ears between failures. Conversely, once a

fault occurs it needs to be handled rapidly to avoid a system

failure, so fault handling typically occurs in a time frame rang-
ing from milliseconds to seconds. Hence the transition rates

that represent component failures are orders of magnitude

slower than transition rates that represent the response to a
fault, and it is this which is the source of the stiffness.

Stiffness 3z

Stiffness:

Transition rates differ by several orders of magnitude'l_-ear_model

a_¢_c_ lutntcri+ u,I ,',lif!r+ ttIcte'_ u Jzcn _o/_ tll_: ttlc ( )/_l.'_

Often occurs when fault handling is included in the model --

• component failures: months - years

• fault handling: milliseconds - seconds

Overcoming d_'cultics j)om sttT_/hess:

• Special numerical techniques for stiff ODEs (_ i ,.J:l ')

• Use approximation techniques to eliminate stiffness from
the model

t:'_o,;i:,,k',' Behavioral Decomposition (i I \ I:1')

• Use approximation techniques that do not depend on
solving the system of ODEs

[-5,,,'m'v/(': Algebraic boundin_ techniclue (,.t i_ _')
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There are a number of ways to attempt to overcome the dif-

ficulties presented by stiffness in the Markov model. Special

numerical techniques do exist for solving stiff ODEs[24]. As

an alternative, it is possible to use certain approximation

techniques which can eliminate stiffness from the model before

the ODEs are solved. An example of such an approximation

method is behavioral decomposition, which will be described
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shortly. This method is used by the HARP reliability analy-

sis program[18, 19]. Yet another alternative is to use a differ-

ent type of approximation technique that does not rely on

solving the ODEs from the Markov model. An example of

this approach is the algebraic bounding technique used by the

Semi-Markov Unreliability Range Evaluator (SURE)program

developed at NASA Langley Research Center[25, 26].

Slide 33. State Space Size Reduction Techniques: State

LumphTg

Next to the difficulty in generating and validating Markov

models of realistic systems, the problem posed by excessive

numbers of states is the second most serious obstacle to effec-

tive use of Markov models for dependability analysis. A sys-

tem composed ofn components in theory can require a

Markov model with a maximum of 2" states. Usually the

actual number of states in a model is much less than 2" be-

cause typically once a critical combination of events or com-

ponent failures causes system failure, further subsequent com-

ponent failures will not cause the system to become opera-

tional again (that is, failure states in the Markov model are

absorbing - they do not have outgoing transitions to opera-

tional states). Even so, a system with many components may

still require a very large number of states to enumerate all the

operational states of the system. The next several slides will

describe some techniques that can be used to reduce the num-

ber of states in a model in order to address this problem.

33
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Under some circumstances, it may be possible to combine

groups of states in the model together into composite states.

This process is called state lumping [27] and has the potential

to reduce the numbers of states required depending on the form

of the model, the meanings of the states, and system behavior

of interest that must be represented in the model. An example

of the lumping together of states is shown in the slide for a

system consisting of three redundant components. If what is

important to the analyst is only the number of operating com-

ponents rather than a detailed accounting of each operational

configuration, then the Markov model on the left containing 8

states may be transformed into the Markov model on the right

containing 4 states by, grouping together the three states for

which two components are operating (one component failed)

RF

and the three states for which only one component is operating

(two components failed). States to be lumped together in this

way must meet certain requirements (see [27]).
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Slide 34." State Space Size Reduction Techniques. State Trun-
cation

Another approximation technique capable of reducing the

number of states in the Markov model is called state trunca-

tio..__n.It involves constructing the model to include only those

states representing a limited number of component (covered)

failures. States which represent configurations with a larger

number of component failures than the truncation limit are

combined together into an aggregate state. In general, the ag-

gregate state will contain both failure states and operational

states. This fact allows a bounded interval for the system reli-

ability to be obtained by assuming that the aggregate state

represents in turn: l) only failure states, and then 2) only op-

erational states. Assuming that the aggregate state represents

only failure states underestimates that actual system reliability

(because some of the states within the aggregate state were ac-

tually operational states that were assumed to be failure

states), whereas assuming the aggregate state represents only

operational states overestimates the actual system reliability

(because some of the states within the aggregate state were ac-

tually failure states that were assumed to be operational

states).

An illustration of this technique is shown in the slide. On

the left is a Markov model of the 3-processor, 2-bus example

system that was introduced in Slide 14. Suppose that the

computer to be used to solve this model has a ridiculously,

small memory and the entire Markov model cannot be gener-

ated (this example may stretch the imagination a bit, but the

situation would become more realistic if the system for which

the Markov model is to be generated were to contain 100

components or more). Suppose that, as a consequence of the

memory limitations of the computer, it is decided to include

in the generated Markov model only those states that represent

one or fewer covered component failures. This means that af-

ter states with one component failure are generated, all further

states in the model (representing two or more component fail-

ures) are aggregated together into one state. The effect of this

process is that states {!,2}, {2,11, {1,1}, and {FI} (the shad-
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owed states below the truncation line in the Markov chain

diagram on the left side of the slide) are all lumped together

into a single aggregate state labeled {T} as shown in the trun-

cated model on the right side of the slide. Note that the ag-

gregate state {T} contains both operational states (i.e., states

{1,2}, {2,1}, and [1,1}) and failure states (in this case, state

{FI} is the only failure state). The reliability of the full model

on the left side of the slide is simply the sum of the probabili-

ties for the three operational states above the truncation line

(states [3,2], [2,2], and [3,1}) and the three operational states

below the truncation line (states {1,2}, {2,1}, and {!,1}), If the

aggregate state {T} in the truncated model on the right side of

the slide is first considered to be a failure state, then the reli-

ability of the truncated model is the sum of probabilities of

only the three operational states above the truncation line.

This is less than the actual reliability of the full model and so

serves as a lower bound on the actual system reliability. If the

aggregate state {T} is next assumed to be an operational state,

then the reliability of the truncated mode[ is the sum of the

probabilities of the six operational states and also the prob-

ability of state {F1]. This is greater than the actual reliability

of the full model (because the failure state {FI} is counted as

an operational state, when in reality it is not) and so serves as

an upper bound for the actual system reliability. Hence a

bounded interval for the actual system reliability may be ob-

tained by solving a Markov model of only five states instead

ofa Markov mode[ of eight states.

The savings obtained for this small example may not seem

significant, but the savings may be considerably more impres-
sive if the truncated Markov model contains several thousand

states and the states below the truncation line number in the

hundreds of thousands. The reader may note that the width of

the bounded interval in which the actual system reliability lies

is equal to the probability of the aggregate state {r}. This in-

dicates that the interval will be small (and the approximation

most effective) when the probabilities of the states below the

truncation line are very small compared to the probabilities of

the states above the truncation line. Since the probability mi-

gration among the states moves from states above the line to

states below the line as a mission progresses, this implies that

state truncation is most effective for models of systems for

which the mission time is relatively short and failure rates of

components are very small (i.e. inter-state transition rates are

very slow). Under these conditions, most of the probability

density will likely remain above the truncation line for the

time period of interest, and so state truncation will be an effec-

tive approximation technique.

Slide 35: State Space Size Reduction Techniques: Behavioral

Decomposition

Another state reduction technique may be applicable when
some states of the model are used to model fault/error han-

dling behavior and the fault/error handling transitions are sev-

eral orders of magnitude faster than fault occurrence transitions.

If the fault/error handling states can be arranged in groups

(sometimes called Fault/Error Handling Models, or FEHMs)

such that the fast transitions occur only between states within

a group, then an approximation technique called behavioral

decompos#ion can be employed to produce a simplified

model, resulting in a reduction in the number of states in the

simplified model.
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The mathematical details of the behavioral decomposition

approximation technique are beyond the scope of this tutorial,

however intuitively the process involves reducing the states

within the FEHM to a probabi[istic branch point, which then

replaces them in the original model to produce the simplified

model. This may be done because the fault/error handling
transitions within the FEHMs are so much faster than the fault

occurrence transitions outside of the FEHMs that, to the other

(non-FEHM) states in the model, it appears that a transition

into a FEHM exits again nearly instantaneously. The ap-

proximation, then, makes the assumption that the exit from

the FEHM is actually instantaneous rather than only nearly

instantaneous. The greater the difference in magnitude be-

tween the fast FEHM transitions and the slow non-FEHM

transitions, the faster the actual exit from the FEHM will be in

the original model in relative terms, so the closer the ap-

proximation assumption will be to reality, and the closer the

approximate answer obtained by evaluating the simplified

model will'be to the actual answer obtained by evaluating the

original model. To apply the approximation, the FEHM is

solved by itself, in isolation from the rest of the overall

model, to find the probabilities of reaching the individual exit-

ing transitions leading out of the FEHM (i.e. to find the prob-

ability of reaching each FEHM absorbing state at t = _). The

resulting FEHM exit probabilities (which are now coverage

factors) are substituted into the original model in place of the

states that were in the FEHM. This has the effect of not only

reducing the number of states in the model which must be

solved, but also eliminating all the fast transitions from the

model as well (i.e., removing stiffness from the model).

It must be emphasized that this procedure is an approxima-

tion technique, that the evaluation result of the simplified

model definitely will be different than that of the original

model, and that the closeness of the evaluation of the simpli-

fied model to that of the original model depends on the valid-

ity of the assumption that the fast FEHM transitions and the

slow non-FEHM transitions differ greatly in magnitude. If the

fast and slow transitions are sufficiently close in magnitude,

then the approximation will not be very good, and the evalua-

tion of the simplified model will not be very. close to the

evaluation of the original model. There have been a number
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of efforts aimed at establishing bounds for the accuracy of the

behavioral decomposition approximation{28-30].

An example of the application of behavioral decomposition

is illustrated in the slide. On the left is the original Markov

model of three redundant components, in which two groups of

states model the response of the system to the occurrences of

faults. The states in these groups appear inside boxes labeled

as FEHMs. The system initially resides in the state labeled

{3}. After a time one of the three components may experience

a fault, causing the system to move into the top FEHM.

Once a fault occurs it must first be detected, then the detected

fault must be isolated (i.e., the system must decide which of

the three components is faulty), and a reconfiguration must

occur to switch the faulty component out of operation, replac-

ing it with one of the spares. If any of these steps is unsuc-

cessful, it will cause the system to fail and move to the

FEHM absorbing state labeled [coverage failure}. If the re-

configuration is successful, the system reaches the FEHM ab-

sorbing state labeled {successful reconJTguration}, from

which it exits the FEHM and moves to the state labeled {2}

where it continues normal operation. To anyone looking at

the Markov model within the time frame of the fault occur-

rences (i.e., the time scale of the holding times of states {3},

{2}, and {1}), it will seem that once a transition finally occurs

out of state {3} into the corresponding FEHM, a sequence of

transitions within the FEHM occurs so rapidly that the sys-

tem almost immediately ends up either in state {2} or the

FEHM state labeled {coverage failure}. If the system ends up

in state {2}, the whole process is repeated when a second com-

ponent experiences a fault which causes the system to move

into the bottom FEHM.

On the right side of the slide is the simplified Markov

model that results from applying the behavioral decomposi-

tion approximation. The states of the FEHM between state

{3} and state {2} in the original model are replaced by a prob-

abilistic branch point and removed from the simplified

model. The probabilistic branch point has two paths: a

branch leading to state {2} that may be taken with probabil-

ity c_ (where cj is determined by solving the Markov model

comprised of the states in the FEHM in isolation from the rest

of the overall original model to determine the probability of

reaching the state labeled {successful reconfiguration} in the

steady state, i.e. at t = _), and a branch leading to a state rep-

resenting a coverage failure that may be taken with probability

] - c I (where 1 - cl must necessarily be the probability of

reaching the FEHM state labeled {coverage failure} in the

steady state). These coverage probabilities are then incorpo-

rated into the simplified model as shown in the slide. If the

system arrives in state {2} and subsequently experiences a sec-

ond component failure, the process is repeated using the bot-

tom FEHM. Note that the different transition rates leading

into the top and bottom FEHMs will cause the exit probabili-

ties to differ between them, i.e. the coverage probability for

exiting the top FEHM by a successful reconfiguration (c I) in

general will be different than the corresponding successful re-

configuration exit probability for the bottom FEHM (c2).

This is shown in the simplified model in the slide.

To summarize, it is not crucial for the reader to fully under-

stand all of the details of behavioral decomposition as de-

RF

scribed here. However, the important facts to remember are

that behavioral decomposition, if applicable, can reduce the
number of states in the Markov model and eliminate stiffness

from the model at the same time.

Selected Software Tools for Markov

Modeling

The last several years has seen the development of several

software tools for performing dependability analysis that in-

corporate the results of recent research in state-of-the-art meth-

ods in Markov modeling. Many of these programs address

the topics that have been discussed in the past several slides.

The next slide summarizes the key characteristics and features

of several such software tools. Included in the summary are

the form of the input (model type(s), etc.), which of the types

of Markov models covered in this tutorial can be solved by

the software tool, and distinguishing features (if any) that help

to differentiate it from the other tools. It should be noted that

each of these tools was designed to be most efficient with

greatest utility in certain specific modeling areas, and that no

one program currently exists that will satisfy all uses with the

same degree of efficiency, utility, and ease of use. There is

some overlap in capability for most of these programs, but

some do a much better job than others for specific applica-

tions. The majority of these tools were developed at universi-

ties or under the sponsorship of the federal government

(NASA) and so are available to the general public for use.

Slides 36 and 37: Summary of Selected Software Tools for

Markov Model-based Dependability A naly-

sis

The Hybrid Automated Reliability Predictor (HARP) pro-

gram[18] is a descendent of an earlier reliability analysis pro-

gram called CARE IIl[l 7] and was developed to address some

of the limitations in the CARE III program. Input of a model

may be in one of two forms: either directly in the form of a

Markov model (i.e. listing of states and inter-state transi-

tions), or in the form of a dynamic fault tree[3, 4]. lfa dy-

namic fault tree is used, it is converted automatically to an

acyclic Markov model before being solved[21]. If the model

is specified directly in the form ofa Markov chain instead of as

a dynamic fault tree, then the model solved by HARP can be

either cyclic or acyclic. The Markov model can be either ho-

mogeneous or non-homogeneous regardless of which form of

input is used. in addition to the Markov chain or dynamic

fault tree, the user must also provide fault/error handling in-

formation (parameters for FEHMs) as input to the program if

behavioral decomposition is to be used. Whereas CARE llI

provided only two types of FEHM coverage models that could

be used when employing behavioral decomposition, HARP

allows the user to select from seven different FEHM coverage

models (which can be mixed and matched). If the input is in

the form of a dynamic fault tree, the user has the option of us-

ing state truncation to limit the number of states in the gener-
ated Markov model. If the Markov model that is solved in

the final step of the HARP analysis contains stiffness, special

ODE solution routines that are designed for solving stiffODEs

are automatically invoked instead of the usual ODE solution

routines. A graphical user interface (GUI) is available for

model input and graphical output analysis on Sun worksta-
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tions and PC clone systems[31]. An older textual user inter-

face is also available. HARP was developed at Duke Univer-

sity under the sponsorship of NASA Langley Research Center.

HARP has been combined together with several related reli-

ability analysis programs into a reliability analysis package

called HiRel[19] which is available for general use. Persons

interested in obtaining a copy of HiRel may order it through

NASA's COSMIC software distribution organization at the

following addresses: COSMIC, University of Georgia, 382 E.

Broad St., Athens, GA 30602-4272; phone: (706) 524-3265;

email: service@cosmic.uga.edu.
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The Symbolic Hierarchical ,4utomated Reliability and

Performance Evaluator (SHARPE) program [32-34] is an

integrated tool that allows many different model types to be

solved either individually or combined hierarchically into

(hybrid) models. The input to the program is in the form of a

generalized model description language. SHARPE can solve

homogeneous cyclic and acyclic CTMCs and cyclic and acy-

clic semi-Markov models. In addition, SHARPE can also

solve other types of models, including: reliability block dia-

grams, fault trees, directed acyclic graphs, product form single

chain queuing networks, and Generalized Stochastic Petri Nets

(GSPNs). SHARPE has several features that distinguish it

from the majority of the other tools discussed here. SHARPE

provides the capability to assign reward rates" to states of a

Markov model, producing a Markov reward model which can

then be used for performance analysis. A unique feature of

SHARPE is its ability to produce symbolic output in which

the desired answer (for example, the probability of a particular

state ofa Markov model at a time t) is given symbolically as

a function oft (such as, for example, P(1) = 1- e--"). As a

consequence of this symbolic output capability, individual

models of independent subsystems (independent with respect

to subsystem events, i.e. failure and other events) may be

combined together in a hierarchical manner to produce larger

composite models. Even models of different types may be

combined in this way to produce hybrid composite models.

This gives the analyst a great deal of flexibility in building a

system model. A limitation of SHARPE is that the model

types it solves are fairly basic and do not include some of the

enhancement features like behavioral decomposition, state

truncation, and automated generation of Markov models that

are found in the other tools. However, if these features are not

needed, the benefits of symbolic output and hierarchical/hybrid

model capability outweigh the lack of model enhancement fea-

tures. SHARPE was developed at Duke University. Persons

interested in obtaining more technical and/or licensing infor-

mation about SHARPE should contact Dr. Kishor S. Trivedi,

1713 Tisdale St., Durham, NC 27705, phone: (919) 493-

6563, internet: kst@egr.duke.edu.

The Abstract Semi-Markov Specification Interface to the

SURE Tool (ASSIST) program[22] and the Semi-Markov

Unreliability Range Evaluator (SURE) program[25, 26] are

a coordinated pair of programs designed to work together.

SURE is a program for evaluating semi-Markov models,

whereas ASSIST (which implements an specialized program-

ming language for describing Markov and semi-Markov mod-

els) generates a semi-Markov model specification suitable for

use as input to the SURE program. The input for AS-

SIST/SURE is a user-written program in the ASSIST lan-

guage which ASSIST uses to generate the semi-Markov

model. Model types that can be evaluated by SURE include

cyclic and acyclic models of all three types (homogeneous,

non-homogeneous and semi-Markov). The unique feature that

distinguishes ASSIST/SURE from the other tools discussed

here is its use of an algebraic method to calculate a bounded

interval value for the model solution. This approach allows

SURE to avoid having to solve a system of simultaneous

ODEs. This approach also differs from the others in that it

evaluates probabilities of transition paths through the model

rather than probabilities of states. SURE implements a path

truncation feature, which is similar to the state truncation

technique discussed earlier in this tutorial. Both SURE and

ASSIST were developed at NASA Langley Research Center.

Persons interested in obtaining a copy of ASSIST/SURE may

order it through NASA's COSMIC software distribution or-

ganization at the following addresses: COSMIC, University

of Georgia, 382 E. Broad St., Athens, GA 30602-4272:

phone: (706) 524-3265: email: service@cosmic.uga.edu.

The Computer Aided Markov Evaluator (CAME) pro-

gram[23] is a tool whose distinguishing feature is its auto-
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maticgenerationoftheMarkovmodelfromasystemlevel
descriptionenteredbytheanalyst.The system level descrip-

tion includes information about the system architecture, the

performance requirements (failure criteria), and information

about reconfiguration procedures. From this information, the

program automatically constructs an appropriate Markov

model. The analyst can monitor and control the model con-

struction process. Homogeneous cyclic and acyclic CTMCs

can be generated and solved. Modifications to the original

CAME program permit semi-Markov models to be generated

using the input format required by the SURE program, per-

mitting cyclic and acyclic semi-Markov models to be gener-

ated and solved by a coordinated use of CAME and SURE.

CAME also implements state truncation and state aggregation

(lumping). CAME was developed at C. S. Draper Laborato-

ries and in the past has not been available for general use out-

side of Draper Labs. Persons interested in obtaining addi-

tional information about CAME should contact Dr. Philip

Babcock, C. S. Draper Laboratories, 555 Technology Square,

Cambridge, MA 02139.

MCI-HARP is a relative of the HARP program mentioned

earlier. Input to MCI-HARP is in the form of a dynamic fault

tree, and MCI-HARP uses the same input files as the HARP

program for dynamic fault trees: Since the input is in the form

of a dynamic fault tree, the underlying Markov model that is

evaluated is acyclic (no repair). MCI-HARP can evaluate ho-

mogeneous CTMCs, non-homogeneous CTMCs, semi-

Markov models, and also non-Markovian models (such as

those with inter-state transition rates which are functions of

global and local time both in the same model). MCI-HARP

differs from HARP in that the underlying Markov or non-

Markovian model is evaluated using simulation rather than by

numerical (analytic) solution techniques. This permits much

larger and more complex models to be solved than can be ac-

commodated by HARP (for example, use of component

IFR/DFRs and cold spares within the same model [8]), al-

though at a cost of large execution time requirements if the

results must be highly accurate[35]. Because it is fully com-

patible with HARP, MCI-HARP implements behavioral de-

composition for modeling imperfect fault coverage exactly as

HARP does. The compatibility between the two programs

also allows them to be used together in a coordinated way,

permitting the analyst to select the appropriate program

(analysis method) to analyze the model or partial models de-

pending on model size and characteristics. On models that

can be solved with both programs, the analyst has the option

of comparing the outputs obtained from the two programs to

verify results. MCI-HARP was developed at NASA Ames

Research Center by modifying a precursor program, called

MC-HARP, that was originally developed at Northwestern

University[36]. HARP, MC-HARP, and MCI-HARP are all

members of a package of related reliability analysis programs

which collectively are called HiRel[19] and which are all

available for general use. Persons interested in obtaining a

copy of MCI-HARP or any other member program of the

HiRel reliability modeling package may order it through

NASA's COSMIC software distribution organization at the

following addresses: COSMIC, University of Georgia, 382 E.

Broad St., Athens, GA 30602-4272; phone: (706) 524-3265;

email: service@cosmic.uga.edu.
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The MOdeling Specification and Evaluation Language

(MOSEL) a,d the MOdeling, Specificatio,, and Evalua-

tion System 0lOSES) tools are a pair of tools designed to

work together. They were developed at University of Erlan-

gen, Genaaany. MOSEL is a programming-type language for

specifying a Markov model, and MOSES is the solver engine
that evaluates the Markov model described in MOSEL. The

relationship between these two programs is very similar to the

relationship between ASSURE and ASSIST programs that

were discussed earlier. The MOSEL language seems tailored

toward describing queuing systems, but it can also describe

Markov models arising from other, more general origins. The

MOSES evaluator program has some special evaluation fea-

tures based on multi-grid methods that implement state ag-

gregation, reduce stiffness, and allow very large models to be

evaluated. The MOSEL/MOSES pair of programs are aimed

at solving cyclic and acyclic homogeneous Markov models.

Persons interested in obtaining more information about MO-

SEL/MOSES may contact Stefan Greiner by email at Ste-

fan.Greiner@informatik.uni-erlangen.de.

DIFtree is a dependability modeling tool developed at the

University of Virginia[11]. Although it is oriented toward

building and solving fault trees, it employs a unique modu-

larization technique[ 12] for identifying and separating out parts

of a fault tree that are dynamic (i.e. contain sequence depend-

encies) from those parts that are static" (i.e. are combinatorial

only). The static parts of the fault tree are solved with efficient

methods based on Binary Decision Diagrams (BDDs)[9, 10,

37]. The dynamic parts of the fault tree (which are subtrees

that essentially are d),namicfault trees in their own right) re-

quire Markov modeling techniques to solve and use funda-

mentally the same methodology as that used by HARP[3, 4].

The result is a tool for solving dynamic fault trees that is

(potentially) much more efficient than HARP for fault trees

that have little or no dynamic behavior that they are model-

ing. DIFtree accepts as input a dynamic fault tree in either a

graphical or a textual form. Because the dynamic fault tree-to-

Markov model conversion feature does not provide for repair,

the resulting Markov models that correspond to the dynamic

sub-fault trees are acyclic. Both homogeneous and non-

homogeneous CTMCs can be solved. Imperfect coverage can

be accommodated in both the static[9] and the dynamic parts

of the fault tree, and DIFtree has the same FEHM submodel

handling and state truncation capabilities as HARP. Persons

interested in obtaining more information about DIFtree may

contact Joanne Bechta Dugan, Dept. of Electrical Engineering,

Thornton Hall, University of Virginia, Charlottesville, VA

22903-2242; email: jbd@Virginia.edu. A copy of DIFtree

(for Unix hosts) may downloaded by anonymous ftp at

csisun 15.ee.virginia.edu.

The Galileo Fault Tree Analysis Tool was also developed

at University of Virginia. It runs on PC-based computers un-

der Windows 95 or Windows NT and incorporates the

DIFtree modeling tool (see above) as its fault tree/Markov

model solving engine. It provides an integrated wrapper de-

velopment environment around DIFtree (based on the standard

COTS applications MS Word 97, MS Access 97, and Visio

Technical 4.0 - 5.0) for specifying fault trees for solution by

DIFtree. Because of its close tie with DIFtree, it can solve the

same Markov model types and has the same features as

DIFtree (see above). Persons interested in obtaining more in-
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formation about Galileo may visit its Web site at the follow-

ing URL: http://www.cs.virginia.edu/-ftree. An alpha version

of Galileo can be downloaded from that Web site.

A new dependability modeling tool for Windows 95 and

Windows NT named MEADEP (MEAsure DEPendability)

will soon be available from SoHaR, Inc. Like SHARPE and

DIFtree (see above), MEADEP also is not strictly a Markov

model-based tool only, but Markov models are one of the im-

portant modeling options that it offers. MEADEP provides an

integrated GUl-based development environment that provides

any combination of the following three input options: a

graphical-oriented drawing facility for creating Markov models

(and Reliability Block diagrams), a textual input capability,

and a feature for extracting and integrating field failure data

from a Database. MEADEP appears to be oriented toward

solving homogeneous cyclic and acyclic CMTCs. It allows a

reward rate to be specified for individual states, thereby allow-

ing the use of Markov reward models. A distinctive feature is

the capability to hierarchically combine submodels into a

composite system model, and the ability to use this feature to

build hybrid models (in which submodels are of different

types). Another feature is an integrated capability for statisti-

cal analysis and estimation from field failure data built in to

the too[. Persons interested in obtaining more information

about MEADEP may visit SoHaR's MEADEP Web site at

the following URL:

http://www.sohar.com/meadep/index.htm 1.

Summary and Conclusion 3s
• Markov modeling is a powerful and effective technique for

modeling systems:

- With repair, dynamic behavior (imperfect fault coverage, fault/
enor handling, sequence dependencies)

- With behavior too complex to be accommodated by strictly
combinatorial models

- Whose behavior is not complex enough to require simulation

• A variety of software tools for Markov modeling are
available for general use (many from US Govt or academic
sources)

• Detailed knowled_ze of the mathematics behind Markov
modeling is helpffil but not essential for performing
dependability analyses with Markov models

- However, the analyst does need an understandiJzg of the stochastk"
pJv,perties and underlying assumptions of the Markov model types

• Ideally, Dependability Analysis should be pelformed by

System,Designers throughout the design process as an "
in;c_:i-a, i-,ai-;of the system dcsien cycle wifll flu, .vtq_p.rt

Slide 38

Slide 38. Summary and Conclusion

This tutorial has presented an introduction to the use of

Markov modeling for dependability analysis for fault tolerant

systems. The emphasis has been on giving an intuitive feel-

ing for the capabilities and limitations of the three major types

of Markov model types, and how they represent the behavior

of a system. It was observed that Markov modeling is an ef-

fective technique for modeling systems that exhibit complex

repair, dynamic behavior (such as imperfect fault coverage,

fault/error handling, and sequence dependencies), and general

behavior that is too complex to be accommodated by simpler

combinatorial modeling methods but not so complex that

simulation is required. It was seen that a number of software

RF

tools have been developed for Markov modeling, and that sev-

eral of them are available for general use. It was noted that

detailed knowledge on the part of the dependability analyst of

the mathematics behind Markov modeling techniques is

helpful but not essential to be able to perform dependability

analyses with Markov models provided that appropriate so_-

ware tools for Markov modeling are available. It is sufficient

for the analyst to have an understanding of the stochastic prop-

erties and underlying assumptions of Markov modeling, and

an understanding of their implications (limitations) for repre-

senting system failure behavior in order to be able to use

Markov modeling effectively for most common dependability

analysis needs.

in this tutorial it was also noted that, ideally, dependability

analysis should be performed throughout the entire design

process by system designers (whenever possible) instead of

exclusively by modeling specialists because it is ultimately

the system designers that are most qualified to perform the

dependability analysis by virtue of their familiarity with the

technical details of the system. The availability, of software

tools for modeling such as those described in this tutorial

helps make this approach feasible. However, it should be em-

phasized that in such an approach there is still an important

place for the modeling specialist (i.e. reliability analyst) in the

role of assisting the system designers with understanding sub-

tleties in the modeling process and verifying that a completed

model does not use any modeling techniques inappropriately.

This is needed because dependability modeling is still as

much an art as it is a science, and there are limits to the effec-

tiveness of the automation of the modeling process that these

tools provide. This is especially true when relatively sophis-

ticated modeling methods, such as Markov modeling, are

used. In addition, the current state-of-the-art modeling tools

generally do not yet have comprehensive safeguards to prevent

an inexperienced user from inappropriate use of modeling

techniques. In light of these facts, it is still wise to rely on

experienced human expertise when finalizing any dependabil-

ity model which has a major impact on the ultimate design of

a complex fault tolerant system.
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