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Preface

In the fall of 2010, I taught an introductory one-quarter course on

graduate real analysis, focusing in particular on the basics of mea-

sure and integration theory, both in Euclidean spaces and in abstract

measure spaces. This text is based on my lecture notes of that course,

which are also available online on my blog terrytao.wordpress.com,

together with some supplementary material, such as a section on prob-

lem solving strategies in real analysis (Section 2.1) which evolved from

discussions with my students.

This text is intended to form a prequel to my graduate text

[Ta2010] (henceforth referred to as An epsilon of room, Vol. I ),

which is an introduction to the analysis of Hilbert and Banach spaces

(such as Lp and Sobolev spaces), point-set topology, and related top-

ics such as Fourier analysis and the theory of distributions; together,

they serve as a text for a complete first-year graduate course in real

analysis.

The approach to measure theory here is inspired by the text

[StSk2005], which was used as a secondary text in my course. In

particular, the first half of the course is devoted almost exclusively

to measure theory on Euclidean spaces Rd (starting with the more

elementary Jordan-Riemann-Darboux theory, and only then moving

on to the more sophisticated Lebesgue theory), deferring the abstract

aspects of measure theory to the second half of the course. I found

ix
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x Preface

that this approach strengthened the student’s intuition in the early

stages of the course, and helped provide motivation for more abstract

constructions, such as Carathéodory’s general construction of a mea-

sure from an outer measure.

Most of the material here is self-contained, assuming only an

undergraduate knowledge in real analysis (and in particular, on the

Heine-Borel theorem, which we will use as the foundation for our

construction of Lebesgue measure); a secondary real analysis text can

be used in conjunction with this one, but it is not strictly necessary.

A small number of exercises however will require some knowledge of

point-set topology or of set-theoretic concepts such as cardinals and

ordinals.

A large number of exercises are interspersed throughout the text,

and it is intended that the reader perform a significant fraction of

these exercises while going through the text. Indeed, many of the key

results and examples in the subject will in fact be presented through

the exercises. In my own course, I used the exercises as the basis

for the examination questions, and signalled this well in advance, to

encourage the students to attempt as many of the exercises as they

could as preparation for the exams.

The core material is contained in Chapter 1, and already com-

prises a full quarter’s worth of material. Section 2.1 is a much more

informal section than the rest of the book, focusing on describing

problem solving strategies, either specific to real analysis exercises, or

more generally applicable to a wider set of mathematical problems;

this section evolved from various discussions with students through-

out the course. The remaining three sections in Chapter 2 are op-

tional topics, which require understanding of most of the material in

Chapter 1 as a prerequisite (although Section 2.3 can be read after

completing Section 1.4.

Notation

For reasons of space, we will not be able to define every single math-

ematical term that we use in this book. If a term is italicised for

reasons other than emphasis or for definition, then it denotes a stan-

dard mathematical object, result, or concept, which can be easily
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Notation xi

looked up in any number of references. (In the blog version of the

book, many of these terms were linked to their Wikipedia pages, or

other on-line reference pages.)

Given a subset E of a spaceX, the indicator function 1E : X → R

is defined by setting 1E(x) equal to 1 for x ∈ E and equal to 0 for

x 6∈ E.

For any natural number d, we refer to the vector space Rd :=

{(x1, . . . , xd) : x1, . . . , xd ∈ R} as (d-dimensional) Euclidean space.

A vector (x1, . . . , xd) in Rd has length

|(x1, . . . , xd)| := (x2
1 + . . .+ x2

d)
1/2

and two vectors (x1, . . . , xd), (y1, . . . , yd) have dot product

(x1, . . . , xd) · (y1, . . . , yd) := x1y1 + . . .+ xdyd.

The extended non-negative real axis [0,+∞] is the non-negative

real axis [0,+∞) := {x ∈ R : x ≥ 0} with an additional element

adjointed to it, which we label +∞; we will need to work with this

system because many sets (e.g. Rd) will have infinite measure. Of

course, +∞ is not a real number, but we think of it as an extended real

number. We extend the addition, multiplication, and order structures

on [0,+∞) to [0,+∞] by declaring

+∞+ x = x++∞ = +∞
for all x ∈ [0,+∞],

+∞ · x = x ·+∞ = +∞
for all non-zero x ∈ (0,+∞],

+∞ · 0 = 0 ·+∞ = 0,

and

x < +∞ for all x ∈ [0,+∞).

Most of the laws of algebra for addition, multiplication, and order

continue to hold in this extended number system; for instance ad-

dition and multiplication are commutative and associative, with the

latter distributing over the former, and an order relation x ≤ y is

preserved under addition or multiplication of both sides of that re-

lation by the same quantity. However, we caution that the laws of
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xii Preface

cancellation do not apply once some of the variables are allowed to be

infinite; for instance, we cannot deduce x = y from +∞+x = +∞+y

or from +∞ · x = +∞ · y. This is related to the fact that the forms

+∞ − +∞ and +∞/ + ∞ are indeterminate (one cannot assign a

value to them without breaking a lot of the rules of algebra). A gen-

eral rule of thumb is that if one wishes to use cancellation (or proxies

for cancellation, such as subtraction or division), this is only safe if

one can guarantee that all quantities involved are finite (and in the

case of multiplicative cancellation, the quantity being cancelled also

needs to be non-zero, of course). However, as long as one avoids us-

ing cancellation and works exclusively with non-negative quantities,

there is little danger in working in the extended real number system.

We note also that once one adopts the convention +∞ · 0 =

0 · +∞ = 0, then multiplication becomes upward continuous (in the

sense that whenever xn ∈ [0,+∞] increases to x ∈ [0,+∞], and

yn ∈ [0,+∞] increases to y ∈ [0,+∞], then xnyn increases to xy)

but not downward continuous (e.g. 1/n → 0 but 1/n · +∞ 6→ 0 ·
+∞). This asymmetry will ultimately cause us to define integration

from below rather than from above, which leads to other asymmetries

(e.g. the monotone convergence theorem (Theorem 1.4.44) applies

for monotone increasing functions, but not necessarily for monotone

decreasing ones).

Remark 0.0.1. Note that there is a tradeoff here: if one wants

to keep as many useful laws of algebra as one can, then one can

add in infinity, or have negative numbers, but it is difficult to have

both at the same time. Because of this tradeoff, we will see two

overlapping types of measure and integration theory: the non-negative

theory, which involves quantities taking values in [0,+∞], and the

absolutely integrable theory, which involves quantities taking values in

(−∞,+∞) or C. For instance, the fundamental convergence theorem

for the former theory is the monotone convergence theorem (Theorem

1.4.44), while the fundamental convergence theorem for the latter is

the dominated convergence theorem (Theorem 1.4.49). Both branches

of the theory are important, and both will be covered in later notes.

One important feature of the extended nonnegative real axis is

that all sums are convergent: given any sequence x1, x2, . . . ∈ [0,+∞],
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Notation xiii

we can always form the sum

∞
∑

n=1

xn ∈ [0,+∞]

as the limit of the partial sums
∑N

n=1 xn, which may be either finite

or infinite. An equivalent definition of this infinite sum is as the

supremum of all finite subsums:

∞
∑

n=1

xn = sup
F⊂N,F finite

∑

n∈F
xn.

Motivated by this, given any collection (xα)α∈A of numbers xα ∈
[0,+∞] indexed by an arbitrary set A (finite or infinite, countable or

uncountable), we can define the sum
∑

α∈A xα by the formula

(0.1)
∑

α∈A
xα = sup

F⊂A,F finite

∑

α∈F
xα.

Note from this definition that one can relabel the collection in an

arbitrary fashion without affecting the sum; more precisely, given

any bijection φ : B → A, one has the change of variables formula

(0.2)
∑

α∈A
xα =

∑

β∈B
xφ(β).

Note that when dealing with signed sums, the above rearrangement

identity can fail when the series is not absolutely convergent (cf. the

Riemann rearrangement theorem).

Exercise 0.0.1. If (xα)α∈A is a collection of numbers xα ∈ [0,+∞]

such that
∑

α∈A xα < ∞, show that xα = 0 for all but at most

countably many α ∈ A, even if A itself is uncountable.

We will rely frequently on the following basic fact (a special case

of the Fubini-Tonelli theorem, Corollary 1.7.23):

Theorem 0.0.2 (Tonelli’s theorem for series). Let (xn,m)n,m∈N be a

doubly infinite sequence of extended non-negative reals xn,m ∈ [0,+∞].

Then
∑

(n,m)∈N2

xn,m =

∞
∑

n=1

∞
∑

m=1

xn,m =

∞
∑

m=1

∞
∑

n=1

xn,m.
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Informally, Tonelli’s theorem asserts that we may rearrange infi-

nite series with impunity as long as all summands are non-negative.

Proof. We shall just show the equality of the first and second ex-

pressions; the equality of the first and third is proven similarly.

We first show that

∑

(n,m)∈N2

xn,m ≤
∞
∑

n=1

∞
∑

m=1

xn,m.

Let F be any finite subset of N2. Then F ⊂ {1, . . . , N}× {1, . . . , N}
for some finite N , and thus (by the non-negativity of the xn,m)

∑

(n,m)∈F
xn,m ≤

∑

(n,m)∈{1,...,N}×{1,...,N}
xn,m.

The right-hand side can be rearranged as

N
∑

n=1

N
∑

m=1

xn,m,

which is clearly at most
∑∞

n=1

∑∞
m=1 xn,m (again by non-negativity

of xn,m). This gives

∑

(n,m)∈F
xn,m ≤

∞
∑

n=1

∞
∑

m=1

xn,m.

for any finite subset F of N2, and the claim then follows from (0.1).

It remains to show the reverse inequality

∞
∑

n=1

∞
∑

m=1

xn,m ≤
∑

(n,m)∈N2

xn,m.

It suffices to show that

N
∑

n=1

∞
∑

m=1

xn,m ≤
∑

(n,m)∈N2

xn,m

for each finite N .

Fix N . As each
∑∞

m=1 xn,m is the limit of
∑M

m=1 xn,m, the left-

hand side is the limit of
∑N

n=1

∑M
m=1 xn,m as M → ∞. Thus it
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suffices to show that
N
∑

n=1

M
∑

m=1

xn,m ≤
∑

(n,m)∈N2

xn,m

for each finiteM . But the left-hand side is
∑

(n,m)∈{1,...,N}×{1,...,M} xn,m,

and the claim follows. �

Remark 0.0.3. Note how important it was that the xn,m were non-

negative in the above argument. In the signed case, one needs an

additional assumption of absolute summability of xn,m on N2 before

one is permitted to interchange sums; this is Fubini’s theorem for

series, which we will encounter later in this text. Without absolute

summability or non-negativity hypotheses, the theorem can fail (con-

sider for instance the case when xn,m equals +1 when n = m, −1

when n = m+ 1, and 0 otherwise).

Exercise 0.0.2 (Tonelli’s theorem for series over arbitrary sets). Let

A,B be sets (possibly infinite or uncountable), and (xn,m)n∈A,m∈B
be a doubly infinite sequence of extended non-negative reals xn,m ∈
[0,+∞] indexed by A and B. Show that

∑

(n,m)∈A×B
xn,m =

∑

n∈A

∑

m∈B
xn,m =

∑

m∈B

∑

n∈A
xn,m.

(Hint: although not strictly necessary, you may find it convenient to

first establish the fact that if
∑

n∈A xn is finite, then xn is non-zero

for at most countably many n.)

Next, we recall the axiom of choice, which we shall be assuming

throughout the text:

Axiom 0.0.4 (Axiom of choice). Let (Eα)α∈A be a family of non-

empty sets Eα, indexed by an index set A. Then we can find a family

(xα)α∈A of elements xα of Eα, indexed by the same set A.

This axiom is trivial when A is a singleton set, and from math-

ematical induction one can also prove it without difficulty when A

is finite. However, when A is infinite, one cannot deduce this axiom

from the other axioms of set theory, but must explicitly add it to the

list of axioms. We isolate the countable case as a particularly useful
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corollary (though one which is strictly weaker than the full axiom of

choice):

Corollary 0.0.5 (Axiom of countable choice). Let E1, E2, E3, . . . be

a sequence of non-empty sets. Then one can find a sequence x1, x2, . . .

such that xn ∈ En for all n = 1, 2, 3, . . ..

Remark 0.0.6. The question of how much of real analysis still sur-

vives when one is not permitted to use the axiom of choice is a delicate

one, involving a fair amount of logic and descriptive set theory to an-

swer. We will not discuss these matters in this text. We will however

note a theorem of Gödel[Go1938] that states that any statement that

can be phrased in the first-order language of Peano arithmetic, and

which is proven with the axiom of choice, can also be proven without

the axiom of choice. So, roughly speaking, Gödel’s theorem tells us

that for any “finitary” application of real analysis (which includes

most of the “practical” applications of the subject), it is safe to use

the axiom of choice; it is only when asking questions about “infini-

tary” objects that are beyond the scope of Peano arithmetic that one

can encounter statements that are provable using the axiom of choice,

but are not provable without it.
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Chapter 1

Measure theory

1
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2 1. Measure theory

1.1. Prologue: The problem of measure

One of the most fundamental concepts in Euclidean geometry is that

of the measure m(E) of a solid body E in one or more dimensions. In

one, two, and three dimensions, we refer to this measure as the length,

area, or volume of E respectively. In the classical approach to geom-

etry, the measure of a body was often computed by partitioning that

body into finitely many components, moving around each component

by a rigid motion (e.g. a translation or rotation), and then reassem-

bling those components to form a simpler body which presumably

has the same area. One could also obtain lower and upper bounds on

the measure of a body by computing the measure of some inscribed

or circumscribed body; this ancient idea goes all the way back to the

work of Archimedes at least. Such arguments can be justified by an

appeal to geometric intuition, or simply by postulating the existence

of a measure m(E) that can be assigned to all solid bodies E, and

which obeys a collection of geometrically reasonable axioms. One can

also justify the concept of measure on “physical” or “reductionistic”

grounds, viewing the measure of a macroscopic body as the sum of

the measures of its microscopic components.

With the advent of analytic geometry, however, Euclidean geom-

etry became reinterpreted as the study of Cartesian products Rd of

the real line R. Using this analytic foundation rather than the classi-

cal geometrical one, it was no longer intuitively obvious how to define

the measure m(E) of a general1 subset E of Rd; we will refer to this

(somewhat vaguely defined) problem of writing down the “correct”

definition of measure as the problem of measure.

To see why this problem exists at all, let us try to formalise some

of the intuition for measure discussed earlier. The physical intuition

of defining the measure of a body E to be the sum of the measure

of its component “atoms” runs into an immediate problem: a typical

solid body would consist of an infinite (and uncountable) number of

points, each of which has a measure of zero; and the product ∞ · 0 is

indeterminate. To make matters worse, two bodies that have exactly

1One can also pose the problem of measure on other domains than Euclidean
space, such as a Riemannian manifold, but we will focus on the Euclidean case here for
simplicity, and refer to any text on Riemannian geometry for a treatment of integration
on manifolds.
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1.1. Prologue: The problem of measure 3

the same number of points, need not have the same measure. For

instance, in one dimension, the intervals A := [0, 1] and B := [0, 2]

are in one-to-one correspondence (using the bijection x 7→ 2x from A

to B), but of course B is twice as long as A. So one can disassemble

A into an uncountable number of points and reassemble them to form

a set of twice the length.

Of course, one can point to the infinite (and uncountable) number

of components in this disassembly as being the cause of this break-

down of intuition, and restrict attention to just finite partitions. But

one still runs into trouble here for a number of reasons, the most

striking of which is the Banach-Tarski paradox, which shows that the

unit ball B := {(x, y, z) ∈ R3 : x2+y2+z2 ≤ 1} in three dimensions2

can be disassembled into a finite number of pieces (in fact, just five

pieces suffice), which can then be reassembled (after translating and

rotating each of the pieces) to form two disjoint copies of the ball B.

Here, the problem is that the pieces used in this decomposition are

highly pathological in nature; among other things, their construction

requires use of the axiom of choice. (This is in fact necessary; there

are models of set theory without the axiom of choice in which the

Banach-Tarski paradox does not occur, thanks to a famous theorem

of Solovay[So1970].) Such pathological sets almost never come up in

practical applications of mathematics. Because of this, the standard

solution to the problem of measure has been to abandon the goal

of measuring every subset E of Rd, and instead to settle for only

measuring a certain subclass of “non-pathological” subsets of Rd,

which are then referred to as the measurable sets. The problem of

measure then divides into several subproblems:

(i) What does it mean for a subset E of Rd to be measurable?

(ii) If a set E is measurable, how does one define its measure?

(iii) What nice properties or axioms does measure (or the con-

cept of measurability) obey?

2The paradox only works in three dimensions and higher, for reasons having to
do with the group-theoretic property of amenability; see §2.2 of An epsilon of room,
Vol. I for further discussion.
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4 1. Measure theory

(iv) Are “ordinary” sets such as cubes, balls, polyhedra, etc.

measurable?

(v) Does the measure of an “ordinary” set equal the “naive geo-

metric measure” of such sets? (e.g. is the measure of an

a× b rectangle equal to ab?)

These questions are somewhat open-ended in formulation, and

there is no unique answer to them; in particular, one can expand the

class of measurable sets at the expense of losing one or more nice

properties of measure in the process (e.g. finite or countable addi-

tivity, translation invariance, or rotation invariance). However, there

are two basic answers which, between them, suffice for most applica-

tions. The first is the concept of Jordan measure (or Jordan content)

of a Jordan measurable set, which is a concept closely related to that

of the Riemann integral (or Darboux integral). This concept is el-

ementary enough to be systematically studied in an undergraduate

analysis course, and suffices for measuring most of the “ordinary”

sets (e.g. the area under the graph of a continuous function) in many

branches of mathematics. However, when one turns to the type of

sets that arise in analysis, and in particular those sets that arise as

limits (in various senses) of other sets, it turns out that the Jordan

concept of measurability is not quite adequate, and must be extended

to the more general notion of Lebesgue measurability, with the corre-

sponding notion of Lebesgue measure that extends Jordan measure.

With the Lebesgue theory (which can be viewed as a completion of

the Jordan-Darboux-Riemann theory), one keeps almost all of the de-

sirable properties of Jordan measure, but with the crucial additional

property that many features of the Lebesgue theory are preserved un-

der limits (as exemplified in the fundamental convergence theorems

of the Lebesgue theory, such as the monotone convergence theorem

(Theorem 1.4.44) and the dominated convergence theorem (Theorem

1.4.49), which do not hold in the Jordan-Darboux-Riemann setting).
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1.1. Prologue: The problem of measure 5

As such, they are particularly well suited3 for applications in analysis,

where limits of functions or sets arise all the time.

In later sections, we will formally define Lebesgue measure and

the Lebesgue integral, as well as the more general concept of an ab-

stract measure space and the associated integration operation. In

the rest of the current section, we will discuss the more elementary

concepts of Jordan measure and the Riemann integral. This mate-

rial will eventually be superceded by the more powerful theory to be

treated in later sections; but it will serve as motivation for that later

material, as well as providing some continuity with the treatment of

measure and integration in undergraduate analysis courses.

1.1.1. Elementary measure. Before we discuss Jordan measure,

we discuss the even simpler notion of elementary measure, which al-

lows one to measure a very simple class of sets, namely the elementary

sets (finite unions of boxes).

Definition 1.1.1 (Intervals, boxes, elementary sets). An interval is

a subset of R of the form [a, b] := {x ∈ R : a ≤ x ≤ b}, [a, b) := {x ∈
R : a ≤ x < b}, (a, b] := {x ∈ R : a < x ≤ b}, or (a, b) := {x ∈ R :

a < x < b}, where a ≤ b are real numbers. We define the length4 |I|
of an interval I = [a, b], [a, b), (a, b], (a, b) to be |I| := b− a. A box in

Rd is a Cartesian product B := I1 × . . .× Id of d intervals I1, . . . , Id
(not necessarily of the same length), thus for instance an interval is

a one-dimensional box. The volume |B| of such a box B is defined as

|B| := |I1| × . . .× |Id|. An elementary set is any subset of Rd which

is the union of a finite number of boxes.

Exercise 1.1.1 (Boolean closure). Show that if E,F ⊂ Rd are ele-

mentary sets, then the union E ∪ F , the intersection E ∩ F , and the

set theoretic difference E\F := {x ∈ E : x 6∈ F}, and the symmetric

difference E∆F := (E\F ) ∪ (F\E) are also elementary. If x ∈ Rd,

show that the translate E+x := {y+x : y ∈ E} is also an elementary

set.

3There are other ways to extend Jordan measure and the Riemann integral, see
for instance Exercise 1.6.53 or Section 1.7.3, but the Lebesgue approach handles limits
and rearrangement better than the other alternatives, and so has become the stan-
dard approach in analysis; it is also particularly well suited for providing the rigorous
foundations of probability theory, as discussed in Section 2.3.

4Note we allow degenerate intervals of zero length.
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6 1. Measure theory

We now give each elementary set a measure.

Lemma 1.1.2 (Measure of an elementary set). Let E ⊂ Rd be an

elementary set.

(i) E can be expressed as the finite union of disjoint boxes.

(ii) If E is partitioned as the finite union B1∪. . .∪Bk of disjoint

boxes, then the quantity m(E) := |B1| + . . . + |Bk| is inde-

pendent of the partition. In other words, given any other

partition B′1 ∪ . . . ∪ B′k′ of E, one has |B1| + . . . + |Bk| =
|B′1|+ . . .+ |B′k′ |.

We refer to m(E) as the elementary measure of E. (We occasionally

write m(E) as md(E) to emphasise the d-dimensional nature of the

measure.) Thus, for example, the elementary measure of (1, 2)∪ [3, 6]

is (2− 1) + (6− 3) = 4.

Proof. We first prove (i) in the one-dimensional case d = 1. Given

any finite collection of intervals I1, . . . , Ik, one can place the 2k end-

points of these intervals in increasing order (discarding repetitions).

Looking at the open intervals between these endpoints, together with

the endpoints themselves (viewed as intervals of length zero), we see

that there exists a finite collection of disjoint intervals J1, . . . , Jk′

such that each of the I1, . . . , Ik are a union of some subcollection of

the J1, . . . , Jk′ . This already gives (i) when d = 1. To prove the

higher dimensional case, we express E as the union B1, . . . , Bk of

boxes Bi = Ii,1 × . . . × Ii,d. For each j = 1, . . . , d, we use the one-

dimensional argument to express I1,j , . . . , Ik,j as the union of sub-

collections of a collection J1,j , . . . , Jk′
j ,j

of disjoint intervals. Taking

Cartesian products, we can express the B1, . . . , Bk as finite unions of

boxes Ji1,1 × . . . × Jid,d, where 1 ≤ ij ≤ k′j for all 1 ≤ j ≤ d. Such

boxes are all disjoint, and the claim follows.

To prove (ii) we use a discretisation argument. Observe (exercise!)

that for any interval I, the length of I can be recovered by the limiting

formula

|I| = lim
N→∞

1

N
#(I ∩ 1

N
Z)
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1.1. Prologue: The problem of measure 7

where 1
NZ := { n

N : n ∈ Z} and #A denotes the cardinality of a finite

set A. Taking Cartesian products, we see that

|B| = lim
N→∞

1

Nd
#(B ∩ 1

N
Zd)

for any box B, and in particular that

|B1|+ . . .+ |Bk| = lim
N→∞

1

Nd
#(E ∩ 1

N
Zd).

Denoting the right-hand side as m(E), we obtain the claim (ii). �

Exercise 1.1.2. Give an alternate proof of Lemma 1.1.2(ii) by show-

ing that any two partitions of E into boxes admit a mutual refinement

into boxes that arise from taking Cartesian products of elements from

finite collections of disjoint intervals.

Remark 1.1.3. One might be tempted to now define the measure

m(E) of an arbitrary set E ⊂ Rd by the formula

(1.1) m(E) := lim
N→∞

1

Nd
#(E ∩ 1

N
Zd),

since this worked well for elementary sets. However, this definition

is not particularly satisfactory for a number of reasons. Firstly, one

can concoct examples in which the limit does not exist (Exercise!).

Even when the limit does exist, this concept does not obey reasonable

properties such as translation invariance. For instance, if d = 1 and

E := Q∩[0, 1] := {x ∈ Q : 0 ≤ x ≤ 1}, then this definition would give

E a measure of 1, but would give the translate E +
√
2 := {x+

√
2 :

x ∈ Q; 0 ≤ x ≤ 1} a measure of zero. Nevertheless, the formula (1.1)

will be valid for all Jordan measurable sets (see Exercise 1.1.13). It

also makes precise an important intuition, namely that the continuous

concept of measure can be viewed5 as a limit of the discrete concept

of (normalised) cardinality.

From the definitions, it is clear that m(E) is a non-negative real

number for every elementary set E, and that

m(E ∪ F ) = m(E) +m(F )

5Another way to obtain continuous measure as the limit of discrete measure is
via Monte Carlo integration, although in order to rigorously introduce the probability
theory needed to set up Monte Carlo integration properly, one already needs to develop
a large part of measure theory, so this perspective, while intuitive, is not suitable for
foundational purposes.
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8 1. Measure theory

whenever E and F are disjoint elementary sets. We refer to the latter

property as finite additivity ; by induction it also implies that

m(E1 ∪ . . . ∪ Ek) = m(E1) + . . .+m(Ek)

whenever E1, . . . , Ek are disjoint elementary sets. We also have the

obvious degenerate case

m(∅) = 0.

Finally, elementary measure clearly extends the notion of volume, in

the sense that

m(B) = |B|
for all boxes B.

From non-negativity and finite additivity (and Exercise 1.1.1) we

conclude the monotonicity property

m(E) ≤ m(F )

whenever E ⊂ F are nested elementary sets. From this and finite

additivity (and Exercise 1.1.1) we easily obtain the finite subadditivity

property

m(E ∪ F ) ≤ m(E) +m(F )

whenever E,F are elementary sets (not necessarily disjoint); by in-

duction one then has

m(E1 ∪ . . . ∪ Ek) ≤ m(E1) + . . .+m(Ek)

whenever E1, . . . , Ek are elementary sets (not necessarily disjoint).

It is also clear from the definition that we have the translation

invariance

m(E + x) = m(E)

for all elementary sets E and x ∈ Rd.

These properties in fact define elementary measure up to normal-

isation:

Exercise 1.1.3 (Uniqueness of elementary measure). Let d ≥ 1. Let

m′ : E(Rd) → R+ be a map from the collection E(Rd) of elementary

subsets of Rd to the nonnegative reals that obeys the non-negativity,

finite additivity, and translation invariance properties. Show that

there exists a constant c ∈ R+ such that m′(E) = cm(E) for all

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.1. Prologue: The problem of measure 9

elementary sets E. In particular, if we impose the additional normal-

isation m′([0, 1)d) = 1, then m′ ≡ m. (Hint: Set c := m′([0, 1)d), and
then compute m′([0, 1

n )
d) for any positive integer n.)

Exercise 1.1.4. Let d1, d2 ≥ 1, and let E1 ⊂ Rd1 , E2 ⊂ Rd2 be

elementary sets. Show that E1 × E2 ⊂ Rd1+d2 is elementary, and

md1+d2(E1 × E2) = md1(E1)×md2(E2).

1.1.2. Jordan measure. We now have a satisfactory notion of mea-

sure for elementary sets. But of course, the elementary sets are a very

restrictive class of sets, far too small for most applications. For in-

stance, a solid triangle or disk in the plane will not be elementary, or

even a rotated box. On the other hand, as essentially observed long

ago by Archimedes, such sets E can be approximated from within and

without by elementary sets A ⊂ E ⊂ B, and the inscribing elemen-

tary set A and the circumscribing elementary set B can be used to

give lower and upper bounds on the putative measure of E. As one

makes the approximating sets A,B increasingly fine, one can hope

that these two bounds eventually match. This gives rise to the fol-

lowing definitions.

Definition 1.1.4 (Jordan measure). Let E ⊂ Rd be a bounded set.

• The Jordan inner measure m∗,(J)(E) of E is defined as

m∗,(J)(E) := sup
A⊂E,A elementary

m(A).

• The Jordan outer measure m∗,(J)(E) of E is defined as

m∗,(J)(E) := inf
B⊃E,B elementary

m(B).

• If m∗,(J)(E) = m∗,(J)(E), then we say that E is Jordan

measurable, and call m(E) := m∗,(J)(E) = m∗,(J)(E) the

Jordan measure of E. As before, we write m(E) as md(E)

when we wish to emphasise the dimension d.

By convention, we do not consider unbounded sets to be Jordan mea-

surable (they will be deemed to have infinite Jordan outer measure).

Jordan measurable sets are those sets which are “almost elemen-

tary” with respect to Jordan outer measure. More precisely, we have
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10 1. Measure theory

Exercise 1.1.5 (Characterisation of Jordan measurability). Let E ⊂
Rd be bounded. Show that the following are equivalent:

(1) E is Jordan measurable.

(2) For every ε > 0, there exist elementary sets A ⊂ E ⊂ B

such that m(B\A) ≤ ε.

(3) For every ε > 0, there exists an elementary set A such that

m∗,(J)(A∆E) ≤ ε.

As one corollary of this exercise, we see that every elementary set

E is Jordan measurable, and that Jordan measure and elementary

measure coincide for such sets; this justifies the use of m(E) to denote

both. In particular, we still have m(∅) = 0.

Jordan measurability also inherits many of the properties of ele-

mentary measure:

Exercise 1.1.6. Let E,F ⊂ Rd be Jordan measurable sets.

(1) (Boolean closure) Show that E ∪F , E ∩F , E\F , and E∆F

are Jordan measurable.

(2) (Non-negativity) m(E) ≥ 0.

(3) (Finite additivity) If E,F are disjoint, then m(E ∪ F ) =

m(E) +m(F ).

(4) (Monotonicity) If E ⊂ F , then m(E) ≤ m(F ).

(5) (Finite subadditivity) m(E ∪ F ) ≤ m(E) +m(F ).

(6) (Translation invariance) For any x ∈ Rd, E + x is Jordan

measurable, and m(E + x) = m(E).

Now we give some examples of Jordan measurable sets:

Exercise 1.1.7 (Regions under graphs are Jordan measurable). Let

B be a closed box in Rd, and let f : B → R be a continuous function.

(1) Show that the graph {(x, f(x)) : x ∈ B} ⊂ Rd+1 is Jordan

measurable in Rd+1 with Jordan measure zero. (Hint: on

a compact metric space, continuous functions are uniformly

continuous.)

(2) Show that the set {(x, t) : x ∈ B; 0 ≤ t ≤ f(x)} ⊂ Rd+1 is

Jordan measurable.
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1.1. Prologue: The problem of measure 11

Exercise 1.1.8. Let A,B,C be three points in R2.

(1) Show that the solid triangle with vertices A,B,C is Jordan

measurable.

(2) Show that the Jordan measure of the solid triangle is equal

to 1
2 |(B −A) ∧ (C −A)|, where |(a, b) ∧ (c, d)| := |ad− bc|.

(Hint: It may help to first do the case when one of the edges, say

AB, is horizontal.)

Exercise 1.1.9. Show that every compact convex polytope6 in Rd

is Jordan measurable.

Exercise 1.1.10. (1) Show that all open and closed Euclidean

balls B(x, r) := {y ∈ Rd : |y − x| < r}, B(x, r) := {y ∈
Rd : |y−x| ≤ r} in Rd are Jordan measurable, with Jordan

measure cdr
d for some constant cd > 0 depending only on

d.

(2) Establish the crude bounds

(

2√
d

)d

≤ cd ≤ 2d.

(An exact formula for cd is cd = 1
dωd, where ωd := 2πd/2

Γ(d/2) is the

volume of the unit sphere Sd−1 ⊂ Rd and Γ is the Gamma function,

but we will not derive this formula here.)

Exercise 1.1.11. This exercise assumes familiarity with linear alge-

bra. Let L : Rd → Rd be a linear transformation.

(1) Show that there exists a non-negative real number D such

that m(L(E)) = Dm(E) for every elementary set E (note

from previous exercises that L(E) is Jordan measurable).

(Hint: apply Exercise 1.1.3 to the map E 7→ m(L(E)).)

(2) Show that if E is Jordan measurable, then L(E) is also, and

m(L(E)) = Dm(E).

6A closed convex polytope is a subset of Rd formed by intersecting together

finitely many closed half-spaces of the form {x ∈ Rd : x ·v ≤ c}, where v ∈ Rd, c ∈ R,

and · denotes the usual dot product on Rd. A compact convex polytope is a closed
convex polytope which is also bounded.
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12 1. Measure theory

(3) Show that D = | detL|. (Hint: Work first with the case

when L is an elementary transformation, using Gaussian

elimination. Alternatively, work with the cases when L is

a diagonal transformation or an orthogonal transformation,

using the unit ball in the latter case, and use the polar

decomposition.)

Exercise 1.1.12. Define a Jordan null set to be a Jordan measurable

set of Jordan measure zero. Show that any subset of a Jordan null

set is a Jordan null set.

Exercise 1.1.13. Show that (1.1) holds for all Jordan measurable

E ⊂ Rd.

Exercise 1.1.14 (Metric entropy formulation of Jordan measurabil-

ity). Define a dyadic cube to be a half-open box of the form
[

i1
2n

,
i1 + 1

2n

)

× . . .×
[

id
2n

,
id + 1

2n

)

for some integers n, i1, . . . , id. Let E ⊂ Rd be a bounded set. For

each integer n, let E∗(E, 2−n) denote the number of dyadic cubes of

sidelength 2−n that are contained in E, and let E∗(E, 2−n) be the

number of dyadic cubes7 of sidelength 2−n that intersect E. Show

that E is Jordan measurable if and only if

lim
n→∞

2−dn(E∗(E, 2−n)− E∗(E, 2−n)) = 0,

in which case one has

m(E) = lim
n→∞

2−dnE∗(E, 2−n) = lim
n→∞

2−dnE∗(E, 2−n).

Exercise 1.1.15 (Uniqueness of Jordan measure). Let d ≥ 1. Let

m′ : J (Rd) → R+ be a map from the collection J (Rd) of Jordan-

measurable subsets of Rd to the nonnegative reals that obeys the

non-negativity, finite additivity, and translation invariance properties.

Show that there exists a constant c ∈ R+ such that m′(E) = cm(E)

for all Jordan measurable sets E. In particular, if we impose the

additional normalisation m′([0, 1)d) = 1, then m′ ≡ m.

7This quantity could be called the (dyadic) metric entropy of E at scale 2−n.
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1.1. Prologue: The problem of measure 13

Exercise 1.1.16. Let d1, d2 ≥ 1, and let E1 ⊂ Rd1 , E2 ⊂ Rd2 be

Jordan measurable sets. Show that E1 × E2 ⊂ Rd1+d2 is Jordan

measurable, and md1+d2(E1 × E2) = md1(E1)×md2(E2).

Exercise 1.1.17. Let P,Q be two polytopes in Rd. Suppose that P

can be partitioned into finitely many sub-polytopes P1, . . . , Pn which,

after being rotated and translated, form new polytopes Q1, . . . , Qn

which are an almost disjoint cover of Q, which means that Q =

Q1 ∪ . . . ∪ Qn, and for any 1 ≤ i < j ≤ n, Qi and Qj only intersect

at the boundary (i.e. the interior of Qi is disjoint from the interior

of Qj). Conclude that P and Q have the same Jordan measure. The

converse statement is true in one and two dimensions d = 1, 2 (this

is the Bolyai-Gerwien theorem), but false in higher dimensions (this

was Dehn’s negative answer[De1901] to Hilbert’s third problem).

The above exercises give a fairly large class of Jordan measurable

sets. However, not every subset of Rd is Jordan measurable. First of

all, the unbounded sets are not Jordan measurable, by construction.

But there are also bounded sets that are not Jordan measurable:

Exercise 1.1.18. Let E ⊂ Rd be a bounded set.

(1) Show that E and the closure E of E have the same Jordan

outer measure.

(2) Show that E and the interior E◦ of E have the same Jordan

inner measure.

(3) Show that E is Jordan measurable if and only if the topo-

logical boundary ∂E of E has Jordan outer measure zero.

(4) Show that the bullet-riddled square [0, 1]2\Q2, and set of

bullets [0, 1]2 ∩ Q2, both have Jordan inner measure zero

and Jordan outer measure one. In particular, both sets are

not Jordan measurable.

Informally, any set with a lot of “holes”, or a very “fractal”

boundary, is unlikely to be Jordan measurable. In order to measure

such sets we will need to develop Lebesgue measure, which is done in

the next set of notes.
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14 1. Measure theory

Exercise 1.1.19 (Carathéodory type property). Let E ⊂ Rd be

a bounded set, and F ⊂ Rd be an elementary set. Show that

m∗,(J)(E) = m∗,(J)(E ∩ F ) +m∗,(J)(E\F ).

1.1.3. Connection with the Riemann integral. To conclude this

section, we briefly discuss the relationship between Jordan measure

and the Riemann integral (or the equivalent Darboux integral). For

simplicity we will only discuss the classical one-dimensional Riemann

integral on an interval [a, b], though one can extend the Riemann the-

ory without much difficulty to higher-dimensional integrals on Jordan

measurable sets. (In later sections, this Riemann integral will be su-

perceded by the Lebesgue integral.)

Definition 1.1.5 (Riemann integrability). Let [a, b] be an interval of

positive length, and f : [a, b] → R be a function. A tagged partition

P = ((x0, x1, . . . , xn), (x
∗
1, . . . , x

∗
n)) of [a, b] is a finite sequence of real

numbers a = x0 < x1 < . . . < xn = b, together with additional

numbers xi−1 ≤ x∗i ≤ xi for each i = 1, . . . , n. We abbreviate xi−xi−1
as δxi. The quantity ∆(P) := sup1≤i≤n δxi will be called the norm

of the tagged partition. The Riemann sum R(f,P) of f with respect

to the tagged partition P is defined as

R(f,P) :=
n
∑

i=1

f(x∗i )δxi.

We say that f is Riemann integrable on [a, b] if there exists a real

number, denoted
∫ b

a
f(x) dx and referred to as the Riemann integral

of f on [a, b], for which we have
∫ b

a

f(x) dx = lim
∆(P)→0

R(f,P)

by which we mean that for every ε > 0 there exists δ > 0 such

that |R(f,P) −
∫ b

a
f(x) dx| ≤ ε for every tagged partition P with

∆(P) ≤ δ.

If [a, b] is an interval of zero length, we adopt the convention that

every function f : [a, b] → R is Riemann integrable, with a Riemann

integral of zero.

Note that unbounded functions cannot be Riemann integrable

(why?).
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1.1. Prologue: The problem of measure 15

The above definition, while geometrically natural, can be awk-

ward to use in practice. A more convenient formulation of the Rie-

mann integral can be formulated using some additional machinery.

Exercise 1.1.20 (Piecewise constant functions). Let [a, b] be an in-

terval. A piecewise constant function f : [a, b] → R is a function

for which there exists a partition of [a, b] into finitely many intervals

I1, . . . , In, such that f is equal to a constant ci on each of the intervals

Ii. If f is piecewise constant, show that the expression
n
∑

i=1

ci|Ii|

is independent of the choice of partition used to demonstrate the

piecewise constant nature of f . We will denote this quantity by

p.c.
∫ b

a
f(x) dx, and refer to it as the piecewise constant integral of f

on [a, b].

Exercise 1.1.21 (Basic properties of the piecewise constant integral).

Let [a, b] be an interval, and let f, g : [a, b] → R be piecewise constant

functions. Establish the following statements:

(1) (Linearity) For any real number c, cf and f + g are piece-

wise constant, with p.c.
∫ b

a
cf(x) dx = cp.c.

∫ b

a
f(x) dx and

p.c.
∫ b

a
f(x) + g(x) dx = p.c.

∫ b

a
f(x) dx+ p.c.

∫ b

a
g(x) dx.

(2) (Monotonicity) If f ≤ g pointwise (i.e. f(x) ≤ g(x) for all

x ∈ [a, b]) then p.c.
∫ b

a
f(x) dx ≤ p.c.

∫ b

a
g(x) dx.

(3) (Indicator) If E is an elementary subset of [a, b], then the in-

dicator function 1E : [a, b] → R (defined by setting 1E(x) :=

1 when x ∈ E and 1E(x) := 0 otherwise) is piecewise con-

stant, and p.c.
∫ b

a
1E(x) dx = m(E).

Definition 1.1.6 (Darboux integral). Let [a, b] be an interval, and

f : [a, b] → R be a bounded function. The lower Darboux integral
∫ b

a
f(x) dx of f on [a, b] is defined as

∫ b

a

f(x) dx := sup
g≤f, piecewise constant

p.c.

∫ b

a

g(x) dx,

where g ranges over all piecewise constant functions that are pointwise

bounded above by f . (The hypothesis that f is bounded ensures that
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16 1. Measure theory

the supremum is over a non-empty set.) Similarly, we define the upper

Darboux integral
∫ b

a
f(x) dx of f on [a, b] by the formula

∫ b

a

f(x) dx := inf
h≥f, piecewise constant

p.c.

∫ b

a

h(x) dx.

Clearly
∫ b

a
f(x) dx ≤

∫ b

a
f(x) dx. If these two quantities are equal,

we say that f is Darboux integrable, and refer to this quantity as the

Darboux integral of f on [a, b].

Note that the upper and lower Darboux integrals are related by

the reflection identity
∫ b

a

− f(x) dx = −
∫ b

a

f(x) dx.

Exercise 1.1.22. Let [a, b] be an interval, and f : [a, b] → R be a

bounded function. Show that f is Riemann integrable if and only

if it is Darboux integrable, in which case the Riemann integral and

Darboux integrals are equal.

Exercise 1.1.23. Show that any continuous function f : [a, b] → R is

Riemann integrable. More generally, show that any bounded, piece-

wise continuous8 function f : [a, b] → R is Riemann integrable.

Now we connect the Riemann integral to Jordan measure in two

ways. First, we connect the Riemann integral to one-dimensional

Jordan measure:

Exercise 1.1.24 (Basic properties of the Riemann integral). Let

[a, b] be an interval, and let f, g : [a, b] → R be Riemann integrable.

Establish the following statements:

(1) (Linearity) For any real number c, cf and f+g are Riemann

integrable, with
∫ b

a
cf(x) dx = c ·

∫ b

a
f(x) dx and

∫ b

a
f(x) +

g(x) dx =
∫ b

a
f(x) dx+

∫ b

a
g(x) dx.

(2) (Monotonicity) If f ≤ g pointwise (i.e. f(x) ≤ g(x) for all

x ∈ [a, b]) then
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

8A function f : [a, b] → R is piecewise continuous if one can partition [a, b] into
finitely many intervals, such that f is continuous on each interval.
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1.2. Lebesgue measure 17

(3) (Indicator) If E is a Jordan measurable of [a, b], then the in-

dicator function 1E : [a, b] → R (defined by setting 1E(x) :=

1 when x ∈ E and 1E(x) := 0 otherwise) is Riemann inte-

grable, and
∫ b

a
1E(x) dx = m(E).

Finally, show that these properties uniquely define the Riemann inte-

gral, in the sense that the functional f 7→
∫ b

a
f(x) dx is the only map

from the space of Riemann integrable functions on [a, b] to R which

obeys all three of the above properties.

Next, we connect the integral to two-dimensional Jordan measure:

Exercise 1.1.25 (Area interpretation of the Riemann integral). Let

[a, b] be an interval, and let f : [a, b] → R be a bounded function.

Show that f is Riemann integrable if and only if the sets E+ :=

{(x, t) : x ∈ [a, b]; 0 ≤ t ≤ f(x)} and E− := {(x, t) : x ∈ [a, b]; f(x) ≤
t ≤ 0} are both Jordan measurable in R2, in which case one has

∫ b

a

f(x) dx = m2(E+)−m2(E−),

where m2 denotes two-dimensional Jordan measure. (Hint: First

establish this in the case when f is non-negative.)

Exercise 1.1.26. Extend the definition of the Riemann and Darboux

integrals to higher dimensions, in such a way that analogues of all the

previous results hold.

1.2. Lebesgue measure

In Section 1.1, we recalled the classical theory of Jordan measure on

Euclidean spaces Rd. This theory proceeded in the following stages:

(i) First, one defined the notion of a box B and its volume |B|.
(ii) Using this, one defined the notion of an elementary set E (a

finite union of boxes), and defines the elementary measure

m(E) of such sets.

(iii) From this, one defined the inner and Jordan outer measures

m∗,(J)(E),m∗,(J)(E) of an arbitrary bounded set E ⊂ Rd. If

those measures match, we say that E is Jordan measurable,
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18 1. Measure theory

and callm(E) = m∗,(J)(E) = m∗,(J)(E) the Jordan measure

of E.

As long as one is lucky enough to only have to deal with Jordan

measurable sets, the theory of Jordan measure works well enough.

However, as noted previously, not all sets are Jordan measurable, even

if one restricts attention to bounded sets. In fact, we shall see later

in these notes that there even exist bounded open sets, or compact

sets, which are not Jordan measurable, so the Jordan theory does

not cover many classes of sets of interest. Another class that it fails

to cover is countable unions or intersections of sets that are already

known to be measurable:

Exercise 1.2.1. Show that the countable union
⋃∞

n=1 En or count-

able intersection
⋂∞

n=1 En of Jordan measurable sets E1, E2, . . . ⊂ R

need not be Jordan measurable, even when bounded.

This creates problems with Riemann integrability (which, as we

saw in Section 1.1, was closely related to Jordan measure) and point-

wise limits:

Exercise 1.2.2. Give an example of a sequence of uniformly bounded,

Riemann integrable functions fn : [0, 1] → R for n = 1, 2, . . . that con-

verge pointwise to a bounded function f : [0, 1] → R that is not Rie-

mann integrable. What happens if we replace pointwise convergence

with uniform convergence?

These issues can be rectified by using a more powerful notion of

measure than Jordan measure, namely Lebesgue measure. To define

this measure, we first tinker with the notion of the Jordan outer

measure

m∗,(J)(E) := inf
B⊃E;B elementary

m(B)

of a set E ⊂ Rd (we adopt the convention that m∗,(J)(E) = +∞ if

E is unbounded, thus m∗,(J) now takes values in the extended non-

negative reals [0,+∞], whose properties we will briefly review below).

Observe from the finite additivity and subadditivity of elementary

measure that we can also write the Jordan outer measure as

m∗,(J)(E) := inf
B1∪...∪Bk⊃E;B1,...,Bk boxes

|B1|+ . . .+ |Bk|,
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1.2. Lebesgue measure 19

i.e. the Jordan outer measure is the infimal cost required to cover E

by a finite union of boxes. (The natural number k is allowed to vary

freely in the above infimum.) We now modify this by replacing the

finite union of boxes by a countable union of boxes, leading to the

Lebesgue outer measure9 m∗(E) of E:

m∗(E) := inf
⋃∞

n=1 Bn⊃E;B1,B2,... boxes

∞
∑

n=1

|Bn|,

thus the Lebesgue outer measure is the infimal cost required to cover

E by a countable union of boxes. Note that the countable sum
∑∞

n=1 |Bn| may be infinite, and so the Lebesgue outer measure m∗(E)

could well equal +∞.

Clearly, we always have m∗(E) ≤ m∗,(J)(E) (since we can always

pad out a finite union of boxes into an infinite union by adding an

infinite number of empty boxes). But m∗(E) can be a lot smaller:

Example 1.2.1. Let E = {x1, x2, x3, . . .} ⊂ Rd be a countable set.

We know that the Jordan outer measure of E can be quite large;

for instance, in one dimension, m∗,(J)(Q) is infinite, and m∗,(J)(Q ∩
[−R,R]) = m∗,(J)([−R,R]) = 2R since Q∩ [−R,R] has [−R,R] as its

closure (see Exercise 1.1.18). On the other hand, all countable sets E

have Lebesgue outer measure zero. Indeed, one simply covers E by

the degenerate boxes {x1}, {x2}, . . . of sidelength and volume zero.

Alternatively, if one does not like degenerate boxes, one can cover

each xn by a cube Bn of sidelength ε/2n (say) for some arbitrary

ε > 0, leading to a total cost of
∑∞

n=1(ε/2
n)d, which converges to

Cdε
d for some absolute constant Cd. As ε can be arbitrarily small,

we see that the Lebesgue outer measure must be zero. We will refer

to this type of trick as the ε/2n trick ; it will be used many further

times in this text.

From this example we see in particular that a set may be un-

bounded while still having Lebesgue outer measure zero, in contrast

to Jordan outer measure.

9Lebesgue outer measure is also denoted m∗(E) in some texts.
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20 1. Measure theory

As we shall see in Section 1.7, Lebesgue outer measure (also

known as Lebesgue exterior measure) is a special case of a more gen-

eral concept known as an outer measure.

In analogy with the Jordan theory, we would also like to define

a concept of “Lebesgue inner measure” to complement that of outer

measure. Here, there is an asymmetry (which ultimately arises from

the fact that elementary measure is subadditive rather than superad-

ditive): one does not gain any increase in power in the Jordan inner

measure by replacing finite unions of boxes with countable ones. But

one can get a sort of Lebesgue inner measure by taking complements;

see Exercise 1.2.18. This leads to one possible definition for Lebesgue

measurability, namely the Carathéodory criterion for Lebesgue mea-

surability, see Exercise 1.2.17. However, this is not the most intuitive

formulation of this concept to work with, and we will instead use a dif-

ferent (but logically equivalent) definition of Lebesgue measurability.

The starting point is the observation (see Exercise 1.1.13) that Jordan

measurable sets can be efficiently contained in elementary sets, with

an error that has small Jordan outer measure. In a similar vein, we

will define Lebesgue measurable sets to be sets that can be efficiently

contained in open sets, with an error that has small Lebesgue outer

measure:

Definition 1.2.2 (Lebesgue measurability). A set E ⊂ Rd is said

to be Lebesgue measurable if, for every ε > 0, there exists an open

set U ⊂ Rd containing E such that m∗(U\E) ≤ ε. If E is Lebesgue

measurable, we refer to m(E) := m∗(E) as the Lebesgue measure of

E (note that this quantity may be equal to +∞). We also write m(E)

as md(E) when we wish to emphasise the dimension d.

Remark 1.2.3. The intuition that measurable sets are almost open

is also known as Littlewood’s first principle, this principle is a triviality

with our current choice of definitions, though less so if one uses other,

equivalent, definitions of Lebesgue measurability. See Section 1.3.5

for a further discussion of Littlewood’s principles.

As we shall see later, Lebesgue measure extends Jordan measure,

in the sense that every Jordan measurable set is Lebesgue measurable,
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and the Lebesgue measure and Jordan measure of a Jordan measur-

able set are always equal. We will also see a few other equivalent

descriptions of the concept of Lebesgue measurability.

In the notes below we will establish the basic properties of Lebesgue

measure. Broadly speaking, this concept obeys all the intuitive prop-

erties one would ask of measure, so long as one restricts attention

to countable operations rather than uncountable ones, and as long

as one restricts attention to Lebesgue measurable sets. The latter is

not a serious restriction in practice, as almost every set one actually

encounters in analysis will be measurable (the main exceptions be-

ing some pathological sets that are constructed using the axiom of

choice). In the next set of notes we will use Lebesgue measure to

set up the Lebesgue integral, which extends the Riemann integral in

the same way that Lebesgue measure extends Jordan measure; and

the many pleasant properties of Lebesgue measure will be reflected in

analogous pleasant properties of the Lebesgue integral (most notably

the convergence theorems).

We will treat all dimensions d = 1, 2, . . . equally here, but for the

purposes of drawing pictures, we recommend to the reader that one

sets d equal to 2. However, for this topic at least, no additional mathe-

matical difficulties will be encountered in the higher-dimensional case

(though of course there are significant visual difficulties once d ex-

ceeds 3).

1.2.1. Properties of Lebesgue outer measure. We begin by

studying the Lebesgue outer measure m∗, which was defined earlier,

and takes values in the extended non-negative real axis [0,+∞]. We

first record three easy properties of Lebesgue outer measure, which

we will use repeatedly in the sequel without further comment:

Exercise 1.2.3 (The outer measure axioms).

(i) (Empty set) m∗(∅) = 0.

(ii) (Monotonicity) If E ⊂ F ⊂ Rd, then m∗(E) ≤ m∗(F ).

(iii) (Countable subadditivity) If E1, E2, . . . ⊂ Rd is a count-

able sequence of sets, then m∗(
⋃∞

n=1 En) ≤
∑∞

n=1 m
∗(En).

(Hint: Use the axiom of countable choice, Tonelli’s theorem
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for series, and the ε/2n trick used previously to show that

countable sets had outer measure zero.)

Note that countable subadditivity, when combined with the empty

set axiom, gives as a corollary the finite subadditivity property

m∗(E1 ∪ . . . ∪ Ek) ≤ m∗(E1) + . . .+m∗(Ek)

for any k ≥ 0. These subadditivity properties will be useful in estab-

lishing upper bounds on Lebesgue outer measure. Establishing lower

bounds will often be a bit trickier. (More generally, when dealing

with a quantity that is defined using an infimum, it is usually easier

to obtain upper bounds on that quantity than lower bounds, because

the former requires one to bound just one element of the infimum,

whereas the latter requires one to bound all elements.)

Remark 1.2.4. Later on in this text, when we study abstract mea-

sure theory on a general set X, we will define the concept of an outer

measure on X, which is an assigment E 7→ m∗(E) of element of

[0,+∞] to arbitrary subsets E of a space X that obeys the above

three axioms of the empty set, monotonicity, and countable subaddi-

tivity; thus Lebesgue outer measure is a model example of an abstract

outer measure. On the other hand (and somewhat confusingly), Jor-

dan outer measure will not be an abstract outer measure (even after

adopting the convention that unbounded sets have Jordan outer mea-

sure +∞): it obeys the empty set and monotonicity axioms, but is

only finitely subadditive rather than countably subadditive. (For in-

stance, the rationals Q have infinite Jordan outer measure, despite

being the countable union of points, each of which have a Jordan

outer measure of zero.) Thus we already see a major benefit of al-

lowing countable unions of boxes in the definition of Lebesgue outer

measure, in contrast to the finite unions of boxes in the definition

of Jordan outer measure, in that finite subadditivity is upgraded to

countable subadditivity.

Of course, one cannot hope to upgrade countable subadditivity

to uncountable subadditivity: Rd is an uncountable union of points,

each of which has Lebesgue outer measure zero, but (as we shall

shortly see), Rd has infinite Lebesgue outer measure.
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It is natural to ask whether Lebesgue outer measure has the finite

additivity property, that is to say that m∗(E ∪F ) = m∗(E) +m∗(F )

whenever E,F ⊂ Rd are disjoint. The answer to this question is

somewhat subtle: as we shall see later, we have finite additivity (and

even countable additivity) when all sets involved are Lebesgue mea-

surable, but that finite additivity (and hence also countable additiv-

ity) can break down in the non-measurable case. The difficulty here

(which, incidentally, also appears in the theory of Jordan outer mea-

sure) is that if E and F are sufficiently “entangled” with each other,

it is not always possible to take a countable cover of E ∪ F by boxes

and split the total volume of that cover into separate covers of E and

F without some duplication. However, we can at least recover finite

additivity if the sets E,F are separated by some positive distance:

Lemma 1.2.5 (Finite additivity for separated sets). Let E,F ⊂ Rd

be such that dist(E,F ) > 0, where

dist(E,F ) := inf{|x− y| : x ∈ E, y ∈ F}
is the distance10 between E and F . Then m∗(E ∪ F ) = m∗(E) +

m∗(F ).

Proof. From subadditivity one has m∗(E∪F ) ≤ m∗(E)+m∗(F ), so

it suffices to prove the other direction m∗(E) +m∗(F ) ≤ m∗(E ∪F ).

This is trivial if E ∪ F has infinite Lebesgue outer measure, so we

may assume that it has finite Lebesgue outer measure (and then the

same is true for E and F , by monotonicity).

We use the standard “give yourself an epsilon of room” trick (see

Section 2.7 of An epsilon of room, Vol I.). Let ε > 0. By definition

of Lebesgue outer measure, we can cover E∪F by a countable family

B1, B2, . . . of boxes such that
∞
∑

n=1

|Bn| ≤ m∗(E ∪ F ) + ε.

Suppose it was the case that each box intersected at most one of E and

F . Then we could divide this family into two subfamilies B′1, B
′
2, . . .

10Recall from the preface that we use the usual Euclidean metric |(x1, . . . , xd)| :=
√

x2
1 + . . . + x2

d on Rd.
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and B′′1 , B
′′
2 , B

′′
3 , . . ., the first of which covered E, and the second of

which covered F . From definition of Lebesgue outer measure, we have

m∗(E) ≤
∞
∑

n=1

|B′n|

and

m∗(F ) ≤
∞
∑

n=1

|B′′n|;

summing, we obtain

m∗(E) +m∗(F ) ≤
∞
∑

n=1

|Bn|

and thus

m∗(E) +m∗(F ) ≤ m∗(E ∪ F ) + ε.

Since ε was arbitrary, this gives m∗(E) + m∗(F ) ≤ m∗(E ∪ F ) as

required.

Of course, it is quite possible for some of the boxes Bn to intersect

both E and F , particularly if the boxes are big, in which case the

above argument does not work because that box would be double-

counted. However, observe that given any r > 0, one can always

partition a large box Bn into a finite number of smaller boxes, each

of which has diameter11 at most r, with the total volume of these

sub-boxes equal to the volume of the original box. Applying this

observation to each of the boxes Bn, we see that given any r > 0,

we may assume without loss of generality that the boxes B1, B2, . . .

covering E∪F have diameter at most r. In particular, we may assume

that all such boxes have diameter strictly less than dist(E,F ). Once

we do this, then it is no longer possible for any box to intersect both

E and F , and then the previous argument now applies. �

In general, disjoint sets E,F need not have a positive separation

from each other (e.g. E = [0, 1) and F = [1, 2]). But the situation

improves when E,F are closed, and at least one of E,F is compact:

11The diameter of a set B is defined as sup{|x− y| : x, y ∈ B}.
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Exercise 1.2.4. Let E,F ⊂ Rd be disjoint closed sets, with at least

one of E,F being compact. Show that dist(E,F ) > 0. Give a coun-

terexample to show that this claim fails when the compactness hy-

pothesis is dropped.

We already know that countable sets have Lebesgue outer mea-

sure zero. Now we start computing the outer measure of some other

sets. We begin with elementary sets:

Lemma 1.2.6 (Outer measure of elementary sets). Let E be an ele-

mentary set. Then the Lebesgue outer measure m∗(E) of E is equal

to the elementary measure m(E) of E: m∗(E) = m(E).

Remark 1.2.7. Since countable sets have zero outer measure, we

note that we have managed to give a proof of Cantor’s theorem that

Rd is uncountable. Of course, much quicker proofs of this theorem

are available. However, this observation shows that the proof this

lemma must somehow use some crucial fact about the real line which

is not true for countable subfields of R, such as the rationals Q. In

the proof we give here, the key fact about the real line we use is the

Heine-Borel theorem, which ultimately exploits the important fact

that the reals are complete. In the one-dimensional case d = 1, it

is also possible to exploit the fact that the reals are connected as a

substitute for completeness (note that proper subfields of the reals

are neither connected nor complete).

Proof. We already know that m∗(E) ≤ m∗,(J)(E) = m(E), so it

suffices to show that m(E) ≤ m∗(E).

We first establish this in the case when the elementary set E is

closed. As the elementary set E is also bounded, this allows us to

use the powerful Heine-Borel theorem, which asserts that every open

cover of E has a finite subcover (or in other words, E is compact).

We again use the epsilon of room strategy. Let ε > 0 be arbitrary,

then we can find a countable family B1, B2, . . . of boxes that cover E,

E ⊂
∞
⋃

n=1

Bn,
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and such that
∞
∑

n=1

|Bn| ≤ m∗(E) + ε.

We would like to use the Heine-Borel theorem, but the boxes Bn

need not be open. But this is not a serious problem, as one can spend

another epsilon to enlarge the boxes to be open. More precisely, for

each box Bn one can find an open box B′n containing Bn such that

|B′n| ≤ |Bn|+ ε/2n (say). The B′n still cover E, and we have
∞
∑

n=1

|B′n| ≤
∞
∑

n=1

(|Bn|+ ε/2n) = (
∞
∑

n=1

|Bn|) + ε ≤ m∗(E) + 2ε.

As the B′n are open, we may apply the Heine-Borel theorem and

conclude that

E ⊂
N
⋃

n=1

B′n

for some finite N . Using the finite subadditivity of elementary mea-

sure, we conclude that

m(E) ≤
N
∑

n=1

|B′n|

and thus

m(E) ≤ m∗(E) + 2ε.

Since ε > 0 was arbitrary, the claim follows.

Now we consider the case when the elementary E is not closed.

Then we can write E as the finite union Q1 ∪ . . . ∪ Qk of disjoint

boxes, which need not be closed. But, similarly to before, we can use

the epsilon of room strategy: for every ε > 0 and every 1 ≤ j ≤ k,

one can find a closed sub-box Q′j of Qj such that |Q′j | ≥ |Qj | − ε/k

(say); then E contains the finite union of Q′1∪ . . .∪Q′k disjoint closed

boxes, which is a closed elementary set. By the previous discussion

and the finite additivity of elementary measure, we have

m∗(Q′1 ∪ . . . ∪Q′k) = m(Q′1 ∪ . . . ∪Q′k)

= m(Q′1) + . . .+m(Q′k)

≥ m(Q1) + . . .+m(Qk)− ε

= m(E)− ε.
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Applying by monotonicity of Lebesgue outer measure, we conclude

that

m∗(E) ≥ m(E)− ε

for every ε > 0. Since ε > 0 was arbitrary, the claim follows. �

The above lemma allows us to compute the Lebesgue outer mea-

sure of a finite union of boxes. From this and monotonicity we con-

clude that the Lebesgue outer measure of any set is bounded below by

its Jordan inner measure. As it is also bounded above by the Jordan

outer measure, we have

(1.2) m∗,(J)(E) ≤ m∗(E) ≤ m∗,(J)(E)

for every E ⊂ Rd.

Remark 1.2.8. We are now able to explain why not every bounded

open set or compact set is Jordan measurable. Consider the countable

set Q ∩ [0, 1], which we enumerate as {q1, q2, q3, . . .}, let ε > 0 be a

small number, and consider the set

U :=
∞
⋃

n=1

(qn − ε/2n, qn + ε/2n).

This is the union of open sets and is thus open. On the other hand,

by countable subadditivity, one has

m∗(U) ≤
∞
∑

n=1

2ε/2n = 2ε.

Finally, as U is dense in [0, 1] (i.e. U contains [0, 1]), we have

m∗,(J)(U) = m∗,(J)(U) ≥ m∗,(J)([0, 1]) = 1.

For ε small enough (e.g. ε := 1/3), we see that the Lebesgue outer

measure and Jordan outer measure of U disagree. Using (1.2), we

conclude that the bounded open set U is not Jordan measurable.

This in turn implies that the complement of U in, say, [−2, 2], is also

not Jordan measurable, despite being a compact set.

Now we turn to countable unions of boxes. It is convenient to

introduce the following notion: two boxes are almost disjoint if their
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interiors are disjoint, thus for instance [0, 1] and [1, 2] are almost dis-

joint. As a box has the same elementary measure as its interior, we

see that the finite additivity property

(1.3) m(B1 ∪ . . . ∪Bk) = |B1|+ . . .+ |Bk|
holds for almost disjoint boxes B1, . . . , Bk, and not just for disjoint

boxes. This (and Lemma 1.2.6) has the following consequence:

Lemma 1.2.9 (Outer measure of countable unions of almost disjoint

boxes). Let E =
⋃∞

n=1 Bn be a countable union of almost disjoint

boxes B1, B2, . . .. Then

m∗(E) =
∞
∑

n=1

|Bn|.

Thus, for instance, Rd itself has an infinite outer measure.

Proof. From countable subadditivity and Lemma 1.2.6 we have

m∗(E) ≤
∞
∑

n=1

m∗(Bn) =
∞
∑

n=1

|Bn|,

so it suffices to show that
∞
∑

n=1

|Bn| ≤ m∗(E).

But for each natural number N , E contains the elementary set B1 ∪
. . . ∪BN , so by monotonicity and Lemma 1.2.6,

m∗(E) ≥ m∗(B1 ∪ . . . ∪BN )

= m(B1 ∪ . . . ∪BN )

and thus by (1.3), one has

N
∑

n=1

|Bn| ≤ m∗(E).

Letting N → ∞ we obtain the claim. �

Remark 1.2.10. The above lemma has the following immediate

corollary: if E =
⋃∞

n=1 Bn =
⋃∞

n=1 B
′
n can be decomposed in two

different ways as the countable union of almost disjoint boxes, then
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∑∞
n=1 |Bn| =

∑∞
n=1 |B′n|. Although this statement is intuitively obvi-

ous and does not explicitly use the concepts of Lebesgue outer mea-

sure or Lebesgue measure, it is remarkably difficult to prove this state-

ment rigorously without essentially using one of these two concepts.

(Try it!)

Exercise 1.2.5. Show that if a set E ⊂ Rd is expressible as the

countable union of almost disjoint boxes, then the Lebesgue outer

measure of E is equal to the Jordan inner measure: m∗(E) = m∗,(J)(E),

where we extend the definition of Jordan inner measure to unbounded

sets in the obvious manner.

Not every set can be expressed as the countable union of almost

disjoint boxes (consider for instance the irrationals R\Q, which con-

tain no boxes other than the singleton sets). However, there is an

important class of sets of this form, namely the open sets:

Lemma 1.2.11. Let E ⊂ Rd be an open set. Then E can be ex-

pressed as the countable union of almost disjoint boxes (and, in fact,

as the countable union of almost disjoint closed cubes).

Proof. We will use the dyadic mesh structure of the Euclidean space

Rd, which is a convenient tool for “discretising” certain aspects of

real analysis.

Define a closed dyadic cube to be a cube Q of the form

Q =

[

i1
2n

,
i1 + 1

2n

]

× . . .×
[

id
2n

,
id + 1

2n

]

for some integers n, i1, . . . , id. To avoid some technical issues we shall

restrict attention here to “small” cubes of sidelength at most 1, thus

we restrict n to the non-negative integers, and we will completely

ignore “large” cubes of sidelength greater than one. Observe that

the closed dyadic cubes of a fixed sidelength 2−n are almost disjoint,

and cover all of Rd. Also observe that each dyadic cube of sidelength

2−n is contained in exactly one “parent” cube of sidelength 2−n+1

(which, conversely, has 2d “children” of sidelength 2−n), giving the

dyadic cubes a structure analogous to that of a binary tree (or more

precisely, an infinite forest of 2d-ary trees). As a consequence of these

facts, we also obtain the important dyadic nesting property : given
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any two closed dyadic cubes (possibly of different sidelength), either

they are almost disjoint, or one of them is contained in the other.

If E is open, and x ∈ E, then by definition there is an open ball

centered at x that is contained in E, and it is easy to conclude that

there is also a closed dyadic cube containing x that is contained in

E. Thus, if we let Q be the collection of all the dyadic cubes Q that

are contained in E, we see that the union
⋃

Q∈QQ of all these cubes

is exactly equal to E.

As there are only countably many dyadic cubes, Q is at most

countable. But we are not done yet, because these cubes are not

almost disjoint (for instance, any cube Q in Q will of course overlap

with its child cubes). But we can deal with this by exploiting the

dyadic nesting property. Let Q∗ denote those cubes in Q which are

maximal with respect to set inclusion, which means that they are not

contained in any other cube in Q. From the nesting property (and

the fact that we have capped the maximum size of our cubes) we see

that every cube in Q is contained in exactly one maximal cube in

Q∗, and that any two such maximal cubes in Q∗ are almost disjoint.

Thus, we see that E is the union E =
⋃

Q∈Q∗ Q of almost disjoint

cubes. As Q∗ is at most countable, the claim follows (adding empty

boxes if necessary to pad out the cardinality). �

We now have a formula for the Lebesgue outer measure of any

open set: it is exactly equal to the Jordan inner measure of that set, or

of the total volume of any partitioning of that set into almost disjoint

boxes. Finally, we have a formula for the Lebesgue outer measure of

an arbitrary set:

Lemma 1.2.12 (Outer regularity). Let E ⊂ Rd be an arbitrary set.

Then one has

m∗(E) = inf
E⊂U,U open

m∗(U).

Proof. From monotonicity one trivially has

m∗(E) ≤ inf
E⊂U,U open

m∗(U)
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so it suffices to show that

inf
E⊂U,U open

m∗(U) ≤ m∗(E).

This is trivial for m∗(E) infinite, so we may assume that m∗(E) is

finite.

Let ε > 0. By definition of outer measure, there exists a countable

family B1, B2, . . . of boxes covering E such that
∞
∑

n=1

|Bn| ≤ m∗(E) + ε.

We use the ε/2n trick again. We can enlarge each of these boxes

Bn to an open box B′n such that |B′n| ≤ |Bn| + ε/2n. Then the set
⋃∞

n=1 B
′
n, being a union of open sets, is itself open, and contains E;

and
∞
∑

n=1

|B′n| ≤ m∗(E) + ε+
∞
∑

n=1

ε/2n = m∗(E) + 2ε.

By countable subadditivity, this implies that

m∗(
∞
⋃

n=1

B′n) ≤ m∗(E) + 2ε

and thus

inf
E⊂U,U open

m∗(U) ≤ m∗(E) + 2ε.

As ε > 0 was arbitrary, we obtain the claim. �

Exercise 1.2.6. Give an example to show that the reverse statement

m∗(E) = sup
U⊂E,U open

m∗(U)

is false. (For the corrected version of this statement, see Exercise

1.2.15.)

1.2.2. Lebesgue measurability. We now define the notion of a

Lebesgue measurable set as one which can be efficiently contained

in open sets in the sense of Definition 1.2.2, and set out their basic

properties.

First, we show that there are plenty of Lebesgue measurable sets.

Lemma 1.2.13 (Existence of Lebesgue measurable sets).
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(i) Every open set is Lebesgue measurable.

(ii) Every closed set is Lebesgue measurable.

(iii) Every set of Lebesgue outer measure zero is measurable.

(Such sets are called null sets.)

(iv) The empty set ∅ is Lebesgue measurable.

(v) If E ⊂ Rd is Lebesgue measurable, then so is its complement

Rd\E.

(vi) If E1, E2, E3, . . . ⊂ Rd are a sequence of Lebesgue measur-

able sets, then the union
⋃∞

n=1 En is Lebesgue measurable.

(vii) If E1, E2, E3, . . . ⊂ Rd are a sequence of Lebesgue measur-

able sets, then the intersection
⋂∞

n=1 En is Lebesgue mea-

surable.

Proof. Claim (i) is obvious from definition, as are Claims (iii) and

(iv).

To prove Claim (vi), we use the ε/2n trick. Let ε > 0 be arbitrary.

By hypothesis, each En is contained in an open set Un whose differ-

ence Un\En has Lebesgue outer measure at most ε/2n. By countable

subadditivity, this implies that
⋃∞

n=1 En is contained in
⋃∞

n=1 Un, and

the difference (
⋃∞

n=1 Un)\(
⋃∞

n=1 En) has Lebesgue outer measure at

most ε. The set
⋃∞

n=1 Un, being a union of open sets, is itself open,

and the claim follows.

Now we establish Claim (ii). Every closed set E is the countable

union of closed and bounded sets (by intersecting E with, say, the

closed balls B(0, n) of radius n for n = 1, 2, 3, . . .), so by (vi), it

suffices to verify the claim when E is closed and bounded, hence

compact by the Heine-Borel theorem. Note that the boundedness of

E implies that m∗(E) is finite.

Let ε > 0. By outer regularity (Lemma 1.2.12), we can find an

open set U containing E such that m∗(U) ≤ m∗(E)+ ε. It suffices to

show that m∗(U\E) ≤ ε.

The set U\E is open, and so by Lemma 1.2.11 is the countable

union
⋃∞

n=1 Qn of almost disjoint closed cubes. By Lemma 1.2.9,

m∗(U\E) =
∑∞

n=1 |Qn|. So it will suffice to show that
∑N

n=1 |Qn| ≤ ε

for every finite N .
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The set
⋃N

n=1 Qn is a finite union of closed cubes and is thus

closed. It is disjoint from the compact set E, so by Exercise 1.2.4

followed by Lemma 1.2.5 one has

m∗(E ∪
N
⋃

n=1

Qn) = m∗(E) +m∗(
N
⋃

n=1

Qn).

By monotonicity, the left-hand side is at most m∗(U), which is in

turn at most m∗(E) + ε. Since m∗(E) is finite, we may cancel it and

conclude that m∗(
⋃N

n=1 Qn) ≤ ε, as required.

Next, we establish Claim (v). If E is Lebesgue measurable, then

for every n we can find an open set Un containing E such that

m∗(Un\E) ≤ 1/n. Letting Fn be the complement of Un, we con-

clude that the complement Rd\E of E contains all of the Fn, and

that m∗((Rd\E)\Fn) ≤ 1/n. If we let F :=
⋃∞

n=1 Fn, then Rd\E
contains F , and from monotonicity m∗((Rd\E)\F ) = 0, thus Rd\E
is the union of F and a set of Lebesgue outer measure zero. But F is

in turn the union of countably many closed sets Fn. The claim now

follows from (ii), (iii), (iv).

Finally, Claim (vii) follows from (v), (vi), and de Morgan’s laws

(
⋂

α∈A Eα)
c =

⋃

α∈A Ec
α, (

⋃

α∈A Eα)
c =

⋂

α∈A Ec
α, (which work for

infinite unions and intersections without any difficulty). �

Informally, the above lemma asserts (among other things) that if

one starts with such basic subsets of Rd as open or closed sets and

then takes at most countably many boolean operations, one will al-

ways end up with a Lebesgue measurable set. This is already enough

to ensure that the majority of sets that one actually encounters in real

analysis will be Lebesgue measurable. (Nevertheless, using the axiom

of choice one can construct sets that are not Lebesgue measurable; we

will see an example of this later. As a consequence, we cannot gen-

eralise the countable closure properties here to uncountable closure

properties.)

Remark 1.2.14. The properties (iv), (v), (vi) of Lemma 1.2.13 assert

that the collection of Lebesgue measurable subsets of Rd form a σ-

algebra, which is a strengthening of the more classical concept of a
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boolean algebra. We will study abstract σ-algebras in more detail in

Section 1.4.

Note how this Lemma 1.2.13 is significantly stronger than the

counterpart for Jordan measurability (Exercise 1.1.6), in particular

by allowing countably many boolean operations instead of just finitely

many. This is one of the main reasons why we use Lebesgue measure

instead of Jordan measure.

Exercise 1.2.7 (Criteria for measurability). Let E ⊂ Rd. Show that

the following are equivalent:

(i) E is Lebesgue measurable.

(ii) (Outer approximation by open) For every ε > 0, one can

contain E in an open set U with m∗(U\E) ≤ ε.

(iii) (Almost open) For every ε > 0, one can find an open set U

such that m∗(U∆E) ≤ ε. (In other words, E differs from

an open set by a set of outer measure at most ε.)

(iv) (Inner approximation by closed) For every ε > 0, one can

find a closed set F contained in E with m∗(E\F ) ≤ ε.

(v) (Almost closed) For every ε > 0, one can find a closed set

F such that m∗(F∆E) ≤ ε. (In other words, E differs from

a closed set by a set of outer measure at most ε.)

(vi) (Almost measurable) For every ε > 0, one can find a Lebesgue

measurable set Eε such that m∗(Eε∆E) ≤ ε. (In other

words, E differs from a measurable set by a set of outer

measure at most ε.)

(Hint: Some of these deductions are either trivial or very easy. To

deduce (i) from (vi), use the ε/2n trick to show that E is contained

in a Lebesgue measurable set E′ε with m∗(E′ε∆E) ≤ ε, and then

take countable intersections to show that E differs from a Lebesgue

measurable set by a null set.)

Exercise 1.2.8. Show that every Jordan measurable set is Lebesgue

measurable.

Exercise 1.2.9 (Middle thirds Cantor set). Let I0 := [0, 1] be the

unit interval, let I1 := [0, 1/3] ∪ [2/3, 1] be I0 with the interior of
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the middle third interval removed, let I2 := [0, 1/9] ∪ [2/9, 1/3] ∪
[2/3, 7/9]∪ [8/9, 1] be I1 with the interior of the middle third of each

of the two intervals of I1 removed, and so forth. More formally, write

In :=
⋃

a1,...,an∈{0,2}
[

n
∑

i=1

ai
3i
,

n
∑

i=1

ai
3i

+
1

3n
].

Let C :=
⋂∞

n=1 In be the intersection of all the elementary sets In.

Show that C is compact, uncountable, and a null set.

Exercise 1.2.10. (This exercise presumes some familiarity with point-

set topology.) Show that the half-open interval [0, 1) cannot be ex-

pressed as the countable union of disjoint closed intervals. (Hint: It

is easy to prevent [0, 1) from being expressed as the finite union of

disjoint closed intervals. Next, assume for sake of contradiction that

[0, 1) is the union of infinitely many closed intervals, and conclude

that [0, 1) is homeomorphic to the middle thirds Cantor set, which is

absurd. It is also possible to proceed using the Baire category theo-

rem (§1.7 of An epsilon of room, Vol. I.) For an additional challenge,

show that [0, 1) cannot be expressed as the countable union of disjoint

closed sets.

Now we look at the Lebesgue measure m(E) of a Lebesgue mea-

surable set E, which is defined to equal its Lebesgue outer mea-

sure m∗(E). If E is Jordan measurable, we see from (1.2) that

the Lebesgue measure and the Jordan measure of E coincide, thus

Lebesgue measure extends Jordan measure. This justifies the use of

the notation m(E) to denote both Lebesgue measure of a Lebesgue

measurable set, and Jordan measure of a Jordan measurable set (as

well as elementary measure of an elementary set).

Lebesgue measure obeys significantly better properties than Lebesgue

outer measure, when restricted to Lebesgue measurable sets:

Lemma 1.2.15 (The measure axioms).

(i) (Empty set) m(∅) = 0.

(ii) (Countable additivity) If E1, E2, . . . ⊂ Rd is a countable se-

quence of disjoint Lebesgue measurable sets, then m(
⋃∞

n=1 En) =
∑∞

n=1 m(En).
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Proof. The first claim is trivial, so we focus on the second. We deal

with an easy case when all of the En are compact. By repeated use

of Lemma 1.2.5 and Exercise 1.2.4, we have

m(
N
⋃

n=1

En) =
N
∑

n=1

m(En).

Using monotonicity, we conclude that

m(
∞
⋃

n=1

En) ≥
N
∑

n=1

m(En).

(We can use m instead of m∗ throughout this argument, thanks to

Lemma 1.2.13). Sending N → ∞ we obtain

m(
∞
⋃

n=1

En) ≥
∞
∑

n=1

m(En).

On the other hand, from countable subadditivity one has

m(
∞
⋃

n=1

En) ≤
∞
∑

n=1

m(En),

and the claim follows.

Next, we handle the case when the En are bounded but not neces-

sarily compact. We use the ε/2n trick. Let ε > 0. Applying Exercise

1.2.7, we know that each En is the union of a compact set Kn and a

set of outer measure at most ε/2n. Thus

m(En) ≤ m(Kn) + ε/2n

and hence
∞
∑

n=1

m(En) ≤ (
∞
∑

n=1

m(Kn)) + ε.

Finally, from the compact case of this lemma we already know that

m(
∞
⋃

n=1

Kn) =
∞
∑

n=1

m(Kn)

while from monotonicity

m(
∞
⋃

n=1

Kn) ≤ m(
∞
⋃

n=1

En).
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Putting all this together we see that

∞
∑

n=1

m(En) ≤ m(
∞
⋃

n=1

En) + ε

for every ε > 0, while from countable subadditivity we have

m(
∞
⋃

n=1

En) ≤
∞
∑

n=1

m(En).

The claim follows.

Finally, we handle the case when the En are not assumed to be

bounded or closed. Here, the basic idea is to decompose each En as a

countable disjoint union of bounded Lebesgue measurable sets. First,

decompose Rd as the countable disjoint union Rd =
⋃∞

m=1 Am of

bounded measurable sets Am; for instance one could take the annuli

Am := {x ∈ Rd : m − 1 ≤ |x| < m}. Then each En is the countable

disjoint union of the bounded measurable sets En ∩ Am for m =

1, 2, . . ., and thus

m(En) =
∞
∑

m=1

m(En ∩Am)

by the previous arguments. In a similar vein,
⋃∞

n=1 En is the count-

able disjoint union of the bounded measurable sets En ∩ Am for

n,m = 1, 2, . . ., and thus

m(
∞
⋃

n=1

En) =
∞
∑

n=1

∞
∑

m=1

m(En ∩Am),

and the claim follows. �

From Lemma 1.2.15 one of course can conclude finite additivity

m(E1 ∪ . . . ∪ Ek) = m(E1) + . . .+m(Ek)

whenever E1, . . . , Ek ⊂ Rd are Lebesgue measurable sets. We also

have another important result:

Exercise 1.2.11 (Monotone convergence theorem for measurable

sets).
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(i) (Upward monotone convergence) Let E1 ⊂ E2 ⊂ . . . ⊂ Rn

be a countable non-decreasing sequence of Lebesgue mea-

surable sets. Show that m(
⋃∞

n=1 En) = limn→∞m(En).

(Hint: Express
⋃∞

n=1 En as the countable union of the lacu-

nae En\
⋃n−1

n′=1 En′ .)

(ii) (Downward monotone convergence) Let Rd ⊃ E1 ⊃ E2 ⊃
. . . be a countable non-increasing sequence of Lebesgue mea-

surable sets. If at least one of the m(En) is finite, show that

m(
⋂∞

n=1 En) = limn→∞m(En).

(iii) Give a counterexample to show that the hypothesis that at

least one of the m(En) is finite in the downward monotone

convergence theorem cannot be dropped.

Exercise 1.2.12. Show that any map E 7→ m(E) from Lebesgue

measurable sets to elements of [0,+∞] that obeys the above empty set

and countable additivity axioms will also obey the monotonicity and

countable subadditivity axioms from Exercise 1.2.3, when restricted

to Lebesgue measurable sets of course.

Exercise 1.2.13. We say that a sequence En of sets in Rd converges

pointwise to another set E in Rd if the indicator functions 1En
con-

verge pointwise to 1E .

(i) Show that if the En are all Lebesgue measurable, and con-

verge pointwise to E, then E is Lebesgue measurable also.

(Hint: use the identity 1E(x) = lim infn→∞ 1En
(x) or 1E(x) =

lim supn→∞ 1En
(x) to write E in terms of countable unions

and intersections of the En.)

(ii) (Dominated convergence theorem) Suppose that the En are

all contained in another Lebesgue measurable set F of finite

measure. Show that m(En) converges to m(E). (Hint: use

the upward and downward monotone convergence theorems,

Exercise 1.2.11.)

(iii) Give a counterexample to show that the dominated conver-

gence theorem fails if the En are not contained in a set of

finite measure, even if we assume that the m(En) are all

uniformly bounded.
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In later sections we will generalise the monotone and dominated

convergence theorems to measurable functions instead of measurable

sets; see Theorem 1.4.44 and Theorem 1.4.49.

Exercise 1.2.14. Let E ⊂ Rd. Show that E is contained in a

Lebesgue measurable set of measure exactly equal to m∗(E).

Exercise 1.2.15 (Inner regularity). Let E ⊂ Rd be Lebesgue mea-

surable. Show that

m(E) = sup
K⊂E,K compact

m(K).

Remark 1.2.16. The inner and outer regularity properties of mea-

sure can be used to define the concept of a Radon measure (see §1.10
of An epsilon of room, Vol. I.).

Exercise 1.2.16 (Criteria for finite measure). Let E ⊂ Rd. Show

that the following are equivalent:

(i) E is Lebesgue measurable with finite measure.

(ii) (Outer approximation by open) For every ε > 0, one can

contain E in an open set U of finite measure withm∗(U\E) ≤
ε.

(iii) (Almost open bounded) E differs from a bounded open set

by a set of arbitrarily small Lebesgue outer measure. (In

other words, for every ε > 0 there exists a bounded open set

U such that m∗(E∆U) ≤ ε.)

(iv) (Inner approximation by compact) For every ε > 0, one can

find a compact set F contained in E with m∗(E\F ) ≤ ε.

(v) (Almost compact) E differs from a compact set by a set of

arbitrarily small Lebesgue outer measure.

(vi) (Almost bounded measurable) E differs from a bounded

Lebesgue measurable set by a set of arbitrarily small Lebesgue

outer measure.

(vii) (Almost finite measure) E differs from a Lebesgue measur-

able set with finite measure by a set of arbitrarily small

Lebesgue outer measure.
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40 1. Measure theory

(viii) (Almost elementary) E differs from an elementary set by a

set of arbitrarily small Lebesgue outer measure.

(ix) (Almost dyadically elementary) For every ε > 0, there exists

an integer n and a finite union F of closed dyadic cubes of

sidelength 2−n such that m∗(E∆F ) ≤ ε.

One can interpret the equivalence of (i) and (ix) in the above ex-

ercise as asserting that Lebesgue measurable sets are those which look

(locally) “pixelated” at sufficiently fine scales. This will be formalised

in later sections with the Lebesgue differentiation theorem (Exercise

1.6.24).

Exercise 1.2.17 (Carathéodory criterion, one direction). Let E ⊂
Rd. Show that the following are equivalent:

(i) E is Lebesgue measurable.

(ii) For every elementary set A, one has m(A) = m∗(A ∩ E) +

m∗(A\E).

(iii) For every box B, one has |B| = m∗(B ∩ E) +m∗(B\E).

Exercise 1.2.18 (Inner measure). Let E ⊂ Rd be a bounded set.

Define the Lebesgue inner measure m∗(E) of E by the formula

m∗(E) := m(A)−m∗(A\E)

for any elementary set A containing E.

(i) Show that this definition is well defined, i.e. that if A,A′ are
two elementary sets containing E, that m(A)−m∗(A\E) is

equal to m(A′)−m∗(A′\E).

(ii) Show that m∗(E) ≤ m∗(E), and that equality holds if and

only if E is Lebesgue measurable.

Define a Gδ set to be a countable intersection
⋂∞

n=1 Un of open

sets, and an Fσ set to be a countable union
⋃∞

n=1 Fn of closed sets.

Exercise 1.2.19. Let E ⊂ Rd. Show that the following are equiva-

lent:

(i) E is Lebesgue measurable.

(ii) E is a Gδ set with a null set removed.
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(iii) E is the union of a Fσ set and a null set.

Remark 1.2.17. From the above exercises, we see that when de-

scribing what it means for a set to be Lebesgue measurable, there is

a tradeoff between the type of approximation one is willing to bear,

and the type of things one can say about the approximation. If one

is only willing to approximate to within a null set, then one can only

say that a measurable set is approximated by a Gδ or a Fσ set, which

is a fairly weak amount of structure. If one is willing to add on an

epsilon of error (as measured in the Lebesgue outer measure), one can

make a measurable set open; dually, if one is willing to take away an

epsilon of error, one can make a measurable set closed. Finally, if one

is willing to both add and subtract an epsilon of error, then one can

make a measurable set (of finite measure) elementary, or even a finite

union of dyadic cubes.

Exercise 1.2.20 (Translation invariance). If E ⊂ Rd is Lebesgue

measurable, show that E+x is Lebesgue measurable for any x ∈ Rd,

and that m(E + x) = m(E).

Exercise 1.2.21 (Change of variables). If E ⊂ Rd is Lebesgue mea-

surable, and T : Rd → Rd is a linear transformation, show that T (E)

is Lebesgue measurable, and that m(T (E)) = | detT |m(E). We cau-

tion that if T : Rd → Rd′

is a linear map to a space Rd′

of strictly

smaller dimension than Rd, then T (E) need not be Lebesgue mea-

surable; see Exercise 1.2.27.

Exercise 1.2.22. Let d, d′ ≥ 1 be natural numbers.

(i) If E ⊂ Rd and F ⊂ Rd′

, show that (md+d′

)∗(E × F ) ≤
(md)∗(E)(md′

)∗(F ), where (md)∗ denotes d-dimensional Lebesgue

measure, etc.

(ii) Let E ⊂ Rd, F ⊂ Rd′

be Lebesgue measurable sets. Show

that E×F ⊂ Rd+d′

is Lebesgue measurable, withmd+d′

(E×
F ) = md(E) ·md′

(F ). (Note that we allow E or F to have

infinite measure, and so one may have to divide into cases

or take advantage of the monotone convergence theorem for

Lebesgue measure, Exercise 1.2.11.)
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Exercise 1.2.23 (Uniqueness of Lebesgue measure). Show that Lebesgue

measure E 7→ m(E) is the only map from Lebesgue measurable sets

to [0,+∞] that obeys the following axioms:

(i) (Empty set) m(∅) = 0.

(ii) (Countable additivity) If E1, E2, . . . ⊂ Rd is a countable se-

quence of disjoint Lebesgue measurable sets, thenm(
⋃∞

n=1 En) =
∑∞

n=1 m(En).

(iii) (Translation invariance) If E is Lebesgue measurable and

x ∈ Rd, then m(E + x) = m(E).

(iv) (Normalisation) m([0, 1]d) = 1.

Hint: First show that m must match elementary measure on elemen-

tary sets, then show that m is bounded by outer measure.

Exercise 1.2.24 (Lebesgue measure as the completion of elementary

measure). The purpose of the following exercise is to indicate how

Lebesgue measure can be viewed as a metric completion of elementary

measure in some sense. To avoid some technicalities we will not work

in all of Rd, but in some fixed elementary set A (e.g. A = [0, 1]d).

(i) Let 2A := {E : E ⊂ A} be the power set of A. We say

that two sets E,F ∈ 2A are equivalent if E∆F is a null set.

Show that this is a equivalence relation.

(ii) Let 2A/ ∼ be the set of equivalence classes [E] := {F ∈
2A : E ∼ F} of 2A with respect to the above equivalence

relation. Define a distance d : 2A/ ∼ ×2A/ ∼→ R+ between

two equivalence classes [E], [E′] by defining d([E], [E′]) :=

m∗(E∆E′). Show that this distance is well-defined (in the

sense that m(E∆E′) = m(F∆F ′) whenever [E] = [F ] and

[E′] = [F ′]) and gives 2A/ ∼ the structure of a complete

metric space.

(iii) Let E ⊂ 2A be the elementary subsets of A, and let L ⊂ 2A

be the Lebesgue measurable subsets of A. Show that L/ ∼
is the closure of E/ ∼ with respect to the metric defined

above. In particular, L/ ∼ is a complete metric space that

contains E/ ∼ as a dense subset; in other words, L/ ∼ is a

metric completion of E/ ∼.
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(iv) Show that Lebesgue measure m : L → R+ descends to a

continuous function m : L/ ∼→ R+, which by abuse of no-

tation we shall still call m. Show that m : L/ ∼→ R+ is

the unique continuous extension of the analogous elemen-

tary measure function m : E/ ∼→ R+ to L/ ∼.

For a further discussion of how measures can be viewed as completions

of elementary measures, see §2.1 of An epsilon of room, Vol. I.

Exercise 1.2.25. Define a continuously differentiable curve in Rd to

be a set of the form {γ(t) : a ≤ t ≤ b} where [a, b] is a closed interval

and γ : [a, b] → Rd is a continuously differentiable function.

(i) If d ≥ 2, show that every continuously differentiable curve

has Lebesgue measure zero. (Why is the condition d ≥ 2

necessary?)

(ii) Conclude that if d ≥ 2, then the unit cube [0, 1]d cannot

be covered by countably many continuously differentiable

curves.

We remark that if the curve is only assumed to be continuous, rather

than continuously differentiable, then these claims fail, thanks to the

existence of space-filling curves.

1.2.3. Non-measurable sets. In the previous section we have set

out a rich theory of Lebesgue measure, which enjoys many nice prop-

erties when applied to Lebesgue measurable sets.

Thus far, we have not ruled out the possibility that every single

set is Lebesgue measurable. There is good reason for this: a famous

theorem of Solovay[So1970] asserts that, if one is willing to drop the

axiom of choice, there exist models of set theory in which all subsets

of Rd are measurable. So any demonstration of the existence of non-

measurable sets must use the axiom of choice in some essential way.

That said, we can give an informal (and highly non-rigorous) mo-

tivation as to why non-measurable sets should exist, using intuition

from probability theory rather than from set theory. The starting

point is the observation that Lebesgue sets of finite measure (and

in particular, bounded Lebesgue sets) have to be “almost elemen-

tary”, in the sense of Exercise 1.2.16. So all we need to do to build
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a non-measurable set is to exhibit a bounded set which is not almost

elementary. Intuitively, we want to build a set which has oscillatory

structure even at arbitrarily fine scales.

We will non-rigorously do this as follows. We will work inside

the unit interval [0, 1]. For each x ∈ [0, 1], we imagine that we flip a

coin to give either heads or tails (with an independent coin flip for

each x), and let E ⊂ [0, 1] be the set of all the x ∈ [0, 1] for which

the coin flip came up heads. We suppose for contradiction that E

is Lebesgue measurable. Intuitively, since each x had a 50% chance

of being heads, E should occupy about “half” of [0, 1]; applying the

law of large numbers (see e.g. [Ta2009, §1.4]) in an extremely non-

rigorous fashion, we thus expect m(E) to equal 1/2.

Moreover, given any subinterval [a, b] of [0, 1], the same reasoning

leads us to expect that E ∩ [a, b] should occupy about half of [a, b],

so that m(E ∩ [a, b]) should be |[a, b]|/2. More generally, given any

elementary set F in [0, 1], we should have m(E ∩ F ) = m(F )/2.

This makes it very hard for E to be approximated by an elementary

set; indeed, a little algebra then shows that m(E∆F ) = 1/2 for any

elementary F ⊂ [0, 1]. Thus E is not Lebesgue measurable.

Unfortunately, the above argument is terribly non-rigorous for a

number of reasons, not the least of which is that it uses an uncountable

number of coin flips, and the rigorous probabilistic theory that one

would have to use to model such a system of random variables is too

weak12 to be able to assign meaningful probabilities to such events

as “E is Lebesgue measurable”. So we now turn to more rigorous

arguments that establish the existence of non-measurable sets. The

arguments will be fairly simple, but the sets constructed are somewhat

artificial in nature.

Proposition 1.2.18. There exists a subset E ⊂ [0, 1] which is not

Lebesgue measurable.

Proof. We use the fact that the rationals Q are an additive subgroup

of the reals R, and so partition the reals R into disjoint cosets x+Q.

This creates a quotient group R/Q := {x + Q : x ∈ R}. Each

coset C of R/Q is dense in R, and so has a non-empty intersection

12For some further discussion of this point, see [Ta2009, §1.10].
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with [0, 1]. Applying the axiom of choice, we may thus find an element

xC ∈ C∩ [0, 1] for each C ∈ R/Q. We then let E := {xC : C ∈ R/Q}
be the collection of all these coset representatives. By construction,

E ⊂ [0, 1].

Let y be any element of [0, 1]. Then it must lie in some coset C

of R/Q, and thus differs from xC by some rational number in [−1, 1].

In other words, we have

(1.4) [0, 1] ⊂
⋃

q∈Q∩[−1,1]
(E + q).

On the other hand, we clearly have

(1.5)
⋃

q∈Q∩[−1,1]
(E + q) ⊂ [−1, 2].

Also, the different translates E + q are disjoint, because E contains

only one element from each coset of Q.

We claim that E is not Lebesgue measurable. To see this, sup-

pose for contradiction that E was Lebesgue measurable. Then the

translates E + q would also be Lebesgue measurable. By countable

additivity, we thus have

m(
⋃

q∈Q∩[−1,1]
(E + q)) =

∑

q∈Q∩[−1,1]
m(E + q),

and thus by translation invariance and (1.4), (1.5)

1 ≤
∑

q∈Q∩[−1,1]
m(E) ≤ 3.

On the other hand, the sum
∑

q∈Q∩[−1,1] m(E) is either zero (if

m(E) = 0) or infinite (if m(E) > 0), leading to the desired con-

tradiction. �

Exercise 1.2.26 (Outer measure is not finitely additive). Show that

there exists disjoint bounded subsets E,F of the real line such that

m∗(E ∪ F ) 6= m∗(E) +m∗(F ). (Hint: Show that the set constructed

in the proof of the above proposition has positive outer measure.)

Exercise 1.2.27 (Projections of measurable sets need not be mea-

surable). Let π : R2 → R be the coordinate projection π(x, y) := x.

Show that there exists a measurable subset E of R2 such that π(E)

is not measurable.
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Remark 1.2.19. The above discussion shows that, in the presence of

the axiom of choice, one cannot hope to extend Lebesgue measure to

arbitrary subsets of R while retaining both the countable additivity

and the translation invariance properties. If one drops the transla-

tion invariant requirement, then this question concerns the theory of

measurable cardinals, and is not decidable from the standard ZFC

axioms. On the other hand, one can construct finitely additive trans-

lation invariant extensions of Lebesgue measure to the power set of

R by use of the Hahn-Banach theorem (§1.5 of An epsilon of room,

Vol. I ) to extend the integration functional, though we will not do

so here.

1.3. The Lebesgue integral

In Section 1.2, we defined the Lebesgue measure m(E) of a Lebesgue

measurable set E ⊂ Rd, and set out the basic properties of this

measure. In this set of notes, we use Lebesgue measure to define the

Lebesgue integral
∫

Rd

f(x) dx

of functions f : Rd → C∪{∞}. Just as not every set can be measured

by Lebesgue measure, not every function can be integrated by the

Lebesgue integral; the function will need to be Lebesgue measurable.

Furthermore, the function will either need to be unsigned (taking

values on [0,+∞]), or absolutely integrable.

To motivate the Lebesgue integral, let us first briefly review two

simpler integration concepts. The first is that of an infinite summa-

tion
∞
∑

n=1

cn

of a sequence of numbers cn, which can be viewed as a discrete ana-

logue of the Lebesgue integral. Actually, there are two overlapping,

but different, notions of summation that we wish to recall here. The

first is that of the unsigned infinite sum, when the cn lie in the ex-

tended non-negative real axis [0,+∞]. In this case, the infinite sum
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can be defined as the limit of the partial sums

(1.6)
∞
∑

n=1

cn = lim
N→∞

N
∑

n=1

cn

or equivalently as a supremum of arbitrary finite partial sums:

(1.7)
∞
∑

n=1

cn = sup
A⊂N,A finite

∑

n∈A
cn.

The unsigned infinite sum
∑∞

n=1 cn always exists, but its value may

be infinite, even when each term is individually finite (consider e.g.
∑∞

n=1 1).

The second notion of a summation is the absolutely summable

infinite sum, in which the cn lie in the complex plane C and obey the

absolute summability condition

∞
∑

n=1

|cn| < ∞,

where the left-hand side is of course an unsigned infinite sum. When

this occurs, one can show that the partial sums
∑N

n=1 cn converge to

a limit, and we can then define the infinite sum by the same formula

(1.6) as in the unsigned case, though now the sum takes values in

C rather than [0,+∞]. The absolute summability condition confers

a number of useful properties that are not obeyed by sums that are

merely conditionally convergent; most notably, the value of an abso-

lutely convergent sum is unchanged if one rearranges the terms in the

series in an arbitrary fashion. Note also that the absolutely summable

infinite sums can be defined in terms of the unsigned infinite sums by

taking advantage of the formulae

∞
∑

n=1

cn = (
∞
∑

n=1

Re(cn)) + i(
∞
∑

n=1

Im(cn))

for complex absolutely summable cn, and

∞
∑

n=1

cn =
∞
∑

n=1

c+n −
∞
∑

n=1

c−n

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



48 1. Measure theory

for real absolutely summable cn, where c+n := max(cn, 0) and c−n :=

max(−cn, 0) are the (magnitudes of the) positive and negative parts

of cn.

In an analogous spirit, we will first define an unsigned Lebesgue

integral
∫

Rd f(x) dx of (measurable) unsigned functions f : Rd →
[0,+∞], and then use that to define the absolutely convergent Lebesgue

integral
∫

Rd f(x) dx of absolutely integrable functions f : Rd → C ∪
{∞}. (In contrast to absolutely summable series, which cannot have

any infinite terms, absolutely integrable functions will be allowed to

occasionally become infinite. However, as we will see, this can only

happen on a set of Lebesgue measure zero.)

To define the unsigned Lebesgue integral, we now turn to another

more basic notion of integration, namely the
∫ b

a
f(x) dx of a Riemann

integrable function f : [a, b] → R. Recall from Section 1.1 that this

integral is equal to the lower Darboux integral

∫ b

a

f(x) =

∫ b

a

f(x) dx := sup
g≤f ;g piecewise constant

p.c.

∫ b

a

g(x) dx.

(It is also equal to the upper Darboux integral; but much as the theory

of Lebesgue measure is easiest to define by relying solely on outer mea-

sure and not on inner measure, the theory of the unsigned Lebesgue

integral is easiest to define by relying solely on lower integrals rather

than upper ones; the upper integral is somewhat problematic when

dealing with “improper” integrals of functions that are unbounded

or are supported on sets of infinite measure.) Compare this formula

also with (1.7). The integral p.c.
∫ b

a
g(x) dx is a piecewise constant

integral, formed by breaking up the piecewise constant functions g, h

into finite linear combinations of indicator functions 1I of intervals I,

and then measuring the length of each interval.

It turns out that virtually the same definition allows us to de-

fine a lower Lebesgue integral
∫

Rdf(x) dx of any unsigned function

f : Rd → [0,+∞], simply by replacing intervals with the more gen-

eral class of Lebesgue measurable sets (and thus replacing piecewise

constant functions with the more general class of simple functions).

If the function is Lebesgue measurable (a concept that we will define

presently), then we refer to the lower Lebesgue integral simply as the
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Lebesgue integral. As we shall see, it obeys all the basic properties one

expects of an integral, such as monotonicity and additivity; in sub-

sequent notes we will also see that it behaves quite well with respect

to limits, as we shall see by establishing the two basic convergence

theorems of the unsigned Lebesgue integral, namely Fatou’s lemma

(Corollary 1.4.47) and the monotone convergence theorem (Theorem

1.4.44).

Once we have the theory of the unsigned Lebesgue integral, we

will then be able to define the absolutely convergent Lebesgue inte-

gral, similarly to how the absolutely convergent infinite sum can be

defined using the unsigned infinite sum. This integral also obeys all

the basic properties one expects, such as linearity and compatibility

with the more classical Riemann integral; in subsequent notes we will

see that it also obeys a fundamentally important convergence the-

orem, the dominated convergence theorem (Theorem 1.4.49). This

convergence theorem makes the Lebesgue integral (and its abstract

generalisations to other measure spaces than Rd) particularly suit-

able for analysis, as well as allied fields that rely heavily on limits of

functions, such as PDE, probability, and ergodic theory.

Remark 1.3.1. This is not the only route to setting up the unsigned

and absolutely convergent Lebesgue integrals. For instance, one can

proceed with the unsigned integral but then making an auxiliary stop

at integration of functions that are bounded and are supported on

a set of finite measure, before going to the absolutely convergent

Lebesgue integral; see e.g. [StSk2005]. Another approach (which

will not be discussed here) is to take the metric completion of the

Riemann integral with respect to the L1 metric.

The Lebesgue integral and Lebesgue measure can be viewed as

completions of the Riemann integral and Jordan measure respectively.

This means three things. Firstly, the Lebesgue theory extends the

Riemann theory: every Jordan measurable set is Lebesgue measur-

able, and every Riemann integrable function is Lebesgue measurable,

with the measures and integrals from the two theories being compat-

ible. Conversely, the Lebesgue theory can be approximated by the

Riemann theory; as we saw in Section 1.2, every Lebesgue measur-

able set can be approximated (in various senses) by simpler sets, such
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as open sets or elementary sets, and in a similar fashion, Lebesgue

measurable functions can be approximated by nicer functions, such

as Riemann integrable or continuous functions. Finally, the Lebesgue

theory is complete in various ways; this is formalised in §1.3 of An ep-

silon of room, Vol. I, but the convergence theorems mentioned above

already hint at this completeness. A related fact, known as Egorov’s

theorem, asserts that a pointwise converging sequence of functions

can be approximated as a (locally) uniformly converging sequence of

functions. The facts listed here manifestations of Littlewood’s three

principles of real analysis (Section 1.3.5), which capture much of the

essence of the Lebesgue theory.

1.3.1. Integration of simple functions. Much as the Riemann

integral was set up by first using the integral for piecewise constant

functions, the Lebesgue integral is set up using the integral for simple

functions.

Definition 1.3.2 (Simple function). A (complex-valued) simple func-

tion f : Rd → C is a finite linear combination

(1.8) f = c11E1
+ . . .+ ck1Ek

of indicator functions 1Ei
of Lebesgue measurable sets Ei ⊂ Rd for

i = 1, . . . , k, where k ≥ 0 is a natural number and c1, . . . , ck ∈ C are

complex numbers. An unsigned simple function f : Rd → [0,+∞], is

defined similarly, but with the ci taking values in [0,+∞] rather than

C.

It is clear from construction that the space Simp(Rd) of complex-

valued simple functions forms a complex vector space; also, Simp(Rd)

also closed under pointwise product f, g 7→ fg and complex conjuga-

tion f 7→ f . In short, Simp(Rd) is a commutative ∗-algebra. Mean-

while, the space Simp+(Rd) of unsigned simple functions is a [0,+∞]-

module; it is closed under addition, and under scalar multiplication

by elements in [0,+∞].

In this definition, we did not require the E1, . . . , Ek to be disjoint.

However, it is easy enough to arrange this, basically by exploiting

Venn diagrams (or, to use fancier language, finite boolean algebras).

Indeed, any k subsets E1, . . . , Ek of Rd partition Rd into 2k disjoint
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sets, each of which is an intersection of Ei or the complement Rd\Ei

for i = 1, . . . , k (and in particular, is measurable). The (complex or

unsigned) simple function is constant on each of these sets, and so can

easily be decomposed as a linear combination of the indicator function

of these sets. One easy consequence of this is that if f is a complex-

valued simple function, then its absolute value |f | : x 7→ |f(x)| is an

unsigned simple function.

It is geometrically intuitive that we should define the integral
∫

Rd 1E(x) dx of an indicator function of a measurable set E to equal

m(E):
∫

Rd

1E(x) dx = m(E).

Using this and applying the laws of integration formally, we are led to

propose the following definition for the integral of an unsigned simple

function:

Definition 1.3.3 (Integral of a unsigned simple function). If f =

c11E1
+. . .+ck1Ek

is an unsigned simple function, the integral Simp
∫

Rd f(x) dx

is defined by the formula

Simp

∫

Rd

f(x) dx := c1m(E1) + . . .+ ckm(Ek),

thus Simp
∫

Rd f(x) dx will take values in [0,+∞].

However, one has to actually check that this definition is well-

defined, in the sense that different representations

f = c11E1
+ . . .+ ck1Ek

= c′11E′
1
+ . . .+ c′k′1E′

k′

of a function as a finite unsigned combination of indicator func-

tions of measurable sets will give the same value for the integral

Simp
∫

Rd f(x) dx. This is the purpose of the following lemma:

Lemma 1.3.4 (Well-definedness of simple integral). Let k, k′ ≥ 0 be

natural numbers, c1, . . . , ck, c
′
1, . . . , c

′
k′ ∈ [0,+∞], and let E1, . . . , Ek, E

′
1, . . . , E

′
k′ ⊂

Rd be Lebesgue measurable sets such that the identity

(1.9) c11E1
+ . . .+ ck1Ek

= c′11E′
1
+ . . .+ c′k′1E′

k′

holds identically on Rd. Then one has

c1m(E1) + . . .+ ckm(Ek) = c′1m(E′1) + . . .+ c′k′m(E′k′).
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Proof. We again use a Venn diagram argument. The k + k′ sets
E1, . . . , Ek, E

′
1, . . . , E

′
k′ partition Rd into 2k+k′

disjoint sets, each of

which is an intersection of some of the E1, . . . , Ek, E
′
1, . . . , E

′
k′ and

their complements. We throw away any sets that are empty, leaving

us with a partition of Rd into m non-empty disjoint sets A1, . . . , Am

for some 0 ≤ m ≤ 2k+k′

. As the E1, . . . , Ek, E
′
1, . . . , E

′
k are Lebesgue

measurable, the A1, . . . , Am are too. By construction, each of the

E1, . . . , Ek, E
′
1, . . . , Ek′ arise as unions of some of the A1, . . . , Am,

thus we can write

Ei =
⋃

j∈Ji

Aj

and

E′i′ =
⋃

j′∈J ′
i′

Aj′

for all i = 1, . . . , k and i′ = 1, . . . , k′, and some subsets Ji, J
′
i′ ⊂

{1, . . . ,m}. By finite additivity of Lebesgue measure, we thus have

m(Ei) =
∑

j∈Ji

m(Aj)

and

m(E′i′) =
∑

j∈J ′
i′

m(Aj)

Thus, our objective is now to show that

(1.10)
k
∑

i=1

ci
∑

j∈Ji

m(Aj) =
k′
∑

i′=1

c′i′
∑

j∈J ′
i′

m(Aj).

To obtain this, we fix 1 ≤ j ≤ m and evaluate (1.9) at a point x in

the non-empty set Aj . At such a point, 1Ei
(x) is equal to 1Ji

(j), and

similarly 1E′
i′
is equal to 1J ′

i′
(j). From (1.9) we conclude that

k
∑

i=1

ci1Ji
(j) =

k′
∑

i′=1

c′i′1J ′
i′
(j).

Multiplying this by m(Aj) and then summing over all j = 1, . . . ,m

we obtain (1.10). �

We now make some important definitions that we will use repeat-

edly in this text:

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.3. The Lebesgue integral 53

Definition 1.3.5 (Almost everywhere and support). A property P (x)

of a point x ∈ Rd is said to hold (Lebesgue) almost everywhere in Rd,

or for (Lebesgue) almost every point x ∈ Rd, if the set of x ∈ Rd for

which P (x) fails has Lebesgue measure zero (i.e. P is true outside of a

null set). We usually omit the prefix Lebesgue, and often abbreviate

“almost everywhere” or “almost every” as a.e.

Two functions f, g : Rd → Z into an arbitrary range Z are said

to agree almost everywhere if one has f(x) = g(x) for almost every

x ∈ Rd.

The support of a function f : Rd → C or f : Rd → [0,+∞] is

defined to be the set {x ∈ Rd : f(x) 6= 0} where f is non-zero.

Note that if P (x) holds for almost every x, and P (x) impliesQ(x),

then Q(x) holds for almost every x. Also, if P1(x), P2(x), . . . are an at

most countable family of properties, each of which individually holds

for almost every x, then they will simultaneously be true for almost

every x, because the countable union of null sets is still a null set.

Because of these properties, one can (as a rule of thumb) treat the

almost universal quantifier “for almost every” as if it was the truly

universal quantifier “for every”, as long as one is only concatenating at

most countably many properties together, and as long as one never

specialises the free variable x to a null set. Observe also that the

property of agreeing almost everywhere is an equivalence relation,

which we will refer to as almost everywhere equivalence.

In An epsilon of room, Vol. I we will also see the notion of the

closed support of a function f : Rd → C, defined as the closure of the

support.

The following properties of the simple unsigned integral are easily

obtained from the definitions:

Exercise 1.3.1 (Basic properties of the simple unsigned integral).

Let f, g : Rd → [0,+∞] be simple unsigned functions.
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(i) (Unsigned linearity) We have

Simp

∫

Rd

f(x) + g(x) dx = Simp

∫

Rd

f(x) dx

+ Simp

∫

Rd

g(x) dx

and

Simp

∫

Rd

cf(x) dx = c× Simp

∫

Rd

f(x) dx

for all c ∈ [0,+∞].

(ii) (Finiteness) We have Simp
∫

Rd f(x) dx < ∞ if and only

if f is finite almost everywhere, and its support has finite

measure.

(iii) (Vanishing) We have Simp
∫

Rd f(x) dx = 0 if and only if f

is zero almost everywhere.

(iv) (Equivalence) If f and g agree almost everywhere, then

Simp
∫

Rd f(x) dx = Simp
∫

Rd g(x) dx.

(v) (Monotonicity) If f(x) ≤ g(x) for almost every x ∈ Rd, then

Simp
∫

Rd f(x) dx ≤ Simp
∫

Rd g(x) dx.

(vi) (Compatibility with Lebesgue measure) For any Lebesgue

measurable E, one has Simp
∫

Rd 1E(x) dx = m(E).

Furthermore, show that the simple unsigned integral f 7→ Simp
∫

Rd f(x) dx

is the only map from the space Simp+(Rd) of unsigned simple func-

tions to [0,+∞] that obeys all of the above properties.

We can now define an absolutely convergent counterpart to the

simple unsigned integral. This integral will soon be superceded by

the absolutely Lebesgue integral, but we give it here as motivation

for that more general notion of integration.

Definition 1.3.6 (Absolutely convergent simple integral). A complex-

valued simple function f : Rd → C is said to be absolutely integrable

of Simp
∫

Rd |f(x)| dx < ∞. If f is absolutely integrable, the integral

Simp
∫

Rd f(x) dx is defined for real signed f by the formula

Simp

∫

Rd

f(x) dx := Simp

∫

Rd

f+(x) dx− Simp

∫

Rd

f−(x) dx
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where f+(x) := max(f(x), 0) and f−(x) := max(−f(x), 0) (note that

these are unsigned simple functions that are pointwise dominated by

|f | and thus have finite integral), and for complex-valued f by the

formula13

Simp

∫

Rd

f(x) dx := Simp

∫

Rd

Re f(x) dx

+ i Simp

∫

Rd

Im f(x) dx.

Note from the preceding exercise that a complex-valued simple

function f is absolutely integrable if and only if it has finite measure

support (since finiteness almost everywhere is automatic). In particu-

lar, the space Simpabs(Rd) of absolutely integrable simple functions is

closed under addition and scalar multiplication by complex numbers,

and is thus a complex vector space.

The properties of the unsigned simple integral then can be used

to deduce analogous properties for the complex-valued integral:

Exercise 1.3.2 (Basic properties of the complex-valued simple inte-

gral). Let f, g : Rd → C be absolutely integrable simple functions.

(i) (*-linearity) We have

Simp

∫

Rd

f(x) + g(x) dx = Simp

∫

Rd

f(x) dx

+ Simp

∫

Rd

g(x) dx

and

(1.11) Simp

∫

Rd

cf(x) dx = c× Simp

∫

Rd

f(x) dx

for all c ∈ C. Also we have

Simp

∫

Rd

f(x) dx = Simp

∫

Rd

f(x) dx.

(ii) (Equivalence) If f and g agree almost everywhere, then

Simp
∫

Rd f(x) dx = Simp
∫

Rd g(x) dx.

13Strictly speaking, this is an abuse of notation as we have now defined the simple
integral Simp

∫

Rd three different times, for unsigned, real signed, and complex-valued
simple functions, but one easily verifies that these three definitions agree with each
other on their common domains of definition, so it is safe to use a single notation for
all three.
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(iii) (Compatibility with Lebesgue measure) For any Lebesgue

measurable E, one has Simp
∫

Rd 1E(x) dx = m(E).

(Hints: Work out the real-valued counterpart of the linearity prop-

erty first. To establish (1.11), treat the cases c > 0, c = 0, c = −1

separately. To deal with the additivity for real functions f, g, start

with the identity

f + g = (f + g)+ − (f + g)− = (f+ − f−) + (g+ − g−)

and rearrange the second inequality so that no subtraction appears.)

Furthermore, show that the complex-valued simple integral f 7→
Simp

∫

Rd f(x) dx is the only map from the space Simpabs(Rd) of ab-

solutely integrable simple functions to C that obeys all of the above

properties.

We now comment further on the fact that (simple) functions that

agree almost everywhere, have the same integral. We can view this

as an assertion that integration is a noise-tolerant operation: one can

have “noise” or “errors” in a function f(x) on a null set, and this

will not affect the final value of the integral. Indeed, once one has

this noise tolerance, one can even integrate functions f that are not

defined everywhere on Rd, but merely defined almost everywhere on

Rd (i.e. f is defined on some set Rd\N where N is a null set), simply

by extending f to all of Rd in some arbitrary fashion (e.g. by setting

f equal to zero on N). This is extremely convenient for analysis, as

there are many natural functions (e.g. sin x
x in one dimension, or 1

|x|α
for various α > 0 in higher dimensions) that are only defined almost

everywhere instead of everywhere (often due to “division by zero”

problems when a denominator vanishes). While such functions cannot

be evaulated at certain singular points, they can still be integrated

(provided they obey some integrability condition, of course, such as

absolute integrability), and so one can still perform a large portion of

analysis on such functions.

In fact, in the subfield of analysis known as functional analysis, it

is convenient to abstract the notion of an almost everywhere defined

function somewhat, by replacing any such function f with the equiv-

alence class of almost everywhere defined functions that are equal to

f almost everywhere. Such classes are then no longer functions in the
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standard set-theoretic sense (they do not map each point in the do-

main to a unique point in the range, since points in Rd have measure

zero), but the properties of various function spaces improve when one

does this (various semi-norms become norms, various topologies be-

come Hausdorff, and so forth). See §1.3 of An epsilon of room, Vol.

I for further discussion.

Remark 1.3.7. The “Lebesgue philosophy” that one is willing to lose

control on sets of measure zero is a perspective that distinguishes

Lebesgue-type analysis from other types of analysis, most notably

that of descriptive set theory, which is also interested in studying

subsets of Rd, but can give completely different structural classifi-

cations to a pair of sets that agree almost everywhere. This loss of

control on null sets is the price one has to pay for gaining access to

the powerful tool of the Lebesgue integral; if one needs to control a

function at absolutely every point, and not just almost every point,

then one often needs to use other tools than integration theory (un-

less one has some regularity on the function, such as continuity, that

lets one pass from almost everywhere true statements to everywhere

true statements).

1.3.2. Measurable functions. Much as the piecewise constant in-

tegral can be completed to the Riemann integral, the unsigned simple

integral can be completed to the unsigned Lebesgue integral, by ex-

tending the class of unsigned simple functions to the larger class of

unsigned Lebesgue measurable functions. One of the shortest ways

to define this class is as follows:

Definition 1.3.8 (Unsigned measurable function). An unsigned func-

tion f : Rd → [0,+∞] is unsigned Lebesgue measurable, or measurable

for short, if it is the pointwise limit of unsigned simple functions, i.e.

if there exists a sequence f1, f2, f3, . . . : R
d → [0,+∞] of unsigned

simple functions such that fn(x) → f(x) for every x ∈ Rd.

This particular definition is not always the most tractable. For-

tunately, it has many equivalent forms:

Lemma 1.3.9 (Equivalent notions of measurability). Let f : Rd →
[0,+∞] be an unsigned function. Then the following are equivalent:

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



58 1. Measure theory

(i) f is unsigned Lebesgue measurable.

(ii) f is the pointwise limit of unsigned simple functions fn (thus

the limit limn→∞ fn(x) exists and is equal to f(x) for all

x ∈ Rd).

(iii) f is the pointwise almost everywhere limit of unsigned simple

functions fn (thus the limit limn→∞ fn(x) exists and is equal

to f(x) for almost every x ∈ Rd).

(iv) f is the supremum f(x) = supn fn(x) of an increasing se-

quence 0 ≤ f1 ≤ f2 ≤ . . . of unsigned simple functions fn,

each of which are bounded with finite measure support.

(v) For every λ ∈ [0,+∞], the set {x ∈ Rd : f(x) > λ} is

Lebesgue measurable.

(vi) For every λ ∈ [0,+∞], the set {x ∈ Rd : f(x) ≥ λ} is

Lebesgue measurable.

(vii) For every λ ∈ [0,+∞], the set {x ∈ Rd : f(x) < λ} is

Lebesgue measurable.

(ix) For every λ ∈ [0,+∞], the set {x ∈ Rd : f(x) ≤ λ} is

Lebesgue measurable.

(x) For every interval I ⊂ [0,+∞), the set f−1(I) := {x ∈ Rd :

f(x) ∈ I} is Lebesgue measurable.

(xi) For every (relatively) open set U ⊂ [0,+∞), the set f−1(U) :=

{x ∈ Rd : f(x) ∈ U} is Lebesgue measurable.

(xii) For every (relatively) closed set K ⊂ [0,+∞), the set f−1(K) :=

{x ∈ Rd : f(x) ∈ K} is Lebesgue measurable.

Proof. (i) and (ii) are equivalent by definition. (ii) clearly implies

(iii). As every monotone sequence in [0,+∞] converges, (iv) implies

(ii). Now we show that (iii) implies (v). If f is the pointwise almost

everywhere limit of fn, then for almost every x ∈ Rd one has

f(x) = lim
n→∞

fn(x) = lim sup
n→∞

fn(x) = inf
N>0

sup
n≥N

fn(x).

This implies that, for any λ, the set {x ∈ Rd : f(x) > λ} is equal to

⋃

M>0

⋂

N>0

{x ∈ Rd : sup
n≥N

fn(x) > λ+
1

M
}

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.3. The Lebesgue integral 59

outside of a set of measure zero; this set in turn is equal to
⋃

M>0

⋂

N>0

⋃

n≥N
{x ∈ Rd : fn(x) > λ+

1

M
}

outside of a set of measure zero. But as each fn is an unsigned simple

function, the sets {x ∈ Rd : fn(x) > λ + 1
M } are Lebesgue measur-

able. Since countable unions or countable intersections of Lebesgue

measurable sets are Lebesgue measurable, and modifying a Lebesgue

measurable set on a null set produces another Lebesgue measurable

set, we obtain (v).

To obtain the equivalence of (v) and (vi), observe that

{x ∈ Rd : f(x) ≥ λ} =
⋂

λ′∈Q+:λ′<λ

{x ∈ Rd : f(x) > λ′}

for λ ∈ (0,+∞] and

{x ∈ Rd : f(x) > λ} =
⋃

λ′∈Q+:λ′>λ

{x ∈ Rd : f(x) ≥ λ′}

λ ∈ [0,+∞), where Q+ := Q ∩ [0,+∞] are the non-negative ratio-

nals. The claim then easily follows from the countable nature of Q+

(treating the extreme cases λ = 0,+∞ separately if necessary). A

similar argument lets one deduce (v) or (vi) from (ix).

The equivalence of (v), (vi) with (vii), (viii) comes from the ob-

servation that {x ∈ Rd : f(x) ≤ λ} is the complement of {x ∈
Rd : f(x) > λ}, and {x ∈ Rd : f(x) < λ} is the complement of

{x ∈ Rd : f(x) ≥ λ}. A similar argument shows that (x) and (xi) are

equivalent.

By expressing an interval as the intersection of two half-intervals,

we see that (ix) follows from (v)-(viii), and so all of (v)-(ix) are now

shown to be equivalent.

Clearly (x) implies (vii), and hence (v)-(ix). Conversely, because

every open set in [0,+∞) is the union of countably many open inter-

vals in [0,+∞), (ix) implies (x).

The only remaining task is to show that (v)-(xi) implies (iv).

Let f obey (v)-(xi). For each positive integer n, we let fn(x) be

defined to be the largest integer multiple of 2−n that is less than or

equal to min(f(x), n) when |x| ≤ n, with fn(x) := 0 for |x| > n.
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From construction it is easy to see that the fn : R
d → [0,+∞] are

increasing and have f as their supremum. Furthermore, each fn takes

on only finitely many values, and for each non-zero value c it attains,

the set f−1n (c) takes the form f−1(Ic) ∩ {x ∈ Rd : |x| ≤ n} for some

interval or ray Ic, and is thus measurable. As a consequence, fn is

a simple function, and by construction it is bounded and has finite

measure support. The claim follows. �

With these equivalent formulations, we can now generate plenty

of measurable functions:

Exercise 1.3.3.

(i) Show that every continuous function f : Rd → [0,+∞] is

measurable.

(ii) Show that every unsigned simple function is measurable.

(iii) Show that the supremum, infimum, limit superior, or limit

inferior of unsigned measurable functions is unsigned mea-

surable.

(iv) Show that an unsigned function that is equal almost every-

where to an unsigned measurable function, is itself measur-

able.

(v) Show that if a sequence fn of unsigned measurable functions

converges pointwise almost everywhere to an unsigned limit

f , then f is also measurable.

(vi) If f : Rd → [0,+∞] is measurable and φ : [0,+∞] → [0,+∞]

is continuous, show that φ◦f : Rd → [0,+∞] is measurable.

(vii) If f, g are unsigned measurable functions, show that f + g

and fg are measurable.

In view of Exercise 1.3.3(iv), one can define the concept of mea-

surability for an unsigned function that is only defined almost ev-

erywhere on Rd, rather than everywhere on Rd, by extending that

function arbitrarily to the null set where it is currently undefined.

Exercise 1.3.4. Let f : Rd → [0,+∞]. Show that f is a bounded

unsigned measurable function if and only if f is the uniform limit of

bounded simple functions.
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Exercise 1.3.5. Show that an unsigned function f : Rd → [0,+∞]

is a simple function if and only if it is measurable and takes on at

most finitely many values.

Exercise 1.3.6. Let f : Rd → [0,+∞] be an unsigned measurable

function. Show that the region {(x, t) ∈ Rd × R : 0 ≤ t ≤ f(x)} is

a measurable subset of Rd+1. (There is a converse to this statement,

but we will wait until Exercise 1.7.24 to prove it, once we have the

Fubini-Tonelli theorem (Corollary 1.7.23) available to us.)

Remark 1.3.10. Lemma 1.3.9 tells us that if f : Rd → [0,+∞] is

measurable, then f−1(E) is Lebesgue measurable for many classes of

sets E. However, we caution that it is not necessarily the case that

f−1(E) is Lebesgue measurable if E is Lebesgue measurable. To see

this, we let C be the Cantor set

C := {
∞
∑

j=1

aj3
−j : aj ∈ {0, 2} for all j}

and let f : R → [0,+∞] be the function defined by setting

f(x) :=
∞
∑

j=1

2bj3
−j

whenever x ∈ [0, 1] is not a terminating binary decimal, and so has

a unique binary expansion x =
∑∞

j=1 bj2
−j for some bj ∈ {0, 1}, and

f(x) := 0 otherwise. We thus see that f takes values in C, and is

bijective on the set A of non-terminating decimals in [0, 1]. Using

Lemma 1.3.9, it is not difficult to show that f is measurable. On the

other hand, by modifying the construction from the previous notes,

we can find a subset F of A which is non-measurable. If we set

E := f(F ), then E is a subset of the null set C and is thus itself

a null set; but f−1(E) = F is non-measurable, and so the inverse

image of a Lebesgue measurable set by a measurable function need

not remain Lebesgue measurable.

However, we will later see that it is still true that f−1(E) is

Lebesgue measurable if E has a slightly stronger measurability prop-

erty than Lebesgue measurability, namely Borel measurability ; see

Exercise 1.4.29(iii).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



62 1. Measure theory

Now we can define the concept of a complex-valued measurable

function. As discussed earlier, it will be convenient to allow for such

functions to only be defined almost everywhere, rather than every-

where, to allow for the possibility that the function becomes singular

or otherwise undefined on a null set.

Definition 1.3.11 (Complex measurability). An almost everywhere

defined complex-valued function f : Rd → C is Lebesgue measurable,

or measurable for short, if it is the pointwise almost everywhere limit

of complex-valued simple functions.

As before, there are several equivalent definitions:

Exercise 1.3.7. Let f : Rd → C be an almost everywhere defined

complex-valued function. Then the following are equivalent:

(i) f is measurable.

(ii) f is the pointwise almost everywhere limit of complex-valued

simple functions.

(iii) The (magnitudes of the) positive and negative parts of Re(f)

and Im(f) are unsigned measurable functions.

(iv) f−1(U) is Lebesgue measurable for every open set U ⊂ C.

(v) f−1(K) is Lebesgue measurable for every closed set K ⊂ C.

From the above exercise, we see that the notion of complex-valued

measurability and unsigned measurability are compatible when ap-

plied to a function that takes values in [0,+∞) = [0,+∞]∩C every-

where (or almost everywhere).

Exercise 1.3.8.

(i) Show that every continuous function f : Rd → C is measur-

able.

(ii) Show that a function f : Rd → C is simple if and only if it

is measurable and takes on at most finitely many values.

(iii) Show that a complex-valued function that is equal almost

everywhere to an measurable function, is itself measurable.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.3. The Lebesgue integral 63

(iv) Show that if a sequence fn of complex-valued measurable

functions converges pointwise almost everywhere to an complex-

valued limit f , then f is also measurable.

(v) If f : Rd → C is measurable and φ : C → C is continuous,

show that φ ◦ f : Rd → C is measurable.

(vi) If f, g are measurable functions, show that f + g and fg are

measurable.

Exercise 1.3.9. Let f : [a, b] → R be a Riemann integrable function.

Show that if one extends f to all of R by defining f(x) = 0 for

x 6∈ [a, b], then f is measurable.

1.3.3. Unsigned Lebesgue integrals. We are now ready to inte-

grate unsigned measurable functions. We begin with the notion of the

lower unsigned Lebesgue integral, which can be defined for arbitrary

unsigned functions (not necessarily measurable):

Definition 1.3.12 (Lower unsigned Lebesgue integral). Let f : Rd →
[0,+∞] be an unsigned function (not necessarily measurable). We

define the lower unsigned Lebesgue integral
∫

Rdf(x) dx to be the

quantity
∫

Rd

f(x) dx := sup
0≤g≤f ;g simple

Simp

∫

Rd

g(x) dx

where g ranges over all unsigned simple functions g : Rd → [0,+∞]

that are pointwise bounded by f .

One can also define the upper unsigned Lebesgue integral
∫

Rd

f(x) dx := inf
h≥f ;h simple

Simp

∫

Rd

h(x) dx

but we will use this integral much more rarely. Note that both inte-

grals take values in [0,+∞], and that the upper Lebesgue integral is

always at least as large as the lower Lebesgue integral.

In the definition of the lower unsigned Lebesgue integral, g is

required to be bounded by f pointwise everywhere, but it is easy to

see that one could also require g to just be bounded by f pointwise

almost everywhere without affecting the value of the integral, since
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the simple integral is not affected by modifications on sets of measure

zero.

The following properties of the lower Lebesgue integral are easy

to establish:

Exercise 1.3.10 (Basic properties of the lower Lebesgue integral).

Let f, g : Rd → [0,+∞] be unsigned functions (not necessarily mea-

surable).

(i) (Compatibility with the simple integral) If f is simple, then
∫

Rdf(x) dx =
∫

Rdf(x) dx = Simp
∫

Rd f(x) dx.

(ii) (Monotonicity) If f ≤ g pointwise almost everywhere, then
∫

Rdf(x) dx ≤
∫

Rdg(x) dx and
∫

Rdf(x) dx ≤
∫

Rdg(x) dx.

(iii) (Homogeneity) If c ∈ [0,+∞), then
∫

Rdcf(x) dx = c
∫

Rdf(x) dx.

(The claim unfortunately fails for c = +∞, but this is some-

what tricky to show.)

(iv) (Equivalence) If f, g agree almost everywhere, then
∫

Rdf(x) dx =
∫

Rdg(x) dx and
∫

Rdf(x) dx =
∫

Rdg(x) dx.

(v) (Superadditivity)
∫

Rdf(x)+g(x) dx ≥
∫

Rdf(x) dx+
∫

Rdg(x) dx.

(vi) (Subadditivity of upper integral)
∫

Rdf(x)+g(x) dx ≤
∫

Rdf(x) dx+
∫

Rdg(x) dx

(vii) (Divisibility) For any measurable set E, one has
∫

Rdf(x) dx =
∫

Rdf(x)1E(x) dx+
∫

Rdf(x)1Rd\E(x) dx.

(viii) (Horizontal truncation) As n → ∞,
∫

Rd min(f(x), n) dx

converges to
∫

Rdf(x) dx.

(ix) (Vertical truncation) As n → ∞,
∫

Rdf(x)1|x|≤n dx con-

verges to
∫

Rdf(x) dx. Hint: From Exercise 1.2.11 one has

m(E ∩ {x : |x| ≤ n}) → m(E) for any measurable set E.

(x) (Reflection) If f + g is a simple function that is bounded

with finite measure support (i.e. it is absolutely integrable),

then Simp
∫

Rd f(x) + g(x) dx =
∫

Rdf(x) dx+
∫

Rdg(x) dx.

Do the horizontal and vertical truncation properties hold if the lower

Lebesgue integral is replaced with the upper Lebesgue integral?
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Now we restrict attention to measurable functions.

Definition 1.3.13 (Unsigned Lebesgue integral). If f : Rd → [0,+∞]

is measurable, we define the unsigned Lebesgue integral
∫

Rd f(x) dx

of f to equal the lower unsigned Lebesgue integral
∫

Rdf(x) dx. (For

non-measurable functions, we leave the unsigned Lebesgue integral

undefined.)

One nice feature of measurable functions is that the lower and

upper Lebesgue integrals can match, if one also assumes some bound-

edness:

Exercise 1.3.11. Let f : Rd → [0,+∞] be measurable, bounded,

and vanishing outside of a set of finite measure. Show that the lower

and upper Lebesgue integrals of f agree. (Hint: use Exercise 1.3.4.)

There is a converse to this statement, but we will defer it to later

notes. What happens if f is allowed to be unbounded, or is not

supported inside a set of finite measure?

This gives an important corollary:

Corollary 1.3.14 (Finite additivity of the Lebesgue integral). Let

f, g : Rd → [0,+∞] be measurable. Then
∫

Rd f(x) + g(x) dx =
∫

Rd f(x) dx+
∫

Rd g(x) dx.

Proof. From the horizontal truncation property and a limiting ar-

gument, we may assume that f, g are bounded. From the vertical

truncation property and another limiting argument, we may assume

that f, g are supported inside a bounded set. From Exercise 1.3.11,

we now see that the lower and upper Lebesgue integrals of f , g, and

f + g agree. The claim now follows by combining the superadditivity

of the lower Lebesgue integral with the subadditivity of the upper

Lebesgue integral. �

In the next section we will improve this finite additivity property

for the unsigned Lebesgue integral further, to countable additivity;

this property is also known as the monotone convergence theorem

(Theorem 1.4.44).
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Exercise 1.3.12 (Upper Lebesgue integral and outer Lebesgue mea-

sure). Show that for any set E ⊂ Rd,
∫

Rd1E(x) dx = m∗(E). Con-

clude that the upper and lower Lebesgue integrals are not necessarily

additive if no measurability hypotheses are assumed.

Exercise 1.3.13 (Area interpretation of integral). If f : Rd → [0,+∞]

is measurable, show that
∫

Rd f(x) dx is equal to the d+1-dimensional

Lebesgue measure of the region {(x, t) ∈ Rd × R : 0 ≤ t ≤ f(x)}.
(This can be used as an alternate, and more geometrically intuitive,

definition of the unsigned Lebesgue integral; it is a more convenient

formulation for establishing the basic convergence theorems, but not

quite as convenient for establishing basic properties such as additiv-

ity.) (Hint: use Exercise 1.2.22.)

Exercise 1.3.14 (Uniqueness of the Lebesgue integral). Show that

the Lebesgue integral f 7→
∫

Rd f(x) dx is the only map from measur-

able unsigned functions f : Rd → [0,+∞] to [0,+∞] that obeys the

following properties for measurable f, g : Rd → [0,+∞]:

(i) (Compatibility with the simple integral) If f is simple, then
∫

Rd f(x) dx = Simp
∫

Rd f(x) dx.

(ii) (Finite additivity)
∫

Rd f(x) + g(x) dx =
∫

Rd f(x) dx +
∫

Rd g(x) dx.

(iii) (Horizontal truncation) As n → ∞,
∫

Rd min(f(x), n) dx

converges to
∫

Rd f(x) dx.

(iv) (Vertical truncation) As n → ∞,
∫

Rd f(x)1|x|≤n dx con-

verges to
∫

Rd f(x) dx.

Exercise 1.3.15 (Translation invariance). Let f : Rd → [0,+∞] be

measurable. Show that
∫

Rd f(x+y) dx =
∫

Rd f(x) dx for any y ∈ Rd.

Exercise 1.3.16 (Linear change of variables). Let f : Rd → [0,+∞]

be measurable, and let T : Rd → Rd be an invertible linear trans-

formation. Show that
∫

Rd f(T
−1(x)) dx = | detT |

∫

Rd f(x) dx, or

equivalently
∫

Rd f(Tx) dx = 1
| detT |

∫

Rd f(x) dx.

Exercise 1.3.17 (Compatibility with the Riemann integral). Let

f : [a, b] → [0,+∞] be Riemann integrable. If we extend f to R by
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declaring f to equal zero outside of [a, b], show that
∫

R
f(x) dx =

∫ b

a
f(x) dx.

We record a basic inequality, known as Markov’s inequality, that

asserts that the Lebesgue integral of an unsigned measurable function

controls how often that function can be large:

Lemma 1.3.15 (Markov’s inequality). Let f : Rd → [0,+∞] be mea-

surable. Then for any 0 < λ < ∞, one has

m({x ∈ Rd : f(x) ≥ λ}) ≤ 1

λ

∫

Rd

f(x) dx.

Proof. We have the trivial pointwise inequality

λ1{x∈Rd:f(x)≥λ} ≤ f(x).

From the definition of the lower Lebesgue integral, we conclude that

λm({x ∈ Rd : f(x) ≥ λ}) ≤
∫

Rd

f(x) dx

and the claim follows. �

By sending λ to infinity or to zero, we obtain the following im-

portant corollary:

Exercise 1.3.18. Let f : Rd → [0,+∞] be measurable.

(i) Show that if
∫

Rd f(x) dx < ∞, then f is finite almost ev-

erywhere. Give a counterexample to show that the converse

statement is false.

(ii) Show that
∫

Rd f(x) dx = 0 if and only if f is zero almost

everywhere.

Remark 1.3.16. The use of the integral
∫

Rd f(x) dx to control the

distribution of f is known as the first moment method. One can also

control this distribution using higher moments such as
∫

Rd |f(x)|p dx

for various values of p, or exponential moments such as
∫

Rd e
tf(x) dx

or the Fourier moments
∫

Rd e
itf(x) dx for various values of t; such

moment methods are fundamental to probability theory.
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1.3.4. Absolute integrability. Having set out the theory of the

unsigned Lebesgue integral, we can now define the absolutely conver-

gent Lebesgue integral.

Definition 1.3.17 (Absolute integrability). An almost everywhere

defined measurable function f : Rd → C is said to be absolutely inte-

grable if the unsigned integral

‖f‖L1(Rd) :=

∫

Rd

|f(x)| dx

is finite. We refer to this quantity ‖f‖L1(Rd) as the L1(Rd) norm of

f , and use L1(Rd) or L1(Rd → C) to denote the space of absolutely

integrable functions. If f is real-valued and absolutely integrable, we

define the Lebesgue integral
∫

Rd f(x) dx by the formula

(1.12)

∫

Rd

f(x) dx :=

∫

Rd

f+(x) dx−
∫

Rd

f−(x) dx

where f+ := max(f, 0), f− := max(−f, 0) are the magnitudes of the

positive and negative components of f (note that the two unsigned

integrals on the right-hand side are finite, as f+, f− are pointwise

dominated by |f |). If f is complex-valued and absolutely integrable,

we define the Lebesgue integral
∫

Rd f(x) dx by the formula
∫

Rd

f(x) dx :=

∫

Rd

Re f(x) dx+ i

∫

Rd

Im f(x) dx

where the two integrals on the right are interpreted as real-valued

absolutely integrable Lebesgue integrals. It is easy to see that the

unsigned, real-valued, and complex-valued Lebesgue integrals defined

in this manner are compatible on their common domains of definition.

Note from construction that the absolutely integrable Lebesgue

integral extends the absolutely integrable simple integral, which is

now redundant and will not be needed any further in the sequel.

Remark 1.3.18. One can attempt to define integrals for non-absolutely-

integrable functions, analogous to the improper integrals
∫∞
0

f(x) dx :=

limR→∞
∫ R

0
f(x) dx or the principal value integrals p.v.

∫∞
−∞ f(x) dx :=

limR→∞
∫ R

−R f(x) dx one sees in the classical one-dimensional Rie-

mannian theory. While one can certainly generate any number of

such extensions of the Lebesgue integral concept, such extensions tend
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to be poorly behaved with respect to various important operations,

such as change of variables or exchanging limits and integrals, so it is

usually not worthwhile to try to set up a systematic theory for such

non-absolutely-integrable integrals that is anywhere near as complete

as the absolutely integrable theory, and instead deal with such exotic

integrals on an ad hoc basis.

From the pointwise triangle inequality |f(x) + g(x)| ≤ |f(x)| +
|g(x)|, we conclude the L1 triangle inequality

(1.13) ‖f + g‖L1(Rd) ≤ ‖f‖L1(Rd) + ‖g‖L1(Rd)

for any almost everywhere defined measurable f, g : Rd → C. It is

also easy to see that

‖cf‖L1(Rd) = |c|‖f‖L1(Rd)

for any complex number c. As such, we see that L1(Rd → C) is

a complex vector space. (The L1 norm is then a seminorm on this

space; see §1.3 of An epsilon of room, Vol. I.) From Exercise 1.3.18

we make the important observation that a function f ∈ L1(Rd → C)

has zero L1 norm, ‖f‖L1(Rd) = 0, if and only if f is zero almost

everywhere.

Given two functions f, g ∈ L1(Rd → C), we can define the L1

distance dL1(f, g) between them by the formula

dL1(f, g) := ‖f − g‖L1(Rd).

Thanks to (1.13), this distance obeys almost all the axioms of a met-

ric on L1(Rd), with one exception: it is possible for two different

functions f, g ∈ L1(Rd → C) to have a zero L1 distance, if they agree

almost everywhere. As such, dL1 is only a semi-metric (also known

as a pseudo-metric) rather than a metric. However, if one adopts the

convention that any two functions that agree almost everywhere are

considered equivalent (or more formally, one works in the quotient

space of L1(Rd) by the equivalence relation of almost everywhere

agreement, which by abuse of notation is also denoted L1(Rd)), then

one recovers a genuine metric. (Later on, we will establish the im-

portant fact that this metric makes the (quotient space) L1(Rd) a
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complete metric space, a fact known as the L1 Riesz-Fischer theo-

rem; this completeness is one of the main reasons we spend so much

effort setting up Lebesgue integration theory in the first place.)

The linearity properties of the unsigned integral induce analogous

linearity properties of the absolutely convergent Lebesgue integral:

Exercise 1.3.19 (Integration is linear). Show that integration f 7→
∫

Rd f(x) dx is a (complex) linear operation from L1(Rd) to C. In

other words, show that
∫

Rd

f(x) + g(x) dx =

∫

Rd

f(x) dx+

∫

Rd

g(x) dx

and
∫

Rd

cf(x) dx = c

∫

Rd

f(x) dx

for all absolutely integrable f, g : Rd → C and complex numbers c.

Also establish the identity
∫

Rd

f(x) dx =

∫

Rd

f(x) dx,

which makes integration not just a linear operation, but a *-linear

operation.

Exercise 1.3.20. Show that Exercises 1.3.15, 1.3.16, and 1.3.17 also

hold for complex-valued, absolutely integrable functions rather than

for unsigned measurable functions.

Exercise 1.3.21 (Absolute summability is a special case of absolute

integrability). Let (cn)n∈Z be a doubly infinite sequence of complex

numbers, and let f : R → C be the function

f(x) :=
∑

n∈Z
cn1[n,n+1)(x) = c⌊x⌋

where ⌊x⌋ is the greatest integer less than x. Show that f is absolutely

integrable if and only if the series
∑

n∈Z cn is absolutely convergent,

in which case one has
∫

R
f(x) dx =

∑

n∈Z cn.

We can localise the absolutely convergent integral to any mea-

surable subset E of Rd. Indeed, if f : E → C is a function, we say

that f is measurable (resp. absolutely integrable) if its extension
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f̃ : Rd → C is measurable (resp. absolutely integrable), where f̃(x)

is defined to equal f(x) when x ∈ E and zero otherwise, and then we

define
∫

E
f(x) dx :=

∫

Rd f̃(x) dx. Thus, for instance, the absolutely

integrable analogue of Exercise 1.3.17 tells us that
∫ b

a

f(x) dx =

∫

[a,b]

f(x) dx

for any Riemann-integrable f : [a, b] → C.

Exercise 1.3.22. If E,F are disjoint measurable subsets of Rd, and

f : E ∪ F → C is absolutely integrable, show that
∫

E

f(x) dx =

∫

E∪F
f(x)1E(x) dx

and
∫

E

f(x) dx+

∫

F

f(x) dx =

∫

E∪F
f(x) dx.

We will study the properties of the absolutely convergent Lebesgue

integral in more detail in later notes, as a special case of the more

general Lebesgue integration theory on abstract measure spaces. For

now, we record one very basic inequality:

Lemma 1.3.19 (Triangle inequality). Let f ∈ L1(Rd → C). Then

|
∫

Rd

f(x) dx| ≤
∫

Rd

|f(x)| dx.

Proof. If f is real-valued, then |f | = f++f− and the claim is obvious

from (1.12). When f is complex-valued, one cannot argue quite so

simply; a naive mimicking of the real-valued argument would lose a

factor of 2, giving the inferior bound

|
∫

Rd

f(x) dx| ≤ 2

∫

Rd

|f(x)| dx.

To do better, we exploit the phase rotation invariance properties of

the absolute value operation and of the integral, as follows. Note that

for any complex number z, one can write |z| as zeiθ for some real θ.

In particular, we have

|
∫

Rd

f(x) dx| = eiθ
∫

Rd

f(x) dx =

∫

Rd

eiθf(x) dx
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for some real θ. Taking real parts of both sides, we obtain

|
∫

Rd

f(x) dx| =
∫

Rd

Re(eiθf(x)) dx.

Since Re(eiθf(x)) ≤ |eiθf(x)| = |f(x)|, we obtain the claim. �

1.3.5. Littlewood’s three principles. Littlewood’s three princi-

ples are informal heuristics that convey much of the basic intuition

behind the measure theory of Lebesgue. Briefly, the three principles

are as follows:

(i) Every (measurable) set is nearly a finite sum of intervals;

(ii) Every (absolutely integrable) function is nearly continuous;

and

(iii) Every (pointwise) convergent sequence of functions is nearly

uniformly convergent.

Various manifestations of the first principle were given in Exercise

1.2.7 and Exercise 1.2.16. Now we turn to the second principle. Define

a step function to be a finite linear combination of indicator functions

1B of boxes B.

Theorem 1.3.20 (Approximation of L1 functions). Let f ∈ L1(Rd)

and ε > 0.

(i) There exists an absolutely integrable simple function g such

that ‖f − g‖L1(Rd) ≤ ε.

(ii) There exists a step function g such that ‖f − g‖L1(Rd) ≤ ε.

(iii) There exists a continuous, compactly supported g such that

‖f − g‖L1(Rd) ≤ ε.

To put things another way, the absolutely integrable simple func-

tions, the step functions, and the continuous, compactly supported

functions are all dense subsets of L1(Rd) with respect to the L1(Rd)

(semi-)metric. In §1.13 of An epsilon of room, Vol. I it is shown that

a similar statement holds if one replaces continuous, compactly sup-

ported functions with smooth, compactly supported functions, also

known as test functions ; this is an important fact for the theory of

distributions.
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Proof. We begin with part (i). When f is unsigned, we see from the

definition of the lower Lebesgue integral that there exists an unsigned

simple function g such that g ≤ f (so, in particular, g is absolutely

integrable) and

∫

Rd

g(x) dx ≥
∫

Rd

f(x) dx− ε,

which by linearity implies that ‖f−g‖L1(Rd) ≤ ε. This gives (i) when

f is unsigned. The case when f is real-valued then follows by splitting

f into positive and negative parts (and adjusting ε as necessary), and

the case when f is complex-valued then follows by splitting f into

real and imaginary parts (and adjusting ε yet again).

To establish part (ii), we see from (i) and the triangle inequality

in L1 that it suffices to show this when f is an absolutely integrable

simple function. By linearity (and more applications of the triangle

inequality), it then suffices to show this when f = 1E is the indicator

function of a measurable set E ⊂ Rd of finite measure. But then, by

Exercise (1.2.16), such a set can be approximated (up to an error of

measure at most ε) by an elementary set, and the claim follows.

To establish part (iii), we see from (ii) and the argument from

the preceding paragraph that it suffices to show this when f = 1E
is the indicator function of a box. But one can then establish the

claim by direct construction. Indeed, if one makes a slightly larger

box F that contains the closure of E in its interior, but has a volume

at most ε more than that of E, then one can directly construct a

piecewise linear continuous function g supported on F that equals

1 on E (e.g. one can set g(x) = max(1 − R dist(x,E), 0) for some

sufficiently large R; one may also invoke Urysohn’s lemma, see §1.10
of An epsilon of room, Vol. I ). It is then clear from construction that

‖f − g‖L1(Rd) ≤ ε as required. �

This is not the only way to make Littlewood’s second principle

manifest; we return to this point shortly. For now, we turn to Little-

wood’s third principle. We recall three basic ways in which a sequence

fn : R
d → C of functions can converge to a limit f : Rd → C:

(i) (Pointwise convergence) fn(x) → f(x) for every x ∈ Rd.
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(ii) (Pointwise almost everywhere convergence) fn(x) → f(x)

for almost every x ∈ Rd.

(iii) (Uniform convergence) For every ε > 0, there exists N such

that |fn(x)− f(x)| ≤ ε for all n ≥ N and all x ∈ Rd.

Uniform convergence implies pointwise convergence, which in turn

implies pointwise almost everywhere convergence.

We now add a fourth mode of convergence, that is weaker than

uniform convergence but stronger than pointwise convergence:

Definition 1.3.21 (Locally uniform convergence). A sequence of

functions fn : R
d → C converges locally uniformly to a limit f : Rd →

C if, for every bounded subset E of Rd, fn converges uniformly to f

on E. In other words, for every bounded E ⊂ Rd and every ε > 0,

there exists N > 0 such that |fn(x) − f(x)| ≤ ε for all n ≥ N and

x ∈ E.

Remark 1.3.22. At least as far asRd is concerned, an equivalent def-

inition of local uniform convergence is: fn converges locally uniformly

to f if, for every point x0 ∈ Rd, there exists an open neighbourhood

U of x0 such that fn converges uniformly to f on U . The equivalence

of the two definitions is immediate from the Heine-Borel theorem.

More generally, the adverb “locally” in mathematics is usually used

in this fashion; a propery P is said to hold locally on some domain X

if, for every point x0 in that domain, there is an open neighbourhood

of x0 in X on which P holds.

One should caution, though, that on domains on which the Heine-

Borel theorem does not hold, the bounded-set notion of local uniform

convergence is not equivalent to the open-set notion of local uni-

form convergence (though, for locally compact spaces, one can recover

equivalence of one replaces “bounded” by “compact”).

Example 1.3.23. The functions x 7→ x/n on R for n = 1, 2, . . .

converge locally uniformly (and hence pointwise) to zero on R, but

do not converge uniformly.

Example 1.3.24. The partial sums
∑N

n=0
xn

n! of the Taylor series

ex =
∑∞

n=0
xn

n! converges to ex locally uniformly (and hence point-

wise) on R, but not uniformly.
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Example 1.3.25. The functions fn(x) := 1
nx1x>0 for n = 1, 2, . . .

(with the convention that fn(0) = 0) converge pointwise everywhere

to zero, but do not converge locally uniformly.

From the preceding example, we see that pointwise convergence

(either everywhere or almost everywhere) is a weaker concept than

local uniform convergence. Nevertheless, a remarkable theorem of

Egorov, which demonstrates Littlewood’s third principle, asserts that

one can recover local uniform convergence as long as one is willing to

delete a set of small measure:

Theorem 1.3.26 (Egorov’s theorem). Let fn : R
d → C be a sequence

of measurable functions that converge pointwise almost everywhere to

another function f : Rd → C, and let ε > 0. Then there exists a

Lebesgue measurable set A of measure at most ε, such that fn con-

verges locally uniformly to f outside of A.

Note that Example 1.3.25 demonstrates that the exceptional set

A in Egorov’s theorem cannot be taken to have zero measure, at least

if one uses the bounded-set definition of local uniform convergence

from Definition 1.3.21. (If one instead takes the “open neighbour-

hood” definition, then the sequence in Example 1.3.25 does converge

locally uniformly onR\{0} in the open neighbourhood sense, even if it

does not do so in the bounded-set sense. On a domain such as Rd\A,

bounded-set locally uniform convergence implies open-neighbourhood

locally uniform convergence, but not conversely, so for the purposes

of applying Egorov’s theorem, the distinction is not too important

since one local uniform convergence in both senses.)

Proof. By modifying fn and f on a set of measure zero (that can

be absorbed into A at the end of the argument) we may assume that

fn converges pointwise everywhere to f , thus for every x ∈ Rd and

m > 0 there exists N ≥ 0 such that |fn(x) − f(x)| ≤ 1/m for all

n ≥ N . We can rewrite this fact set-theoretically as
∞
⋂

N=0

EN,m = ∅

for each m, where

EN,m := {x ∈ Rd : |fn(x)− f(x)| > 1/m for some n ≥ N}.
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It is clear that the EN,m are Lebesgue measurable, and are decreasing

inN . Applying downward monotone convergence (Exercise 1.2.11(ii))

we conclude that, for any radius R > 0, one has

lim
N→∞

m(EN,m ∩B(0, R)) = 0.

(The restriction to the ball B(0, R) is necessary, because the down-

ward monotone convergence property only works when the sets in-

volved have finite measure.) In particular, for any m ≥ 1, we can find

Nm such that

m(EN,m ∩B(0,m)) ≤ ε

2m

for all N ≥ Nm.

Now let A :=
⋃∞

m=1 ENm,m ∩B(0,m). Then A is Lebesgue mea-

surable, and by countable subadditivity, m(A) ≤ ε. By construction,

we have

|fn(x)− f(x)| ≤ 1/m

whenever m ≥ 1, x ∈ Rd\A, |x| ≤ m, and n ≥ Nm. In particular,

we see for any ball B(0,m0) with an integer radius, fn converges

uniformly to f on B(0,m0)\A. Since every bounded set is contained

in such a ball, the claim follows. �

Remark 1.3.27. Unfortunately, one cannot in general upgrade local

uniform convergence to uniform convergence in Egorov’s theorem. A

basic example here is the moving bump example fn := 1[n,n+1] on

R, which “escapes to horizontal infinity”. This sequence converges

pointwise (and locally uniformly) to the zero function f ≡ 0. How-

ever, for any 0 < ε < 1 and any n, we have |fn(x)−f(x)| > ε on a set

of measure 1, namely on the interval [n, n + 1]. Thus, if one wanted

fn to converge uniformly to f outside of a set A, then that set A has

to contain a set of measure 1. In fact, it must contain the intervals

[n, n + 1] for all sufficiently large n and must therefore have infinite

measure.

However, if all the fn and f were supported on a fixed set E

of finite measure (e.g. on a ball B(0, R)), then the above “escape to

horizontal infinity” cannot occur, it is easy to see from the above argu-

ment that one can recover uniform convergence (and not just locally

uniform convergence) outside of a set of arbitrarily small measure.
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We now use Theorem 1.3.20 to give another version of Little-

wood’s second principle, known as Lusin’s theorem:

Theorem 1.3.28 (Lusin’s theorem). Let f : Rd → C be absolutely

integrable, and let ε > 0. Then there exists a Lebesgue measurable set

E ⊂ Rd of measure at most ε such that the restriction of f to the

complementary set Rd\E is continuous on that set.

A word of caution: this theorem does not imply that the unre-

stricted function f is continuous on Rd\E. For instance, the abso-

lutely integrable function 1Q : R → C is nowhere continuous, so is

certainly not continuous on R\E for any E of finite measure; but on

the other hand, if one deletes the measure zero set E := Q from the

reals, then the restriction of f to R\E is identically zero and thus

continuous.

Proof. By Theorem 1.3.20, for any n ≥ 1 one can find a continuous,

compactly supported function fn such that ‖f − fn‖L1(Rd) ≤ ε/4n

(say). By Markov’s inequality (Lemma 1.3.15), that implies that

|f(x)−fn(x)| ≤ 1/2n−1 for all x outside of a Lebesgue measurable set

En of measure at most ε/2n+1. Letting E :=
⋃∞

n=1 En, we conclude

that E is Lebesgue measurable with measure at most ε/2, and fn
converges uniformly to f outside of E. But the uniform limit of

continuous functions is continuous, and the same is true for local

uniform limits (because continuity is itself a local property). We

conclude that the restriction f toRd\E is continuous, as required. �

Exercise 1.3.23. Show that the hypothesis that f is absolutely in-

tegrable in Lusin’s theorem can be relaxed to being locally absolutely

integrable (i.e. absolutely integrable on every bounded set), and then

relaxed further to that of being measurable (but still finite everywhere

or almost everywhere). (To achieve the latter goal, one can replace

f locally with a horizontal truncation f1|f |≤n; alternatively, one can

replace f with a bounded variant, such as f
(1+|f |2)1/2 .)

Exercise 1.3.24. Show that a function f : Rd → C is measurable if

and only if it is the pointwise almost everywhere limit of continuous

functions fn : R
d → C. (Hint: if f : Rd → C is measurable and

n ≥ 1, show that there exists a continuous function fn : R
d → C for
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which the set {x ∈ B(0, n) : |f(x) − fn(x)| ≥ 1/n} has measure at

most 1
2n . You may find Exercise 1.3.25 below to be useful for this.)

Use this (and Egorov’s theorem, Theorem 1.3.26) to give an alternate

proof of Lusin’s theorem for arbitrary measurable functions.

Remark 1.3.29. This is a trivial but important remark: when deal-

ing with unsigned measurable functions such as f : Rd → [0,+∞],

then Lusin’s theorem does not apply directly because f could be in-

finite on a set of positive measure, which is clearly in contradiction

with the conclusion of Lusin’s theorem (unless one allows the contin-

uous function to also take values in the extended non-negative reals

[0,+∞] with the extended topology). However, if one knows already

that f is almost everywhere finite (which is for instance the case when

f is absolutely integrable), then Lusin’s theorem applies (since one

can simply zero out f on the null set where it is infinite, and add that

null set to the exceptional set of Lusin’s theorem).

Remark 1.3.30. By combining Lusin’s theorem with inner regularity

(Exercise 1.2.15) and the Tietze extension theorem (see §1.10 of An

epsilon of room, Vol. I ), one can conclude that every measurable

function f : Rd → C agrees (outside of a set of arbitrarily small

measure) with a continuous function g : Rd → C.

Exercise 1.3.25 (Littlewood-like principles). The following facts are

not, strictly speaking, instances of any of Littlewood’s three princi-

ples, but are in a similar spirit.

(i) (Absolutely integrable functions almost have bounded sup-

port) Let f : Rd → C be an absolutely integrable function,

and let ε > 0. Show that there exists a ball B(0, R) outside

of which f has an L1 norm of at most ε, or in other words

that
∫

Rd\B(0,R)
|f(x)| dx ≤ ε.

(ii) (Measurable functions are almost locally bounded) Let f : Rd →
C be a measurable function supported on a set of finite mea-

sure, and let ε > 0. Show that there exists a measurable set

E ⊂ Rd of measure at most ε outside of which f is locally

bounded, or in other words that for every R > 0 there exists

M < ∞ such that |f(x)| ≤ M for all x ∈ B(0, R)\E.
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As with Remark 1.3.29, it is important in the second part of the

exercise that f is known to be finite everywhere (or at least almost

everywhere); the result would of course fail if f was, say, unsigned

but took the value +∞ on a set of positive measure.

1.4. Abstract measure spaces

Thus far, we have only focused on measure and integration theory in

the context of Euclidean spaces Rd. Now, we will work in a more

abstract and general setting, in which the Euclidean space Rd is re-

placed by a more general space X.

It turns out that in order to properly define measure and integra-

tion on a general space X, it is not enough to just specify the set X.

One also needs to specify two additional pieces of data:

(i) A collection B of subsets ofX that one is allowed to measure;

and

(ii) The measure µ(E) ∈ [0,+∞] one assigns to each measurable

set E ∈ B.

For instance, Lebesgue measure theory covers the case when X is

a Euclidean space Rd, B is the collection B = L[Rd] of all Lebesgue

measurable subsets of Rd, and µ(E) is the Lebesgue measure µ(E) =

m(E) of E.

The collection B has to obey a number of axioms (e.g. being

closed with respect to countable unions) that make it a σ-algebra,

which is a stronger variant of the more well-known concept of a boolean

algebra. Similarly, the measure µ has to obey a number of axioms

(most notably, a countable additivity axiom) in order to obtain a

measure and integration theory comparable to the Lebesgue theory

on Euclidean spaces. When all these axioms are satisfied, the triple

(X,B, µ) is known as a measure space. These play much the same role

in abstract measure theory that metric spaces or topological spaces

play in abstract point-set topology, or that vector spaces play in ab-

stract linear algebra.

On any measure space, one can set up the unsigned and absolutely

convergent integrals in almost exactly the same way as was done in

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



80 1. Measure theory

the previous notes for the Lebesgue integral on Euclidean spaces,

although the approximation theorems are largely unavailable at this

level of generality due to the lack of such concepts as “elementary set”

or “continuous function” for an abstract measure space. On the other

hand, one does have the fundamental convergence theorems for the

subject, namely Fatou’s lemma, the monotone convergence theorem

and the dominated convergence theorem, and we present these results

here.

One question that will not be addressed much in this section is

how one actually constructs interesting examples of measures. We will

return to this issue in Section 1.7 (although one of the most powerful

tools for such constructions, namely the Riesz representation theorem,

will not be covered here, but instead in §1.10 of An epsilon of room,

Vol. I ).

1.4.1. Boolean algebras. We begin by recalling the concept of a

Boolean algebra.

Definition 1.4.1 (Boolean algebras). Let X be a set. A (concrete)

Boolean algebra on X is a collection B of X which obeys the following

properties:

(i) (Empty set) ∅ ∈ B.
(ii) (Complement) If E ∈ B, then the complement Ec := X\E

also lies in B.
(iii) (Finite unions) If E,F ∈ B, then E ∪ F ∈ B.

We sometimes say that E is B-measurable, or measurable with respect

to B, if E ∈ B.
Given two Boolean algebras B,B′ on X, we say that B′ is finer

than, a sub-algebra of, or a refinement of B, or that B is coarser than

or a coarsening of B′, if B ⊂ B′.

We have chosen a “minimalist” definition of a Boolean algebra,

in which one is only assumed to be closed under two of the basic

Boolean operations, namely complement and finite union. However,

by using the laws of Boolean algebra (such as de Morgan’s laws),

it is easy to see that a Boolean algebra is also closed under other
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Boolean algebra operations such as intersection E∩F , set differerence

E\F , and symmetric difference E∆F . So one could have placed these

additional closure properties inside the definition of a Boolean algebra

without any loss of generality. However, when we are verifying that a

given collection B of sets is indeed a Boolean algebra, it is convenient

to have as minimal a set of axioms as possible.

Remark 1.4.2. One can also consider abstract Boolean algebras B,
which do not necessarily live in an ambient domain X, but for which

one has a collection of abstract Boolean operations such as meet ∧
and join ∨ instead of the concrete operations of intersection ∩ and

union ∪. We will not take this abstract perspective here, but see

§2.3 of An epsilon of room, Vol. I for some further discussion of the

relationship between concrete and abstract Boolean algebras, which

is codified by Stone’s theorem.

Example 1.4.3 (Trivial and discrete algebra). Given any set X, the

coarsest Boolean algebra is the trivial algebra {∅, X}, in which the

only measurable sets are the empty set and the whole set. The finest

Boolean algebra is the discrete algebra 2X := {E : E ⊂ X}, in which

every set is measurable. All other Boolean algebras are intermediate

between these two extremes: finer than the trivial algebra, but coarser

than the discrete one.

Exercise 1.4.1 (Elementary algebra). Let E [Rd] be the collection of

those sets E ⊂ Rd that are either elementary sets, or co-elementary

sets (i.e. the complement of an elementary set). Show that E [Rd] is

a Boolean algebra. We will call this algebra the elementary Boolean

algebra of Rd.

Example 1.4.4 (Jordan algebra). Let J [Rd] be the collection of sub-

sets of Rd that are either Jordan measurable or co-Jordan measurable

(i.e. the complement of a Jordan measurable set). Then J [Rd] is a

Boolean algebra that is finer than the elementary algebra. We refer to

this algebra as the Jordan algebra on Rd (but caution that there is a

completely different concept of a Jordan algebra in abstract algebra.)

Example 1.4.5 (Lebesgue algebra). Let L[Rd] be the collection of

Lebesgue measurable subsets of Rd. Then L[Rd] is a Boolean algebra
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that is finer than the Jordan algebra; we refer to this as the Lebesgue

algebra on Rd.

Example 1.4.6 (Null algebra). Let N (Rd) be the collection of sub-

sets of Rd that are either Lebesgue null sets or Lebesgue co-null sets

(the complement of null sets). Then N (Rd) is a Boolean algebra that

is coarser than the Lebesgue algebra; we refer to it as the null algebra

on Rd.

Exercise 1.4.2 (Restriction). Let B be a Boolean algebra on a set

X, and let Y be a subset of X (not necessarily B-measurable). Show

that the restriction B ⇂Y := {E ∩ Y : E ∈ B} of B to Y is a Boolean

algebra on Y . If Y is B-measurable, show that

B ⇂Y = B ∩ 2Y = {E ⊂ Y : E ∈ B}.

Example 1.4.7 (Atomic algebra). Let X be partitioned into a union

X =
⋃

α∈I Aα of disjoint sets Aα, which we refer to as atoms. Then

this partition generates a Boolean algebra A((Aα)α∈I), defined as the

collection of all the sets E of the form E =
⋃

α∈J Aα for some J ⊂ I,

i.e. A((Aα)α∈I) is the collection of all sets that can be represented as

the union of one or more atoms. This is easily verified to be a Boolean

algebra, and we refer to it as the atomic algebra with atoms (Aα)α∈I .
The trivial algebra corresponds to the trivial partition X = X into

a single atom; at the other extreme, the discrete algebra corresponds

to the discrete partition X =
⋃

x∈X{x} into singleton atoms. More

generally, note that finer (resp. coarser) partitions lead to finer (resp.

coarser) atomic algebra. In this definition, we permit some of the

atoms in the partition to be empty; but it is clear that empty atoms

have no impact on the final atomic algebra, and so without loss of

generality one can delete all empty atoms and assume that all atoms

are non-empty if one wishes.

Example 1.4.8 (Dyadic algebras). Let n be an integer. The dyadic

algebra Dn(R
d) at scale 2−n in Rd is defined to be the atomic algebra

generated by the half-open dyadic cubes
[

i1
2n

,
i1 + 1

2n

)

× . . .×
[

id
2n

,
id + 1

2n

)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.4. Abstract measure spaces 83

of length 2−n (see Exercise 1.1.14). These are Boolean algebras which

are increasing in n: Dn+1 ⊃ Dn. Draw a diagram to indicate how

these algebras sit in relation to the elementary, Jordan, and Lebesgue,

null, discrete, and trivial algebras.

Remark 1.4.9. The dyadic algebras are analogous to the finite reso-

lution one has on modern computer monitors, which subdivide space

into square pixels. A low resolution monitor (in which each pixel has

a large size) can only resolve a very small set of “blocky” images, as

opposed to the larger class of images that can be resolved by a finer

resolution monitor.

Exercise 1.4.3. Show that the non-empty atoms of an atomic al-

gebra are determined up to relabeling. More precisely, show that if

X =
⋃

α∈I Aα =
⋃

α′∈I′ A′α′ are two partitions of X into non-empty

atoms Aα, A
′
α′ , then A((Aα)α∈I) = A((A′α′)α′∈I′) if and only if exists

a bijection φ : I → I ′ such that A′φ(α) = Aα for all α ∈ I.

While many Boolean algebras are atomic, many are not, as the

following two exercises indicate.

Exercise 1.4.4. Show that every finite Boolean algebra is an atomic

algebra. (A Boolean algebra B is finite if its cardinality is finite,

i.e. there are only finitely many measurable sets.) Conclude that

every finite Boolean algebra has a cardinality of the form 2n for some

natural number n. From this exercise and Exercise 1.4.3 we see that

there is a one-to-one correspondence between finite Boolean algebras

onX and finite partitions ofX into non-empty sets (up to relabeling).

Exercise 1.4.5. Show that the elementary, Jordan, Lebesgue, and

null algebras are not atomic algebras. (Hint: argue by contradiction.

If these algebras were atomic, what must the atoms be?)

Now we describe some further ways to generate Boolean algebras.

Exercise 1.4.6 (Intersection of algebras). Let (Bα)α∈I be a family

of Boolean algebras on a set X, indexed by a (possibly infinite or

uncountable) label set I. Show that the intersection
∧

α∈I Bα :=
⋂

α∈I Bα of these algebras is still a Boolean algebra, and is the finest
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Boolean algebra that is coarser than all of the Bα. (If I is empty, we

adopt the convention that
∧

α∈I Bα is the discrete algebra.)

Definition 1.4.10 (Generation of algebras). Let F be any family

of sets in X. We define 〈F〉bool to be the intersection of all the

Boolean algebras that contain F , which is again a Boolean algebra by

Exercise 1.4.6. Equivalently, 〈F〉bool is the coarsest Boolean algebra

that contains F . We say that 〈F〉bool is the Boolean algebra generated

by F .

Example 1.4.11. F is a Boolean algebra if and only if 〈F〉bool = F ;

thus each Boolean algebra is generated by itself.

Exercise 1.4.7. Show that the elementary algebra E(Rd) is gener-

ated by the collection of boxes in Rd.

Exercise 1.4.8. Let n be a natural number. Show that if F is a

finite collection of n sets, then 〈F〉bool is a finite Boolean algebra

of cardinality at most 22
n

(in particular, finite sets generate finite

algebras). Give an example to show that this bound is best possible.

(Hint: for the latter, it may be convenient to use a discrete ambient

space such as the discrete cube X = {0, 1}n.)

The Boolean algebra 〈F〉bool can be described explicitly in terms

of F as follows:

Exercise 1.4.9 (Recursive description of a generated Boolean al-

gebra). Let F be a collection of sets in a set X. Define the sets

F0,F1,F2, . . . recursively as follows:

(i) F0 := F .

(ii) For each n ≥ 1, we define Fn to be the collection of all

sets that either the union of a finite number of sets in Fn−1
(including the empty union ∅), or the complement of such a

union.

Show that 〈F〉bool =
⋃∞

n=0 Fn.
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1.4.2. σ-algebras and measurable spaces. In order to obtain a

measure and integration theory that can cope well with limits, the

finite union axiom of a Boolean algebra is insufficient, and must be

improved to a countable union axiom:

Definition 1.4.12 (Sigma algebras). Let X be a set. A σ-algebra

on X is a collection B of X which obeys the following properties:

(i) (Empty set) ∅ ∈ B.
(ii) (Complement) If E ∈ B, then the complement Ec := X\E

also lies in B.
(iii) (Countable unions) If E1, E2, . . . ∈ B, then ⋃∞n=1 En ∈ B.

We refer to the pair (X,B) of a set X together with a σ-algebra on

that set as a measurable space.

Remark 1.4.13. The prefix σ usually denotes “countable union”.

Other instances of this prefix include a σ-compact topological space (a

countable union of compact sets), a σ-finite measure space (a count-

able union of sets of finite measure), or Fσ set (a countable union of

closed sets) for other instances of this prefix.

From de Morgan’s law (which is just as valid for infinite unions

and intersections as it is for finite ones), we see that σ-algebras are

closed under countable intersections as well as countable unions.

By padding a finite union into a countable union by using the

empty set, we see that every σ-algebra is automatically a Boolean al-

gebra. Thus, we automatically inherit the notion of being measurable

with respect to a σ-algebra, or of one σ-algebra being coarser or finer

than another.

Exercise 1.4.10. Show that all atomic algebras are σ-algebras. In

particular, the discrete algebra and trivial algebra are σ-algebras, as

are the finite algebras and the dyadic algebras on Euclidean spaces.

Exercise 1.4.11. Show that the Lebesgue and null algebras are σ-

algebras, but the elementary and Jordan algebras are not.

Exercise 1.4.12. Show that any restriction B ⇂Y of a σ-algebra B to

a subspace Y of X (as defined in Exercise 1.4.2) is again a σ-algebra

on the subspace Y .
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There is an exact analogue of Exercise 1.4.6:

Exercise 1.4.13 (Intersection of σ-algebras). Show that the inter-

section
∧

α∈I Bα :=
⋂

α∈I Bα of an arbitrary (and possibly infinite or

uncountable) number of σ-algebras Bα is again a σ-algebra, and is

the finest σ-algebra that is coarser than all of the Bα.

Similarly, we have a notion of generation:

Definition 1.4.14 (Generation of σ-algebras). Let F be any family

of sets in X. We define 〈F〉 to be the intersection of all the σ-algebras

that contain F , which is again a σ-algebra by Exercise 1.4.13. Equiv-

alently, 〈F〉 is the coarsest σ-algebra that contains F . We say that

〈F〉 is the σ-algebra generated by F .

Since every σ-algebra is a Boolean algebra, we have the trivial

inclusion

〈F〉bool ⊂ 〈F〉.
However, equality need not hold; it only holds if and only if 〈F〉bool
is a σ-algebra. For instance, if F is the collection of all boxes in

Rd, then 〈F〉bool is the elementary algebra (Exercise 1.4.7), but 〈F〉
cannot equal this algebra, as it is not a σ-algebra.

Remark 1.4.15. From the definitions, it is clear that we have the

following principle, somewhat analogous to the principle of math-

ematical induction: if F is a family of sets in X, and P (E) is a

property of sets E ⊂ X which obeys the following axioms:

(i) P (∅) is true.
(ii) P (E) is true for all E ∈ F .

(iii) If P (E) is true for some E ⊂ X, then P (X\E) is true also.

(iv) If E1, E2, . . . ⊂ X are such that P (En) is true for all n, then

P (
⋃∞

n=1 En) is true also.

Then one can conclude that P (E) is true for all E ∈ 〈F〉. Indeed,

the set of all E for which P (E) holds is a σ-algebra that contains F ,

whence the claim. This principle is particularly useful for establishing

properties of Borel measurable sets (see below).

We now turn to an important example of a σ-algebra:

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.4. Abstract measure spaces 87

Definition 1.4.16 (Borel σ-algebra). Let X be a metric space, or

more generally a topological space. The Borel σ-algebra B[X] of X

is defined to be the σ-algebra generated by the open subsets of X.

Elements of B[X] will be called Borel measurable.

Thus, for instance, the Borel σ-algebra contains the open sets,

the closed sets (which are complements of open sets), the countable

unions of closed sets (known as Fσ sets), the countable intersections

of open sets (known as Gδ sets), the countable intersections of Fσ

sets, and so forth.

In Rd, every open set is Lebesgue measurable, and so we see that

the Borel σ-algebra is coarser than the Lebesgue σ-algebra. We will

shortly see, though, that the two σ-algebras are not equal.

We defined the Borel σ-algebra to be generated by the open sets.

However, they are also generated by several other sets:

Exercise 1.4.14. Show that the Borel σ-algebra B[Rd] of a Euclidean

set is generated by any of the following collections of sets:

(i) The open subsets of Rd.

(ii) The closed subsets of Rd.

(iii) The compact subsets of Rd.

(iv) The open balls of Rd.

(v) The boxes in Rd.

(vi) The elementary sets in Rd.

(Hint: To show that two families F ,F ′ of sets generate the same

σ-algebra, it suffices to show that every σ-algebra that contains F ,

contains F ′ also, and conversely.)

There is an analogue of Exercise 1.4.9, which illustrates the ex-

tent to which a generated σ-algebra is “larger” than the analogous

generated Boolean algebra:

Exercise 1.4.15 (Recursive description of a generated σ-algebra).

(This exercise requires familiarity with the theory of ordinals, which

is reviewed in §2.4 of An epsilon of room, Vol. I. Recall that we

are assuming the axiom of choice throughout this text.) Let F be
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a collection of sets in a set X, and let ω1 be the first uncountable

ordinal. Define the sets Fα for every countable ordinal α ∈ ω1 via

transfinite induction as follows:

(i) Fα := F .

(ii) For each countable successor ordinal α = β + 1, we define

Fα to be the collection of all sets that either the union of

an at most countable number of sets in Fn−1 (including the

empty union ∅), or the complement of such a union.

(iii) For each countable limit ordinal α = supβ<α β, we define

Fα :=
⋃

β<α Fβ .

Show that 〈F〉 = ⋃α∈ω1
Fα.

Remark 1.4.17. The first uncountable ordinal ω1 will make several

further cameo appearances here and in An epsilon of room, Vol. I,

for instance by generating counterexamples to various plausible state-

ments in point-set topology. In the case when F is the collection of

open sets in a topological space, so that 〈F〉, then the sets Fα are

essentially the Borel hierarchy (which starts at the open and closed

sets, then moves on to the Fσ and Gδ sets, and so forth); these play

an important role in descriptive set theory.

Exercise 1.4.16. (This exercise requires familiarity with the theory

of cardinals.) Let F be an infinite family of subsets of X of cardinality

κ (thus κ is an infinite cardinal). Show that 〈F〉 has cardinality at

most κℵ0 . (Hint: use Exercise 1.4.15.) In particular, show that the

Borel σ-algebra B[Rd] has cardinality at most c := 2ℵ0 .

Conclude that there exist Jordan measurable (and hence Lebesgue

measurable) subsets of Rd which are not Borel measurable. (Hint:

How many subsets of the Cantor set are there?) Use this to place the

Borel σ-algebra on the diagram that you drew for Exercise 1.4.8.

Remark 1.4.18. Despite this demonstration that not all Lebesgue

measurable subsets are Borel measurable, it is remarkably difficult

(though not impossible) to exhibit a specific set that is not Borel

measurable. Indeed, a large majority of the explicitly constructible

sets that one actually encounters in practice tend to be Borel measur-

able, and one can view the property of Borel measurability intuitively
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as a kind of “constructibility” property. (Indeed, as a very crude first

approximation, one can view the Borel measurable sets as those sets

of “countable descriptive complexity”; in contrast, sets of finite de-

scriptive complexity tend to be Jordan measurable (assuming they

are bounded, of course).

Exercise 1.4.17. Let E,F be Borel measurable subsets of Rd1 ,Rd2

respectively. Show that E×F is a Borel measurable subset of Rd1+d2 .

(Hint: first establish this in the case when F is a box, by using

Remark 1.4.15. To obtain the general case, apply Remark 1.4.15 yet

again.)

The above exercise has a partial converse:

Exercise 1.4.18. Let E be a Borel measurable subset of Rd1+d2 .

(i) Show that for any x1 ∈ Rd1 , the slice {x2 ∈ Rd2 : (x1, x2) ∈
E} is a Borel measurable subset of Rd2 . Similarly, show

that for every x2 ∈ Rd2 , the slice {x1 ∈ Rd1 : (x1, x2) ∈ E}
is a Borel measurable subset of Rd1 .

(ii) Give a counterexample to show that this claim is not true

if “Borel” is replaced with “Lebesgue” throughout. (Hint:

the Cartesian product of any set with a point is a null set,

even if the first set was not measurable.)

Exercise 1.4.19. Show that the Lebesgue σ-algebra on Rd is gener-

ated by the union of the Borel σ-algebra and the null σ-algebra.

1.4.3. Countably additive measures and measure spaces. Hav-

ing set out the concept of a σ-algebra a measurable space, we now

endow these structures with a measure.

We begin with the finitely additive theory, although this theory

is too weak for our purposes and will soon be supplanted by the

countably additive theory.

Definition 1.4.19 (Finitely additive measure). Let B be a Boolean

algebra on a space X. An (unsigned) finitely additive measure µ on

B is a map µ : B → [0,+∞] that obeys the following axioms:

(i) (Empty set) µ(∅) = 0.
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(ii) (Finite additivity) Whenever E,F ∈ B are disjoint, then

µ(E ∪ F ) = µ(E) + µ(F ).

Remark 1.4.20. The empty set axiom is needed in order to rule out

the degenerate situation in which every set (including the empty set)

has infinite measure.

Example 1.4.21. Lebesgue measure m is a finitely additive measure

on the Lebesgue σ-algebra, and hence on all sub-algebras (such as the

null algebra, the Jordan algebra, or the elementary algebra). In par-

ticular, Jordan measure and elementary measure are finitely additive

(adopting the convention that co-Jordan measurable sets have infi-

nite Jordan measure, and co-elementary sets have infinite elementary

measure).

On the other hand, as we saw in previous notes, Lebesgue outer

measure is not finitely additive on the discrete algebra, and Jordan

outer measure is not finitely additive on the Lebesgue algebra.

Example 1.4.22 (Dirac measure). Let x ∈ X and B be an arbitrary

Boolean algebra on X. Then the Dirac measure δx at x, defined by

setting δx(E) := 1E(x), is finitely additive.

Example 1.4.23 (Zero measure). The zero measure 0: E 7→ 0 is a

finitely additive measure on any Boolean algebra.

Example 1.4.24 (Linear combinations of measures). If B is a Boolean

algebra on X, and µ, ν : B → [0,+∞] are finitely additive measures on

B, then µ+ν : E 7→ µ(E)+ν(E) is also a finitely additive measure, as

is cµ : E 7→ c×µ(E) for any c ∈ [0,+∞]. Thus, for instance, the sum

of Lebesgue measure and a Dirac measure is also a finitely additive

measure on the Lebesgue algebra (or on any of its sub-algebras).

Example 1.4.25 (Restriction of a measure). If B is a Boolean algebra

on X, µ : B → [0,+∞] is a finitely additive measure, and Y is a B-
measurable subset of X, then the restriction µ ⇂Y : B ⇂Y → [0,+∞] of

B to Y , defined by setting µ ⇂Y (E) := µ(E) whenever E ∈ B ⇂Y (i.e.

if E ∈ B and E ⊂ Y ), is also a finitely additive measure.

Example 1.4.26 (Counting measure). If B is a Boolean algebra on

X, then the function #: B → [0,+∞] defined by setting #(E) to be
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the cardinality of E if E is finite, and #(E) := +∞ if E is infinite, is

a finitely additive measure, known as counting measure.

As with our definition of Boolean algebras and σ-algebras, we

adopted a “minimalist” definition so that the axioms are easy to ver-

ify. But they imply several further useful properties:

Exercise 1.4.20. Let µ : B → [0,+∞] be a finitely additive measure

on a Boolean σ-algebra B. Establish the following facts:

(i) (Monotonicity) If E,F are B-measurable and E ⊂ F , then

µ(E) ≤ µ(F ).

(ii) (Finite additivity) If k is a natural number, and E1, . . . , Ek

are B-measurable and disjoint, then µ(E1 ∪ . . . ∪ Ek) =

µ(E1) + . . .+ µ(Ek).

(iii) (Finite subadditivity) If k is a natural number, and E1, . . . , Ek

are B-measurable, then µ(E1 ∪ . . . ∪ Ek) ≤ µ(E1) + . . . +

µ(Ek).

(iv) (Inclusion-exclusion for two sets) If E,F are B-measurable,

then µ(E ∪ F ) + µ(E ∩ F ) = µ(E) + µ(F ).

(Caution: remember that the cancellation law a+c = b+c =⇒ a = b

does not hold in [0,+∞] if c is infinite, and so the use of cancellation

(or subtraction) should be avoided if possible.)

One can characterise measures completely for any finite algebra:

Exercise 1.4.21. Let B be a finite Boolean algebra, generated by

a finite family A1, . . . , Ak of non-empty atoms. Show that for every

finitely additive measure µ on B there exists c1, . . . , ck ∈ [0,+∞] such

that

µ(E) =
∑

1≤j≤k:Aj⊂E
cj .

Equivalently, if xj is a point in Aj for each 1 ≤ j ≤ k, then

µ =
k
∑

j=1

cjδxj .

Furthermore, show that the c1, . . . , ck are uniquely determined by µ.
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This is about the limit of what one can say about finitely additive

measures at this level of generality. We now specialise to the countably

additive measures on σ-algebras.

Definition 1.4.27 (Countably additive measure). Let (X,B) be a

measurable space. An (unsigned) countably additive measure µ on

B, or measure for short, is a map µ : B → [0,+∞] that obeys the

following axioms:

(i) (Empty set) µ(∅) = 0.

(ii) (Countable additivity) Whenever E1, E2, . . . ∈ B are a count-

able sequence of disjoint measurable sets, then µ(
⋃∞

n=1 En) =
∑∞

n=1 µ(En).

A triplet (X,B, µ), where (X,B) is a measurable space and µ : B →
[0,+∞] is a countably additive measure, is known as a measure space.

Note the distinction between a measure space and a measurable

space. The latter has the capability to be equipped with a measure,

but the former is actually equipped with a measure.

Example 1.4.28. Lebesgue measure is a countably additive measure

on the Lebesgue σ-algebra, and hence on every sub-σ-algebra (such

as the Borel σ-algebra).

Example 1.4.29. The Dirac measures from Exercise 1.4.22 are count-

ably additive, as is counting measure.

Example 1.4.30. Any restriction of a countably additive measure

to a measurable subspace is again countably additive.

Exercise 1.4.22 (Countable combinations of measures). Let (X,B)
be a measurable space.

(i) If µ is a countably additive measure on B, and c ∈ [0,+∞],

then cµ is also countably additive.

(ii) If µ1, µ2, . . . are a sequence of countably additive measures

on B, then the sum
∑∞

n=1 µn : E 7→ ∑∞
n=1 µn(E) is also a

countably additive measure.

Note that countable additivity measures are necessarily finitely

additive (by padding out a finite union into a countable union using
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the empty set), and so countably additive measures inherit all the

properties of finitely additive properties, such as monotonicity and

finite subadditivity. But one also has additional properties:

Exercise 1.4.23. Let (X,B, µ) be a measure space.

(i) (Countable subadditivity) If E1, E2, . . . are B-measurable,

then µ(
⋃∞

n=1 En) ≤
∑∞

n=1 µ(En).

(ii) (Upwards monotone convergence) If E1 ⊂ E2 ⊂ . . . are B-
measurable, then

µ(
∞
⋃

n=1

En) = lim
n→∞

µ(En) = sup
n

µ(En).

(iii) (Downwards monotone convergence) If E1 ⊃ E2 ⊃ . . . are

B-measurable, and µ(En) < ∞ for at least one n, then

µ(
∞
⋂

n=1

En) = lim
n→∞

µ(En) = inf
n

µ(En).

Show that the downward monotone convergence claim can fail if the

hypothesis that µ(En) < ∞ for at least one n is dropped. (Hint:

mimic the solution to Exercise 1.2.11.)

Exercise 1.4.24 (Dominated convergence for sets). Let (X,B, µ)
be a measure space. Let E1, E2, . . . be a sequence of B-measurable

sets that converge to another set E, in the sense that 1En converges

pointwise to 1E .

(i) Show that E is also B-measurable.

(ii) If there exists a B-measurable set F of finite measure (i.e.

µ(F ) < ∞) that contains all of the En, show that limn→∞ µ(En) =

µ(E). (Hint: Apply downward monotonicity to the sets
⋃

n>N (En∆E).)

(iii) Show that the previous part of this exercise can fail if the

hypothesis that all the En are contained in a set of finite

measure is omitted.

Exercise 1.4.25. LetX be an at most countable set with the discrete

σ-algebra. Show that every measure µ on this measurable space can
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be uniquely represented in the form

µ =
∑

x∈X
cxδx

for some cx ∈ [0,+∞], thus

µ(E) =
∑

x∈E
cx

for all E ⊂ X. (This claim fails in the uncountable case, although

showing this is slightly tricky.)

A useful technical property, enjoyed by some measure spaces, is

that of completeness:

Definition 1.4.31 (Completeness). A null set of a measure space

(X,B, µ) is defined to be a B-measurable set of measure zero. A sub-

null set is any subset of a null set. A measure space is said to be

complete if every sub-null set is a null set.

Thus, for instance, the Lebesgue measure space (Rd,L[Rd],m) is

complete, but the Borel measure space (Rd,B[Rd],m) is not (as can

be seen from the solution to Exercise 1.4.16).

Completion is a convenient property to have in some cases, par-

ticularly when dealing with properties that hold almost everywhere.

Fortunately, it is fairly easy to modify any measure space to be com-

plete:

Exercise 1.4.26 (Completion). Let (X,B, µ) be a measure space.

Show that there exists a unique refinement (X,B, µ), known as the

completion of (X,B, µ), which is the coarsest refinement of (X,B, µ)
that is complete. Furthermore, show that B consists precisely of those

sets that differ from a B-measurable set by a B-subnull set.

Exercise 1.4.27. Show that the Lebesgue measure space (Rd,L[Rd],m)

is the completion of the Borel measure space (Rd,B[Rd],m).

Exercise 1.4.28 (Approximation by an algebra). LetA be a Boolean

algebra on X, and let µ be a measure on 〈A〉.
(i) If µ(X) < ∞, show that for every E ∈ 〈A〉 and ε > 0 there

exists F ∈ A such that µ(E∆F ) < ε.
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(ii) More generally, if X =
⋃∞

n=1 An for some A1, A2, . . . ∈ A
with µ(An) < ∞ for all n, E ∈ 〈A〉 has finite measure, and

ε > 0, show that there exists F ∈ A such that µ(E∆F ) < ε.

1.4.4. Measurable functions, and integration on a measure

space. Now we are ready to define integration on measure spaces.

We first need the notion of a measurable function, which is analogous

to that of a continuous function in topology. Recall that a function

f : X → Y between two topological spaces X,Y is continuous if the

inverse image f−1(U) of any open set is open. In a similar spirit, we

have

Definition 1.4.32. Let (X,B) be a measurable space, and let f : X →
[0,+∞] or f : X → C be an unsigned or complex-valued function. We

say that f is measurable if f−1(U) is B-measurable for every open

subset U of [0,+∞] or C.

From Lemma 1.3.9, we see that this generalises the notion of a

Lebesgue measurable function.

Exercise 1.4.29. Let (X,B) be a measurable space.

(i) Show that a function f : X → [0,+∞] is measurable if and

only if the level sets {x ∈ X : f(x) > λ} are B-measurable.

(ii) Show that an indicator function 1E of a set E ⊂ X is mea-

surable if and only if E itself is B-measurable.

(iii) Show that a function f : X → [0,+∞] or f : X → C is

measurable if and only if f−1(E) is B-measurable for every

Borel-measurable subset E of [0,+∞] or C.

(iv) Show that a function f : X → C is measurable if and only

if its real and imaginary parts are measurable.

(v) Show that a function f : X → R is measurable if and only

if the magnitudes f+ := max(f, 0), f− := max(−f, 0) of its

positive and negative parts are measurable.

(vi) If fn : X → [0,+∞] are a sequence of measurable functions

that converge pointwise to a limit f : X → [0,+∞], then

show that f is also measurable. Obtain the same claim if

[0,+∞] is replaced by C.
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(vii) If f : X → [0,+∞] is measurable and φ : [0,+∞] → [0,+∞]

is continuous, show that φ ◦ f is measurable. Obtain the

same claim if [0,+∞] is replaced by C.

(viii) Show that the sum or product of two measurable functions

in [0,+∞] or C is still measurable.

Remark 1.4.33. One can also view measurable functions in a more

category theoretic fashion. Define measurable morphism or measur-

able map f from one measurable space (X,B) to another (Y, C) to be

a function f : X → Y with the property that f−1(E) is B-measurable

for every C-measurable set E. Then a measurable function f : X →
[0,+∞] or f : X → C is the same thing as a measurable morphism

from X to [0,+∞] or C, where the latter is equipped with the Borel

σ-algebra. Also, one σ-algebra B on a space X is coarser than an-

other B′ precisely when the identity map idX : X → X is a measur-

able morphism from (X,B′) to (X,B). The main purpose of adopting

this viewpoint is that it is obvious that the composition of measur-

able morphisms is again a measurable morphism. This is impor-

tant in those fields of mathematics, such as ergodic theory (discussed

in [Ta2009]), in which one frequently wishes to compose measur-

able transformations (and in particular, to compose a transformation

T : (X,B) → (X,B) with itself repeatedly); but it will not play a

major role in this text.

Measurable functions are particularly easy to describe on atomic

spaces:

Exercise 1.4.30. Let (X,B) be a measurable space that is atomic,

thus B = A((Aα)α∈I) for some partition X =
⋃

α∈I Aα of X into

disjoint non-empty atoms. Show that a function f : X → [0,+∞] or

f : X → C is measurable if and only if it is constant on each atom,

or equivalently if one has a representation of the form

f =
∑

α∈I
cα1Aα

for some constants cα in [0,+∞] or inC as appropriate. Furthermore,

the cα are uniquely determined by f .

Exercise 1.4.31 (Egorov’s theorem). Let (X,B, µ) be a finite mea-

sure space (so µ(X) < ∞), and let fn : X → C be a sequence of
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measurable functions that converge pointwise almost everywhere to a

limit f : X → C, and let ε > 0. Show that there exists a measurable

set E of measure at most ε such that fn converges uniformly to f

outside of E. Give an example to show that the claim can fail when

the measure µ is not finite.

In Section 1.3 we defined first an simple integral, then an un-

signed integral, and then finally an absolutely convergent integral.

We perform the same three stages here. We begin with the simple

integral, which in the abstract setting becomes integration in the case

when the σ-algebra is finite:

Definition 1.4.34 (Simple integral). Let (X,B, µ) be a measure

space with B finite. By Exercise 1.4.4, X is partitioned into a fi-

nite number of atoms A1, . . . , An. If f : X → [0,+∞] is measurable,

then by Exercise 1.4.30 it has a unique representation of the form

f =
n
∑

i=1

ci1Ai

for some c1, . . . , cn ∈ [0,+∞]. We then define the simple integral

Simp
∫

X
f dµ of f by the formula

Simp

∫

X

f dµ :=
n
∑

i=1

ciµ(Ai).

Note that, thanks to Exercise 1.4.3, the precise decomposition into

atoms does not affect the definition of the simple integral.

Exercise 1.4.32. Propose a definition for the simple integral for ab-

solutely convergent complex-valued functions on a measurable space

with a finite σ-algebra.

With this definition, it is clear that one has the monotonicity

property

Simp

∫

X

f dµ ≤ Simp

∫

X

g dµ

whenever f ≤ g are unsigned measurable, as well as the linearity

properties

Simp

∫

X

f + g dµ = Simp

∫

X

f dµ+ Simp

∫

X

g dµ
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and

Simp

∫

X

cf dµ = c× Simp

∫

X

f dµ

for unsigned measurable f, g and c ∈ [0,+∞]. We also make the

following important technical observation:

Exercise 1.4.33 (Simple integral unaffected by refinements). Let

(X,B, µ) be a measure space, and let (X,B′, µ′) be a refinement of

(X,B, µ), which means that B′ contains B and µ′ : B′ → [0,+∞]

agrees with µ : B → [0,+∞] on B. Suppose that both B,B′ are finite,
and let f : B → [0,+∞] be measurable. Show that

Simp

∫

X

f dµ = Simp

∫

X

f dµ′.

This allows one to extend the simple integral to simple functions:

Definition 1.4.35 (Integral of simple functions). An (unsigned) sim-

ple function f : X → [0,+∞] on a measurable space (X,B) is a mea-

surable function that takes on finitely many values a1, . . . , ak. Note

that such a function is then automatically measurable with respect

to at least one finite sub-σ-algebra B′ of B, namely the σ-algebra B′
generated by the preimages f−1({a1}), . . . , f−1({ak}) of a1, . . . , ak.

We then define the simple integral Simp
∫

X
f dµ by the formula

Simp

∫

X

f dµ := Simp

∫

X

f dµ ⇂B′ ,

where µ ⇂B′ : B′ → [0,+∞] is the restriction of µ : B → [0,+∞] to B′.

Note that there could be multiple finite σ-algebras with respect

to which f is measurable, but Exercise 1.4.33 guarantees that all such

extensions will give the same simple integral. Indeed, if f were mea-

surable with respect to two separate finite sub-σ-algebras B′ and B′′
of B, then it would also be measurable with respect to their common

refinement B′∨B′′ := 〈B′∪B′′〉, which is also finite (by Exercise 1.4.8),

and then by Exercise 1.4.33,
∫

X
f dµ ⇂B′ and

∫

X
f dµ ⇂B′′ are both

equal to
∫

X
f dµ ⇂B′∨B′′ , and hence equal to each other.

From this we can deduce the following properties of the simple

integral. As with the Lebesgue theory, we say that a property P (x)

of an element x ∈ X of a measure space (X,B, µ) holds µ-almost

everywhere if it holds outside of a sub-null set.
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Exercise 1.4.34 (Basic properties of the simple integral). Let (X,B, µ)
be a measure space, and let f, g : X → [0,+∞] be simple functions.

(i) (Monotonicity) If f ≤ g pointwise, then Simp
∫

X
f dµ ≤

Simp
∫

X
g dµ.

(ii) (Compatibility with measure) For every B-measurable set

E, we have Simp
∫

X
1E dµ = µ(E).

(iii) (Homogeneity) For every c ∈ [0,+∞], one has Simp
∫

X
cf dµ =

c× Simp
∫

X
f dµ.

(iv) (Finite additivity) Simp
∫

X
(f + g) dµ = Simp

∫

X
f dµ +

Simp
∫

X
g dµ.

(v) (Insensitivity to refinement) If (X,B′, µ′) is a refinement of

(X,B, µ) (as defined in Exercise 1.4.33), then Simp
∫

X
f dµ =

Simp
∫

X
f dµ′.

(vi) (Almost everywhere equivalence) If f(x) = g(x) for µ-almost

every x ∈ X, then Simp
∫

X
f dµ = Simp

∫

X
g dµ.

(vii) (Finiteness) Simp
∫

X
f dµ < ∞ if and only if f is finite

almost everywhere, and is supported on a set of finite mea-

sure.

(viii) (Vanishing) Simp
∫

X
f dµ = 0 if and only if f is zero almost

everywhere.

Exercise 1.4.35 (Inclusion-exclusion principle). Let (X,B, µ) be a

measure space, and let A1, . . . , An be B-measurable sets of finite mea-

sure. Show that

µ

(

n
⋃

i=1

Ai

)

=
∑

J⊂{1,...,n}:J 6=∅
(−1)|J|−1µ

(

⋂

i∈J
Ai

)

.

(Hint: Compute Simp
∫

X
(1−∏n

i=1(1−1Ai
)) dµ in two different ways.)

Remark 1.4.36. The simple integral could also be defined on finitely

additive measure spaces, rather than countably additive ones, and all

the above properties would still apply. However, on a finitely additive

measure space one would have difficulty extending the integral beyond

simple functions, as we will now do.
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From the simple integral, we can now define the unsigned integral,

in analogy to how the unsigned Lebesgue integral was constructed in

Section 1.3.3.

Definition 1.4.37. Let (X,B, µ) be a measure space, and let f : X →
[0,+∞] be measurable. Then we define the unsigned integral

∫

X
f dµ

of f by the formula

(1.14)

∫

X

f dµ := sup
0≤g≤f ;g simple

Simp

∫

X

g dµ.

Clearly, this definition generalises Definition 1.3.13. Indeed, if

f : Rd → [0,+∞] is Lebesgue measurable, then
∫

Rd f(x) dx =
∫

Rd f dm.

We record some easy properties of this integral:

Exercise 1.4.36 (Easy properties of the unsigned integral). Let

(X,B, µ) be a measure space, and let f, g : X → [0,+∞] be mea-

surable.

(i) (Almost everywhere equivalence) If f = g µ-almost every-

where, then
∫

X
f dµ =

∫

X
g dµ

(ii) (Monotonicity) If f ≤ g µ-almost everywhere, then
∫

X
f dµ ≤

∫

X
g dµ.

(iii) (Homogeneity) We have
∫

X
cf dµ = c

∫

X
f dµ for every

c ∈ [0,+∞].

(iv) (Superadditivity) We have
∫

X
(f+g) dµ ≥

∫

X
f dµ+

∫

X
g dµ.

(v) (Compatibility with the simple integral) If f is simple, then
∫

X
f dµ = Simp

∫

X
f dµ.

(vi) (Markov’s inequality) For any 0 < λ < ∞, one has

µ({x ∈ X : f(x) ≥ λ}) ≤ 1

λ

∫

X

f dµ.

In particular, if
∫

X
f dµ < ∞, then the sets {x ∈ X : f(x) ≥

λ} have finite measure for each λ > 0.

(vii) (Finiteness) If
∫

X
f dµ < ∞, then f(x) is finite for µ-almost

every x.

(viii) (Vanishing) If
∫

X
f dµ = 0, then f(x) is zero for µ-almost

every x.
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(ix) (Vertical truncation) We have limn→∞
∫

X
min(f, n) dµ =

∫

X
f dµ.

(x) (Horizontal truncation) If E1 ⊂ E2 ⊂ . . . is an increasing

sequence of B-measurable sets, then

lim
n→∞

∫

X

f1En dµ =

∫

X

f1⋃∞
n=1 En

dµ.

(xi) (Restriction) If Y is a measurable subset ofX, then
∫

X
f1Y dµ =

∫

Y
f ⇂Y dµ ⇂Y , where f ⇂Y : Y → [0,+∞] is the restric-

tion of f : X → [0,+∞] to Y , and the restriction µ ⇂Y

was defined in Example 1.4.25. We will often abbreviate
∫

Y
f ⇂Y dµ ⇂Y (by slight abuse of notation) as

∫

Y
f dµ.

As before, one of the key properties of this integral is its additiv-

ity:

Theorem 1.4.38. Let (X,B, µ) be a measure space, and let f, g : X →
[0,+∞] be measurable. Then

∫

X

(f + g) dµ =

∫

X

f dµ+

∫

X

g dµ.

Proof. In view of superadditivity, it suffices to establish the subad-

ditivity property
∫

X

(f + g) dµ ≤
∫

X

f dµ+

∫

X

g dµ

We establish this in stages. We first deal with the case when µ is a

finite measure (which means that µ(X) < ∞) and f, g are bounded.

Pick an ε > 0, and let fε be f rounded down to the nearest integer

multiple of ε, and fε be f rounded up to the nearest integer multiple.

Clearly, we have the pointwise bounds

fε(x) ≤ f(x) ≤ fε(x)

and

fε(x)− fε(x) ≤ ε.

Since f is bounded, fε and fε are simple. Similarly define gε, g
ε. We

then have the pointwise bound

f + g ≤ fε + gε ≤ fε + gε + 2ε,
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hence by Exercise 1.4.36 and the properties of the simple integral,
∫

X

f + g dµ ≤
∫

X

fε + gε + 2ε dµ

= Simp

∫

X

fε + gε + 2ε dµ

= Simp

∫

X

fε dµ+ Simp

∫

X

gε dµ+ 2εµ(X).

From (1.14) we conclude that

∫

X

f + g dµ ≤
∫

X

f dµ+

∫

X

g dµ+ 2εµ(X).

Letting ε → 0 and using the assumption that µ(X) is finite, we obtain

the claim.

Now we continue to assume that µ is a finite measure, but now

do not assume that f, g are bounded. Then for any natural number

n, we can use the previous case to deduce that
∫

X

min(f, n) + min(g, n) dµ ≤
∫

X

min(f, n) dµ+

∫

X

min(g, n) dµ.

Since min(f + g, n) ≤ min(f, n) + min(g, n), we conclude that

∫

X

min(f + g, n) ≤
∫

X

min(f, n) dµ+

∫

X

min(g, n) dµ.

Taking limits as n → ∞ using vertical truncation, we obtain the

claim.

Finally, we no longer assume that µ is of finite measure, and also

do not require f, g to be bounded. If either
∫

X
f dµ or

∫

X
g dµ is

infinite, then by monotonicity,
∫

X
f + g dµ is infinite as well, and the

claim follows; so we may assume that
∫

X
f dµ and

∫

X
g dµ are both

finite. By Markov’s inequality (Exercise 1.4.36(vi)), we conclude that

for each natural number n, the set En := {x ∈ X : f(x) > 1
n} ∪ {x ∈

X : g(x) > 1
n} has finite measure. These sets are increasing in n, and

f, g, f+g are supported on
⋃∞

n=1 En, and so by horizontal truncation

∫

X

(f + g) dµ = lim
n→∞

∫

X

(f + g)1En
dµ.
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From the previous case, we have
∫

X

(f + g)1En
dµ ≤

∫

X

f1En
dµ+

∫

X

g1En
dµ.

Letting n → ∞ and using horizontal truncation we obtain the claim.

�

Exercise 1.4.37 (Linearity in µ). Let (X,B, µ) be a measure space,

and let f : X → [0,+∞] be measurable.

(i) Show that
∫

X
f d(cµ) = c×

∫

X
f dµ for every c ∈ [0,+∞].

(ii) If µ1, µ2, . . . are a sequence of measures on B, show that

∫

X

f d
∞
∑

n=1

µn =
∞
∑

n=1

∫

X

f dµn.

Exercise 1.4.38 (Change of variables formula). Let (X,B, µ) be a

measure space, and let φ : X → Y be a measurable morphism (as

defined in Remark 1.4.33) from (X,B) to another measurable space

(Y, C). Define the pushforward φ∗µ : C → [0,+∞] of µ by φ by the

formula φ∗µ(E) := µ(φ−1(E)).

(i) Show that φ∗µ is a measure on C, so that (Y, C, φ∗µ) is a

measure space.

(ii) If f : Y → [0,+∞] is measurable, show that
∫

Y
f dφ∗µ =

∫

X
(f ◦ φ) dµ.

(Hint: the quickest proof here is via the monotone convergence the-

orem (Theorem 1.4.44) below, but it is also possible to prove the

exercise without this theorem.)

Exercise 1.4.39. Let T : Rd → Rd be an invertible linear transfor-

mation, and let m be Lebesgue measure on Rd. Show that T∗m =
1

| detT |m, where the pushforward T∗m of m was defined in Exercise

1.4.38.

Exercise 1.4.40 (Sums as integrals). Let X be an arbitrary set

(with the discrete σ-algebra), let # be counting measure (see Exercise

1.4.26), and let f : X → [0,+∞] be an arbitrary unsigned function.
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Show that f is measurable with
∫

X

f d# =
∑

x∈X
f(x).

Once one has the unsigned integral, one can define the absolutely

convergent integral exactly as in the Lebesgue case:

Definition 1.4.39 (Absolutely convergent integral). Let (X,B, µ)
be a measure space. A measurable function f : X → C is said to be

absolutely integrable if the unsigned integral

‖f‖L1(X,B,µ) :=

∫

X

|f | dµ

is finite, and use L1(X,B, µ), L1(X), or L1(µ) to denote the space

of absolutely integrable functions. If f is real-valued and absolutely

integrable, we define the integral
∫

X
f dµ by the formula

∫

X

f dµ :=

∫

X

f+ dµ−
∫

X

f− dµ

where f+ := max(f, 0), f− := max(−f, 0) are the magnitudes of the

positive and negative components of f . If f is complex-valued and

absolutely integrable, we define the integral
∫

X
f dµ by the formula

∫

X

f dµ :=

∫

X

Re f dµ+ i

∫

X

Im f dµ

where the two integrals on the right are interpreted as real-valued in-

tegrals. It is easy to see that the unsigned, real-valued, and complex-

valued integrals defined in this manner are compatible on their com-

mon domains of definition.

Clearly, this definition generalises the Definition 1.3.17.

We record some of the key facts about the absolutely convergent

integral:

Exercise 1.4.41. Let (X,B, µ) be a measure space.

(i) Show that L1(X,B, µ) is a complex vector space.

(ii) Show that the integration map f 7→
∫

X
f dµ is a complex-

linear map from L1(X,B, µ) to C.
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(iii) Establish the triangle inequality ‖f + g‖L1(µ) ≤ ‖f‖L1(µ) +

‖g‖L1(µ) and the homogeneity property ‖cf‖L1(µ) = |c|‖f‖L1(µ)

for all f, g ∈ L1(X,B, µ) and c ∈ C.

(iv) Show that if f, g ∈ L1(X,B, µ) are such that f(x) = g(x)

for µ-almost every x ∈ X, then
∫

X
f dµ =

∫

X
g dµ.

(v) If f ∈ L1(X,B, µ), and (X,B′, µ′) is a refinement of (X,B, µ),
then f ∈ L1(X,B′, µ′), and

∫

X
f dµ′ =

∫

X
f dµ. (Hint: it

is easy to get one inequality. To get the other inequality,

first work in the case when f is both bounded and has fi-

nite measure support (i.e. is both vertically and horizontally

truncated).)

(vi) Show that if f ∈ L1(X,B, µ), then ‖f‖L1(µ) = 0 if and only

if f is zero µ-almost everywhere.

(vii) If Y ⊂ X is B-measurable and f ∈ L1(X,B, µ), then f ⇂Y ∈
L1(Y,B ⇂Y , µ ⇂Y ) and

∫

Y
f ⇂Y dµ ⇂Y =

∫

X
f1Y dµ. As

before, by abuse of notation we write
∫

Y
f dµ for

∫

Y
f ⇂Y

dµ ⇂Y .

1.4.5. The convergence theorems. Let (X,B, µ) be a measure

space, and let f1, f2, . . . : X → [0,+∞] be a sequence of measurable

functions. Suppose that as n → ∞, fn(x) converges pointwise either

everywhere, or µ-almost everywhere, to a measurable limit f . A basic

question in the subject is to determine the conditions under which

such pointwise convergence would imply convergence of the integral:
∫

X

fn dµ
?→
∫

X

f dµ.

To put it another way: when can we ensure that one can interchange

integrals and limits,

lim
n→∞

∫

X

fn dµ
?
=

∫

X

lim
n→∞

fn dµ?

There are certainly some cases in which one can safely do this:

Exercise 1.4.42 (Uniform convergence on a finite measure space).

Suppose that (X,B, µ) is a finite measure space (so µ(X) < ∞),

and fn : X → [0,+∞] (resp. fn : X → C) are a sequence of un-

signed measurable functions (resp. absolutely integrable functions)
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that converge uniformly to a limit f . Show that
∫

X
fn dµ converges

to
∫

X
f dµ.

However, there are also cases in which one cannot interchange

limits and integrals, even when the fn are unsigned. We give the

three classic examples, all of “moving bump” type, though the way

in which the bump moves varies from example to example:

Example 1.4.40 (Escape to horizontal infinity). Let X be the real

line with Lebesgue measure, and let fn := 1[n,n+1]. Then fn con-

verges pointwise to f := 0, but
∫

R
fn(x) dx = 1 does not converge

to
∫

R
f(x) dx = 0. Somehow, all the mass in the fn has escaped by

moving off to infinity in a horizontal direction, leaving none behind

for the pointwise limit f .

Example 1.4.41 (Escape to width infinity). Let X be the real line

with Lebesgue measure, and let fn := 1
n1[0,n]. Then fn now converges

uniformly f := 0, but
∫

R
fn(x) dx = 1 still does not converge to

∫

R
f(x) dx = 0. Exercise 1.4.42 would prevent this from happening

if all the fn were supported in a single set of finite measure, but the

increasingly wide nature of the support of the fn prevents this from

happening.

Example 1.4.42 (Escape to vertical infinity). Let X be the unit

interval [0, 1] with Lebesgue measure (restricted from R), and let

fn := n1[ 1n , 2
n ]. Now, we have finite measure, and fn converges point-

wise to f , but no uniform convergence. And again,
∫

[0,1]
fn(x) dx = 1

is not converging to
∫

[0,1]
f(x) dx = 0. This time, the mass has es-

caped vertically, through the increasingly large values of fn.

Remark 1.4.43. From the perspective of time-frequency analysis

(or perhaps more accurately, space-frequency analysis), these three

escapes are analogous (though not quite identical) to escape to spatial

infinity, escape to zero frequency, and escape to infinite frequency

respectively, thus describing the three different ways in which phase

space fails to be compact (if one excises the zero frequency as being

singular).
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However, once one shuts down these avenues of escape to infinity,

it turns out that one can recover convergence of the integral. There

are two major ways to accomplish this. One is to enforce monotonic-

ity, which prevents each fn from abandoning the location where the

mass of the preceding f1, . . . , fn−1 was concentrated and which thus

shuts down the above three escape scenarios. More precisely, we have

the monotone convergence theorem:

Theorem 1.4.44 (Monotone convergence theorem). Let (X,B, µ) be
a measure space, and let 0 ≤ f1 ≤ f2 ≤ . . . be a monotone non-

decreasing sequence of unsigned measurable functions on X. Then we

have

lim
n→∞

∫

X

fn dµ =

∫

X

lim
n→∞

fn dµ.

Note that in the special case when each fn is an indicator function

fn = 1En
, this theorem collapses to the upwards monotone conver-

gence property (Exercise 1.4.23(ii)). Conversely, the upwards mono-

tone convergence property will play a key role in the proof of this

theorem.

Proof. Write f := limn→∞ fn = supn fn, then f : X → [0,+∞]

is measurable. Since the fn are non-decreasing to f , we see from

monotonicity that
∫

X
fn dµ are non-decreasing and bounded above

by
∫

X
f dµ, which gives the bound

lim
n→∞

∫

X

fn dµ ≤
∫

X

f dµ.

It remains to establish the reverse inequality
∫

X

f dµ ≤ lim
n→∞

∫

X

fn dµ.

By definition, it suffices to show that
∫

X

g dµ ≤ lim
n→∞

∫

X

fn dµ.

whenever g is a simple function that is bounded pointwise by f . By

vertical truncation we may assume without loss of generality that g
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also is finite everywhere, then we can write

g =
k
∑

i=1

ci1Ai

for some 0 ≤ ci < ∞ and some disjoint B-measurable sets A1, . . . , Ak,

thus
∫

X

g dµ =
k
∑

i=1

ciµ(Ai).

Let 0 < ε < 1 be arbitrary. Then we have

f(x) = sup
n

fn(x) > (1− ε)ci

for all x ∈ Ai. Thus, if we define the sets

Ai,n := {x ∈ Ai : fn(x) > (1− ε)ci}

then the Ai,n increase to Ai and are measurable. By upwards mono-

tonicity of measure, we conclude that

lim
n→∞

µ(Ai,n) = µ(Ai).

On the other hand, observe the pointwise bound

fn ≥
k
∑

i=1

(1− ε)ci1Ai,n

for any n; integrating this, we obtain

∫

X

fn dµ ≥ (1− ε)
k
∑

i=1

ciµ(Ai,n).

Taking limits as n → ∞, we obtain

lim
n→∞

∫

X

fn dµ ≥ (1− ε)
k
∑

i=1

ciµ(Ai);

sending ε → 0 we then obtain the claim. �

Remark 1.4.45. It is easy to see that the result still holds if the

monotonicity fn ≤ fn+1 only holds almost everywhere rather than

everywhere.
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This has a number of important corollaries. Firstly, we can gen-

eralise (part of) Tonelli’s theorem for exchanging sums (see Theorem

0.0.2):

Corollary 1.4.46 (Tonelli’s theorem for sums and integrals). Let

(X,B, µ) be a measure space, and let f1, f2, . . . : X → [0,+∞] be a

sequence of unsigned measurable functions. Then one has

∫

X

∞
∑

n=1

fn dµ =
∞
∑

n=1

∫

X

fn dµ.

Proof. Apply the monotone convergence theorem (Theorem 1.4.44)

to the partial sums FN :=
∑N

n=1 fn. �

Exercise 1.4.43. Give an example to show that this corollary can fail

if the fn are assumed to be absolutely integrable rather than unsigned

measurable, even if the sum
∑∞

n=1 fn(x) is absolutely convergent for

each x. (Hint: think about the three escapes to infinity.)

Exercise 1.4.44 (Borel-Cantelli lemma). Let (X,B, µ) be a measure

space, and let E1, E2, E3, . . . be a sequence of B-measurable sets such

that
∑∞

n=1 µ(En) < ∞. Show that almost every x ∈ X is contained

in at most finitely many of the En (i.e. {n ∈ N : x ∈ En} is finite for

almost every x ∈ X). (Hint: Apply Tonelli’s theorem to the indicator

functions 1En
.)

Exercise 1.4.45.

(i) Give an alternate proof of the Borel-Cantelli lemma (Exer-

cise 1.4.44) that does not go through any of the convergence

theorems, but instead exploits the more basic properties of

measure from Exercise 1.4.23.

(ii) Give a counterexample that shows that the Borel-Cantelli

lemma can fail if the condition
∑∞

n=1 µ(En) < ∞ is relaxed

to limn→∞ µ(En) = 0.

Secondly, when one does not have monotonicity, one can at least

obtain an important inequality, known as Fatou’s lemma:
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Corollary 1.4.47 (Fatou’s lemma). Let (X,B, µ) be a measure space,

and let f1, f2, . . . : X → [0,+∞] be a sequence of unsigned measurable

functions. Then
∫

X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫

X

fn dµ.

Proof. Write FN := infn≥N fn for each N . Then the FN are mea-

surable and non-decreasing, and hence by the monotone convergence

theorem (Theorem 1.4.44)
∫

X

sup
N>0

FN dµ = sup
N>0

∫

X

FN dµ.

By definition of lim inf, we have supN>0 FN = lim infn→∞ fn. By

monotonicity, we have
∫

X
FN dµ ≤

∫

X
fn dµ for all n ≥ N , and thus

∫

X

FN dµ ≤ inf
n≥N

∫

X

fn dµ.

Hence we have
∫

X

lim inf
n→∞

fn dµ ≤ sup
N>0

inf
n≥N

∫

X

fn dµ.

The claim then follows by another appeal to the definition of the lim

inferior. �

Remark 1.4.48. Informally, Fatou’s lemma tells us that when tak-

ing the pointwise limit of unsigned functions fn, that mass
∫

X
fn dµ

can be destroyed in the limit (as was the case in the three key moving

bump examples), but it cannot be created in the limit. Of course the

unsigned hypothesis is necessary here (consider for instance multiply-

ing any of the moving bump examples by −1). While this lemma

was stated only for pointwise limits, the same general principle (that

mass can be destroyed, but not created, by the process of taking lim-

its) tends to hold for other “weak” notions of convergence. See §1.9
of An epsilon of room, Vol. I for some examples of this.

Finally, we give the other major way to shut down loss of mass via

escape to infinity, which is to dominate all of the functions involved by

an absolutely convergent one. This result is known as the dominated

convergence theorem:
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Theorem 1.4.49 (Dominated convergence theorem). Let (X,B, µ)
be a measure space, and let f1, f2, . . . : X → C be a sequence of mea-

surable functions that converge pointwise µ-almost everywhere to a

measurable limit f : X → C. Suppose that there is an unsigned abso-

lutely integrable function G : X → [0,+∞] such that |fn| are pointwise
µ-almost everywhere bounded by G for each n. Then we have

lim
n→∞

∫

X

fn dµ =

∫

X

f dµ.

From the moving bump examples we see that this statement fails

if there is no absolutely integrable dominating function G. The reader

is encouraged to see why, in each of the moving bump examples,

no such dominating function exists, without appealing to the above

theorem. Note also that when each of the fn is an indicator function

fn = 1En
, the dominated convergence theorem collapses to Exercise

1.4.24.

Proof. By modifying fn, f on a null set, we may assume without loss

of generality that the fn converge to f pointwise everywhere rather

than µ-almost everywhere, and similarly we can assume that |fn are

bounded byG pointwise everywhere rather than µ-almost everywhere.

By taking real and imaginary parts we may assume without loss

of generality that fn, f are real, thus −G ≤ fn ≤ G pointwise. Of

course, this implies that −G ≤ f ≤ G pointwise also.

If we apply Fatou’s lemma (Corollary1.4.47) to the unsigned func-

tions fn +G, we see that
∫

X

f +G dµ ≤ lim inf
n→∞

∫

X

fn +G dµ,

which on subtracting the finite quantity
∫

X
G dµ gives

∫

X

f dµ ≤ lim inf
n→∞

∫

X

fn dµ.

Similarly, if we apply that lemma to the unsigned functions G − fn,

we obtain
∫

X

G− f dµ ≤ lim inf
n→∞

∫

X

G− fn dµ;
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negating this inequality and then cancelling
∫

X
G dµ again we con-

clude that

lim sup
n→∞

∫

X

fn dµ ≤
∫

X

f dµ.

The claim then follows by combining these inequalities. �

Remark 1.4.50. We deduced the dominated convergence theorem

from Fatou’s lemma, and Fatou’s lemma from the monotone conver-

gence theorem. However, one can obtain these theorems in a different

order, depending on one’s taste, as they are so closely related. For

instance, in [StSk2005], the logic is somewhat different; one first

obtains the slightly simpler bounded convergence theorem, which is

the dominated convergence theorem under the assumption that the

functions are uniformly bounded and all supported on a single set of

finite measure, and then uses that to deduce Fatou’s lemma, which in

turn is used to deduce the monotone convergence theorem; and then

the horizontal and vertical truncation properties are used to extend

the bounded convergence theorem to the dominated convergence the-

orem. It is instructive to view a couple different derivations of these

key theorems to get more of an intuitive understanding as to how

they work.

Exercise 1.4.46. Under the hypotheses of the dominated conver-

gence theorem (Theorem 1.4.49), establish also that ‖fn − f‖L1 → 0

as n → ∞.

Exercise 1.4.47 (Almost dominated convergence). Let (X,B, µ) be
a measure space, and let f1, f2, . . . : X → C be a sequence of mea-

surable functions that converge pointwise µ-almost everywhere to a

measurable limit f : X → C. Suppose that there is an unsigned abso-

lutely integrable functions G, g1, g2, . . . : X → [0,+∞] such that the

|fn| are pointwise µ-almost everywhere bounded by G+ gn, and that
∫

X
gn dµ → 0 as n → ∞. Show that

lim
n→∞

∫

X

fn dµ =

∫

X

f dµ.

Exercise 1.4.48 (Defect version of Fatou’s lemma). Let (X,B, µ) be
a measure space, and let f1, f2, . . . : X → [0,+∞] be a sequence of
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unsigned absolutely integrable functions that converges pointwise to

an absolutely integrable limit f . Show that
∫

X

fn dµ−
∫

X

f dµ− ‖f − fn‖L1(µ) → 0

as n → ∞. (Hint: Apply the dominated convergence theorem (The-

orem 1.4.49) to min(fn, f).) Informally, this result (first established

in [BrLi1983]) tells us that the gap between the left and right hand

sides of Fatou’s lemma can be measured by the quantity ‖f−fn‖L1(µ).

Exercise 1.4.49. Let (X,B, µ) be a measure space, and let g : X →
[0,+∞] be measurable. Show that the function µg : B → [0,+∞]

defined by the formula

µg(E) :=

∫

X

1Eg dµ =

∫

E

g dµ

is a measure. (Such measures are studied in greater detail in §1.2 of

An epsilon of room, Vol. I.)

The monotone convergence theorem is, in some sense, a defining

property of the unsigned integral, as the following exercise illustrates.

Exercise 1.4.50 (Characterisation of the unsigned integral). Let

(X,B) be a measurable space. I : f 7→ I(f) be a map from the space

U(X,B) of unsigned measurable functions f : X → [0,+∞] to [0,+∞]

that obeys the following axioms:

(i) (Homogeneity) For every f ∈ U(X,B) and c ∈ [0,+∞], one

has I(cf) = cI(f).

(ii) (Finite additivity) For every f, g ∈ U(X,B), one has I(f +

g) = I(f) + I(g).

(iii) (Monotone convergence) If 0 ≤ f1 ≤ f2 ≤ . . . are a non-

decreasing sequence of unsigned measurable functions, then

I(limn→∞ fn) = limn→∞ I(fn).

Then there exists a unique measure µ on (X,B) such that I(f) =
∫

X
f dµ for all f ∈ U(X,B). Furthermore, µ is given by the formula

µ(E) := I(1E) for all B-measurable sets E.
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Exercise 1.4.51. Let (X,B, µ) be a finite measure space (i.e. µ(X) <

∞), and let f : X → R be a bounded function. Suppose that µ is

complete (see Definition 1.4.31). Suppose that the upper integral
∫

X

f dµ := inf
g≥f ;g simple

∫

X

g dµ

and lower integral
∫

X

f dµ := sup
h≤f ;h simple

∫

X

h dµ

agree. Show that f is measurable. (This is a converse to Exercise

1.3.11.)

We will continue to see the monotone convergence theorem, Fa-

tou’s lemma, and the dominated convergence theorem make an ap-

pearance throughout the rest of this text (and in An epsilon of room,

Vol. I ).

1.5. Modes of convergence

If one has a sequence x1, x2, x3, . . . ∈ R of real numbers xn, it is

unambiguous what it means for that sequence to converge to a limit

x ∈ R: it means that for every ε > 0, there exists an N such that

|xn − x| ≤ ε for all n > N . Similarly for a sequence z1, z2, z3, . . . ∈ C

of complex numbers zn converging to a limit z ∈ C.

More generally, if one has a sequence v1, v2, v3, . . . of d-dimensional

vectors vn in a real vector space Rd or complex vector space Cd, it

is also unambiguous what it means for that sequence to converge

to a limit v ∈ Rd or v ∈ Cd; it means that for every ε > 0,

there exists an N such that ‖vn − v‖ ≤ ε for all n ≥ N . Here,

the norm ‖v‖ of a vector v = (v(1), . . . , v(d)) can be chosen to be

the Euclidean norm ‖v‖2 := (
∑d

j=1(v
(j))2)1/2, the supremum norm

‖v‖∞ := sup1≤j≤d |v(j)|, or any other number of norms, but for the

purposes of convergence, these norms are all equivalent ; a sequence

of vectors converges in the Euclidean norm if and only if it converges

in the supremum norm, and similarly for any other two norms on the

finite-dimensional space Rd or Cd.
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If however one has a sequence f1, f2, f3, . . . of functions fn : X →
R or fn : X → C on a common domain X, and a putative limit

f : X → R or f : X → C, there can now be many different ways in

which the sequence fn may or may not converge to the limit f . (One

could also consider convergence of functions fn : Xn → C on different

domains Xn, but we will not discuss this issue at all here.) This is

contrast with the situation with scalars xn or zn (which corresponds

to the case when X is a single point) or vectors vn (which corresponds

to the case when X is a finite set such as {1, . . . , d}). Once X be-

comes infinite, the functions fn acquire an infinite number of degrees

of freedom, and this allows them to approach f in any number of

inequivalent ways.

What different types of convergence are there? As an undergrad-

uate, one learns of the following two basic modes of convergence:

(i) We say that fn converges to f pointwise if, for every x ∈ X,

fn(x) converges to f(x). In other words, for every ε > 0

and x ∈ X, there exists N (that depends on both ε and x)

such that |fn(x)− f(x)| ≤ ε whenever n ≥ N .

(ii) We say that fn converges to f uniformly if, for every ε > 0,

there exists N such that for every n ≥ N , |fn(x)−f(x)| ≤ ε

for every x ∈ X. The difference between uniform conver-

gence and pointwise convergence is that with the former,

the time N at which fn(x) must be permanently ε-close to

f(x) is not permitted to depend on x, but must instead be

chosen uniformly in x.

Uniform convergence implies pointwise convergence, but not con-

versely. A typical example: the functions fn : R → R defined by

fn(x) := x/n converge pointwise to the zero function f(x) := 0, but

not uniformly.

However, pointwise and uniform convergence are only two of

dozens of many other modes of convergence that are of importance

in analysis. We will not attempt to exhaustively enumerate these

modes here (but see §1.9 of An epsilon of room, Vol. I ). We will,

however, discuss some of the modes of convergence that arise from

measure theory, when the domain X is equipped with the structure
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of a measure space (X,B, µ), and the functions fn (and their limit f)

are measurable with respect to this space. In this context, we have

some additional modes of convergence:

(i) We say that fn converges to f pointwise almost everywhere

if, for (µ-)almost everywhere x ∈ X, fn(x) converges to

f(x).

(ii) We say that fn converges to f uniformly almost everywhere,

essentially uniformly, or in L∞ norm if, for every ε > 0,

there exists N such that for every n ≥ N , |fn(x)−f(x)| ≤ ε

for µ-almost every x ∈ X.

(iii) We say that fn converges to f almost uniformly if, for every

ε > 0, there exists an exceptional set E ∈ B of measure

µ(E) ≤ ε such that fn converges uniformly to f on the

complement of E.

(iv) We say that fn converges to f in L1 norm if the quantity

‖fn − f‖L1(µ) =
∫

X
|fn(x)− f(x)| dµ converges to 0 as n →

∞.

(v) We say that fn converges to f in measure if, for every ε > 0,

the measures µ({x ∈ X : |fn(x) − f(x)| ≥ ε}) converge to

zero as n → ∞.

Observe that each of these five modes of convergence is unaffected

if one modifies fn or f on a set of measure zero. In contrast, the

pointwise and uniform modes of convergence can be affected if one

modifies fn or f even on a single point. The L1 and L∞ modes of

converges are special cases of the Lp mode of convergence, which is

discussed in §1.3 of An epsilon of room, Vol. I.

Remark 1.5.1. In the context of probability theory (see Section 2.3),

in which fn and f are interpreted as random variables, convergence

in L1 norm is often referred to as convergence in mean, pointwise con-

vergence almost everywhere is often referred to as almost sure conver-

gence, and convergence in measure is often referred to as convergence

in probability.
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Exercise 1.5.1 (Linearity of convergence). Let (X,B, µ) be a mea-

sure space, let fn, gn : X → C be sequences of measurable functions,

and let f, g : X → C be measurable functions.

(i) Show that fn converges to f along one of the above seven

modes of convergence if and only if |fn − f | converges to 0

along the same mode.

(ii) If fn converges to f along one of the above seven modes of

convergence, and gn converges to g along the same mode,

show that fn + gn converges to f + g along the same mode,

and that cfn converges to cf along the same mode for any

c ∈ C.

(iii) (Squeeze test) If fn converges to 0 along one of the above

seven modes, and |gn| ≤ fn pointwise for each n, show that

gn converges to 0 along the same mode.

We have some easy implications between modes:

Exercise 1.5.2 (Easy implications). Let (X,B, µ) be a measure space,

and let fn : X → C and f : X → C be measurable functions.

(i) If fn converges to f uniformly, then fn converges to f point-

wise.

(ii) If fn converges to f uniformly, then fn converges to f in L∞

norm. Conversely, if fn converges to f in L∞ norm, then

fn converges to f uniformly outside of a null set (i.e. there

exists a null set E such that the restriction fn ⇂X\E of fn
to the complement of E converges to the restriction f ⇂X\E
of f).

(iii) If fn converges to f in L∞ norm, then fn converges to f

almost uniformly.

(iv) If fn converges to f almost uniformly, then fn converges to

f pointwise almost everywhere.

(v) If fn converges to f pointwise, then fn converges to f point-

wise almost everywhere.

(vi) If fn converges to f in L1 norm, then fn converges to f in

measure.
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(vii) If fn converges to f almost uniformly, then fn converges to

f in measure.

The reader is encouraged to draw a diagram that summarises the

logical implications between the seven modes of convergence that the

above exercise describes.

We give four key examples that distinguish between these modes,

in the case when X is the real line R with Lebesgue measure. The

first three of these examples already were introduced in Section 1.4,

but the fourth is new, and also important.

Example 1.5.2 (Escape to horizontal infinity). Let fn := 1[n,n+1].

Then fn converges to zero pointwise (and thus, pointwise almost ev-

erywhere), but not uniformly, in L∞ norm, almost uniformly, in L1

norm, or in measure.

Example 1.5.3 (Escape to width infinity). Let fn := 1
n1[0,n]. Then

fn converges to zero uniformly (and thus, pointwise, pointwise almost

everywhere, in L∞ norm, almost uniformly, and in measure), but not

in L1 norm.

Example 1.5.4 (Escape to vertical infinity). Let fn := n1[ 1n , 2
n ].

Then fn converges to zero pointwise (and thus, pointwise almost ev-

erywhere) and almost uniformly (and hence in measure), but not

uniformly, in L∞ norm, or in L1 norm.

Example 1.5.5 (Typewriter sequence). Let fn be defined by the

formula

fn := 1
[n−2k

2k
,n−2k+1

2k
]

whenever k ≥ 0 and 2k ≤ n < 2k+1. This is a sequence of indicator

functions of intervals of decreasing length, marching across the unit

interval [0, 1] over and over again. Then fn converges to zero in

measure and in L1 norm, but not pointwise almost everywhere (and

hence also not pointwise, not almost uniformly, nor in L∞ norm, nor

uniformly).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.5. Modes of convergence 119

Remark 1.5.6. The L∞ norm ‖f‖L∞(µ) of a measurable function

f : X → C is defined to the infimum of all the quantities M ∈ [0,+∞]

that are essential upper bounds for f in the sense that |f(x)| ≤ M

for almost every x. Then fn converges to f in L∞ norm if and only

if ‖fn − f‖L∞(µ) → 0 as n → ∞. The L∞ and L1 norms are part of

the larger family of Lp norms, studied in §1.3 of An epsilon of room,

Vol. I.

One particular advantage of L1 convergence is that, in the case

when the fn are absolutely integrable, it implies convergence of the

integrals,
∫

X

fn dµ →
∫

X

f dµ,

as one sees from the triangle inequality. Unfortunately, none of the

other modes of convergence automatically imply this convergence of

the integral, as the above examples show.

The purpose of these notes is to compare these modes of conver-

gence with each other. Unfortunately, the relationship between these

modes is not particularly simple; unlike the situation with pointwise

and uniform convergence, one cannot simply rank these modes in a

linear order from strongest to weakest. This is ultimately because

the different modes react in different ways to the three “escape to

infinity” scenarios described above, as well as to the “typewriter” be-

haviour when a single set is “overwritten” many times. On the other

hand, if one imposes some additional assumptions to shut down one

or more of these escape to infinity scenarios, such as a finite measure

hypothesis µ(X) < ∞ or a uniform integrability hypothesis, then one

can obtain some additional implications between the different modes.

1.5.1. Uniqueness. Throughout these notes, (X,B, µ) denotes a

measure space. We abbreviate “µ-almost everywhere” as “almost

everywhere” throughout.

Even though the modes of convergence all differ from each other,

they are all compatible in the sense that they never disagree about

which function f a sequence of functions fn converges to, outside of

a set of measure zero. More precisely:
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Proposition 1.5.7. Let fn : X → C be a sequence of measurable

functions, and let f, g : X → C be two additional measurable func-

tions. Suppose that fn converges to f along one of the seven modes

of convergence defined above, and fn converges to g along another of

the seven modes of convergence (or perhaps the same mode of con-

vergence as for f). Then f and g agree almost everywhere.

Note that the conclusion is the best one can hope for in the case

of the last five modes of convergence, since as remarked earlier, these

modes of convergence are unaffected if one modifies f or g on a set of

measure zero.

Proof. In view of Exercise 1.5.2, we may assume that fn converges

to f either pointwise almost everywhere, or in measure, and simi-

larly that fn converges to g either pointwise almost everywhere, or in

measure.

Suppose first that fn converges to both f and g pointwise almost

everywhere. Then by Exercise 1.5.1, 0 converges to f − g pointwise

almost everywhere, which clearly implies that f − g is zero almost

everywhere, and the claim follows. A similar argument applies if fn
converges to both f and g in measure.

By symmetry, the only remaining case that needs to be consid-

ered is when fn converges to f pointwise almost everywhere, and fn
converges to g in measure. We need to show that f = g almost every-

where. It suffices to show that for every ε > 0, that |f(x)− g(x)| ≤ ε

for almost every x, as the claim then follows by setting ε = 1/m for

m = 1, 2, 3, . . . and using the fact that the countable union of null

sets is again a null set.

Fix ε > 0, and let A := {x ∈ X : |f(x) − g(x)| > ε}. This is a

measurable set; our task is to show that it has measure zero. Suppose

for contradiction that µ(A) > 0. We consider the sets

AN := {x ∈ A : |fn(x)− f(x)| ≤ ε/2 for all n ≥ N}.

These are measurable sets that are increasing in N . As fn converges

to f almost everywhere, we see that almost every x ∈ A belongs to

at least one of the AN , thus
⋃∞

N=1 AN is equal to A outside of a null

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.5. Modes of convergence 121

set. In particular,

µ(
∞
⋃

N=1

AN ) > 0.

Applying monotone convergence for sets, we conclude that

µ(AN ) > 0

for some finite N . But by the triangle inequality, we have |fn(x) −
g(x)| > ε/2 for all x ∈ AN and all n ≥ N . As a consequence, fn
cannot converge in measure to g, which gives the desired contradic-

tion. �

1.5.2. The case of a step function. One way to appreciate the

distinctions between the above modes of convergence is to focus on

the case when f = 0, and when each of the fn is a step function,

by which we mean a constant multiple fn = An1En of a measurable

set En. For simplicity we will assume that the An > 0 are positive

reals, and that the En have a positive measure µ(En) > 0. We also

assume the An exhibit one of two modes of behaviour: either the An

converge to zero, or else they are bounded away from zero (i.e. there

exists c > 0 such that An ≥ c for every n. It is easy to see that if

a sequence An does not converge to zero, then it has a subsequence

that is bounded away from zero, so it does not cause too much loss

of generality to restrict to one of these two cases.

Given such a sequence fn = An1En
of step functions, we now

ask, for each of the seven modes of convergence, what it means for

this sequence to converge to zero along that mode. It turns out that

the answer to question is controlled more or less completely by the

following three quantities:

(i) The height An of the nth function fn;

(ii) The width µ(En) of the nth function fn; and

(iii) The N th tail support E∗N :=
⋃

n≥N En of the sequence

f1, f2, f3, . . ..

Indeed, we have:

Exercise 1.5.3 (Convergence for step functions). Let the notation

and assumptions be as above. Establish the following claims:
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(i) fn converges uniformly to zero if and only if An → 0 as

n → ∞.

(ii) fn converges in L∞ norm to zero if and only if An → 0 as

n → ∞.

(iii) fn converges almost uniformly to zero if and only if An → 0

as n → ∞, or µ(E∗N ) → 0 as N → ∞.

(iv) fn converges pointwise to zero if and only if An → 0 as

n → ∞, or
⋂∞

N=1 E
∗
N = ∅.

(v) fn converges pointwise almost everywhere to zero if and only

if An → 0 as n → ∞, or
⋂∞

N=1 E
∗
N is a null set.

(vi) fn converges in measure to zero if and only if An → 0 as

n → ∞, or µ(En) → 0 as n → ∞.

(vii) fn converges in L1 norm if and only if Anµ(En) → 0 as

n → ∞.

To put it more informally: when the height goes to zero, then one

has convergence to zero in all modes except possibly for L1 conver-

gence, which requires that the product of the height and the width

goes to zero. If instead the height is bounded away from zero and

the width is positive, then we never have uniform or L∞ convergence,

but we have convergence in measure if the width goes to zero, we

have almost uniform convergence if the tail support (which has larger

measure than the width) has measure that goes to zero, we have

pointwise almost everywhere convergence if the tail support shrinks

to a null set, and pointwise convergence if the tail support shrinks to

the empty set.

It is instructive to compare this exercise with Exercise 1.5.2, or

with the four examples given in the introduction. In particular:

(i) In the escape to horizontal infinity scenario, the height and

width do not shrink to zero, but the tail set shrinks to the

empty set (while remaining of infinite measure throughout).

(ii) In the escape to width infinity scenario, the height goes to

zero, but the width (and tail support) go to infinity, causing

the L1 norm to stay bounded away from zero.
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(iii) In the escape to vertical infinity, the height goes to infinity,

but the width (and tail support) go to zero (or the empty

set), causing the L1 norm to stay bounded away from zero.

(iv) In the typewriter example, the width goes to zero, but the

height and the tail support stay fixed (and thus bounded

away from zero).

Remark 1.5.8. The monotone convergence theorem (Theorem 1.4.44)

can also be specialised to this case. Observe that the fn = An1En

are monotone increasing if and only if An ≤ An+1 and En ⊂ En+1

for each n. In such cases, observe that the fn converge pointwise to

f := A1E , where A := limn→∞An and E :=
⋃∞

n=1 En. The mono-

tone convergence theorem then asserts that Anµ(En) → Aµ(E) as

n → ∞, which is a consequence of the monotone convergence theo-

rem µ(En) → µ(E) for sets.

1.5.3. Finite measure spaces. The situation simplifies somewhat

if the space X has finite measure (and in particular, in the case when

(X,B, µ) is a probability space, see Section 2.3). This shuts down two

of the four examples (namely, escape to horizontal infinity or width

infinity) and creates a few more equivalences. Indeed, from Egorov’s

theorem (Exercise 1.4.31), we now have

Theorem 1.5.9 (Egorov’s theorem, again). Let X have finite mea-

sure, and let fn : X → C and f : X → C be measurable functions.

Then fn converges to f pointwise almost everywhere if and only if fn
converges to f almost uniformly.

Note that when one specialises to step functions using Exercise

1.5.3, then Egorov’s theorem collapses to the downward monotone

convergence property for sets (Exercise 1.4.23(iii)).

Another nice feature of the finite measure case is that L∞ con-

vergence implies L1 convergence:

Exercise 1.5.4. Let X have finite measure, and let fn : X → C and

f : X → C be measurable functions. Show that if fn converges to f

in L∞ norm, then fn also converges to f in L1 norm.

1.5.4. Fast convergence. The typewriter example shows that L1

convergence is not strong enough to force almost uniform or pointwise
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almost everywhere convergence. However, this can be rectified if one

assumes that the L1 convergence is sufficiently fast:

Exercise 1.5.5 (Fast L1 convergence). Suppose that fn, f : X → C

are measurable functions such that
∑∞

n=1 ‖fn − f‖L1(µ) < ∞; thus,

not only do the quantities ‖fn − f‖L1(µ) go to zero (which would

mean L1 convergence), but they converge in an absolutely summable

fashion.

(i) Show that fn converges pointwise almost everywhere to f .

(ii) Show that fn converges almost uniformly to f .

(Hint: If you have trouble getting started, try working first in the

special case in which fn = An1En
are step functions and f = 0 and

use Exercise 1.5.3 in order to gain some intuition. The second part

of the exercise implies the first, but the first is a little easier to prove

and may thus serve as a useful warmup. The ε/2n trick may come in

handy for the second part.)

As a corollary, we see that L1 convergence implies almost uniform

or pointwise almost everywhere convergence if we are allowed to pass

to a subsequence:

Corollary 1.5.10. Suppose that fn : X → C are a sequence of mea-

surable functions that converge in L1 norm to a limit f . Then there

exists a subsequence fnj
that converges almost uniformly (and hence,

pointwise almost everywhere) to f (while remaining convergent in L1

norm, of course).

Proof. Since ‖fn − f‖L1(µ) → 0 as n → ∞, we can select n1 < n2 <

n3 < . . . such that ‖fnj
− f‖L1(µ) ≤ 2−j (say). This is enough for the

previous exercise to apply. �

Actually, one can strengthen this corollary a bit by relaxing L1

convergence to convergence in measure:

Exercise 1.5.6. Suppose that fn : X → C are a sequence of mea-

surable functions that converge in measure to a limit f . Then there

exists a subsequence fnj that converges almost uniformly (and hence,

pointwise almost everywhere) to f . (Hint: Choose the nj so that the

sets {x ∈ X : |fnj
(x)− f(x)| > 1/j} have a suitably small measure.)
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It is instructive to see how this subsequence is extracted in the

case of the typewriter sequence. In general, one can view the oper-

ation of passing to a subsequence as being able to eliminate “type-

writer” situations in which the tail support is much larger than the

width.

Exercise 1.5.7. Let (X,B, µ) be a measure space, let fn : X → C

be a sequence of measurable functions converging pointwise almost

everywhere as n → ∞ to a measurable limit f : X → C, and for each

n, let fn,m : X → C be a sequence of measurable functions converging

pointwise almost everywhere as m → ∞ (keeping n fixed) to fn.

(i) If µ(X) is finite, show that there exists a sequencem1,m2, . . .

such that fn,mn converges pointwise almost everywhere to

f .

(ii) Show the same claim is true if, instead of assuming that

µ(X) is finite, we merely assume that X is σ-finite, i.e. it is

the countable union of sets of finite measure.

(The claim can fail if X is not σ-finite. A counterexample is if X =

NN with counting measure, fn and f are identically zero for all n ∈ N,

and fn,m is the indicator function the space of all sequences (ai)i∈N ∈
NN with an ≥ m.)

Exercise 1.5.8. Let fn : X → C be a sequence of measurable func-

tions, and let f : X → C be another measurable function. Show that

the following are equivalent:

(i) fn converges in measure to f .

(ii) Every subsequence fnj of the fn has a further subsequence

fnji
that converges almost uniformly to f .

1.5.5. Domination and uniform integrability. Now we turn to

the reverse question, of whether almost uniform convergence, point-

wise almost everywhere convergence, or convergence in measure can

imply L1 convergence. The escape to vertical and width infinity ex-

amples shows that without any further hypotheses, the answer to this

question is no. However, one can do better if one places some dom-

ination hypotheses on the fn that shut down both of these escape

routes.
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We say that a sequence fn : X → C is dominated if there exists

an absolutely integrable function g : X → C such that |fn(x)| ≤ g(x)

for all n and almost every x. For instance, if X has finite measure and

the fn are uniformly bounded, then they are dominated. Observe that

the sequences in the vertical and width escape to infinity examples

are not dominated (why?).

The dominated convergence theorem (Theorem 1.4.49) then as-

serts that if fn converges to f pointwise almost everywhere, then it

necessarily converges to f in L1 norm (and hence also in measure).

Here is a variant:

Exercise 1.5.9. Suppose that fn : X → C are a dominated sequence

of measurable functions, and let f : X → C be another measurable

function. Show that fn converges in L1 norm to f if and only if

fn converges in measure to f . (Hint: one way to establish the “if”

direction is first show that every subsequence of the fn has a further

subsequence that converges in L1 to f , using Exercise 1.5.6 and the

dominated convergence theorem (Theorem 1.4.49). Alternatively, use

monotone convergence to find a set E of finite measure such that
∫

X\E g dµ, and hence
∫

X\E fn dµ and
∫

X\E f dµ, are small.)

There is a more general notion than domination, known as uni-

form integrability, which serves as a substitute for domination in many

(but not all) contexts.

Definition 1.5.11 (Uniform integrability). A sequence fn : X → C

of absolutely integrable functions is said to be uniformly integrable if

the following three statements hold:

(i) (Uniform bound on L1 norm) One has supn ‖fn‖L1(µ) =

supn
∫

X
|fn| dµ < +∞.

(ii) (No escape to vertical infinity) One has supn
∫

|fn|≥M |fn| dµ →
0 as M → +∞.

(iii) (No escape to width infinity) One has supn
∫

|fn|≤δ |fn| dµ →
0 as δ → 0.

Remark 1.5.12. It is instructive to understand uniform integrabil-

ity in the step function case fn = An1En
. The uniform bound on the
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L1 norm then asserts that Anµ(En) stays bounded. The lack of es-

cape to vertical infinity means that along any subsequence for which

An → ∞, Anµ(En) must go to zero. Similarly, the lack of escape to

width infinity means that along any subsequence for which An → 0,

Anµ(En) must go to zero.

Exercise 1.5.10. (i) Show that if f is an absolutely integrable

function, then the constant sequence fn = f is uniformly

integrable. (Hint: use the monotone convergence theorem.)

(ii) Show that every dominated sequence of measurable func-

tions is uniformly integrable.

(iii) Give an example of a sequence that is uniformly integrable

but not dominated.

In the case of a finite measure space, there is no escape to width

infinity, and the criterion for uniform integrability simplifies to just

that of excluding vertical infinity:

Exercise 1.5.11. Suppose thatX has finite measure, and let fn : X →
C be a sequence of measurable functions. Show that fn is uniformly

integrable if and only if supn
∫

|fn|≥M |fn| dµ → 0 as M → +∞.

Exercise 1.5.12 (Uniform Lp bound on finite measure implies uni-

form integrability). Suppose that X have finite measure, let 1 < p <

∞, an d suppose that fn : X → C is a sequence of measurable func-

tions such that supn
∫

X
|fn|p dµ < ∞. Show that the sequence fn is

uniformly integrable.

Exercise 1.5.13. Let fn : X → C be a uniformly integrable sequence

of functions. Show that for every ε > 0 there exists a δ > 0 such that
∫

E

|fn| dµ ≤ ε

whenever n ≥ 1 and E is a measurable set with µ(E) ≤ δ.

Exercise 1.5.14. This exercise is a partial converse to Exercise

1.5.13. Let X be a probability space, and let fn : X → C be a

sequence of absolutely integrable functions with supn ‖fn‖L1 < ∞.

Suppose that for every ε > 0 there exists a δ > 0 such that
∫

E

|fn| dµ ≤ ε
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whenever n ≥ 1 and E is a measurable set with µ(E) ≤ δ. Show that

the sequence fn is uniformly integrable.

The dominated convergence theorem (Theorem 1.4.49) does not

have an analogue in the uniformly integrable setting:

Exercise 1.5.15. Give an example of a sequence fn of uniformly

integrable functions that converge pointwise almost everywhere to

zero, but do not converge almost uniformly, in measure, or in L1

norm.

However, one does have an analogue of Exercise 1.5.9:

Theorem 1.5.13 (Uniformly integrable convergence in measure).

Let fn : X → C be a uniformly integrable sequence of functions, and

let f : X → C be another function. Then fn converges in L1 norm to

f if and only if fn converges to f in measure.

Proof. The “only if” part follows from Exercise 1.5.2, so we establish

the “if” part.

By uniform integrability, there exists a finite A > 0 such that
∫

X

|fn| dµ ≤ A

for all n. By Exercise 1.5.6, there is a subsequence of the fn that

converges pointwise almost everywhere to f . Applying Fatou’s lemma

(Corollary1.4.47), we conclude that
∫

X

|f | dµ ≤ A,

thus f is absolutely integrable.

Now let ε > 0 be arbitrary. By uniform integrability, one can find

δ > 0 such that

(1.15)

∫

|fn|≤δ
|fn| dµ ≤ ε

for all n. By monotone convergence, and decreasing δ if necessary, we

may say the same for f , thus

(1.16)

∫

|f |≤δ
|f | dµ ≤ ε.
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Let 0 < κ < δ/2 be another small quantity (that can depend on

A, ε, δ) that we will choose a bit later. From (1.15), (1.16) and the

hypothesis κ < δ/2 we have
∫

|fn−f |<κ;|f |≤δ/2
|fn| dµ ≤ ε

and
∫

|fn−f |<κ;|f |≤δ/2
|f | dµ ≤ ε

and hence by the triangle inequality

(1.17)

∫

|fn−f |<κ;|f |≤δ/2
|f − fn| dµ ≤ 2ε.

Finally, from Markov’s inequality (Exercise 1.4.36(vi)) we have

µ({x : |f(x)| > δ/2}) ≤ A

δ/2

and thus
∫

|fn−f |<κ;|f |>δ/2

|f − fn| dµ ≤ ε ≤ A

δ/2
κ.

In particular, by shrinking κ further if necessary we see that
∫

|fn−f |<κ;|f |>δ/2

|f − fn| dµ ≤ ε

and hence by (1.17)

(1.18)

∫

|fn−f |<κ

|f − fn| dµ ≤ 3ε

for all n.

Meanwhile, since fn converges in measure to f , we know that

there exists an N (depending on κ) such that

µ(|fn(x)− f(x)| ≥ κ) ≤ κ

for all n ≥ N . Applying Exercise 1.5.13, we conclude (making κ

smaller if necessary) that
∫

|fn−f |≥κ
|fn| dµ ≤ ε

and
∫

|fn−f |≥κ
|f | dµ ≤ ε
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and hence by the triangle inequality
∫

|fn−f |≥κ
|f − fn| dµ ≤ 2ε

for all n ≥ N . Combining this with (1.18) we conclude that

‖fn − f‖L1(µ) =

∫

X

|f − fn| dµ ≤ 5ε

for all n ≥ N , and so fn converges to f in L1 norm as desired. �

Finally, we recall two results from the previous notes for unsigned

functions.

Exercise 1.5.16 (Monotone convergence theorem). Suppose that

fn : X → [0,+∞) are measurable, monotone non-decreasing in n and

are such that supn
∫

X
fn dµ < ∞. Show that fn converges in L1

norm to supn fn. (Note that supn fn can be infinite on a null set, but

the definition of L1 convergence can be easily modified to accomodate

this.)

Exercise 1.5.17 (Defect version of Fatou’s lemma). Suppose that

fn : X → [0,+∞) are measurable, are such that supn
∫

X
fn dµ < ∞,

and converge pointwise almost everywhere to some measurable limit

f : X → [0,+∞). Show that fn converges in L1 norm to f if and

only if
∫

X
fn dµ converges to

∫

X
f dµ. Informally, we see that in the

unsigned, bounded mass case, pointwise convergence implies L1 norm

convergence if and only if there is no loss of mass.

Exercise 1.5.18. Suppose that fn : X → C are a dominated se-

quence of measurable functions, and let f : X → C be another mea-

surable function. Show that fn converges pointwise almost every-

where to f if and only if fn converges in almost uniformly to f .

Exercise 1.5.19. Let X be a probability space (see Section 2.3).

Given any real-valued measurable function f : X → R, we define the

cumulative distribution function F : R → [0, 1] of f to be the function

F (λ) := µ({x ∈ X : f(x) ≤ λ}). Given another sequence fn : X →
R of real-valued measurable functions, we say that fn converges in

distribution to f if the cumulative distribution function Fn(λ) of fn
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converges pointwise to the cumulative distribution function F (λ) of

f at all λ ∈ R for which F is continuous.

(i) Show that if fn converges to f in any of the seven senses dis-

cussed above (uniformly, essentially uniformly, almost uni-

formly pointwise, pointwise almost everywhere, in L1, or in

measure), then it converges in distribution to f .

(ii) Give an example in which fn converges to f in distribution,

but not in any of the above seven senses.

(iii) Show that convergence in distribution is not linear, in the

sense that if fn converges to f in distribution, and gn con-

verges to g, then fn + gn need not converge to f + g.

(iv) Show that a sequence fn can converge in distribution to two

different limits f, g, which are not equal almost everywhere.

Convergence in distribution (not to be confused with convergence in

the sense of distributions, which is studied in S 1.13 of An epsilon of

room, Vol. I is commonly used in probability; but, as the above ex-

ercise demonstrates, it is quite a weak notion of convergence, lacking

many of the properties of the modes of convergence discussed here.

1.6. Differentiation theorems

Let [a, b] be a compact interval of positive length (thus −∞ < a < b <

+∞). Recall that a function F : [a, b] → R is said to be differentiable

at a point x ∈ [a, b] if the limit

(1.19) F ′(x) := lim
y→x;y∈[a,b]\{x}

F (y)− F (x)

y − x

exists. In that case, we call F ′(x) the strong derivative, classical de-

rivative, or just derivative for short, of F at x. We say that F is

everywhere differentiable, or differentiable for short, if it is differen-

tiable at all points x ∈ [a, b], and differentiable almost everywhere if it

is differentiable at almost every point x ∈ [a, b]. If F is differentiable

everywhere and its derivative F ′ is continuous, then we say that F is

continuously differentiable.

Remark 1.6.1. In §1.13 of An epsilon of room, Vol. I, the notion of

a weak derivative or distributional derivative is introduced. This type
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of derivative can be applied to a much rougher class of functions and

is in many ways more suitable than the classical derivative for doing

“Lebesgue” type analysis (i.e. analysis centred around the Lebesgue

integral, and in particular allowing functions to be uncontrolled, in-

finite, or even undefined on sets of measure zero). However, for now

we will stick with the classical approach to differentiation.

Exercise 1.6.1. If F : [a, b] → R is everywhere differentiable, show

that F is continuous and F ′ is measurable. If F is almost everywhere

differentiable, show that the (almost everywhere defined) function F ′

is measurable (i.e. it is equal to an everywhere defined measurable

function on [a, b] outside of a null set), but give an example to demon-

strate that F need not be continuous.

Exercise 1.6.2. Give an example of a function F : [a, b] → R which is

everywhere differentiable, but not continuously differentiable. (Hint:

choose an F that vanishes quickly at some point, say at the origin 0,

but which also oscillates rapidly near that point.)

In single-variable calculus, the operations of integration and dif-

ferentiation are connected by a number of basic theorems, starting

with Rolle’s theorem.

Theorem 1.6.2 (Rolle’s theorem). Let [a, b] be a compact interval of

positive length, and let F : [a, b] → R be a differentiable function such

that F (a) = F (b). Then there exists x ∈ (a, b) such that F ′(x) = 0.

Proof. By subtracting a constant from F (which does not affect dif-

ferentiability or the derivative) we may assume that F (a) = F (b) = 0.

If F is identically zero then the claim is trivial, so assume that F is

non-zero somewhere. By replacing F with −F if necessary, we may

assume that F is positive somewhere, thus supx∈[a,b] F (x) > 0. On

the other hand, as F is continuous and [a, b] is compact, F must at-

tain its maximum somewhere, thus there exists x ∈ [a, b] such that

F (x) ≥ F (y) for all y ∈ [a, b]. Then F (x) must be positive and so x

cannot equal either a or b, and thus must lie in the interior. From the

right limit of (1.19) we see that F ′(x) ≤ 0, while from the left limit

we have F ′(x) ≥ 0. Thus F ′(x) = 0 and the claim follows. �
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Remark 1.6.3. Observe that the same proof also works if F is only

differentiable in the interior (a, b) of the interval [a, b], so long as it is

continuous all the way up to the boundary of [a, b].

Exercise 1.6.3. Give an example to show that Rolle’s theorem can

fail if f is merely assumed to be almost everywhere differentiable,

even if one adds the additional hypothesis that f is continuous. This

example illustrates that everywhere differentiability is a significantly

stronger property than almost everywhere differentiability. We will

see further evidence of this fact later in these notes; there are many

theorems that assert in their conclusion that a function is almost ev-

erywhere differentiable, but few that manage to conclude everywhere

differentiability.

Remark 1.6.4. It is important to note that Rolle’s theorem only

works in the real scalar case when F is real-valued, as it relies heavily

on the least upper bound property for the domain R. If, for instance,

we consider complex-valued scalar functions F : [a, b] → C, then the

theorem can fail; for instance, the function F : [0, 1] → C defined by

F (x) := e2πix−1 vanishes at both endpoints and is differentiable, but

its derivative F ′(x) = 2πie2πix is never zero. (Rolle’s theorem does

imply that the real and imaginary parts of the derivative F ′ both
vanish somewhere, but the problem is that they don’t simultaneously

vanish at the same point.) Similar remarks to functions taking values

in a finite-dimensional vector space, such as Rn.

One can easily amplify Rolle’s theorem to the mean value theo-

rem:

Corollary 1.6.5 (Mean value theorem). Let [a, b] be a compact in-

terval of positive length, and let F : [a, b] → R be a differentiable

function. Then there exists x ∈ (a, b) such that F ′(x) = F (b)−F (a)
b−a .

Proof. Apply Rolle’s theorem to the function x 7→ F (x)−F (b)−F (a)
b−a (x−

a). �

Remark 1.6.6. As Rolle’s theorem is only applicable to real scalar-

valued functions, the more general mean value theorem is also only

applicable to such functions.
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Exercise 1.6.4 (Uniqueness of antiderivatives up to constants). Let

[a, b] be a compact interval of positive length, and let F : [a, b] → R

and G : [a, b] → R be differentiable functions. Show that F ′(x) =

G′(x) for every x ∈ [a, b] if and only if F (x) = G(x) + C for some

constant C ∈ R and all x ∈ [a, b].

We can use the mean value theorem to deduce one of the funda-

mental theorems of calculus:

Theorem 1.6.7 (Second fundamental theorem of calculus). Let F : [a, b] →
R be a differentiable function, such that F ′ is Riemann integrable.

Then the Riemann integral
∫ b

a
F ′(x) dx of F ′ is equal to F (b)−F (a).

In particular, we have
∫ b

a
F ′(x) dx = F (b) − F (a) whenever F is

continuously differentiable.

Proof. Let ε > 0. By the definition of Riemann integrability, there

exists a finite partition a = t0 < t1 < . . . < tk = b such that

|
k
∑

j=1

F ′(t∗j )(tj − tj−1)−
∫ b

a

F ′(x)| ≤ ε

for every choice of t∗j ∈ [tj−1, tj ].

Fix this partition. From the mean value theorem, for each 1 ≤
j ≤ k one can find t∗j ∈ [tj−1, tj ] such that

F ′(t∗j )(tj − tj−1) = F (tj)− F (tj−1)

and thus by telescoping series

|(F (b)− F (a))−
∫ b

a

F ′(x)| ≤ ε.

Since ε > 0 was arbitrary, the claim follows. �

Remark 1.6.8. Even though the mean value theorem only holds

for real scalar functions, the fundamental theorem of calculus holds

for complex or vector-valued functions, as one can simply apply that

theorem to each component of that function separately.

Of course, we also have the other half of the fundamental theorem

of calculus:
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Theorem 1.6.9 (First fundamental theorem of calculus). Let [a, b]

be a compact interval of positive length. Let f : [a, b] → C be a con-

tinuous function, and let F : [a, b] → C be the indefinite integral

F (x) :=
∫ x

a
f(t) dt. Then F is differentiable on [a, b], with deriv-

ative F ′(x) = f(x) for all x ∈ [a, b]. In particular, F is continuously

differentiable.

Proof. It suffices to show that

lim
h→0+

F (x+ h)− F (x)

h
= f(x)

for all x ∈ [a, b), and

lim
h→0−

F (x+ h)− F (x)

h
= f(x)

for all x ∈ (a, b]. After a change of variables, we can write

F (x+ h)− F (x)

h
=

∫ 1

0

f(x+ ht) dt

for any x ∈ [a, b) and any sufficiently small h > 0, or any x ∈ (a, b]

and any sufficiently small h < 0. As f is continuous, the function

t 7→ f(x+ht) converges uniformly to f(x) on [0, 1] as h → 0 (keeping x

fixed). As the interval [0, 1] is bounded,
∫ 1

0
f(x+ht) dt thus converges

to
∫ 1

0
f(x) dt = f(x), and the claim follows. �

Corollary 1.6.10 (Differentiation theorem for continuous functions).

Let f : [a, b] → C be a continuous function on a compact interval.

Then we have

lim
h→0+

1

h

∫

[x,x+h]

f(t) dt = f(x)

for all x ∈ [a, b),

lim
h→0+

1

h

∫

[x−h,x]
f(t) dt = f(x)

for all x ∈ (a, b], and thus

lim
h→0+

1

2h

∫

[x−h,x+h]

f(t) dt = f(x)

for all x ∈ (a, b).
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In these notes we explore the question of the extent to which these

theorems continue to hold when the differentiability or integrability

conditions on the various functions F, F ′, f are relaxed. Among the

results proven in these notes are

(i) The Lebesgue differentiation theorem, which roughly speak-

ing asserts that Corollary 1.6.10 continues to hold for almost

every x if f is merely absolutely integrable, rather than con-

tinuous;

(ii) A number of differentiation theorems, which assert for in-

stance that monotone, Lipschitz, or bounded variation func-

tions in one dimension are almost everywhere differentiable;

and

(iii) The second fundamental theorem of calculus for absolutely

continuous functions.

1.6.1. The Lebesgue differentiation theorem in one dimen-

sion. The main objective of this section is to show

Theorem 1.6.11 (Lebesgue differentiation theorem, one-dimensional

case). Let f : R → C be an absolutely integrable function, and let

F : R → C be the definite integral F (x) :=
∫

[−∞,x]
f(t) dt. Then F

is continuous and almost everywhere differentiable, and F ′(x) = f(x)

for almost every x ∈ R.

This can be viewed as a variant of Corollary 1.6.10; the hypothe-

ses are weaker because f is only assumed to be absolutely integrable,

rather than continuous (and can live on the entire real line, and not

just on a compact interval); but the conclusion is weaker too, because

F is only found to be almost everywhere differentiable, rather than

everywhere differentiable. (But such a relaxation of the conclusion is

necessary at this level of generality; consider for instance the example

when f = 1[0,1].)

The continuity is an easy exercise:

Exercise 1.6.5. Let f : R → C be an absolutely integrable function,

and let F : R → C be the definite integral F (x) :=
∫

[−∞,x]
f(t) dt.

Show that F is continuous.
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The main difficulty is to show that F ′(x) = f(x) for almost every

x ∈ R. This will follow from

Theorem 1.6.12 (Lebesgue differentiation theorem, second formu-

lation). Let f : R → C be an absolutely integrable function. Then

(1.20) lim
h→0+

1

h

∫

[x,x+h]

f(t) dt = f(x)

for almost every x ∈ R, and

(1.21) lim
h→0+

1

h

∫

[x−h,x]
f(t) dt = f(x)

for almost every x ∈ R.

Exercise 1.6.6. Show that Theorem 1.6.11 follows from Theorem

1.6.12.

We will just prove the first fact (1.20); the second fact (1.21)

is similar (or can be deduced from (1.20) by replacing f with the

reflected function x 7→ f(−x).

We are taking f to be complex valued, but it is clear from taking

real and imaginary parts that it suffices to prove the claim when f is

real-valued, and we shall thus assume this for the rest of the argument.

The conclusion (1.20) we want to prove is a convergence theorem

- an assertion that for all functions f in a given class (in this case,

the class of absolutely integrable functions f : R → R), a certain

sequence of linear expressions Thf (in this case, the right averages

Thf(x) = 1
h

∫

[x,x+h]
f(t) dt) converge in some sense (in this case,

pointwise almost everywhere) to a specified limit (in this case, f).

There is a general and very useful argument to prove such convergence

theorems, known as the density argument. This argument requires

two ingredients, which we state informally as follows:

(i) A verification of the convergence result for some “dense sub-

class” of “nice” functions f , such as continuous functions,

smooth functions, simple functions, etc.. By “dense”, we

mean that a general function f in the original class can be

approximated to arbitrary accuracy in a suitable sense by a

function in the nice subclass.
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(ii) A quantitative estimate that upper bounds the maximal

fluctuation of the linear expressions Thf in terms of the

“size” of the function f (where the precise definition of

“size” depends on the nature of the approximation in the

first ingredient).

Once one has these two ingredients, it is usually not too hard to

put them together to obtain the desired convergence theorem for gen-

eral functions f (not just those in the dense subclass). We illustrate

this with a simple example:

Proposition 1.6.13 (Translation is continuous in L1). Let f : Rd →
C be an absolutely integrable function, and for each h ∈ Rd, let

fh : R
d → C be the shifted function

fh(x) := f(x− h).

Then fh converges in L1 norm to f as h → 0, thus

lim
h→0

∫

Rd

|fh(x)− f(x)| dx = 0.

Proof. We first verify this claim for a dense subclass of f , namely

the functions f which are continuous and compactly supported (i.e.

they vanish outside of a compact set). Such functions are continuous,

and thus fh converges uniformly to f as h → 0. Furthermore, as f is

compactly supported, the support of fh − f stays uniformly bounded

for h in a bounded set. From this we see that fh also converges to f

in L1 norm as required.

Next, we observe the quantitative estimate

(1.22)

∫

Rd

|fh(x)− f(x)| dx ≤ 2

∫

Rd

|f(x)| dx

for any h ∈ Rd. This follows easily from the triangle inequality
∫

Rd

|fh(x)− f(x)| dx ≤
∫

Rd

|fh(x)| dx+

∫

Rd

|f(x)| dx

together with the translation invariance of the Lebesgue integral:
∫

Rd

|fh(x)| dx =

∫

Rd

|f(x)| dx.
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Now we put the two ingredients together. Let f : Rd → C be ab-

solutely integrable, and let ε > 0 be arbitrary. Applying Littlewood’s

second principle (Theorem 1.3.20(iii)) to the absolutely integrable

function F ′, we can find a continuous, compactly supported function

g : Rd → C such that
∫

Rd

|f(x)− g(x)| dx ≤ ε.

Applying (1.22), we conclude that
∫

Rd

|(f − g)h(x)− (f − g)(x)| dx ≤ 2ε,

which we rearrange as
∫

Rd

|(fh − f)h(x)− (gh − g)(x)| dx ≤ 2ε.

By the dense subclass result, we also know that
∫

Rd

|gh(x)− g(x)| dx ≤ ε

for all h sufficiently close to zero. From the triangle inequality, we

conclude that
∫

Rd

|fh(x)− f(x)| dx ≤ 3ε

for all h sufficiently close to zero, and the claim follows. �

Remark 1.6.14. In the above application of the density argument,

we proved the required quantitative estimate directly for all functions

f in the original class of functions. However, it is also possible to use

the density argument a second time and initially verify the quantita-

tive estimate just for functions f in a nice subclass (e.g. continuous

functions of compact support). In many cases, one can then extend

that estimate to the general case by using tools such as Fatou’s lemma

(Corollary1.4.47), which are particularly suited for showing that up-

per bound estimates are preserved with respect to limits.

Exercise 1.6.7. Let f : Rd → C, g : Rd → C be Lebesgue measur-

able functions such that f is absolutely integrable and g is essentially
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bounded (i.e. bounded outside of a null set). Show that the convolu-

tion f ∗ g : Rd → C defined by the formula

f ∗ g(x) =
∫

Rd

f(y)g(x− y) dy

is well-defined (in the sense that the integrand on the right-hand

side is absolutely integrable) and that f ∗ g is a bounded, continuous

function.

The above exercise is illustrative of a more general intuition,

which is that convolutions tend to be smoothing in nature; the con-

volution f ∗ g of two functions is usually at least as regular as, and

often more regular than, either of the two factors f, g.

This smoothing phenomenon gives rise to an important fact,

namely the Steinhaus theorem:

Exercise 1.6.8 (Steinhaus theorem). Let E ⊂ Rd be a Lebesgue

measurable set of positive measure. Show that the set E−E := {x−
y : x, y ∈ E} contains an open neighbourhood of the origin. (Hint:

reduce to the case when E is bounded, and then apply the previous

exercise to the convolution 1E ∗ 1−E , where −E := {−y : y ∈ E}.)

Exercise 1.6.9. A homomorphism f : Rd → C is a map with the

property that f(x+ y) = f(x) + f(y) for all x, y ∈ Rd.

(i) Show that all measurable homomorphisms are continuous.

(Hint: for any disk D centered at the origin in the complex

plane, show that f−1(z + D) has positive measure for at

least one z ∈ C, and then use the Steinhaus theorem from

the previous exercise.)

• Show that f is a measurable homomorphism if and only

if it takes the form f(x1, . . . , xd) = x1z1 + . . . + xdzd for

all x1, . . . , xd ∈ R and some complex coefficients z1, . . . , zd.

(Hint: first establish this for rational x1, . . . , xd, and then

use the previous part of this exercise.)

(ii) (For readers familiar with Zorn’s lemma, see §2.4 of An ep-

silon of room, Vol. I ) Show that there exist homomorphisms

f : Rd → C which are not of the form in the previous ex-

ercise. (Hint: view Rd (or C) as a vector space over the
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rationals Q, and use the fact (from Zorn’s lemma) that ev-

ery vector space - even an infinite-dimensional one - has at

least one basis.) This gives an alternate construction of a

non-measurable set to that given in previous notes.

Remark 1.6.15. One drawback with the density argument is it gives

convergence results which are qualitative rather than quantitative -

there is no explicit bound on the rate of convergence. For instance,

in Proposition 1.6.13, we know that for any ε > 0, there exists δ > 0

such that
∫

Rd |fh(x)− f(x)| dx ≤ ε whenever |h| ≤ δ, but we do not

know exactly how δ depends on ε and f . Actually, the proof does

eventually give such a bound, but it depends on “how measurable”

the function f is, or more precisely how “easy” it is to approximate

f by a “nice” function. To illustrate this issue, let’s work in one di-

mension and consider the function f(x) := sin(Nx)1[0,2π](x), where

N ≥ 1 is a large integer. On the one hand, f is bounded in the

L1 norm uniformly in N :
∫

R
|f(x)| dx ≤ 2π (indeed, the left-hand

side is equal to 2). On the other hand, it is not hard to see that
∫

R
|fπ/N (x) − f(x)| dx ≥ c for some absolute constant c > 0. Thus,

if one force
∫

R
|fh(x)− f(x)| dx to drop below c, one has to make h

at most π/N from the origin. Making N large, we thus see that the

rate of convergence of
∫

R
|fh(x)− f(x)| dx to zero can be arbitrarily

slow, even though f is bounded in L1. The problem is that as N

gets large, it becomes increasingly difficult to approximate f well by

a “nice” function, by which we mean a uniformly continuous function

with a reasonable modulus of continuity, due to the increasingly os-

cillatory nature of f . See [Ta2008, §1.4] for some further discussion

of this issue, and what quantitative substitutes are available for such

qualitative results.

Now we return to the Lebesgue differentiation theorem, and apply

the density argument. The dense subclass result is already contained

in Corollary 1.6.10, which asserts that (1.20) holds for all continuous

functions f . The quantitative estimate we will need is the following

special case of the Hardy-Littlewood maximal inequality :

Lemma 1.6.16 (One-sided Hardy-Littlewood maximal inequality).

Let f : R → C be an absolutely integrable function, and let λ > 0.
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Then

m({x ∈ R : sup
h>0

1

h

∫

[x,x+h]

|f(t)| dt ≥ λ}) ≤ 1

λ

∫

R

|f(t)| dt.

We will prove this lemma shortly, but let us first see how this,

combined with the dense subclass result, will give the Lebesgue dif-

ferentiation theorem. Let f : R → C be absolutely integrable, and

let ε, λ > 0 be arbitrary. Then by Littlewood’s second principle, we

can find a function g : R → C which is continuous and compactly

supported, with
∫

R

|f(x)− g(x)| dx ≤ ε.

Applying the one-sided Hardy-Littlewood maximal inequality, we con-

clude that

m({x ∈ R : sup
h>0

1

h

∫

[x,x+h]

|f(t)− g(t)| dt ≥ λ}) ≤ ε

λ
.

In a similar spirit, from Markov’s inequality (Lemma 1.3.15) we have

m({x ∈ R : |f(x)− g(x)| ≥ λ}) ≤ ε

λ
.

By subadditivity, we conclude that for all x ∈ R outside of a set E

of measure at most 2ε/λ, one has both

(1.23)
1

h

∫

[x,x+h]

|f(t)− g(t)| dt < λ

and

(1.24) |f(x)− g(x)| < λ

for all h > 0.

Now let x ∈ R\E. From the dense subclass result (Corollary

1.6.10) applied to the continuous function g, we have

| 1
h

∫

[x,x+h]

g(t) dt− g(x)| < λ

whenever h is sufficiently close to x. Combining this with (1.23),

(1.24), and the triangle inequality, we conclude that

| 1
h

∫

[x,x+h]

f(t) dt− f(x)| < 3λ
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for all h sufficiently close to zero. In particular we have

lim sup
h→0

| 1
h

∫

[x,x+h]

f(t) dt− f(x)| < 3λ

for all x outside of a set of measure 2ε/λ. Keeping λ fixed and sending

ε to zero, we conclude that

lim sup
h→0

| 1
h

∫

[x,x+h]

f(t) dt− f(x)| < 3λ

for almost every x ∈ R. If we then let λ go to zero along a countable

sequence (e.g. λ := 1/n for n = 1, 2, . . .), we conclude that

lim sup
h→0

| 1
h

∫

[x,x+h]

f(t) dt− f(x)| = 0

for almost every x ∈ R, and the claim follows.

The only remaining task is to establish the one-sided Hardy-

Littlewood maximal inequality. We will do so by using the rising

sun lemma:

Lemma 1.6.17 (Rising sun lemma). Let [a, b] be a compact interval,

and let F : [a, b] → R be a continuous function. Then one can find an

at most countable family of disjoint non-empty open intervals In =

(an, bn) in [a, b] with the following properties:

(i) For each n, either F (an) = F (bn), or else an = a and

F (bn) ≥ F (an).

(ii) If x ∈ [a, b] does not lie in any of the intervals In, then one

must have F (y) ≤ F (x) for all x ≤ y ≤ b.

Remark 1.6.18. To explain the name “rising sun lemma”, imagine

the graph {(x, F (x)) : x ∈ [a, b]} of F as depicting a hilly landscape,

with the sun shining horizontally from the rightward infinity (+∞, 0)

(or rising from the east, if you will). Those x for which F (y) ≤ F (x)

are the locations on the landscape which are illuminated by the sun.

The intervals In then represent the portions of the landscape that are

in shadow. The reader is encouraged to draw a picture14 to illustrate

this perspective.

14Author’s note: I have deliberately omitted including such pictures in the text,
as I feel that it is far more instructive and useful for the reader to directly create a
personalised visual aid for these results.
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This lemma is proven using the following basic fact:

Exercise 1.6.10. Show that any open subset U of R can be written

as the union of at most countably many disjoint non-empty open

intervals, whose endpoints lie outside of U . (Hint: first show that

every x in U is contained in a maximal open subinterval (a, b) of U ,

and that these maximal open subintervals are disjoint, with each such

interval containing at least one rational number.)

Proof. (Proof of rising sun lemma) Let U be the set of all x ∈ (a, b)

such that F (y) > F (x) for at least one x < y < b. As F is continuous,

U is open, and so U is the union of at most countably many disjoint

non-empty open intervals In = (an, bn), with the endpoints an, bn
lying outside of U .

The second conclusion of the rising sun lemma is clear from

construction, so it suffices to establish the first. Suppose first that

In = (an, bn) is such that an 6= a. As the endpoint an does not

lie in U , we must have F (y) ≤ F (an) for all an ≤ y ≤ b; similarly

we have F (y) ≤ F (bn) for all bn ≤ y ≤ b. In particular we have

F (bn) ≤ F (an). By the continuity of F , it will then suffice to show

that F (bn) ≥ F (t) for all an < t < bn.

Suppose for contradiction that there was an < t < bn with

F (bn) < F (t). Let A := {s ∈ [t, b] : F (s) ≥ F (t)}, then A is

a closed set that contains t but not b. Set t∗ := sup(A), then

t∗ ∈ [t, b) ⊂ In ⊂ U , and thus there exists t∗ < y ≤ b such that

F (y) > F (t∗). Since F (t∗) ≥ F (t) > F (bn), and F (bn) ≥ F (z) for all

bn ≤ z ≤ b, we see that y cannot exceed bn, and thus lies in A, but

this contradicts the fact that t∗ is the supremum of A.

The case when an = a is similar and is left to the reader; the only

difference is that we can no longer assert that F (y) ≤ F (an) for all

an ≤ y ≤ b, and so do not have the upper bound F (bn) ≤ F (an). �

Now we can prove the one-sided Hardy-Littlewood maximal in-

equality. By upwards monotonicity, it will suffice to show that

m({x ∈ [a, b] : sup
h>0;[x,x+h]⊂[a,b]

1

h

∫

[x,x+h]

|f(t)| dt ≥ λ}) ≤ 1

λ

∫

R

|f(t)| dt
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for any compact interval [a, b]. By modifying λ by an epsilon, we may

replace the non-strict inequality here with strict inequality:

(1.25)

m({x ∈ [a, b] : sup
h>0;[x,x+h]⊂[a,b]

1

h

∫

[x,x+h]

|f(t)| dt > λ}) ≤ 1

λ

∫

R

|f(t)| dt

Fix [a, b]. We apply the rising sun lemma to the function F : [a, b] →
R defined as

F (x) :=

∫

[a,x]

|f(t)| dt− (x− a)λ.

By Lemma 1.6.5, F is continuous, and so we can find an at most

countable sequence of intervals In = (an, bn) with the properties given

by the rising sun lemma. From the second property of that lemma,

we observe that

{x ∈ [a, b] : sup
h>0;[x,x+h]⊂[a,b]

1

h

∫

[x,x+h]

|f(t)| dt > λ} ⊂
⋃

n

In,

since the property 1
h

∫

[x,x+h]
|f(t)| dt > λ can be rearranged as F (x+

h) > F (x). By countable additivity, we may thus upper bound the

left-hand side of (1.25) by
∑

n(bn − an). On the other hand, since

F (bn)− F (an) ≥ 0, we have
∫

In

|f(t)| dt ≥ λ(bn − an)

and thus
∑

n

(bn − an) ≤
1

λ

∑

n

∫

In

|f(t)| dt.

As the In are disjoint intervals in I, we may apply monotone conver-

gence and monotonicity to conclude that

∑

n

∫

In

|f(t)| dt ≤
∫

[a,b]

|f(t)| dt,

and the claim follows.

Exercise 1.6.11 (Two-sided Hardy-Littlewood maximal inequality).

Let f : R → C be an absolutely integrable function, and let λ > 0.

Show that

m({x ∈ R : sup
x∈I

1

|I|

∫

I

|f(t)| dt ≥ λ}) ≤ 2

λ

∫

R

|f(t)| dt,
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where the supremum ranges over all intervals I of positive length that

contain x.

Exercise 1.6.12 (Rising sun inequality). Let f : R → R be an abso-

lutely integrable function, and let f∗ : R → R be the one-sided signed

Hardy-Littlewood maximal function

f∗(x) := sup
h>0

1

h

∫

[x,x+h]

f(t) dt.

Establish the rising sun inequality

λm({f∗(x) > λ}) ≤
∫

x:f∗(x)>λ

f(x) dx

for all real λ (note here that we permit λ to be zero or negative), and

show that this inequality implies Lemma 1.6.16. (Hint: First do the

λ = 0 case, by invoking the rising sun lemma.) See [Ta2009, §2.9] for
some further discussion of inequalities of this type, and applications

to ergodic theory (and in particular the maximal ergodic theorem).

Exercise 1.6.13. Show that the left and right-hand sides in Lemma

1.6.16 are in fact equal. (Hint: one may first wish to try this in the

case when f has compact support, in which case one can apply the

rising sun lemma to a sufficiently large interval containing the support

of f .)

1.6.2. The Lebesgue differentiation theorem in higher di-

mensions. Now we extend the Lebesgue differentiation theorem to

higher dimensions. Theorem 1.6.11 does not have an obvious high-

dimensional analogue, but Theorem 1.6.12 does:

Theorem 1.6.19 (Lebesgue differentiation theorem in general di-

mension). Let f : Rd → C be an absolutely integrable function. Then

for almost every x ∈ Rd, one has

(1.26) lim
r→0

1

m(B(x, r))

∫

B(x,r)

|f(y)− f(x)| dy = 0

and

lim
r→0

1

m(B(x, r))

∫

B(x,r)

f(y) dy = f(x),
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where B(x, r) := {y ∈ Rd : |x − y| < r} is the open ball of radius r

centred at x.

From the triangle inequality we see that

| 1

m(B(x, r))

∫

B(x,r)

f(y) dy − f(x)| = | 1

m(B(x, r))

∫

B(x,r)

f(y)− f(x) dy|

≤ 1

m(B(x, r))

∫

B(x,r)

|f(y)− f(x)| dy,

so we see that the first conclusion of Theorem 1.6.19 implies the

second. A point x for which (1.26) holds is called a Lebesgue point of

f ; thus, for an absolutely integrable function f , almost every point in

Rd will be a Lebesgue point for Rd.

Exercise 1.6.14. Call a function f : Rd → C locally integrable if, for

every x ∈ Rd, there exists an open neighbourhood of x on which f is

absolutely integrable.

(i) Show that f is locally integrable if and only if
∫

B(0,r)
|f(x)| dx <

∞ for all r > 0.

(ii) Show that Theorem 1.6.19 implies a generalisation of itself in

which the condition of absolute integrability of f is weakened

to local integrability.

Exercise 1.6.15. For each h > 0, let Eh be a subset of B(0, h) with

the property that m(Eh) ≥ cm(B(0, h)) for some c > 0 independent

of h. Show that if f : Rd → C is locally integrable, and x is a Lebesgue

point of f , then

lim
h→0

1

m(Eh)

∫

x+Eh

f(y) dy = f(x).

Conclude that Theorem 1.6.19 implies Theorem 1.6.12.

To prove Theorem 1.6.19, we use the density argument. The

dense subclass case is easy:

Exercise 1.6.16. Show that Theorem 1.6.19 holds whenever f is

continuous.

The quantitative estimate needed is the following:
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Theorem 1.6.20 (Hardy-Littlewood maximal inequality). Let f : Rd →
C be an absolutely integrable function, and let λ > 0. Then

m({x ∈ Rd : sup
r>0

1

m(B(x, r))

∫

B(x,r)

|f(y)| dy ≥ λ}) ≤ Cd

λ

∫

R

|f(t)| dt

for some constant Cd > 0 depending only on d.

Remark 1.6.21. The expression supr>0
1

m(B(x,r))

∫

B(x,r)
|f(y)| dy ≥

λ} is known as the Hardy-Littlewood maximal function of f , and is

often denoted Mf(x). It is an important function in the field of

(real-variable) harmonic analysis.

Exercise 1.6.17. Use the density argument to show that Theorem

1.6.20 implies Theorem 1.6.19.

In the one-dimensional case, this estimate was established via

the rising sun lemma. Unfortunately, that lemma relied heavily on

the ordered nature of R, and does not have an obvious analogue in

higher dimensions. Instead, we will use the following covering lemma.

Given an open ball B = B(x, r) in Rd and a real number c > 0, we

write cB := B(x, cr) for the ball with the same centre as B, but c

times the radius. (Note that this is slightly different from the set

c · B := {cy : y ∈ B} - why?) Note that |cB| = cd|B| for any open

ball B ⊂ Rd and any c > 0.

Lemma 1.6.22 (Vitali-type covering lemma). Let B1, . . . , Bn be a

finite collection of open balls in Rd (not necessarily disjoint). Then

there exists a subcollection B′1, . . . , B
′
m of disjoint balls in this collec-

tion, such that

(1.27)
n
⋃

i=1

Bi ⊂
m
⋃

j=1

3B′j .

In particular, by finite subadditivity,

m(
n
⋃

i=1

Bi) ≤ 3d
m
∑

j=1

m(B′j).

Proof. We use a greedy algorithm argument, selecting the balls B′i
to be as large as possible while remaining disjoint. More precisely, we

run the following algorithm:
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Step 0. Initialisem = 0 (so that, initially, there are no ballsB′1, . . . , B
′
m

in the desired collection).

Step 1. Consider all the balls Bj that do not already intersect one of

the B′1, . . . , B
′
m (so, initially, all of the balls B1, . . . , Bn will

be considered). If there are no such balls, STOP. Otherwise,

go on to Step 2.

Step 2. Locate the largest ball Bj that does not already intersect

one of the B′1, . . . , B
′
m. (If there are multiple largest balls

with exactly the same radius, break the tie arbitrarily.) Add

this ball to the collection B′1, . . . , B
′
m by setting B′m+1 := Bj

and then incrementing m to m+ 1. Then return to Step 1.

Note that at each iteration of this algorithm, the number of available

balls amongst the B1, . . . , Bn drops by at least one (since each ball

selected certainly intersects itself and so cannot be selected again).

So this algorithm terminates in finite time. It is also clear from con-

struction that the B′1, . . . , B
′
m are a subcollection of the B1, . . . , Bn

consisting of disjoint balls. So the only task remaining is to verify

that (1.27) holds at the completion of the algorithm, i.e. to show

that each ball Bi in the original collection is covered by the triples

3B′j of the subcollection.

For this, we argue as follows. Take any ball Bi in the original

collection. Because the algorithm only halts when there are no more

balls that are disjoint from the B′1, . . . , B
′
m, the ball Bi must intersect

at least one of the balls B′j in the subcollection. Let B′j be the first

ball with this property, thus Bi is disjoint from B′1, . . . , B
′
j−1, but

intersects B′j . Because B′j was chosen to be largest amongst all balls

that did not intersect B′1, . . . , B
′
j−1, we conclude that the radius of Bi

cannot exceed that of B′j . From the triangle inequality, this implies

that Bi ⊂ 3B′j , and the claim follows. �

Exercise 1.6.18. Technically speaking, the above algorithmic ar-

gument was not phrased in the standard language of formal mathe-

matical deduction, because in that language, any mathematical ob-

ject (such as the natural number m) can only be defined once, and

not redefined multiple times as is done in most algorithms. Rewrite

the above argument in a way that avoids redefining any variable.
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(Hint: introduce a “time” variable t, and recursively construct fam-

ilies B′1,t, . . . , B
′
mt,t of balls that represent the outcome of the above

algorithm after t iterations (or t∗ iterations, if the algorithm halted

at some previous time t∗ < t). For this particular algorithm, there

are also more ad hoc approaches that exploit the relatively simple

nature of the algorithm to allow for a less notationally complicated

construction.) More generally, it is possible to use this time parame-

ter trick to convert any construction involving a provably terminating

algorithm into a construction that does not redefine any variable. (It

is however dangerous to work with any algorithm that has an infinite

run time, unless one has a suitably strong convergence result for the

algorithm that allows one to take limits, either in the classical sense

or in the more general sense of jumping to limit ordinals; in the latter

case, one needs to use transfinite induction in order to ensure that

the use of such algorithms is rigorous; see §2.4 of An epsilon of room,

Vol. I.)

Remark 1.6.23. The actual Vitali covering lemma[Vi1908] is slightly

different to this one, but we will not need it here. Actually there is

a family of related covering lemmas which are useful for a variety of

tasks in harmonic analysis, see for instance [deG1981] for further

discussion.

Now we can prove the Hardy-Littlewood inequality, which we will

do with the constant Cd := 3d. It suffices to verify the claim with

strict inequality,

m({x ∈ Rd : sup
r>0

1

m(B(x, r))

∫

B(x,r)

|f(y)| dy > λ}) ≤ Cd

λ

∫

R

|f(t)| dt

as the non-strict case then follows by perturbing λ slightly and then

taking limits.

Fix f and λ. By inner regularity, it suffices to show that

m(K) ≤ 3d

λ

∫

R

|f(t)| dt

whenever K is a compact set that is contained in

{x ∈ Rd : sup
r>0

1

m(B(x, r))

∫

B(x,r)

|f(y)| dy > λ}.
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By construction, for every x ∈ K, there exists an open ballB(x, r)

such that

(1.28)
1

m(B(x, r))

∫

B(x,r)

|f(y)| dy > λ.

By compactness of K, we can cover K by a finite number B1, . . . , Bn

of such balls. Applying the Vitali-type covering lemma, we can find

a subcollection B′1, . . . , B
′
m of disjoint balls such that

m(
n
⋃

i=1

Bi) ≤ 3d
m
∑

j=1

m(B′j).

By (1.28), on each ball B′j we have

m(B′j) <
1

λ

∫

B′
j

|f(y)| dy;

summing in j and using the disjointness of the B′j we conclude that

m(
n
⋃

i=1

Bi) ≤
3d

λ

∫

Rd

|f(y)| dy.

Since the B1, . . . , Bn cover K, we obtain Theorem 1.6.20 as desired.

Exercise 1.6.19. Improve the constant 3d in the Hardy-Littlewood

maximal inequality to 2d. (Hint: observe that with the construction

used to prove the Vitali covering lemma, the centres of the balls Bi

are contained in
⋃m

j=1 2B
′
j and not just in

⋃m
j=1 3B

′
j . To exploit this

observation one may need to first create an epsilon of room, as the

centers are not by themselves sufficient to cover the required set.)

Remark 1.6.24. The optimal value of Cd is not known in general,

although a fairly recent result of Melas[Me2003] gives the surprising

conclusion that the optimal value of C1 is C1 = 11+
√
61

12 = 1.56 . . .. It

is known that Cd grows at most linearly in d, thanks to a result of

Stein and Strömberg[StSt1983], but it is not known if Cd is bounded

in d or grows as d → ∞.

Exercise 1.6.20 (Dyadic maximal inequality). If f : Rd → C is an

absolutely integrable function, establish the dyadic Hardy-Littlewood

maximal inequality

m({x ∈ Rd : sup
x∈Q

1

|Q|

∫

Q

|f(y)| dy ≥ λ}) ≤ 1

λ

∫

R

|f(t)| dt
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where the supremum ranges over all dyadic cubes Q that contain x.

(Hint: the nesting property of dyadic cubes will be useful when it

comes to the covering lemma stage of the argument, much as it was

in Exercise 1.1.14.)

Exercise 1.6.21 (Besicovich covering lemma in one dimension). Let

I1, . . . , In be a finite family of open intervals in R (not necessarily

disjoint). Show that there exist a subfamily I ′1, . . . , I
′
m of intervals

such that

(i)
⋃n

i=1 In =
⋃m

j=1 I
′
m; and

(ii) Each point x ∈ R is contained in at most two of the I ′m.

(Hint: First refine the family of intervals so that no interval Ii is

contained in the union of the the other intervals. At that point, show

that it is no longer possible for a point to be contained in three of

the intervals.) There is a variant of this lemma that holds in higher

dimensions, known as the Besicovitch covering lemma.

Exercise 1.6.22. Let µ be a Borel measure (i.e. a countably additive

measure on the Borel σ-algebra) on R, such that 0 < µ(I) < ∞ for

every interval I of positive length. Assume that µ is inner regular, in

the sense that µ(E) = supK⊂E, compact µ(K) for every Borel mea-

surable set E. (As it turns out, from the theory of Radon measures,

all locally finite Borel measures have this property, but we will not

prove this here; see §1.10 of An epsilon of room, Vol. I.) Establish

the Hardy-Littlewood maximal inequality

µ({x ∈ R : sup
x∈I

1

µ(I)

∫

I

|f(y)| dµ(y) ≥ λ}) ≤ 2

λ

∫

R

|f(y)| dµ(y)

for any absolutely integrable function f ∈ L1(µ), where the supremum

ranges over all open intervals I that contain x. Note that this essen-

tially generalises Exercise 1.6.11, in which µ is replaced by Lebesgue

measure. (Hint: Repeat the proof of the usual Hardy-Littlewood

maximal inequality, but use the Besicovich covering lemma in place

of the Vitali-type covering lemma. Why do we need the former lemma

here instead of the latter?)
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Exercise 1.6.23 (Cousin’s theorem). Prove Cousin’s theorem: given

any function δ : [a, b] → (0,+∞) on a compact interval [a, b] of positive

length, there exists a partition a = t0 < t1 < . . . < tk = b with k ≥ 1,

together with real numbers t∗j ∈ [tj−1, tj ] for each 1 ≤ j ≤ k and

tj − tj−1 ≤ δ(t∗j ). (Hint: use the Heine-Borel theorem, which asserts

that any open cover of [a, b] has a finite subcover, followed by the

Besicovitch covering lemma.) This theorem is useful in a variety of

applications related to the second fundamental theorem of calculus,

as we shall see below. The positive function δ is known as a gauge

function.

Now we turn to consequences of the Lebesgue differentiation the-

orem. Given a Lebesgue measurable set E ⊂ Rd, call a point x ∈ Rd

a point of density for E if m(E∩B(x,r))
m(B(x,r)) → 1 as r → 0. Thus, for in-

stance, if E = [−1, 1]\{0}, then every point in (−1, 1) (including the

boundary point 0) is a point of density for E, but the endpoints −1, 1

(as well as the exterior of E) are not points of density. One can think

of a point of density as being an “almost interior” point of E; it is

not necessarily the case that one can fit an small ball B(x, r) centred

at x inside of E, but one can fit most of that small ball inside E.

Exercise 1.6.24. If E ⊂ Rd is Lebesgue measurable, show that

almost every point in E is a point of density for E, and almost every

point in the complement of E is not a point of density for E.

Exercise 1.6.25. Let E ⊂ Rd be a measurable set of positive mea-

sure, and let ε > 0.

(i) Using Exercise 1.6.15 and Exercise 1.6.24, show that there

exists a cube Q ⊂ Rd of positive sidelength such that m(E∩
Q) > (1− ε)m(Q).

(ii) Give an alternate proof of the above claim that avoids the

Lebesgue differentiation theorem. (Hint: reduce to the case

when E is bounded, then approximate E by an almost dis-

joint union of cubes.)

(iii) Use the above result to give an alternate proof of the Stein-

haus theorem (Exercise 1.6.8).
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Of course, one can replace cubes here by other comparable shapes,

such as balls. (Indeed, a good principle to adopt in analysis is that

cubes and balls are “equivalent up to constants”, in that a cube of

some sidelength can be contained in a ball of comparable radius, and

vice versa. This type of mental equivalence is analogous to, though

not identical with, the famous dictum that a topologist cannot dis-

tinguish a doughnut from a coffee cup.)

Exercise 1.6.26. (i) Give an example of a compact set K ⊂
R of positive measure such that m(K ∩ I) < |I| for every

interval I of positive length. (Hint: first construct an open

dense subset of [0, 1] of measure strictly less than 1.)

(ii) Give an example of a measurable set E ⊂ R such that

0 < m(E ∩ I) < |I| for every interval I of positive length.

(Hint: first work in a bounded interval, such as (−1, 2). The

complement of the set K in the first example is the union of

at most countably many open intervals, thanks to Exercise

1.6.10. Now fill in these open intervals and iterate.)

Exercise 1.6.27 (Approximations to the identity). Define a good

kernel15 to be a measurable function P : Rd → R+ which is non-

negative, radial (which means that there is a function P̃ : [0,+∞) →
R+ such that P (x) = P̃ (|x|)), radially non-increasing (so that P̃ is a

non-increasing function), and has total mass
∫

Rd P (x) dx equal to 1.

The functions Pt(x) :=
1
td
P (xt ) for t > 0 are then said to be a good

family of approximations to the identity.

(i) Show that the heat kernels16 Pt(x) :=
1

(4πt2)d/2
e−|x|

2/4t2 and

Poisson kernels Pt(x) := cd
t

(t2+|x|2)(d+1)/2 are good families

of approximations to the identity, if the constant cd > 0 is

chosen correctly (in fact one has cd = Γ((d+1)/2)/π(d+1)/2,

but you are not required to establish this).

15Different texts have slightly different notions of what a good kernel is; the
“right” class of kernels to consider depends to some extent on what type of convergence
results one is interested in (e.g. almost everywhere convergence, convergence in L1 or
L∞ norm, etc.), and on what hypotheses one wishes to place on the original function
f .

16Note that we have modified the usual formulation of the heat kernel by replacing
t with t2 in order to make it conform to the notational conventions used in this exercise.
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(ii) Show that if P is a good kernel, then

cd <
∞
∑

n=−∞
2dnP̃ (2n) ≤ Cd

for some constants 0 < cd < Cd depending only on d. (Hint:

compare P with such “horizontal wedding cake” functions

as
∑∞

n=−∞ 12n−1<|x|≤2n P̃ (2n).)

(iii) Establish the quantitative upper bound

|
∫

Rd

f(y)Pt(x− y) dy| ≤ C ′d sup
r>0

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy

for any absolutely integrable function f and some constant

C ′d > 0 depending only on d.

(iv) Show that if f : Rd → C is absolutely integrable and x is a

Lebesgue point of f , then the convolution

f ∗ Pt(x) :=

∫

Rd

f(y)Pt(x− y) dy

converges to f(x) as t → 0. (Hint: split f(y) as the sum

of f(x) and f(y) − f(x).) In particular, f ∗ Pt converges

pointwise almost everywhere to f .

1.6.3. Almost everywhere differentiability. As we see in under-

graduate real analysis, not every continuous function f : R → R is

differentiable, with the standard example being the absolute value

function f(x) := |x|, which is continuous not differentiable at the

origin x = 0. Of course, this function is still almost everywhere dif-

ferentiable. With a bit more effort, one can construct continuous

functions that are in fact nowhere differentiable:

Exercise 1.6.28 (Weierstrass function). Let F : R → R be the func-

tion

F (x) :=
∞
∑

n=1

4−n sin(8nπx).

(i) Show that F is well-defined (in the sense that the series is

absolutely convergent) and that F is a bounded continuous

function.
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(ii) Show that for every 8-dyadic interval [ j
8n ,

j+1
8n ] with n ≥ 1,

one has |F ( j+1
8n )−F ( j

8n )| ≥ c4−n for some absolute constant

c > 0.

(iii) Show that F is not differentiable at any point x ∈ R. (Hint:

argue by contradiction and use the previous part of this

exercise.) Note that it is not enough to formally differentiate

the series term by term and observe that the resulting series

is divergent - why not?

The difficulty here is that a continuous function can still contain a

large amount of oscillation, which can lead to breakdown of differen-

tiability. However, if one can somehow limit the amount of oscillation

present, then one can often recover a fair bit of differentiability. For

instance, we have

Theorem 1.6.25 (Monotone differentiation theorem). Any function

F : R → R which is monotone (either monotone non-decreasing or

monotone non-increasing) is differentiable almost everywhere.

Exercise 1.6.29. Show that every monotone function is measurable.

To prove this theorem, we just treat the case when F is mono-

tone non-decreasing, as the non-increasing case is similar (and can be

deduced from the non-decreasing case by replacing F with −F ).

We also first focus on the case when F is continuous, as this allows

us to use the rising sun lemma. To understand the differentiability of

F , we introduce the four Dini derivatives of F at x:

(i) The upper right derivativeD+F (x) := lim suph→0+
F (x+h)−F (x)

h ;

(ii) The lower right derivativeD+F (x) := lim infh→0+
F (x+h)−F (x)

h ;

(iii) The upper left derivativeD−F (x) := lim suph→0−
F (x+h)−F (x)

h ;

(iv) The lower right derivativeD−F (x) := lim infh→0−
F (x+h)−F (x)

h .

Regardless of whether F is differentiable or not (or even whether F

is continuous or not), the four Dini derivatives always exist and take

values in the extended real line [−∞,∞]. (If F is only defined on an

interval [a, b], rather than on the endpoints, then some of the Dini
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derivatives may not exist at the endpoints, but this is a measure zero

set and will not impact our analysis.)

Exercise 1.6.30. If F is monotone, show that the four Dini deriva-

tives of F are measurable. (Hint: the main difficulty is to reformulate

the derivatives so that h ranges over a countable set rather than an

uncountable one.)

A function F is differentiable at x precisely when the four deriva-

tives are equal and finite:

(1.29) D+F (x) = D+F (x) = D−F (x) = D−F (x) ∈ (−∞,+∞).

We also have the trivial inequalities

D+F (x) ≤ D+F (x); D−F (x) ≤ D−F (x).

If F is non-decreasing, all these quantities are non-negative, thus

0 ≤ D+F (x) ≤ D+F (x); 0 ≤ D−F (x) ≤ D−F (x).

The one-sided Hardy-Littlewood maximal inequality has an ana-

logue in this setting:

Lemma 1.6.26 (One-sided Hardy-Littlewood inequality). Let F : [a, b] →
R be a continuous monotone non-decreasing function, and let λ > 0.

Then we have

m({x ∈ [a, b] : D+F (x) ≥ λ}) ≤ F (b)− F (a)

λ
.

Similarly for the other three Dini derivatives of F .

If F is not assumed to be continuous, then we have the weaker

inequality

m({x ∈ [a, b] : D+F (x) ≥ λ}) ≤ C
F (b)− F (a)

λ
for some absolute constant C > 0.

Remark 1.6.27. Note that if one naively applies the fundamental

theorems of calculus, one can formally see that the first part of Lemma

1.6.26 is equivalent to Lemma 1.6.16. We cannot however use this

argument rigorously because we have not established the necessary

fundamental theorems of calculus to do this. Nevertheless, we can

borrow the proof of Lemma 1.6.16 without difficulty to use here, and

this is exactly what we will do.
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Proof. We just prove the continuous case and leave the discontinuous

case as an exercise.

It suffices to prove the claim for D+F ; by reflection (replacing

F (x) with −F (−x), and [a, b] with [−b,−a]), the same argument

works for D−F , and then this trivially implies the same inequalities

for D+F and D−F . By modifying λ by an epsilon, and dropping the

endpoints from [a, b] as they have measure zero, it suffices to show

that

m({x ∈ (a, b) : D+F (x) > λ}) ≤ F (b)− F (a)

λ

Wemay apply the rising sun lemma (Lemma 1.6.17) to the contin-

uous function G(x) := F (x)−λx. This gives us an at most countable

family of intervals In = (an, bn) in (a, b), such that G(bn) ≥ G(an)

for each n, and such that G(y) ≤ G(x) whenever a ≤ x ≤ y ≤ b and

x lies outside of all of the In.

Observe that if x ∈ (a, b), and G(y) ≤ G(x) for all x ≤ y ≤ b, then

D+F (x) ≤ λ. Thus we see that the set {x ∈ (a, b) : D+F (x) > λ} is

contained in the union of the In, and so by countable additivity

m({x ∈ (a, b) : D+F (x) > λ}) ≤
∑

n

bn − an.

But we can rearrange the inequality G(bn) ≤ G(an) as bn − an ≤
F (bn)−F (an)

λ . From telescoping series and the monotone nature of F

we have
∑

n F (bn)−F (an) ≤ F (b)−F (a) (this is easiest to prove by

first working with a finite subcollection of the intervals (an, bn), and

then taking suprema), and the claim follows.

The discontinuous case is left as an exercise. �

Exercise 1.6.31. Prove Lemma 1.6.26 in the discontinuous case.

(Hint: the rising sun lemma is no longer available, but one can use

either the Vitali-type covering lemma (which will give C = 3) or the

Besicovitch lemma (which will give C = 2), by modifying the proof

of Theorem 1.6.20.

Sending λ → ∞ in the above lemma (cf. Exercise 1.3.18), and

then sending [a, b] to R, we conclude as a corollary that all the four

Dini derivatives of a continuous monotone non-decreasing function are

finite almost everywhere. So to prove Theorem 1.6.25 for continuous
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monotone non-decreasing functions, it suffices to show that (1.29)

holds for almost every x. In view of the trivial inequalities, it suffices

to show that D+F (x) ≤ D−F (x) and D−F (x) ≤ D+F (x) for almost

every x. We will just show the first inequality, as the second follows

by replacing F with its reflection x 7→ −F (−x). It will suffice to show

that for every pair 0 < r < R of real numbers, the set

E = Er,R := {x ∈ R : D+F (x) > R > r > D−F (x)}
is a null set, since by letting R, r range over rationals with R > r > 0

and taking countable unions, we would conclude that the set {x ∈ R :

D+F (x) > D−F (x)} is a null set (recall that the Dini derivatives are

all non-negative when F is non-decreasing), and the claim follows.

Clearly E is a measurable set. To prove that it is null, we will

establish the following estimate:

Lemma 1.6.28 (E has density less than one). For any interval [a, b]

and any 0 < r < R, one has m(Er,R ∩ [a, b]) ≤ r
R |b− a|.

Indeed, this lemma implies that E has no points of density, which

by Exercise 1.6.24 forces E to be a null set.

Proof. We begin by applying the rising sun lemma to the function

G(x) := rx+ F (−x) on [−b,−a]; the large number of negative signs

present here is needed in order to properly deal with the lower left Dini

derivative D−F . This gives an at most countable family of disjoint

intervals −In = (−bn,−an) in (−b,−a), such that G(−an) ≥ G(−bn)

for all n, and such thatG(−x) ≤ G(−y) whenever−x ≤ −y ≤ −a and

−x ∈ (−b,−a) lies outside of all of the −In. Observe that if x ∈ (a, b),

and G(−x) ≤ G(−y) for all −x ≤ −y ≤ −a, then D−F (x) ≥ r.

Thus we see that Er,R is contained inside the union of the intervals

In = (an, bn). On the other hand, from the first part of Lemma 1.6.26

we have

m(Er,R ∩ (an, bn)) ≤
F (bn)− F (an)

R
.

But we can rearrange the inequality G(−an) ≤ G(−bn) as F (bn) −
F (an) ≤ r(bn − an). From countable additivity, one thus has

m(Er,R) ≤
r

R

∑

n

bn − an.
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But the (an, bn) are disjoint inside (a, b), so from countable additivity

again, we have
∑

n bn − an ≤ b− a, and the claim follows. �

Remark 1.6.29. Note if F was not assumed to be continuous, then

one would lose a factor of C here from the second part of Lemma

1.6.26, and one would then be unable to prevent D+F from being up

to C times as large as D−F . So sometimes, even when all one is seek-

ing is a qualitative result such as differentiability, it is still important

to keep track of constants. (But this is the exception rather than the

rule: for a large portion of arguments in analysis, the constants are

not terribly important.)

This concludes the proof of Theorem 1.6.25 in the continuous

monotone non-decreasing case. Now we work on removing the conti-

nuity hypothesis (which was needed in order to make the rising sun

lemma work properly). If we naively try to run the density argument

as we did in previous sections, then (for once) the argument does not

work very well, as the space of continuous monotone functions are not

sufficiently dense in the space of all monotone functions in the rele-

vant sense (which, in this case, is in the total variation sense, which is

what is needed to invoke such tools as Lemma 1.6.26.). To bridge this

gap, we have to supplement the continuous monotone functions with

another class of monotone functions, known as the jump functions.

Definition 1.6.30 (Jump function). A basic jump function J is a

function of the form

J(x) :=







0 when x < x0

θ when x = x0

1 when x > x0

for some real numbers x0 ∈ R and 0 ≤ θ ≤ 1; we call x0 the point of

discontinuity for J and θ the fraction. Observe that such functions

are monotone non-decreasing, but have a discontinuity at one point.

A jump function is any absolutely convergent combination of basic

jump functions, i.e. a function of the form F =
∑

n cnJn, where n

ranges over an at most countable set, each Jn is a basic jump function,

and the cn are positivereals with
∑

n cn < ∞. If there are only finitely

many n involved, we say that F is a piecewise constant jump function.
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Thus, for instance, if q1, q2, q3, . . . is any enumeration of the ra-

tionals, then
∑∞

n=1 2
−n1[qn,+∞) is a jump function.

Clearly, all jump functions are monotone non-decreasing. From

the absolute convergence of the cn we see that every jump function is

the uniform limit of piecewise constant jump functions, for instance
∑∞

n=1 cnJn is the uniform limit of
∑N

n=1 cnJn. One consequence of

this is that the points of discontinuity of a jump function
∑∞

n=1 cnJn
are precisely those of the individual summands cnJn, i.e. of the points

xn where each Jn jumps.

The key fact is that these functions, together with the continuous

monotone functions, essentially generate all monotone functions, at

least in the bounded case:

Lemma 1.6.31 (Continuous-singular decomposition for monotone

functions). Let F : R → R be a monotone non-decreasing function.

(i) The only discontinuities of F are jump discontinuities. More

precisely, if x is a point where F is discontinuous, then the

limits limy→x− F (y) and limy→x+ F (y) both exist, but are

unequal, with limy→x− F (y) < limy→x+ F (y).

(ii) There are at most countably many discontinuities of F .

(iii) If F is bounded, then F can be expressed as the sum of

a continuous monotone non-decreasing function Fc and a

jump function Fpp.

Remark 1.6.32. This decomposition is part of the more general

Lebesgue decomposition, discussed in §1.2 of An epsilon of room, Vol.

I.

Proof. By monotonicity, the limits F−(x) := limy→x− F (y) and F+(x) :=

limy→x+ F (y) always exist, with F−(x) ≤ F (x) ≤ F+(x) for all x.

This gives (i).

By (i), whenever there is a discontinuity x of F , there is at least

one rational number qx strictly between F−(x) and F+(x), and from

monotonicity, each rational number can be assigned to at most one

discontinuity. This gives (ii).
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Now we prove (iii). Let A be the set of discontinuities of F ,

thus A is at most countable. For each x ∈ A, we define the jump

cx := F+(x)−F−(x) > 0, and the fraction θx := F (x)−F−(x)
F+(x)−F−(x) ∈ [0, 1].

Thus

F+(x) = F−(x) + cx and F (x) = F−(x) + θxcx.

Note that cx is the measure of the interval (F−(x), F+(x)). By

monotonicity, these intervals are disjoint; by the boundedness of F ,

their union is bounded. By countable additivity, we thus have
∑

x∈A cx <

∞, and so if we let Jx be the basic jump function with point of dis-

continuity x and fraction θx, then the function

Fpp :=
∑

x∈A
cxJx

is a jump function.

As discussed previously, G is discontinuous only at A, and for

each x ∈ A one easily checks that

(Fpp)+(x) = (Fpp)−(x) + cx and Fpp(x) = (Fpp)−(x) + θxcx

where (Fpp)−(x) := limy→x− Fpp(y), and (Fpp)+(x) := limy→x+ Fpp(y).

We thus see that the difference Fc := F −Fpp is continuous. The only

remaining task is to verify that Fc is monotone non-decreasing, thus

we need

Fpp(b)− Fpp(a) ≤ F (b)− F (a)

for all a < b. But the left-hand side can be rewritten as
∑

x∈A∩[a,b] cx.
As each cx is the measure of the interval (F−(x), F+(x)), and these

intervals for x ∈ A ∩ [a, b] are disjoint and lie in (F (a), F (b)), the

claim follows from countable additivity. �

Exercise 1.6.32. Show that the decomposition of a bounded mono-

tone non-decreasing function F into continuous Fc and jump compo-

nents Fpp given by the above lemma is unique.

Exercise 1.6.33. Find a suitable generalisation of the notion of a

jump function that allows one to extend the above decomposition to

unbounded monotone functions, and then prove this extension. (Hint:

the notion to shoot for here is that of a “locally jump function”.)
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Now we can finish the proof of Theorem 1.6.25. As noted pre-

viously, it suffices to prove the claim for monotone non-decreasing

functions. As differentiability is a local condition, we can easily re-

duce to the case of bounded monotone non-decreasing functions, since

to test differentiability of a monotone non-decreasing function F in

any compact interval [a, b] we may replace F by the bounded mono-

tone non-decreasing function max(min(F, F (b)), F (a)) with no change

in the differentiability in [a, b] (except perhaps at the endpoints a, b,

but these form a set of measure zero). As we have already proven

the claim for continuous functions, it suffices by Lemma 1.6.31 (and

linearity of the derivative) to verify the claim for jump functions.

Now, finally, we are able to use the density argument, using the

piecewise constant jump functions as the dense subclass, and using

the second part of Lemma 1.6.26 for the quantitative estimate; for-

tunately for us, the density argument does not particularly care that

there is a loss of a constant factor in this estimate.

For piecewise constant jump functions, the claim is clear (indeed,

the derivative exists and is zero outside of finitely many discontinu-

ities). Now we run the density argument. Let F be a bounded jump

function, and let ε > 0 and λ > 0 be arbitrary. As every jump function

is the uniform limit of piecewise constant jump functions, we can find

a piecewise constant jump function Fε such that |F (x) − Fε(x)| ≤ ε

for all x. Indeed, by taking Fε to be a partial sum of the basic jump

functions that make up F , we can ensure that F −Fε is also a mono-

tone non-decreasing function. Applying the second part of Lemma

1.6.26, we have

{x ∈ R : D+(F − Fε)(x) ≥ λ} ≤ 2Cε

λ

for some absolute constant C, and similarly for the other four Dini

derivatives. Thus, outside of a set of measure at most 8Cε/λ, all

of the Dini derivatives of F − Fε are less than λ. Since F ′ε is almost

everywhere differentiable, we conclude that outside of a set of measure

at most 8Cε/λ, all the Dini derivatives of F (x) lie within λ of F ′ε(x),
and in particular are finite and lie within 2λ of each other. Sending

ε to zero (holding λ fixed), we conclude that for almost every x, the

Dini derivatives of F are finite and lie within 2λ of each other. If
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we then send λ to zero, we see that for almost every x, the Dini

derivatives of F agree with each other and are finite, and the claim

follows. This concludes the proof of Theorem 1.6.25.

Just as the integration theory of unsigned functions can be used to

develop the integration theory of the absolutely convergent functions

(see Section 1.3.4), the differentiation theory of monotone functions

can be used to develop a parallel differentiation theory for the class

of functions of bounded variation:

Definition 1.6.33 (Bounded variation). Let F : R → R be a func-

tion. The total variation ‖F‖TV (R) (or ‖F‖TV for short) of F is

defined to be the supremum

‖F‖TV (R) := sup
x0<...<xn

n
∑

i=1

|F (xi)− F (xi+1)|

where the supremum ranges over all finite increasing sequences x0, . . . , xn

of real numbers with n ≥ 0; this is a quantity in [0,+∞]. We say

that F has bounded variation (on R) if ‖F‖TV (R) is finite. (In this

case, ‖F‖TV (R) is often written as ‖F‖BV (R) or just ‖F‖BV .)

Given any interval [a, b], we define the total variation ‖F‖TV ([a,b])

of F on [a, b] as

‖F‖TV ([a,b]) := sup
a≤x0<...<xn≤b

n
∑

i=1

|F (xi)− F (xi+1)|;

thus the definition is the same, but the points x0, . . . , xn are restricted

to lie in [a, b]. Thus for instance ‖F‖TV (R) = supN→∞ ‖F‖TV ([−N,N ]).

We say that a function F has bounded variation on [a, b] if ‖F‖BV ([a,b])

is finite.

Exercise 1.6.34. If F : R → R is a monotone function, show that

‖F‖TV ([a,b]) = |F (b) − F (a)| for any interval [a, b], and that F has

bounded variation on R if and only if it is bounded.

Exercise 1.6.35. For any functions F,G : R → R, establish the

triangle property ‖F + G‖TV (R) ≤ ‖F‖TV (R) + ‖G‖TV (R) and the

homogeneity property ‖cF‖TV (R) = |c|‖F‖TV (R) for any c ∈ R. Also

show that ‖F‖TV = 0 if and only if F is constant.
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Exercise 1.6.36. If F : R → R is a function, show that ‖F‖TV ([a,b])+

‖F‖TV ([b,c]) = ‖F‖TV ([a,c]) whenever a ≤ b ≤ c.

Exercise 1.6.37. (i) Show that every function f : R → R of

bounded variation is bounded, and that the limits limx→+∞ f(x)

and limx→−∞ f(x), are well-defined.

(ii) Give a counterexample of a bounded, continuous, compactly

supported function f that is not of bounded variation.

Exercise 1.6.38. Let f : R → R be an absolutely integrable func-

tion, and let F : R → R be the indefinite integral F (x) :=
∫

[−∞,x]
f(x).

Show that F is of bounded variation, and that ‖F‖TV (R) = ‖f‖L1(R).

(Hint: the upper bound ‖F‖TV (R) ≤ ‖f‖L1(R) is relatively easy to

establish. To obtain the lower bound, use the density argument.)

Much as an absolutely integrable function can be expressed as

the difference of its positive and negative parts, a bounded variation

function can be expressed as the difference of two bounded monotone

functions:

Proposition 1.6.34. A function F : R → R is of bounded variation

if and only if it is the difference of two bounded monotone functions.

Proof. It is clear from Exercises 1.6.34, 1.6.35 that the difference of

two bounded monotone functions is bounded. Now define the positive

variation F+ : R → R of F by the formula

(1.30) F+(x) := sup
x0<...<xn≤x

n
∑

i=1

max(F (xi+1)− F (xi), 0).

It is clear from construction that this is a monotone increasing func-

tion, taking values between 0 and ‖F‖TV (R), and is thus bounded. To

conclude the proposition, it suffices to (by writing F = F+−(F+−F−)
to show that F+−F is non-decreasing, or in other words to show that

F+(b) ≥ F+(a) + F (b)− F (a).

If F (b)− F (a) is negative then this is clear from the monotone non-

decreasing nature of F+, so assume that F (b)− F (a) ≥ 0. But then

the claim follows because any sequence of real numbers x0 < . . . <

xn ≤ a can be extended by one or two elements by adding a and b,
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thus increasing the sum supx0<...<xn

∑n
i=1 max(F (xi) − F (xi+1), 0)

by at least F (b)− F (a). �

Exercise 1.6.39. Let F : R → R be of bounded variation. Define

the positive variation F+ by (1.30), and the negative variation F−

by

F−(x) := sup
x0<...<xn≤x

n
∑

i=1

max(−F (xi+1) + F (xi), 0).

Establish the identities

F (x) = F (−∞) + F+(x)− F−(x),

‖F‖TV [a,b] = F+(b)− F+(a) + F−(b)− F−(a),

and

‖F‖TV = F+(+∞) + F−(+∞)

for every interval [a, b], where F (−∞) := limx→−∞ F (x), F+(+∞) :=

limx→+∞ F+(x), and F−(+∞) := limx→+∞ F−(x). (Hint: The main

difficulty comes from the fact that a partition x0 < . . . < xn ≤ x that

is good for F+ need not be good for F−, and vice versa. However, this

can be fixed by taking a good partition for F+ and a good partition

for F− and combining them together into a common refinement.)

From Proposition 1.6.34 and Theorem 1.6.25 we immediately ob-

tain

Corollary 1.6.35 (BV differentiation theorem). Every bounded vari-

ation function is differentiable almost everywhere.

Exercise 1.6.40. Call a function locally of bounded variation if it

is of bounded variation on every compact interval [a, b]. Show that

every function that is locally of bounded variation is differentiable

almost everywhere.

Exercise 1.6.41 (Lipschitz differentiation theorem, one-dimensional

case). A function f : R → R is said to be Lipschitz continuous if

there exists a constant C > 0 such that |f(x) − f(y)| ≤ C|x − y| for
all x, y ∈ R; the smallest C with this property is known as the Lip-

schitz constant of f . Show that every Lipschitz continuous function
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F is locally of bounded variation, and hence differentiable almost ev-

erywhere. Furthermore, show that the derivative F ′, when it exists,

is bounded in magnitude by the Lipschitz constant of F .

Remark 1.6.36. The same result is true in higher dimensions, and

is known as the Rademacher differentiation theorem, but we will defer

the proof of this theorem to Section 2.2, when we have the powerful

tool of the Fubini-Tonelli theorem (Corollary 1.7.23) available, that is

particularly useful for deducing higher-dimensional results in analysis

from lower-dimensional ones.

Exercise 1.6.42. A function f : R → R is said to be convex if one

has f((1− t)x+ ty) ≤ (1− t)f(x)+ tf(y) for all x < y and 0 < t < 1.

Show that if f is convex, then it is continuous and almost everywhere

differentiable, and its derivative f ′ is equal almost everywhere to a

monotone non-decreasing function, and so is itself almost everywhere

differentiable. (Hint: Drawing the graph of f , together with a number

of chords and tangent lines, is likely to be very helpful in providing

visual intuition.) Thus we see that in some sense, convex functions

are “almost everywhere twice differentiable”. Similar claims also hold

for concave functions, of course.

1.6.4. The second fundamental theorem of calculus. We are

now finally ready to attack the second fundamental theorem of cal-

culus in the cases where F is not assumed to be continuously differ-

entiable. We begin with the case when F : [a, b] → R is monotone

non-decreasing. From Theorem 1.6.25 (extending F to the rest of the

real line if needed), this implies that F is differentiable almost every-

where in [a, b], so F ′ is defined a.e.; from monotonicity we see that F ′

is non-negative whenever it is defined. Also, an easy modification of

Exercise 1.6.1 shows that F ′ is measurable.

One half of the second fundamental theorem is easy:

Proposition 1.6.37 (Upper bound for second fundamental theo-

rem). Let F : [a, b] → R be monotone non-decreasing (so that, as

discussed above, F ′ is defined almost everywhere, is unsigned, and is

measurable). Then
∫

[a,b]

F ′(x) dx ≤ F (b)− F (a).
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In particular, F ′ is absolutely integrable.

Proof. It is convenient to extend F to all of R by declaring F (x) :=

F (b) for x > b and F (x) := F (a) for x < a, then F is now a bounded

monotone function on R, and F ′ vanishes outside of [a, b]. As F is

almost everywhere differentiable, the Newton quotients

fn(x) :=
F (x+ 1/n)− F (x)

1/n

converge pointwise almost everywhere to F ′. Applying Fatou’s lemma

(Corollary1.4.47), we conclude that
∫

[a,b]

F ′(x) dx ≤ lim inf
n→∞

∫

[a,b]

F (x+ 1/n)− F (x)

1/n
dx.

The right-hand side can be rearranged as

lim inf
n→∞

n(

∫

[a+1/n,b+1/n]

F (y) dy −
∫

[a,b]

F (x) dx)

which can be rearranged further as

lim inf
n→∞

n(

∫

[b,b+1/n]

F (x) dx−
∫

[a,a+1/n]

F (x) dx).

Since F is equal to F (b) for the first integral and is at least F (a) for

the second integral, this expression is at most

≤ lim inf
n→∞

n(F (b)/n− F (a)/n) = F (b)− F (a)

and the claim follows. �

Exercise 1.6.43. Show that any function of bounded variation has

an (almost everywhere defined) derivative that is absolutely inte-

grable.

In the Lipschitz case, one can do better:

Exercise 1.6.44 (Second fundamental theorem for Lipschitz func-

tions). Let F : [a, b] → R be Lipschitz continuous. Show that
∫

[a,b]
F ′(x) dx =

F (b)− F (a). (Hint: Argue as in the proof of Proposition 1.6.37, but

use the dominated convergence theorem (Theorem 1.4.49) in place of

Fatou’s lemma (Corollary1.4.47).)

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.6. Differentiation theorems 169

Exercise 1.6.45 (Integration by parts formula). Let F,G : [a, b] → R

be Lipschitz continuous functions. Show that
∫

[a,b]

F ′(x)G(x) dx = F (b)G(b)− F (a)G(a)

−
∫

[a,b]

F (x)G′(x) dx.

(Hint: first show that the product of two Lipschitz continuous func-

tions on [a, b] is again Lipschitz continuous.)

Now we return to the monotone case. Inspired by the Lipschitz

case, one may hope to recover equality in Proposition 1.6.37 for such

functions F . However, there is an important obstruction to this,

which is that all the variation of F may be concentrated in a set of

measure zero, and thus undetectable by the Lebesgue integral of F ′.
This is most obvious in the case of a discontinuous monotone function,

such as the (appropriately named) Heaviside function F := 1[0,+∞);

it is clear that F ′ vanishes almost everywhere, but F (b) − F (a) is

not equal to
∫

[a,b]
F ′(x) dx if b and a lie on opposite sides of the

discontinuity at 0. In fact, the same problem arises for all jump

functions:

Exercise 1.6.46. Show that if F is a jump function, then F ′ vanishes
almost everywhere. (Hint: use the density argument, starting from

piecewise constant jump functions and using Proposition 1.6.37 as the

quantitative estimate.)

One may hope that jump functions - in which all the fluctua-

tion is concentrated in a countable set - are the only obstruction to

the second fundamental theorem of calculus holding for monotone

functions, and that as long as one restricts attention to continuous

monotone functions, that one can recover the second fundamental

theorem. However, this is still not true, because it is possible for

all the fluctuation to now be concentrated, not in a countable collec-

tion of jump discontinuities, but instead in an uncountable set of zero

measure, such as the middle thirds Cantor set (Exercise 1.2.9). This

can be illustrated by the key counterexample of the Cantor function,

also known as the Devil’s staircase function. The construction of this

function is detailed in the exercise below.
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Exercise 1.6.47 (Cantor function). Define the functions F0, F1, F2, . . . : [0, 1] →
R recursively as follows:

1. Set F0(x) := x for all x ∈ [0, 1].

2. For each n = 1, 2, . . . in turn, define

Fn(x) :=







1
2Fn−1(3x) if x ∈ [0, 1/3];
1
2 if x ∈ (1/3, 2/3);
1
2 + 1

2Fn−1(3x− 2) if x ∈ [2/3, 1]

(i) Graph F0, F1, F2, and F3 (preferably on a single graph).

(ii) Show that for each n = 0, 1, . . ., Fn is a continuous monotone

non-decreasing function with Fn(0) = 0 and Fn(1) = 1.

(Hint: induct on n.)

(iii) Show that for each n = 0, 1, . . ., one has |Fn+1(x)−Fn(x)| ≤
2−n for each x ∈ [0, 1]. Conclude that the Fn converge

uniformly to a limit F : [0, 1] → R. This limit is known as

the Cantor function.

(iv) Show that the Cantor function F is continuous and mono-

tone non-decreasing, with F (0) = 0 and F (1) = 1.

(v) Show that if x ∈ [0, 1] lies outside the middle thirds Can-

tor set (Exercise 1.2.9), then F is constant in a neighbour-

hood of x, and in particular F ′(x) = 0. Conclude that
∫

[0,1]
F ′(x) dx = 0 6= 1 = F (1) − F (0), so that the second

fundamental theorem of calculus fails for this function.

(vi) Show that F (
∑∞

n=1 an3
−n) =

∑∞
n=1

an

2 2−n for any digits

a1, a2, . . . ∈ {0, 2}. Thus the Cantor function, in some sense,

converts base three expansions to base two expansions.

(1) Let I = [
∑n

i=1
ai

3i ,
∑n

i=1
ai

3i +
1
3n ] be one of the intervals used

in the nth cover In of C (see Exercise 1.2.9), thus n ≥ 0 and

a1, . . . , an ∈ {0, 2}. Show that I is an interval of length 3−n,
but F (I) is an interval of length 2−n.

(2) Show that F is not differentiable at any element of the Can-

tor set C.

Remark 1.6.38. This example shows that the classical derivative

F ′(x) := limh→0;h 6=0
F (x+h)−F (x)

h of a function has some defects; it

cannot “see” some of the variation of a continuous monotone function
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such as the Cantor function. In §1.13 of An epsilon of room, Vol. I,

this will be rectified by introducing the concept of the weak derivative

of a function, which despite the name, is more able than the strong

derivative to detect this type of singular variation behaviour. (We will

also encounter in Section 1.7.3 the Lebesgue-Stieltjes integral, which

is another (closely related) way to capture all of the variation of a

monotone function, and which is related to the classical derivative

via the Lebesgue-Radon-Nikodym theorem, see §1.2 of An epsilon of

room, Vol. I.)

In view of this counterexample, we see that we need to add an ad-

ditional hypothesis to the continuous monotone non-increasing func-

tion F before we can recover the second fundamental theorem. One

such hypothesis is absolute continuity. To motivate this definition, let

us recall two existing definitions:

(i) A function F : R → R is continuous if, for every ε > 0 and

x0 ∈ R, there exists a δ > 0 such that |F (b) − F (a)| ≤
ε whenever (a, b) is an interval of length at most δ that

contains x0.

(ii) A function F : R → R is uniformly continuous if, for every

ε > 0, there exists a δ > 0 such that |F (b) − F (a)| ≤ ε

whenever (a, b) is an interval of length at most δ.

Definition 1.6.39. A function F : R → R is said to be absolutely

continuous if, for every ε > 0, there exists a δ > 0 such that
∑n

j=1 |F (bj)−
F (aj)| ≤ ε whenever (a1, b1), . . . , (an, bn) is a finite collection of dis-

joint intervals of total length
∑n

j=1 bj − aj at most δ.

We define absolute continuity for a function F : [a, b] → R defined

on an interval [a, b] similarly, with the only difference being that the

intervals [aj , bj ] are of course now required to lie in the domain [a, b]

of F .

The following exercise places absolute continuity in relation to

other regularity properties:

Exercise 1.6.48. (i) Show that every absolutely continuous

function is uniformly continuous and therefore continuous.
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(ii) Show that every absolutely continuous function is of bounded

variation on every compact interval [a, b]. (Hint: first show

this is true for any sufficiently small interval.) In particu-

lar (by Exercise 1.6.40), absolutely continuous functions are

differentiable almost everywhere.

(iii) Show that every Lipschitz continuous function is absolutely

continuous.

(iv) Show that the function x 7→ √
x is absolutely continuous,

but not Lipschitz continuous, on the interval [0, 1].

(v) Show that the Cantor function from Exercise 1.6.47 is con-

tinuous, monotone, and uniformly continuous, but not ab-

solutely continuous, on [0, 1].

(vi) If f : R → R is absolutely integrable, show that the indef-

inite integral F (x) :=
∫

[−∞,x]
f(y) dy is absolutely contin-

uous, and that F is differentiable almost everywhere with

F ′(x) = f(x) for almost every x.

(vii) Show that the sum or product of two absolutely continuous

functions on an interval [a, b] remains absolutely continuous.

What happens if we work on R instead of on [a, b]?

Exercise 1.6.49. (i) Show that absolutely continuous functions

map null sets to null sets, i.e. if F : R → R is absolutely

continuous and E is a null set then F (E) := {F (x) : x ∈ E}
is also a null set.

(ii) Show that the Cantor function does not have this property.

For absolutely continuous functions, we can recover the second

fundamental theorem of calculus:

Theorem 1.6.40 (Second fundamental theorem for absolutely con-

tinuous functions). Let F : [a, b] → R be absolutely continuous. Then
∫

[a,b]
F ′(x) dx = F (b)− F (a).

Proof. Our main tool here will be Cousin’s theorem (Exercise 1.6.23).

By Exercise 1.6.43, F ′ is absolutely integrable. By Exercise 1.5.10,
F ′ is thus uniformly integrable. Now let ε > 0. By Exercise 1.5.13,

we can find κ > 0 such that
∫

U
|F ′(x)| dx ≤ ε whenever U ⊂ [a, b] is a

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.6. Differentiation theorems 173

measurable set of measure at most κ. (Here we adopt the convention

that F ′ vanishes outside of [a, b].) By making κ small enough, we may

also assume from absolute continuity that
∑n

j=1 |F (bj) − F (aj)| ≤ ε

whenever (a1, b1), . . . , (an, bn) is a finite collection of disjoint intervals

of total length
∑n

j=1 bj − aj at most κ.

Let E ⊂ [a, b] be the set of points x where F is not differentiable,

together with the endpoints a, b, as well as the points where x is not

a Lebesgue point of F ′. thus E is a null set. By outer regularity (or

the definition of outer measure) we can find an open set U containing

E of measure m(U) < κ. In particular,
∫

U
|F ′(x)| dx ≤ ε.

Now define a gauge function δ : [a, b] → (0,+∞) as follows.

(i) If x ∈ E, we define δ(x) > 0 to be small enough that the

open interval (x− δ(x), x+ δ(x)) lies in U .

(ii) If x 6∈ E, then F is differentiable at x and x is a Lebesgue

point of F ′. We let δ(x) > 0 be small enough that |F (y) −
F (x)−(y−x)F ′(x)| ≤ ε|y−x| holds whenever |y−x| ≤ δ(x),

and such that | 1
|I|
∫

I
F ′(y) dy−F ′(x)| ≤ ε whenever I is an

interval containing x of length at most δ(x); such a δ(x)

exists by the definition of differentiability, and of Lebesgue

point. We rewrite these properties using big-O notation17 as

F (y)−F (x) = (y−x)F ′(x)+O(ε|y−x|) and
∫

I
F ′(y) dy =

|I|F ′(x) +O(ε|I|).
Applying Cousin’s theorem, we can find a partition a = t0 < t1 <

. . . < tk = b with k ≥ 1, together with real numbers t∗j ∈ [tj−1, tj ] for
each 1 ≤ j ≤ k and tj − tj−1 ≤ δ(t∗j ).

We can express F (b)− F (a) as a telescoping series

F (b)− F (a) =
k
∑

j=1

F (tj)− F (tj−1).

To estimate the size of this sum, let us first consider those j for which

t∗j ∈ E. Then, by construction, the intervals (tj−1, tj) are disjoint in

17In this notation, we use O(X) to denote a quantity Y whose magnitude |Y | is
at most CX for some absolute constant C. This notation is convenient for managing
error terms when it is not important to keep track of the exact value of constants such
as C, due to such rules as O(X) + O(X) = O(X).
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U . By construction of κ, we thus have
∑

j:t∗j∈E
|F (tj)− F (tj−1)| ≤ ε

and thus
∑

j:t∗j∈E
F (tj)− F (tj−1) = O(ε).

Next, we consider those j for which t∗j 6∈ E. By construction, for

those j we have

F (tj)− F (t∗j ) = (tj − t∗j )F
′(t∗j ) +O(ε|tj − t∗j |)

and

F (t∗j )− F (tj−1) = (t∗j − tj−1)F
′(t∗j ) +O(ε|t∗j − tj−1|)

and thus

F (tj)− F (tj−1) = (tj − tj−1)F
′(t∗j ) +O(ε|tj − tj−1|).

On the other hand, from construction again we have
∫

[tj−1,tj ]

F ′(y) dy = (tj − tj−1)F
′(t∗j ) +O(ε|tj − tj−1|)

and thus

F (tj)− F (tj−1) =

∫

[tj−1,tj ]

F ′(y) dy +O(ε|tj − tj−1|).

Summing in j, we conclude that
∑

j:t∗j 6∈E
F (tj)− F (tj−1) =

∫

S

F ′(y) dy +O(ε(b− a)),

where S is the union of all the [tj−1, tj ] with t∗j 6∈ E. By con-

struction, this set is contained in [a, b] and contains [a, b]\U . Since
∫

U
|F ′(x)| dx ≤ ε, we conclude that

∫

S

F ′(y) dy =

∫

[a,b]

F ′(y) dy +O(ε).

Putting everything together, we conclude that

F (b)− F (a) =

∫

[a,b]

F ′(y) dy +O(ε) +O(ε|b− a|).

Since ε > 0 was arbitrary, the claim follows. �
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Combining this result with Exercise 1.6.48, we obtain a satisfac-

tory classification of the absolutely continuous functions:

Exercise 1.6.50. Show that a function F : [a, b] → R is absolutely

continuous if and only if it takes the form F (x) =
∫

[a,x]
f(y) dy + C

for some absolutely integrable f : [a, b] → R and a constant C.

Exercise 1.6.51 (Compatibility of the strong and weak derivatives

in the absolutely continuous case). Let F : [a, b] → R be an abso-

lutely continuous function, and let φ : [a, b] → R be a continuously

differentiable function supported in a compact subset of (a, b). Show

that
∫

[a,b]
F ′φ(x) dx = −

∫

[a,b]
Fφ′(x) dx.

Inspecting the proof of Theorem 1.6.40, we see that the abso-

lute continuity was used primarily in two ways: firstly, to ensure the

almost everywhere existence, and to control an exceptional null set

E. It turns out that one can achieve the latter control by making a

different hypothesis, namely that the function F is everywhere differ-

entiable rather than merely almost everywhere differentiable. More

precisely, we have

Proposition 1.6.41 (Second fundamental theorem of calculus, again).

Let [a, b] be a compact interval of positive length, let F : [a, b] → R be

a differentiable function, such that F ′ is absolutely integrable. Then

the Lebesgue integral
∫

[a,b]
F ′(x) dx of F ′ is equal to F (b)− F (a).

Proof. This will be similar to the proof of Theorem 1.6.40, the one

main new twist being that we need several open sets U instead of just

one. Let E ⊂ [a, b] be the set of points x which are not Lebesgue

points of F ′, together with the endpoints a, b. This is a null set. Let

ε > 0, and then let κ > 0 be small enough that
∫

U
|F ′(x)| dx ≤ ε

whenever U is measurable with m(U) ≤ κ. We can also ensure that

κ ≤ ε.

For every natural number m = 1, 2, . . . we can find an open set

Um containing E of measure m(Um) ≤ κ/4m. In particular we see

that m(
⋃∞

m=1 Um) ≤ κ and thus
∫

⋃∞
m=1 Um

|F ′(x)| dx ≤ ε.

Now define a gauge function δ : [a, b] → (0,+∞) as follows.
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(i) If x ∈ E, we define δ(x) > 0 to be small enough that the

open interval (x − δ(x), x + δ(x)) lies in Um, where m is

the first natural number such that |F ′(x)| ≤ 2m, and also

small enough that |F (y) − F (x) − (y − x)F ′(x)| ≤ ε|y − x|
holds whenever |y − x| ≤ δ(x). (Here we crucially use the

everywhere differentiability to ensure that f ′(x) exists and

is finite here.)

(ii) If x 6∈ E, we let δ(x) > 0 be small enough that |F (y)−F (x)−
(y − x)F ′(x)| ≤ ε|y − x| holds whenever |y − x| ≤ δ(x), and

such that | 1
|I|
∫

I
F ′(y) dy − F ′(x)| ≤ ε whenever I is an

interval containing x of length at most δ(x), exactly as in

the proof of Theorem 1.6.40.

Applying Cousin’s theorem, we can find a partition a = t0 < t1 <

. . . < tk = b with k ≥ 1, together with real numbers t∗j ∈ [tj−1, tj ] for
each 1 ≤ j ≤ k and tj − tj−1 ≤ δ(t∗j ).

As before, we express F (b)− F (a) as a telescoping series

F (b)− F (a) =
k
∑

j=1

F (tj)− F (tj−1).

For the contributions of those j with t∗j 6∈ E, we argue exactly as in

the proof of Theorem 1.6.40 to conclude eventually that

∑

j:t∗j 6∈E
F (tj)− F (tj−1) =

∫

S

F ′(y) dy +O(ε(b− a)),

where S is the union of all the [tj−1, tj ] with t∗j 6∈ E. Since

∫

[a,b]\S
|F ′(x)| dx ≤

∫

⋃∞
m=1 Um

|F ′(x)| dx ≤ ε

we thus have
∫

S

F ′(y) dy =

∫

[a,b]

F ′(y) dy +O(ε).

Now we turn to those j with t∗j ∈ E. By construction, we have

F (tj)− F (tj−1) = (tj − tj−1)F
′(t∗j ) +O(ε|tj − tj−1|)
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fir these intervals, and so
∑

j:t∗j∈E
F (tj)− F (tj−1) = (

∑

j:t∗j∈E
(tj − tj−1)F

′(t∗j )) +O(ε(b− a)).

Next, for each j we have F ′(t∗j ) ≤ 2m and [tj−1, tj ] ⊂ Um for some

natural number m = 1, 2, . . ., by construction. By countable additiv-

ity, we conclude that

(
∑

j:t∗j∈E
(tj − tj−1)F

′(t∗j )) ≤
∞
∑

m=1

2mm(Um) ≤
∞
∑

m=1

2mε/4m = O(ε).

Putting all this together, we again have

F (b)− F (a) =

∫

[a,b]

F ′(y) dy +O(ε) +O(ε|b− a|).

Since ε > 0 was arbitrary, the claim follows. �

Remark 1.6.42. The above proposition is yet another illustration of

how the property of everywhere differentiability is significantly better

than that of almost everywhere differentiability. In practice, though,

the above proposition is not as useful as one might initially think,

because there are very few methods that establish the everywhere

differentiability of a function that do not also establish continuous

differentiability (or at least Riemann integrability of the derivative),

at which point one could just use Theorem 1.6.7 instead.

Exercise 1.6.52. Let F : [−1, 1] → R be the function defined by set-

ting F (x) := x2 sin( 1
x3 ) when x is non-zero, and F (0) := 0. Show that

F is everywhere differentiable, but the deriative F ′ is not absolutely
integrable, and so the second fundamental theorem of calculus does

not apply in this case (at least if we interpret
∫

[a,b]
F ′(x) dx using

the absolutely convergent Lebesgue integral). See however the next

exercise.

Exercise 1.6.53 (Henstock-Kurzweil integral). Let [a, b] be a com-

pact interval of positive length. We say that a function f : [a, b] → R

is Henstock-Kurzweil integrable with integral L ∈ R if for every ε > 0

there exists a gauge function δ : [a, b] → (0,+∞) such that one has

|
k
∑

j=1

f(t∗j )(tj − tj−1)− L| ≤ ε

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



178 1. Measure theory

whenever k ≥ 1 and a = t0 < t1 < . . . < tk = b and t∗1, . . . , t
∗
k are

such that t∗j ∈ [tj−1, tj ] and |tj − tj−1| ≤ δ(t∗j ) for every 1 ≤ j ≤ k.

When this occurs, we call L the Henstock-Kurzweil integral of f and

write it as
∫

[a,b]
f(x) dx.

(i) Show that if a function is Henstock-Kurzweil integrable,

it has a unique Henstock-Kurzweil integral. (Hint: use

Cousin’s theorem.)

(ii) Show that if a function is Riemann integrable, then it is

Henstock-Kurzweil integrable, and the Henstock-Kurzweil

integral
∫

[a,b]
f(x) dx is equal to the Riemann integral

∫ b

a
f(x) dx.

(iii) Show that if a function f : [a, b] → R is everywhere de-

fined, everywhere finite, and is absolutely integrable, then it

is Henstock-Kurzweil integrable, and the Henstock-Kurzweil

integral
∫

[a,b]
f(x) dx is equal to the Lebesgue integral

∫

[a,b]
f(x) dx.

(Hint: this is a variant of the proof of Theorem 1.6.40 or

Proposition 1.6.41.)

(iv) Show that if F : [a, b] → R is everywhere differentiable,

then F ′ is Henstock-Kurzweil integrable, and the Henstock-

Kurzweil integral
∫

[a,b]
F ′(x) dx is equal to F (b) − F (a).

(Hint: this is a variant of the proof of Theorem 1.6.40 or

Proposition 1.6.41.)

(v) Explain why the above results give an alternate proof of

Exercise 1.6.4 and of Proposition 1.6.41.

Remark 1.6.43. As the above exercise indicates, the Henstock-

Kurzweil integral (also known as the Denjoy integral or Perron in-

tegral) extends the Riemann integral and the absolutely convergent

Lebesgue integral, at least as long as one restricts attention to func-

tions that are defined and are finite everywhere (in contrast to the

Lebesgue integral, which is willing to tolerate functions being infinite

or undefined so long as this only occurs on a null set). It is the notion

of integration that is most naturally associated with the fundamental

theorem of calculus for everywhere differentiable functions, as seen in

part 4 of the above exercise; it can also be used as a unified frame-

work for all the proofs in this section that invoked Cousin’s theorem.
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The Henstock-Kurzweil integral can also integrate some (highly os-

cillatory) functions that the Lebesgue integral cannot, such as the

derivative F ′ of the function F appearing in Exercise 1.6.52. This is

analogous to how conditional summation limN→∞
∑N

n=1 an can sum

conditionally convergent series
∑∞

n=1 an, even if they are not abso-

lutely integrable. However, much as conditional summation is not

always well-behaved with respect to rearrangement, the Henstock-

Kurzweil integral does not always react well to changes of variable;

also, due to its reliance on the order structure of the real line R,

it is difficult to extend the Henstock-Kurzweil integral to more gen-

eral spaces, such as the Euclidean space Rd, or to abstract measure

spaces.

1.7. Outer measures, pre-measures, and product

measures

In this text so far, we have focused primarily on one specific example

of a countably additive measure, namely Lebesgue measure. This

measure was constructed from a more primitive concept of Lebesgue

outer measure, which in turn was constructed from the even more

primitive concept of elementary measure.

It turns out that both of these constructions can be abstracted. In

this section, we will give the Carathéodory extension theorem, which

constructs a countably additive measure from any abstract outer

measure; this generalises the construction of Lebesgue measure from

Lebesgue outer measure. One can in turn construct outer measures

from another concept known as a pre-measure, of which elementary

measure is a typical example.

With these tools, one can start constructing many more measures,

such as Lebesgue-Stieltjes measures, product measures, and Hausdorff

measures. With a little more effort, one can also establish the Kol-

mogorov extension theorem, which allows one to construct a variety

of measures on infinite-dimensional spaces, and is of particular im-

portance in the foundations of probability theory, as it allows one to

set up probability spaces associated to both discrete and continuous

random processes, even if they have infinite length.
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The most important result about product measure, beyond the

fact that it exists, is that one can use it to evaluate iterated inte-

grals, and to interchange their order, provided that the integrand

is either unsigned or absolutely integrable. This fact is known as

the Fubini-Tonelli theorem, and is an absolutely indispensable tool

for computing integrals, and for deducing higher-dimensional results

from lower-dimensional ones.

In this section we will however omit a very important way to

construct measures, namely the Riesz representation theorem, which

is discussed in §1.10 of An epsilon of room, Vol. I.

1.7.1. Outer measures and the Carathéodory extension the-

orem. We begin with the abstract concept of an outer measure.

Definition 1.7.1 (Abstract outer measure). Let X be a set. An ab-

stract outer measure (or outer measure for short) is a map µ∗ : 2X →
[0,+∞] that assigns an unsigned extended real number µ∗(E) ∈
[0,+∞] to every set E ⊂ X which obeys the following axioms:

(i) (Empty set) µ∗(∅) = 0.

(ii) (Monotonicity) If E ⊂ F , then µ∗(E) ≤ µ∗(F ).

(iii) (Countable subadditivity) If E1, E2, . . . ⊂ X is a countable

sequence of subsets ofX, then µ∗(
⋃∞

n=1 En) ≤
∑∞

n=1 µ
∗(En).

Outer measures are also known as exterior measures.

Thus, for instance, Lebesgue outer measure m∗ is an outer mea-

sure (see Exercise 1.2.3). On the other hand, Jordan outer measure

m∗,(J) is only finitely subadditive rather than countably subadditive

and thus is not, strictly speaking, an outer measure; for this reason

this concept is often referred to as Jordan outer content rather than

Jordan outer measure.

Note that outer measures are weaker than measures in that they

are merely countably subadditive, rather than countably additive. On

the other hand, they are able to measure all subsets of X, whereas

measures can only measure a σ-algebra of measurable sets.

In Definition 1.2.2, we used Lebesgue outer measure together with

the notion of an open set to define the concept of Lebesgue measur-

ability. This definition is not available in our more abstract setting,
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as we do not necessarily have the notion of an open set. An alterna-

tive definition of measurability was put forth in Exercise 1.2.17, but

this still required the notion of a box or an elementary set, which is

still not available in this setting. Nevertheless, we can modify that

definition to give an abstract definition of measurability:

Definition 1.7.2 (Carathéodory measurability). Let µ∗ be an outer

measure on a set X. A set E ⊂ X is said to be Carathéodory mea-

surable with respect to µ∗ if one has

µ∗(A) = µ∗(A ∩ E) + µ∗(A\E)

for every set A ⊂ X.

Exercise 1.7.1 (Null sets are Carathéodory measurable). Suppose

that E is a null set for an outer measure µ∗ (i.e. µ∗(E) = 0). Show

that E is Carathéodory measurable with respect to µ∗.

Exercise 1.7.2 (Compatibility with Lebesgue measurability). Show

that a set E ⊂ Rd is Carathéodory measurable with respect to

Lebesgue outer measurable if and only if it is Lebesgue measurable.

(Hint: one direction follows from Exercise 1.2.17. For the other di-

rection, first verify simple cases, such as when E is a box, or when E

or A are bounded.)

The construction of Lebesgue measure can then be abstracted as

follows:

Theorem 1.7.3 (Carathéodory extension theorem). Let µ∗ : 2X →
[0,+∞] be an outer measure on a set X, let B be the collection of all

subsets of X that are Carathéodory measurable with respect to µ∗, and
let µ : B → [0,+∞] be the restriction of µ∗ to B (thus µ(E) := µ∗(E)

whenever E ∈ B). Then B is a σ-algebra, and µ is a measure.

Proof. We begin with the σ-algebra property. It is easy to see that

the empty set lies in B, and that the complement of a set in B lies

in B also. Next, we verify that B is closed under finite unions (which

will make B a Boolean algebra). Let E,F ∈ B, and let A ⊂ X be

arbitrary. By definition, it suffices to show that

(1.31) µ∗(A) = µ∗(A ∩ (E ∪ F )) + µ∗(A\(E ∪ F )).
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To simplify the notation, we partition A into the four disjoint sets

A00 := A\(E ∪ F );

A10 := (A\F ) ∩ E;

A01 := (A\E) ∩ F ;

A11 := A ∩ E ∩ F

(the reader may wish to draw a Venn diagram here to understand the

nature of these sets). Thus (1.31) becomes

(1.32) µ∗(A00 ∪A01 ∪A10 ∪A11) = µ∗(A01 ∪A10 ∪A11) + µ∗(A00).

On the other hand, from the Carathéodory measurability of E, one

has

µ∗(A00 ∪A01 ∪A10 ∪A11) = µ∗(A00 ∪A01) + µ∗(A10 ∪A11)

and

µ∗(A01 ∪A10 ∪A11) = µ∗(A01) + µ∗(A10 ∪A11)

while from the Carathéodory measurability of F one has

µ∗(A00 ∪A01) = µ∗(A00) + µ∗(A01);

putting these identities together we obtain (1.32). (Note that no

subtraction is employed here, and so the arguments still work when

some sets have infinite outer measure.)

Now we verify that B is a σ-algebra. As it is already a Boolean

algebra, it suffices (see Exercise 1.7.3 below) to verify that B is closed

with respect to countable disjoint unions. Thus, let E1, E2, . . . be

a disjoint sequence of Carathéodory-measurable sets, and let A be

arbitrary. We wish to show that

µ∗(A) = µ∗(A ∩
∞
⋃

n=1

En) + µ∗(A\
∞
⋃

n=1

En).

In view of subadditivity, it suffices to show that

µ∗(A) ≥ µ∗(A ∩
∞
⋃

n=1

En) + µ∗(A\
∞
⋃

n=1

En).
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For any N ≥ 1,
⋃N

n=1 En is Carathéodory measurable (as B is a

Boolean algebra), and so

µ∗(A) ≥ µ∗(A ∩
N
⋃

n=1

En) + µ∗(A\
N
⋃

n=1

En).

By monotonicity, µ∗(A\⋃N
n=1 En) ≥ µ∗(A\⋃∞n=1 En). Taking limits

as N → ∞, it thus suffices to show that

µ∗(A ∩
∞
⋃

n=1

En) ≤ lim
N→∞

µ∗(A ∩
N
⋃

n=1

En).

But by the Carathéodory measurability of
⋃N

n=1 En, we have

µ∗(A ∩
N+1
⋃

n=1

En) = µ∗(A ∩
N
⋃

n=1

En) + µ∗(A ∩ EN+1\
N
⋃

n=1

En)

for any N ≥ 0, and thus on iteration

lim
N→∞

µ∗(A ∩
N
⋃

n=1

En) =
∞
∑

N=0

µ∗(A ∩ EN+1\
N
⋃

n=1

En)

On the other hand, from countable subadditivity one has

µ∗(A ∩
∞
⋃

n=1

En) ≤
∞
∑

N=0

µ∗(A ∩ EN+1\
N
⋃

n=1

En)

and the claim follows.

Finally, we show that µ is a measure. It is clear that µ(∅) = 0,

so it suffices to establish countable additivity, thus we need to show

that

µ∗(
∞
⋃

n=1

En) =
∞
∑

n=1

µ∗(En)

whenever E1, E2, . . . are Carathéodory-measurable and disjoint. By

subadditivity it suffices to show that

µ∗(
∞
⋃

n=1

En) ≥
∞
∑

n=1

µ∗(En).

By monotonicity it suffices to show that

µ∗(
N
⋃

n=1

En) =
N
∑

n=1

µ∗(En)
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for any finiteN . But from the Carathéodory measurability of
⋃N

n=1 En

one has

µ∗(
N+1
⋃

n=1

En) = µ∗(
N
⋃

n=1

En) + µ∗(EN+1)

for any N ≥ 0, and the claim follows from induction. �

Exercise 1.7.3. Let B be a Boolean algebra on a set X. Show that

B is a σ-algebra if and only if it is closed under countable disjoint

unions, which means that
⋃∞

n=1 En ∈ B whenever E1, E2, E3, . . . ∈ B
are a countable sequence of disjoint sets in B.

Remark 1.7.4. Note that the above theorem, combined with Exer-

cise 1.7.2 gives a slightly alternate way to construct Lebesgue measure

from Lebesgue outer measure than the construction given in Section

1.2. This is arguably a more efficient way to proceed, but is also less

geometrically intuitive than the approach taken in Section 1.2.

Remark 1.7.5. From Exercise 1.7.1 we see that the measure µ con-

structed by the Carathéodory extension theorem is automatically

complete (see Definition 1.4.31).

Remark 1.7.6. In §1.15 of An epsilon of room, Vol. I, an impor-

tant example of a measure constructed by Carathéodory’s theorem is

given, namely the d-dimensional Hausdorff measure Hd on Rn that

is good for measuring the size of d-dimensional subsets of Rn.

1.7.2. Pre-measures. In previous notes, we saw that finitely addi-

tive measures, such as elementary measure or Jordan measure, could

be extended to a countably additive measure, namely Lebesgue mea-

sure. It is natural to ask whether this property is true in general. In

other words, given a finitely additive measure µ0 : B0 → [0,+∞] on

a Boolean algebra B0, is it possible to find a σ-algebra B refining B0,

and a countably additive measure µ : B → [0,+∞] that extends µ0?

There is an obvious necessary condition in order for µ0 to have a

countably additive extension, namely that µ0 already has to be count-

ably additive within B0. More precisely, suppose that E1, E2, E3, . . . ∈
B0 were disjoint sets such that their union

⋃∞
n=1 En was also in B0.

(Note that this latter property is not automatic as B0 is merely a

Boolean algebra rather than a σ-algebra.) Then, in order for µ0 to
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be extendible to a countably additive measure, it is clearly necessary

that

µ0(
∞
⋃

n=1

En) =
∞
∑

n=1

µ0(En).

Using the Carathéodory extension theorem, we can show that

this necessary condition is also sufficient. More precisely, we have

Definition 1.7.7 (Pre-measure). A pre-measure on a Boolean alge-

bra B0 is a finitely additive measure µ0 : B0 → [0,+∞] with the prop-

erty that µ0(
⋃∞

n=1 En) =
∑∞

n=1 µ0(En) whenever E1, E2, E3, . . . ∈ B0

are disjoint sets such that
⋃∞

n=1 En is in B0.

Exercise 1.7.4.

(i) Show that the requirement that µ0 is finitely additive can

be relaxed to the condition that µ0(∅) = 0 without affecting

the definition of a pre-measure.

(ii) Show that the condition µ0(
⋃∞

n=1 En) =
∑∞

n=1 µ0(En) can

be relaxed to µ0(
⋃∞

n=1 En) ≤
∑∞

n=1 µ0(En) without affect-

ing the definition of a pre-measure.

(iii) On the other hand, give an example to show that if one

performs both of the above two relaxations at once, one

starts admitting objects µ0 that are not pre-measures.

Exercise 1.7.5. Without using the theory of Lebesgue measure,

show that elementary measure (on the elementary Boolean algebra)

is a pre-measure. (Hint: use Lemma 1.2.6. Note that one has to

also deal with co-elementary sets as well as elementary sets in the

elementary Boolean algebra.)

Exercise 1.7.6. Construct a finitely additive measure µ0 : B0 →
[0,+∞] that is not a pre-measure. (Hint: take X to be the natu-

ral numbers, take B0 = 2N to be the discrete algebra, and define µ0

separately for finite and infinite sets.)

Theorem 1.7.8 (Hahn-Kolmogorov theorem). Every pre-measure

µ0 : B0 → [0,+∞] on a Boolean algebra B0 in X can be extended

to a countably additive measure µ : B → [0,+∞].
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Proof. Wemimic the construction of Lebesgue measure from elemen-

tary measure. Namely, for any set E ⊂ X, define the outer measure

µ∗(E) of E to be the quantity

µ∗(E) := inf{
∞
∑

n=1

µ0(En) : E ⊂
∞
⋃

n=1

En;En ∈ B0 for all n}.

It is easy to verify (cf. Exercise 1.2.3) that µ∗ is indeed an outer mea-

sure. Let B be the collection of all sets E ⊂ X that are Carathéodory

measurable with respect to µ∗, and let µ be the restriction of µ∗ to

B. By the Carathéodory extension theorem, B is a σ-algebra and µ

is a countably additive measure.

It remains to show that B contains B0 and that µ extends µ0.

Thus, let E ∈ B0; we need to show that E is Carathéodory measurable

with respect to µ∗ and that µ∗(E) = µ0(E). To prove the first claim,

let A ⊂ X be arbitrary. We need to show that

µ∗(A) = µ∗(A ∩ E) + µ∗(A\E);

by subadditivity, it suffices to show that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A\E).

We may assume that µ∗(A) is finite, since the claim is trivial other-

wise.

Fix ε > 0. By definition of µ∗, one can find E1, E2, . . . ∈ B0

covering A such that
∞
∑

n=1

µ0(En) ≤ µ∗(A) + ε.

The sets En ∩ E lie in B0 and cover A ∩ E and thus

µ∗(A ∩ E) ≤
∞
∑

n=1

µ0(En ∩ E).

Similarly we have

µ∗(A\E) ≤
∞
∑

n=1

µ0(En\E).

Meanwhile, from finite additivity we have

µ0(En ∩ E) + µ0(En\E) = µ0(En).

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.7. Outer measure, pre-measure, product measure 187

Combining all of these estimates, we obtain

µ∗(A ∩ E) + µ∗(A\E) ≤ µ∗(A) + ε;

since ε > 0 was arbitrary, the claim follows.

Finally, we have to show that µ∗(E) = µ0(E). Since E covers

itself, we certainly have µ∗(E) ≤ µ0(E). To show the converse in-

equality, it suffices to show that
∞
∑

n=1

µ0(En) ≥ µ0(E)

whenever E1, E2, . . . ∈ B0 cover E. By replacing each En with the

smaller set En\
⋃n−1

m=1 Em (which still lies in B0, and still covers E),

we may assume without loss of generality (thanks to the monotonicity

of µ0) that the En are disjoint. Similarly, by replacing each En with

the smaller set En ∩ E we may assume without loss of generality

that the union of the En is exactly equal to E. But then the claim

follows from the hypothesis that µ0 is a pre-measure (and not merely

a finitely additive measure). �

Let us call the measure µ constructed in the above proof the

Hahn-Kolmogorov extension of the pre-measure µ0. Thus, for in-

stance, from Exercise 1.7.2, the Hahn-Kolmogorov extension of ele-

mentary measure (with the convention that co-elementary sets have

infinite elementary measure) is Lebesgue measure. This is not quite

the unique extension of µ0 to a countably additive measure, though.

For instance, one could restrict Lebesgue measure to the Borel σ-

algebra, and this would still be a countably additive extension of

elementary measure. However, the extension is unique within its own

σ-algebra:

Exercise 1.7.7. Let µ0 : B0 → [0,+∞] be a pre-measure, let µ : B →
[0,+∞] be the Hahn-Kolmogorov extension of µ0, and let µ′ : B′ →
[0,+∞] be another countably additive extension of µ0. Suppose also

that µ0 is σ-finite, which means that one can express the whole space

X as the countable union of sets E1, E2, . . . ∈ B0 for which µ0(En) <

∞ for all n. Show that µ and µ′ agree on their common domain of

definition. In other words, show that µ(E) = µ′(E) for all E ∈ B∩B′.
(Hint: first show that µ′(E) ≤ µ∗(E) for all E ∈ B′.)
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Exercise 1.7.8. The purpose of this exercise is to show that the σ-

finite hypothesis in Exercise 1.7.7 cannot be removed. Let A be the

collection of all subsets in R that can be expressed as finite unions of

half-open intervals [a, b). Let µ0 : A → [0,+∞] be the function such

that µ0(E) = +∞ for non-empty E and µ0(∅) = 0.

(i) Show that µ0 is a pre-measure.

(ii) Show that 〈A〉 is the Borel σ-algebra B[R].

(iii) Show that the Hahn-Kolmogorov extension µ : B[R] → [0,+∞]

of µ0 assigns an infinite measure to any non-empty Borel set.

(iv) Show that counting measure # (or more generally, c# for

any c ∈ (0,+∞]) is another extension of µ0 on B[R].

Exercise 1.7.9. Let µ0 : B0 → [0,+∞] be a pre-measure which is σ-

finite (thusX is the countable union of sets in B0 of finite µ0-measure),

and let µ : B → [0,+∞] be the Hahn-Kolmogorov extension of µ0.

(i) Show that if E ∈ B, then there exists F ∈ 〈B0〉 containing

E such that µ(F\E) = 0 (thus F consists of the union of E

and a null set). Furthermore, show that F can be chosen to

be a countable intersection F =
⋂∞

n=1 Fn of sets Fn, each of

which is a countable union Fn =
⋃∞

m=1 Fn,m of sets Fn,m in

B0.

(ii) If E ∈ B has finite measure (i.e. µ(E) < ∞), and ε > 0,

show that there exists F ∈ B0 such that µ(E∆F ) ≤ ε.

(iii) Conversely, if E is a set such that for every ε > 0 there

exists F ∈ B0 such that µ∗(E∆F ) ≤ ε, show that E ∈ B.

1.7.3. Lebesgue-Stieltjes measure. Now we use the Hahn-Kolmogorov

extension theorem to construct a variety of measures. We begin with

Lebesgue-Stieltjes measure.

Theorem 1.7.9 (Existence of Lebesgue-Stieltjes measure). Let F : R →
R be a monotone non-decreasing function, and define the left and

right limits

F−(x) := sup
y<x

F (y); F+(x) := inf
y>x

F (y),

thus one has F−(x) ≤ F (x) ≤ F+(x) for all x. Let B[R] be the

Borel σ-algebra on R. Then there exists a unique Borel measure

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



1.7. Outer measure, pre-measure, product measure 189

µF : B[R] → [0,+∞] such that

(1.33) µF ([a, b]) = F+(b)− F−(a), µF ([a, b)) = F−(b)− F−(a),

µF ((a, b]) = F+(b)− F+(a), µF ((a, b)) = F−(b)− F+(a)

for all −∞ < b < a < ∞, and

(1.34) µF ({a}) = F+(a)− F−(a)

for all a ∈ R.

Proof. (Sketch) For this proof, we will deviate from our previous

notational conventions, and allow intervals to be unbounded, thus

in particular including the half-infinite intervals [a,+∞), (a,+∞),

(−∞, a], (−∞, a) and the doubly infinite interval (−∞,+∞) as in-

tervals.

Define the F -volume |I|F ∈ [0,+∞] of any interval I, adopting

the obvious conventions that F−(+∞) = supy∈R F (y) and F+(−∞) =

infy∈R F (y), and also adopting the convention that the empty inter-

val ∅ has zero F -volume, |∅|F = 0. Note that F−(+∞) could equal

+∞ and F+(−∞) could equal −∞, but in all circumstances the F -

volume |I|F is well-defined and takes values in [0,+∞], after adopting

the obvious conventions to evaluate expressions such as +∞− (−∞).

A somewhat tedious case check (Exercise!) gives the additivity

property

|I ∪ J |F = |I|F + |J |F
whenever I, J are disjoint intervals that share a common endpoint.

As a corollary, we see that if a interval I is partitioned into finitely

many disjoint sub-intervals I1, . . . , Ik, we have |I| = |I1|+ . . .+ |Ik|.
Let B0 be the Boolean algebra generated by the (possibly infinite)

intervals, then B0 consists of those sets that can be expressed as a

finite union of intervals. (This is slightly larger than the elementary

algebra, as it allows for half-infinite intervals such as [0,+∞), whereas

the elementary algebra does not.) We can define a measure µ0 on this

algebra by declaring

µ0(E) = |I1|F + . . .+ |Ik|F
whenever E = I1 ∪ . . . ∪ Ik is the disjoint union of finitely many

intervals. One can check (Exercise!) that this measure is well-defined
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(in the sense that it gives a unique value to µ0(E) for each E ∈ B0)

and is finitely additive. We now claim that µ0 is a pre-measure: thus

we suppose that E = B0 is the disjoint union of countably many sets

E1, E2, . . . ∈ B0, and wish to show that

µ0(E) =
∞
∑

n=1

µ0(En).

By splitting up E into intervals and then intersecting each of the En

with these intervals and using finite additivity, we may assume that

E is a single interval. By splitting up the En into their component

intervals and using finite additivity, we may assume that the En are

also individual intervals. By subadditivity, it suffices to show that

µ0(E) ≤
∞
∑

n=1

µ0(En).

By the definition of µ0(E), one can check that

(1.35) µ0(E) = sup
K⊂E

µ0(K)

where K ranges over all compact intervals contained in E (Exercise!).

Thus, it suffices to show that

µ0(K) ≤
∞
∑

n=1

µ0(En)

for each compact sub-interval K of E. In a similar spirit, one can

show that

µ0(En) = inf
U⊃En

µ0(En)

where U ranges over all open intervals containing En (Exercise!).

Using the ε/2n trick, it thus suffices to show that

µ0(K) ≤
∞
∑

n=1

µ0(Un)

whenever Un is an open interval containing En. But by the Heine-

Borel theorem, one can cover K by a finite number
⋃N

n=1 Un of the

Un, hence by finite subadditivity

µ0(K) ≤
N
∑

n=1

µ0(Un)
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and the claim follows.

As µ0 is now verified to be a pre-measure, we may use the Hahn-

Kolmogorov extension theorem to extend it to a countably additive

measure µ on a σ-algebra B that contains B0. In particular, B contains

all the elementary sets and hence (by Exercise 1.4.14) contains the

Borel σ-algebra. Restricting µ to the Borel σ-algebra we obtain the

existence claim.

Finally, we establish uniqueness. If µ′ is another Borel measure

with the stated properties, then µ′(K) = |K|F for every compact in-

terval K, and hence by (1.35) and upward monotone convergence, one

has µ′(I) = |I|F for every interval (including the unbounded ones).

This implies that µ′ agrees with µ0 on B0, and thus (by Exercise 1.7.7,

noting that µ0 is σ-finite) agrees with µ on Borel measurable sets. �

Exercise 1.7.10. Verify the claims marked “Exercise!” in the above

proof.

The measure µF given by the above theorem is known as the

Lebesgue-Stieltjes measure µF of F . (In some texts, this measure is

only defined when F is right-continuous, or equivalently if F = F+.)

Exercise 1.7.11. Define a Radon measure on R to be a Borel mea-

sure µ obeying the following additional properties:

(i) (Local finiteness) µ(K) < ∞ for every compact K.

(ii) (Inner regularity) One has µ(E) = supK⊂E,K compact µ(K)

for every Borel set E.

(iii) (Outer regularity) One has µ(E) = infU⊃E,U open µ(U) for

every Borel set E.

Show that for every monotone function F : R → R, the Lebesgue-

Stieltjes measure µF is a Radon measure on R; conversely, if µ is a

Radon measure on R, show that there exists a monotone function

F : R → R such that µ = µF .

Radon measures are studied in more detail in §1.10 of An epsilon

of room, Vol. I.

Exercise 1.7.12 (Near uniqueness). If F, F ′ : R → R are monotone

non-decreasing functions, show that µF = µF ′ if and only if there
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exists a constant C ∈ R such that F+(x) = F ′+(x) + C and F−(x) =
F ′−(x) + C for all x ∈ R. Note that this implies that the value

of F at its points of discontinuity are irrelevant for the purposes of

determining the Lebesgue-Stieltjes measure µF ; in particular, µF =

µF+
= µF−

.

In the special case when F+(−∞) = 0 and F−(+∞) = 1, then

µF is a probability measure, and F+(x) = µF ((−∞, x]) is known as

the cumulative distribution function of µF .

Now we give some examples of Lebesgue-Stieltjes measure.

Exercise 1.7.13 (Lebesgue-Stieltjes measure, absolutely continuous

case).

(i) If F : R → R is the identity function F (x) = x, show that

µF is equal to Lebesgue measure m.

(ii) If F : R → R is monotone non-decreasing and absolutely

continuous (which in particular implies that F ′ exists and

is absolutely integrable, show that µF = mF ′ in the sense

of Exercise 1.4.49, thus

µF (E) =

∫

E

F ′(x) dx

for any Borel measurable E, and
∫

R

f(x) dµF (x) =

∫

R

f(x)F ′(x) dx

for any unsigned Borel measurable f : R → [0,+∞].

In view of the above exercise, the integral
∫

R
f dµF is often ab-

breviated
∫

R
f dF , and referred to as the Lebesgue-Stieltjes integral

of f with respect to F . In particular, observe the identity
∫

[a,b]

dF = F+(b)− F−(a)

for any monotone non-decreasing F : R → R and any −∞ < b <

a < +∞, which can be viewed as yet another formulation of the

fundamental theorem of calculus.

Exercise 1.7.14 (Lebesgue-Stieltjes measure, pure point case).
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(i) If H : R → R is the Heaviside function H := 1[0,+∞), show

that µH is equal to the Dirac measure δ0 at the origin (de-

fined in Example 1.4.22).

(ii) If F =
∑

n cnJn is a jump function (as defined in Definition

1.6.30), show that µF is equal to the linear combination
∑

cnδxn
of delta functions (as defined in Exercise 1.4.22),

where xn is the point of discontinuity for the basic jump

function Jn.

Exercise 1.7.15 (Lebesgue-Stieltjes measure, singular continuous

case).

(i) If F : R → R is a monotone non-decreasing function, show

that F is continuous if and only if µF ({x}) = 0 for all x ∈ R.

(ii) If F is the Cantor function (defined in Exercise 1.6.47),

show that µF is a probability measure supported on the

middle-thirds Cantor set (see Exercise 1.2.9) in the sense

that µF (R\C) = 0. The measure µF is known as Cantor

measure.

(iii) If µF is Cantor measure, establish the self-similarity prop-

erties µ( 13 ·E) = 1
2µ(E) and µ( 13 ·E+ 2

3 ) =
1
2µ(E) for every

Borel-measurable E ⊂ [0, 1], where 1
3 · E := { 1

3x : x ∈ E}.

Exercise 1.7.16 (Connection with Riemann-Stieltjes integral). Let

F : R → R be monotone non-decreasing, let [a, b] be a compact inter-

val, and let f : [a, b] → R be continuous. Suppose that F is continuous

at the endpoints a, b of the interval. Show that for every ε > 0 there

exists δ > 0 such that

|
n
∑

i=1

f(t∗i )(F (ti)− F (ti−1))−
∫

[a,b]

f dF | ≤ ε

whenever a = t0 < t1 < . . . < tn = b and t∗i ∈ [ti−1, ti] for 1 ≤
i ≤ n are such that sup1≤i≤n |ti − ti−1| ≤ δ. In the language of

the Riemann-Stieltjes integral, this result asserts that the Lebesgue-

Stieltjes integral extends the Riemann-Stieltjes integral.
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Exercise 1.7.17 (Integration by parts formula). Let F,G : R → R

be monotone non-decreasing and continuous. Show that
∫

[a,b]

F dG = −
∫

[a,b]

G dF + F (b)G(b)− F (a)G(a)

for any compact interval [a, b]. (Hint: use Exercise 1.7.16.) This

formula can be partially extended to the case when one or both of

F,G have discontinuities, but care must be taken when F and G are

simultaneously discontinuous at the same location.

1.7.4. Product measure. Given two sets X and Y , one can form

their Cartesian product X × Y = {(x, y) : x ∈ X, y ∈ Y }. This set

is naturally equipped with the coordinate projection maps πX : X ×
Y → X and πY : X × Y → Y defined by setting πX(x, y) := x and

πY (x, y) := y. One can certainly take Cartesian productsX1×. . .×Xd

of more than two sets, or even take an infinite product
∏

α∈A Xα, but

for simplicity we will only discuss the theory for products of two sets

for now.

Now suppose that (X,BX) and (Y,BY ) are measurable spaces.

Then we can still form the Cartesian productX×Y and the projection

maps πX : X × Y → X and πY : X × Y → Y . But now we can also

form the pullback σ-algebras

π∗X(BX) := {π−1X (E) : E ∈ BX} = {E × Y : E ∈ BX}
and

π∗Y (BY ) := {π−1Y (E) : E ∈ BY } = {X × F : F ∈ BY }.
We then define the product σ-algebra BX × BY to be the σ-algebra

generated by the union of these two σ-algebras:

BX × BY := 〈π∗X(BX) ∪ π∗Y (BY )〉.
This definition has several equivalent formulations:

Exercise 1.7.18. Let (X,BX) and (Y,BY ) be measurable spaces.

(i) Show that BX × BY is the σ-algebra generated by the sets

E × F with E ∈ BX , Y ∈ BY . In other words, BX × BY is

the coarsest σ-algebra on X ×Y with the property that the
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product of a BX -measurable set and a BY -measurable set is

always BX × BY measurable.

(ii) Show that BX × BY is the coarsest σ-algebra on X × Y

that makes the projection maps πX , πY both measurable

morphisms (see Remark 1.4.33).

(iii) If E ∈ BX × BY , show that the sets Ex := {y ∈ Y : (x, y) ∈
E} lie in BY for every x ∈ X, and similarly that the sets

Ey := {x ∈ X : (x, y) ∈ E} lie in BX for every y ∈ Y .

(iv) If f : X × Y → [0,+∞] is measurable (with respect to

BX × BY ), show that the function fx : y 7→ f(x, y) is BY -

measurable for every x ∈ X, and similarly that the function

fy : x 7→ f(x, y) is BX -measurable for every y ∈ Y .

(v) If E ∈ BX × BY , show that the slices Ex := {y ∈ Y :

(x, y) ∈ E} lie in a countably generated σ-algebra. In other

words, show that there exists an at most countable collec-

tion A = AE of sets (which can depend on E) such that

{Ex : x ∈ X} ⊂ 〈A〉. Conclude in particular that the num-

ber of distinct slices Ex is at most c, the cardinality of the

continuum. (The last part of this exercise is only suitable

for students who are comfortable with cardinal arithmetic.)

Exercise 1.7.19.

(i) Show that the product of two trivial σ-algebras (on two

different spaces X,Y ) is again trivial.

(ii) Show that the product of two atomic σ-algebras is again

atomic.

(iii) Show that the product of two finite σ-algebras is again finite.

(iv) Show that the product of two Borel σ-algebras (on two Eu-

clidean spaces Rd,Rd′

with d, d′ ≥ 1) is again the Borel

σ-algebra (on Rd ×Rd′ ≡ Rd+d′

).

(v) Show that the product of two Lebesgue σ-algebras (on two

Euclidean spaces Rd,Rd′

with d, d′ ≥ 1) is not the Lebesgue

σ-algebra. (Hint: argue by contradiction and use Exercise

1.7.18(iii).)
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(vi) However, show that the Lebesgue σ-algebra on Rd+d′

is

the completion (see Exercise 1.4.26) of the product of the

Lebesgue σ-algebras of Rd and Rd′

with respect to d + d′-
dimensional Lebesgue measure.

(vii) This part of the exercise is only for students who are com-

fortable with cardinal arithmetic. Give an example to show

that the product of two discrete σ-algebras is not necessarily

discrete.

(viii) On the other hand, show that the product of two discrete

σ-algebras 2X , 2Y is again a discrete σ-algebra if at least one

of the domains X,Y is at most countably infinite.

Now suppose we have two measure spaces (X,BX , µX) and (Y,BY , µY ).

Given that we can multiply together the sets X and Y to form a prod-

uct set X × Y , and can multiply the σ-algebras BX and BY together

to form a product σ-algebra BX ×BY , it is natural to expect that we

can multiply the two measures µX : BX → [0,+∞] and µY : BY →
[0,+∞] to form a product measure µX ×µY : BX ×BY → [0,+∞]. In

view of the “base times height formula” that one learns in elementary

school, one expects to have

(1.36) µX × µY (E × F ) = µX(E)µY (F )

whenever E ∈ BX and F ∈ BY .

To construct this measure, it is convenient to make the assump-

tion that both spaces are σ-finite:

Definition 1.7.10 (σ-finite). A measure space (X,B, µ) is σ-finite if

X can be expressed as the countable union of sets of finite measure.

Thus, for instance, Rd with Lebesgue measure is σ-finite, as Rd

can be expressed as the union of (for instance) the balls B(0, n) for

n = 1, 2, 3, . . ., each of which has finite measure. On the other hand,

Rd with counting measure is not σ-finite (why?). But most measure

spaces that one actually encounters in analysis (including, clearly, all

probability spaces) are σ-finite. It is possible to partially extend the

theory of product spaces to the non-σ-finite setting, but there are a

number of very delicate technical issues that arise and so we will not

discuss them here.
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As long as we restrict attention to the σ-finite case, product mea-

sure always exists and is unique:

Proposition 1.7.11 (Existence and uniqueness of product measure).

Let (X,BX , µX) and (Y,BY , µY ) be σ-finite measure spaces. Then

there exists a unique measure µX × µY on BX ×BY that obeys µX ×
µY (E × F ) = µX(E)µY (F ) whenever E ∈ BX and F ∈ BY .

Proof. We first show existence. Inspired by the fact that Lebesgue

measure is the Hahn-Kolmogorov completion of elementary (pre-)measure,

we shall first construct an “elementary product pre-measure” that we

will then apply Theorem 1.7.8 to.

Let B0 be the collection of all finite unions

S := (E1 × F1) ∪ . . . ∪ (Ek × Fk)

of Cartesian products of BX -measurable sets E1, . . . , Ek and BY -

measurable sets F1, . . . , Fk. (One can think of such sets as being

somewhat analogous to elementary sets in Euclidean space, although

the analogy is not perfectly exact.) It is not difficult to verify that

this is a Boolean algebra (though it is not, in general, a σ-algebra).

Also, any set in B0 can be easily decomposed into a disjoint union

of product sets E1 × F1, . . . , Ek × Fk of BX -measurable sets and BY -

measurable sets (cf. Exercise 1.1.2). We then define the quantity

µ0(S) associated such a disjoint union S by the formula

µ0(S) :=
k
∑

j=1

µX(Ej)µY (Fj)

whenever S is the disjoint union of products E1 × F1, . . . , Ek × Fk

of BX -measurable sets and BY -measurable sets. One can show that

this definition does not depend on exactly how S is decomposed, and

gives a finitely additive measure µ0 : B0 → [0,+∞] (cf. Exercise 1.1.2

and Exercise 1.4.33).

Now we show that µ0 is a pre-measure. It suffices to show that

if S ∈ B0 is the countable disjoint union of sets S1, S2, . . . ∈ B0, then

µ0(S) =
∑∞

n=1 µ(Sn).

Splitting S up into disjoint product sets, and restricting the Sn

to each of these product sets in turn, we may assume without loss
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of generality (using the finite additivity of µ0) that S = E × F for

some E ∈ BX and F ∈ BY . In a similar spirit, by breaking each Sn

up into component product sets and using finite additivity again, we

may assume without loss of generality that each Sn takes the form

Sn = En × Fn for some En ∈ BX and Fn ∈ BY . By definition of µ0,

our objective is now to show that

µX(E)µY (F ) =
∞
∑

n=1

µX(En)µY (Fn).

To do this, first observe from construction that we have the pointwise

identity

1E(x)1F (y) =
∞
∑

n=1

1En(x)1Fn(y)

for all x ∈ X and y ∈ Y . We fix x ∈ X, and integrate this identity in

y (noting that both sides are measurable and unsigned) to conclude

that
∫

Y

1E(x)1F (y) dµY (y) =

∫

Y

∞
∑

n=1

1En(x)1Fn(y) dµY (y).

The left-hand side simplifies to 1E(x)µY (F ). To compute the right-

hand side, we use the monotone convergence theorem (Theorem 1.4.44)

to interchange the summation and integration, and soon see that the

right-hand side is
∑∞

n=1 1En
(x)µY (Fn), thus

1E(x)µY (F ) =
∞
∑

n=1

1En
(x)µY (Fn)

for all x. Both sides are measurable and unsigned in x, so we may

integrate in X and conclude that
∫

X

1E(x)µY (F ) dµX =

∫

X

∞
∑

n=1

1En
(x)µY (Fn) dµX(x).

The left-hand side here is µX(E)µY (F ). Using monotone convergence

as before, the right-hand side simplifies to
∑∞

n=1 µX(En)µY (Fn), and

the claim follows.

Now that we have established that µ0 is a pre-measure, we may

apply Theorem 1.7.8 to extend this measure to a countably additive

measure µX×µY on a σ-algebra containing B0. By Exercise 1.7.18(2),
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µX×µY is a countably additive measure on BX×BY , and as it extends

µ0, it will obey (1.36). Finally, to show uniqueness, observe from finite

additivity that any measure µX × µY on BX × BY that obeys (1.36)

must extend µ0, and so uniqueness follows from Exercise 1.7.7. �

Remark 1.7.12. When X, Y are not both σ-finite, then one can

still construct at least one product measure, but it will, in general,

not be unique. This makes the theory much more subtle, and we will

not discuss it in these notes.

Example 1.7.13. From Exercise 1.2.22, we see that the product

md × md′

of the Lebesgue measures md,md′

on (Rd,L[Rd]) and

(Rd,L[Rd′

]) respectively will agree with Lebesgue measure md+d′

on

the product space L[Rd]× L[Rd′

], which as noted in Exercise 1.7.19

is a subalgebra of L[Rd+d′

]. After taking the completion md ×md′ of

this product measure, one obtains the full Lebesgue measure md+d′

.

Exercise 1.7.20. Let (X,BX), (Y,BY ) be measurable spaces.

(i) Show that the product of two Dirac measures on (X,BX),

(Y,BY ) is a Dirac measure on (X × Y,BX × BY ).

(ii) If X,Y are at most countable, show that the product of the

two counting measures on (X,BX), (Y,BY ) is the counting

measure on (X × Y,BX × BY ).

Exercise 1.7.21 (Associativity of product). Let (X,BX , µX), (Y,BY , µY ),

(Z,BZ , µZ) be σ-finite sets. We may identify the Cartesian products

(X × Y )× Z and X × (Y × Z) with each other in the obvious man-

ner. If we do so, show that (BX × BY )× BZ = BX × (BY × BZ) and

(µX × µY )× µZ = µX × (µY × µZ).

Now we integrate using this product measure. We will need the

following technical lemma. Define a monotone class in X is a collec-

tion B of subsets of X with the following two closure properties:

(i) If E1 ⊂ E2 ⊂ . . . are a countable increasing sequence of sets

in B, then ⋃∞n=1 En ∈ B.
(ii) If E1 ⊃ E2 ⊃ . . . are a countable decreasing sequence of sets

in B, then ⋂∞n=1 En ∈ B.
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Lemma 1.7.14 (Monotone class lemma). Let A be a Boolean algebra

on X. Then 〈A〉 is the smallest monotone class that contains A.

Proof. Let B be the intersection of all the monotone classes that

contain A. Since 〈A〉 is clearly one such class, B is a subset of 〈A〉.
Our task is then to show that B contains 〈A〉.

It is also clear that B is a monotone class that contains A. By

replacing all the elements of B with their complements, we see that

B is necessarily closed under complements.

For any E ∈ A, consider the set CE of all sets F ∈ B such that

F\E, E\F , F ∩ E, and X\(E ∪ F ) all lie in B. It is clear that CE
contains A; since B is a monotone class, we see that CE is also. By

definition of B, we conclude that CE = B for all E ∈ A.

Next, let D be the set of all E ∈ B such that F\E, E\F , F ∩E,

andX\(E∪F ) all lie in B for all F ∈ B. By the previous discussion, we

see that D contains A. One also easily verifies that D is a monotone

class. By definition of B, we conclude that D = B. Since B is also

closed under complements, this implies that B is closed with respect

to finite unions. Since this class also contains A, which contains

∅, we conclude that B is a Boolean algebra. Since B is also closed

under increasing countable unions, we conclude that it is closed under

arbitrary countable unions, and is thus a σ-algebra. As it contains

A, it must also contain 〈A〉. �

Theorem 1.7.15 (Tonelli’s theorem, incomplete version). Let (X,BX , µX)

and (Y,BY , µY ) be σ-finite measure spaces, and let f : X × Y →
[0,+∞] be measurable with respect to BX × BY . Then:

(i) The functions x 7→
∫

Y
f(x, y) dµY (y) and y 7→

∫

X
f(x, y) dµX(x)

(which are well-defined, thanks to Exercise 1.7.18) are mea-

surable with respect to BX and BY respectively.

(ii) We have
∫

X×Y
f(x, y) dµX × µY (x, y)

=

∫

X

(

∫

Y

f(x, y) dµY (y)) dµX(x)
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=

∫

Y

(

∫

X

f(x, y) dµX(x)) dµY (y).

Proof. By writing the σ-finite space X as an increasing union X =
⋃∞

n=1 Xn of finite measure sets, we see from several applications of

the monotone convergence theorem (Theorem 1.4.44) that it suffices

to prove the claims with X replaced by Xn. Thus we may assume

without loss of generality that X has finite measure. Similarly we

may assume Y has finite measure. Note from (1.36) that this implies

that X × Y has finite measure also.

Every unsigned measurable function is the increasing limit of un-

signed simple functions. By several applications of the monotone

convergence theorem (Theorem 1.4.44), we thus see that it suffices to

verify the claim when f is a simple function. By linearity, it then suf-

fices to verify the claim when f is an indicator function, thus f = 1S
for some S ∈ BX × BY .

Let C be the set of all S ∈ BX × BY for which the claims hold.

From the repeated applications of the monotone convergence theorem

(Theorem 1.4.44) and the downward monotone convergence theorem

(which is available in this finite measure setting) we see that C is a

monotone class.

By direct computation (using (1.36)), we see that C contains as

an element any product S = E × F with E ∈ BX and F ∈ BY . By

finite additivity, we conclude that C also contains as an element any a

disjoint finite union S = E1×F1∪. . .∪Ek×Fk of such products. This

implies that C also contains the Boolean algebra B0 in the proof of

Proposition 1.7.11, as such sets can always be expressed as the disjoint

finite union of Cartesian products of measurable sets. Applying the

monotone class lemma, we conclude that C contains 〈B0〉 = BX ×BY ,

and the claim follows. �

Remark 1.7.16. Note that Tonelli’s theorem for sums (Theorem

0.0.2) is a special case of the above result when µX , µY are counting

measure. In a similar spirit, Corollary 1.4.46 is the special case when

just one of µX , µY is counting measure.

Corollary 1.7.17. Let (X,BX , µX) and (Y,BY , µY ) be σ-finite mea-

sure spaces, and let E ∈ BX×BY be a null set with respect to µX×µY .
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Then for µX-almost every x ∈ X, the set Ex := {y ∈ Y : (x, y) ∈ E}
is a µY -null set; and similarly, for µY -almost every y ∈ Y , the set

Ey := {x ∈ X : (x, y) ∈ E} is a µX-null set.

Proof. Applying the Tonelli theorem to the indicator function 1E ,

we conclude that

0 =

∫

X

(

∫

Y

1E(x, y) dµY (y)) dµX(x) =

∫

Y

(

∫

X

1E(x, y) dµX(x)) dµY (y)

and thus

0 =

∫

X

µY (Ex) dµX(x) =

∫

Y

µX(Ey) dµY (y),

and the claim follows. �

With this corollary, we can extend Tonelli’s theorem to the com-

pletion (X×Y,BX × BY , µX × µY ) of the product space (X×Y,BX×
BY , µX × µY ), as constructed in Exercise 1.4.26. But we can easily

extend the Tonelli theorem to this context:

Theorem 1.7.18 (Tonelli’s theorem, complete version). Let (X,BX , µX)

and (Y,BY , µY ) be complete σ-finite measure spaces, and let f : X ×
Y → [0,+∞] be measurable with respect to BX × BY . Then:

(i) For µX-almost every x ∈ X, the function y 7→ f(x, y) is

BY -measurable, and in particular
∫

Y
f(x, y) dµY (y) exists.

Furthermore, the (µX-almost everywhere defined) map x 7→
∫

Y
f(x, y) dµY is BX-measurable.

(ii) For µY -almost every y ∈ Y , the function x 7→ f(x, y) is

BX-measurable, and in particular
∫

X
f(x, y) dµX(x) exists.

Furthermore, the (µY -almost everywhere defined) map y 7→
∫

X
f(x, y) dµX is BY -measurable.

(iii) We have

∫

X×Y
f(x, y) dµX × µY (x, y) =

∫

X

(

∫

Y

f(x, y) dµY (y)) dµX(x)

=

∫

X

(

∫

Y

f(x, y) dµY (y)) dµX(x).

(1.37)
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Proof. From Exercise 1.4.28, every measurable set in BX × BY is

equal to a measurable set in BX ×BY outside of a µX × µY -null set.

This implies that the BX × BY -measurable function f agrees with a

BX × BY -measurable function f̃ outside of a µX × µY -null set E (as

can be seen by expressing f as the limit of simple functions). From

Corollary 1.7.17, we see that for µX -almost every x ∈ X, the function

y 7→ f(x, y) agrees with y 7→ f̃(x, y) outside of a µY -null set (and is

in particular measurable, as (Y,BY , µY ) is complete); and similarly

for µY -almost every y ∈ Y , the function x 7→ f(x, y) agrees with

x 7→ f̃(x, y) outside of a µX -null set and is measurable, and the claim

follows. �

Specialising to the case when f is an indicator function f = 1E ,

we conclude

Corollary 1.7.19 (Tonelli’s theorem for sets). Let (X,BX , µX) and

(Y,BY , µY ) be complete σ-finite measure spaces, and let E ∈ BX × BY .

Then:

(i) For µX-almost every x ∈ X, the set Ex := {y ∈ Y : (x, y) ∈
E} lies in BY , and the (µX-almost everywhere defined) map

x 7→ µY (Ex) is BX-measurable.

(ii) For µY -almost every y ∈ Y , the set Ey := {x ∈ X : (x, y) ∈
E} lies in BX , and the (µY -almost everywhere defined) map

y 7→ µX(Ey) is BY -measurable.

(iii) We have

(1.38) µX × µY (E) =

∫

X

µY (Ex) dµX(x)

=

∫

X

µX(Ey) dµX(x).

Exercise 1.7.22. The purpose of this exercise is to demonstrate that

Tonelli’s theorem can fail if the σ-finite hypothesis is removed, and

also that product measure need not be unique. Let X is the unit

interval [0, 1] with Lebesgue measure m (and the Lebesgue σ-algebra

L([0, 1])) and Y is the unit interval [0, 1] with counting measure (and

the discrete σ-algebra 2[0,1]) #. Let f := 1E be the indicator function

of the diagonal E := {(x, x) : x ∈ [0, 1]}.
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(i) Show that f is measurable in the product σ-algebra.

(ii) Show that
∫

X
(
∫

Y
f(x, y) d#(y))dm(x) = 1.

(iii) Show that
∫

Y
(
∫

X
f(x, y) dm(x))d#(y) = 0.

(iv) Show that there is more than one measure µ on L([0, 1]) ×
2[0,1] with the property that µ(E × F ) = m(E)#(F ) for all

E ∈ L([0, 1]) and F ∈ 2[0,1]. (Hint: use the two different

ways to perform a double integral to create two different

measures.)

Remark 1.7.20. If f is not assumed to be measurable in the product

space (or its completion), then of course the expression
∫

X×Y f(x, y) dµX × µY (x, y)

does not make sense. Furthermore, in this case the remaining two ex-

pressions in (1.37) may become different as well (in some models of

set theory, at least), even when X and Y are finite measure. For

instance, let us assume the continuum hypothesis, which implies that

the unit interval [0, 1] can be placed in one-to-one correspondence

with the first uncountable ordinal ω1. Let ≺ be the ordering of [0, 1]

that is associated to this ordinal, let E := {(x, y) ∈ [0, 1]2 : x ≺ y},
and let f := 1E . Then, for any y ∈ [0, 1], there are at most countably

many x such that x ≺ y, and so
∫

[0,1]
f(x, y) dx exists and is equal

to zero for every y. On the other hand, for every x ∈ [0, 1], one has

x ≺ y for all but countably many y ∈ [0, 1], and so
∫

[0,1]
f(x, y) dy ex-

ists and is equal to one for every y, and so the last two expressions in

(1.37) exist but are unequal. (In particular, Tonelli’s theorem implies

that E cannot be a Lebesgue measurable subset of [0, 1]2.) Thus we

see that measurability in the product space is an important hypoth-

esis. (There do however exist models of set theory (with the axiom

of choice) in which such counterexamples cannot be constructed, at

least in the case when X and Y are the unit interval with Lebesgue

measure.)

Tonelli’s theorem is for the unsigned integral, but it leads to an

important analogue for the absolutely integral, known as Fubini’s

theorem:

Theorem 1.7.21 (Fubini’s theorem). Let (X,BX , µX) and (Y,BY , µY )

be complete σ-finite measure spaces, and let f : X × Y → C be abso-

lutely integrable with respect to BX × BY . Then:
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(i) For µX-almost every x ∈ X, the function y 7→ f(x, y) is

absolutely integrable with respect to µY , and in particular
∫

Y
f(x, y) dµY (y) exists. Furthermore, the (µX-almost ev-

erywhere defined) map x 7→
∫

Y
f(x, y) dµY (y) is absolutely

integrable with respect to µX .

(ii) For µY -almost every y ∈ Y , the function x 7→ f(x, y) is

absolutely integrable with respect to µX , and in particular
∫

X
f(x, y) dµX(x) exists. Furthermore, the (µY -almost ev-

erywhere defined) map y 7→
∫

X
f(x, y) dµX(x) is absolutely

integrable with respect to µY .

(iii) We have
∫

X×Y
f(x, y) dµX × µY (x, y) =

∫

X

(

∫

Y

f(x, y) dµY (y)) dµX(x)

=

∫

X

(

∫

Y

f(x, y) dµY (y)) dµX(x).

Proof. By taking real and imaginary parts we may assume that f

is real; by taking positive and negative parts we may assume that

f is unsigned. But then the claim follows from Tonelli’s theorem;

note from (1.37) that
∫

X
(
∫

Y
f(x, y) dµY (y)) dµX(x) is finite, and so

∫

Y
f(x, y) dµY (y) < ∞ for µX -almost every x ∈ X, and similarly

∫

X
f(x, y) dµX(x) < ∞ for µY -almost every y ∈ Y . �

Exercise 1.7.23. Give an example of a Borel measurable function

f : [0, 1]2 → R such that the integrals
∫

[0,1]
f(x, y) dy and

∫

[0,1]
f(x, y) dx

exist and are absolutely integrable for all x ∈ [0, 1] and y ∈ [0, 1] re-

spectively, and that
∫

[0,1]
(
∫

[0,1]
f(x, y) dy) dx and

∫

[0,1]
(
∫

[0,1]
f(x, y) dy) dx

exist and are absolutely integrable, but such that
∫

[0,1]

(

∫

[0,1]

f(x, y) dy) dx 6=
∫

[0,1]

(

∫

[0,1]

f(x, y) dy) dx.

are unequal. (Hint: adapt the example from Remark 0.0.3.) Thus we

see that Fubini’s theorem fails when one drops the hypothesis that f

is absolutely integrable with respect to the product space.

Remark 1.7.22. Despite the failure of Tonelli’s theorem in the σ-

finite setting, it is possible to (carefully) extend Fubini’s theorem

to the non-σ-finite setting, as the absolute integrability hypotheses,
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when combined with Markov’s inequality (Exercise 1.4.36(vi)), can

provide a substitute for the σ-finite property. However, we will not

do so here, and indeed I would recommend proceeding with extreme

caution when performing any sort of interchange of integrals or in-

voking of product measure when one is not in the σ-finite setting.

Informally, Fubini’s theorem allows one to always interchange the

order of two integrals, as long as the integrand is absolutely integrable

in the product space (or its completion). In particular, specialising

to Lebesgue measure, we have
∫

Rd+d′
f(x, y) d(x, y) =

∫

Rd

(

∫

Rd′
f(x, y) dy) dx =

∫

Rd′
(

∫

Rd

f(x, y) dx) dy

whenever f : Rd+d′ → C is absolutely integrable. In view of this, we

often write dxdy (or dydx) for d(x, y).

By combining Fubini’s theorem with Tonelli’s theorem, we can

recast the absolute integrability hypothesis:

Corollary 1.7.23 (Fubini-Tonelli theorem). Let (X,BX , µX) and

(Y,BY , µY ) be complete σ-finite measure spaces, and let f : X × Y →
C be measurable with respect to BX × BY . If

∫

X

(

∫

Y

|f(x, y)| dµY (y)) dµX(x) < ∞

(note the left-hand side always exists, by Tonelli’s theorem) then f is

absolutely integrable with respect to BX × BY , and in particular the

conclusions of Fubini’s theorem hold. Similarly if we use
∫

Y
(
∫

X
|f(x, y)| dµX(x)) dµY (y)

instead of
∫

X
(
∫

Y
|f(x, y)| dµY ) dµX .

The Fubini-Tonelli theorem is an indispensable tool for comput-

ing integrals. We give some basic examples below:

Exercise 1.7.24 (Area interpretation of integral). Let (X,B, µ) be a
σ-finite measure space, and let R be equipped with Lebesgue measure

m and the Borel σ-algebra B[R]. Show that if f : X → [0,+∞] is

measurable if and only if the set {(x, t) ∈ X ×R : 0 ≤ t ≤ f(x)} is

measurable in B × B[R], in which case we have

(µ×m)({(x, t) ∈ X ×R : 0 ≤ t ≤ f(x)}) =
∫

X

f(x) dµ(x).
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Similarly if we replace {(x, t) ∈ X × R : 0 ≤ t ≤ f(x)} by {(x, t) ∈
X ×R : 0 ≤ t < f(x)}.

Exercise 1.7.25 (Distribution formula). Let (X,B, µ) be a σ-finite

measure space, and let f : X → [0,+∞] be measurable. Show that
∫

X

f(x) dµ(x) =

∫

[0,+∞]

µ({x ∈ X : f(x) ≥ λ}) dλ.

(Note that the integrand on the right-hand side is monotone and thus

Lebesgue measurable.) Similarly if we replace {x ∈ X : f(x) ≥ λ} by

{x ∈ X : f(x) > λ}.

Exercise 1.7.26 (Approximations to the identity). Let P : Rd →
R+ be a good kernel (see Exercise 1.6.27), and let Pt(x) :=

1
td
P (xt )

be the associated rescaled functions. Show that if f : Rd → C is

absolutely integrable, that f ∗Pt converges in L1 norm to f as t → 0.

(Hint: use the density argument. You will need an upper bound on

‖f ∗ Pt‖L1(Rd) which can be obtained using Tonelli’s theorem.)
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2.1. Problem solving strategies

The purpose of this section is to list (in no particular order) a number

of common problem solving strategies for attacking real analysis exer-

cises such as that presented in this text. Some of these strategies are

specific to real analysis type problems, but others are quite general

and would be applicable to other mathematical exercises.

2.1.1. Split up equalities into inequalities. If one has to show

that two numerical quantities X and Y are equal, try proving that

X ≤ Y and Y ≤ X separately. Often one of these will be very easy,

and the other one harder; but the easy direction may still provide

some clue as to what needs to be done to establish the other direction.

Exercise 1.1.6(iii) is a typical problem in which this strategy can be

applied.

In a similar spirit, to show that two sets E and F are equal, try

proving that E ⊂ F and F ⊂ E. See for instance the proof of Lemma

1.2.11 for a simple example of this.

2.1.2. Give yourself an epsilon of room. If one has to show

that X ≤ Y , try proving that X ≤ Y + ε for any ε > 0. (This

trick combines well with §2.1.1.) See for instance Lemma 1.2.5 for an

example of this.

In a similar spirit:

• if one needs to show that a quantity X vanishes, try showing

that |X| ≤ ε for every ε > 0. (Exercise 1.2.19 is a simple

application of this strategy.)

• if one wishes to show that two functions f, g agree almost

everywhere, try showing first that |f(x) − g(x)| ≤ ε holds

for almost every x, or even just outside of a set of measure

at most ε, for any given ε > 0. (See for instance the proof

of Lemma 1.5.7 for an example of this.)

• if one wants to show that a sequence xn of real numbers

converges to zero, try showing that lim supn→∞ |xn| ≤ ε

for every ε > 0. (The proof of the Lebesgue differentiation

theorem, Theorem 1.6.12, is in this spirit.)
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Don’t be too focused on getting all your error terms adding up to

exactly ε - usually, as long as the final error bound consists of terms

that can all be made as small as one wishes by choosing parameters

in a suitable way, that is enough. For instance, an error term such

as 10ε is certainly OK, or even more complicated expressions such as

10ε/δ + 4δ if one has the ability to choose δ as small as one wishes,

and then after δ is chosen, one can then also set ε as small as one

wishes (in a manner that can depend on δ).

One caveat: for finite x, and any ε > 0, it is true that x+ ε > x

and x− ε < x, but this statement is not true when x is equal to +∞
(or −∞). So remember to exercise some care with the epsilon of room

trick when some quantities are infinite.

See also §2.7 of An epsilon of room, Vol. I.

2.1.3. Decompose (or approximate) a rough or general ob-

ject into (or by) a smoother or simpler one. If one has to

prove something about an unbounded (or infinite measure) set, con-

sider proving it for bounded (or finite measure) sets first if this looks

easier.

In a similar spirit:

• If one has to prove something about a measurable set, try

proving it for open, closed, compact, bounded, or elementary

sets first.

• If one has to prove something about a measurable function,

try proving it for functions that are continuous, bounded,

compactly supported, simple, absolutely integrable, etc..

• If one has to prove something about an infinite sum or se-

quence, try proving it first for finite truncations of that sum

or sequence (but try to get all the bounds independent of

the number of terms in that truncation, so that you can still

pass to the limit!).

• If one has to prove something about a complex-valued func-

tion, try it for real-valued functions first.

• If one has to prove something about a real-valued function,

try it for unsigned functions first.
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• If one has to prove something about a simple function, try

it for indicator functions first.

In order to pass back to the general case from these special cases,

one will have to somehow decompose the general object into a combi-

nation of special ones, or approximate general objects by special ones

(or as a limit of a sequence of special objects). In the latter case,

one may need an epsilon of room (§2.1.2), and some sort of limiting

analysis may be needed to deal with the errors in the approximation

(it is not always enough to just “pass to the limit”, as one has to

justify that the desirable properties of the approximating object are

preserved in the limit). Littlewood’s principles (Section 1.3.5) and

their variants are often useful for thus purpose.

Note: one should not do this blindly, as one might then be loading

on a bunch of distracting but ultimately useless hypotheses that end

up being a lot less help than one might hope. But they should be

kept in mind as something to try if one starts having thoughts such

as “Gee, it would be nice at this point if I could assume that f is

continuous / real-valued / simple / unsigned / etc.”.

In the more quantitative areas of analysis and PDE, one sees

a common variant of the above technique, namely the method of a

priori estimates. Here, one needs to prove an estimate or inequality

for all functions in a large, rough class (e.g. all rough solutions to

a PDE). One can often then first prove this inequality in a much

smaller (but still “dense”) class of “nice” functions, so that there is

little difficulty justifying the various manipulations (e.g. exchanging

integrals, sums, or limits, or integrating by parts) that one wishes

to perform. Once one obtains these a priori estimates, one can then

often take some sort of limiting argument to recover the general case.

2.1.4. If one needs to flip an upper bound to a lower bound

or vice versa, look for a way to take reflections or comple-

ments. Sometimes one needs a lower bound for some quantity, but

only has techniques that give upper bounds. In some cases, though,

one can “reflect” an upper bound into a lower bound (or vice versa)

by replacing a set E contained in some space X with its complement

X\E, or a function f with its negation −f (or perhaps subtracting f
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from some dominating function F to obtain F − f). This trick works

best when the objects being reflected are contained in some sort of

“bounded”, “finite measure”, or “absolutely integrable” container, so

that one avoids having the dangerous situation of having to subtract

infinite quantities from each other.

A typical example of this is when one deduces downward mono-

tone convergence for sets from upward monotone convergence for sets

(Exercise 1.2.11).

2.1.5. Uncountable unions can sometimes be replaced by

countable or finite unions. Uncountable unions are not well-behaved

in measure theory; for instance, an uncountable union of null sets

need not be a null set (or even a measurable set). (On the other

hand, the uncountable union of open sets remains open; this can of-

ten be important to know.) However, in many cases one can replace

an uncountable union by a countable one. For instance, if one needs

to prove a statement for all ε > 0, then there are an uncountable

number of ε’s one needs to check, which may threaten measurability;

but in many cases it is enough to only work with a countable sequence

of εs, such as the numbers 1/m for m = 1, 2, 3, . . .. (Exercise 1.6.30

relies heavily on this trick.)

In a similar spirit, given a real parameter λ, this parameter ini-

tially ranges over uncountably many values, but in some cases one

can get away with only working with a countable set of such values,

such as the rationals. In a similar spirit, rather than work with all

boxes (of which there are uncountably many), one might work with

the dyadic boxes (of which there are only countably many; also, they

obey nicer nesting properties than general boxes and so are often

desirable to work with in any event).

If you are working on a compact set, then one can often replace

even uncountable unions with finite ones, so long as one is working

with open sets. (The proof of Theorem 1.6.20 is a good example of

this strategy.) When this option is available, it is often worth spend-

ing an epsilon of measure (or whatever other resource is available to

spend) to make one’s sets open, just so that one can take advantage

of compactness.
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2.1.6. If it is difficult to work globally, work locally instead.

A domain such as Euclidean space Rd has infinite measure, and this

creates a number of technical difficulties when trying to do measure

theory directly on such spaces. Sometimes it is best to work more

locally, for instance working on a large ball B(0, R) or even a small

ball such as B(x, ε) first, and then figuring out how to patch things

together later. Compactness (or the closely related property of total

boundedness) is often useful for patching together small balls to cover

a large ball. Patching together large balls into the whole space tends

to work well when the properties one are trying to establish are local

in nature (such as continuity, or pointwise convergence) or behave

well with respect to countable unions. For instance, to prove that

a sequence of functions fn converges pointwise almost everywhere

to f on Rd, it suffices to verify this pointwise almost everywhere

convergence on the ball B(0, R) for every R > 0 (which one can take

to be an integer to get countability, see §2.1.5). The application of

vertical truncation (as done, for instance, in the proof of Corollary

1.3.14) is an instance of this idea.

2.1.7. Be willing to throw away an exceptional set. The “Lebesgue

philosophy” to measure theory is that null sets are often “irrelevant”,

and so one should be very willing to cut out a set of measure zero

on which bad things are happening (e.g. a function is undefined or

infinite, a sequence of functions is not converging, etc.). One should

also be only slightly less willing to throw away sets of positive but

small measure, e.g. sets of measure at most ε. If such sets can be

made arbitrarily small in measure, this is often almost as good as just

throwing away a null set.

Many things in measure theory improve after throwing away a

small set. The most notable examples of this are Egorov’s theorem

(Theorem 1.3.26) and Lusin’s theorem (Theorem 1.3.28); see also

Exercise 1.3.25 for some other examples of this idea.
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It is also common to see a similar trick1 of throwing away most

of a sequence and working with a subsequence instead. See §2.1.17
below.

2.1.8. Draw pictures and try to build counterexamples. Mea-

sure theory, particularly on Euclidean spaces, has a significant geo-

metric aspect to it, and you should be exploiting your geometric intu-

ition. Drawing pictures and graphs of all the objects being studied is

a good way to start. These pictures need not be completely realistic;

they should be just complicated enough to hint at the complexities

of the problem, but not more. For instance, usually one- or two-

dimensional pictures suffice for understanding problems in Rd; draw-

ing intricate 3D (or 4D, etc.) pictures does not often make things

simpler. To indicate that a function is not continuous, one or two

discontinuities or oscillations might suffice; make it too ornate and

it becomes less clear what to do about that function. One should

view these pictures as providing a “cartoon sketch” of the situation,

which exaggerates key features and downplays others, rather than a

photorealistic image of the situation; too much detail or accuracy in

a picture may be a waste of time, or otherwise counterproductive.

A common mistake is to try to draw a picture in which both

the hypotheses and conclusion of the problem hold. This is actually

not all that useful, as it often does not reveal the causal relationship

between the former and the latter. One should try instead to draw a

picture in which the hypotheses hold but for which the conclusion does

not - in other words, a counterexample to the problem. Of course,

you should be expected to fail at this task, given that the statement

of the problem is presumably true. However, the way in which your

picture fails to accomplish this task is often very instructive, and can

reveal vital clues as to how the solution to the problem is supposed

to proceed.

I have deliberately avoided drawing pictures in this book. This

is not because I feel that pictures are not useful - far from it - but

because I have found that it is far more informative for a reader

1This trick can also be interpreted as “throwing away a small set”, but to un-
derstand what “small” means in this context, one needs the language of ultrafilters,
which will not be discussed here; see [Ta2008, §1.5] for a discussion.
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to draw his or her own pictures of a given mathematical situation,

rather than rely on the author’s images (except in situations where

the geometric situation is particularly complicated or subtle), as such

pictures will naturally be adapted to the reader’s mindset rather than

the author’s. Besides, the process of actually drawing the picture is

at least as instructive as the picture itself.

2.1.9. Try simpler cases first. This advice of course extends well

beyond measure theory, but if one is completely stuck on a problem,

try making the problem simpler (while still capturing at least one

of the difficulties of the problem that you cannot currently resolve).

For instance, if faced with a problem in Rd, try the one-dimensional

case d = 1 first. Faced with a problem about a general measurable

function f , try a much simpler case first, such as an indicator function

f = 1E . Faced with a problem about a general measurable set, try

an elementary set first. Faced with a problem about a sequence of

functions, try a monotone sequence of functions first. And so forth.

(Note that this trick overlaps quite a bit with §2.1.3.)
The problem should not be made so simple that it becomes trivial,

as this doesn’t really gain you any new insight about the original

problem; instead, one should try to keep the “essential” difficulties

of the problem while throwing away those aspects that you think are

less important (but are still serving to add to the overall difficulty

level).

On the other hand, if the simplified problem is unexpectedly easy,

but one cannot extend the methods to the general case (or somehow

leverage the simplified case to the general case, as in §2.1.3), this

is an indication that the true difficulty lies elsewhere. For instance,

if a problem involving general functions could be solved easily for

monotone functions, but one cannot then extend that argument to

the general case, this suggests that the true enemy is oscillation, and

perhaps one should try another simple case in which the function is

allowed to be highly oscillatory (but perhaps simple in other ways,

e.g. bounded with compact support).
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2.1.10. Abstract away any information that you believe or

suspect to be irrelevant. Sometimes one is faced with an embar-

rassment of riches when it comes to what choice of technique to use

on a problem; there are so many different facts that one knows about

the problem, and so many different pieces of theory that one could

apply, that one doesn’t quite know where to begin.

When this happens, abstraction can be a vital tool to clear away

some of the conceptual clutter. Here, one wants to “forget” part of

the setting that the problem is phrased in, and only keep the part

that seems to be most relevant to the hypotheses and conclusions of

the problem (and thus, presumably, to the solution as well).

For instance, if one is working in a problem that is set in Eu-

clidean space Rd, but the hypotheses and conclusions only involve

measure-theoretic concepts (e.g. measurability, integrability, mea-

sure, etc.) rather than topological structure, metric structure, etc.,

then it may be worthwhile to try abstracting the problem to the more

general setting of an abstract measure space, thus forgetting that one

was initially working in Rd. The point of doing this is that it cuts

down on the number of possible ways to start attacking the problem.

For instance, facts such as outer regularity (every measurable set can

be approximated from above by an open set) do not hold in abstract

measure spaces (which do not even have a meaningful notion of an

open set), and so presumably will not play a role in the solution; sim-

ilarly for any facts involving boxes. Instead, one should be trying to

use general facts about measure, such as countable additivity, which

are not specific to Rd.

Remark 2.1.1. It is worth noting that sometimes this abstraction

method does not always work; for instance, when viewed as a measure

space, Rd is not completely arbitrary, but does have one or two fea-

tures that distinguish it from a generic measure space, most notably

the fact that it is σ-finite. So, even if the hypotheses and conclusion

of a problem about Rd is purely measure-theoretic in nature, one may

still need to use some measure-theoretic facts specific to Rd. Here, it

becomes useful to know a little bit about the classification of measure

spaces to have some intuition as to how “generic” a measure space

such as Rd really is. This intuition is hard to convey at this level of
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the subject, but in general, measure spaces form a very “non-rigid”

category, with very few invariants, and so it is largely true that one

measure space usually behaves much the same as any other.

Another example of abstraction: suppose that a problem in-

volves a large number of sets (e.g. En and Fn) and their measures,

but that the conclusion of the problem only involves the measures

m(En),m(Fn) of the sets, rather than the sets themselves. Then

one can try to abstract the sets out of the problem, by trying to

write down every single relationship between the numerical quantities

m(En),m(Fn) that one can easily deduce from the given hypotheses

(together with basic properties of measure, such as monotonicity or

countable additivity). One can then rename these quantities (e.g.

an := m(En) and bn := m(Fn)) to ”forget” that these quantities

arose from a measure-theoretic context, and then work with a purely

numerical problem, in which one is starting with hypotheses on some

sequences an, bn of numbers and trying to deduce a conclusion about

such sequences. Such a problem is often easier to solve than the orig-

inal problem due to the simpler context. Sometimes, this simplified

problem will end up being false, but the counterexample will often

be instructive, either in indicating the need to add an additional hy-

pothesis connecting the an, bn, or to indicate that one cannot work at

this level of abstraction but must introduce some additional concrete

ingredient.

Note that this trick is in many ways the antithesis of §2.1.9, be-
cause by passing to a special case, one often makes the problem more

concrete, with more things that one is now able to start trying. How-

ever, the two tricks can work together. One particularly useful “ad-

vanced move” in mathematical problem solving is to first abstract the

problem to a more general one, and then consider a special case of

that more abstract problem which is not directly related to the origi-

nal one, but is somehow simpler than the original while still capturing

some of the essence of the difficulty. Attacking this alternate problem

can then lead to some indirect but important ways to make progress

on the original problem.
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2.1.11. Exploit Zeno’s paradox: a single epsilon can be cut

up into countably many sub-epsilons. A particularly useful fact

in measure theory is that one can cut up a single epsilon into count-

ably many pieces, for instance by using the geometric series identity

ε = ε/2 + ε/4 + ε/8 + . . . ;

this observation arguably goes all the way back to Zeno. As such,

even if one only has an epsilon of room budgeted for a problem, one

can still use this budget to do a countably infinite number of things.

This fact underlies many of the countable additivity and subaddi-

tivity properties in measure theory, and also makes the ability to

approximate rough objects by smoother ones to be useful even when

countably many rough objects need to be approximated. (Exercise

1.2.3 is a typical example in which this trick is used.)

In general, one should be alert to this sort of trick when one has

to spend an epsilon or so on an infinite number of objects. If one was

forced to spend the same epsilon on each object, one would soon end

up with an unacceptable loss; but if one can get away with using a

different epsilon each time, then Zeno’s trick comes in very handy.

2.1.12. If you expand your way to a double sum, a double

integral, a sum of an integral, or an integral of a sum, try in-

terchanging the two operations. Or, to put it another way: “The

Fubini-Tonelli theorem (Corollary 1.7.23) is your friend”. Provided

that one is either in the unsigned or absolutely convergent worlds,

this theorem allows you to interchange sums and integrals with each

other. In many cases, a double sum or integral that is difficult to

sum in one direction can become easier to sum (or at least to upper

bound, which is often all that one needs in analysis). In fact, if in the

course of expanding an expression, you encounter such a double sum

or integral, you should reflexively try interchanging the operations to

see if the resulting expression looks any simpler.

Note that in some cases the parameters in the summation may be

constrained, and one may have to take a little care to sum it properly.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



220 2. Related articles

For instance,

(2.1)
∞
∑

n=−∞

∞
∑

m=n

am,n

interchanges (assuming that the an,m are either unsigned or abso-

lutely convergent) to
∞
∑

m=−∞

m
∑

n=−∞
am,n

(why? try plotting the set of pairs (m,n) that appear in both). If

one is having trouble interchanging constrained sums or integrals, one

solution is to re-express the constraint using indicator functions. For

instance, one can rewrite the constrained sum (2.1) as the uncon-

strained sum
∞
∑

n=−∞

∞
∑

m=−∞
1m≥nam,n

(extending the domain of am,n if necessary), at which point inter-

changing the summations is easily accomplished.

The following point is obvious, but bears mentioning explicitly:

while the interchanging sums/integrals trick can be very powerful,

one should not apply it twice in a row to the same double sum or

double operation, unless one is doing something genuinely non-trivial

in between those two applications. So, after one exchanges a sum

or integral, the next move should be something other than another

exchange (unless one is dealing with a triple or higher sum or integral).

A related move (not so commonly used in measure theory, but

occurring in other areas of analysis, particularly those involving the

geometry of Euclidean spaces) is to merge two sums or integrals into

a single sum or integral over the product space, in order to use some

additional feature of the product space (e.g. rotation symmetry) that

is not readily visible in the factor spaces. The classic example of

this trick is the evaluation of the gaussian integral
∫∞
−∞ e−x

2

dx by

squaring it, rewriting that square as the two-dimensional gaussian

integral
∫

R2 e
−x2−y2

dxdy, and then switching to polar coordinates.

2.1.13. Pointwise control, uniform control, and integrated

(average) control are all partially convertible to each other.
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There are three main ways to control functions (or sequences of func-

tions, etc.) in analysis. Firstly, there is pointwise control, in which

one can control the function at every point (or almost every point),

but in a non-uniform way. Then there is uniform control, where one

can control the function in the same way at most points (possibly

throwing out a set of zero measure, or small measure). Finally, there

is integrated control (or control “on the average”), in which one con-

trols the integral of a function, rather than the pointwise values of

that function.

It is important to realise that control of one type can often be

partially converted to another type. Simple examples include the

deduction of pointwise convergence from uniform convergence, or in-

tegrating a pointwise bound f(x) ≤ g(x) to obtain an integrated

bound
∫

f ≤
∫

g. Of course, these conversions are not reversible

and thus lose some information; not every pointwise convergent se-

quence is uniformly convergent, and an integral bound does not imply

a pointwise bound. However, one can partially reverse such implica-

tions if one is willing to throw away an exceptional set (§2.1.7). For

instance, Egorov’s theorem (Theorem 1.3.26) lets one convert point-

wise convergence to (local) uniform convergence after throwing away

an exceptional set, and Markov’s inequality (Exercise 1.4.36(vi)) lets

one convert integral bounds to pointwise bounds, again after throwing

away an exceptional set.

2.1.14. If the conclusion and hypotheses look particularly

close to each other, just expand out all the definitions and

follow your nose. This trick is particularly useful when building

the most basic foundations of a theory. Here, one may not need to

experiment too much with generalisations, abstractions, or special

cases, or try to marshall a lot of possibly relevant facts about the

objects being studied: sometimes, all one has to do is go back to first

principles, write out all the definitions with their epsilons and deltas,

and start plugging away at the problem.

Knowing when to just follow one’s nose, and when to instead

look for a more high-level approach to a problem, can require some

judgement or experience. A direct approach tends to work best when

the conclusion and hypothesis already look quite similar to each other
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(e.g. they both state that a certain set or family of sets is measurable,

or they both state that a certain function or family of functions is

continuous, etc.). But when the conclusion looks quite different from

the hypotheses (e.g. the conclusion is some sort of integral identity,

and the hypotheses involve measurability or convergence properties),

then one may need to use more sophisticated tools than what one can

easily get from using first principles.

2.1.15. Don’t worry too much about exactly what ε (or δ, or

N , etc.) needs to be. It can usually be chosen or tweaked

later if necessary. Often in the middle of an argument, you will

want to use some fact that involves a parameter, such as ε, that

you are completely free to choose (subject of course to reasonable

constraints, such as requiring ε to be positive). For instance, you

may have a measurable set and decide to approximate it from above

by an open set of at most ε more measure. But it may not be obvious

exactly what value to give this parameter ε; you have so many choices

available that you don’t know which one to pick!

In many cases, one can postpone thinking about this problem

by leaving ε undetermined for now, and continuing on with one’s

argument, which will gradually start being decorated with ε’s all over

the place. At some point, one will need ε to do something (and,

in the particular case of ε, “doing something” almost always means

“being small enough”), e.g. one may need 3nε to be less than δ, where

n, δ are some other positive quantities in one’s problem that do not

depend on ε. At this point, one could now set ε to be whatever is

needed to get past this step in the argument, e.g. one could set ε to

equal δ/4n. But perhaps one still wishes to retain the freedom to set

ε because it might come in handy later. In that case, one sets aside

the requirement “3nε < δ” and keeps going. Perhaps a bit later on,

one might need ε to do something else; for instance, one might also

need 5ε ≤ 2−n. Once one has compiled the complete “wish list” of

everything one wishes one’s parameters to do, then one can finally

make the decision of what value to set those parameters equal to.

For instance, if the above two inequalities are the only inequalities

required of ε, one can choose ε equal to min(δ/4n, 2−n/5). This may
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be a choice of ε which was not obvious at the start of the argument,

but becomes so as the argument progresses.

There is however one big caveat when adopting this “choose pa-

rameters later” approach, which is that one needs to avoid a circular

dependence of constants. For instance, it is perfectly fine to have two

arbitrary parameters ε and δ floating around unspecified for most of

the argument, until at some point you realise that you need ε to be

smaller than δ, and so one chooses ε accordingly (e.g. one sets it to

equal δ/2). Or, perhaps instead one needs δ to be smaller than ε, and

so sets δ equal to ε/2. One can execute either of these two choices

separately, but of course one cannot perform them simultaneously;

this sets up an inconsistent circular dependency in which ε needs to

be defined after δ is chosen, and δ can only be chosen after ε is fixed.

So, if one is going to delay choosing a parameter such as ε until later,

it becomes important to mentally keep track of what objects in one’s

argument depend on ε, and which ones are independent of ε. One

can choose ε in terms of the latter quantities, but one usually cannot

do so in terms of the former quantities (unless one takes the care to

show that the interlinked constraints between the quantities are still

consistent, and thus simultaneously satisfiable).

2.1.16. Once one has started to lose some constants, don’t

be hesitant to lose some more. Many techniques in analysis end

up giving inequalities that are inefficient by a constant factor. For

instance, any argument involving dyadic decomposition and powers

of two tends to involve losses of factors of 2. When arguing using balls

in Euclidean space, one sometimes loses factors involving the volume

of the unit ball (although this factor often cancels itself out if one

tracks it more carefully). And so forth. However, in many cases these

constant factors end up being of little importance: an upper bound

of 2ε or 100ε is often just as good as an upper bound of ε for the

purposes of analysis (cf. §2.1.15). So it is often best not to invest too

much energy in carefully computing and optimising these constants;

giving these constants a symbol such as C, and not worrying about

their exact value, is often the simplest approach. (One can also use

asymptotic notation, such as O(), which is very convenient to use

once you know how it works.)
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Now there are some cases in which one really does not want to

lose any constants at all. For instance, if one is using §2.1.1 to prove

that X = Y , it is not enough to show that X ≤ 2Y and Y ≤ 2X;

one really needs to show X ≤ Y and Y ≤ X without losing any

constants. (But proving X ≤ (1 + ε)Y and Y ≤ (1 + ε)X is OK,

by §2.1.2.) But once one has already performed one step that loses

a constant, there is little further to be lost by losing more; there can

be a big difference between X ≤ Y and X ≤ 2Y , but there is little

difference in practice between X ≤ 2Y and X ≤ 100Y , at least for

the purposes of mathematical analysis. At that stage, one should

put oneself in the mental mode of thought where “constants don’t

matter”, which can lead to some simplifications. For instance, if one

has to estimate a sum X+Y of two positive quantities, one can start

using such estimates as

max(X,Y ) ≤ X + Y ≤ 2max(X,Y ),

which says that, up to a factor of 2, X + Y is the same thing as

max(X,Y ). In some cases the latter is easier to work with (e.g.

max(X,Y )n is equal to max(Xn, Y n), whereas the formula for (X +

Y )n is messier).

2.1.17. One can often pass to a subsequence to improve the

convergence properties. In real analysis, one often ends up pos-

sessing a sequence of objects, such as a sequence of functions fn,

which may converge in some rather slow or weak fashion to a limit f .

Often, one can improve the convergence of this sequence by passing

to a subsequence. For instance:

• In a metric space, if a sequence xn converges to a limit

x, then one can find a subsequence xnj
which converges

quickly to the same limit x, for instance one can ensure that

d(xnj
, x) ≤ 2−j (or one can replace 2−j with any other posi-

tive expression depending on j). In particular, one can make
∑∞

j=1 d(xnj
, x) and

∑∞
j=1 d(xnj

, xnj+1
) absolutely conver-

gent, which is sometimes useful.

• A sequence of functions that converges in L1 norm or in mea-

sure can be refined to a subsequence that converges point-

wise almost everywhere as well.
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• A sequence in a (sequentially) compact space may not con-

verge at all, but some subsequence of it will always converge.

• The pigeonhole principle: A sequence which takes only finitely

many values has a subsequence that is constant. More gen-

erally, a sequence which lives in the union of finitely many

sets has a subsequence that lives in just one of these sets.

Often, the subsequence is good enough for one’s applications, and

there are also a number of ways to get back from a subsequence to

the original sequence, such as:

• In a metric space, if you know that xn is a Cauchy sequence,

and some subsequence of xn already converges to x, then

this drags the entire sequence with it, i.e. xn converges to

x also.

• The Urysohn subsequence principle: in a topological space,

if every subsequence of a sequence xn itself has a subse-

quence that converges to a limit x, then the entire sequence

converges to x.

2.1.18. A real limit can be viewed as a meeting of the limit

superior and limit inferior. A sequence xn of real numbers does

not necessarily have a limit limn→∞ xn, but the limit superior lim supn→∞ xn :=

infN supn>N xn and the limit inferior lim infn→∞ xn = supN infn>N xn

always exist (though they may be infinite), and can be easily defined

in terms of infima and suprema. Because of this, it is often convenient

to work with the lim sup and lim inf instead of a limit. For instance,

to show that a limit limn→∞ xn exists, it suffices to show that

lim sup
n→∞

xn ≤ lim inf
n→∞

xn + ε

for all ε > 0. In a similar spirit, to show that a sequence xn of real

numbers converges to zero, it suffices to show that

lim sup
n→∞

|xn| ≤ ε

for all ε > 0. It can be more convenient to work with lim sups and

lim infs instead of limits because one does not need to worry about

the issue of whether the limit exists or not, and many tools (notably

Fatou’s lemma and its relatives) still work in this setting. One should
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however be cautious that lim sups and lim infs tend to have only

one half of the linearity properties that limits do; for instance, lim

sups are subadditive but not necessarily additive, while lim infs are

superadditive but not necessarily additive.

The proof of the monotone differentiation theorem (Theorem

1.6.25) given in the text relies quite heavily on this strategy.

2.2. The Rademacher differentiation theorem

The Fubini-Tonelli theorem (Corollary 1.7.23) is often used in ex-

tending lower-dimensional results to higher-dimensional ones. We

illustrate this by extending the one-dimensional Lipschitz differenti-

ation theorem (Exercise 1.6.41) to higher dimensions, obtaining the

Rademacher differentiation theorem.

We first recall some higher-dimensional definitions:

Definition 2.2.1 (Lipschitz continuity). A function f : X → Y from

one metric space (X, dX) to another (Y, dY ) is said to be Lipschitz con-

tinuous if there exists a constant C > 0 such that dY (f(x), f(x
′)) ≤

CdX(x, x′) for all x, x′ ∈ X. (In the applications of this section, X

will be Rd and Y will be R, with the usual metrics.)

Exercise 2.2.1. Show that Lipschitz continuous functions are uni-

formly continuous, and hence continuous. Then give an example of a

uniformly continuous function f : [0, 1] → [0, 1] that is not Lipschitz

continuous.

Definition 2.2.2 (Differentiability). Let f : Rd → R be a function,

and let x0 ∈ Rd. For any v ∈ Rd, we say that f is directionally

differentiable at x0 in the direction v if the limit

Dvf(x0) := lim
h→0;h∈R\{0}

f(x0 + hv)− f(x0)

h

exists, in which case we call Dvf(x0) the directional derivative of f

at x0 in this direction. If v = ei is one of the standard basis vectors

e1, . . . , ed of Rd, we write Dvf(x0) as ∂f
∂xi

(x0), and refer to this as

the partial derivative of f at x0 in the ei direction.
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We say that f is totally differentiable at x0 if there exists a vector

∇f(x0) ∈ Rd with the property that

lim
h→0;h→Rd\{0}

f(x0 + h)− f(x0)− h · ∇f(x0)

|h| = 0,

where v ·w is the usual dot product on Rd. We refer to ∇f(x0) (if it

exists) as the gradient of f at x0.

Remark 2.2.3. From the viewpoint of differential geometry, it is

better to work not with the gradient vector ∇f(x0) ∈ Rd, but rather

with the derivative covector df(x0) : Rd → R given by df(x0) :

v 7→ ∇f(x0) · v. This is because one can then define the notion of

total differentiability without any mention of the Euclidean dot prod-

uct, which allows one to extend this notion to other manifolds in

which there is no Euclidean (or more generally, Riemannian) struc-

ture. However, as we are working exclusively in Euclidean space for

this application, this distinction will not be important for us.

Total differentiability implies directional and partial differentia-

bility, but not conversely, as the following three exercises demonstrate.

Exercise 2.2.2 (Total differentiability implies directional and partial

differentiability). Show that if f : Rd → R is totally differentiable

at x0, then it is directionally differentiable at x0 in each direction

v ∈ Rd, and one has the formula

(2.2) Dvf(x0) = v · ∇f(x0).

In particular, the partial derivatives ∂f
∂xi

f(x0) exist for i = 1, . . . , d

and

(2.3) ∇f(x0) =

(

∂f

∂x1
(x0), . . . ,

∂f

∂xd
(x0)

)

.

Exercise 2.2.3 (Continuous partial differentiability implies total dif-

ferentiability). Let f : Rd → R be such that the partial derivatives
∂f
∂xi

: Rd → R exist everywhere and are continuous. Then show

that f is totally differentiable everywhere, which in particular implies

that the gradient is given by the formula (2.3) and the directional

derivatives are given by (2.2).
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Exercise 2.2.4 (Directional differentiability does not imply total dif-

ferentiability). Let f : R2 → R be defined by setting f(0, 0) := 0 and

f(x1, x2) :=
x1x

2
2

x2
1+x2

2
for (x1, x2) ∈ R2\{(0, 0)}. Show that the direc-

tional derivatives Dvf(x) exist for all x, v ∈ R2 (so in particular, the

partial derivatives exist), but that f is not totally differentiable at

the origin (0, 0).

Now we can state the Rademacher differentiation theorem.

Theorem 2.2.4 (Rademacher differentiation theorem). Let f : Rd →
R be Lipschitz continuous. Then f is totally differentiable at x0 for

almost every x0 ∈ Rd.

Note that the d = 1 case of this theorem is Exercise 1.6.41, and

indeed we will use the one-dimensional theorem to imply the higher-

dimensional one, though there will be some technical issues due to

the gap between directional and total differentiability.

Proof. The strategy here is to first aim for the more modest goal of

directional differentiability, and then find a way to link the directional

derivatives together to get total differentiability.

Let v, x0 ∈ Rd. As f is continuous, we see that in order for the

directional derivative

Dvf(x0) := lim
h→0;h∈R\{0}

f(x0 + hv)− f(x0)

h

to exist, it suffices to let h range in the dense subset Q\{0} of R\{0}
for the purposes of determing whether the limit exists. In particular,

Dvf(x0) exists if and only if

lim sup
h→0;h∈Q\{0}

f(x0 + hv)− f(x0)

h
= lim inf

h→0;h∈Q\{0}

f(x0 + hv)− f(x0)

h
.

From this we easily conclude that for each direction v ∈ Rd, the set

Ev := {x0 ∈ Rd : Dvf(x0) does not exist}
is Lebesgue measurable inRd (indeed, it is even Borel measurable). A

similar argument reveals that Dvf is a measurable function outside

of Ev. From the Lipschitz nature of f , we see that Dvf is also a

bounded function.
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Now we claim that Ev is a null set for each v. For v = 0 Ev is

clearly empty, so we may assume v 6= 0. Applying an invertible linear

transformation to map v to e1 (noting that such transformations will

map Lipschitz functions to Lispchitz functions, and null sets to null

sets) we may assume without loss of generality that v is the basis

vector e1. Thus our task is now to show that ∂f
∂x1

(x) exists for almost

every x ∈ Rd.

We now split Rd as R×Rd−1. For each x0 ∈ R and y0 ∈ Rd−1,
we see from the definitions that ∂f

∂x1
(x0, y0) exists if and only if the

one-dimensional function x 7→ f(x, y0) is differentiable at x0. But this

function is Lipschitz continuous (this is inherited from the Lipschitz

continuity of f), and so we see that for each fixed y0 ∈ Rd−1, the set

Ey0 := {x0 ∈ R : (x0, y0) ∈ E} is a null set in R. Applying Tonelli’s

theorem for sets (Corollary 1.7.19), we conclude that E is a null set

as required.

We would like to now conclude that
⋃

v∈Rd Ev is a null set, but

there are uncountably many v’s, so this is not directly possible. How-

ever, as Qd is rational, we can at least assert that E :=
⋃

v∈Qd Ev is

a null set. In particular, for almost every x0 ∈ Rd, f is directionally

differentiable in every rational direction v ∈ Qd.

Now we perform an important trick, in which we interpret the

directional derivative Dvf as a weak derivative. We already know

that Dvf is almost everywhere defined, bounded and measurable.

Now let g : Rd → R be any function that is compactly supported

and Lipschitz continuous. We investigate the integral

∫

Rd

Dvf(x)g(x) dx.

This integral is absolutely convergent since Dvf(x) is bounded and

measurable, and g(x) is continuous and compactly supported, hence

bounded. We expand this out as

∫

Rd

lim
h→0;h∈R\{0}

f(x+ hv)− f(x)

h
g(x) dx.

Note (from the Lipschitz nature of f) that the expression f(x+hv)−f(x)
h g(x)

is bounded uniformly in h and x, and is also uniformly compactly

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



230 2. Related articles

supported in x for h in a bounded set. We may thus apply the domi-

nated convergence theorem (Theorem 1.4.49) to pull the limit out of

the integral to obtain

lim
h→0;h∈R\{0}

∫

Rd

f(x+ hv)− f(x)

h
g(x) dx.

Now, from translation invariance of the Lebesgue integral (Exercise

1.3.15) we have
∫

Rd

f(x+ hv)g(x) dx =

∫

Rd

f(x)g(x− hv) dx

and so (by the lienarity of the Lebesgue integral) we may rearrange

the previous expression as

lim
h→0;h∈R\{0}

∫

Rd

f(x)
g(x− hv)− g(x)

h
dx.

Now, as g is Lipschitz, we know that g(x−hv)−g(x)
h is uniformly bounded

and converges pointwise almost everywhere to D−vg(x) as h → 0. We

may thus apply the dominated convergence theorem again and end

up with the integration by parts formula

(2.4)

∫

Rd

Dvf(x)g(x) dx =

∫

Rd

f(x)D−vg(x) dx.

This formula moves the directional derivative operatorDv from f over

to g. At present, this does not look like much of an advantage, be-

cause g is the same sort of function that f is. However, the key point

is that we can choose g to be whatever we please, whereas f is fixed.

In particular, we can choose g to be a compactly supported, contin-

uously differentiable function (such functions are Lipschitz from the

fundamental theorem of calculus, as their derivatives are bounded).

By Exercise 2.2.3, one has D−vg = −v ·∇g for such functions, and so
∫

Rd

Dvf(x)g(x) dx = −
∫

Rd

f(x)(v · ∇g)(x) dx.

The right-hand side is linear in v, and so the left-hand side must be

linear in v also. In particular, if v = (v1, . . . , vd), then we have

∫

Rd

Dvf(x)g(x) dx =

d
∑

j=1

vj

∫

Rd

Dejf(x)g(x) dx.
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If we define the gradient candidate function

∇f(x) := (De1f(x), . . . , Dedf(x)) = (
∂f

∂x1
(x), . . . ,

∂f

∂xd
(x))

(note that this function is well-defined almost everywhere, even though

we don’t know yet whether f is totally differentiable almost every-

where), we thus have
∫

Rd

(Dvf − v · ∇f)(x)g(x) dx = 0

for all compactly supported, continuously differentiable g. This im-

plies (see Exercise 2.2.5 below) that Fv := Dvf − v · ∇f vanishes

almost everywhere, thus (by countable subadditivity) we have

(2.5) Dvf(x0) = v · ∇f(x0)

for almost every x0 ∈ Rd and every v ∈ Qd.

Let x0 be such that (2.5) holds for all v ∈ Qd. We claim that

this forces f to be totally differentiable at x0, which would give the

claim. Let F : Rd → Rd be the modified function

F (h) := f(x0 + h)− f(x0)− h · ∇f(x0).

Our objective is to show that

lim
h→0;h∈Rd\{0}

|F (h)|/|h| = 0.

On the other hand, we have F (0) = 0, F is Lipschitz, and from (2.5)

we see that DvF (0) = 0 for every v ∈ Qd.

Let ε > 0, and suppose that h ∈ Rd\{0}. Then we can write

h = ru where r := |h| and u := h/|h| lies on the unit sphere. This u

need not lie in Qd, but we can approximate it by some vector v ∈ Qd

with |u− v| ≤ ε. Furthermore, by the total boundedness of the unit

sphere, we can make v lie in a finite subset Vε of Q
d that only depends

on ε (and on d).

Since DvF (0) = 0 for all v ∈ Vε, we see (by making |h| small

enough depending on Vε) that we have

|F (rv)− F (0)

r
| ≤ ε

for all v ∈ Vε, and thus

|F (rv)| ≤ εr.
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On the other hand, from the Lipschitz nature of F , we have

|F (ru)− F (rv)| ≤ Cr|u− v| ≤ Crε

where C is the Lipschitz constant of F . As h = ru, we conclude that

|F (h)| ≤ (C + 1)rε.

In other words, we have shown that

|F (h)|/|h| ≤ (C + 1)ε

whenever |h| is sufficiently small depending on ε. Letting ε → 0, we

obtain the claim. �

Exercise 2.2.5. Let F : Rd → R be a locally integrable function

with the property that
∫

Rd F (x)g(x) dx = 0 whenever g is a com-

pactly supported, continuously differentiable function. Show that F

is zero almost everywhere. (Hint: if not, use the Lebesgue differenti-

ation theorem to find a Lebesgue point x0 of F for which F (x0) 6= 0,

then pick a g which is supported in a sufficiently small neighbourhood

of x0.)

2.3. Probability spaces

In this section we isolate an important special type of measure space,

namely a probability space. As the name suggests, these spaces are of

fundamental importance in the foundations of probability, although

it should be emphasised that probability theory should not be viewed

as the study of probability spaces, as these are merely models for the

true objects of study of that theory, namely the behaviour of random

events and random variables. (See §??? of ??? for further discussion

of this point. Crossreference will be added once the remaining

sections of the blog are converted to book form - T.) This text

will however not be focused on applications to probability theory

Definition 2.3.1 (Probability space). A probability space is a mea-

sure space (Ω,F ,P) of total measure 1: P(Ω) = 1. The measure P

is known as a probability measure.

Note the change of notation: whereas measure spaces are tradi-

tionally denoted by symbols such as (X,B, µ), probability spaces are

traditionally denoted by symbols such as (Ω,F ,P). Of course, such
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notational changes have no impact on the underlying mathematical

formalism, but they reflect the different cultures of measure theory

and probability theory. In particular, the various components Ω, F ,

P carry the following interpretations in probability theory, that are

absent in other applications of measure theory:

(i) The space Ω is known as the sample space, and is interpreted

as the set of all possible states ω ∈ Ω that a random system

could be in.

(ii) The σ-algebra F is known as the event space, and is inter-

preted as the set of all possible events E ∈ F that one can

measure.

(iii) The measure P(E) of an event is known as the probability

of that event.

The various axioms of a probability space then formalise the foun-

dational axioms of probability, as set out by Kolmogorov.

Example 2.3.2 (Normalised measure). Given any measure space

(X,B, µ) with 0 < µ(X) < +∞, the space (X,B, 1
µ(X)µ) is a prob-

ability space. For instance, if Ω is a non-empty finite set with the

discrete σ-algebra 2Ω and the counting measure #, then the nor-

malised counting measure 1
#Ω# is a probability measure (known as

the (discrete) uniform probability measure on Ω), and (Ω, 2Ω, 1
#Ω#)

is a probability space. In probability theory, this probability spaces

models the act of drawing an element of the discrete set Ω uniformly

at random.

Similarly, if Ω ⊂ Rd is a Lebesgue measurable set of positive finite

Lebesgue measure, 0 < m(Ω) < ∞, then (Ω,L[Rd] ⇂Ω,
1

m(Ω)m ⇂Ω) is

a probability space. The probability measure 1
m(Ω)m ⇂Ω is known as

the (continuous) uniform probability measure on Ω. In probability

theory, this probability spaces models the act of drawing an element

of the continuous set Ω uniformly at random.

Example 2.3.3 (Discrete and continuous probability measures). If

Ω is a (possibly infinite) non-empty set with the discrete σ-algebra

2Ω, and if (pω)ω∈Ω are a collection of real numbers in [0, 1] with
∑

ω∈Ω pω = 1, then the probability measure P defined by P :=
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∑

ω∈Ω pωδω, or in other words

P(E) :=
∑

ω∈E
pω,

is indeed a probability measure, and (Ω, 2Ω,P) is a probability space.

The function ω 7→ pω is known as the (discrete) probability distribu-

tion of the state variable ω.

Similarly, if Ω is a Lebesgue measurable subset of Rd of positive

(and possibly infinite) measure, and f : Ω → [0,+∞] is a Lebesgue

measurable function on Ω (where of course we restrict the Lebesgue

measure space on Rd to Ω in the usual fashion) with
∫

Ω
f(x) dx = 1,

then (Ω,L[Rd] ⇂Ω,P) is a probability space, where P := mf is the

measure

P(E) :=

∫

Ω

1E(x)f(x) dx =

∫

E

f(x) dx.

The function f is known as the (continuous) probability density of

the state variable ω. (This density is not quite unique, since one can

modify it on a set of probability zero, but it is well-defined up to

this ambiguity. See §1.2 of An epsilon of room, Vol. I for further

discussion.)

Exercise 2.3.1 (No translation-invariant random integer). Show that

there is no probability measure P on the integers Z with the discrete

σ-algebra 2Z with the translation-invariance property P(E + n) =

P(E) for every event E ∈ 2Z and every integer n.

Exercise 2.3.2 (No translation-invariant random real). Show that

there is no probability measure P on the reals R with the Lebesgue

σ-algebra L[R] with the translation-invariance property P(E + x) =

P(E) for every event E ∈ L[R] and every real x.

Many concepts in measure theory are of importance in probabil-

ity theory, although the terminology is changed to reflect the different

perspective on the subject. For instance, the notion of a property

holding almost everywhere is now replaced with that of a property

holding almost surely. A measurable function is now referred to as a

random variable and is often denoted by symbols such as X, and the

integral of that function on the probability space (if the random vari-

able is unsigned or absolutely convergent) is known as the expectation
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of that random variable, and is denoted E(X). Thus, for instance,

the Borel-Cantelli lemma (Exercise 1.4.44) now reads as follows: given

any sequence E1, E2, E3, . . . of events such that
∑∞

n=1 P(En) < ∞, it

is almost surely true that at most finitely many of these events hold.

In a similar spirit, Markov’s inequality (Exercise 1.4.36(vi)) becomes

the assertion that P(X ≥ λ) ≤ 1
λEX for any non-negative random

variable X and any 0 < λ < ∞.

2.4. Infinite product spaces and the Kolmogorov

extension theorem

In Section 1.7.4 we considered the product of two sets, measurable

spaces, or (σ-finite) measure spaces. We now consider how to gen-

eralise this concept to products of more than two such spaces. The

axioms of set theory allow us to form a Cartesian product XA :=
∏

α∈A Xα of any family (Xα)α∈A of sets indexed by another set A,

which consists of the space of all tuples xA = (xα)α∈A indexed by A,

for which xα ∈ Xα for all α ∈ A. This concept allows for a succinct

formulation of the axiom of choice (Axiom 0.0.4), namely that an

arbitrary Cartesian product of non-empty sets remains non-empty.

For any β ∈ A, we have the coordinate projection maps πβ :

XA → Xβ defined by πβ((xα)α∈A) := xβ . More generally, given any

B ⊂ A, we define the partial projections πB : XA → XB to the partial

product space XB :=
∏

α∈B Xα by πB((xα)α∈A) := (xα)α∈B . More

generally still, given two subsets C ⊂ B ⊂ A, we have the partial

subprojections πC←B : XB → XC defined by πC←B((xα)α∈B) :=

(xα)α∈C . These partial subprojections obey the composition law

πD←C ◦ πC←B := πD←B for all D ⊂ C ⊂ B ⊂ A (and thus form

a very simple example of a category).

As before, given any σ-algebra Bβ on Xβ , we can pull it back by

πβ to create a σ-algebra

π∗β(Bβ) := {π−1β (Eβ) : Eβ ∈ Bβ}
on XA. One easily verifies that this is indeed a σ-algebra. Informally,

π∗β(Bβ) describes those sets (or “events”, if one is thinking in prob-

abilistic terms) that depend only on the xβ coordinate of the state

xA = (xα)α∈A, and whose dependence on xβ is Bβ-measurable. We
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can then define the product σ-algebra
∏

β∈A
Bβ := 〈

⋃

β∈A
π∗β(Bβ)〉.

We have a generalisation of Exercise 1.7.18:

Exercise 2.4.1. Let ((Xα,Bα))α∈A be a family of measurable spaces.

For any B ⊂ A, write BB :=
∏

β∈B Bβ .

(1) Show that BA is the coarsest σ-algebra on XA that makes

the projection maps πβ measurable morphisms for all β ∈ A.

(2) Show that for each B ⊂ A, that πB is a measurable mor-

phism from (XA,BA) to (XB ,BB).

(3) If E in BA, show that there exists an at most countable

set B ⊂ A and a set EB ∈ BB such that EA = π−1B (EB).

Informally, this asserts that a measurable event can only

depend on at most countably many of the coefficients.

(4) If f : XA → [0,+∞] is BA-measurable, show that there

exists an at most countable set B ⊂ A and a BB-measurable

function fB : XB → [0,+∞] such that f = fB ◦ πB .

(5) If A is at most countable, show that BA is the σ-algebra

generated by the sets
∏

β∈A Eβ with Eβ ∈ Bβ for all β ∈ A.

(6) On the other hand, show that if A is uncountable and the

Bα are all non-trivial, show that BA is not the σ-algebra

generated by sets
∏

β∈A Eβ with Eβ ∈ Bβ for all β ∈ A.

(7) If B ⊂ A, E ∈ BA, and xA\B ∈ XA\B , show that the set

ExA\B ,B := {xB ∈ XB : (xB , xA\B) ∈ E} lies in BB , where

we identify XB ×XA\B with XA in the obvious manner.

(8) If B ⊂ A, f : XA → [0,+∞] is BA-measurable, and xA\B ∈
XA\B , show that the function fxA\B ,B : xB → f(xB , xA\B)
is BB-measurable.

Now we consider the problem of constructing a measure µA on

the product space XA. Any such measure µA will induce pushforward

measures µB := (πB)∗µA on XB (introduced in Exercise 1.4.38), thus

µB(EB) := µA(π
−1
B (EB))
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for all EB ∈ BB . These measures obey the compatibility relation

(2.6) (πC←B)∗µB = µC

whenever C ⊂ B ⊂ A, as can be easily seen by chasing the definitions.

One can then ask whether one can reconstruct µA from just from

the projections µB to finite subsets B. This is possible in the impor-

tant special case when the µB (and hence µA) are probability mea-

sures, provided one imposes an additional inner regularity hypothesis

on the measures µB . More precisely:

Definition 2.4.1 (Inner regularity). A (metrisable) inner regular

measure space (X,B, µ, d) is a measure space (X,B, µ) equipped with

a metric d such that

(1) Every compact set is measurable; and

(2) One has µ(E) = supK⊂E,K compact µ(K) for all measur-

able E.

We say that µ is inner regular if it is associated to an inner regular

measure space.

Thus for instance Lebesgue measure is inner regular, as are Dirac

measures and counting measures. Indeed, most measures that one ac-

tually encounters in applications will be inner regular. For instance,

any finite Borel measure on Rd (or more generally, on a locally com-

pact, σ-compact space) is inner regular, as is any Radon measure; see

§1.10 of An epsilon of room, Vol. I.

Remark 2.4.2. One can generalise the concept of an inner regular

measure space to one which is given by a topology rather than a met-

ric; Kolmogorov’s extension theorem still holds in this more general

setting, but requires Tychonoff’s theorem, which is discussed in §1.8
of An epsilon of room, Vol. I. However, some minimal regularity hy-

potheses of a topological nature are needed to make the Kolmogorov

extension theorem work, although this is usually not a severe restric-

tion in practice.

Theorem 2.4.3 (Kolmogorov extension theorem). Let ((Xα,Bα),Fα)α∈A
be a family of measurable spaces (Xα,Bα), equipped with a topology
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Fα. For each finite B ⊂ A, let µB be an inner regular probability mea-

sure on BB :=
∏

α∈B Bα with the product topology FB :=
∏

α∈B Fα,

obeying the compatibility condition (2.6) whenever C ⊂ B ⊂ A are

two nested finite subsets of A. Then there exists a unique probability

measure µA on BA with the property that (πB)∗µA = µB for all finite

B ⊂ A.

Proof. Our main tool here will be the Hahn-Kolmogorov extension

theorem for pre-measures (Theorem 1.7.8), combined with the Heine-

Borel theorem.

Let B0 be the set of all subsets ofXA that are of the form π−1B (EB)

for some finite B ⊂ A and some EB ∈ BB . One easily verifies that

this is a Boolean algebra that is contained in BA. We define a function

µ0 : B0 → [0,+∞] by setting

µ0(E) := µB(EB)

whenever E takes the form π−1B (EB) for some finite B ⊂ A and EB ∈
BB . Note that a set E ∈ B0 may have two different representations

E = π−1B (EB) = π−1B′ (EB′) for some finite B,B′ ⊂ A, but then one

must have EB = πB←B∪B′(EB∪B′) and EB′ = πB′←B∪B′(EB∪B′),

where EB∪B′ := πB∪B′(E). Applying (2.6), we see that

µB(EB) = µB∪B′(EB∪B′)

and

µB′(EB′) = µB∪B′(EB∪B′)

and thus µB(EB) = µB′(EB′). This shows that µ0(E) is well defined.

As the µB are probability measures, we see that µ0(XA) = 1.

It is not difficult to see that µ0 is finitely additive. We now claim

that µ0 is a pre-measure. In other words, we claim that if E ∈ B0

is the disjoint countable union E =
⋃∞

n=1 En of sets En ∈ B0, then

µ0(E) =
∑∞

n=1 µ0(En).

For each N ≥ 1, let FN := E\⋃N
n=1 EN . Then the FN lie in

B0, are decreasing, and are such that
⋂∞

N=1 FN = ∅. By finite addi-

tivity (and the finiteness of µ0), we see that it suffices to show that

limN→∞ µ0(FN ) = 0.

Author's preliminary version made available with permission of the publisher, the American Mathematical Society



2.4. The Kolmogorov extension theorem 239

Suppose this is not the case, then there exists ε > 0 such that

µ0(FN ) > ε for all N . As each FN lies in B0, we have FN = π−1BN
(GN )

for some finite sets BN ⊂ A and some BBN
-measurable sets GN . By

enlarging each BN as necessary we may assume that the BN are

increasing in N . The decreasing nature of the FN then gives the

inclusions

GN+1 ⊂ π−1BN←BN+1
(GN ).

By inner regularity, one can find a compact subset KN of each GN

such that

µBN
(KN ) ≥ µBN

(GN )− ε/2N+1.

If we then set

K ′N :=
N
⋃

N ′=1

π−1BN′←BN
(KN )

then we see that each K ′N is compact and

µBN
(K ′N ) ≥ µBN

(GN )− ε/2N ≥ ε− ε/2N .

In particular, the sets K ′N are non-empty. By construction, we also

have the inclusions

K ′N+1 ⊂ π−1BN←BN+1
(K ′N )

and thus the sets HN := π−1BN
(K ′N ) are decreasing in N . On the other

hand, since these sets are contained in FN , we have
⋂∞

N=1 HN = ∅.
By the axiom of choice, we can select an element xN ∈ HN from

HN for each N . Observe that for any N0, that πBN0
(xN ) will lie

in the compact set K ′N0
whenever N ≥ N0. Applying the Heine-

Borel theorem repeatedly, we may thus find a subsequence xN1,m
of

the xN for m = 1, 2, . . . such that πB1(xN1,m) converges; then we

can find a further subsequence xN2,m
of that subsequence such that

πB2(xN2,m), and more generally obtain nested subsequences xNj,m for

m = 1, 2, . . . and j = 1, 2, . . . such that for each j = 1, 2, . . ., the

sequence m 7→ πBj (xNj,m) converges.

Now we use the diagonalisation trick. Consier the sequence xNm,m =:

(ym,α)α∈A for m = 1, 2, . . .. By construction, we see that for each j,

πBj (xNm,m) converges to a limit as m → ∞. This implies that for

each α ∈ ⋃∞j=1 Bj , ym,α converges to a limit yα as m → ∞. As K ′j is

closed, we see that (yα)α∈Bj
∈ K ′j for each j. If we then extend yα
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arbitrarily from α ∈ ⋃∞j=1 Bj to α ∈ A, then the point y := (yα)α∈A
lies in Hj for each j. But this contradicts the fact that

⋂∞
N=1 HN = ∅.

This contradiction completes the proof that µ0 is a pre-measure.

If we then let µ be the Hahn-Kolmogorov extension of µ0, one eas-

ily verifies that µ obeys all the required properties, and the uniqueness

follows from Exercise 1.7.7. �

The Kolmogorov extension theorem is a fundamental tool in the

foundations of probability theory, as it allows one to construct a prob-

ability space to hold a variety of random processes (Xt)t∈T , both in

the discrete case (when the set of times T is something like the in-

tegers Z) and in the continuous case (when the set of times T is

something like R). In particular, it can be used to rigorously con-

struct a process for Brownian motion, known as the Wiener process.

We will however not focus on this topic, which can be found in many

graduate probability texts. But we will give one common special case

of the Kolmogorov extension theorem, which is to construct product

probability measures:

Theorem 2.4.4 (Existence of product measures). Let A be an ar-

bitrary set. For each α ∈ A, let (Xα,Bα, µα) be a probability space

in which Xα is a locally compact, σ-compact metric space, with Bα

being its Borel σ-algebra (i.e. the σ-algebra generated by the open

sets). Then there exists a unique probability measure µA =
∏

α∈A µα

on (XA,BA) := (
∏

α∈A Xα,
∏

α∈A Bα) with the property that

µA(
∏

α∈A
Eα) =

∏

α∈A
µα(Eα)

whenever Eα ∈ Bα for each α ∈ A, and one has Eα = Xα for all but

finitely many of the α.

Proof. We apply the Kolmogorov extension theorem to the finite

product measures µB :=
∏

α∈B µα for finite B ⊂ A, which can be

constructed using the machinery in Section 1.7.4. These are Borel

probability measures on a locally compact, σ-compact space and are

thus inner regular (see §1.10 of An epsilon of room, Vol. I ). The com-

patibility condition (2.6) can be verified from the uniqueness proper-

ties of finite product measures. �
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Remark 2.4.5. This result can also be obtained from the Riesz rep-

resentation theorem, which is covered in §1.10 of An epsilon of room,

Vol. I.

Example 2.4.6 (Bernoulli cube). Let A := N, and for each α ∈ A,

let (Xα,Bα, µα) be the two-element set Xα = {0, 1} with the discrete

metric (and thus discrete σ-algebra) and the uniform probability mea-

sure µα. Then Theorem 2.4.4 gives a probability measure µ on the in-

finite discrete cube XA := {0, 1}N, known as the (uniform) Bernoulli

measure on this cube. The coordinate functions πα : XA → {0, 1} can

then be interpreted as a countable sequence of random variables tak-

ing values in {0, 1}. From the properties of product measure one can

easily check that these random variables are uniformly distributed on

{0, 1} and are jointly independent2. Informally, Bernoulli measure al-

lows one to model an infinite number of “coin flips”. One can replace

the natural numbers here by any other index set, and have a similar

construction.

Example 2.4.7 (Continuous cube). We repeat the previous example,

but replace {0, 1} with the unit interval [0, 1] (with the usual metric,

the Borel σ-algebra, and the uniform probability measure). This gives

a probability measure on the infinite continuous cube [0, 1]N, and

the coordinate functions πα : XA → [0, 1] can now be interpreted

as jointly independent random variables, each having the uniform

distribution on [0, 1].

Example 2.4.8 (Independent gaussians). We repeat the previous

example, but now replace [0, 1] with R (with the usual metric, and

the Borel σ-algebra), and the normal probability distribution dµα =
1√
2π

e−x
2/2 dx (thus µα(E) =

∫

E
1√
2π

e−x
2/2 dx for every Borel set E).

This gives a probability space that supports a countable sequence of

jointly independent gaussian random variables πα.

2A family of random variables (Yα)α∈A is said to be jointly independent if one
has P(

∧

α∈B Yα ∈ Eα) =
∏

α∈B P(Yα ∈ Eα) for every finite subset B of A and every

collection Eα of measurable sets in the range of Yα.
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homomorphism, 141

horizontal truncation, 64, 101

inclusion-exclusion principle, 91, 99

indeterminate forms, xii

indicator function, xi

infinite series (absolutely
summable), 47

infinite series (unsigned), xiii, 47

inner regularity, 39, 237

integration by parts, 169, 194, 230

interval, 5, 189

Jordan algebra, 81

Jordan inner measure, 9

Jordan measurability, 9

Jordan null set, 12

Jordan outer measure, 9, 18

jump function, 160

Kolmogorov extension theorem,
238

Lebesgue algebra, 82

Lebesgue decomposition, 161

Lebesgue differentiation theorem,
136, 137, 146

Lebesgue exterior measure, 20

Lebesgue inner measure, 40

Lebesgue integral (absolutely
integrable), 68

Lebesgue integral (unsigned), 65

Lebesgue measurability, 20

Lebesgue measurability (complex
functions), 62

Lebesgue measurability (unsigned
functions), 57

Lebesgue outer measure, 19

Lebesgue philosophy, 57

Lebesgue point, 147

Lebesgue-Stieltjes measure, 189

length, xi

length (intervals), 5

linearity (integral), 15, 16, 54, 55,
70, 98

Lipschitz continuity, 226

Lipschitz differentiation theorem,
167

Littlewood’s first principle, 20, 34,

40, 72

Littlewood’s second principle, 72,
77

Littlewood’s third principle, 72, 75

Littlewood-like principles, 78

local integrability, 147

locally uniform convergence, 74

lower Darboux integral, 15

lower unsigned Lebesgue integral,
63

Lusin’s theorem, 77

Markov’s inequality, 67, 100

mean value theorem, 133

measurability (function), 95

measurability (set), 80

measurable map, 96

measurable morphism, 96

measure, 36, 92

measure space, 92

metric completion, 42

metric entropy, 12

monotone class lemma, 200

monotone convergence theorem,
107, 130

monotone convergence theorem

(sets), 38, 93

monotone differentiation theorem,
156

monotonicity (integral), 15, 16, 54,
64, 97, 99, 100

monotonicity (measure), 8, 10, 21,
91

moving bump example, 76

moving bump function, 106

noise tolerance, 56

non-atomic algebra, 83
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non-negativity (measure), 10

norm (partition), 14

notation, x

null algebra, 82

null set, 32, 94

outer measure, 20, 22, 180, 186

outer regularity, 30

partial derivative, 226

piecewise constant function, 15

piecewise constant integral, 15

pointwise almost everywhere
convergence, 74, 116

pointwise convergence, 73, 115

pointwise convergence (sets), 38

Poisson kernel, 155

polytope, 11

pre-measure, 185

probability, 233

probability density, 234

probability measure, 232

probability space, 232

problem of measure, 2

product σ-algebra, 194, 236

product measure, 197, 240

product space, 235

pullback (σ-algebra), 194

pushforward, 103, 237

Rademacher differentiation
theorem, 228

Radon measure, 191

recursive description of a σ-algebra,
88

recursive description of Boolean
algebra, 84

refinement, 80

reflection, 16, 213

restriction (Boolean algebra), 82

restriction (measure), 101

Riemann integrability, 14

Riemann integral, 14

Riemann sum, 14

Riemann-Stieltjes integral, 193

rising sun inequality, 146

rising sun lemma, 143

Rolle’s theorem, 132

sample space, 233

second fundamental theorem of
calculus, 134, 168, 172, 175

seminorm, 69

simple function, 50

simple integral, 51, 97, 98

Solovay’s theorem, 43

space-filling curve, 43

Steinhaus theorem, 140, 153

step function, 72

strong derivative, 131

sub-null set, 94

subadditivity (integral), 64

sums of measures, 92

superadditivity, 100

superadditivity (integral), 64

support, 53

symmetric difference, 5

tagged partition, 14

tail support, 121

Tonelli’s theorem, 200, 202, 203

Tonelli’s theorem (series), xiii, xv

Tonelli’s theorem (sums and
integrals), 109

total differentiability, 227

total variation, 164

translation (of a set in Euclidean
space), 5

translation invariance, 8, 10, 41, 66

triangle inequality, 71

trivial algebra, 81

typewriter sequence, 118

uniform continuity, 171

uniform convergence, 74, 115

uniform integrability, 126

uniformly almost everywhere
convergence, 116

uniqueness of antiderivative, 134

uniqueness of Jordan measure, 12

uniqueness of Lebesgue measure, 42

uniqueness of the Lebesgue
integral, 66

uniqueness of the Riemann
integral, 17

uniqueness of the unsigned integral,
113
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unsigned integral, 100
upper Darboux integral, 16
upper unsigned Lebesgue integral,

63
upward monotone convergence

(sets), 37
upwards monotone convergence, 93

vertical truncation, 64, 101
Vitali-type covering lemma, 148
volume (box), 5

weak derivative, 229
Weierstrass function, 156
width (step function), 121

zero measure, 90
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