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1.1 Introduction

The term geostatistics identifies the part of spatial statistics which is con-
cerned with continuous spatial variation, in the following sense. The scien-
tific focus is to study a spatial phenomenon, s(x) say, which exists through-
out a continuous spatial region A ⊂ IR2 and can be treated as if it were a
realisation of a stochastic process S(·) = {S(x) : x ∈ A}. In general, S(·)
is not directly observable. Instead, the available data consist of measure-
ments Y1, . . . , Yn taken at locations x1, . . . , xn sampled within A, and Yi is
a noisy version of S(xi). We shall assume either that the sampling design
for x1, . . . , xn is deterministic or that it is stochastic but independent of the
process S(·), and all analyses are carried out conditionally on x1, . . . , xn.

The subject has its origins in problems connected with estimation of ore
reserves in the mining industry (Krige 1951). Its subsequent development
by Matheron and colleagues at École des Mines, Fontainebleau took place
largely independently of “mainstream” spatial statistics. Standard refer-
ences to this “classical” approach to geostatistics include Journel & Hui-
jbregts (1978) and Chilés & Delfiner (1999). Parallel developments by
Matérn (1960) and Whittle (1954, 1962, 1963) eventually led to the integra-
tion of classical geostatistics within spatial statistics. For example, Ripley
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(1981) re-cast the common geostatistical technique known as kriging within
the framework of stochastic process prediction, whilst Cressie (1993) identi-
fied geostatistics as one of the three main sub-branches of spatial statistics.
Significant cross-fertilisation continued throughout the 1980’s and 1990’s,
but there is still vigorous debate on practical issues, such as the need (or
not) for different approaches to prediction and parameter estimation, and
the role of explicit probability models. The term model-based geostatistics

was coined by Diggle, Tawn & Moyeed (1998) to mean the application of
explicit parametric stochastic models and formal, likelihood-based methods
of inference to geostatistical problems.

Our goal in this chapter is to introduce the reader to the model-based
approach, in the sense intended by Diggle et al. (1998). We first describe
two motivating examples, and formulate the general modelling framework
for geostatistical problems, emphasising the key role of spatial prediction
within the general framework. We then investigate the widely used spe-
cial case of the Gaussian model, and discuss both maximum likelihood and
Bayesian methods of inference. We present the results from an illustrative
case-study based on one of our two motivating examples. We then con-
sider non-Gaussian models, with a particular focus on generalised linear
spatial models. The chapter concludes with some discussion, information
on software and further references.

1.2 Examples of geostatistical problems

1.2.1 Swiss rainfall data

This is a standard data-set which has been widely used for empirical com-
parison of different methods of spatial interpolation (further information
can be found at ftp://ftp.geog.uwo.ca/SIC97). The scientific problem posed
by the data is to construct a continuous spatial map of rainfall values from
observed values at a discrete set of locations. The original data consist of
rainfall measurements on 8 May 1986 from 467 locations in Switzerland.
The convention adopted in earlier analyses of these data is to use 100 of
the data-points, as shown in Figure 1.1, to formulate and fit models to the
data, and for prediction at locations without observations, whilst reserving
the remaining 367 for empirical validation of the resulting predictions. In
our illustrative analysis reported in Section 1.8 we use only the first 100
data points.
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FIGURE 1.1. Swiss rainfall data at sample locations x1, . . . , x100. Grey scale from
white (low values) to black (high values) corresponds to the values of the observed
rainfall, y1, . . . , y100

1.2.2 Residual contamination of Rongelap Island

These data are from a study of residual contamination on a Pacific island,
Rongelap, following the USA’s nuclear weapons testing programme during
the 1950’s (Diggle, Harper & Simon 1997). The island was evacuated in
1985, and a large, multi-disciplinary study was subsequently undertaken
to determine whether the island is now safe for re-settlement. Within this
overall objective, a specific goal was to estimate the spatial variation in
residual contamination over the island, with a particular interest in the
maximum level of contamination. To this end, a survey was carried out
and noisy measurements Yi of radioactive caesium concentrations were ob-
tained initially on a grid of locations xi at 200m spacing which was later
supplemented by in-fill squares at 40m spacing. Figure 1.2 shows a map
of the sampling locations x1, . . . , x157. The in-fill squares are particularly
useful for identifying and fitting a suitable model to the data, because they
give direct information about the small-scale spatial correlation structure.
Design issues of this kind can have an important effect on the efficiency of
any subsequent inferences. Generally speaking, placing sampling locations
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FIGURE 1.2. Sampling locations for the survey of residual contamination on
Rongelap Island

in a regular grid to cover the study region would be efficient for spatial pre-
diction if all model parameters were known, whereas deliberately including
more closely spaced sub-sets of sampling locations leads to more efficient
estimation of certain model parameters. In this introductory account we
shall not discuss design issues further.

A full analysis of the Rongelap island data, using a spatial Poisson log-
linear model and Bayesian inference, is given in Diggle et al. (1998).

1.3 The general geostatistical model

We shall adopt the following general model and notation. Firstly, the data
for analysis are of the form (xi, yi) : i = 1, ..., n, where x1, . . . , xn are
locations within a study region A ⊂ IR2 and y1, . . . , yn are measurements
associated with these locations. We call {xi : i = 1, ..., n} the sampling

design and assume that yi is a realisation of Yi = Y (xi), where Y (·) =
{Y (x) : x ∈ A} is the measurement process. We postulate the existence of
an unobserved stochastic process S(·) = {S(x) : x ∈ A}, called the signal

process; often in practice, Y1, . . . , Yn are noisy versions of S(x1), . . . , S(xn).
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Prediction is an integral part of a geostatistical analysis. We call T =
T (S(·)) the target for prediction. A geostatistical model is a specification of
the joint distribution of the measurement process and the signal process, of
the form [S(·), Y (·)] = [Y (·)|S(·)][S(·)], where [·] means “the distribution
of.” Note in particular that this model does not specify the distribution of
the sampling design, which as noted earlier is assumed to be independent
of both S(·) and Y (·). A predictor of T is any function T̂ = T̂ (Y ) where
Y = (Y1, . . . , Yn)T. The minimum mean square error predictor minimises
MSE(T̂ ) = E[(T − T̂ )2], where the expectation is taken with respect to
the joint distribution of T and Y . We have the following general result.

Proposition 1. Provided that Var[T ] < ∞, the minimum mean square
error predictor of T is T̂ = ET [T |Y ], with associated prediction mean
square error E[(T − T̂ )2] = EY VarT [T |Y ].

It is easy to show that E[(T − T̂ )2] ≤ Var[T ], with equality if T and Y are
independent random variables.

For point prediction, it is common practice to use E[T |y], the minimum
mean square error predictor evaluated at the observed y. Similarly, for an
estimate of the achieved mean square error, we would use the value of the
prediction mean square error at the observed y, also called the prediction

variance, Var[T |y]. However, the complete answer to a prediction problem
should be expressed as a probability distribution, [T |y], called the predic-

tive distribution. Within the Bayesian inferential paradigm which we shall
eventually adopt, the predictive distribution coincides with the posterior

distribution of T . From this point of view, the mean and variance of this
posterior distribution are just two of many possible summary statistics. In
particular, the mean is not transformation invariant; if T̂ is the best pre-
dictor for T (in a mean square sense), this does not necessarily imply that
g(T̂ ) is the best predictor for g(T ).

1.4 The Gaussian Model

In the basic form of the Gaussian geostatistical model, S(·) is a station-
ary Gaussian process with E[S(x)] = µ, Var[S(x)] = σ2 and correlation
function ρ(u) = Corr[S(x), S(x′)], where u = ‖x − x′‖, the Euclidean dis-
tance between x and x′. Also, the conditional distribution of Yi given S(·)
is Gaussian with mean S(xi) and variance τ2, and Yi : i = 1, ..., n are mu-
tually independent, conditional on S(·). Figure 1.3 shows a simulation of
this model in one spatial dimension.

An equivalent formulation is that

Yi = S(xi) + Zi : i = 1, ..., n,
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FIGURE 1.3. A simulation of the Gaussian model, illustrating the data Y1, . . . , Yn

(dots), the signal S(·) (smooth curve) and the mean µ (horizontal line).

where Z1, . . . , Zn are mutually independent, identically distributed with
Zi ∼ N(0, τ2), i = 1, ..., n. The distribution of Y is multivariate Gaussian,

Y ∼ N(µ1, σ2R + τ2I)

where 1 denotes an n-element vector of ones, I is the n×n identity matrix
and R is the n×n matrix with (i, j)th element ρ(uij) where uij = ||xi−xj ||.
The specification of the correlation function, ρ(u), determines the smooth-
ness of the resulting process S(·). A formal mathematical description of
the smoothness of a spatial surface S(·) is its degree of differentiability. A
process S(·) is mean-square continuous if, for all x, E[{S(x)−S(x′)}2] → 0
as ‖x−x′‖ → 0. Similarly, S(x) is mean square differentiable if there exists
a process S′(·) such that, for all x,

E

[

{

S(x) − S(x′)

‖x − x′‖ − S′(x)

}2
]

→ 0 as ‖x − x′‖ → 0.

The mean-square differentiability of S(·) is directly linked to the differ-
entiability of its covariance function, according to the following result, a
proof of which can be found in Chapter 2.4 in Stein (1999) or Chapter 5.2
in Cramér & Leadbetter (1967).

Proposition 2. Let S(·) be a stationary Gaussian process with correlation
function ρ(u) : u ∈ IR. Then, S(·) is mean-square continuous if and only
if ρ(u) is continuous at u = 0; S(·) is k times mean-square differentiable if
and only if ρ(u) is at least 2k times differentiable at u = 0.

In general, continuity and/or differentiability in mean square do not imply
the corresponding properties for realisations. However, within the Gaussian
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FIGURE 1.4. The Matérn correlation function with φ = 0.2 and κ = 1 (solid
line), κ = 1.5 (dashed line) and κ = 2 (dotted line).

framework continuity or differentiability of realisations can be achieved
by imposing slightly more strict smoothness conditions on the correlation
function. For details, see Chapter 9 in Cramér & Leadbetter (1967), Adler
(1981) and Kent (1989).

Amongst the various families of correlation function which have been pro-
posed, the Matérn family is particularly attractive. Its algebraic form is
given by

ρ(u) = {2κ−1Γ(κ)}−1(u/φ)κKκ(u/φ)

where κ > 0 and φ > 0 are parameters, and Kκ(·) denotes a Bessel func-
tion of order κ. Special cases include the exponential correlation function,
ρ(u) = exp(−u/φ), when κ = 0.5, and the squared exponential or Gaus-

sian correlation function, ρ(u) = exp(−(u/φ̃)2), when φ = φ̃/(2
√

κ + 1)
and κ → ∞. What makes the family particularly attractive is that the cor-
responding process S(·) is mean-square ⌈κ−1 times differentiable where ⌈κ
denotes the largest integer less or equal to κ. Hence κ, which can be difficult
to estimate from noisy data, can be chosen to reflect scientific knowledge
about the smoothness of the underlying process which S(·) is intended to
represent. Figure 1.4 shows examples of the Matérn correlation function for
κ = 1, 1.5 and 2.

Other families include the powered exponential,

ρ(u) = exp{−(u/φ)κ},

defined for φ > 0 and 0 < κ ≤ 2. This is less flexible than it first appears,
because the corresponding process S(·) is mean-square continuous (but non-
differentiable) if κ < 2, but mean-square infinitely differentiable if κ = 2, in
which case the correlation matrix R may be very ill-conditioned. Figure 1.5
shows three examples of the powered exponential correlation function.
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FIGURE 1.5. The powered exponential correlation function with φ = 0.2 and
κ = 1 (solid line), κ = 1.5 (dashed line) and κ = 2 (dotted line).
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FIGURE 1.6. The spherical correlation function with φ = 0.6.

In classical geostatistics, the spherical family is widely used. This has

ρ(u; φ) =

{

1 − 3
2 (u/φ) + 1

2 (u/φ)3 : 0 ≤ u ≤ φ
0 : u > φ

where φ > 0 is a single parameter. One qualitative difference between
this and the earlier families is that it has a finite range, i.e. ρ(u) = 0 for
sufficiently large u. With only a single parameter it lacks the flexibility of
the Matérn class. Also, the function is only once differentiable at u = φ
which can cause difficulties with maximum likelihood estimation (Warnes
& Ripley 1987, Mardia & Watkins 1989). Figure 1.6 shows an example of
the spherical correlation function with correlation parameter φ = 0.6.

Note that all the correlation functions presented here have the property
that ρ(u;φ) = ρ0(u/φ); i.e. φ is a scale parameter with units of distance.

It is instructive to compare realisations of Gaussian processes with different
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FIGURE 1.7. Simulations of Gaussian processes with Matérn correlation func-
tions, using φ = 0.2 and κ = 0.5 (solid line), κ = 1 (dashed line) or κ = 2 (dotted
line).

correlation functions. For example, Figure 1.7 shows realisations of three
different processes within the Matérn class, all generated from the same
random number stream; the differences in smoothness as κ varies are very
clear.

1.4.1 Prediction Under The Gaussian Model

Assume initially that the target for prediction is T = S(x0), the value of
the signal process at a particular location x0, where x0 is not necessarily
included within the sampling design. Under the Gaussian model, [T, Y ]
is multivariate Gaussian. Therefore, T̂ = E[T |Y ], the prediction variance
Var[T |Y ] and the predictive distribution [T |Y ] can be easily derived from
the following standard result.

Proposition 3. Let X = (X1, X2) be multivariate Gaussian, with mean
vector µ = (µ1, µ2) and covariance matrix

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

,

i.e. X ∼ N(µ,Σ). Then, the conditional distribution of X1 given X2 = x2

is also multivariate Gaussian, X1|X2 = x2 ∼ N(µ1|2, Σ1|2), where

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

and
Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.



10 Peter J. Diggle, Paulo J. Ribeiro Jr, Ole F. Christensen

For the geostatistical model [T, Y ] is multivariate Gaussian with mean vec-
tor µ1 and variance matrix

[

σ2 σ2rT

σ2r τ2I + σ2R

]

where r is a vector with elements ri = ρ(||x0 − xi||) : i = 1, ..., n. Hence,
using Proposition 3 with X1 = T and X2 = Y , we find that the minimum
mean square error predictor for T = S(x0) is

T̂ = µ + σ2rT(τ2I + σ2R)−1(y − µ1) (1.1)

with prediction variance

Var[T |y] = σ2 − σ2rT(τ2I + σ2R)−1σ2r. (1.2)

Note that in the Gaussian model, for fixed values of the parameters, the
conditional variance does not depend on y but only on the spatial configura-
tion of the data and prediction location(s) defining R and r. In conventional
geostatistical terminology, construction of the surface Ŝ(·), where for each
location x0, T̂ = Ŝ(x0) is given by (1.1), is called simple kriging. This
name was given by G. Matheron as a reference to D.G. Krige, who pio-
neered the use of statistical methods in the South African mining industry
(Krige 1951).

The minimum mean square error predictor for S(x0) can be written explic-
itly as a linear function of the data y

T̂ = Ŝ(x0) = µ +

n
∑

i=1

wi(x0)(yi − µ)

= {1 −
n

∑

i=1

wi(x0)}µ +

n
∑

i=1

wi(x0)yi.

Thus, the predictor Ŝ(x0) compromises between its unconditional mean µ
and the observed data y, the nature of the compromise depending on the
target location x0, the data-locations x1, . . . , xn and the values of the model
parameters. We call w1(x0), . . . , wn(x0) the prediction weights. In general,
the weight wi(x0) tends to be large when xi is close to x0, i = 1, . . . , n, and
conversely, but this depends on the precise interplay between the sampling
design and the assumed covariance structure of the data; in particular, even
when the assumed correlation function is decreasing in distance, there is no
guarantee that the weights will decrease with distance. Nor are they guar-
anteed to be positive, although in most practical situations large negative
weights are rare.

One way to gain insight into the behaviour of the simple kriging predictor,
Ŝ(·), is to compute it for particular configurations of data under a range
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of assumed covariance structures. Note in particular the following general
features of Ŝ(·). Firstly, the surface Ŝ(·) interpolates the data (meaning
that Ŝ(xi) = yi for all xi in the sampling design) if and only if τ2 = 0,
since in this case Y (xi) = S(xi) for i = 1, ..., n. When τ2 > 0, Ŝ(·) tends to
smooth out extreme fluctuations in the data. Secondly, for the correlation
models considered here, Ŝ(·) inherits the analytic smoothness at the origin
of the assumed correlation function of S(·). So, for example, within the
Matérn class, κ ≤ 0.5 leads to a continuous but non-differentiable surface
Ŝ(·) whereas κ > 0.5 produces a smoother, differentiable surface. Finally,
for typical correlation models in which ρ(u) → 0 as u → ∞, Ŝ(x0) ≈ µ for
a location x0 sufficiently remote from all xi in the sampling design, whereas
when x0 is close to one or more xi, the corresponding Ŝ(x0) will be more
strongly influenced by the yi’s at these adjacent sampling locations.

Figure 1.8 illustrates some of these points, in the case of a small, one-
dimensional data-set. The lines in the upper panel are the point predictions
Ŝ(x), x ∈ [0; 1] obtained using the data indicated by the circles. The data
y are assumed to follow the model Yi = S(xi) + Zi where S(·) has mean
µ = 0, signal variance σ2 = 1 and a Matérn correlation function with
φ = 0.2 and κ = 2, and Zi are mutually independent with zero mean and
variance τ2. Holding the data fixed, Figure 1.8 shows the predictions which
result when we assume each of τ2 = 0, 0.25 and 0.5. We observe that at
data locations, when τ2 = 0 the predicted values coincide with the data.
The higher the value of τ2 the more the predictions approach the overall
mean. The lower panel shows the corresponding prediction variances with
tick-marks indicating the data locations.

In many applications, the inferential focus is not on S(x0) at a specific loca-
tion x0, but on some other property which can be expressed as a functional
of the complete surface S(·), for example an areal average or maximum
value. Firstly, let T be any linear functional of S(·),

T =

∫

A

w(x)S(x)dx

for some prescribed weighting function w(x). Under the Gaussian model,
[T, Y ] is multivariate Gaussian, hence [T |y] is univariate Gaussian and the
conditional mean and variance are

E[T |y] =

∫

A

w(x)E[S(x)|y]dx

and

Var[T |y] =

∫

A

∫

A

w(x)w(x′)Cov[S(x), S(x′) | y]dxdx′.

Note in particular that

T̂ =

∫

A

w(x)Ŝ(x)dx.
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FIGURE 1.8. Point predictions and the data indicated by circles (upper panel)
and prediction variances (lower panel) from 10 randomly spaced sampling loca-
tions indicated by the tick-marks in lower panel, assuming a Matérn correlation
function with φ = 0.2 and κ = 2, σ2 = 1 and τ2: 0 (solid line), 0.25 (thin dashed
line) and 0.5 (thick dashed line).

In other words, given a predicted surface Ŝ(·), it is reasonable simply to
calculate any linear property of this surface and to use the result as the
predictor for the corresponding linear property of the true surface S(·).
However, this is not the case for prediction of non-linear properties. Note in
particular that in practice the point predictor Ŝ(·) tends to under-estimate
peaks and over-estimate troughs in the true surface S(·). Hence, for exam-
ple, the maximum of Ŝ(·) would be a poor predictor for the maximum of
S(·).

1.4.2 Extending the Gaussian model

The Gaussian model discussed so far is, of course, not appropriate for all
applications. In later sections, we will discuss a range of non-Gaussian mod-
els. Here, we discuss briefly how some of the assumptions may be relaxed
whilst remaining within the Gaussian framework.
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Firstly, we need to be able to deal with a non-constant mean value surface
µ(x). Technically the simplest case is when µ(x) is specified by a linear
model, µ(x) =

∑p
j=1 βjfj(x), where f1(x), . . . , fp(x) are observed functions

of location, x. A special case, known as polynomial trend surface modelling,
arises when f1(x), . . . , fp(x) are powers of the spatial coordinates x(1) and
x(2). In our opinion, linear or possibly quadratic trend surfaces are occa-
sionally useful as pragmatic descriptions of spatial variation in an overall
level of the responses Y1, . . . , Yn, but more complicated polynomial trend
surfaces are seldom useful, since they often lead to unrealistic extrapola-
tions beyond the convex hull of the sampling design. Another possibility is
to define the fj(x)′s above as functions of observed covariates. Note that
this requires covariate measurements also to be available at prediction lo-
cations. The procedure of obtaining predictions using a polynomial trend
of the coordinates is often called universal kriging in the geostatistics liter-
ature, while the case when other covariates are used is called kriging with

a trend model (Goovaerts 1997). Non-linear models for µ(x) will often be
more realistic on physical grounds. However, fitting non-linear models is
technically less straightforward than in the linear case and needs to be
approached with caution.

Secondly, in some applications we may find empirical evidence of directional
effects in the covariance structure. The simplest way to deal with this is by
introducing a geometric anisotropy into the assumed covariance structure.
Physically, this corresponds to a rotation and stretching of the original spa-
tial coordinates. Algebraically, it adds to the model two more parameters:
the anisotropy angle ψA and the anisotropy ratio ψR > 1. These define a
transformation of the space of locations x = (x(1), x(2)) according to

(x′
(1), x

′
(2)) = (x(1), x(2))

(

cos(ψA) − sin(ψA)
sin(ψA) cos(ψA)

)(

1 0
0 ψ−1

R

)

and the correlation between two locations is modelled as a function of
distance in this transformed space.

A third possible extension is to assume an additional component for the
variance, the so-called micro-scale variation, hence in the stationary case
with no covariates the model is extended to

Yi = S(xi) + S0(xi) + Zi : i = 1, ..., n

where S(·) and Zi are as before but additionally S0(·) is a stationary Gaus-
sian process with rapidly decaying spatial correlation. If we formally assume
that S0(·) is uncorrelated spatial Gaussian white noise, then the terms
S0(xi) and Zi are indistinguishable. In practice, they will also be indistin-
guishable if the correlation of S0(·) decays within a distance smaller than
the smallest distance between any two sampling locations. In mining appli-
cations the micro-scale component is assumed to be caused by the existence



14 Peter J. Diggle, Paulo J. Ribeiro Jr, Ole F. Christensen

of small nuggets of enriched ore and is approximated by a white noise pro-
cess. Hence, in practice the term “nugget effect” applied to the independent
error term Zi is interpreted, according to context, as measurement error,
micro-scale variation or a non-identifiable combination of the two.

Stationarity itself is a convenient working assumption, which can be relaxed
in various ways. A functional relationship between mean and variance can
sometimes be resolved by a transformation of the data. When the responses
Y1, . . . , Yn are continuous but the Gaussian model is clearly inappropriate,
some additional flexibility is obtained by introducing an extra parameter
λ defining a Box-Cox transformation of the response. The resulting model
assumes that the data, denoted y = (y1, ..., yn), can be transformed by

ỹi = hλ(yi) =

{

(yλ
i − 1)/λ if λ 6= 0

log yi if λ = 0,
(1.3)

such that (ỹ1, . . . , ỹn) is a realisation from a Gaussian model. De Oliveira,
Kedem & Short (1997) propose formal Bayesian methods of inference
within this model class, one consequence of which is that their predictions
are averages over a range of models corresponding to different values of λ.
An alternative approach is to estimate λ, but then hold λ fixed when per-
forming prediction (Christensen, Diggle & Ribeiro Jr 2001). This avoids the
difficulty of placing a physical interpretation on a predictive distribution
which is averaged over different scales of measurement.

Intrinsic variation, a weaker hypothesis than stationarity, states that the
process has stationary increments. This represents a spatial analogue of the
random walk model for time series, and is widely used as a default model for
discrete spatial variation, see Chapter 3 and (Besag, York & Mollié 1991).

Finally, spatial deformation methods (Sampson & Guttorp 1992) seek to
achieve stationarity by a non-linear transformation of the geographical
space, x = (x(1), x(2)).

It is important to remember that the increased flexibility of less restrictive
modelling assumptions is bought at a price. In particular, over-complex
models fitted to sparse data can easily lead to poor identifiability of model
parameters, and to poorer predictive performance than simpler models.

1.5 Parametric estimation of covariance structure

1.5.1 Variogram analysis

In classical geostatistics, the standard summary of the second-moment
structure of a spatial stochastic process is its variogram. The variogram
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of a stochastic process Y (·) is the function

V (x, x′) =
1

2
Var{Y (x) − Y (x′)}.

For the linear Gaussian model, with u = ||x − x′||,

V (u) = τ2 + σ2{1 − ρ(u)}.

The basic structural covariance parameters of the linear Gaussian model are
the nugget variance, τ2, the total sill, τ2 +σ2 = Var{Y (x)}, and the range,
φ, such ρ(u) = ρ0(u/φ). Thus, any reasonable version of the linear Gaussian
model will involve at least three covariance parameters. However, we would
need abundant data (or contextual knowledge) to justify estimating more
than three parameters. Note in particular that the Matérn family uses a
fourth parameter to determine the differentiability of S(·). Our view is
that it is sensible to choose κ from amongst a small set of values to reflect
contextual knowledge about the smoothness of S(·), rather than formally
to estimate it from sparse data.

The variogram cloud of a set of geostatistical data is a scatterplot of the
points (uij , vij), derived from the quantities

uij = ||xi − xj ||
vij = (yi − yj)

2/2.

The left-hand panel of Figure 1.9 shows an example of a variogram cloud,
calculated from the Swiss rainfall data. Its diffuse appearance is entirely
typical. Note in particular that under the linear Gaussian model, vij ∼
V (uij)χ

2
1 and different vij ’s are correlated. The variogram cloud is therefore

unstable, both pointwise and in its overall shape.

When the underlying process has a spatially varying mean µ(x) the vari-
ogram cloud as defined above is not a sensible summary. Instead, we replace
the data yi in the expression for vij by residuals ri = yi − µ̂(xi), where µ̂(·)
is an estimate of the underlying mean value surface, typically an ordinary
least squares estimate within an assumed linear model.

A more stable variant of the variogram cloud is the empirical variogram

V̄ (·), as illustrated on the right-hand panel of Figure 1.9. For a sep-
aration distance u, V̄ (·) is obtained by averaging those vij ’s for which
|u − uij | < h/2, where h is a chosen bin width. The averaging addresses
the first objection to the variogram cloud, namely its pointwise instabil-
ity, but the difficulties caused by the inherent correlation amongst differ-
ent variogram ordinates remain. Note also that the empirical variogram is
necessarily sensitive to mis-specification of the mean value surface µ(x).
Specifically, failure to adjust for long-range variation in the mean response
will induce spurious evidence of long-range correlation in Y (·).
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FIGURE 1.9. The variogram cloud (left panel) and binned variogram (right
panel) for the Swiss rainfall data

Fitting a parametric covariance function to an empirical variogram provides
one possible way to estimate covariance parameters. Frequently in practice
this is done “by eye”, without a formal criterion. Alternatively, ordinary or
weighted least squares methods for curve fitting are sometimes used. These
methods estimate the covariance parameters θ by minimising

S(θ) =
∑

k

wk[V̄ (uk) − V (uk; θ)]2

where wk = 1 for ordinary least squares, whereas for weighted least squares
wk is the number of pairs of measurements which contribute to V̄ (uk).
The resulting fits are often visually convincing, but this begs the question
of whether matching theoretical and empirical variograms is optimal in
any sense. In fact, empirical variograms calculated from typical sizes of
data-set are somewhat unstable. To illustrate this, Figure 1.10 compares
the empirical variograms from three independent simulations of the same
model with the true underlying variogram, where the correlation function
is exponential, the parameters σ2 = 1, φ = 0.25, τ2 = 0, and 100 locations
randomly distributed in a unit square. The inherently high autocorrelations
amongst V̂ (u) for successive values of u impart a misleading smoothness
into the empirical variograms, suggesting greater precision than is in fact
the case.

Parameter estimation via the variogram is a deeply rooted part of classical
geostatistical methodology but its popularity is, in our view, misplaced. It
does have a role to play in exploratory analysis, at model formulation stage
and as a graphical diagnostic. For formal inference, we prefer likelihood-
based methods. These have the compelling (to us) advantage that they are
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FIGURE 1.10. Empirical variograms from three independent realisations of the
same stationary Gaussian process.

optimal under the stated assumptions, although they are computationally
expensive for large data-sets, and a legitimate concern is that they may lack
robustness. The likelihood function also plays a central role in Bayesian
inference, in which estimation and prediction are naturally combined. We
discuss this in greater detail in Section 1.7.

1.5.2 Maximum likelihood estimation

Under the Gaussian model

Y ∼ N(Fβ, σ2R + τ2I)

where F is the n × p matrix of covariates, β is the vector of parameters,
and R depends on (φ, κ). The log-likelihood function is

l(β, τ2, σ2, φ, κ) ∝ −0.5{log |(σ2R + τ2I)| (1.4)

+(y − Fβ)T(σ2R + τ2I)−1(y − Fβ)},

maximisation of which yields the maximum likelihood estimates of the
model parameters.

Computational details are as follows. Firstly, we reparameterise to ν2 =
τ2/σ2 and denote V = (R + ν2I). Given V , the log-likelihood function is
maximised for

β̂(V ) = (FTV −1F )−1FTV −1y

and
σ̂2(V ) = n−1(y − Fβ̂)TV −1(y − F β̂).
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Hence, substituting (β̂(V ), σ̂2(V )) into the log-likelihood function, we ob-
tain the reduced log-likelihood

l(ν2, φ, κ) ∝ −0.5{n log |σ̂2(V )| + log |V |}.

This must then be optimised numerically, followed by back-substitution to
obtain σ̂2 and β̂. In practice, for the Matérn correlation function we suggest
choosing κ from the discrete set {0.5, 1, 1.5, 2, 2.5, ..., K/2} for some small
integer K.

If geometric anisotropy parametrised by (ψA, ψR) is included in the model,
the same procedure is used, except that the additional parameters need to
be incorporated into the matrix R, thereby adding two dimensions to the
numerical maximisation of the likelihood.

For the transformed Gaussian model defined by (1.3), the associated log-
likelihood is

ℓ(β, σ2, φ, ν2, κ, λ) = (λ − 1)

n
∑

i=1

log yi − 0.5 log |σ2V |

−0.5(hλ(y) − Fβ)T{σ2V }−1(hλ(y) − Fβ)}.

Here we use the procedure above, but adding optimisation with respect to
λ in the numerical maximisation.

A popular variant of maximum likelihood estimation is restricted maximum

likelihood estimation (REML). Under the assumed model for E[Y ] = Fβ,
we can transform the data linearly to Y ∗ = AY such that the distribution
of Y ∗ does not depend on β. Then, the REML principle is to estimate
θ = (ν2, σ2, φ, κ) by maximum likelihood applied to the transformed data
Y ∗. We can always find a suitable matrix A without knowing the true values
of β or θ, for example a projection to ordinary least squares residuals,

A = I − F (FTF )−1FT.

The REML estimators for θ is computed by maximising

l∗(θ) ∝ −0.5{log |σ2V | − log |FT{σ2V }−1F |
+(y − F β̃)T {σ2V }−1(y − F β̃))},

where β̃ = β̂(V ). Note the extra determinant term by comparison with the
ordinary log-likelihood given by (1.4).

REML was introduced in the context of variance components estimation
in designed experiments (Patterson & Thompson 1971) and some early ref-
erences in the geostatistical context are Kitanidis (1983) and Zimmerman
(1989). In general, it leads to less biased estimators of variance parameters
in small samples (for example, the elementary unbiased sample variance
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is a REML estimator). Note that l∗(θ) depends on F , and therefore on
a correct specification of the model for µ(x). For designed experiments,
the specification of the mean µ(x) is usually not problematic. However,
in the spatial setting the specification of the mean µ(x) is often a prag-
matic choice. Although REML is widely recommended for geostatistical
models, our experience has been that it is more sensitive than ML to mis-
specification of the model for µ(x).

Another generic likelihood-based idea which is useful in the geostatistical
setting is that of profile likelihoods. In principle, variability of parameter
estimators can be investigated by inspection of the log-likelihood surface.
However, the typical dimension of this surface does not allow direct inspec-
tion. Suppose, in general, that we have a model with parameters (α,ψ) and
denote its likelihood by L(α, ψ). To inspect the likelihood for α, we replace

the nuisance parameters ψ by their ML estimators ψ̂(α), for each value of
α. This gives the profile likelihood for α,

Lp(α) = L(α, ψ̂(α)) = max
ψ

(L(α,ψ)).

The profile log-likelihood can be used to calculate approximate confidence
intervals for individual parameters, exactly as in the case of the ordinary
log-likelihood for a single parameter model.

1.6 Plug-in prediction

We use this term to mean the simple approach to prediction whereby esti-
mates of unknown model parameters are plugged into the prediction equa-
tions as if they were the truth. This tends to be optimistic in the sense that
it leads to an under-estimation of prediction uncertainty by ignoring vari-
ability between parameter estimates and their true, unknown values. Nev-
ertheless, it is widely used, corresponds to standard geostatistical methods
collectively known as kriging, and is defensible in situations where varying
model parameters over reasonable ranges produces only small changes in
the sizes of the associated prediction variances.

1.6.1 The Gaussian model

For the Gaussian model we have seen that the minimum MSE predictor
for T = S(x0) is

T̂ = µ + σ2rT(τ2I + σ2R)−1(y − µ1)

with prediction variance

Var[T |y] = σ2 − σ2rT(τ2I + σ2R)−1σ2r.
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A plug-in prediction consists of replacing the true parameters in the pre-
diction equations above by their estimates. As noted earlier, simple kriging
is prediction where estimates of the mean and covariance parameters are
plugged-in. Another approach often used in practice is ordinary kriging,
which only requires covariance parameters to be plugged-in (Journel &
Huijbregts 1978). Ordinary kriging uses a linear predictor which minimises
the mean square prediction error under an unbiasedness constraint which
implies that the prediction weights must sum to one. This filters out the
mean parameter from the expression for the predictor.

1.6.2 The transformed Gaussian model

For the Box-Cox transformed Gaussian model, assume Y (x0) is the target
for prediction, and denote Tλ = hλ(Y (x0)). The minimum mean square
error predictor T̂λ and the corresponding prediction variance Var[Tλ | y]
are found as above using simple kriging. Back-transforming to the original
scale is done using formulas for moments. For λ = 0 we use properties of
the exponential of a normal distribution and get

T̂ = exp(T̂0 + 0.5Var[T0 | y])

with prediction variance

Var[T |y] = exp(2T̂0 + Var[T0 | y])(exp(Var[T0 | y]) − 1).

For λ > 0 we can approximate T̂ and Var[T |y] by a sum of moments for
the normal distribution. For λ = 0.5 we get

T̂ ≈ (0.5T̂0.5 + 1)2 + 0.25Var[T0.5 | y]

with prediction variance

Var[T |y] ≈ (0.5T̂0.5+1)4+1.5(0.5T̂0.5+1)2Var[T0.5 | y]+3(Var[T0.5 | y])2/16.

Alternatively, back-transformation to the original scale can be done by
simulation as discussed in the next sub-section.

1.6.3 Non-linear targets

In our experience, the plug-in approach and the Bayesian approach pre-
sented in the next section usually give similar point predictions when pre-
dicting T = S(x0), but often the prediction variances differ and the two
approaches can produce very different results when predicting non-linear
targets.
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Consider prediction of the non-linear target T = T (S∗) where S∗ are values
of S(·) at some locations of interest (for example, a fine grid over the entire
area). A general way to calculate the predictor T̂ is by simulation. The
procedure consists of the following three steps.

• Calculate E[S∗|y] and Var[S∗|y] using simple kriging.

• Simulate s∗(1), . . . , s∗(m) from [S∗|y] (multivariate Gaussian).

• Approximate the minimum mean square error predictor

E[T (S∗)|y] ≈ 1

m

m
∑

j=1

T (s∗(j)).

For the transformed Gaussian model we use a procedure similar to above,
we just need to back-transform the simulations by h−1

λ (·) before taking
averages.

1.7 Bayesian inference for the linear Gaussian
model

Bayesian inference treats parameters in the model as random variables, and
therefore makes no formal distinction between parameter estimation prob-
lems and prediction problems. This provides a natural means of allowing
for parameter uncertainty in predictive inference.

1.7.1 Fixed correlation parameters

To derive Bayesian inference results for the linear Gaussian model, we first
consider the situation in which we fix τ2 = 0, all other parameters in the
correlation function have known values, and we allow for uncertainty only
in the parameters β and σ2. In this case the predictive distributions can
be derived analytically.

For fixed φ, the conjugate prior family for (β, σ2) is the Gaussian-Scaled-
Inverse-χ2. This specifies priors for β and σ2 with respective distributions

[β|σ2, φ] ∼ N
(

mb, σ
2Vb

)

and [σ2|φ] ∼ χ2
ScI

(

nσ, S2
σ

)

,

where a χ2
ScI(nσ, S2

σ) distribution has density of the form

π(z) ∝ z−(nσ/2+1) exp(−nσS2
σ/(2z)), z > 0.
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As a convenient shorthand, we write this as

[β, σ2|φ] ∼ Nχ2
ScI

(

mb, Vb, nσ, S2
σ

)

, (1.5)

Using Bayes’ Theorem, the prior above is combined with the likelihood
given by (1.4) and the resulting posterior distribution of the parameters is:

[β, σ2|y, φ] ∼ Nχ2
ScI

(

β̃, Vβ̃ , nσ + n, S2
)

, (1.6)

where Vβ̃ = (V −1
b + FTR−1F )−1, β̃ = Vβ̃(V −1

b mb + FTR−1y) and

S2 =
nσS2

σ + mT
b V −1

b mb + yTR−1y − β̃TV −1

β̃
β̃

nσ + n
. (1.7)

The predictive distribution of the signal at an arbitrary set of locations,
say S∗ = (S(xn+1), . . . , S(xn+q)), is obtained by integration,

p(s∗|y, φ) =

∫ ∫

p(s∗|y, β, σ2, φ) p(β, σ2|y, φ) dβdσ2,

where [s∗|y, β, σ2, φ] is multivariate Gaussian with mean and variance given
by (1.1) and (1.2) respectively. The integral above yields a q-dimensional
multivariate-t distribution defined by:

[S∗|y, φ] ∼ tnσ+n

(

µ∗, S2Σ∗
)

,

E[S∗|y, φ] = µ∗, (1.8)

Var[S∗|y, φ] =
nσ + n

nσ + n − 2
S2Σ∗,

where S2 is given by (1.7) and µ∗ and Σ∗ are

µ∗ = (F0 − rTR−1F )Vβ̃V −1
b mb

+
[

rTR−1 + (F0 − rTR−1F )Vβ̃FTR−1
]

y,

Σ∗ = R0 − rTR−1r + (F0 − rTR−1F )(V −1
b + V −1

β̂
)−1(F0 − rTR−1F )T.

The three components in the formula for the prediction variance Σ∗ can
be interpreted as the variability a priori, the reduction due to the condi-
tioning on the data, and the increase due to uncertainty in the value of β,
respectively.

It may be difficult to elicit informative priors in practice, and flat or non-
informative improper priors might therefore be adopted. A non-informative
prior often used in Bayesian analysis of linear models is π(β, σ2) ∝ 1/σ2
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(see for example, O’Hagan (1994)). Formal substitution of V −1
b = 0 and

nσ = 0 into the formulas above for the posterior and predictive distributions
gives the equivalent formulas for the non-informative prior, except that the
degrees of freedom in the χ2 posterior distribution and the multivariate-t
predictive distribution are n− p where p is the dimension of β, rather than
n.

For the transformed Gaussian model, when λ > 0, we can back-transform
predictions to the original scale using formulas for moments of the t-
distribution, similar to the approach in Section 1.6. Note, however, that
the exponential of a t-distribution does not have finite moments, hence
when λ = 0 the minimum mean square error predictor does not exist. Pre-
diction of non-linear targets is done using a procedure similar to the one
in Section 1.6.3.

1.7.2 Uncertainty in the correlation parameters

More realistically, we now allow for uncertainty in all of the model pa-
rameters. We first consider the case of a model without measurement er-
ror, i.e. τ2 = 0 and a single correlation parameter φ. We adopt a prior
π(β, σ2, φ) = π(β, σ2|φ) π(φ), the product of (1.5) and a proper density
for φ. In principle a continuous prior π(φ) would be assigned. However, in
practice we always use a discrete prior, obtained by discretising the dis-
tribution of φ in equal width intervals. The posterior distribution for the
parameters is then given by

p(β, σ2, φ|y) = p(β, σ2|y, φ) p(φ|y)

with [β, σ2|y, φ] given by (1.6) and

p (φ|y) ∝ π(φ) |Vβ̃ |
1
2 |R|− 1

2 (S2)−
n+nσ

2 , (1.9)

where Vβ̃ and S2 are given by (1.6) and (1.7) respectively. For the case

where the prior is π(β, σ2, φ) ∝ π(φ)/σ2, the equation above holds with
nσ = −p. Berger, De Oliveira & Sansó (2001) use a special case of this as
a non-informative prior for the parameters of a spatial Gaussian process

To simulate samples from this posterior, we proceed as follows. We apply
(1.9) to compute posterior probabilities p(φ|y) noting that in practice the
support set will be discrete. We then simulate a value of φ from [φ|y],
attach the sampled value to [β, σ2|y, φ] and obtain a simulation from this
distribution. By repeating the simulation as many times as required, we
obtain a sample of triplets (β, σ2, φ) from the joint posterior distribution
of the model parameters.
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The predictive distribution for the value, S0 = S(x0) say, of the signal
process at an arbitrary location x0 is given by

p(s0|y) =

∫ ∫ ∫

p(s0, β, σ2, φ|y) dβ dσ2 dφ

=

∫ ∫ ∫

p
(

s0, β, σ2|y, φ
)

dβ dσ2 p(φ|y) dφ

=

∫

p(s0|y, φ) p(φ|y) dφ.

The discrete prior for φ allows analytic calculation of the moments of this
predictive distribution. For each value of φ we compute the moments of the
multivariate-t distribution given by (1.8) and calculate their weighted sum
with weights given by the probabilities p(φ|y).

To sample from this predictive distribution, we proceed as follows. We
compute the posterior probabilities p(φ|y) on the discrete support set for
[φ], and simulate values of φ from [φ|y]. Attaching a sampled value of φ to
[S0|y, φ] and simulating from this distribution we obtain a realisation from
the predictive distribution.

Finally, when τ2 > 0, in practice we use a discrete joint prior [φ, ν2], where
ν2 = τ2/σ2. This adds to the computational load, but introduces no new
principles. Similarly, if we wish to incorporate additional parameters in the
covariance structure of S(·), we would again use a discretisation method to
render the computations feasible.

In principle, the prior distributions for the parameters should reflect sci-
entific prior knowledge. In practice, we will often be using the Bayesian
framework pragmatically, under a vague prior specification. However, a
word of caution is necessary here, as we have found that even apparently
vague prior specifications can materially affect the corresponding posteri-
ors. It seems to be a general feature of geostatistical problems that the
models are poorly identified, in the sense that widely different combina-
tions of parameter values lead to very similar fits. This may not matter
if parameter estimates themselves, as opposed to the prediction target T ,
are not of direct interest. Also, the Bayesian paradigm at least brings this
difficulty into the open, whereas plugging in more or less arbitrary point
estimates merely hides the problem.

1.8 A Case Study: the Swiss rainfall data

In this case study, we follow convention by using only the first 100 of the
data-locations in the Swiss rainfall data for model formulation. We consider
a transformed Gaussian model, with a Matérn correlation structure.
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FIGURE 1.11. Left panel: profile likelihood for transformation parameter λ for
the model with Matérn correlation function with κ = 1. Right panel: Estimated
variograms for transformed (λ = 0.5) data (open circles), compared with the
theoretical Matérn model with parameters equal to the maximum likelihood es-
timates. The three fits correspond to κ = 0.5 (dashed line), κ = 1 (thick solid
line), κ = 2 (thin solid line).

κ λ̂ log L̂

0.5 0.496 -564.857
1 0.540 -561.579
2 0.561 -563.115

TABLE 1.1. Maximum likelihood estimates λ̂ and the corresponding values of
the log-likelihood function log L̂ for the Swiss rainfall data, assuming different
values of the Matérn shape parameter κ.

Table 1.1 shows the maximum likelihood estimates of the Box-Cox transfor-
mation parameter λ, holding the Matérn shape parameter κ fixed at each
of the three values κ = 0.5, 1, 2. The consistent message is that λ = 0.5,
or a square root transformation, is a reasonable choice. The profile log-
likelihood for λ shown in the left-hand panel of Figure 1.11 indicates that
neither the log-transformation λ = 0, nor an untransformed Gaussian as-
sumption (λ = 1) is tenable for these data. The right-hand panel of Fig-
ure 1.11 shows the empirical and fitted variograms, for each of κ = 0.5, 1, 2.
Visually, there is little to choose amongst the three fits.

Table 1.2 shows maximum likelihood estimates for the model with λ = 0.5.
The overall conclusion is that κ = 1 gives a better fit than κ = 0.5 and
κ = 2. Furthermore, in each case τ̂2 = 0. Figure 1.12 shows the profile log-
likelihoods of the two covariance parameters σ2, φ holding κ, λ and τ2 fixed
at these values. Note in particular the wide, and asymmetric, confidence
intervals for the signal variance σ2 and the range parameter φ. These serve
to warn against over-interpretation of the corresponding point estimates.
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κ β̂ σ̂2 φ̂ τ̂2 log L̂

0.5 21.205 83.865 42.388 0 -564.858
1.0 22.426 79.694 17.583 0 -561.664
2.0 23.099 72.698 8.358 0 -563.292

TABLE 1.2. Maximum likelihood estimates β̂, φ̂, σ̂, τ̂2 and the corresponding
value of the likelihood function log L̂ for the Swiss rainfall data, assuming different
values of the Matérn parameter κ, and transformation parameter λ = 0.5.
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FIGURE 1.12. Profile likelihood for covariance parameters in the Matérn model
fitted to the Swiss rainfall data with κ = 1 and λ = 0.5. Left panel σ2, middle
panel φ, right panel the 2-D profile likelihood.
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FIGURE 1.13. Maps of predictions (left panel) and prediction variances (right
panel) for the Swiss rainfall data.
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FIGURE 1.14. Left panel: uniform prior and corresponding posterior distribution.
Right panel: variograms based on summaries of the posterior and on the ML
estimator.

Figure 1.13 maps the point predictions of rainfall values and associated pre-
diction variances from a plug-in prediction using the transformed Gaussian
model with λ = 0.5 and κ = 1. The grid spacing for prediction corresponds
to a distance of 5 km between adjacent prediction locations. The values of
the prediction variances shows a positive association with predicted values,
as a consequence of the transformation adopted; recall that in the untrans-
formed Gaussian model, the prediction variance depends only on the model
parameters and the study design, and not directly on the measured values.

We now turn to the Bayesian analysis, adopting the prior π(β, σ2|φ) ∝ 1/σ2

and a discrete uniform prior for φ with 101 points equally spaced in the
interval [0; 100]. The posterior distribution for φ is then obtained by com-
puting (1.9) for each discrete value, and standardising such that the prob-
abilities add to one. The left-hand panel of Figure 1.14 shows the uniform
prior adopted and the posterior distribution obtained for this data-set.
The right-hand panel of Figure 1.14 displays variograms based on differ-
ent summaries of the posterior [σ2, φ|y] and on the ML estimates (σ̂2, φ̂).
The differences between the Bayesian estimates reflect the asymmetry in
the posterior distributions of φ and σ2. Note that in all three cases the
Bayesian estimate of σ2 is greater than the ML estimate.

Values of the parameters φ and σ2 sampled from the posterior are dis-
played by the histograms in the left and centre panels of Figure 1.15. The
right-hand panel of Figure 1.15 shows that there is a strong correlation in
the posterior, despite the fact that priors for these two parameters are in-
dependent. This echoes the shape of the two-dimensional profile likelihood
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shown earlier in Figure 1.12. Similar results were obtained for other choices
of prior.

To predict the values of rainfall in a grid of points over Switzerland we
can compute moments analytically, as described in Section 1.7.1 and Sec-
tion 1.7.2. Figure 1.16 shows a comparison between “plug-in” and Bayesian
point predictions (left panel) and their standard errors (right panel). The
strong concentration of points along the diagonal in the left-hand panel
of Figure 1.16 shows that, for this particular example, the Bayesian point
predictions do not differ too much from the “plug-in” predictions. However,
as indicated in the right-hand panel of Figure 1.16 there are differences in
the estimated uncertainty associated with the predictions, with the plug-in
variances tending to slightly under-estimate the variance of the predic-
tive distribution, especially where the prediction variance itself is relatively
large.

Inferences about non-linear functionals can be performed by sampling from
the predictive distribution and processing the sampled values according to
the functional of interest. This generates a sample from the posterior dis-
tribution of the target for prediction. As an example, consider inference
for the target Tmax = max{Y (x) : x ∈ A}, the maximum rainfall over the
whole of Switzerland. In practice we redefined Tmax to be the maximum
over the 5 km spaced grid. Taking 2000 simulations from the predictive dis-
tribution and computing the maximum for each simulation we find values
in the interval [531, 1114] with a mean of 667.4 and standard deviation of
73.9. Simulations from the “plug-in” predictive distribution generated with
the same seed for the random number generator showed a mean of 655.8
and standard deviation of 67.4. So for this prediction target the Bayesian
prediction is larger than the plug-in prediction. Also, the Bayesian predic-
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FIGURE 1.16. Comparing “plug-in” and Bayesian predicted values (left) in a 5
km spaced grid over the area, and associated standard errors (right).

tion standard error is larger than the plug-in prediction standard error,
which is often seen in practice, but is not always the case.

From our experience with a variety of real and simulated data-sets, we con-
sider this particular data-set to be an exceptionally well behaved one. The
profile likelihoods are sharp and not too wide. No extra residual variation
was found after fitting the spatial part of the model. The results were in-
sensitive to different choices of prior for φ. However, in our experience this
situation is somewhat atypical. Rather, noisy data are common and infer-
ences tend to have greater associated uncertainty than in this example. In
these situations, the discrepancy between Bayesian and plug-in methods
becomes more pronounced.

In the Bayesian analysis reported here we have used vague priors. Ideally,
more informative priors relevant to the problem at hand should be consid-
ered, although elicitation of such priors is often a difficult task.

1.9 Generalised linear spatial models

The classical generalised linear model (GLM) is defined for a set of mu-
tually independent responses Y1, ..., Yn. The expectations µi = E[Yi] are

specified by a linear predictor h(µi) =
∑k

j=1 fijβj , in which h(·) is a known
function, called the link function (McCullagh & Nelder 1989). An impor-
tant extension of this basic class of models is the generalised linear mixed

model or GLMM (Breslow & Clayton 1993), in which Y1, . . . , Yn are mu-
tually independent conditional on the realised values of a set of latent
random variables U1, . . . , Un, and the conditional expectations are given
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by h(µi) = Ui +
∑k

j=1 fijβj . A generalised linear spatial model (GLSM) is
a GLMM in which the U1, . . . , Un are derived from a spatial process S(·).
This leads to the following model-specification.

Let S(·) = {S(x) : x ∈ A} be a Gaussian stochastic process with
E[S(x)] =

∑p
j=1 fj(x)βj , Var[S(x)] = σ2 and ρ(u) = Corr[S(x), S(x′)]

where u = ‖x − x′‖. Assume that measurements Y1, . . . , Yn are con-
ditionally independent given S(·), with conditional expectations µi and
h(µi) = S(xi), i = 1, . . . , n, for a known link function h(·). In this model
the signal process is {h−1(S(x)) : x ∈ A}.
As in the case of the classical GLM, the GLSM embraces the linear Gaus-
sian model as a special case, whilst providing a natural extension to deal
with response variables for which a standard distribution other than the
Gaussian more accurately describes the sampling mechanism involved. In
what follows, we focus on the Poisson-log-linear model for count data and
the logistic model for binomial data.

We denote the regression parameters by β and covariance parameters in
the model by θ. We write Y = (Y1, ..., Yn)T for the observed responses
at locations x1, . . . , xn in the sampling design, S = (S(x1), ..., S(xn))T

for the unobserved values of the underlying process at x1, . . . , xn, and
S∗ for the values of S(·) at all other locations of interest, typically a
fine grid of locations covering the study region. The conditional indepen-
dence structure of the GLSM is then indicated by the following graph.

Y S

(β , θ)

S
*

The likelihood for a model of this kind is in general not expressible in closed
form, but only as a high-dimensional integral

L(β, θ) =

∫ n
∏

i=1

g(yi; h
−1(si))p(s;β, θ)ds1, . . . , sn, (1.10)

where g(y; µ) denotes the density of the error distribution parameterised by
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the mean µ, and p(s; β, θ) is the multivariate Gaussian density for the vector
S. The integral above is also the normalising constant in the conditional
distribution of [S|y, β, θ],

p(s | y, β, θ) ∝
n

∏

i=1

g(yi;h
−1(si))p(s; β, θ). (1.11)

In practice, the high dimensionality of the integral prevents direct calcula-
tion of the predictive distribution [S∗ | y, β, θ].

Standard methods of approximating the integral (1.10) and hence evaluat-
ing (1.11) are of unknown accuracy in the geostatistical setting, but Markov
chain Monte Carlo methods (see Chapter 1) provide a possible solution.

1.9.1 Prediction in a GLSM

Assume first that the parameters in the model are known. From the figure
with the graphical model above we see that prediction of T = T (S∗) can
be separated into three steps.

• Simulate s(1), . . . , s(m) from [S|y] (using MCMC).

• Simulate s∗(j) from [S∗|s(j)], j = 1, . . . , m (multivariate Gaussian).

• Approximate the minimum mean square error predictor

E[T (S∗)|y] ≈ 1

m

m
∑

j=1

T (s∗(j)).

Whenever possible, it is desirable to replace Monte Carlo sampling by direct
evaluation. For example, if it is possible to calculate E[T (S∗)|s(j)], j =
1, . . . , m directly, we would use the approximation

E[T (S∗)|y] ≈ 1

m

m
∑

j=1

E[T (S∗)|s(j)],

thereby reducing the Monte Carlo error due to simulation.

To simulate from [S | y] we use the truncated Langevin-Hastings algorithm
as in Christensen, Møller & Waagepetersen (2001). This algorithm uses
gradient information in the proposal distribution and has been found to
work well in practice by comparison with a random walk Metropolis algo-
rithm. First we make a reparametrisation defining S = FTβ +Ω1/2Γ where
Ω1/2 is a square root of Ω = Var[S], say a Cholesky factorisation, and a pri-
ori Γ ∼ N(0, I). Using an MCMC-algorithm to obtain a sample γ1, . . . , γn
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from [Γ | y], we multiply by Ω1/2 and obtain a sample s(1), . . . , s(m) from
[S|y].

The MCMC-algorithm used is a Metropolis-Hastings algorithm where all
components of Γ are updated simultaneously. The proposal distribution is a
multivariate Gaussian distribution with mean m(γ) = γ+(δ/2)∇(γ) where
∇(γ) = ∂

∂γ log f(γ | y), and variance δIn. For a GLSM with canonical link

function h, the gradient ∇(γ) has the following simple form:

∇(γ) =
∂

∂γ
log f(γ | y) = −γ + (Ω1/2)T{y − h−1(s)}, (1.12)

where s = FTβ + Ω1/2γ and h−1 is applied coordinatewise. If we modify
the gradient ∇(γ) (by truncating, say) such that the term {y − h−1(s)} is
bounded, the algorithm can be shown to be geometrically ergodic, and a
Central Limit Theorem therefore exits. The Central Limit Theorem with
asymptotic variance estimated by Geyer’s monotone sequence estimate
(Geyer 1992), can be used to assess the Monte Carlo error of the calcu-
lated prediction. This algorithm is not specific to the canonical case since
the formula in (1.12) can be generalised to accommodate models with a
non-canonical link function.

In practice one has to choose the proposal variance δ. We tune the algorithm
by running a few test runs and choosing δ such that approximately 60%
of the proposals are accepted. To avoid storing a large number of high-
dimensional simulations s(1), . . . , s(m) we also thin the sample such that,
say, only every 100th simulation is stored.

1.9.2 Bayesian inference for a GLSM

First we consider Bayesian inference for a GLSM, using the Gaussian-
Scaled-Inverse-χ2 prior for (β, σ2) defined in (1.5), holding φ fixed. The
marginal density of S, obtained by integrating over β and σ2, becomes an
n-dimensional multivariate-t density, tnσ

(mb, S
2
σ(R + FVbF

T)). Therefore
the posterior density of S is

p(s | y) ∝
n

∏

i=1

g(yi; h
−1(si))p(s) (1.13)

where p(s) is the marginal density of S.

In order to obtain a sample s(1), . . . , s(m) from this distribution we use a
Langevin-Hastings algorithm, the reparametrisation S = FTmb + Sσ(R +
FVbF

T)Ω1/2Γ, where Ω = S2
σ(R + FVbF

T), and a priori Γ ∼ tn+nσ
(0, In).

The gradient ∇(γ) which determines the mean of the proposal distribution
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has the following form when h is the canonical link function,

∇(γ) =
∂

∂γ
log f(γ | y) = −γ(n + nσ)/(nσ + ‖γ‖2) + (Ω1/2)T{y − h−1(s)}.

(1.14)

By using a conjugate prior for (β, σ2) we find that [β, σ2 | s(j)], j =
1, . . . , m are Gaussian-Scaled-Inverse-χ2 distributions with means and vari-
ances given by (1.6). From this we can calculate the mean and the variance
of the posterior [β, σ2 | y], and also simulate from it.

Procedures similar to the ones given in Section 1.9.1 can be used for
prediction. The only difference is that from (1.8), we see that [S∗|s(j)],
j = 1, . . . ,m, are now multivariate-t distributed rather than multivariate
Gaussian.

Concerning the use of flat or non-informative priors for β and σ2 in a GLSM,
a word of caution is needed. The prior 1/σ2 for σ2, recommended as a non-
informative prior for the Bayesian linear Gaussian model in Section 1.7,
results in an improper posterior distribution for a GLMM (see Natarajan
& Kass (2000)), and should therefore be avoided. Since a linear Gaussian
model with a fixed positive measurement error τ2

0 > 0 can be considered as
a special case of a GLSM, this is also true for such a model. There seems
to be no consensus concerning reference priors for GLMM’s.

We now allow for uncertainty also in φ, and adopting as our prior
π(β, σ2, φ) = π{Nχ2

ScI
}(β, σ2)π(φ), where π(φ) is any proper prior.

When using an MCMC-algorithm updating φ, we need to calculate (R(φ)+
FVbF

T)1/2 for each new φ value, which is the most time-consuming part of
the algorithm. To avoid this significant increase in computation time, we
adopt a discrete prior for φ on a set of values covering the range of interest,
and precompute and store (R(φ) + FVbF

T)1/2 for each value of φ.

To simulate from [S, φ|y], after integrating out β and σ2, we use a hybrid
Metropolis-Hastings algorithm where S and φ are updated sequentially.
The update of S is of the same type as used earlier, with φ equal to the
present value in the MCMC iteration. To update φ we use a random walk
Metropolis update where the proposal distribution is a Gaussian distribu-
tion rounded to the nearest φ value in the discrete set for the prior. The
output of this algorithm is a sample (s(1), φ(1)), . . . , (s(m), φ(m)) from the
distribution [S, φ | y].

The predictive distribution for S∗ is given by

p(s∗|y) =

∫ ∫

p(s∗ | s, φ)p(s, φ | y)dsdφ

To simulate from this predictive distribution, we simulate s∗(j) from [S∗ |
s(j), φ(j)], which is multivariate-t, j = 1, . . . , m.
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We may also want to introduce a nugget term into the specification of the
model, replacing S(xi) by S(xi)+Ui where the Ui are mutually independent
Gaussian variates with mean zero and variance τ2 . Here, in contrast to
the Gaussian case, we can make a formal distinction between the Ui as a
representation of micro-scale variation and the error distribution induced
by the sampling mechanism, for example Poisson for count data. In some
contexts, the Ui may have a more specific interpretation. For example, if
a binary response were obtained from each of a number of sampling units
at each of a number of locations, a binomial error distribution would be
a natural choice, and the Ui and S(xi) would then represent, respectively,
non-spatial and spatial sources of extra-binomial variation. The inferential
procedure is essentially unchanged, except that we now use a discrete joint
prior for (φ, τ2).

1.9.3 A spatial model for count data

A GLSM for modelling spatial count data is the Poisson-log-linear spa-
tial model, in which [Yi | S(xi)] follows a Poisson distribution with mean
ti exp(S(xi)), i = 1, . . . , n. The term ti may, for example, represent a time-
interval over which the corresponding count Yi is accumulated, as in Diggle
et al. (1998), or an area within which the number of events Yi is counted,
as in Christensen & Waagepetersen (2002).

We assume initially that parameters are known, and that we are interested
in predicting the intensity λ(x0) = exp(S(x0)) at a location x0. Given a
sample s(1), . . . , s(m) from [S|y], obtained using the MCMC-algorithm in
Section 1.9.1, [S(x0)|s(j)], j = 1, ..., m follow multivariate Gaussian distri-
butions. Since the moments of the exponential of a multivariate Gaussian
distribution are obtainable in closed form, the following procedure can be
used for predicting λ(x0) = exp(S(x0)).

• Calculate E[S(x0)|s(j)] and Var[S(x0)|s(j)], j = 1, . . . ,m, using krig-
ing.

• Calculate, for each of j = 1, . . . , m,

E[λ(x0)|s(j)] = exp(E[S(x0)|s(j)] + 0.5Var[S(x0)|s(j)])

• Approximate

E[λ(x0)|y] ≈ 1

m

m
∑

j=0

E[λ(x0)|s(j)]

Note that E[exp(αS)|y] is finite for any α ∈ IRn, E[S(x0)|S] is a lin-
ear function of S, and Var[S(x0)|S] does not depend on S. Therefore
E[λ(x0)|y] < ∞, and the quantity we want to approximate using MCMC
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exists. As we shall see below, if we use only simulation-based methods we
may unwittingly produce estimates of quantities that do not exist.

An algorithm similar to one above could, in principle, be used when we want
to incorporate prior information into the predictions by using the conju-
gate Gaussian-Scaled-Inverse-χ2 prior for (β, σ2), the difference being that
[S(x0) | s(j)], j = 1, . . . , m are now multivariate-t distributions. However,
because the mean of the exponential of a multivariate-t distribution is not
finite, the procedure fails. In fact, the minimum mean square error predic-
tor does not exist in this case. Had we used a different MCMC-algorithm,
sampling β and σ2 instead of integrating them out, or had we decided to
generate a sample exp(s0(1)), . . . , exp(s0(m)) instead of using the formula
for E[exp(S(x0))|s(j)], j = 1, . . . , m, this problem might have been missed.
This method would, of course, have generated a valid sample from the re-
quired predictive distribution. If we do want to quote a point prediction in
a situation of this kind, we might for example use the predictive median
rather than the mean.

1.9.4 Spatial model for binomial data

A GLSM for binomial data is as follows. The data are arranged as triples,
(xi, yi, ni), where yi is a count of the number of successes out of ni Bernoulli
trials associated with the location xi. Conditional on an unobserved Gaus-
sian process S(·), we model the yi as realisations of mutually independent
binomial random variables with numbers of trials ni and success probabil-
ities pi = p(xi), where

log{p(x)/(1 − p(x))} = S(x). (1.15)

As before, the process S(·) has spatially varying mean µ(x) =
∑

fj(x)βj ,
variance σ2 and correlation parameter φ.

To illustrate the prediction problem in this context, suppose that the target
for prediction is T = p(x0). Because no closed form expressions can be
found for the mean and variance of [T | S] we need to simulate from this
distribution. Assuming a Gaussian-Scaled-Inverse-χ2 prior for (β, σ2), and
a proper prior for φ, we proceed as follows:

• simulate ((s(1), φ(1)), . . . , (s(m), φ(m)) from [S, φ|y], using MCMC;

• calculate E[S(x0)|s(j), φ(j)] and Var[S(x0)|s(j), φ(j)] for each of j =
1, . . . , m;

• simulate values s0(j), j = 1, ...,m from multivariate-t distributions
with common degrees of freedom n + nσ, means E[S(x0)|s(j)] and
variances Var[S(x0)|s(j)];
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FIGURE 1.17. Map of simulated binomial data. Left: the values of underlying
process S(·). Right: binomial data with size 4 and probability parameter equal
to the inverse logit-function; circles indicates locations for which MCMC traces
will be shown.

• approximate

E[T |y] ≈ 1

m

m
∑

j=0

exp(s0(j))/(1 + exp(s0(j))).

Heagerty & Lele (1998) and De Oliveira (2000) use an apparently different
model for spatial binary data which they call the clipped Gaussian field. In
this model, the measurement process is {Y (x) = 1{S(x)>0} : x ∈ A}, where
S(·) is a Gaussian process. Assuming that the process S(·) has a positive
nugget τ2, we can write this model as Y (x) = 1{S̃(x)+U(x)>0}, where S̃(·)
is another Gaussian process and U(·) is a Gaussian white noise process
with mean 0 and variance 1. The conditional distribution [Y (x) | S̃(x)] is
binomial of size 1 and probability P (Y (x) = 1 | S̃(x)) = Φ(S̃(x)). The
model is therefore identical to the one described above, except that the
logit link in (1.15) is replaced by the probit link.

1.9.5 Example

To illustrate the inferential procedure in a GLSM we consider the simu-
lated data-set shown in Figure 1.17 which consists of binomial data at 64
locations. The left-hand panel shows the values of the underlying Gaussian
random variables S(x1), . . . , S(xn) simulated from a model with exponen-
tial correlation function and parameter values (β, σ2, φ) = (0, 0.5, 0.2). The
right-hand plot shows the corresponding binomial variables which are sim-
ulated from independent binomial distributions of size 4 and probability
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FIGURE 1.18. Time series with the MCMC output for the two locations indicated
by circles in Figure 1.17 and for the parameter φ.

parameter p(xi) = exp(S(xi))/(1 + exp(S(xi))) i = 1, . . . , n, the inverse
logit transform of S(·). Note that inference is based on the observed bino-
mial values in the right hand plot, with S(x1), . . . , S(xn) in the left hand
plot considered as unobserved.

We perform a Bayesian analysis with exponential correlation function and
the following priors: a Gaussian N(0, σ2) prior for [β | σ2], a χ2

ScI (5, 0.5)
prior for σ2, and a discrete exponential prior for φ, π(φ) = exp(−φ/0.2),
with 60 discretisation points in the interval [0.005, 0.3].

For inference we run the MCMC-algorithm described in Section 1.9.2, dis-
carding the first 10, 000 iterations then retaining every 100th of 100, 000
iterations to obtain a sample of size 1000. Figure 1.18 shows the output for
the two S coordinates circled in Figure 1.17, and for the parameter φ. The
estimated autocorrelations are in each case less than 0.1 for all positive
lags, and the thinned sample has very low autocorrelation.

For prediction of the probabilities over the area, we consider 1600 locations
in a regular square grid and use the procedure described in Section 1.9.4.
The left-hand panel of Figure 1.19 shows the predictions at the 1600 loca-
tions, whilst the right-hand panel shows the associated prediction variances.

Comparing the left-hand panels of Figure 1.17 and Figure 1.19 we see that
the predicted surface has less extreme values than does the true surface
S(·), as is to be expected when predicting from noisy data. The prediction
variances on the right-hand plot in Figure 1.19 show a weak dependence
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FIGURE 1.19. Left: predicted values at the grid points. Right: prediction vari-
ances.

on the means, with a preponderance of large values of the prediction vari-
ance in areas where the predicted means are close to 0.5. The effect of the
sampling design is also clear, with small prediction variances at locations
close to grid-points.

1.10 Discussion

In this short introduction to the subject of model-based geostatistics, our
aim has been to set out the basic methodology for dealing with geostatis-
tical problems from the perspective of mainstream parametric statistical
modelling. Under Gaussian assumptions, the resulting prediction method-
ology has a very close relationship to classical geostatistical kriging meth-
ods, but the treatment of unknown parameters departs markedly from the
classical geostatistical approach. The classical approach uses curve-fitting
methods to match empirical and theoretical variograms, whereas we have
emphasised the use of the likelihood function for parameter estimation,
whether from a Bayesian or non-Bayesian point of view. The Bayesian ap-
proach has the attractive property that uncertainty in the values of model
parameters is recognised in the construction of prediction intervals, leading
to a more honest assessment of prediction error. This should not blind us
to the uncomfortable fact that even the simplest geostatistical models may
be poorly identifiable from the available data, and in these situations the
choice of prior may have an unpleasantly strong influence on the resulting
inferences. However, our suspicion is that more ad hoc methods based on
simple plug-in methods conceal, rather than solve, this difficulty.
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One general point that cannot be over-emphasised is that the model and in-
ferential method used on a particular set of data should be informed by the
scientific objective of the data analysis. The full machinery of geostatistical
modelling is indicated when prediction at unobserved spatial locations is a
central objective. For problems of this kind, some or all of the model param-
eters, for example those defining the assumed spatial covariance structure
of the data, are means to an end rather than quantities to be interpreted
in their own right, and it may not matter that these parameters are poorly
identified. For problems in which the scientific focus is on parameter esti-
mation, for example in investigating the regression effects of explanatory
variables, a simpler approach such as the method of generalised estimat-
ing equations may be all that is required (Gotway & Stroup 1997). Note,
however that this changes the interpretation of the regression parameter as
affecting marginal, rather than conditional expectations.

We acknowledge that our use of the Bayesian inferential paradigm is prag-
matic. We find it difficult to come up with convincing arguments for the
choice of priors in a geostatistical model, but we do want a prediction
methodology which acknowledges all of the major sources of uncertainty in
our predictions.

We have omitted altogether a number of topics due to restrictions on space.
Within the linear Gaussian setting, extensions of the methodology to mul-
tivariate and/or space-time data are straightforward in principle, although
the enriched data-structure leads to a proliferation of modelling choices.
Some examples are included in the suggestions given in Section 1.12 for
further reading. Also, for large space-time data-sets, apparently obvious
approaches may be computationally infeasible.

Outside the generalised linear model setting, the number of potential mod-
els is practically limitless and the ability to fit by Monte Carlo methods
almost arbitrarily complex models is a two-edged sword. On one hand, it is
right in principle that models should be informed by scientific knowledge,
rather than chosen from an artificially restricted class of analytically or
numerically tractable models. Against this, it is all too easy to devise a
model whose complexity far outstrips the capacity of the data to provide
reliable validation of its underlying assumptions.

A fundamental problem which is ignored in most geostatistical work is the
possibility of stochastic interaction between the signal or measurement pro-
cess and the sampling design. For example, in mineral exploration samples
will be taken from locations which are thought likely to yield commercially
viable grades of ore. The formal framework for handling problems of this
kind is a marked point process, a joint probability model for a stochastic
point process X, and an associated set of random variables, or marks, Y . As
always, different factorisations of the joint distribution are available, and
whilst these factorisations are mathematically equivalent, in practice they
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lead to different modelling assumptions. The simplest structural assump-
tion is that X and Y are independent processes, hence [X, Y ] = [X][Y ].
This is sometimes called the random field model, and is often assumed
implicitly in geostatistical work. In the dependent case, one possible fac-
torisation is [X, Y ] = [X|Y ][Y ]. This is a natural way to describe what is
sometimes called preferential sampling, in which sampling locations are de-
termined by partial knowledge of the underlying mark process; an example
would be the deliberate siting of air pollution monitors in badly polluted
areas. The opposite factorisation, [X, Y ] = [X][Y |X], may be more appro-
priate when the mark process is only defined at the sampling locations; for
example, the heights of trees in a naturally regenerated forest. The full in-
ferential implications of ignoring violations of the random field model have
not been widely studied.

1.11 Software

All the analyses reported in this chapter have been carried out using the
packages geoR and geoRglm, both of which are add-on’s to the freely avail-
able and open-source statistical system R (Ihaka & Gentleman 1996). The
official web site of the R-project is at www.r-project.org . Both packages
are available in the contributed section of CRAN (Comprehensive R Archive
Network).

The package geoR (Ribeiro Jr & Diggle 2001) implements basic geostatisti-
cal tools and the methods for Gaussian linear models described here. Its of-
ficial web site is www.maths.lancs.ac.uk/˜ribeiro/geoR, where instructions
for downloading and installation can be found, together with a tutorial on
the package usage.

The package geoRglm is an extension of geoR which implements the gen-
eralised linear spatial model described in Section 1.9. It is available at
www.lancaster.ac.uk/˜christen/geoRglm, together with an introduction to
the package.

Other computational resources for analysis of spatial data us-
ing R are reviewed in issues 2 and 3 of R-NEWS, available at
cran.r-project.org/doc/Rnews. An extensive collection of geostatistics ma-
terials can be found in the AI-GEOSTATS web site at www.ai-geostats.org .

1.12 Further reading

Chilés & Delfiner (1999) is a standard reference for classical geostatisti-
cal methods. Cressie (1993) describes geostatistics as one of three main
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branches of spatial statistics. Stein (1999) gives a rigorous account of the
mathematical theory underlying linear kriging. Ribeiro Jr & Diggle (1999)
give a more detailed presentation of Bayesian inference for the linear Gaus-
sian model. Other references to Bayesian inference for geostatistical mod-
els include Kitanidis (1986), Le & Zidek (1992), Handcock & Stein (1993),
De Oliveira et al. (1997), Diggle & Ribeiro Jr (2003), De Oliveira & Ecker
(2002) and Berger et al. (2001). Omre & Halvorsen (1989) describe the link
between Bayesian prediction and simple or ordinary kriging.

Christensen, Møller & Waagepetersen (2001) give further details and prop-
erties of the Langevin-Hastings algorithm used in Section 1.9.1. Bayesian
inference for a GLSM is described in Diggle et al. (1998) and in Christensen
& Waagepetersen (2002) where algorithms are used that update both the
random effect S and all the parameters (including β and σ2). These algo-
rithms are more general than the one presented in this chapter, since they
do not require conjugate priors (or limiting cases of conjugate priors). How-
ever, from our experience, in practice a consequence of the extra generality
is that the algorithms need to be more carefully tuned to specific appli-
cations in order to achieve good mixing properties. Zhang (2002) analyses
spatial binomial data, and develops a Monte Carlo EM gradient algorithm
for maximum likelihood estimation in a GLSM.

Multivariate spatial prediction is presented in Chapter 5 in Chilés &
Delfiner (1999); see also Brown, Le & Zidek (1994), Le, Sun & Zidek (1997)
and Zidek, Sun & Le (2000).

Examples of space-time modelling include Handcock & Wallis (1994), Wikle
& Cressie (1999), Brown, K̊arensen, Roberts & Tonellato (2000), Brix &
Diggle (2001) and Brown, Diggle, Lord & Young (2001).

Wälder & Stoyan (1996), Wälder & Stoyan (1998) and Schlather (2001)
discuss the connection between the classical variogram and the more general
second-order properties of marked point processes. Marked point processes
are also discussed in Chapter 4.
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