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Abstract. With the emergence of model-driven engineering (MDE),
software models are considered as central artifacts in the software engi-
neering process, going beyond their traditional use as sketches. In MDE,
models rather act as the single source of information for automatically
generating executable software. This shift poses several new research
challenges. One of these challenges constitutes model versioning, which
targets at enabling efficient team-based development of models. This
compelling challenge induced a very active research community, who
yielded remarkable methods and techniques ranging from model differ-
encing to merging of models.

In this tutorial, we give an introduction to the foundations of model
versioning, the underlying technologies for processing models and their
evolution, as well as the state of the art in model versioning. Thereby,
we aim at equipping students and researchers alike that are new to this
domain with enough information for commencing to contribute to this
challenging research area.

1 Introduction

Since the emergence of software engineering [72,94], researchers and practition-
ers have been struggling to cope with the ever growing complexity and size of the
developed systems. One way of coping with the complexity of a system has been
raising the level of abstraction in the languages used to specify a system. Besides
dealing with the complexity of software systems under development, also man-
aging the size of software systems constitutes a major challenge. As stated by
Ghezzi et al., “software engineering deals with the building of software systems
that are so large or so complex that they are built by teams of engineers” [37].
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Orthogonal to the challenge entailed by the complexity and size of software sys-
tems, dealing with the demand to constantly evolve a system in order to meet
ever changing requirements constitutes an additional major challenge. To sum-
marize, Parnas defines software engineering as the “multi-person construction of
multi-version software” [92].

Model-driven engineering (MDE) has been proposed as a new paradigm for
raising the level of abstraction [7,38,98]. In MDE, softare models are considered
as central artifacts in the software engineering process, going beyond their tradi-
tional use as sketches and blueprints. Models constitute the basis and the single
source of information to specify and automatically generate an executable sys-
tem. Thereby, developers may build models that are less bound to an underlying
implementation technology and are much closer to the problem domain [103].
However, the emergence of this shift from code to models poses several new re-
search challenges. One of these challenges is to cope with the ever growing size
of systems being built in practice [34]. Developing a large system entails the
need for a large number of developers who collaborate to succeed in creating
a large system. Thus, adequate support for team-based development of mod-
els is a crucial prerequisite for the success of MDE. Therefore, as in traditional
code-centric software engineering, versioning systems [18,66] are required, which
allow for concurrent modification of the same model by several developers and
which are capable of merging the operations applied by all developers to obtain
ultimately one consolidated version of a model again.

In traditional code-centric software engineering, text-based versioning sys-
tems, such as Git1, Subversion2, and CVS3, have been successfully deployed to
allow for collaborative development of large software systems. To enable col-
laborative modeling among several team members, such text-based versioning
systems have been reused for models. Unfortunately, it turned out quickly that
applying text-based versioning is inadequate for models and leads to unsatisfac-
tory results [2]. This is because such versioning systems consider only text lines
in a text-based representation of a model as, for instance, the XMI serializa-
tions [81]. As a result, the information stemming from the model’s graph-based
structure is destroyed and associated syntactic information is lost. To overcome
these drawbacks of text-based versioning systems used for models, dedicated
model versioning approaches have been proposed recently. Such approaches do
not operate on the textual representation; instead, they work directly on the
model’s graph-based structure.

Especially optimistic versioning systems gained remarkable popularity be-
cause they enable several developers to work concurrently on the same artifacts
instead of pessimistically locking each artifact for the time it is changed by one
developer. The price to pay for being able to work in parallel is that the con-
currently applied operations of all developers have to be merged again. There-
fore, the versioning process depicted in Fig. 1 is applied, which is referred to

1 http://git-scm.com
2 http://subversion.tigris.org
3 http://cvs.nongnu.org

http://git-scm.com
http://subversion.tigris.org
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Fig. 1. Versioning Process

as check-out/check-in protocol [30]. Developers may concurrently check-out the
latest version Vo of a model from a common repository at the time of t0 (cf.
Fig. 1). Thereby, a local working copy of Vo is created. Both developers may
independently modify their working copies in parallel. As soon as one developer
completes the work, assume this is developer 1, she performs a check-in at t1.
Because no other developer performed a check-in in the meanwhile, her work-
ing copy can be saved directly as a new revised version Vr1 in the repository.
Whenever developer 2 completes his task and performs the check-in, the version-
ing system recognizes that a new version has been created since the check-out.
Therefore, the merge process is triggered at t2 in order to merge the new version
Vr1 in the repository with the version Vr2 by developer 2. Once the merge is car-
ried out, the resulting merged version incorporating the operations of developer 1
and developer 2 is saved in the repository.

In this tutorial, we give an introduction to the underlying technologies for real-
izing this versioning process to allow for merging concurrently modified models.
Therefore, we discuss the foundations of versioning in Section 2 and introduce the
prerequisites for building a model versioning system in Section 3. Subsequently,
we review the state of the art in model versioning in Section 4 and present our
own model versioning system AMOR in Section 5. Finally, we conclude this tu-
torial with some challenging topics for future research in the domain of model
versioning in Section 6.

2 Foundations of Versioning

The history of versioning in software engineering goes back to the early 1970s.
Since then, software versioning was constantly an active research topic. As stated
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by Estublier et al. in [30], the goal of software versioning systems is twofold.
First, such systems are concerned with maintaining a historical archive of a set
of artifacts as they undergo a series of operations and form the fundamental
building block for the entire field of Source Configuration Management (SCM),
which deals with controlling change in large and complex software systems. Sec-
ond, versioning systems aim at managing the evolution of software artifacts
performed by a distributed team of developers.

In that long history of research on software versioning, diverse formalisms
and technologies emerged. To categorize this variety of different approaches,
Conradi and Westfechtel [18] proposed version models describing the diverse
characteristics of existing versioning approaches. A version model specifies the
objects to be versioned, version identification and organization, as well as opera-
tions for retrieving existing versions and constructing new versions. Conradi and
Westfechtel distinguish between the product space and the version space within
version models. The product space describes the structure of a software product
and its artifacts without taking versions into account. In contrast, the version
space is agnostic of the artifacts’ structure and copes with the artifacts’ evolu-
tion by introducing versions and relationships between versions of an artifact,
such as, for instance, their differences (deltas). Further, Conradi and Westfechtel
distinguish between extensional and intentional versioning. Extensional version-
ing deals with the reconstruction of previously created versions and, therefore,
concerns version identification, immutability, and efficient storage. All versions
are explicit and have been checked in once before. Intentional versioning deals
with flexible automatic construction of consistent versions from a version space.
In other words, intentional versioning allows for annotating properties to specific
versions and querying the version space for these properties in order to derive a
new product consisting of a specific combination of different versions.

In this paper, we only consider extensional versioning in terms of having
explicit versions, because this kind of versioning is predominantly applied in
practice nowadays. Furthermore, we focus on the merge phase in the optimistic
versioning process (cf. Fig. 1). In this section, we outline the fundamental design
dimensions of versioning systems and elaborate on the consequences of different
design decisions concerning the quality of the merge based on an example.

2.1 Fundamental Design Dimensions for Versioning Systems

Current approaches to merging two versions of one software artifact (software
models or source code) can be categorized according to two basic dimensions. The
first dimension concerns the product space, in particular, the artifact representa-
tion. This dimension denotes the representation of a software artifact, on which
the merge approach operates. The used representation may either be text-based
or graph-based. Some merge approaches operate on a tree-based representation.
However, we consider a tree as a special kind of graph in this categorization.
The second dimension is orthogonal to the first one and concerns how deltas are
identified, represented, and merged in order to create a consolidated version. Ex-
isting merge approaches either operate on the states ; that is, the versions of an
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artifact, or on identified operations that have been applied between a common
origin model (cf. Vo in Fig. 1) and the two successors (cf. Vr1 and Vr2 in Fig. 1).

When merging two concurrently modified versions of a software artifact, con-
flicts might inevitably occur. The most basic types of conflicts are update-update
and delete-update conflicts. Update-update conflicts occur if two elements have
been updated in both versions whereas delete-update conflicts are raised if an
element has been updated in one version and deleted in the other (cf. [66] for
more information on software merging in general).

Text-based merge approaches operate solely on the textual representation of a
software artifact in terms of text files. Within a text file, the atomic unit of the
versioned text file may either be a paragraph, a line, a word, or even an arbitrary
set of characters. The major advantage of such approaches is their independence
of the programming languages used in the versioned artifacts. Since a solely text-
based approach does not require language-specific knowledge it may be adopted
for all flat text files. This advantage is probably, besides simplicity and efficiency,
the reason for the widespread adoption of pure text-based approaches in prac-
tice. However, when merging flat files—agnostic of the syntax and semantics of
a programming language—both compile-time and run-time errors might be in-
troduced during the merge. Therefore, graph-based approaches emerged, which
take syntax and semantics into account.

Graph-based merge approaches operate on a graph-based representation of a
software artifact for achieving more precise conflict detection and merging. Such
approaches de-serialize or translate the versioned software artifact into a specific
structure before merging. Mens [66] categorized these approaches in syntactic
and semantic merge approaches. Syntactic merge approaches consider the syn-
tax of a programming language by, for instance, translating the text file into the
abstract syntax tree and, subsequently, performing the merge in a syntax-aware
manner. Consequently, unimportant textual conflicts, which are, for instance,
caused by reformatting the text file, may be avoided. Furthermore, such ap-
proaches may also avoid syntactically erroneous merge results. However, the
textual formatting intended by the developers might be obfuscated by syntactic
merging because only a graph-based representation of the syntax is merged and
has to be translated back to text eventually. Westfechtel was among the first to
propose a merging algorithm that operates on the abstract syntax tree of a soft-
ware artifact [116]. Semantic merge approaches go one step further and consider
also the static and/or dynamic semantics of a programming language. Therefore,
these approaches may also detect issues, such as undeclared variables or even
infinite loops by using complex formalisms like program dependency graphs and
program slicing. Naturally, these advantages over flat textual merging have the
disadvantage of the inherent language dependence (cf. [66]) and their increased
computational complexity.

The second dimension for categorizing versioning systems is orthogonal to the
first one and considers how deltas are identified and merged in order to create
a consolidated version. This dimension is agnostic of the unit of versioning.
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Therefore, a versioned element might be a line in a flat text file, a node in a
graph, or whatsoever constitutes the representation used for merging.

State-based merging compares the states (i.e., versions) of a software artifact
to identify the differences (deltas) between these versions and merge all differ-
ences that are not contradicting with each other. Such approaches may either
be applied to two states (Vr1 and Vr2 in Fig. 1), called two-way merging, or to
three states (including their common ancestor Vo in Fig. 1), called three-way
merging. Two-way merging cannot identify deletions since the common original
state is unknown. A state-based comparison requires a match function which
determines whether two elements of the compared artifact correspond to each
other. The easiest way to match two elements is to search for completely equiv-
alent elements. However, the quality of the match function is crucial for the
overall quality of the merge approach. Therefore, especially graph-based merge
approaches often use more sophisticated matching techniques based on identifiers
and heuristics (cf. [47] for an overview of matching techniques). Model matching,
or more generally the graph isomorphism problem is NP-hard [46] and, there-
fore, very computation intensive. If the match function is capable of matching
also partially different elements, a difference function is additionally required to
determine the fine-grained differences between two corresponding elements. Hav-
ing these two functions, two states of the same artifact may be merged by using
the following process. For each element in the common origin version Vo of a
software artifact, the corresponding elements from the two modified versions Vr1

and Vr2 are retrieved. If in both versions Vr1 and Vr2 a corresponding element is
available, the algorithm checks whether the matching element has been modified
in the versions Vr1 and Vr2. If this is true in one and only one of the two versions
Vr1 and Vr2, the modified element is used for creating the merged version. If,
however, the matching element is different in both versions, an update-update
conflict is raised by the algorithm. If the matching element has not been modi-
fied at all, the original element can be left as it is in the merged version. In case
there is no corresponding element in one of the two modified versions (i.e., it has
been removed), it is checked whether it has been concurrently modified in the
opposite revision and raises, in this case, a delete-update conflict. If the element
has not been concurrently modified, it is removed from the merged version. The
element is also removed, if there is no corresponding element in both modified
versions (i.e., it has been deleted in both versions). Finally, the algorithm adds
all elements from Vr1 and Vr2 that have no corresponding element in the original
version Vo, as they have been added in Vr1 or Vr2.

Operation-based merging does not operate on the states of an artifact. Instead,
the operation sequences which have been concurrently applied to the original ver-
sion are recorded and analyzed. Since the operations are directly recorded by the
applied editor, operation-based approachesmay support, besides recording atomic
operations, also to record composite operations, such as refactorings (e.g., [48]).
The knowledge on applied refactoringsmay significantly increase the quality of the
merge as stated byDig et al. [22]. The downside of operation recording is the strong
dependency on the applied editor, since it has to record each performed operation
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and it has to provide this operation sequence in a format which the merge ap-
proach is able to process. The directly recorded operation sequence might include
obsolete operations, such as updates to an element which will be removed later
on. Therefore, many operation-based approaches apply a cleansing algorithm to
the recorded operation sequence for more efficient merging. The operations within
the operation sequence might be interdependent because some of the operations
cannot be applied until other operations have been applied. As soon as the op-
eration sequences are available, operation-based approaches check parallel opera-
tion sequences (Vo to Vr1 and Vo to Vr2) for commutativity to reveal conflicts [60].
Consequently, a decision procedure for commutativity is required. Such decision
procedures are not necessarily trivial. In the simplest yet least efficient form, each
pair of operations within the cross product of all atomic operations in both se-
quences are applied in both possible orders to the artifact and both results are
checked for equality. If they are not equivalent, the operations are not commuta-
tive. After checking for commutativity, operation-based merge approaches apply
all non-conflicting (commutative) operations of both sides to the common ances-
tor in order to obtain a merged model.

In comparison to state-based approaches, the recorded operation sequences
are, in general, more precise and potentially allow for gathering more informa-
tion (e.g., change order and refactorings), than state-based differencing; espe-
cially if the state-based approach does not rely on a precise matching technique.
Moreover, state-based comparison approaches are—due to complex comparison
algorithms—very expensive regarding their run-time in contrast to operation-
based change recording. However, these advantages come at the price of strong
editor-dependence. Nevertheless, operation-based approaches scale for large mod-
els from a conceptual point of view because their computational effort mainly
depends on the length of the operation sequences and—in contrast to state-based
approaches—not on the size of the models [48].

Anyhow, the border between state-based and operation-based merging is
sometimes blurry. Indeed, we can clearly distinguish whether the operations are
recorded or differences are derived from the states, nevertheless, some state-based
approaches derive the applied operations from the states and use operation-based
conflict detection techniques. However, this is only reasonable if a reliable match-
ing function is available, for instance, using unique identifiers. On the contrary,
some operation-based approaches derive the states from their operation sequences
to check for potentially inconsistent states after merging. Such an inconsistent
state might for instance be a violation of the syntactic rules of a language.
Detecting such conflicts is often not possible by solely analyzing the operation
sequences. Eventually, the conflict detection strategies conducted in state-based
and operation-based approaches are very similar from a conceptual point of view.
Both check for direct or indirect concurrent modifications to the same element
and try to identify illegal states after merging, whether the modifications are
explicitly given in terms of operations or whether they are implicitly derived
from a match between two states.
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2.2 Consequences of Design Decisions

To highlight the benefits and drawbacks of the four possible combinations of the
versioning approaches (text-based vs. graph-based and state-based vs. operation-
based), we present a small versioning example depicted in Fig. 2 and conceptually
apply each approach for analyzing its quality in terms of the detected conflicts
and derived merged version.
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Fig. 2. Versioning Example

Consider a small language for specifying classes, its properties, and references
linking two classes. The textual representation of this language is depicted in the
upper left area of Fig. 2 and defined by the EBNF-like Xtext4 grammar specified
in the box labeled Grammar. The same language and the same examples are
depicted in terms of graphs in the lower part of Fig. 2. In the initial version

4 http://www.eclipse.org/Xtext

http://www.eclipse.org/Xtext
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Version 31: class Person {

2: string[1..1] name
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4: }

5: class Car {

6: <<UP/UP>>

7: }

a: integer[1..1] carNo

b: integer[0..1] regId
c: integer[1..1] regId

(a) State-based Versioning

Version 31: class Person {

2: string[1..1] name

3: Car[0..*] owns

4: }

5: class Car {

6: <<UP/UP>>

7: }

a: integer[1..1] carNo

b: integer[0..1] regId
c: integer[1..1] regId

Rename-Op:

change Class.name;

update Property.type

pre@Class.name with

post@Class.name;

(b) Operation-based Versioning

Fig. 3. Text-based Versioning Example

(Version 0) of the example, there are two classes, namely Human and Vehicle.
The class Human contains a property name and the class Vehicle contains a
property named carNo. Now, two users concurrently modify Version 0 and create
Version 1 and Version 2, respectively. All operations in Version 1 and Version 2
are highlighted with bold fonts or edges in Fig. 2. The first user changes the
name of the class Human to Person, sets the lower bound of the property carNo
to 1 (because every car must have exactly one number) and adds an explicit
reference owns to Person. Concurrently, the second user renames the property
carNo to regId and the class Vehicle to Car.

Text-based versioning. When merging this example with text- and state-based
approaches (cf. Fig. 3a for the result) where the artifact’s representation is a
single line and the match function only matches completely equal lines (as with
Subversion, CVS, Git, and bazaar), the first line is correctly merged since it has
only been modified in Version 1 and remained untouched in Version 2. The same
is true for the added reference in line 3 of Version 1 and the renamed class Car
in line 4 of Version 2. However, the property carNo shown in line 5 in Version 0
has been changed in both Versions 1 (line 6) and Version 2 (line 5). Although
different features of this property have been modified (lower and name), these
modifications result in a concurrent change of the same line and, hence, a conflict
is raised. Furthermore, the reference added in Version 1 refers to class Vehicle,
which does not exist in the merged version anymore since it has been renamed
in Version 2. We may summarize that text- and state-based merging approaches
provide a reasonable support for versioning software artifacts. They are easy to
apply and work for every kind of flat text file irrespectively of the used language.
However, erroneous merge results may occur and several “unnecessary” conflicts
might be raised. The overall quality strongly depends on the textual syntax.
Merging textual languages with a strict syntactic structure (such as XML) might
be more appropriate than merging languages which mix several properties of
potentially independent concepts into one line. The latter might cause tedious
manual conflict and error resolution.

One major problem in the merged example resulting from text-based and
state-based approaches is the wrong reference target (line 3 in Version 1) caused
by the concurrent rename of Vehicle. Operation-based approaches (such as Mol-
hadoRef) solve such an issue by incorporating knowledge on applied refactorings
in the merge. Since a rename is a refactoring, MolhadoRef would be aware of
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(b) Operation-based Versioning

Fig. 4. Graph-based Versioning Example

the rename and resolve the issue by re-applying the rename after a traditional
merge is done. The result of this merge is shown in Fig. 3b.

Graph-based versioning. Applying the merge on top of the graph-based represen-
tation depicted in Fig. 2 may also significantly improve the merge result because
the representation used for merging is a node in a graph which more precisely
represents the versioned software artifact. However, as already mentioned, this
advantage comes at the price of language dependence because merging operates
either on the language specific graph-based representation or a translation of
a language to a generic graph-based structure must be available. Graph- and
state-based approaches additionally require a match function for finding corre-
sponding nodes and a difference function for explicating the differences between
matched nodes. The preciseness of the match function significantly influences the
quality of the overall merge. Assume matching is based on name and structure
heuristics for the example in Fig. 2. Given this assumption, the class Human may
be matched since it contains an unchanged property name. Therefore, renaming
the class Human to Person can be merged without user intervention. However,
heuristically matching the class Vehicle might be more challenging because both
the class and its contained property have been renamed. If the match does not
identify the correspondence between Vehicle and Car, Vehicle and its contained
property carNo is considered to be removed and Car is assumed to be added in
Version 2. Consequently, a delete-update conflict is reported for the change of the
lower bound of the property carNo in Version 1. Also the added reference owns
refers to a removed class which might be reported as conflict. This type of conflict
is referred to as delete-use or delete-reference in literature [110,117]. If, in con-
trast, the match relies on unique identifiers, the nodes can soundly be matched.
Based on this precise match, the state-based merge component can resolve this
issue and the added reference owns correctly refers to the renamed class Car in
the merged version. However, the concurrent modification of the property carNo
(name and lower) might still be a problem because purely state-based approaches
usually take either the entire element from either the left or the right version
to construct the merged version. Some state-based approaches solve this issue
by conducting a more fine-grained difference function to identify the detailed
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differences between two elements. If these differences are not overlapping—as in
our example—they can both be applied to the merged element. The result of
a graph-based and state-based merge without taking identifiers into account is
visualized in Fig. 4a.

Purely graph- and operation-based approaches are capable of automatically
merging the presented example (cf. Fig. 4b). Between Version 0 and Version 1,
three operations have been recorded, namely the rename of Human, the addition
of the reference owns and the update concerning the lower bound of carNo. To get
Version 2 from Version 0, class Vehicle and property carNo have been renamed.
All these atomic operations do not interfere and therefore, they all can be re-
applied to Version 0 to obtain a correctly merged version.

In summary, a lot of research activity during the last decades in the domain
of traditional source code versioning has lead to significant results. Approaches
for merging software models draw a lot of inspiration from previous works in the
area of source code merging. Especially graph-based approaches for source code
merging form the foundation for model versioning. However, one major chal-
lenge still remains an open problem. The same trade-off as in traditional source
code merging has to be made regarding editor- and language-independence ver-
sus preciseness and completeness. Model matching, comparison and merging, as
discussed above, can significantly be improved by incorporating knowledge on
the used modeling language, as well as language-specific composite operations,
such as refactorings. On the other hand, model versioning approaches are also
forced to support several languages at the same time, because even in small
MDE projects several modeling languages are usually combined.

3 Five Steps towards Model Versioning

In this section, we survey the fundamental techniques for stepwise establishing
versioning support for software models. Therefore, we introduce the basics of
model-driven engineering, model transformations, model differencing, conflicts,
and merging in the following.

3.1 Model-Driven Engineering

The idea of MDE is to automate the repetitive task of translating model based
blueprints to code and enable developers to concentrate on creative and non-
trivial tasks which computers cannot do, i.e., creating those blueprints [10]. Sev-
eral techniques are indispensable for putting MDE into practice. In the following,
we introduce a common framework for creating domain-specific modeling lan-
guages and models called metamodeling.

An early attempt towards MDE was made in the 1980s with computer-aided
software engineering (CASE) tools, already following the goal to directly gener-
ate executable systems based on graphical domain-specific models [98]. As CASE
tools were (1) costly to develop, and (2) only appropriate to certain domains,
it was soon realized that the development of domain-specific environments was
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Fig. 5. Metamodeling Layers; adapted from [9]

itself a domain and metamodeling environments to create domain-specific en-
vironments were established [58,106,71]. In fact, the term meta denotes that
an operation is applied on itself, e.g., a discussion about conducting a discus-
sion is called meta-discussion [53]. In a similar vein, metamodeling is referred to
modeling modeling languages.

In an endeavor to establish a commonly accepted set of key concepts and to
preserve interoperability between the rapidly growing number of domain-specific
development environments, the Object Management Group (OMG) released the
specification forModel Driven Architecture (MDA) [79], standardizing the defini-
tion and usage of (meta-)metamodels as driving factor of software development.
To this end, the OMG proposes a layered organization of the metamodeling stack
similar to the architecture of formal programming languages [9], as depicted in
Fig. 5. The meta-metamodel level M3 manifests the role of the Meta-Object Fa-
cility (MOF) [77] as the unique and self-defined metamodel for building meta-
models, i.e., the meta-metamodel ensuring interoperability of any metamodel
defined therewith. Every metamodel defined according OMG’s proposed MDA
standard share the same metatypes and may be reflectively analyzed. MOF may
be compared to the Extended Backus-Naur Form (EBNF) [42], the metagram-
mar for expressing programming languages. The metamodel level M2 contains
any metamodel defined with MOF, including the Unified Modeling Language
(UML) [86], the Common Warehouse Metamodel (CWM) [76] also specified by
the OMG, and any custom domain-specific metamodel. A metamodel at this
level conforms to a definition of a programming language with EBNF, such
as the Smalltalk grammar or the Java grammar. A metamodel defines the ab-
stract syntax of the modeling language and is usually supplemented with one or
more concrete syntactics. Though textual concrete syntactics get more and more
popular, graphical concrete syntactics are more common. To leverage MOF’s in-
teroperability power also for the graphical visualization of models, a graphical
concrete syntax is again defined as metamodel at level M2. The metamodel for
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the concrete syntax defines graphical elements such as shapes and edges by ex-
tending a standardized diagram interchange metamodel [75,80] and associates
those elements with corresponding elements of the abstract syntax metamodel.
The model level M1 contains any model built with a metamodel of level M2,
e.g., a UML model. An equivalent for a model is a specific program written
in any programming language defined in EBNF. Finally, the concrete level M0
reflects any model based representation of a real situation. This representation
is an instance of a model defined in level M1. We may again draw the parallel
to the formal programming language architecture. Level M0 corresponds to all
dynamic execution traces of a program of level M1.

The major benefit of MDA is to decouple system specifications from the un-
derlying platform [14]. In this way, the specification is much closer to the problem
domain and not bound to a specific implementation technique. This benefit is
maximized when domain-specific modeling languages are employed. Thus, the
MDA specification [79] differentiates at level M2 languages for Computation
Independent Model (CIM), Platform Independent Model (PIM), and Platform
Specific Model (PSM) to quantify the abstraction quality of a model. While a
CIM provides a fully computation independent viewpoint close to the domain
in question, a PIM approximates the system description in a technology neutral
manner. A PSM eventually unifies the PIM with the specifics of the underlying
platform to be used as specification for code generation.

To bridge metamodeling and programming languages, and to justify MOF
as interoperability standard, the OMG provides a standardized way for ex-
changing MOF based artifacts. OMG’s standard for XML Metadata Interchange
(XMI) [81] defines a mapping of any (meta)model expressed in MOF to the
Extensible Markup Language (XML) [114]. The specification of MOF itself is di-
vided into the kernel metamodel Essential MOF (EMOF) and the more expres-
sive Complete MOF (CMOF) [77]. EMOF is closely related to object-oriented
programming languages, such as Java, which allows a straightforward mapping,
as implemented in [91,23]. Especially the Eclipse Modeling Framework (EMF)
with its reference implementations for EMOF [23] and UML [24] fosters several
adjacent subprojects for arbitrary MDA tasks, such as querying and comparing
models, building textual and graphical modeling editors, etc. leading to increas-
ing adoption in academia and in practice.

3.2 Model Transformation

In modern software engineering practice employing the MDE paradigm, a vast
amount of interrelated models accrues. Those models are in the first place utilized
to gain abstraction of the technical realization of a system, such that develop-
ers may completely concentrate on a specific matter of the problem domain and
serve finally as construction plan for implementation. To free developers from the
burden of repetitive and error-prone tasks such as translating models into source
code and propagating changes throughout dependent models, a mechanism to
transform and synchronize models is demanded. The field of model transforma-
tion accepts to play this central role and is thus noticed as the heart and soul
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of MDE [104]. To embrace the diversity of domain-specific modeling languages
the transformable models conform to, a model transformation language usually
makes use of the flexible type-system gained by metamodeling and defines a
fixed syntax for defining transformation rules only. The metamodels holding the
actual types of elements to be transformed are bound not until a specific model
transformation is specified [8]. Reflecting the plethora of application areas of
models, model transformation tasks cover all sorts of activities, such as updat-
ing, synchronizing, translating models to other models, or translating models to
code. To support these activities, a multitude of either general or specifically
tailored model transformation languages and approaches emerged.

In the following, we briefly present distinguishing characteristics of current
model transformation approaches. However, those approaches may not only be
adopted for one specific task. As shown in [27], exogenous model transformations
may be also achieved with tools primarily built for endogenous model transfor-
mations. Conversely, tools for exogenous model transformations may perform
endogenous model transformations by defining transformations with equal input
metamodel and output metamodel. Even bidirectional model transformations
may be achieved by defining one transformation for each direction. Although
this interchange is possible, defining transformations is much easier and safer
with the right tool.

Endogenous model transformation. Endogenous model transformation
describes transformations where source and target model conform to the same
metamodel. In case that the source and target models are one and the same
artifact, i.e., the source model is directly refined, this kind of transformation is
also called in-place transformation. If a new target model based on the source
model’s properties is created, the transformation is called out-place, even if both
models conform to the same metamodel [67].

Outstanding approaches realizing endogenous model transformations are
among others the graph transformation tool AGG [29], the model transformation
by-demonstration approach EMF Modeling Operations (EMO) [13], and the re-
flective API of Eclipse’s Modeling Framework EMF allowing direct programmatic
manipulation of models as, e.g., employed in graphical modeling editors [23]. This
kind of model transformation frames the basis for model versioning, as it describes
the evolution of a model. More precisely, the original version is considered as input
model for an endogenous model transformation—either for a predefined transfor-
mation or for a manual transformation performed in a modeling editor—and the
output model shapes the revised version.

Exogenous model transformation. An exogenous model transformation denotes
a model transformation between models conforming to different metamodels, i.e.,
it takes one or more models of any modeling language as input and generates one
or more new models of another modeling language from scratch. A special case
of exogenous model transformation is bidirectional model transformation, which
provides a synchronous framework, i.e., the transformation definition may be
executed in both directions. Based on this definition, bidirectional model trans-
formation further enables incremental change propagation from one model to
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another model, triggering an in-place transformation to recover a consistent
state. The unidirectional exogenous model transformation approach is imple-
mented in, e.g., the Atlas Transformation Language (ATL) [43]. One represen-
tatives for the bidirectional model transformation approach is OMG’s standard
for model transformation Query/View/Transformation (QVT) [78].

Model-to-text transformation. Model-to-text transformations address the gen-
eration of code or any other text representation (e.g., configuration files and
reports) from an input model. Such transformation languages employ usually a
template-based approach, where the expected output text is parameterized with
model elements conforming the input metamodel. Acceleo5 implementing OMG’s
MOF Model-to-Text Transformation Language standard (Mof2Text) [82], JET6,
and Xpand7 are well-known representatives for this category.

3.3 Model Differencing

One major task of model versioning is to obtain the operations that have been
applied between two versions of a model (e.g., between Vo and Vr1 in Fig. 1). As
already discussed in Section 2, obtaining the applied operations can be accom-
plished using two alternatives: operation recording [41,48,60,101], which is often
referred to as operation-based versioning, and model differencing [1,14,45,54,59],
which is also referred to as state-based versioning.As operation recording is largely
straightforward and depends on the interfaces of the modeling editor heavily, we
will focus on the state of the art in model differencing in the following.

Model differencing is usually realized as follows. First, a match is computed,
which describes the correspondences between two versions of a model. Second,
the actual differences are obtained by a fine-grained comparison of all corre-
sponding model elements based on the beforehand computed match. After the
differences have been obtained, they have to be represented in some way for their
further usage, such as conflict detection and merging. In the following, we will
elaborate on the state of the art of these three tasks, matching, differencing, and
representing differences in more detail.

Model Matching. The problem of matching two model elements is to find the
identity of the model elements to be matched. Once the identity is explicit, model
elements with equal identities are considered as a match. Thereby, the identity
is computed by a match function. The characteristics of a model element that
are incorporated to compute the identity of a model element within the match
function, however, varies among approaches, scenarios, and objectives of per-
forming model matching. The predecessors of model matching approaches stem
from schema matching in the data base research domain [95] and from ontology
matching in the knowledge representation research domain [115]. Therefore, we
first highlight remarkable categorizations of matching techniques from these two

5 http://www.eclipse.org/acceleo
6 http://www.eclipse.org/modeling/m2t/?project=jet#jet
7 http://wiki.eclipse.org/Xpand

http://www.eclipse.org/acceleo
http://www.eclipse.org/modeling/m2t/?project=jet#jet
http://wiki.eclipse.org/Xpand
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research domains and, subsequently, proceed with surveying recent approaches
to model matching.

Schema matching and ontology matching. The problem of matching database
schema gained much attention among researchers for addressing various research
topics, such as schema integration, data extraction for data warehouses and e-
commerce, as well as semantic query processing. To reconcile the structure and
terminology used in the emerged approaches from these research topics, Rahm
and Bernstein [95] proposed a remarkable classification of existing approaches.
On the most upper layer, Rahm and Bernstein distinguish between individual
matcher approaches and combining matchers. Individual matchers are further
classified according to the following largely orthogonal criteria. First of all, they
consider whether matching approaches also incorporate instance data (i.e., data
contents) or only the schema for deriving correspondences among schema ele-
ments. Further, they distinguish between approaches that perform the match
only on single schema elements (i.e., they operate on element level) or on com-
binations of multiple elements to also regard complex schema structures (i.e.,
structure level). Another distinction is made upon approaches that uses either
linguistic-based matching (e.g., based on names or descriptions) or constraint-
based matching (e.g., unique key properties or data types). Matching approaches
may also be characterized according to the match cardinality; that is, whether
they return one-to-one correspondences or also one-to-n or even n-to-m corre-
spondences. Finally, there are approaches that not only take a schema as input,
but also exploit auxiliary information (e.g., dictionaries, global schemata, pre-
vious matching decisions, or user input). On the other side, among combining
matchers, Rahm and Bernstein identified hybrid matchers that directly combine
several matching approaches to determine match candidates based on multiple
criteria or information sources. They also identified composite matchers, which
combine the results of several independently executed matchers. The composition
of matchers is either done automatically or manually by the user.

With the rise of the semantic web [6], the problem of integrating, aligning,
and synchronizing different ontologies into one reconciled knowledge represen-
tation induced an active research area. Therefore, several ontology matching
approaches have been proposed (cf. [115] for a survey). As argued by Shvaiko
and Euzenat [105], schema matching and ontology matching are largely the same
problem because schemata and ontologies both provide a vocabulary of terms
that describes a domain of interest and both constrain the meaning of terms
used in the vocabulary [105].

Model matching. The aforementioned categorizations and terminologies also can
be used for characterizing model matching approaches. However, the distinction
between schema-only and instance-based approaches only applies to approaches
specifically tailored to match metamodels, because models on the M1 level in the
metamodeling stack (cf. Section 3.1) have no instances to be used for matching.
Furthermore, in the context of model matching, the only constraint-based sim-
ilarity measure that can be used across all meta levels is the type information
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(i.e., the respective metaclass) of a model element. Besides applying the catego-
rization coming from schema and ontology matching, Kolovos et al. [52] further
proposed a categorization specifically dedicated to model matching approaches.
In particular, they distinguish between static identity-based matching, signature-
based matching, similarity-based matching, and custom language-specific match-
ing. Static identity-based matching relies on immutable UUIDs attached to each
model element, whereas signature-based matching compares model elements
based on a computed combination of feature values (i.e., its signature) of the re-
spective model elements. Which features should be incorporated for computing
this signature strongly depends on the modeling language. Whereas approaches
of these two categories, identity- and signature-based matching, treat the prob-
lem of model matching as a true/false identity (i.e., two model elements are
either a match or not), similarity-based matching computes an aggregated simi-
larity measure between two model elements based on their feature values. As not
all feature values of a model element are always significant for matching, they
often can be configured in terms of weights attached to the respective features.
Finally, custom language-specific matching enables its users to specify dedicated
match rules in order to also respect the underlying semantics of the respective
modeling language for matching.

In the following, we discuss existing approaches in the domain of model match-
ing. Many existing approaches in this domain are integrated in model versioning
tools. In the following, however, we focus on their model matching capabilities
only, and discuss the respective approaches concerning their model versioning
support again in Section 4.

One of the first model matching approaches has been proposed alongside their
model comparison algorithm by Alanen and Porres [93]. Although their approach
only supports UML models and, thereby, they easily could have incorporated
language-specific match rules, the proposed match function relies on static iden-
tifiers only. Also, specifically tailored for a specific modeling language is UMLD-
iff [119], which is, however, not based on static identifiers. Instead, UMLDiff
computes similarity metrics based on a model element’s name and structure.
In terms of the aforementioned categorizations, UMLDiff applies string-based
matching at the element level as well as graph-based matching at the structure
level and internally combines the obtained similarity measures; thus, UMLDiff
is a hybrid matching approach. The same is true for the approach by Nejati et
al. [73], which is specifically tailored for matching UML state machines. Their
matching approach uses static similarity measures, such as typographic, lin-
guistic, and depth properties of model elements, but also behavioural similarity
measures. Also specifically tailored to UML models is ADAMS [20], which uses
a hybrid matcher that first applies a static identity-based matcher and matches
all remaining (not matched) model elements using a simple static signature-
based approach based on model element names. In contrast to language-specific
matching approaches, also several generic approaches have been proposed such
as DSMDiff [59] and EMF Compare [14]. DSMDiff first compares elements
based on a computed signature (incorporating the element name and type) and,
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subsequently, considers the relationship among model elements previously
matched by signature. Largely similar to DSMDiff, EMF Compare computes
four different metrics and combines them to obtain a final similarity measure.
In particular, EMF Compare regards the name of an element, its content, its
type and the relations to other elements. EMF Compare also offers a static
identity-based comparison mode, which works similarly to the approach by Ala-
nen and Porres [93]. However, EMF Compare only allows for either similarity-
based or static-identity based matching; both strategies cannot be combined. The
similarity-based matching approach applied in EMF Compare heavily exploits
the tree-based containment structure when comparing models. Rivera and Valle-
cillo [97] argue that this leads to issues concerning the detection of, for instance,
elements that have been moved to new container elements. Therefore, Rivera and
Vallecillo [97] propose to compare model elements independently of their depth
in the containment tree. Besides this difference, the exploited information on
model elements for matching is largely similar to DSMDiff and EMF Compare.
DSMDiff and EMF Compare aim at obtaining an optimal result, whereas no
language-specific information or configuration is necessary; in contrast, the goal
of SiDiff [99] is to provide an adaptable model comparison framework, which
may be fine-tuned for specific modeling languages by configuring the actual
characteristics of model elements to be considered in the comparison process
and attaching weights to these characteristics. DSMDiff, EMF Compare, and
SiDiff are hybrid matching approaches. On the contrary, Barret et al. recently
presented Mirador [5], which is a composite matching approach. That is, several
matching strategies are independently applied and presented in a consolidated
view of all match results. Using this view, users may interactively refine the com-
puted match by attaching weights and manually discarding or adding matches.
Thereby, the goal is to offer a wide assortment of model comparison algorithms
and matching strategies under control of the user. Yet another approach is taken
by Kolovos with the Epsilon Comparison Language (ECL) [50]. Instead of pro-
viding a set of predefined and configurable matching strategies, ECL is a hybrid
rule-based language, which enables users to implement comparison algorithms at
a high level of abstraction and execute them for identifying matches. Although
it indeed requires some dedicated knowledge to create language-specific match
rules with ECL, it facilitates highly specialized matching algorithms, which may
also incorporate external knowledge, such as lexicons and thesauri.

In summary, during the last years several notable yet diverse approaches for
model matching have been proposed. The set of available matchers ranges from
generic to language-specific and from hybrid to composite approaches, whereas
some are adaptable and some are not. Nearly all operate on the structure level
regarding the importance of a model element’s context. In contrast to ontology
matching approaches, the approaches for model matching are mainly syntactic
and do not incorporate external knowledge. Only ECL explicitly enables match-
ers that take advantage of external knowledge or even formal semantics.
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Computing and Representing Differences. The differences among models
may be computed based on three orthogonal levels: the abstract syntax, the con-
crete syntax, and the semantics of the models. The abstract syntax describes a
model in terms of a tree (or more generally, a graph), whereas nodes represent
model elements and edges represent references among them. Each node may
further be described by a set of features values (i.e., attribute values). Thus,
abstract syntax differencing approaches are only capable of detecting differences
in the syntactic data that is carried in the compared models. Differencing ap-
proaches that also take the concrete syntax of a model into account are further
capable of detecting changes of the diagramming layout visualizing of a model
(e.g., [20,65,87,88]). More recently, Maoz et al. [62] introduce semantic model
differencing, which aims at comparing the meaning [39] of models rather than
their syntactic representation. For instance, Maoz et al. propose an algorithm
to compute the differences between two UML activity diagrams regarding their
possible execution traces, as well as the differences concerning the instantiability
of UML class diagrams [63,64]. In the context of model versioning, the compari-
son of models is largely based on the abstract syntax currently, which is why we
focus on such differencing approaches in the remainder of this section.

Model differencing based on the abstract syntax. Existing work in the area of
differencing based on the abstract syntax mainly differ regarding the used ap-
proach for matching model elements across two versions of a model, which has
been discussed above already, and they vary concerning the detectable types of
differences. Most of the existing model differencing approaches are only capable
of detecting the applied atomic operations (i.e., add, delete, move, and update).
The computation of such applied operations works largely similar in existing ap-
proaches. That is, the differencing algorithms perform a fine-grained comparison
of two model elements that correspond to each other (as indicated by the applied
match function). If two corresponding model elements differ in some way (i.e.,
an update has been applied), a description of the update is created and saved to
the list of differences. If a model element has no corresponding model element
on the opposite side, an element insertion or deletion is noted.

Besides such atomic operations, developers may also apply composite opera-
tions. A composite operation is a set of cohesive atomic operations that are ap-
plied within one transaction to achieve ultimately one common goal. The most
prominent class of such composite operations are refactorings as introduced by
Opdyke [90] and further elaborated by Fowler et al. [33]. The composite opera-
tions that have been applied between two versions of a model represents a valuable
source of information for several model management tasks [68]. Furthermore, this
information helps other developers significantly to better understand the evolu-
tion of a software artifact [49]. Three approaches have been proposed for detecting
applied composite operations from two states of a model. First, Xing and Strou-
lia [120] presented an extension of UMLDiff for detecting refactorings. In their ap-
proach, refactorings are expressed in terms of change pattern queries that are used
to query a set of atomic differences obtained from the UMLDiff model differencing
algorithm. If a query returns a match, an application of a refactoring is reported.
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A very similar approach has been proposed by Vermolen et al. [113] to allow for a
higher automation in model migration. Both approaches are restricted to a spe-
cificmodeling language and use hard-coded refactoring detection rules. In contrast
to these approaches, Kehrer et al. [44] propose to derive the detection rules from
graph transformation units realizing the composite operations. The derived de-
tection rules may then be matched with generic difference models containing the
atomic operations that have been applied between two versions of a model.

Representation of differences. For assessing different approaches for representing
differences between two versions of a model, Cicchetti et al. [16] identified a num-
ber of properties a representation of operations should fulfill. Most importantly,
they mention the properties indicating whether a representation is model-based
(i.e., conforming to a dedicated difference metamodel), transformative (i.e., ap-
plicable to the compared models), and metamodel independent (i.e., agnostic of
the metamodel the compared models conform to). Besides these properties, it is
also important how explicit the detected operations are represented, or whether
important information (such as the index at which a value has been added to an
ordered feature) is hidden in the context of a detected operation’s representation.

In several research papers addressing the topic of model differences, such as
[5,20,65], it is not explicitly mentioned how the detected differences are repre-
sented. Many others at least define the types of differences they aim to detect. For
instance, DSMDiff [59] marks model elements to be added, deleted, or changed.
Alanen & Porres [93] explicitly represent, besides added and deleted model el-
ements, updates of single-valued features, insertions and deletions of values in
multi-valued features as well as ordered features. SiDiff [99] distinguishes among
structural differences, attribute differences, reference differences, and move dif-
ferences. Several language-specific approaches, in particular, Gerth et al. [35],
UMLDiff [119], and Ohst et al. [88], introduce operations that are tailored to
the specific modeling language they support; thus, they use a metamodel depen-
dent representation of applied operations. For instance, Gerth et al. defines the
operations, such as move activity and delete fragment, for state machines and
UMLDiff presents a fine-grained definition of UML class diagram operations,
such as new inheritance relationship (for UML classes).

All of the approaches mentioned above do not represent the detected differ-
ences in terms of a model that conforms to a dedicated difference metamodel; at
least, it is not explicitly mentioned in their research papers. Nevertheless, the dif-
ference representations by Alanen & Porres and Gerth et al. are transformative;
that is, detected differences can be applied to the comparedmodels in order to cre-
ate a merged version. To the best of our knowledge, the only approaches that use a
model-based representation of differences are EMF Compare [14], Herrmannsdo-
erfer & Koegel [41], and Cicchetti et al. [16]. All of these approaches are designed
to be independent from the metamodel. Whereas EMF Compare and Herrmanns-
doerfer & Koegel use a generic metamodel, Cicchetti et al. generate a dedicated
difference metamodel for specific modeling languages. Thereby, in the approach
by Cicchetti et al., a dedicated metaclass for indicating insertions, deletions, and
changes for every metaclass in the respective modeling language’s metamodel is
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generated. For instance, for UML class diagrams, difference metaclasses, such as
AddedClass and ChangedAttribute are generated, whereas Class and Attribute are
metaclasses in the modeling language’s metamodel. In contrast, EMF Compare
and Herrmannsdoerfer & Koegel make use of the reflective power of EMF and
refer to the modeling language’s metaclasses to indicate, for instance, a modifica-
tion of a specific feature of a model element. EMF Compare refers to the affected
model element by a generic reference to EObject, which is the abstract type of all
objects within EMF. In contrast, Herrmannsdoerfer & Koegel foresee a more flex-
ible model referencing technique to also enable, for instance, persistent ID-based
model element references.

3.4 Conflicts in Versioning

Whenever an artifact is modified concurrently by two or more developers, con-
flicts may occur. In the following, we survey existing definitions of the term
conflict and discuss proposed conflict categorizations.

The term conflict has been used in the area of versioning to refer to interfer-
ing operations in the parallel evolution of software artifacts. However, the term
conflict is heavily overloaded and differently co-notated. Besides using the term
conflict, also the terms interference and inconsistency have been applied syn-
onymously in the literature as, for instance, in [32,112] and [66], respectively.
The term conflict usually refers to directly contradicting operations; that is, two
operations, which do not commute [60]. Nevertheless, there is a multitude of
further problems that might occur, especially when taking syntax and semantics
of the versioned artifact’s language into account. Therefore, in order to better
understand the notion of conflict, different categories have been created to group
specific merge issues as surveyed in the following.

In the field of software merging, Mens [66] introduces textual, syntactic, se-
mantic, and structural conflicts. Whereas textual conflicts concern contradicting
operations applied to text lines as detected by a line-based comparison of a pro-
gram’s source code, syntactic conflicts denote issues concerning the contradicting
modification of the parse tree or the abstract syntax graph; thus, syntactic merg-
ing takes the programming language’s syntax into account and may also report
operations that cause parse errors when merged (cf. line-based versus graph-
based versioning in Section 2). Semantic merging goes one step further and also
considers the semantic annotation of the parse tree, as done in the semantic
analysis phase of a compiler. In this context, static semantic conflicts denote
issues in the merged artifact such as undeclared variables or incompatible types.
Besides static semantic conflicts, Mens also introduced the notion of behavioral
conflicts, which denote unexpected behavior in the merged result. Such conflicts
can only be detected by applying even more sophisticated semantic merge tech-
niques that rely on the runtime semantics. Finally, Mens introduces the notion of
structural conflicts, which arise when one of the applied operations to be merged
is a “restructuring” (i.e., a refactoring) and the merge algorithm cannot uniquely
decide in which way the merged result should be restructured.
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Also the notion of conflict in the domain of graph transformation theory
serves as a valuable source of knowledge in this matter. As defined by Heckel et
al. [40], two direct graph transformations are in conflict, if they are not parallel
independent. Two direct graph transformations are parallel independent, if they
preserve all elements that are in the match of the other transformation; otherwise
we encounter a delete-use conflict. Another manifestation of such a case is a
delete-delete conflict. Although both transformations delete the same element
anyway, this is still considered a conflict because one transformation deletes an
element that is indeed in the match of the other transformation. If the graph
transformations comprise negative application conditions, they also must not
create elements that are prohibited by negative application conditions of the
other transformation; otherwise an add-forbid conflict occurs. To summarize,
two direct graph transformations are in conflict, if one of both disables the other.
Furthermore, as shown in [26], based on the local Church-Rosser theorem [15],
we may further conclude that two parallel independent direct transformations
can be executed in any order with the same final result.

In the domain of model versioning, no widely accepted categorization of dif-
ferent types of merge conflicts has been established yet. Nevertheless, two de-
tailed categorizations have been proposed by Westfechtel [117] and Taentzer
et al. [110,111]; these categorizations concern generic conflicts between atomic
operations only. In the following, we summarize these definitions briefly.

The conflict categorization by Westfechtel [117] is defined using set-theoretical
rules and distinguishes between context-free conflicts and context-sensitive con-
flicts. Context-free conflicts denote contradicting modifications of the same fea-
ture value at the same model element; thus, such conflicts are independent of the
context of the model element. Context-sensitive conflicts take also the context of
a concurrently modified model element into account. With the term “context”,
Westfechtel refers to the neighbor elements of a model elements, such as its con-
tainer or referenced model elements. Context-sensitive conflicts are again classi-
fied into (i) containment conflicts, which occur, for instance, if both developers
move the same model element to different containers so that no unique con-
tainer can be chosen automatically, (ii) delete conflicts, which denote deletions
of elements that have been updated or moved concurrently, and (iii) reference
conflicts, which concern contradicting changes to bi-directional references.

Taentzer et al. [110,111] present a fundamental categorization of conflicts
based on graph theory. Thus, models are represented in terms of graphs, and
changes applied to the models are formalized using graph modifications. On
the most general level of this categorization, Taentzer et al. distinguish between
operation-based conflicts and state-based conflicts. Operation-based conflicts are
caused by two directly interfering graph modifications. More precisely, two graph
modifications are conflicting, if either the source or the target node of an edge
that has been inserted in one graph modification has been deleted concurrently
in the other graph modification. State-based conflicts denote inconsistencies con-
cerning the consistency rules of the respective modeling language in the merged
graph; that is, the final state of the graph after applying the concurrent graph
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modifications to the common ancestor graph violates graph constraints stemming
from the definition of the modeling language. In [111], Taentzer et al. refine this
fundamental categorization for conflicts in EMF-based models. Thus, also the
additional modeling features of EMF-based models are taken into account, such
as containment references, feature multiplicities, and ordered features. Therefore,
conflict patterns are introduced, which indicate combinations of concurrently ap-
plied operations leading to a conflict when applied to common model elements.
In particular, they define delete-use, delete-move, delete-update, update-update,
move-move, and insert-insert conflicts.

3.5 Merging

When only non-conflicting changes are detected between two versions of an ar-
tifact, merging is a straightforward task. In case of two-way merging, only the
revised versions Vr1 and Vr2 are compared [18]. As deletions cannot be deter-
mined (cf. Section 2.1), the merged version Vm is constructed as joint union of
both input artifacts, as depicted in Fig. 6a. In case of three-way merging, the
merge is more reliable, as it takes the common ancestor Vo of both artifacts
into account and is thus able to consider deleted elements [18]. The merge is
performed by applying the union of all changes detected between the common
ancestor and both revised versions to the common ancestor version. Consider
the example in Fig. 6b. Element 3 is deleted in Vr1, while in Vr2 element 2 is
deleted and element 4 is added. Consequently, the merged version Vm is con-
structed by deleting elements 2 and 3 from the ancestor version Vo and adding
the new element 4 resulting in a version consisting of elements 1 and 4. As the
more powerful three-way merging approach is the preferred strategy in almost all
versioning systems [66], we neglect two-way merging in the following. However,
whenever conflicting changes are detected between the two revised versions Vr1

and Vr2, the merged version cannot be uniquely determined, regardless whether
two-way or three-way merging is employed.
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Manual conflict resolution. The most pragmatic solution is to shift the responsi-
bility of merging to the user, whenever it comes to conflicting changes. Version-
ing systems for code like Subversion typically employ a manual merge strategy.
Then, the two parallel evolved versions are shown to the user side by side. Con-
flicting and non-conflicting changes are highlighted. The user has to analyze the
evolution of the artifact and to decide which changes shall be integrated into
the merged version. This approach works satisfactory well for line-oriented ar-
tifacts like source code and is thus employed in most model versioning systems
too. However, the graph based structure of models impedes manual merging,
as dependent changes are not located close together in a sequence, but may be
scattered across the model. Considering visual models with their dual representa-
tion manifested in the abstract syntax and the graphical concrete syntax, renders
manual merging even harder. If these representations are merged separately, the
user’s perception is completely destroyed. Even if graphical comparison of both
versions side by side mitigates the representational gap, the manual effort for
identifying corresponding elements on the two-dimensional canvas increases with
the model’s size. Recently, Gerth et al. [36] propose to support manual merg-
ing of process models by guiding the modeler through conflict resolution. They
apply non-conflicting changes automatically and suggest one of three strategies
depending on the conflict type at hand.

Automatic conflict resolution. As manual conflict resolution is error-prone and
cumbersome, it seems naturally, that avoiding conflicts by automaticmerge strate-
gies is a preferable goal.Munson andDewan present a flexible framework formerg-
ing arbitrary objects, which may be configured in terms of merge policies [69].
Merge policies may be tailored by users to their specific needs and include rules
for conflict detection and rules for automatic conflict resolution. Actions for auto-
matic conflict resolution are defined in merge matrices and incorporate the kinds
of changesmade to the object and the users who performed those changes. Thus, it
may be configured, e.g., that changes of specific users always dominate changes of
others, or that updates outpace deletions. Edwards [25] proposes further strategies
for conflict management in collaborative applications and allows to distinguish
manual and automatic resolution in his merge policies. Automatic conflict reso-
lution is achieved by calculating all possible combinations of parallel performed
operations leading to a valid version. Alanen &Porres [1] use a fixed policy in their
merge algorithm for MOF based models to interleave the differences performed in
Vr2 with the differences of Vr1. Cicchetti et al. [17] allow to adapt conflict detection
and merging by defining conflict patterns describing specific difference patterns,
which are not allowed to occur in Vr1 and Vr2 together. These conflict patterns
are supplemented with a reconciliation strategy, stating which side should be pre-
ferred in the merge process. While policy based approaches require user interven-
tion in certain conflict cases where no policy is at hand, Ehrig et al. [28] present a
formal merge approach based on graph transformation theory, yielding a merged
model by construction.
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Conflict tolerance. In contrast to automatic merging, nearly as long as collab-
orative systems exist, several works have been published, arguing that incon-
sistencies are not always a negative result of collaborative development. They
propose to tolerate inconsistencies at least temporarily for several reasons [74].
Inconsistencies may identify areas of a system, where the developers’ common
understanding has broken down, and where further analysis is necessary. Another
reason for tolerable inconsistencies arise when changes to the system are so large,
that not all dependent changes can be performed at once. Further, fixing incon-
sistencies may be more expensive than their impact and risk costs. Tolerating
inconsistencies requires the knowledge of their existence and careful manage-
ment. Undetected inconsistencies in contrast, should be avoided. Schwanke and
Kaiser [102] propose an adapted programming environment for identifying, track-
ing, tolerating, and periodically resolving inconsistencies. Similarly, Balzer [4]
allows to tolerate inconsistencies in programming environments and database
systems by relaxing consistency constraints and annotating inconsistent parts
with so called pollution markers.

To summarize, existing merge strategies are manifold. Manual merge ap-
proaches provide on the one hand most user control, but require on the other
hand high effort and bear the risk of loosing changes. Automatic merge ap-
proaches in contrast, accelerate merging and reduce manual intervention. How-
ever, this benefit comes at the cost of loss of control. Conflict tolerance reveals
a completely different strategy and allows to temporarily tolerate an inconsis-
tent state of the merged artifact instead of immediately rolling back conflicting
changes. The drawback of conflict tolerance is the need for dedicated editors and
that the attached pollution markers may violate the grammar of highly struc-
tured artifacts like models. However, the variety of existing merge approaches
reflects the pivotal role of the merge process.

4 State-of-the-art Model Versioning Systems

In the previous section, we discussed underlying concepts and existing fundamen-
tal techniques acting as a basis for building a model versioning system. In this
section, we present the current state-of-the-art in model versioning and evaluate
the features of existing solutions stemming from industry and academia.

4.1 Features of Model Versioning Approaches

Before we survey the state-of-the-art model versioning systems, we first discuss
the particular features of model versioning systems that we have investigated in
this survey.

Operation recording versus model differencing. As already introduced in
Section 2, we may distinguish between approaches that obtain operations per-
formed between two versions of a model by applying operation recording or by
model differencing. If an approach applies model differencing, which is, in general,
more flexible concerning the adopted modeling editors, it is substantial to con-
sider the techniques conducted in thematch function for identifying corresponding
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model elements because the quality of the match is crucial for an accurate sub-
sequent operation detection. We may distinguish between match functions that
rely on universally unique IDs (UUIDs), and those applying heuristics based on
the model element’s content (i.e., feature values and contained child elements).

Composite operation detection. The knowledge on applied composite opera-
tions is the prerequisite for considering them in the merge process. Therefore,
it is a distinguished feature whether an operation detection component is also
capable of detecting applications of composite operations besides only identify-
ing atomic operations. It is worth noting that, in case of model differencing, the
state-based a posteriori detection of composite operation applications is highly
challenging as stated in Section 6 of [21].

Adaptability of the operation detection. Obviously, generic operation detection
approaches are, in general, more flexible than language-specific approaches be-
cause it is very likely that several modeling languages are concurrently applied
even within one project and, therefore, should be supported by one model ver-
sioning system. However, neglecting language-specific aspects in the operation
detection phase might lead to a lower quality of the detected set of applied oper-
ations. Therefore, we investigate whether generic operation detection approaches
are adaptable to language-specific aspects. In particular, we consider the adapt-
ability concerning language-specific match rules, as well as the capability to
extend the detectable set of language-specific composite operations.

Detection of conflicts between atomic operations. One key feature of model
versioning systems is, of course, their ability to detect conflicts arising from con-
tradictory operations applied by two developers in parallel. Consequently, we
first investigate whether the approaches under consideration are capable of de-
tecting conflicts between contradictory atomic operations. In this survey, we do
not precisely examine which types of conflicts are supported. We rather investi-
gate whether conflicts among atomic operations are considered at all.

Detection of conflicts caused by composite operations. Besides conflicts caused
by contradicting atomic operations, conflicts might also occur if a composite op-
eration applied by one developer is not applicable anymore, after the concurrent
operations of another developer have been performed. Such a conflict occurs, if
a concurrent operation causes the preconditions of an applied composite opera-
tion to fail. Therefore, we investigate whether the model versioning approaches
adequately consider composite operations in their conflict detection phase.

Detection of inconsistencies. Besides conflicts caused by operations (atomic
operations and composite operations), a conflict might also occur if the merged
model contains errors in terms of the modeling language’s well-formedness and
validation rules. Consequently, we examine model versioning approaches under
consideration whether they perform a validation of the resulting merged model.

Adaptability of the conflict detection. With this feature, we review the adapt-
ability to language-specific aspects of the conflict detection approach. This in-
volves techniques to configure language-specific conflict types that cannot be
detected by analyzing of the applied operations only generically.
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Graphical visualization of conflicts.Developers largely create and modify mod-
els using a graphical diagramming editor. Thus, also the occurred conflicts should
be visualized and resolved graphically on top of the model’s concrete syntax.
Hence, we investigate whether developers have to cope with switching the visu-
alization for understanding and resolving conflicts, or whether they are allowed
to stick with their familiar way of working with their models.

Adaptable resolution strategies. If a model versioning system offers techniques
for resolving certain types of conflicts automatically, the correct resolution strat-
egy is key. However, the correct resolution strategy may depend strongly on the
modeling language, the aim of the models, the project culture, etc. Thus, it is
important to allow users to adapt the offered resolution strategies to their needs.

Flexibility concerning the modeling language. This feature indicates whether
model versioning systems are tailored to a specific modeling language and, there-
fore, are only usable for one modeling language, or whether they are generic and,
therefore, support all modeling languages defined by a common meta-metamodel.

Flexibility concerning the modeling editor. Model versioning systems may be
designed to work only in combination with a specific editor or modeling environ-
ment. This usually applies to approaches using operation recording. In contrast,
model versioning systems may avoid such a dependency and refrain from relying
on specific modeling environments by only operating on the evolved models put
under version control.

4.2 Evaluation Results

In this section, we introduce current state-of-the-art model versioning systems
and evaluate them on the basis of the features discussed in the previous section.
The considered systems and the findings of this survey are summarized in Table 1
and discussed in the following. Please note that the order in which we introduce
the considered systems is alphabetically and has no further meaning.

ADAMS. The “Advanced Artifact Management System” (ADAMS) offers pro-
cess management functionality, supports cooperation among multiple develop-
ers, and provides artifact versioning [19]. ADAMS can be integrated via specific
plug-ins into modeling environments to realize versioning support for models.
In [20], De Lucia et al. present an ADAMS plug-in for ArgoEclipse8 to enable
version support for ArgoUML models. Because artifacts are stored in a propri-
etary ADAMS-specific format to be handled by the central repository, models
have to be converted into that format before they are sent to the server and
translated back to the original format, whenever the model is checked out again.
ADAMS applies state-based model differencing based on UUIDs. Added model
elements, which, as a consequence, have no comparable UUIDs, are matched
using simple heuristics based on the element names to find corresponding ele-
ments concurrently added by another developer. The differences are computed
at the client and sent to the ADAMS server, which finally performs the merge.

8 http://argoeclipse.tigris.org

http://argoeclipse.tigris.org
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Table 1. Evaluation of State-of-the-art Model Versioning Systems

The ADAMS plug-in supports ArgoUML models only. Interestingly, ADAMS
can be customized to a certain extent. For instance, it is possible to customize
the unit of comparison; that is, the smallest unit, for which, if concurrently mod-
ified, a conflict is raised. In [20], it is also mention that the conflict detection
algorithm may be customized for specific model types with user-defined correla-
tion rules, which specify when two operations should be considered as conflicting.
However, it remains unclear, how these rules are exactly specified and how these
rules influence the conflict detection. The implementation promoted in this pub-
lication is not available to further review this interesting customization feature.
Composite operations and state-based conflicts are not supported.

Approach by Alanen and Porres. One of the earliest works on versioning UML
models was published by Alanen and Porres [1], who present metamodel-
independent algorithms for difference calculation, model merging, as well as
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conflict resolution. They identified seven elementary operation types a developer
may perform to modify a model. For calculating the differences between the orig-
inal version and the modified version, a match between model elements is com-
puted based on UUIDs first. Subsequently, the created, deleted, and changed
elements are identified based on thematch computed before; composite operations
are, however, not considered. Alanen and Porres provide an algorithm to compute
a union of two sets of operations, whereas also an automatic merging for values of
ordered features is presented. Furthermore, Alanen and Porres also popose to val-
idate the merged result and envision a semi-automatic resolution process. Their
work serves as a fundamental contribution to the model versioning domain and
influenced many other researchers strongly.

Approach by Cicchetti, Di Ruscio, and Pierantonio. Cicchetti et al. [17] present
an approach to specify and detect language-specific conflicts arising from paral-
lel modifications. Their work does not address the issue of obtaining differences,
but proposes a model-based way of representing them. Howsoever the differences
are computed, they are represented by instantiating an automatically generated
language-specific difference metamodel (cf. Section 3.3). Conflicts are specified
by manually created conflict patterns. Language-specific conflict patterns are
represented in terms of forbidden difference patterns. Thereby, the realization of
a customizable conflict detection component is possible. Although the authors
do not discuss how differences and applications of composite operations are ob-
tained, their approach supports also conflicts caused by composite operations.
The authors also allow to specify reconciliation strategies (i.e., automatic resolu-
tion strategies) to specific conflict patterns. It seems to be a great deal of work to
establish a complete set of conflict patterns and resolution patterns for a specific
language; nevertheless, in the end, a highly customized model versioning system
can be achieved.

CoObRA. The Concurrent Object Replication framework CoObRA developed
by Schneider et al. [101] realizes optimistic versioning for the UML case tool
Fujaba9. CoObRA records the operations performed on the model elements and
stores them in a central repository. Whenever other developers update their local
models, these operations are fetched from this repository and replayed locally.
To identify equal model elements, UUIDs are used. Conflicting operations are
not applied (also the corresponding local change is undone) and finally presented
to the user, who has to resolve these conflicts manually. In [100], the authors also
shortly discuss state-based conflicts (i.e., inconsistencies). CoObRA is capable of
detecting a small subset of such conflicts when the underlying modeling frame-
work rejects the execution of a certain operation. For example, a class cannot be
instantiated anymore if the respective class has been concurrently deleted. How-
ever, for instance, concurrent additions of an equally named class is not reported
as conflict. The authors also shortly mention composite operations in terms of a
set of atomic operations grouped into commands. The operation recording com-
ponent seems to be capable of grouping atomic operations into commands to

9 http://www.fujaba.de

http://www.fujaba.de
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allow for a more comprehensible undo mechanism. In particular, one command
in the modeling editor might cause several atomic operations in the log; if the
user aims to undo the last change, the complete command is undone and not
only the latest atomic change. In their papers, however, no special treatment of
these commands in the merge process is mentioned.

EMF Compare. The open-source model comparison framework EMF Compare
[14], which is part of the Eclipse Modeling Framework Technology project, sup-
ports generic model comparison and model merging. EMF Compare provides
two-way and three-way model comparison algorithms for EMF-based models.
EMF Compare’s model comparison algorithm consists of two phases, a matching
phase and a differencing phase (cf. Section 3.3). EMF Compare provides a merge
service, which is capable of applying difference elements in a difference model to
allow for merging models. It also offers basic conflict detection capabilities and
user interfaces for displaying match and difference models. All these features of
EMF Compare are generic; consequently, they can be applied to any EMF-based
model irrespectively of the modeling language these models conform to. How-
ever, EMF Compare can be extended programmatically for language-specific
matching and differencing. Thus, it is not adaptable in the sense that it can be
easily configured for a specific language, but it constitutes a programmatically
extensible framework for all tasks related to model comparison.

EMFStore. The model repository EMFStore, presented by Koegel et al. [48],
has been initially developed as part of the Unicase10 project and provides a ded-
icated framework for model versioning of EMF models. After a copy of a model
is checked out, all operations applied to this copy are tracked by the model-
ing environment. Once all modifications are done, the recorded operations are
committed to a central repository. For recording the operations, a framework
called Operation Recorder [41] is used, which allows to track any modifications
performed in an EMF-based editor. Also transactions (i.e., a series of dependent
operations) can be tracked and grouped accordingly. Having two lists of the
recorded operations, in particular, the list of uncommitted local operations and
the list of new operations on the server since the last update, the relationships
the requires relationship and the conflicts relationship are established among
the operations. The former relationship expresses dependencies between opera-
tions, the later indicates contradicting modifications. As the exact calculation
of these relationships requires expensive computations, heuristics are applied
to obtain an approximation for setting up those relationships. The conflict de-
tection component classifies two operations as conflicting, if the same attribute
or the same reference is modified. Furthermore, the authors introduce levels of
severity to classify conflicts. They distinguish between hard conflicts and soft
conflicts referring to the amount of user support necessary for their resolution.
Whereas hard conflicts do not allow including both conflicting operations within
the merged model, for soft conflicts this is possible (with the danger of obtaining

10 http://www.unicase.org

http://www.unicase.org
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an inconsistent model). Summarizing, EMFStore is completely operation-based;
that is, the actual model states are never considered for detecting conflicts. This
also entails that a removed and subsequently re-added model element is treated
as a new model element so that all concurrent operations to the previously re-
moved element are reported as conflict. Composite operations can be recorded
and saved accordingly. In the conflict detection, however, composite operations
are not specifically treated. If an atomic change within a composite operation
conflicts with another change, the complete transaction is indeed marked as
conflicting; the intentions behind composite operations, as well as potentially
violated preconditions of composite operations are not specifically considered.

Approach by Gerth et al. Gerth et al. [35] propose a conflict detection approach
specifically tailored to the business process modeling language (BPMN) [83]. To
identify the differences between two process models (cf. [54]), in a first step, a
mapping between corresponding elements across two versions of a process model
is computed based on UUIDs which are attached to each element. In the next
step, for each element that has no corresponding counterpart in the opposite
version, a operation is created representing the addition or deletion. The result-
ing operations are specific to the type of the added or deleted element (e.g.,
InsertAction or DeleteFragment). Finally, this list of operations is hierarchically
structured according to the fragment hierarchy of the process model in order
to group those atomic operations into so-called compound operations. Conse-
quently, these compound changes group several atomic operations into composite
additions or deletions. Having identified all differences in terms of operations be-
tween two process models, syntactic, as well as semantic conflicts among those
concurrent operations can be identified using a term formalization of process
models. According to their definitions, a syntactic conflict occurs if an opera-
tion is not applicable after another operation has been performed. A semantic
conflict is at hand whenever two operations modify the same elements so that
the process models are not “trace equivalent”; that is, all possible traces of a
process model are not exactly equal. Obviously, rich knowledge on the opera-
tional semantics of process models has to be encoded in the conflict detection to
be able to reveal semantic conflicts. Although the authors presented an efficient
way of detecting such conflicts, no possibility to adapt the operation detection
and conflict detection mechanisms to other languages is foreseen.

Approach by Mehra, Grundy, and Hosking. The publication by Mehra et al. [65]
mainly focuses on the graphical visualization of differences between versions of
a diagram. Therefore, they provide a plug-in for the meta-CASE tool Pounamu,
a tool for the specification and generation of multi-view design editors. The di-
agrams created with this tool are serialized in XMI and are converted into an
object graph for comparison. In their proposed comparison algorithm, the dif-
ferences are obtained by applying a state-based model differencing algorithm,
which uses UUIDs to map corresponding model elements. The obtained differ-
ences are translated to Pounamu editing events, which are events corresponding
to the actions performed by users within the modeling environment. Differences
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cover not only modifications performed on the model, but also modifications per-
formed on the graphical visualization. The differences between various versions
are visualized in the concrete syntax so that developers may directly accept or
reject modifications on top of the graphical representation developers are famil-
iar with. In their works, also conflict detection facilities are shortly mentioned,
however, not discussed in detail.

Approach by Oda and Saeki. Oda and Saeki [87] propose to also generate version-
ing features along with the modeling editor generated from a specified metamodel
as known from metamodeling tools. The generated versioning-aware modeling
editors are capable of recording all operations applied by the users. In particu-
lar, the generated tool records operations to the logical model (i.e., the abstract
syntax tree of a model), as well as the diagram’s layout information (i.e., the con-
crete syntax). Besides recording, the generated modeling tool includes check in,
check out, and update operations to interact with a central model repository. It
is worth noting that only the change sequences are sent to the repository and not
the complete model state. In case a model has been concurrently modified and,
therefore, needs to be merged, conflicts are identified by re-applying all recorded
operations to the common ancestor version. Before each change is performed
in the course of merging, its precondition is checked. In particular, the precon-
dition of each change is that the modified model element must exist. Thereby,
delete-update conflicts can be identified. Update-update conflicts, however, re-
main unrevealed and, consequently, the values in the resulting merged model
might depend on the order in which the recorded updates are applied because
one update might overwrite another previous update. Composite operations and
their specific preconditions are not particularly regarded while merging. The
approach also does not enable to specify additional language-specific conflicts.
Although metamodel violations can, in general, be checked in their tool, they
are not particularly considered in the merge process. As the versioning tool is
generated from a specific metamodel, the generated tool is language dependent;
the approach in general, however, is independent from the modeling language.
However, the approach obviously forces users to use the generated modeling
editor to be able to use their versioning system.

Odyssey-VCS 2. The version control systemOdyssey-VCS byOliveira et al. [89] is
dedicated to versioning UMLmodels. Operations between two versions of a model
are identifiedby applying state-basedmodel differencing relying onUUIDs for find-
ing correspondingmodel elements.Language-specificheuristics for thematch func-
tions may not be used. Also language-specific composite operations are neglected.
Interestingly, however, for eachproject, so-calledbehavior descriptorsmaybe spec-
ified, which define how eachmodel element should be treated during the versioning
process. Consequently, the conflict detection component ofOdyssey-VCS is adapt-
able, in particular, it may be specified which model elements should be considered
to be atomic. If an atomic element is changed in twodifferentways at the same time,
a conflict is raised. These behavior descriptors (i.e., adaptations) are expressed in
XML configuration files. Thus, Odyssey-VCS is customizable for different projects
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concerning the unit of comparison, as well as whether to apply pessimistic or op-
timistic versioning. Conflicts coming from language-specific operations, as well as
additional language-specific conflicts, however, may not be configured. More re-
cently, Odyssey-VCS 2 [70] has been published, which is capable of processing any
EMF-basedmodels andnot onlyUMLmodels.Avalidation of the resultingmerged
model is not considered.

Approach by Ohst, Welle, and Kelter. Within the proposed merge algorithm, also
Ohst et al. [88] put special emphasis on the visualization of the differences. There-
fore, differences between the model as well as the layout of the diagram are com-
puted by applying a state-based model differencing algorithm relying on UUIDs.
Conflict detection, however, is not discussed in detail; only update-update and
delete-update conflicts are shortly considered. After obtaining the differences, a
preview is provided to the user, which visualizes all modifications, even if they are
conflicting. The preview diagram can also be modified and, therefore, allows users
to resolve conflicts easily using the concrete syntax of a diagram. For indicating
the modifications, the different model versions are shown in a unified document
containing the common parts, the automatically merged parts, as well as the con-
flicts. For distinguishing the differentmodel versions, coloring techniques are used.
In the case of delete-update conflicts, the deleted model element is crossed out and
decorated with a warning symbol to indicate the modification.

IBM Rational Software Architect (RSA). The Eclipse-based modeling environ-
ment RSA 11 is a UML modeling environment built upon the Eclipse Modeling
Framework. Under the surface, it uses an adapted version of EMF Compare for
UML models offering more sophisticated views on the match and difference mod-
els for merging. These views show the differences and conflicts in the graphical
syntax of the models. The differencing and conflict detection capabilities are,
however, equal to those of EMF Compare, besides that RSA additionally runs
a model validation against the merged version and, in case an validation rule is
violated, the invalid parts of the model are graphically indicated.

SMOVER. The semantically-enhanced model versioning system by Reiter et
al. [96], called SMOVER, aims at reducing the number of falsely detected con-
flicts resulting from syntactic variations of semantically equal modeling concepts.
Furthermore, additional conflicts shall be identified by incorporating knowledge
on the modeling language’s semantics. This knowledge is encoded by the means
of model transformations, which rewrite a given model to so-called semantic
views. These semantic views provide a canonical representations of the model,
which makes certain aspects of the modeling language more explicit. Conse-
quently, also potential semantic conflicts might be identified when the semantic
view representations of two concurrently evolved versions are compared. It is
worth noting that the system itself is independent from the modeling language
and language-specific semantic views can be configured to adapt the system to

11 http://www.ibm.com/developerworks/rational/library/05/712 comp/
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a specific modeling language. The differences are identified using a state-based
model differencing algorithm based on UUIDs. Therefore, the system is indepen-
dent of the used modeling editor. However, this differencing can not be adapted
to specific modeling languages and only works in a generic manner. SMOVER
also only addresses detecting conflicts regarding the semantics of a model and
does not cover syntactic operation-based conflicts.

Approach by Westfechtel. Recently, Westfechtel [117] presented a formal ap-
proach for merging EMF models. Although no implementation of his work is
available, it provides well-defined conflict rules based on set-theoretical conflict
definitions. In [117], Westfechtel does not address the issue of identifying dif-
ferences between model versions and rather focuses on conflict detection only
and assumes the presence of change-based differences that can be obtained by,
for instance, EMF Compare. Westfechtel’s approach is directly tailored to EMF
models and defines context-free merge rules and context-sensitive merge rules.
Context-free merge rules determine “the set of objects that should be included
into the merged versions and consider each feature of each object without taking
the context [i.e., relationships to other objects] into account“ [117]. The presented
algorithm also supports merging of ordered features and specifies when to raise
update-update conflicts. The conflict types defined by Westfechtel have been
discussed in Section 3.4 already. Besides these operation-based conflicts, West-
fechtel also addresses conflicts arising from the well-formedness rules of EMF.
However, no techniques that enable further language-specific constraints are dis-
cussed. Moreover, he only addresses conflicts among atomic operations and is
not adaptable to language-specific knowledge.

4.3 Summary

After surveying existing model versioning approaches, we may conclude that
the predominant strategy is to apply state-based model differencing and generic
model versioning. The majority of model differencing approaches rely on UUIDs
for matching. However, only ADAMS combines UUIDs and (very simple) content-
based heuristics. The detection of applications of composite operations is only
supported by approaches applying operation recording. The only approach that
is capable of detecting composite operations by using a state-based model com-
parison approach is Gerth et al.; however, their approach is specifically tailored to
process models and the supported composite operations are limited to compound
additions and deletions. Consequently, none of the surveyed generic approaches
is capable of detecting applications of more complex composite operations having
well-defined pre- and postconditions without directly recording their application
in the editor. Furthermore, none of the approaches are adaptable in terms of ad-
ditional match rules or composite operation specifications. EMF Compare and
EMFStore foresee at least an interface to be implemented in order to extend
the set of detectable applications of composite operations. In EMF Compare,
however, the detection algorithm has to be provided by an own implementation.
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In EMFStore, additional commands may be plugged into the modeling editor
programmatically for enabling EMFStore to record them.

Obviously, all model versioning approaches provide detection capabilities for
conflicts caused by two concurrent atomic operations. Unfortunately, most of
them lack a detailed definition or at least a publicly available implementation.
Therefore, we could not evaluate which types of conflicts can actually be de-
tected by the respective approaches. In this regard, we may highlight Alanen
and Porres, EMF Compare, EMFStore, Gerth et al., and Westfechtel. These ei-
ther clearly specify their conflict detection rules in their publications or publish
their detection capabilities in terms of a publicly available implementation.

Only Cicchetti et al. and Gerth et al. truly consider composite operations in
their conflict detection components. However, in the case of Cicchetti et al., all
potentially occurring conflict patterns in the context of composite operations
have to specified manually. It is not possible to derive automatically the con-
flict detection capabilities regarding composite operations from the specifications
of such operations. The approach by Gerth et al. is limited to specific model-
ing language and supports only rather simple composite operations. EMFStore
partially respects composite operations: if a conflict between two atomic opera-
tions is revealed and one atomic operation is part of a composite operation, the
complete composite operation is reverted. However, additional preconditions of
composite operations are not considered. None of the surveyed approaches aims
at respecting the original intention behind the composite operation; that is, in-
corporating concurrently changed or added elements in the re-application of the
composite operation when creating the merged version.

Several of the surveyed approaches take inconsistent merge results into ac-
count. CoObRA is capable of detecting at least a subset of all potentially occur-
ring violations of the modeling language’s rules. Westfechtel only addresses the
basic well-formedness rules coming from EMF, such as spanning containment
tree. The approaches proposed by Alanen and Porres, EMFStore, Gerth et al.,
Oda and Saeki, and the RSA perform a full validation after merging.

Most of the proposed conflict detection approaches are not adaptable. ADAMS
and Odyssey-VCS provide some basic configuration possibilities such as chang-
ing the unit of comparison. EMF Compare can be programmatically extended to
attach additional conflict detection implementations. Only Cicchetti et al. and
SMOVER allow to plug in language-specific artifacts to enable revealing addi-
tional conflicts. However, in the approach by Cicchetti et al., the conflict patterns
have to be manually created in terms of object models, which seems to be a great
deal of work requiring deep understanding of the underlying metamodel. Due to
the lack of a public implementation, it is hard to evaluate the ease of use and the
scalability of this approach. SMOVER allows to provide a mapping of a model
to a semantic view in order to enable the detection of semantically equivalent or
contradicting parts of a model. The comparison and conflict detection algorithm
that is applied to the semantic views, however, is not adaptable. Consequently,
SMOVER only aims to detect a very specific subset of conflicts only.
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Fig. 7. Model Versioning Example

Conflict resolution has not gained much attention among existing approaches
yet. Only four of the 15 surveyed approaches, namely CoObRA, Mehra et al.,
Ohst et al., and the RSA provide dedicated views for visualizing conflicts ad-
equately to help developers to understand and resolve conflicts. Most notably
concerning conflict resolution is the approach by Cicchetti et al., which allows
to specify dedicated conflict resolution strategies for certain conflict patterns.

5 An Introduction to AMOR

In this section, we introduce the adaptable model versioning system AMOR12, which
has been jointly developed at the ViennaUniversity of Technology13, the Johannes
Kepler University Linz14, and SparxSystems15. Therefore, we first present amodel
versioning scenario in Section 5.1 serving as running example throughout the re-
mainder of this section. Next, we discuss the goals of AMOR and give an overview
of the AMORmerge process in Section 5.2. Subsequently, we describe each step in
the merge process in more detail in the sections 5.3 to 5.6.

5.1 Running Example

Consider the following example. The modelers Harry and Sally work together on
a project, where an event managing system has to be developed. Both modelers
check out the latest version of the common repository (cf. Original Version Vo in
Fig. 7) and start with their changes. Harry renames the class Person to Customer
and adds an association buys from Customer to Ticket. He further renames the
operation getInfo() in class Ticket to getTInfo(). In Harry’s opinion exhibitions do

12 http://www.modelversioning.org
13 http://www.tuwien.ac.at
14 http://www.jku.at
15 http://www.sparxsystems.eu

http://www.modelversioning.org
http://www.tuwien.ac.at
http://www.jku.at
http://www.sparxsystems.eu
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not have an artist. Thus he deletes the property artist from the class Exhibition.
Afterwards, he checks in his revised version resulting in Harry’s Version in Fig. 7.
In the meanwhile, unaware of Harry’s changes, Sally performs the following
changes. She renames both operations in the class Ticket. The operation getInfo()
is renamed to getTicketInfo() and the operation buy() is renamed to purchase().
She identifies the property artist, which is common to all subclasses of the class
Event, as undesirable redundancy, and performs the refactoring Pull Up Field to
shift the property to the superclass. Finally, she deletes the isolated class Person
and commits her revised version to the common repository. However, the commit
fails, as her changes partly contradict Harry’s changes.

In the following, we discuss the technical details how the model versioning
system AMOR detects and reports the occurred conflicts and accompany Sally
while she is merging her changes with Harry’s changes.

5.2 AMOR at a Glance

The main goal of AMOR is to combine the advantages of both generic and
language-specific model versioning by providing a generic, yet adaptable model
versioning framework. The generic framework offers versioning support for all
modeling languages conforming to a common meta-metamodel out of the box
and enables users to enhance the quality of the versioning capabilities by adapt-
ing the framework to specific modeling languages using well-defined adaptation
points. Thereby, developers are empowered to balance flexibly between reason-
able adaptation efforts and the required level for versioning support. For realiz-
ing this goal, we aligned the development of each component according to the
following design principles.

Flexibility concerning modeling language and editor. In traditional, code-centric
versioning, mainly language-independent systems that do not pose any restric-
tions concerning the used editor gained significant adoption in practice. Thus,
we may draw the conclusion that a versioning system that only supports a re-
stricted set of languages and that has an inherent dependency on the used editor
might not find broad adoption in practice. Also, when taking into consideration
that domain-specific modeling languages are becoming more and more popular,
language-specific systems seem to be an unfavorable choice.

Therefore,AMOR is designed to provide generic versioning support irrespective
of the usedmodeling languages andmodeling editors. Generic versioning is accom-
plished by using the reflective interfaces of the Eclipse Modeling Framework [107]
(EMF) serving as reference implementation of OMG’s MOF standard [77]
(cf. Section 3.1). Thereby, all modeling languages can be handled immediately for
which an EMF-based metamodel is available.

AMOR is also independent of the used modeling editor and does not rely on
specific features on the editor side. Therefore, we may not apply editor-specific
operation recording to obtain the applied operations. Instead, AMOR works only
with the states of a model before and after it has been changed and derives the
applied operations using state-based model differencing.
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Easy adaptation by users. Generic versioning systems are very flexible, but they
lack in precision in comparison to language-specific versioning systems because
no language-specific knowledge is considered. Therefore, AMOR is adaptable
with language-specific knowledge whenever this is needed. Some existing model
versioning approaches are adaptable in terms of programming interfaces. Hence,
it is possible to implement specific behavior to adapt the system according to
their needs. Especially with domain-specific modeling languages, a plethora of
different modeling languages exists, which often are not even publicly available.
Bearing that in mind, it is hardly possible for versioning system vendors to
pre-specify the required adaptations to incorporate language-specific knowledge
for all existing modeling languages. Thus, users of the versioning system should
be enabled to create and maintain those adaptation artifacts by themselves.
This, however, entails that these adaptation artifacts do not require deep knowl-
edge on the implementation of the versioning system and programming skills.
Therefore, AMOR is designed to be adapted by providing descriptive adapta-
tion artifacts and uses, as far as possible, well-known languages to specify the
required language-specific knowledge. No programming effort is necessary to en-
hance AMOR’s versioning capabilities with respect to language-specific aspects.
Besides aiming at the highest possible adaptability, the ease of adaptation is one
major goal of AMOR.

AMOR Merge Process. The merge process of AMOR is depicted in Fig. 8.
This figure presents a more fine-grained view on the same merge process that is
depicted in Fig. 1. Furthermore, we now illustrate explicitly the artifacts that
are exchanged between the steps of this process. The input of this merge process
are three models: the common original model Vo and two concurrently changed
models, Vr1 and Vr2.

The first phase of the merge process concerns the operation detection. The
goal of this phase of the process is to detect precisely which operations have been
applied in between Vo and Vr1, as well as between Vo and Vr2. As argued above,
AMOR aims to be independent from the modeling editor. Hence, a state-based
model comparison is performed, which is carried out in three steps in AMOR.
First, the revised models are each matched with the common original model Vo.
Therefrom, two match models are obtained, which describe the correspondences
among the original model and the revised models. Next, the applied atomic
operations are computed. Besides these atomic operations, AMOR also provides
techniques for detecting composite operations, such as model refactorings [109],
among the applied atomic operations. The output of this phase of the process
are two difference models DVo,Vr1

and DVo,Vr2
, which describe all operations

performed in the concurrent modifications. The operation detection is discussed
more precisely in Section 5.3.

Based on the two difference models computed in the previous phase of the
process, the next phase of the process aims to detect conflicts among the con-
currently applied operations. Thereby not only atomic operation conflicts (e.g.,
delete-update conflicts), but also conflicts among composite operations are re-
vealed in the respective steps of this phase. All detected conflicts are saved into
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a conflict model called Cm1,m2
in Fig. 8. More information on how conflicts are

detetected in AMOR is provided in Section 5.4.
The computed differences and detected conflicts serve then as input for the

conflict resolution phase. AMOR’s conflict resolution process may be adapted and
provides two interchangeable strategies. Both strategies combine the strength of
automatic merging and inconsistency toleration and calculate a tentative merge,
which is discussed in Section 5.5. The tentative merge acts as base for either col-
laborative conflict resolution or for recommendation supported conflict resolution,
as elaborated in Section 5.6.

5.3 Operation Detection

The first phase of the merge process is the operation detection with the goal to
detect precisely which operations have been applied in between Vo and Vr1, as
well as Vo and Vr2. This phase consists of three steps, model matching, atomic
operation detection, and composite operation detection (cf. Fig. 8), which are
discussed in the following.

Model Matching. AMOR aims to be independent from the modeling editor.
Hence, state-based model differencing is applied. The first step of model dif-
ferencing is model matching, which computes the corresponding model elements
between the original model Vo and the revised models Vr1 and Vr2. The computed
correspondences are saved in two distinct match models MVo,Vr1

and MVo,Vr2
.

Therein, one correspondence connects a model element in the original model Vo

with its corresponding revised model in Vr1 or Vr2, respectively.

Computing correspondences between model elements. Even if UUID-based match-
ing is probably the most efficient and straightforward technique for obtaining the
actual model changes, there are some drawbacks of this approach. In particular,
if model elements loose their UUID, they cannot be matched anymore. Unfor-
tunately, such a scenario is happening quite frequently; not only because the
developer deletes and re-creates a similar model element subsequently, but also
because of improperly implemented copy & paste or move actions in certain
modeling editors causing the model elements’ UUIDs to be lost (e.g., in the
tree-based Ecore editor).

To address these drawbacks, we apply a two-step matching process: first, a
UUID-based matching is applied to obtain a base match, which is improved sub-
sequently by applying user-specified language-specific match rules to the pairs of
model elements that could not be matched based on their UUIDs. Thereby, the
advantages of UUID-based matching is retained and its drawbacks are reduced
significantly. As the comparatively slow rule-based matching is kept at a mini-
mum with this approach, the additional execution time of the model matching
phase should still be reasonable.

Representing correspondences. Having obtained the model element correspon-
dences between the original model Vo and a revised model, called Vr to refer
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Fig. 9. Representing Model Correspondences

to both Vr1 and Vr2, they have to be represented in some way for their fur-
ther usage. Therefore, we introduce the match metamodel depicted in Fig. 9a.
Please note that this match metamodel is largely equivalent to the one used in
EMF Compare [14]. Basically, a match model is a so-called weaving model [31],
which adds additional information to two existing models by introducing new
model elements that refer to the model elements in the original and the revised
model. In particular, a match model comprises an instance of the class Match-
Model, which contains, for each pair of matching model elements, an instance of
the class Match. This instance refers to the corresponding model element in the
original version through the reference original and the revised version through
the reference revised. If a model element, either in the original model and in
the revised model, could not be matched, an instance of the class Unmatch is
created, which refers to the unmatched model element in the respective model.
The attribute side indicates whether the unmatched model element resides in
the original or the revised model.

A match model groups the model elements in Vo and Vr into three distinct
sets (cf. Fig. 9b). The first set constitutes all model elements that are contained
in the original version, but not in the revised version (i.e., Vo\Vr). The second
set contains all model elements that are contained in both models (i.e., Vo ∩ Vr)
and the third set comprises all model elements that are contained in the revised
model but not in the original model (i.e., Vr\Vo). In EMF, attribute and reference
values of a model element are possessed by the respective model element. Thus,
they are considered as being a property of the model element rather than being
treated as its own entity. Consequently, in the match model only corresponding
model elements are linked by Match instances.

Atomic Operation Detection. Having obtained the correspondences among
model elements in an original model Vo and a revised model Vr, we may now pro-
ceed with deriving the atomic operations that have been applied by the user to
Vo in order to create Vr. As already mentioned, match models only indicate the
corresponding model elements and those model elements that only exist either in
Vo or in Vr. Corresponding model elements, however, might not be entirely equal
as their attribute values or reference value might have been modified. Therefore,
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we further derive a diff model from the match model to also represent operations
affecting attribute values and reference values before we may search for conflicts
among concurrently performed operations. To put the detection of atomic opera-
tions in the context of a model versioning scenario, recall that we have two mod-
ifications, m1 and m2, and one match model comprising the correspondences for
each side,MVo,Vr1

andMVo,Vr2
. Therefore, we also have two diff models (cf. Fig. 8).

In particular,DVo,Vr1
, which is computed fromMVo,Vr1

, represents the operations
applied in m1 and DVo,Vr2

, derived from MVo,Vr2
, represents the operations ap-

plied in m2.

Computing operations from corresponding model elements. Starting from a match
model, the detection of applied operations is largely straightforward. In partic-
ular, the atomic operation detection component first iterates through all Match
instances of this match model and performs a fine-grained feature-wise compar-
ison of the two corresponding model elements. Thereby, the feature values of
each feature of both corresponding model elements are checked for equality. If a
feature value of one model element differs from the respective value of the cor-
responding model element, the respective feature of the model element has been
subjected to a modification in the revision. After all Match instances have been
processed, we proceed with iterating through all Unmatch instances. Depending
on its value at the attribute side, we either encounter an addition of a new model
element if the side is Revised, or a deletion if the side is Original.

Representing operations. To represent the applied operations, we introduce a
difference model, which is depicted in Fig. 10. Due to space limitations, we
only present the kernel of the difference metamodel in this paper, which does
not reflect more advanced modeling features of EMF models, such as ordered
features. For a complete specification of differences between EMF models, we
kindly refer to Section 5.2.2 in [56]. In this kernel difference model, we distinguish
between two types of operations: FeatureOperation, which modifies the value of
a feature, and ObjectOperation, which represent the insertion or deletion of a
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model element. Please note that model elements are referred to as objects in this
metamodel for the sake of generalization.

If the respective features are multi-valued, values can be inserted or deleted
from the feature. For expressing such operations, we use two concrete subclasses
of FeatureOperation in the difference metamodel, namely InsertFeatureValue and
DeleteFeatureValue. If feature values are single-valued, it is not possible to add
or delete feature values. Instead, they only can be updated, whereas the old
value is overwritten. Therefore, we introduce the operation type FeatureUpdate.
If the respective feature is defined to be a containment feature, it may contain
other model elements. In this case, model elements may also be moved from one
container to another container, whereas the identity of the moved model element
is retained. Such an operation is represented by the class Move, which links the
deletion of it in the source feature and the insertion of it in the target feature.
All types of feature operations refer to the object that has been changed using
the reference affectedObject, to the affected feature in the modeling language’s
metamodel (reference affectedFeature), and to the inserted or deleted feature
value (reference value). In case of a reference, this value is a model element and
in case of an attribute, the value is a simple data type such as String, or Boolean,
etc. However, we omitted to distinguish explicitly between model elements and
simply typed data values in Fig. 10 for the sake of readability. It is worth noting
that, in case of a InsertFeatureValue, the reference value refers to the inserted
value in the revised model (Vr1 or Vr2) and, in case of a DeleteFeatureValue, it
refers to the deleted value in the original model Vo.

Besides modifying feature values in existing objects, users may also insert and
delete entire objects (i.e., model elements). Therefore, the metamodel contains
the two classes InsertObject and DeleteObject, which are subclasses of Object-
Operation. Except for root objects, objects are always contained by another
object through a containment feature. Consequently, inserting and removing an
object is realized by a feature operation affecting the respective containment
feature. Thus, object operations are further specified by a reference to the re-
spective instance of a FeatureOperation, which gives information on the inserted
or deleted object (reference value), the container of the inserted or removed ob-
ject (reference affectedObject), and the containment feature through which the
object is or originally was contained (reference affectedFeature). Certainly, as
defined by the invariants in Fig. 10, a valid instance of InsertObject must refer
to an instance of InsertFeatureValue and a valid instance of DeleteObject must
refer to an instance of DeleteFeatureValue, whereas the affected feature has to
be a containment feature.

Example of a difference model. To exemplify the difference metamodel, a con-
crete instance is depicted in terms of an object diagram in Fig. 11, which rep-
resents a subset of the operations applied by Sally in the example introduced
in Section 5.1. Please note that we depicted the object diagrams representing
the original and the revised model in gray for the sake of readability. This figure
depicts an excerpt of the original UML class diagram Vo and Sally’s revision Vr2,
the respective difference model DVo,Vr2

, as well as an excerpt of the metamodel
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for UML class diagrams. Sally moved the attribute artist from the class Concert
to its superclass Event and deleted the equally named attribute artist from the
class Exhibition. As a result, the difference model contains five operations. First
of all, there is an instance of Move, which represents the shift of the attribute
artist. As a move is realized by a deletion and a subsequent insertion of a feature
value, the instance of Move refers to an instance of DeleteFeatureValue via the
reference source and an instance of InsertFeatureValue with the reference target.
Besides, Sally deleted the second attribute artist from the class Exhibition, which
is represented by an instance of DeleteObject. This deletion is realized by another
instance of DeleteFeatureValue referring to the deleted value (i.e., the deleted at-
tribute artist), the affected object (i.e., the containing class Exhibition), as well
as the UML metamodel feature the deleted value originally resided in (i.e., the
feature ownedAttributes).

Composite Operation Detection. Having represented the applied atomic
operations, we proceed with detecting applications of composite operations.
Composite operations, such as model refactorings [109], pose specific pre- and
postconditions and consist of a set of atomic operations that are executed in a
transaction in order to fulfill one common goal. Thus, the knowledge on applica-
tions of composite operations between two versions of a model significantly helps
in many scenarios to better respect the original intention of a developer, as well
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as to reveal additional issues when merging two concurrent modifications [22,68].
Such an additional merge issue may occur, if concurrent modifications invalidate
the preconditions of a composite operation or when concurrent modifications in-
fluence the execution of the composite operation.

Composite operations are specific to a certain modeling language. Thus, users
should be empowered to pre-specify them for their employed modeling languages
on their own in order to adapt the generic operation detection step of AMOR.
Once a composite operation is specified and configured in AMOR, applications of
composite operations, as well as conflicts concerning composite operations can be
detected. However, specifying composite operations, or more generally, endoge-
nous model transformation, is a challenging task, because users have to be capa-
ble of applying dedicated model transformation languages and have to be familiar
with the metamodels of the models to be transformed. To ease the specification
of such transformations, we make use of a novel approach called model trans-
formation by demonstration (MTBD) [13,56,108], which is introduced briefly in
the following.

Specifying composite operations. The general idea behind MTBD is that users
apply or “demonstrate” the transformation to an example model once and, from
this demonstration, as well as from the provided example model, the generic
model transformation is derived semi-automatically. To realize MTBD, we de-
veloped the following specification process.

In a first step, the user creates the initial model in a familiar modeling en-
vironment. This initial model contains all model elements that are required in
order to apply the composite operation. Next, each element of the initial model
is annotated automatically with an ID, and a so-called working model (i.e., a
copy of the initial model for demonstrating the composite operation by applying
its atomic operations) is created. Subsequently, the user performs the complete
composite operation on the working model by applying all necessary atomic op-
erations. The output of this step is the revised model, which is together with
the initial model the input for the following steps of the operation specification
process. Due to the unique IDs, which preserve the relationship among model
elements in the initial model and their corresponding model elements in the re-
vised model, the atomic operations of the composite operation may be obtained
precisely using our model comparison approach presented above. The obtained
operations are saved in a difference model. Subsequently, an initial version of
pre- and postconditions of the composite operation is inferred by analyzing the
initial model and the revised model, respectively. The automatically generated
conditions from the example might not always entirely express the intended pre-
and postconditions of the composite operation. They only act as a basis for ac-
celerating the operation specification process and may be refined by the user.
In particular, parts of the conditions may be activated, deactivated, or modified
within a dedicated environment. If needed, additional conditions may be added.
After the configuration of the conditions, an operation specification is generated,
which is a model-based representation of the composite operation consisting of
the diff model and the revised pre- and postconditions, as well as the initial and
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•Class_0 [Event]

•Class_1 [Concert]

• generalisations->includes(Generalisation_0)

• ownedAttributes->includes(Property_0)

•Generalisation_0

• general = Class_0

• Property_0 [artist]

•Class_2 [Exhibition]

• generalisations->includes(Generalisation_1)

• ownedAttributes->includes(Property_1)

• Generalisation_1

• general = Class_0

• Property_1 [artist]

• name = Property_0.name

Excerpt of the Preconditions Excerpt of the Postconditions

•Class_0 [Event]

• Property_0 [artist]

•Class_1 [Concert]

• generalisations->includes(Generalisation_0)

• ownedAttributes->includes(Property_0)

•Generalisation_0

• general = Class_0

•Class_2 [Exhibition]

• generalisations->includes(Generalisation_1)

•Generalisation_1

• general = Class_0

Legend:         … iteration

Fig. 12. Excerpt of the Pre- and Postconditions of “Pull Up Field”

revised example model. Thus, this model contains all necessary information for
executing the composite operation, as well as for detecting applications of it. For
more information on the specification process, and how these specifications can
be executed automatically to arbitrary models, we kindly refer to [13,56,108].

Example for specifying “Pull Up Field”. To provide a better understanding of
how composite operations can be specified, we discuss the specification process
for developing the composite operation “Pull Up Field”. In the first step, the user
creates the initial model, which contains all model elements that are necessary
to apply the composite operation. The resulting initial model is equivalent to the
original model depicted in Fig. 11. Now, a copy of this initial model is created
automatically, to which the user now applies all atomic operations, which leads
to the revised model again shown in Fig. 11. From these two models, we now
compute the applied atomic operations using the previously discussed model
comparison resulting in the difference model of our previous example presented
in Fig. 11. Besides for computing the atomic operations, these two models also act
as input for the automatic derivation of the pre- and postconditions in the form
of OCL expressions [84], which may now be fine-tuned by the user. The resulting
conditions, after the refinement by the user, are illustrated in Fig. 12. The pre-
and postconditions are structured according to the model elements in the initial
and revised model, respectively, and my refer to each other using a model element
identifier (e.g., Class 0), which is comparable to a variable. The user only has to
refine the precondition name = Property 0.name in order to restrict the names
of the properties that are pulled up to the common superclass to be equal.
In other words, the property Property 1, which resides in the second subclass
Class 2 must have the same name as the other property Property 0, which is
contained by the class Class 1, for acting as a valid property in this composite
operation. Without satisfying this condition, the execution of the refactoring
would lead to a change of the semantics of the model, because Class 2 would
inherit a differently named property from its superclass after the refactoring has
been applied. Besides fine-tuning this precondition, the user may also attach
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iterations, which has been done for Property 0, Class 1, and Property 1. With
these iterations, the user specifies that all atomic operations that have been
applied to these model elements in the demonstration have to be repeated for
all model elements that match the respective preconditions when applied to an
arbitrary model.

Detecting composite operations. After the difference models are computed, we
may proceed with the next step in the merge process, which aims at detecting
applications of composite operations (cf. Fig. 8). The composite operation de-
tection step relies on a set of composite operation specification. As mentioned
above, an operation specification contains a description of the atomic opera-
tions applied during the demonstration of the composite operation, which can
be thought of as the difference pattern of the composite operation. Besides this
difference pattern, an operation specification also contains the composite oper-
ation’s pre- and postconditions.

For detecting applications of composite operations, it is searched for occur-
rences of the composite operations’ difference pattern in each of the difference
models DVo,Vr1

andDVo,Vr2
. If a difference pattern could be found, the respective

parts of the original model Vo are evaluated concerning the composite operation’s
preconditions. If also these preconditions are fulfilled in the original model, also
the postconditions of the composite operation are verified for the corresponding
model elements in the respective revised model. In case also the postconditions
can be evaluated positively in the revised model, an application of the respective
composite operation is reported and annotated in the difference model. For more
information on how composite operations are detected in AMOR, we kindly refer
to Section 5.3 in [56].

5.4 Conflict Detection

Having obtained the operations that have been applied concurrently to the com-
mon original model, we may now proceed with detecting conflicts among them.
As discussed in Section 3.4, a conflict occurs if two operations do not commute
or if one operation is not applicable anymore after the other operation has been
performed. The conflict detection in AMOR takes two difference models, DVo,Vr1

and DVo,Vr2
, as input and is realized by two subsequent steps: the atomic oper-

ation conflict detection and the composite operation conflict detection.

Atomic operation conflict detection. The goal of the first step, the atomic opera-
tion conflict detection, is to find concurrent atomic operations that interfere with
each other. This step is completely generic and does not demand for language-
specific information. Also composite operations remain unconsidered in this step;
however, the atomic operations that realize the composite operation applications
are still included in the conflict detection mechanisms.

We define the types of atomic operation conflicts by so-called generic conflict
patterns. These conflict patterns serve, on the one hand, as a clear specifica-
tion of the existing conflict types, and, on the other hand, they can be used for
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fo1 : FeatureOperation f : Feature

{upperBound = 1 and 

fo1.value <> fo2.value}

o : Object

affected

Object

affected

Object

feature

feature

context UpdateUpdate 

inv: self.update1.affectedObject = self.update2.affectedObject and

self.update1.feature = self.update2.feature and

(self.update1.feature.upperBound = 1 and

self.update1.value <> self.update2.value)

update1

update2

fo2 : FeatureOperation

uu : UpdateUpdate

Fig. 13. Update-update Conflict Pattern

detecting conflicts. More precisely, if such a conflict pattern matches with two
operations in the difference models, DVo,Vr1

and DVo,Vr2
, a conflict of the respec-

tive type occurred. However, for the sake of efficiency, we refrain from checking
the complete crossproduct of all operation combinations among all operations of
both difference models. In contrast, both difference models are translated in a
first step into an optimized view grouping all operations according to their type
into potentially conflicting combinations. Secondly, all combinations are filtered
out if they do not spatially affect overlapping parts of the original model. Finally,
all remaining combinations are checked in detail by evaluating the conflict rules.

An example for such a conflict pattern is provided in Fig. 13, which defines
an update-update conflict in terms of an object diagram, as well as an OCL con-
straint. As already mentioned, if a single-valued feature is concurrently modified
in EMF models a conflict occurs, because the merged model may not contain
both values and one value overwrites the other; thus, two updates of the same
feature value do not commute. Therefore, as illustrated in the conflict pattern
in Fig. 13, an update-update conflict is raised, if an object o has been concur-
rently updated at the same feature f by two instances of FeatureOperation, fo1
and fo2, unless both operations set the same new value such that fo1.value =
fo2.value. In our running example presented in Section 5.1, we encounter such
a conflict. Harry and Sally both renamed the UML operation getInfo(). Since
the name of UML operations is a single-valued feature and the new values for
the name of the UML operation are different (getTInfo() vs. getTicketInfo()), an
update-update conflict is raised.

All detected conflicts are saved into a conflict model called Cm1,m2
, which is

a model-based description of the occurred conflicts. Such a description provides
the necessary information concerning the type of the conflict and the involved
atomic operations. The complete set of all conflict patterns, as well as the conflict
metamodel is discussed more profoundly in Section 6.1 of [56].

Composite operation conflict detection. The next step in the conflict detection
phase is the composite operation conflict detection, which takes the knowledge on
the ingredients of composite operations, such as preconditions, into account for
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revealing additional conflicts. In particular, this step aims to detect scenarios in
which modifications of one developer invalidate the preconditions of a composite
operation that has been applied in a parallel revision by another developer.

To detect composite operation conflicts, each application of a composite op-
eration in one revision (let us assume this is Vr1) is separately checked at the
respective opposite revision Vr2. Therefore, we first identify the model elements
of the opposite revision Vr2 that correspond to the model elements in Vo to
which the composite operation has been applied originally. Next, we evaluated
the preconditions of the composite operation with the identified model elements
of Vr2. If the preconditions are not fulfilled, the composite operation cannot be
applied after the concurrent operations have been performed; thus, a conflict is
raised and added to the conflict model Cm1,m2

.
Such a conflict is illustrated in the running example presented in Section 5.1.

Sally applied the refactoring “Pull Up Field” by moving the property artist from
the classes Concert and Exhibition to their common superclass Event. As discussed
in Section 5.3, a precondition of this composite operation is that each subclass
must contain a property having the same name as the property that is moved to
the common superclass. However, in the concurrent revision, Harry deleted the
property artist and added another subclass named SoccerMatch without having
a property named artist. Thus, the composite operation is not applicable to
the revised version of Harry, because no valid match could be found for the
preconditions of the refactoring. Consequently, a composite operation conflict,
which is also referred to as composite operation contract violation, is added to
the conflict model Cm1,m2

.

5.5 Merging

With the conflict model Cm1,m2
at hand, we may now proceed with merging the

parallel evolved models. Merging is the intricate task of usually one developer,
i.e., the developer who performs the later check-in, of integrating all changes
into one consolidated version of the model. However, several strategies exist
how merging may be realized, as discussed in Section 3.5. To justify AMOR’s
claim for adaptability not only with respect to supported modeling languages
and detectable conflicts, also the merge process may be configured. The overall
goal is to support the developer in understanding the evolution of the other
developer’s version as well as how this version contradicts her own changes to
the model. In fact, AMOR provides two interchangeable merge strategies, each
tailored to specific needs of a project’s stage.

Conflict-tolerant merging is adopted in the early phases of a project, i.e.,
analysis phase and design phase, where a common perception of the system under
study is not yet established. These phases are considered critical, as mistakes are
likely to happen and the costs of fixing such errors are high, when detected in
later phases [37]. Thus, in order to keep all viewpoints on the system, conflicts are
not resolved immediately after each commit, but are tolerated until a specified
milestone is reached. Then, to minimize the risk of losing any modifications,
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all developers may resolve conflicts together in a meeting or with the help of a
tool-supported collaborative setting as proposed in [118,12].

Conflict-aware merging is primary designed to support merging of a single
developer after each commit. If conflicts are not collaboratively resolved, it is
even more important, that the developer in charge of merging is supported to
effectually understand the model’s evolution. In a manual merge process, the de-
veloper has to navigate through several artifacts to collect information necessary
to comprehend the intentions behind all operations and the reasons of occurred
conflicts. To support this process, we combine automatic merge strategies with
the benefits of pollution markers known from the field of tolerating inconsisten-
cies [4,74,102]. We therefore calculate an automatically merged version which
reveals all operations and conflicts at a single glance by introducing dedicated
annotations. This automatically merged version acts as basis for conflict resolu-
tion and is thus denoted tentative merge.

In the remainder of this section, we present details how the tentative merge
is calculated employing the conflict-aware merge strategy of AMOR.

Design Rationale. In order to fully exploit the abstraction power of models,
modeling languages, such as UML, are usually complemented with a graphi-
cal concrete syntax to hide the complexity of the abstract syntax. As develop-
ers are mostly used to the graphical concrete syntax only, merging shall also
be performed directly using the concrete syntax of models. The major goal of
conflict-aware merging is to provide the model’s evolution in a single graphical
view without losing any model elements or modifications. Our design rationale
is based on the following requirements.

– User-friendly visualization. Information about performed operations and re-
sulting merge conflicts shall be presented in the concrete syntax of the model
retaining the original diagram layout.

– Integrated view. All information necessary for the merge shall be visualized
within a single diagram to provide a complete view on the models evolution.

– Standard conform models. The models incorporating the merge information
shall be conform to the corresponding metamodel without requiring heavy-
weight modifications.

– Model-based representation. The merge information shall be explicitly rep-
resented as model elements to facilitate model exchange between modeling
tools, as well as postponing the resolution of certain conflicts.

– No editor modifications. The visualization of the merge information shall be
possible without modifying the graphical editors of modeling tools.

In the following, we elaborate on the technical details of the conflict-aware merge
strategy with respect to the mentioned requirements.

Model Versioning Profile. As mentioned above, we use annotations to mark
conflicting or inconsistent parts of the merged model. Those conflicts are tol-
erated to a certain extent and eventually corrected. In our case, conflicts are
tolerated during the merge phase.
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Annotations extend the model and carry information. Hence, annotations
need an appropriate representation in the modeling language’s abstract and
concrete syntaxes. However, creating new modeling languages goes hand in hand
with building new editors and code generators, as well as preparing documenta-
tion and teaching materials, among others. Further, several modeling languages
have already matured and may not be neglected when setting up versioning
support. Thus, mechanisms are needed to customize existing languages. When
directlymodifying existing languages, the aforementioned issues remain unsolved,
as newly introduced metamodel elements cannot be parsed by existing editors.
According to [3], a lightweight language customization approach is desirable.
For customizing immutable modeling languages like UML, UML profiles are
the means of choice. UML profiles provide a language-inherent, non-intrusive
mechanism for dynamically adapting the existing language to specific needs. As
UML profiles are not only part of UML, but defined in the infrastructure spec-
ification [85], various modeling languages, which are defined as instance of the
common core may be profiled and thus dynamically tailored. UML profiles de-
fine a lightweight extension to the UML metamodel and allow for customizing
UML to a specific domain. UML profiles typically comprise stereotypes, tagged
values, and additional constraints stating how profiled UML models shall be
built. Stereotypes are used to introduce additional modeling concepts which
extend standard UML metaclasses. Once a stereotype is specified for a meta-
class, the stereotype may be applied to instances of the extended metaclass to
provide further semantics. With tagged values, additional properties may be
defined for stereotypes. These tagged values may then be set on the modeling
level for applied stereotypes. Furthermore, syntactic sugar in terms of icons for
defined stereotypes may be configured to improve the visualization of profiled
UML models. The major benefit of UML profiles is, reflected by the fact that
profiled models are still conforming to UML, that they are naturally handled
by current UML tools. Recently, in an endeavor to broaden the idea of UML
profiles to modeling languages based on implementations of Essential MOF [77],
such as Ecore [23], several works have been published [51,57,61]. The profiling
mechanism inherently reflects our design rationale and is thus our means of
choice. UML profiles are standardized by the OMG and act as conceptual role
model for Ecore based implementations. Thus, we discuss the annotations for
the conflict-aware merge based on UML profiles in the following.

The information on detected operations and conflicts is already available in
the difference models DVo,Vr1

and DVo,Vr2
, as well as the conflict model Cm1,m2

,
as described in Section 5.3 and Section 5.4, respectively. However, we assemble
the difference and conflict models and generate a dedicated model versioning
profile to realize the gluing of the available information into the model. Thus,
the versioning profile reflects the separation on changes and conflicts and expli-
cates additional information on the respective users, which was only implicitly
available beforehand. An excerpt of the versioning profile is depicted in Fig. 14.
Detailed information on the versioning profile may be found in Section 5.3 in [11].
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Changes Conflicts

<<enumeration>>

StateKind

- PENDING

- APPLIED

- REVERTED

<<stereotype>>

Change

- user: Actor

- state: StateKind

- diffElement: EObject

<<stereotype>>

Conflict

- myChange: Change

- theirChange: Change

- isResolved: boolean

<<stereotype>>

MyUpdate

<<stereotype>>

TheirUpdate

<<stereotype>>

Update

- feature: Feature

- oldVal: String

- newVal: String

<<metaclass>>

Element

<<extends>>

<<extends>>

<<stereotype>>

UpdateUpdate

<<stereotype>>

OperationContractViolation

<<metaclass>>

Collaboration

<<metaclass>>

Element

<<stereotype>>

DeleteUse

- violatedCondition: 

EObject

<<metaclass>>

Relationship

<<extends>>

<<extends>>

MyUpdate TheirUpdate

Fig. 14. Excerpt of the Model Versioning Profile

Changes. The versioning profile provides stereotypes for each kind of atomic
operation, i.e., ≪Add≫, ≪Delete≫, ≪Update≫, ≪Move≫, and a stereotype
for composite operations, i.e., ≪CompositeChange≫. Each change stereotype
is specialized as ≪MyChange≫ and ≪TheirChange≫ to explicate the user
who performed the change. An atomic change is always performed on a single
UML element, i.e., Class, Generalization, Property, etc., and thus, is defined
to extend Element, the root metaclass of the UML metamodel (cf. stereotype
≪Update≫ in the left part of Fig. 14). In contrast, a composite change in-
corporates a set of indivisible atomic operations. Therefore, we introduce a new
UML Collaboration interlinking the involved elements, which is annotated with
a ≪CompositeChange≫ stereotype. Further metadata regarding the respective
users, the application state of the change, and the affected feature of the changed
element including its old and new value in case of updates is stored in tagged
values.

Conflicts. The conflict part of the versioning profile defines stereotypes for all
conflict patterns subsumed in the conflict metamodel. Again, stereotypes for
overlapping operations regarding a single element, such as ≪UpdateUpdate≫
in the right part of Fig. 14, extend the metaclass Element, while violations,
like an ≪OperationContractViolation≫ comprise different modeling elements
and are thus annotated on newly introduced Collaboration elements. In case
of an ≪OperationContractViolation≫, the UML relationships interlinking the
involved elements to the UML collaboration, are annotated with stereotypes
(inspired from graph transformation theory [55]) indicating how the contract is
violated by the model element. The stereotype ≪DeleteUse≫ are applied on
model elements already existing in the original model, which are involved in a
composite operation and deleted by the other user, respectively. ≪AddForbid≫
indicates the addition of a new model element which invalidates the precondition
of a composite operation. Finally, all conflict stereotypes refer via tagged values
to the underlying change stereotypes, what makes understanding and reproducing
the conflicts possible.
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Fig. 15. Tentative Merge

Merge Algorithm. With the versioning profile at hand, we may now proceed
with merging the parallel evolved versions Vr1 and Vr2. The conflict-aware merge
strategy automatically calculates a tentatively merged version Vma

, by embrac-
ing all non-conflicting operations in an element preserving manner. Additionally,
conflicting operations are not ignored, but integrated via dedicated stereotypes
of the versioning profile. The merge algorithm takes the common original model
Vo, the difference models DVo,Vr1

and DVo,Vr2
, and the conflict model Cm1,m2

as
input and produces a tentative merge, as depicted in Fig. 15. Details on merg-
ing the concrete syntax of the models may be found in Chapter 5 in [11]. The
algorithm for merging the abstract syntax proceeds as follows. In order to keep
the original model Vo untouched, it is initially copied to the output model Vma

.

1. Merge atomic operations. For each atomic change of DVo,Vr1
and DVo,Vr2

,
it is checked, whether the change is involved in a conflict pattern described
in the conflict model Cm1,m2

, or whether it is considered non-conflicting. If
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the change is non-conflicting and non-deleting, it is applied to the tentative
merge Vma

and annotated with the respective stereotype. In the running
example of Fig. 7, the renaming of the operation buy() to purchase() per-
formed by Sally is executed and annotated as ≪MyUpdate≫, as Sally did
the later check-in and the merge is performed reflecting her viewpoint. The
corresponding metadata of the difference model is stored in tagged values of
the stereotype. Additionally, the tagged value user is set to Sally and the state
value is set to APPLIED. Even if deletions are non-conflicting, they are not
yet executed, as they otherwise cannot be annotated and information would
get lost. Similarly, conflicting operations are annotated with state value set
to PENDING without applying them to the tentative merge. Thus, the class
Person deleted by Sally and renamed to Customer by Harry is annotated with
the stereotypes ≪TheirUpdate≫ and ≪MyDelete≫ in this step.

2. Annotate overlapping operations. After processing all atomic operations,
conflicts due to overlapping atomic operations are annotated. In the run-
ning example, the operation getInfo() of class Ticket is concurrently renamed
resulting in an update-update conflict. Thus, the operation is annotated
with an ≪UpdateUpdate≫ stereotype, which links to the respective change
stereotypes via tagged values. Further, it the tagged value indicating the
resolution state is set to false, as depicted in Fig. 15.

3. Merge composite operations. To express that composite operations consists
of an indivisible unit of atomic operations, a UML Collaboration is added
to the tentative merge, which links to the involved elements and is annotated
with a ≪CompositeChange≫ stereotype. If no composite operation conflict
is reported in the conflict model Cm1,m2

, the composite change is replayed
to the tentative merge and set to APPLIED. Otherwise, it is still PENDING.

4. Annotate operation contract violations. If a composite operation conflict is
at hand, a ≪CompositeOperationConflict≫ stereotype is attached to the
collaboration. Further, the relationships linking to the affected model ele-
ments of conflicting operations are named according to the the operation
specification’s template names and subsequently annotated. In the running
example, the deletion of the property artist in class Exhibition (cf. Property 1
in Fig. 12) and the added class SoccerMatch (Class 2) violate the precondi-
tion of the refactoring Pull Up Field. Thus, the relationships are annotated
with ≪DeleteUse≫ and ≪AddForbid≫, respectively.

5. Validate model. Next, the tentative merge is then validated and, if con-
straints are violated, the violation is added to the conflict report Cm1,m2

.
6. Annotate constraint violations. Finally, the detected violations are anno-

tated in the tentative merge, by again introducing UML Collaboration

elements linking to the model elements involved in the violation.

5.6 Conflict Resolution

In AMOR, conflict resolution is performed on top of the tentative merge. The
stereotypes included in the tentative merge may be further exploited to provide
dedicated tooling support for conflict resolution. For example, resolution actions
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in form of “take my change”, “take their change”, or “revert this change” may be
easily implemented, as the link to the difference model is retained. However, as
the same kind of conflicts are likely to reoccur, AMOR provides a recommender
system for conflict resolution, which suggests even Conflict Resolution Patterns
going beyond a combination of applied changes. These patterns are stored in
AMOR’s conflict resolution pattern repository and are currently predefined in
the same manner as composite operations (cf. Section 5.3).

Coming back to the running example, Sally has to resolve several conflicts,
which are annotated in the tentative merge. She starts resolving the delete-
update conflict annotated in the class Customer. As there is currently no conflict
resolution pattern stored in the conflict resolution recommender system for the
resolution of delete-update conflicts, only the choices of applying one of the re-
spective changes is available. Sally decides to revert her delete operation. The
application states stored in the tagged values of the overlapping delete and up-
date operations are automatically set to REVERTED and APPLIED, respectively.
Further, the tagged value isResolved of the ≪DeleteUpdate≫ stereotype is set
to true. She continues with the update-update conflict of the operation get-
Info(), where she prefers her change. Now, only the composite operation conflict
remains left. Sally disagrees with Harry’s opinion that exhibitions do not have
an artist, and she reverts his change, resulting in a removal of the delete-use
conflict. The conflict resolution recommender system announces, that a conflict
resolution pattern is found for the remaining add-forbid conflict. The resolution
is performed by introducing a new class into the inheritance hierarchy. The new
class gets subclass of the class Event and superclass of the classes Concert and
Exhibition. In this way, it displaces the original superclass as target for the Pull
Up Field refactoring. Sally has only to provide a name for the new class and
is confident with this solution. Finally, she commits the resolved version to the
repository.

6 Open Challenges

In this paper, we introduced the fundamental technologies in the area of model
versioning and surveyed existing approaches in this research domain. Besides,
we gave an overview on the model versioning system AMOR and showcased its
techniques based on a model versioning example. Although the active research
community accomplished remarkable achievements in the area of model version-
ing in the last years, this research field still poses a multitude of interesting open
challenges to be addressed in future, which we outline in the following.

Intention-aware model versioning. When merging two concurrently modified ver-
sions, ideally the merged version represents a combination of all intentions each
developer had in mind when performing their operations. Merging intentions is
usually more than just naively combining all non-conflicting atomic operations
of both sides. When a developer modifies a model, this is done in order to realize
a certain goal rather than simply modifying some parts of it. However, capturing
the developer’s intention from a set of operations is a major challenge.
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A first step in this direction is respecting the original intention of composite
operations, such as model refactorings, in the merge process. Composite opera-
tions constitute a set of cohesive atomic operations that are applied in order to
fulfill one common goal. Therefore, detecting applications of well-defined com-
posite operations and regarding their conditions and intention during the merge
is a first valuable step towards intention-aware versioning [22,56,68].

However, further means for capturing and respecting the intention of applied
operations may be investigated, such as allowing developers to annotate his/her
intention for a set of applied operations in a structured and automatically ver-
ifyable manner. For instance, a developer might want to change a metamodel
in order to limit its instatiability. Thus, an “issue witness” in terms of an in-
stance model that should not be valid anymore can be annotated to give the
set of applied operations more meaning. After merging concurrent operations,
the versioning system may verify whether the original intention (i.e., the non-
instatiability of the issue witness) is still fulfilled.

Semantics-aware model versioning. Current model versioning systems mainly
facilitate matching and differencing algorithms operating on the syntactic level
only. However, syntactical operations that are not conflicting may still cause se-
mantic issues and unexpected properties (e.g., deadlocks in behavior diagrams).
Thus, a combination of syntactic and semantic conflict detection is highly valu-
able but very challenging to achieve, because currently no commonly agreed
formal semantics exists for widespread employed modeling languages, such as
UML. First approaches for performing semantic differencing are very promis-
ing [62,63,64,73]. As these approaches focus only on two-way comparison and
operate on a restricted set of modeling languages and constructs, the applica-
tion of semantic differencing techniques in model versioning systems is not di-
rectly possible yet and the definition of a formal semantics for a comprehensive
set of the UML, including intra-model dependencies, is a challenge on its own.
Furthermore, as models may be used as sketch in the early phases of software
development, as well as for specifying systems precisely to generate code, a satis-
factory compromise has to be found to do justice to the multifaceted application
fields of modeling.

Overall, we conclude this tutorial with the observation that the research area
of model versioning still offers a multitude of tough challenges despite the many
achievements which have been made until today. These challenges must be over-
come in order to obtain solutions which ease the work of the developers in prac-
tice. The final aim is to establish methods which are so well integrated in the
development process that the developers themselves do not have to care about
versioning tasks and that they are not distracted from their actual work by
time consuming management activities. Therefore, different facets of the mod-
eling process itself have to be reviewed to gain a better understanding of the
inherent dynamic. Versioning is about supporting team work, i.e., about the
management of people who work together in order to achieve a common goal.
Consequently, versioning solutions require not only the handling of technical
issues like adequate differencing and conflict detection algorithms or adequate
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visualization approaches, but also the consideration of social and organizational
aspects. Especially in the context of modeling, the current versioning approaches
have to be questioned and eventually revised. Here the requirements posed on
the versioning systems may depend on the intended usage of the models.
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