ESAIM: Proceedings CEMRACS 1999

URL: http://www.emath.fr/Maths/Proc/Vol.10

AN INTRODUCTION TO MONTE CARLO METHODS FOR THE BOLTZMANN

EQUATION *

LoreNZO PARESCHI! anD GiovanNT RUSSO?

Abstract. The purpose of this note is to give an introductory overview of the different direct simula-
tion Monte Carlo (DSMC) methods for the numerical solution of the Boltzmann equation. Particular
emphasis is given to some recently developed time relaxed Monte Carlo (TRMC) schemes for the accel-
eration of DSMC computations near continuum regimes. Several numerical examples are also included.
The note is far from being complete and only some aspects are treated of such a vast theme.
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1. INTRODUCTION

In many engineering applications, from the space shuttle to vacuum pumps [27, 28, 39], the Euler or Navier-
Stokes equations of fluid dynamics do not give a satisfactory description of the physical system and an accurate
kinetic description through the Boltzmann equation of rarefied gas dynamics (RGD) is required.

From a computational point of view the numerical solution of the Boltzmann equation is much more expensive
then the equations of fluid dynamics and represents a real challenge for numerical methods. This is mainly due
to the large number of variables in the problem and to the multi-dimensional nonlinear integral that defines
the collision operator. In addition, this integration has to be handled carefully since it is at the basis of the
conservation properties of the Boltzmann equation.

As a consequence since the early 1970’s the dominant methods for computations of RGD are based on
probabilistic Monte-Carlo techniques at different levels [1, 3, 4, 10, 12, 22, 23, 29, 30, 36, 40, 41]. Pioneers of
these methods are the direct simulation Monte Carlo method (DSMC) by Bird [3, 4] and later the modified
DSMC method proposed by Nanbu [29]. The common feature of these methods is to evolve a finite set of
particles by moving them according to their velocity and by performing collisions between randomly chosen
particles.

Monte Carlo methods present several advantages and have been very successful in a wide range of applica-
tions. First, if compared with deterministic approaches, the computational cost is strongly reduced and can be
considered of the order of the number of particles used in the velocity space. Second, these methods do not need
any artificial boundary in the velocity space. In fact, particles can have any velocity and thus the discretization
points are always well defined independently of the physical problem.

At variance, in addition to the computational complexity, a major drawback associated with deterministic
methods that use a fixed discretization in the velocity domain is that the velocity space is approximated by a
finite region. Hence, a large region with a huge number of discretization points is required in problems with
very high Mach numbers, which greatly increase the computing effort.

On the other hand, particle methods yield low accurate and fluctuating results with respect to deterministic
methods and the convergence in general is quite low. In particular, there is one important situation where
DSMC methods lose its effectiveness: flows where the Knudsen number varies over several orders of magnitude.
In such problems there are regions in which the Knudsen number is small enough that the collision rate is large,
but not small enough that the flow is well described by fluid mechanics.

For these nearly continuum regions a standard kinetic treatment would be too expensive since accuracy of
DSMC methods depends on the resolution of the collisional length and time scales and a pure fluid dynamic
approach inappropriate.

Domain decomposition methods have been proposed for this problem. In these methods the computational
domain is divided into a fluid region in which the system is treated by the Euler or Navier-Stokes fluid dynamic
equations, and a kinetic region, where the Boltzmann equation is used. Suitable matching condition are then
used to couple the two regions [6, 18, 24, 42]. The main difficulties of this approach is the detection of the two
regions and the design of boundary conditions to couple the fluid and the kinetic regions.

In some recently developed Monte Carlo methods a different approach is taken, with the goal of constructing
simple and efficient numerical methods for the solution of the Boltzmann equation in regions with a large
variation in the mean free path [8, 33, 32, 34, 35]. These were the first Monte Carlo methods of this type.
Previous implicit versions of Monte Carlo methods in transport problems were developed for the linear equation
of photon transport in [15].
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These algorithms, hereafter called time relaxed Monte Carlo (TRMC) methods, are based on a a suitable
truncation of a power series expansion [47] for the Boltzmann equation first introduced in [16]. This truncated
series has the following properties: for large Knudsen number it is a time approximation of the Boltzmann
equation of a given order, and when the Knudsen number vanishes, it projects the solution towards the local
Maxwellian. In addition, the truncated series preserves mass, momentum and energy.

In the limit of very small Knudsen number, the collision step replaces the distribution function by a local
Maxwellian with the same moments. A Monte Carlo method based on such truncated series will behave as a
sort of kinetic scheme for the underlying Euler equations of gas dynamics [11, 37, 38].

This approach of coupling the fluid and kinetic equations in the Monte Carlo method represents a comple-
mentary strategy to domain decomposition methods, i.e., in order to obtain an efficient coupling, one can use
these methods to extend the use of the Monte Carlo solver from the pure kinetic regions to the near continuum
regions.

The plan of the rest of the paper is the following. In the next section we give a short introduction on the
Boltzmann equation and some of its relevant properties. Section 3 is devoted to a description of Bird’s and
Nanbu’s classical DSMC methods. TRMC methods are discussed in Section 4. Finally in Section 5 and 6
numerical results for space homogeneous and non homogeneous problems are presented.

2. THE BOLTZMANN EQUATION

We consider the Boltzmann equation [9, 10]

of _ 1

E"‘v'vzf—gQ(f:f) (1)
with the initial condition

f(ZL',’U,tZO):fo(.’E,’U), (2)

where f = f(x,v,t) is a non negative function describing the time evolution of the distribution of particles
which move with velocity v € IR* in the position z € Q C IR? at time ¢t > 0. The parameter ¢ > 0 is the
Knudsen number and is proportional to the mean free path between collisions. The bilinear collision operator
Q(f, f) describes the binary collisions of the particles and is given by

QN = [ [ allo =0l )@ 02 = F0)f(0.)) s do.. g

In the above expression, w is a unit vector of the sphere S2, so that dw is an element of area of the surface
of the unit sphere S? in IR®. Moreover (v',v.) represent the post-collisional velocities associated with the
pre-collisional velocities (v, v,) and the collision parameter w; i.e.,

!

1
v = (U4 vk + v — viw), vizi(v+v*—|v—v*|w). (4)

N | =

The kernel o is a nonnegative function which characterizes the details of the binary interactions. In the case of
inverse k-th power forces between particles the kernel has the form

o(jv = v.l,0) = ba(B)|v — va], (5)

where a = (k — 5)/(k — 1). For numerical purposes, a widely used model is the Variable Hard Sphere (VHS)
model [4], corresponding to take b, () = C, where C, is a positive constant. The case a = 0 is referred to as
the Maxwellian gas, whereas the case a = 1 yields the Hard Sphere gas.
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For the Maxwellian gas the scattering kernel o is a constant. This case has been widely studied theoretically,
since it has several interesting mathematical properties. In particular, exact analytical solutions can be found
[5, 14].

A simplified model of the space homogeneous Boltzmann equation was derived by Kac [20]. This model is
often used because its simplicity allows a more rigorous mathematical analysis than the full Boltzmann equation.

2.1. Boundary conditions

Equation (1-2) usually is complemented with the boundary conditions for v-n > 0 and z € 992, where n
denotes the unit normal, pointing inside the domain 2. Usually the boundary represents the surface of a solid
object (an obstacle or a container). The particles of the gas that hit the surface interact with the atoms of the
object and are reflected back into the domain 2. Mathematically, such boundary conditions are modeled by an
expression of the form

v nlf(z,0,1) :/. I @)K (> v,2,8) v 1) o (6)

This is the so-called reflective condition on Q2. The ingoing flux is defined in terms of the outgoing flux modified
by a given boundary kernel K according to the integral in (6). This boundary kernel is such that positivity and
mass conservation at the boundaries are guaranteed,

K(v. = v,z,t) >0, / K(v. = v,z,t)dv = 1. (7)
v-n(z)>0

Commonly used reflecting boundary conditions are the so-called Maxwell’s conditions. From a physical point
of view, one assumes that at the solid boundary a fraction « of molecules is absorbed by the wall and then
re-emitted with the velocities corresponding to those in a still gas at the temperature of the solid wall, while
the remaining portion (1 — «) is specularly reflected. This is equivalent to impose for the ingoing velocities

f(.’I},U,t) :(1—Oé)Rf(.’E,’U,t)-FOéMf(CE,U,t), (8)
in which z € 9Q, wv-n(z) > 0. The coefficient «, with 0 < a < 1, is called the accommodation coefficient and

Rf(ZU,U,t) = f(.’L',’U—QTL(TL'U),t), (9)
Mf(z,v,t) = p(z,t)My(v). (10)
In (10), if we denote by T, the temperature of the solid boundary, M, is given by
M (v) = expl—5)
wl(V) = €Xp 2Tw )

and the value of p is determined by mass conservation at the surface of the wall
u(a:,t)/ My, (v)|v - n|dv = / flz,v,t)|v - n|dv. (11)
v-n>0 v-n<0

We note that according to (8), for @ = 0 (specular reflection) the re-emitted molecules have the same flow of
mass, temperature and tangential momentum of the incoming molecules, while for a = 1 (full accommodation)
the re-emitted molecules have completely lost memory of the incoming molecules, except for conservation of the
number of molecules.
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In the case of inflow boundary conditions, one assumes that the distribution function of the particles entering
the domain is known, i.e.

flz,u,t) =g(v,t), z€dN, v-n>0,

A typical example of such condition is used in shock wave calculations, where one assumes that the distribution
function at the boundary of the computational domain is a Maxwellian. In this case the particles that enter
the domain in a time step At have a distribution proportional to v - n g(v,t), v-n > 0. In fact the number of
particles that enter the domain in a time interval At with velocity between v and v 4+ dv through a small area
AS is given by

dN = ASAtv-ng(v,t) d®v.

Other physical boundary conditions are modeled by different expressions (see for example [9]).

In section 6 an implementation of the previous boundary conditions in the context of Monte Carlo methods
will be described.
2.2. Fluid dynamic limit

During the evolution process, the collision operator preserves mass, momentum and energy, i.e.,
| QU newas =0, o) = 1,0.0% (12)
and in addition it satisfies Boltzmann’s well-known H-theorem
| @t nosnan <o. (13)

From a physical point of view, Boltzmann’s H-theorem implies that any equilibrium distribution function,
i.e. any function f for which Q(f, f) = 0, has the form of a locally Maxwellian distribution

M (p,u,T)(v) = W exp (_ Ju ;T”| ) : (14)

where p, u, T are the density, mean velocity and temperature of the gas defined by
1 1 )
p= f dv, u=- vf dv, T=— [v—u]®f dv. (15)
R3 P JRs 3p J e
As e — 0 the distribution function approaches the local Maxwellian (14). In this case the higher order moments

of the distribution f can be computed as function of p, u, and T, by using (14) and we obtain to the leading
order the closed system of compressible Euler equations of gas dynamics

0
—p+Vz-(pu):0

ot
0
%%—Vm-(pu@u—kp)zo (16)
%—f+vz-(Eu+pu):0
3 1
p=pT, E= §pT+ §pu2. (17)

where p is the gas pressure.
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2.3. Splitting approach

The most common approach to solve the full Boltzmann equation is based on an operator splitting. Consider
the following initial value problem (1-2).

The solution after one time step At may be obtained by the sequence of two steps. First integrate the space
homogeneous equation (collision step) for all z € Q,

of 1 .z
. ZQ 1), (18)

f(CE,U,O) = fO(xv’U)a

for a time step At, and then the transport equation (convection step), using the output of the previous step as
initial condition,

of _
E +v- vxf = 0: (19)

f(x7v70) = f(.’I:,’U, At)'

After computing an approximation of the solution at time At, the process may be iterated to obtain the
numerical solution at later times. Clearly, after this splitting almost all the main difficulties are contained
in the collision step since the nonlinear collision operator becomes highly stiff near the fluid regime (¢ < 1)
[17, 16, 43].

The discretization of these equations can be performed in a variety of ways (particle methods, finite volume,
and so on). The choice of the discretization mainly depends on the method that is used for the solution of the
space homogeneous Boltzmann equation. In this paper we illustrate the use of particle methods, because we
assume that we use a Monte Carlo method for the integration of the space homogeneous equation.

The splitting scheme (simple splitting) described above is first order accurate in space and time. Note that
the order of accuracy of this simple splitting does not improve even if we solve with great accuracy both collision
and convection steps. The accuracy in time may be improved by a more sophisticated splitting. For example
Strang splitting is second order accurate, provided both steps are at least second order [44] (an application to
deterministic methods for the Boltzmann equation is given for example, in [31]).

For the Monte Carlo method we shall use only the simple splitting. The motivation is that it is not clear, at
present stage, if the order of accuracy of the space discretization used in Monte Carlo methods is higher than
first order. This subject is a presently under investigation by the authors.

3. DIRECT SIMULATION MONTE CARLO (DSMC) METHODS

In this section we describe two of the most commonly used Monte Carlo methods for the simulation of
collision step (18), namely Nanbu-Babovsky’s and Bird’s schemes. Numerical results for these methods will be
presented in Section 5 for space homogeneous computations and in Section 6 for a stationary shock problem.

Before entering the description of the methods, we give a brief review of random sampling, which is at the
basis of several Monte Carlo methods.

3.1. Random sampling

In this section we revise some basic features common to many applications of the Monte Carlo method. We
assume that our computer is able to generate a uniformly distributed random number between 0 and 1. A
simple reference on such topics and on Monte Carlo techniques is the book by Kalos [21].
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3.1.1. Monowvariate distribution

Let z € IR be a random variable with density p.(z), i.e. po(x) > 0, [,p.(®)dz = 1, and let £ be a
uniformly distributed random number in [0,1]. Then the relation between z and ¢ can be found by equating
the infinitesimal probabilities

pa () dz = d€.
By integration one has
P, (z) =¢&, (20)
where P,(z) = ffoo p=(y) dy is the distribution function corresponding to the random variable z, i.e. the

primitive of p,(z). Then the random variable x can be sampled by sampling a uniformly distributed variable
&, and then solving Eq. (20) for z,

v =P, (8). (21)

Example 3.1. Let p,(z) = exp(—z), > 0. Then

Pala) = [ exp(-y)dy =1~ exp(-a) =
0
and therefore
z=—In(l-¢)

or z = —In¢, because 1 — £ is also a uniformly distributed [0, 1] random number.

Remark 3.2. We consider density functions defined on the whole real line. If the support of the density is
strictly contained in IR, as in the previous example, the density function can be defined by using the Heaviside
©-function. In the example above one could define p,(z) = exp(—2)O(z),z € R.

Sometimes it may be expensive to the compute the inverse function, since in general a nonlinear equation
has to be solved. In this case a different technique, called acceptance-rejection, can be used to sample a random
variables with a given density.

Let # be a random variable with density p,(z), € IR. Then we look for a function w(z) > p.(z)Vz € R
whose primitive W (z) is easily invertible. Let A = [*_w(z) dz. Then the algorithm works as follows:

Algorithm 3.3.
1. sample from w(z)/A by solving the equation W (x) = A,
2. if w(z)& < pu(x) then accept the sample, else reject the sample and repeat step 1.

Here & and & represent, as usual, uniformly [0, 1] random numbers. It is clear that the efficiency of the
scheme depends on how easy it is to invert the function W (z) and how frequently we accept the sample. The
fraction of accepted samples equals the ratio of the areas below the two curves p, (x) and W (z) and it is therefore
equal to 1/A4 (see Fig. 1).

Sometimes a density function is given as a convex combination of simpler density functions,

M
p(z) = Zwipi(w)

where w; are probabilities (i.e. w; > 0, sz\i1 w; = 1), and p;(z) are probability densities. In that case the
sampling can be performed as follows
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FIGURE 1. Acceptance-rejection procedure. n has been sampled from w(z). It will be accepted
with probability equal to the ratio p(n)/w(n).

Algorithm 3.4.

1. select an integer ¢ € {1,..., M} with probability w;
2. sample z from a random variable with density p;(z).

Because of the relevance in several applications, step 1 of the previous algorithm deserves an extended
discussion.

3.1.2. Discrete sampling

Let us suppose that k € {1,...,M} is an integer random number, with probabilities {wy}. In order to
sample k& with probability wy we can proceed as follows:

¢, and detect the interval k to which ¢ belongs.

divide interval [0,1] in M intervals, i-th interval being of length w;, extract a uniform [0, 1] random number
This can be done in the following way:

Algorithm 3.5.

1. compute Wy, = Zle wp,k=1,... , M, Wy=0
2. find the integer k such that Wy_; < & < Wy.

For an arbitrary set of probabilities {w;}, once WW; have been computed, step 2 can be performed with a
binary search, in O(ln M) operations.

This approach is efficient if the numbers W}, can be computed once, and then used several times, and if M is
not too large. In several circumstances, however, the number M may be very large, and the numbers w; may
change, or, in other words, one is interested in sampling k£ with probability wy without explicitly computing all

the probabilities wy,. This can be done by using the acceptance-rejection technique, if at least an estimate W
such that w > w;, i = 1,... , M is known. The procedure is used as follows:
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Algorithm 3.6.

1. select an integer random number uniformly in [1,..., M], as
kE=[M&]+1

where [z] denotes the integer part of z,
2. if wi& < w then accept the sampling else reject it and repeat point 1.

Clearly the procedure can be generalized to the case in which the estimate depends on k, i.e. Wy > wg, k =
oo, M.
The above technique is of crucial relevance in the Monte Carlo simulation of the scattering.

1

3.1.3. Sampling without repetition

Sometimes it is useful to extract n numbers, n < N, from the sequence 1,... , N without repetition. This
sampling is often used in several Monte Carlo simulations. A simple and efficient method to perform the
sampling is the following.

Algorithm 3.7.

1. set ind; =4¢,4=1,... , N
2. M=N
3. fori=1ton
set j = [M&] + 1, seq; = ind;,
il’ldj = indM, M=M-1
end for

At the end the vector seq will contain n distinct integers randomly sampled from the first NV natural numbers.
Of course if n = N, the vector seq contains a permutation of the sequence 1,... ,N.

3.1.4. Multivariate distributions

Suppose we want to sample a n-dimensional random variable z = (z1,... ,z,), whose probability density is
P ().

If the density can be written as a product of densities of scalar random variables (marginal probability
densities), i.e. if

p:t(xla e >xn) =D (xl)p2(m2) o pn(mn)a

then the n scalar random variables z1,... ,z, are independent, and they can be sampled separately, i.e. the
problem is equivalent to sampling n monovariate random variables.

If this is not the case, then one may first look for a transformation T': x — n = T'(z) such that in the new
variables the probability density is factorized, i.e.

Pe(®1, ... p)drydry . dry = ppy (M)Py (02) -+ - Py (M) dnidns . . dny, (22)

then sample the variables 7y, ...n,, and finally compute = by inverting the map T, i.e. z = T~*(n).

In some cases such transformation can be readily found. In other cases it is more complicated. There is a
general technique to find a mapping T : x — £, where £ = (&,...,&,) denotes a uniformly random variable
in [0,1]™. Of course such transformation is not unique, since we only impose that its Jacobian determinant
J = |0€/0z| is a given function py(z1,...,2Zy). An explicit transformation is constructed as follows
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/ d’f]/ 2---dmnpx(n7---7mn)v
Rn—1

f2 dn [pn-s dzs ... dz, pe(T1,n,...,T,)
ffooodnfmn,2 z3 ... dx, po(T1,m,... 1)
[ dn s dzy ... dzy p,
[2.dn [gu-s dzy ... dz, py

T (z1)

Ty(z1,22) =

T1,T20, ... 5 Tp)

Ts(z1,22,23) = g o)
1y L2,0fyeve ydln

; (23)

~|—~ —~|—~

[or dnpe(@y,...,n)
ffooo dnpz(xly--- 777)‘

To(z1,...,2,) =

It is straightforward to check that |0&/0z| = pg(z1,...2,). Furthermore, the computation of the inverse
requires the solution of a triangular system: find z; by solving the first equation of system (23), substitute z;
in the second equation, and solve it for x», substitute z; and z» in the third equation and solve for z3, and so
on, therefore the systems of equations is equivalent to n single nonlinear equations for z1,... ,z,.

Remark 3.8. The transformation (23) is used to map an arbitrary measure with density p,(z) into the
Lebesgue measure on the unit cube [0,1]”. This can be used, for example, to approximate a continuous mea-
sure by a discrete measure, once a good discrete approximation of the Lebesgue measure is known. Let us
assume that we have a “good” approximation of the uniform measure obtained by N suitably chosen points
Ny € [0,1]",i=1,...,N,

1 N
NZ: X[01]()

then
| N
N Z 6(x — z(5)) = pe(2),
i=1
where z(;) = Tfl(n(i)), i =1,..., N. This technique can be effectively used to obtain good quadrature formulae

to compute integrals in highly dimensional space, and is the basis of the so called quasi-Monte Carlo integration
[7, 26].

If the inverse transform map is too expensive, then the acceptance-rejection technique can be used, exactly
as in the case of the monovariate distribution. More precisely, let  be a random variable with density p,(x),
z € IR". Then we look for a function w(z) > p,(x)Vz € R™ which is “easy to sample”. Let A = [, w(z) dz.
Then the algorithm works as follows

Algorithm 3.9.

1. sample from z from w(z)/A by any known method,
2. if w(z)€ < p.(z) then accept the sample, else reject it and repeat step 1.

Example 3.10. As an example we show how to sample from a Gaussian distribution. Let x be a normally
distributed random variable with zero mean and unit variance,

p(z) = \/% exp (—%) :
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In order to sample from p one could invert the distribution function P(z) = (1 + erf(x/v/2))/2, where erf(z)
denotes the error function. However the inversion of the error function may be expensive. An alternative
procedure is obtained by the so called Boz-Muller method described below. Let us consider a two dimensional
normally distributed random variable. Then

If we use polar coordinates
x = pcosh, y = psinb, (24)

then we have

1 22 +y? 1 p?

— — dedy = — - dp df

27reXp< 2 VA = o O\ Ty ) PP
therefore in polar coordinates the density function is factorized as p, dp pg df, with

P>
exp (—7> p, p=0

1
pp = —, 0<0<2m
2w

Py

The random variables p and 6 are readily sampled by inverting p, and py, i.e.

p=+/—-2In&, 0 =2n&,

and, finally, z and y are computed from Eq.(24).

At the end of the procedure we have two points sampled from a Normal(0,1) distribution (i.e. a Gaussian
distribution with zero mean and unit variance). Of course, if the random variable has mean p and standard
deviation o, then = and y will be scaled accordingly as

T =iy +0ypcosl, y = p, +oypsing.

Example 3.11. Here we show how to sample a point uniformly from the surface of a sphere. A point on a
unit sphere is identified by the two polar angles (¢, ) ,

xr = sinfcosy,
= sinfsing,

= cos#f.

Because the distribution is uniform, the probability of finding a point in a region is proportional to the solid
angle

dv sinfdf dy
P = — = [e—
d 4 2 2m’
and therefore
de
X — 4
o El 9
sin 8 df
= d&.

2
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Integrating the above expressions we have

Y = 271—51 )
arccos(l — 2&5).

S
|

3.2. Direct simulation schemes

In this paragraph we will describe the classical DSMC methods [1, 29, 3, 4] in the case of the spatially
homogeneous Boltzmann equation (18).
We assume that the kinetic equations we are considering can be written in the form

of 1
E_E[P(faf)_uf]a (25)

where p # 0 is a constant and P(f, f) is a non negative bilinear operator. In particular, for both Kac equation
and Boltzmann equation for Maxwellian molecules we have P(f, f) = Q7 (f, f) where Q*(f, f) denotes the gain
part of the collision operator.

The Kac equation in fact reads [20]

UL 7 Lwwrsen - swseo . (26)
ot eJo J_o 2w
where
v' =vcosf — v, sinb, v, = vsinf + v, cosb. (27)
Hence, the equation is of the form (25) with

+o00
P(f.f) =~ / F') @) dv, db, (28)

2r J_»

and p = p = |, A2f(v)dv. The only conserved quantities are the total mass and the energy, i.e. the collision
invariants are ¢(v) = 1,v>.
For the Boltzmann equation in the Maxwellian case, similarly we have

QN = [ [ crrw)se) dd. (29)

The case of general kernels with cut-off will be discussed later.

3.2.1. Nanbu-Babovsky scheme
We assume that f is a probability density, i.e.

p:/+oof(v,t)dv: 1.

— 00

Let us consider a time interval [0, tyax], and let us discretize it in nror intervals of size At. Let us denote by
f™(v) an approximation of f(v,nAt). The forward Euler scheme applied to Eq. (25) writes

= (1 n NTAtP(f;, fn) (30)

A
-
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This equation has the following probabilistic interpretation: a particle with velocity v; will not collide with
probability (1 — uAt/e), and it will collide with probability pAt/e, according to the collision law described by
P(f™, ) (v).

Let us consider first kinetic equations for which P(f, f) = QT (f, f), i-e. the collision kernel does not depend
on the relative velocity of the particles.

An algorithm based on this probabilistic interpretation was proposed by Nanbu [29] and can be described as
follows

Algorithm 3.12 (Nanbu for Maxwell molecules).
1. compute the initial velocity of the particles, {v9,i =1,... ,N},
by sampling them from the initial density fo(v)
2. forn =1 to nror

fori=1to N
with probability 1 — uAt/e
o set U?-H =op

with probability pAt/e
o select a random particle j
o compute v; by performing the collision
between particle ¢ and particle j

o assign v/ ! = v!
end for

end for

In its first version, Nanbu’s algorithm was not conservative, i.e. energy was conserved only in the mean,
but not at each collision. A conservative version of the algorithm was introduced by Babovsky [1]. Instead
of selecting single particles, independent particle pairs are selected, and conservation is maintained at each
collision. The expected number of particles that collide in a small time step At is NuAt/e, and the expected
number of collision pairs is NuAt/(2¢). The algorithm is the following

Algorithm 3.13 (Nanbu-Babovsky for Maxwell molecules).
1. compute the initial velocity of the particles, {v?,i =1,... ,N},
by sampling them from the initial density fo(v)
2. forn =1 to nror
given {v?",i=1,...,N}
o set N, = Iround(uNAt/(2¢)
o select N, pairs (4,7) uniformly among all possible pairs,
and for those
- perform the collision between i and j, and compute

v; and v} according to the collision law
- set vt = o, 0T = o)
n+1

o set v = o’ for all the particles that have not been selected

i

end for

Here by Iround(z) we denote a suitable integer rounding of a positive real number . In our algorithm we
choose

[x] + 1 with probability z — [z]

Tround(z) = { [=] with probability [z]+1—=z

where [z] denotes the integer part of x.
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Remark 3.14. As we said before, the algorithm just described can be applied to the Kac equation and to the
homogeneous Boltzmann equation with Maxwellian molecules. The only difference in the two cases consists in
the computation of the post-collisional velocities.
When the above scheme is applied to the Kac equation, the new velocities v and v;. are computed as
v; = v;cos —w;sinf, v} =w;sinf 4 v;cosb, (31)

where # = 2r Rand and Rand denotes a random number, uniformly distributed in [0, 1].
For Maxwell molecules one has

P Vit v |vi v ) _vitv v — v

v = + 5 W U= o 5 W (32)
where w is chosen uniformly in the unit sphere, according to:

2D:

= [ cosb 9 = 27 Rand (33)

~\ sinf )’ = ¢mrand,
3D:
cos ¢sin 6
w=| singsinf |, 6 =arccos(2& —1), ¢ =2n&, (34)
cos 6

where £, & are uniformly distributed random variables in [0, 1].

The above algorithm has to be modified when the scattering cross section is not constant. To this aim we
shall assume that the collision kernel satisfies some cut-off hypothesis, which is essential from a numerical point
of view.

We will denote by Qx:(f, f) the collision operator obtained by replacing the kernel o with the kernel oy,

os(Jv — vi|,w) = min {o(jv —v.|,w), X}, X >0.

Thus, for a fixed X, let us consider the homogeneous problem

of 1

5= 2Qs(f,f). (35)

Problem (35) can be written in the form (25) taking

PULN = QN+ 10) [ [ 12— as(u— ol (w) do . (36)

with p = 47Xp and
QN = [ [ oo =) f0)1(02) do do.. (1)

It is a simple exercise to verify that the functions ¢(v) = 1,v,v? are the collision invariants.

In this case, a simple scheme is obtained by using dummy collisions, and acceptance-rejection technique. Note
that this approach is equivalent to sample the post collisional velocity according to P(f, f)/u, where u = 47X
and ¥ is an upper bound of the scattering cross section.

The conservative DSMC algorithm for VHS collision kernels can be written as
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Algorithm 3.15 (Nanbu-Babovsky for VHS molecules).
1. compute the initial velocity of the particles, {v0,i =1,... ,N},
by sampling them from the initial density fo(v)
2. for n =1 to nror
given {v",i=1,... ,N}
o compute an upper bound X of the cross section
o set N, = Iround(NpXAt/(2¢))
o select N, dummy collision pairs (7, j) uniformly
among all possible pairs, and for those
- compute the relative cross section o;; = o(|Jv; — vj|)
-if Y Rand < Oij
perform the collision between i and j, and compute

v; and v} according to the collisional law

set v Tt = o}, 0P = 0]
o set v"! = o for all the particles that have not collided

end for

The upper bound ¥ should be chosen as small as possible, to avoid inefficient rejection, and it should be
computed fast. It would be too expensive to compute ¥ as

Y = Omax = mi?xa(|vi —vjl),

since this computation would require an O(N?) operations. An upper bound of omax is obtained by taking
¥ = 0(2Av), where

_ 1
Av:m?x|vi—v|, U::NZW.
(3

The new velocities v; and vj are computed using Eqs. (32-34).

For general collision kernel, the algorithm is slightly modified by introducing the angular dependence. In this
case the collision is always performed, and the new velocities are extracted according to the differential cross
section. Then a rejection is used to decide whether the collision is accepted.

We remark here that the probabilistic interpretation of Eq. (30) breaks down if At/e is too large, because the
coefficient of f™ on the right hand side may become negative. This implies that the time step becomes extremely
small when approaching the fluid dynamic limit. Therefore Nanbu-Babovsky method becomes unusable near
the fluid regime.

We refer the reader to [2] for a detailed discussion on the convergence of Nanbu-Babovsky method.

Remark 3.16. We observe that in actual implementations, one chooses a given number of dummy collision
pairs, equal to uNAt/2. Such pairs are sampled uniformly among all possible pairs. The parameter p is
obtained by an estimate ¥ of the maximum cross section between all particle pairs. Then dummy collisions
are performed, and each of them is accepted with a probability which depends on the ratio o(v;,v;)/X. If we
do not had to compute X, then the computational cost of such Monte Carlo method would be independent on
the time step, since its cost would be proportional to the number of collisions, which is basically independent
on the time step, for small time steps. This is the case, for example, of Maxwell molecules. However, if we
compute ¥ at every time step, then the cost of the computation increases when we decrease the time step, since
the estimate of ¥ has a cost O(N) and not O(NAt).
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3.2.2. Bird’s scheme

In the sixties G. Bird proposed a numerical scheme for the simulation of particle collisions. The relation to
the Boltzmann equation has been conjectured since its first appearance, but it has been rigorously formalized
only recently [45].

The method can be described as follows. Let us consider first the Maxwellian case. The number of collisions
in a short time step At is given by

NuA
N, = Ypat
2e

This means that the average time between collisions At is given by

At 2
At, =0 = =
N, uN

Now it is possible to set a time counter, t., and to perform the calculation as follows

Algorithm 3.17 (Bird for Maxwell molecules).
1. compute the initial velocity of the particles, {v9,i =1,... ,N},
by sampling them from the initial density fo(v)
. set time counter t, = 0
. set At. =2¢/(uN)
4. forn =1 to nror
o repeat
- select a random pair (i, j) uniformly within all possible N (N — 1)/2 pairs
- perform the collision and produce vj, v’
- set ’lNJi = U;,’ﬁj = ’U;
- update the time counter t. = t. + At,
until £, > (n + 1)At
o set U?-H =0;,i=1,...,N
end for

w N

p The above algorithm is very similar to the Nanbu-Babovsky (NB) scheme for Maxwellian molecules or for
the Kac equation. The main difference is that in NB scheme the particles can collide only once per time step,
while in Bird’s scheme multiple collisions are allowed. This has a profound influence on the time accuracy of
the method. In fact, while the solution of the NB scheme converges in probability to the solution of the time
discrete Boltzmann equation, Bird’s method converges to the solution of the space homogeneous Boltzmann
equation. In this respect it may be considered a scheme of infinite order in time. For the space homogeneous
Boltzmann equation, the time step At, in fact, can be chosen to be the full time span .. When the full
space non-homogeneous Boltzmann equation is considered, however, then the scheme is used on a time step At
which is the time discretization used in the splitting scheme. When a more general gas is considered, Bird’s
scheme has to be modified to take into account that the average number of collisions in a given time interval is
not constant, and that the collision probability on all pairs is not uniform. This can be done as follows. The
expected number of collisions in a time step At is given by!

_ NpoAt

NC )
2e

'Tn sections 3, 4, and 5 we denote by p rather by p/m the number density of particles (particles per unit volume).
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where @ denotes the average collision frequency, and can be computed, in principle, by

2

E:m21§i<j§]\fa(|vi—vj|). (38)

Once the expected number of collisions is computed, then the mean collision time can be computed as

At 2¢
At = — = )
° N. Npo

The N, collisions have to be performed with probability proportional to ¢;; = o(Ju; — v;|). In order to do this
efficiently, one can use the same acceptance-rejection technique use in Nanbu-Babovsky scheme. The drawback
of this procedure is that expression (38) for 7 is too expensive. A very simple and effective solution to this
problem is to compute a local time counter At. as follows. First select a collision pair (i,j) using rejection.
Then compute

2e
Npoij'

Atij =

It is immediate to show that this choice gives the correct expected value for the collision time

At, = Z Ati;pij,

1<i<j<N

where
O'ij
Dij - = ———
Zl§i<j§N o)

is the conditional probability that pair (i, j) collides. Performing the calculation one has

2e
Atc = Z Atijpij = N—pE
1<i<j<N

Bird’s algorithm for general VHS molecules can therefore be summarized in the following algorithm:

Algorithm 3.18 (Bird for VHS molecules).
1. compute the initial velocity of the particles, {v?,i =1,... N},
by sampling them from the initial density fo(v)
2. set time counter t. = 0
3. forn =1 to nror
o compute an upper bound ¥ of the cross section
o repeat
- select a random pair (i, ) uniformly within all possible N(N — 1)/2 pairs
- compute the relative cross section o;; = o(Jv; — vj))
-if X Rand < Oij
perform the collision between ¢ and j, and compute
v; and v} according to the collisional law
set 0; = v}, 5 = v}
set Atij = 26/(Np(fij)
update the time counter t. = t. + At;;
until t. > (n+ 1)At
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o set U?-H =0;,i=1,...,N
end for

Remark 3.19. At variance with NB scheme, there is no restriction on the time step At for Bird’s scheme.
For space homogeneous calculations At could be chosen to be the total computation time ty,,,. However, the
scheme requires an estimate of oyax, and this has to be updated in time. This can be done either by performing
the estimate at certain discrete time steps as in NB scheme, or by updating its value at every collision process.
A possible solution in O(1) operations is to check whether the new particles vg,vé generated at each collision
increase the quantity Av = max; [v; — 9.

Unfortunately Bird’s method too becomes very expensive and practically unusable near the fluid regime
because in this case the collision time between the particles At;; becomes very small, and a huge number of
collisions is needed in order to reach a fixed final time ..

4. TIME RELAXED MONTE CARLO (TRMC) METHODS

We have seen in the previous section that standard DSMC methods lose their efficiency near the fluid regime.
We will describe in this section some recently developed Monte Carlo methods for the acceleration of DSMC
computations near continuum regimes. Numerical results for space homogeneous problems will be shown in
Section 5, whereas applications to shock wave computations will be given in Section 6.

We start the section with a short review of the Wild sum truncation [16] of the Boltzmann equation which
is the starting point for the construction of TRMC methods.

4.1. Asymptotic preserving schemes

As proposed in [16], a general idea for deriving unconditionally stable and asymptotic preserving numerical
schemes for a nonlinear equation like (18) is to replace high order terms of a suitable well-posed power series
expansion by the local equilibrium. This class of schemes has been called Time Relazed (TR) schemes.

Here we will briefly recall the schemes presented in [16] and some generalization used in [34].

4.1.1. Time relazed (TR) schemes

Let us consider a differential system of the type (25) with the initial condition f(v,t =0) = fo(v). We have
seen in the previous section that the Boltzmann equation with a bounded kernel can be written in the form
(25).

Let us replace the time variable ¢ and the function f = f(v,t) using the transformations

r=(1—e*"%),  F(v,7) = f(v,t)e"/*,
Then F' is easily shown to satisfy

OF 1
5 = ;P(F, F) (39)

with F(v,7 = 0) = fo(v).
Now, the solution to the Cauchy problem for (39) can be sought in the form of a power series

F(v,7) =Y 7" fi(v),  fr=o(v) = fo(v) (40)
k=0
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where the functions f; are given by the recurrence formula

k
1 1
:—E —-P o k=0,1,... 41
fk+1(U) k+1h:0M (fh)fk h): )Ly ( )
Making use of the original variables we obtain the following formal representation of the solution to the Cauchy
problem for (25)

o0

Fo.y= e =3 (1 e ) ). (12)

k=0

Remark 4.1. The method was originally developed by Wild [47] to solve the Boltzmann equation for Maxwellian
molecules. Here we describe the method under more general hypothesis on P, as derived in [16]. We emphasize
that the representation (42) is not unique and other well-posed power series expansions can be obtained in a
similar way [16].

Finally, note that expansion (42) continues to hold also if p is a function of v. Unfortunately this choice
leads to nonconservative schemes.

From this representation, a class of numerical schemes can be naturally derived.
In [16] the following class of numerical schemes, based on a suitable truncation for m > 1 of (42), has been
constructed

m

fn+1(,U) — o HAt/e Z (1 _ equt/E)k f]?(U) + (1 _ equt/g)m-l-l M(U), (43)
k=0

where f = f(nAt) and At is a small time interval. The quantity M (referred as the local Maxwellian associated
to f) is the asymptotic stationary solution of the equation.

It can be shown that the schemes obtained in this way are of order m in time. Furthermore, we have [16]
the following
Proposition 4.2. The schemes defined by (43) satisfy

i) conservation:

If P(f,g) is a non negative bilinear operator such that there exist some functions ¢(v) with the following

property
| pepewdo=n [ fowan vr>o. fertm, (44)
and the initial condition f° is a non negative function, then f"*' is nonnegative for any uAt/e, and

satisfies
| oo = [ o (45)

R3 R3
ii) asymptotic preservation (AP):
For any m > 1, we have

lim "t = M(v). (46)

nAt/e—o00
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When applied to the Boltzmann equation, the first property guarantees exact conservation of mass, momen-
tum, and energy, for the semi-discrete scheme, while the second property guarantees the correct fluid dynamic
limit.

4.1.2. Generalized TR schemes

The approach we presented above can be generalized using different weight functions to combine the influence
of the high order coeflicients appearing in the Wild sum (42). In general such schemes can be written as

= ZAkfk + A1 M, (47)

k=0

where the coefficients f;, are given by Eq. (41).
The weights Ay = Ax(7) are nonnegative functions that satisfy the following

Proposition 4.3. Let the weights A, = Ay (1) be nonnegative functions that satisfy

i) consistency:

lll)I})Al(T)/T = 1, }%Ak(T)/TZO, k=2,...,m+1 (48)
ii) conservation:
m+1
d Ap=1 T€,1], (49)
k=0

iii) asymptotic preservation (AP):

lim Ag(7) =0, k=0,...,m (50)

T—1

then (47) is a consistent discretization of problem (25) that satisfies proposition 4.2.

The proof is a simple exercise and we leave it to the reader.
A choice of functions which satisfies the previous requirements is given by

Ar=01-71)7" k=0,...,m, Ay =71""" (51)

which corresponds to the scheme (43). A better choice of parameters is [33]

Ay=01-n)7* k=0,... ,m—1, AmZI—ZAk—Am+1, Apgr = 7", (52)
k=0

which corresponds to take fr,+1 = fm, ft = M, k> m+ 2 in (42).

However, other choices are possible and it is an open problem the determination of the optimal set of functions
Ay, that satisfies the previous requirements and guarantees the most accurate approximation.

The stability properties of such schemes is studied in [33].

4.2. Time Relaxed Monte Carlo methods

In this section we describe a class of simulation schemes for the Boltzmann equation, the Time Relaxed Monte
Carlo (TRMC) methods, based on the probabilistic interpretation of the previous time discretization.
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Since we deal with the space homogeneous case, we shall make the simplifying assumption that the function
f™(v) is a probability distribution, i.e.

f*(v)dv=1.
HB

We recall that the probability interpretation of the Nanbu-Babovsky scheme we have seen in the previous
chapter is valid as long as pAt < 1. This corresponds to the stability restriction of the explicit Euler scheme.

4.2.1. TRMC methods
The first order TRMC algorithm is based on the TR schemes

Fr = Ao+ A fy + AsM (53)

The probabilistic interpretation of the above equation is the following: a particle extracted from f" will not
collide with probability Ag, it will collide with another particle extracted from f™ with probability A1, or it will
be replaced by a particle sampled from a Maxwellian with probability As.

In this formulation the probabilistic interpretation holds uniformly in pAt/e, at variance with standard
Nanbu’s method, which requires pAt/e < 1. Furthermore, as uAt/e — oo, the distribution at time n + 1 is
sampled from a Maxwellian. In this limit, the density f™*! relaxes immediately to its equilibrium distribution.
In a space non-homogeneous case, this would be equivalent to the particle method for Euler equations proposed
by Pullin [37].

The Monte Carlo scheme described above are conservative in the mean. It is possible to make it exactly
conservative by selecting collision pairs uniformly, rather than individual particles, and by using a suitable
algorithm for sampling a set of particles with prescribed momentum and energy from a Maxwellian [38].

The conservative version of the methods can be formalized in the following algorithm

Algorithm 4.4 (First order TRMC for VHS molecules).

1. compute the initial velocity of the particles, {v9,i =1,... ,N},
by sampling them from the initial density fo(v)

2. forn =1 to nror

given {vl"i=1,... ,N},

compute an upper bound ¥ of the cross section

set 7 =1 — exp(—pXAt/e)

compute Aq(7), A2(7)

set N. = Iround(N 4, /2)

perform N. dummy collisions, as in Algorithm 3.15

set Ny = Iround (N A,)

select Njs particles among those that have not collided,

and compute their mean momentum and energy

o sample Ny particles from the Maxwellian with the above
momentum and energy, and replace the N, selected particles
with the sampled ones

o set U?H = o) for all the N — 2N, — Ny particles that
have not been selected

O O O o o o o

end for

A second order Monte Carlo scheme is obtained by the TR scheme

= Agf" 4+ AL fi + Asfo + A3 M, (54)
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with

leP(f,f ), fzzp(fafl)
0 0

Given N particles distributed according to f™, the probabilistic interpretation of scheme (54) is the following;:
N Aq particles will not collide, N A; will be sampled from f; (as in the first order scheme), N Ay will be sampled
from fs, i.e. NAs/2 particles sampled from f" will undergo dummy collisions with N A, /2 particles sampled
from f;, and N A3 particles will be sampled from a Maxwellian.

Once again, the methods can be made conservative using the same techniques adopted in the first order
scheme. The various steps of the method can be summarized in the following algorithm.

Algorithm 4.5 (Second order TRMC for VHS molecules).

1. compute the initial velocity of the particles, {v9,i =1,... ,N},
by sampling them from the initial density fo(v)
2. for n =1 to nror
given {v"i=1,... ,N},
compute an upper bound ¥ of the cross section
set 7 =1 — exp(—pXAt/e)
compute Aq(7), As(1), As(7T)
set N1 = Iround(N A;/2) , Na = Iround(N Az /4)
select N1 + No dummy collision pairs (¢, ) uniformly
among all possible pairs
perform N; dummy collisions, as in Algorithm 3.15
o for N, pairs
- compute the relative cross section o;; = o(|Jv; — vj|)
-if X Rand < Oij
perform the collision between i and j,
compute v; and v} according to the collisional law and
store them
o select 2Ny particles from f™
o perform the collision of these selected particles with the
set of 2NN» particles that have collided once and stored
o update the velocity of the 4N, particles with the outcome
of the 2N, collisions (of particles that have never collided
before with particles that collided once)
o set Np; = Iround(INVA3)
o replace Njs particles with samples from Maxwellian, as in Algorithm 4.4
o set U?-H = v} for all the N —2N; — 4N, — Ny particles that
have not been selected

O O O O O

[e]

end for

Similarly higher order TRMC methods can be constructed. For example a third order scheme is obtained
from

Pl =Aof™ + AL fi + Asfo + Asfz + AsM, (55)
with
=B gy SBEI) gy Lop(rn, )+ P AL

We omit for brevity the details of the resulting Monte Carlo algorithm.
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4.2.2. Hybrid TRMC methods

The variance of the Monte Carlo solution can be considerably reduced if one represents the equilibrium part
of the distribution function analytically by a Maxwellian. Such idea has been recently presented in the paper
[32]. One makes the ansatz that the distribution function is the sum of a continuous and a discrete part,

frw) =1 =p")g"(v) + "M (v).

By substituting this expression in the first order scheme (53), one obtains the evolution equations for ™ and
gn

B = AgB" + A1(BM) + As (56)
P(g™, g" P(g", M

9"t = pg"+pe o VY )+Q2 (g ) ) (57)

[ [
where

AO A1(1+/8n)

- . pa= , 58

P der @y P T Ao+ A+ Ba) (58)

1-pn 24"
- = _ 59
0 1+ pn q2 1+ pn (59)

Note that p1,ps > 0,p1 +p2=1,q1,02 > 0, 1 + g2 = 1.
Equation (56) is an iterated map for the coefficient § and can be rewritten using the conservation property
(49) as

B =gt = Ay (B = 1)(B" — Az/Ay). (60)
This discrete dynamical system has stationary points # = 1 and § = A;/A,. Our interest is only in 0 < § < 1,
which is an invariant region for the system. Hence we can state the following results:

Proposition 4.6.

i) If Ay/A1 > 1, then 8 = 1 is an attracting point and ™ — 1 as n — oo at an exponential rate with
coefficient (As — Ay), i.e.

1-B" = a(dy — A", a#0, (61)

for n large, if As/A; > 1.
ii) If Ax/A; < 1, then B =1 is unstable and B = As[A; is attracting. In this case 8™ — As[A; as n — o
at an exponential rate with coefficient (Ay — As), i.e.

|A2/A1 = B =2 a(Ar — A2)",  a#0, (62)

for n large, if As/A; < 1.

Remark 4.7. The requirement A»/A; > 1 cannot be verified uniformly in A = pAt/e. However, the fluid
regime corresponds to A > 1 so that A,/A; > 1 because of the asymptotic preserving property. This shows
that 8™ increases monotonically to 1 in the fluid region, as desired.

For example, for the first order scheme corresponding to (51), A2/4; = 7/(1 — 7). It follows that ™ — 1
if 7> 1/2. Similarly the scheme characterized by (52) has A»/4; = 72/(1 — 72). Hence 8" — 1if 7 > 1//2.
Clearly, near the fluid limit pAt/e > 1 and hence 7 = 1 — e #A/ x5 1.
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The probabilistic interpretation of the evolution equation for ¢” is similar to the one for the purely particle
scheme.

An acceptance-rejection technique, similar to the one used for DSMC, can be adopted. The conservative
algorithm to update 8™ and g™ can be written as

Algorithm 4.8 (Hybrid TRMC for VHS molecules).
1. compute the initial velocity of the particles, {v?,i =1,... ,N°},
by sampling them from the initial density fo(v)
2. formn =0 to nror — 1
given {v?",i=1,... ,N"}
oset =0,N.=0
o compute an upper bound X of the cross section
o set 7 =1 — exp(—pXAt/e) and
compute the corresponding quantities Ag, A1, Aa, p1,P2,q1, 92
o set Ngar = Iround(p2g2N"™/2) and Nyy = Iround(pagi N™/2)
o perform Ny, dummy collisions between g-particles,
- extract (7, j) without repetition
- if ¥ Rand < 03 then perform the collision between v; and v;
set 7;; = 1 —exp(—po;;At/e) and
compute the corresponding quantities Aéj , Aij , A;j ) Bij
set ﬂ = ﬂ + 2,8ij
set N. = N, + 2
o perform 2N,y dummy collisions between the g-particles and the Maxwellian,
- extract ¢ without repetition
- sample one particle, m, from the Maxwellian
- if ¥ Rand < 0y then perform the collision between v; and the Maxwellian
ComPUte 3m: Allm> ém, ﬂlm
set 6 = 6 + 2Bzm
set N.=N,+1
set "t = B/N,
update N: N = Tround(N°(1 — gn+l))
correct 3"t in order to preserve mass
correct uys and Thy to maintain conservation of momentum and energy.

O O O o

end for

The above scheme conserves momentum and energy only on the average, but not exactly. This is because
the collisions with the Maxwellian M, if performed independently from each other, do not maintain exact
conservation of momentum and energy. By taking this into account, a conservative algorithm can be constructed
by changing momentum u; and energy Ejs of the Maxwellian fraction after each collision (local conservation),
according to
i~ (v7)” — (v))°

[ V;
J J " J
Eyy, = Ey —

o F “anogs 0 "0 ©3)

uhy = up —
where
1 2
EM = §(dTM + ’LLM),
d is the dimension of the velocity space and T, is the temperature of the Maxwellian.

Alternatively, conservation can be restored by modifying the moments associated to the Maxwellian fraction
at the end of each time step (global conservation).
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This is obtained by imposing
(1_6n+1)EP+Bn+1EM :E07 (I_Bn+1)up+ﬁn+1uM :UO, TL>0,

where u, and E, are the mean velocity and energy of the particles.

The two approaches give very similar results and can be used if 5™ is not too small.

If the distribution is very far from equilibrium, i.e. if 5™ < 1, then because of fluctuations, it may happen
that the energy decreases too much, and it is impossible to change the parameters of the Maxwellian to impose
conservation. On the other hand, in this case, only a very small fraction of collisions will be non conservative,
and therefore the lack of exact conservation will not affect the quality of the result.

Note that with this approach the number of particles is a function of time (it is N™ ~ N°(1 — 8")).

The advantage of this approach with respect to the purely particle method is twofold: the variance of the
distribution is reduced because a fraction of the distribution function is represented analytically, and the scheme
is more efficient, because the number of particles is reduced.

On the other hand the extension of this hybrid method to space non homogeneous problems is non trivial
since after convection the continuous part is no longer Maxwellian. Hence it must be approximated (from below)
by a Maxwellian, and the excedence should be transformed into particles (see [8] for more details).

4.2.3. Recursive TRMC methods

First we note that in the case of Maxwell molecules the Wild sum (42) has a very clear probabilistic in-
terpretation. Now f(-, At) is the velocity distribution of particles at time At¢. Taking a particle at random
from this distribution, it might happen that it has not collided one single time. The probability of this event
is exp(—pAt/e), and the velocity distribution given this is fy. The first term f; in the sum (42) corresponds
to those particles that have been involved in exactly one collision. The probability that a particle has such a
history is (1 — 7)7 = exp(—pAt/e) (1 — exp(—pAt/e)), and the velocity distribution is exactly P(fo, fo)/p.-

In the same way f,, defined recursively by eq. (41), is the conditional velocity distribution given that exactly
n + 1 particles have been involved in its collision history back to the initial time. To be able to find a sample
of f,, we must assume that the densities fi, 0 < n — 1 are already known. Of course the only one of these that
is really known is fy, the initial distribution. All this is well described for Maxwell molecules e.g. in [25, 35].

Thus, for Maxwell molecules we can sample particles directly from the solution f(-, At) using the following
simple recursive algorithm. The method is essentially equivalent to the one given in [13].

Algorithm 4.9 (Recursive sampling for Maxwell molecules).

1. choose n from a geometric distribution with parameter 7 = 1 — exp(—puAt/e),
the expected is E[n] = exp(uAt/e), and hence grows rapidly with puAt/e
2. take a sample from the distribution with density f,
o if n =0, take v from the initial density fo
o else proceed as follows
- choose k € {0,1,... ,n — 1} with equal probability
- take a sample v; from the density fy,
and v; from the density f,—x—1 as in step 2
- perform the collision between v; and v;
- then v = v} is distributed according to the density f,

Note that the samples from f; and f,, 1 are computed using the same strategy simply performing step
2 recursively. This process always terminates after at most n steps. The algorithm is easy to program in a
recursive way, but for many reasons it is not very useful method for Monte Carlo-simulations of the Boltzmann
equation. In fact the expected value of n grows exponentially with yAt and the inverse of the Knudsen number,
and both the computational time and the storage requirement are proportional to E[n]. Moreover the method
is non conservative.
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The method that we now describe will solve the previous drawbacks by symmetrizing the Wild sum calcu-
lation, and using fact that the terms of the Wild sum converge to the Maxwellian. This idea is based on the
Wild sum truncation we have introduced in the previous paragraphs.

Given a set of N particles distributed according to fy, then, at time At one tries to split the particles into

i) N exp(—pAt/e) particles sampled from the initial distribution fjy,

i) Nexp(—uAt/e) (1 — exp(—uAt/s))n particles sampled from f,, for eachn =1,..,m

i) N(1-— exp(—pAt/s))m+1 particles sampled from a Maxwellian.

Note that we have

(1= exp(—pAt/e))" 2 (1= exp(-pat/2)"",

and hence the number of particles sampled form f,, is a non increasing function of n.

A schematic description of the algorithm is the following. At the beginning of the collision time step At,
there are N particles distributed according to fo. After the recursive collisions, at time At, we expect a certain
number of particles distributed according to the initial distribution (called fp), a certain number of particles
distributed according to fi, and so on. For each of these, the final number of particles is given by N,,.

The very first step in this calculation is to compute a first pair of particles (velocities) distributed according
to fm. For VHS molecules this involves the dummy-collisions of m + 1 particles, which eventually are drawn
from the initial condition. Obviously this sets a limit of the number of terms of the Wild-sum that can be
estimated with a finite number of particles at the initial time.

All m + 1 particles must be kept so that the conserved quantities remain exact. In the particular example
shown in 2, a pair of fs-particles are generated, and on the way of doing this, also two fi-particles, and two
fao-particles are generated. For each of these pairs one particle is stored and the relative ¢; or ¢p counters
incremented by one.

FIGURE 2. Generation of particles in the algorithm

It is clear that if this procedure is continued until the appropriate number N,, of f,,-particles are generated,
one risks finding that there are not enough particles at the initial step, and also that the other f,’s are not
properly distributed. A way out of this problem is the following. A collision tree as the one shown in figure 2
is evaluated from top to the bottom, just as described in Algorithm 4.9.

The difference here is that each time a particle from a given distribution is needed for a dummy-collision, one
first checks whether such a particle has already been stored. In the example above, the upper collision involves
two fa-particles, and if one or two particles already exist, then those are taken as collision partners and the
corresponding counter co decreased by one. If there are more than needed, then there is a random choice, and
if there are none, or not enough, then the algorithm is called recursively, just as before.

This is repeated until all particles with distribution f; up to f,, are generated. The final step is to generate
N,,+1 particles distributed according to a Maxwellian with accurate moments. For this, N,,;; particles are
taken from the initial distribution, the first moments are computed, and then they are discarded, and replaced
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by the same number of particles distributed according to a Maxwellian with the corresponding moments. This
last step is carried out in a conservative way using Pullin’s algorithm [38].

Starting with N particles distributed according to fy the method is conservative and can be summarized in
the following algorithm.

Algorithm 4.10 (Recursive TRMC for VHS molecules).

1. compute the initial velocity of the particles, {v?,i=1,... ,N},
by sampling them from the initial velocity fo
set 7 = 1 — exp(muAt/e), Ny = Iround((1 — 7)), N = Ng, n =0
3. repeat

osetn=n+1

o compute N,, = Iround(N(1 —7)7™)

o set N=N+N,

until (N > N) or (N,, < 1)

[\

4. set m=n—1, Nypy1 =N — (N, — Np).
5. set counters ¢, =0forn=1,... ,;m+ 1.
6. compute an upper bound ¥ of ¢;; (as in DSMC)
7. forn=m,... 1
take IV,, samples from the distribution with density f,,, according to
o repeat

- choose k € {0,1,... ,n — 1} with equal probability
- if kK = 0 take v; from the initial density fy
- else choose v; from the density fx
if ¢ > 0 use a stored particle with a random choice
set ¢, =c¢ — 1 and N = N + 1
else sample v; and v} from f;, (recursively)
v} is stored and then set ¢, =cp +1, N, = N — 1
- if n — k — 1 =0 take v; from the initial density fo
- else choose v; from the density f,—r—1
if ¢,__1 > 0 use a stored particle with a random choice
set Cp—p—1 = Cp—p—1 — Ll and Np_p—1 = Np_p—1 +1
else sample v; and v} from f,_g—1 (recursively)
v;-‘ is stored and then set ¢;, 1 =c¢cppx-1+1, Np 1 =Npp_p1—1
- if ¥ Rand < oy; perform the dummy-collision between v; and v; (as in DSMC)
- v} and v; are random variables distributed according to the density f,,
-set N, =N, —2
until (N,, > 0)
end for
8. Sample N,,41 particles from the Maxwellian as in algorithm 4.4

Note that, from a practical viewpoint, the number m can be rather large. Thus a maximum allowed value
Mumaz of m is fixed (which represent the maximum depth of a possible tree) at the beginning of the computations.
Clearly small values of m will provide a faster but in general less accurate algorithm.

5. SPACE HOMOGENEOUS NUMERICAL RESULTS

In this section we test the different TRMC methods presented in the previous section by comparing them
with the classical DSMC schemes we have seen in Section 3. Since we are interested in checking the accuracy
of the schemes we first consider two initial value problems, respectively for the Kac equation and for the
Boltzmann equation for Maxwell molecules, for which we have an exact solution. To simplify notations we
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denote by TRMC1, TRMC2, TRMC3, TRMCH, TRMCR respectively the first order, second order and third
order TRMC methods, the hybrid TRMC method and the recursive TRMC method. Next we will compare the
behavior of the schemes for Hard Spheres.

In our tests we use the family of schemes characterized by (52) and perform a single run, with a number of
particles sufficiently large to control the effects of the fluctuations. We express the results as a function of the
scaled time variable t/e which we denote again by ¢.

5.1. Kac equation

First we compare the Monte Carlo solutions with the exact solution of the Kac equation [20]

fv,t) = % [g(l — C)VC[@) + (3C(t) — 1)C(1)3/ 22| e=C OV

where

o) = [3 - 2e*ﬁt/16] -

We reconstruct the density function on a grid, by convolving the particle distribution by a suitable mollifier
[12],

f(vr) = % > Wu(Vr —vy),

where
{Vi=Vamin +IAV, I =1,... ,Ny}.
The smoothing function Wy is given by

3/4—2* if |z| 0.5,
Wi (z) = —W (—) C W) =4 (z—3/2)2/2 if 0.5< |z < 1.5,
0 otherwise.

The value H = 0.2 for AV = 0.0625 has been selected as a good compromise between fluctuations and
resolution. The simulations are performed for ¢ € [0, 8], starting with N =5 x 10* particles.

In Fig. 3 we present the numerical results obtained at time ¢t = 2 for the different Monte Carlo schemes based
on a time discretized equation with the same time step At = 1.0 which represents the upper bound for stability
of NB. It is evident that all TRMC schemes give a better representation of the solution especially near the local
extrema.

In Fig. 4 (left) we report the L?-norm of the error obtained in the same test with NB, TRMC1, TRMC2 and
TRMCH using the same time step At = 0.5. It is evident that all the TRMC methods provide a more accurate
representation of the solution. In particular, by comparing the solution obtained with NB and TRMC1 one can
see the improvement given by the first order TR scheme with respect to the explicit Euler time discretization.
It is remarkable that the TRMCH method, as a consequence of its deterministic evolution of the equilibrium
part, yields the most accurate solution.

Fig. 4 (right) shows the L?-norm of the error for the same test where the time step of the TRMC schemes
are respectively two times (TRMC1), three times (TRMC2) and four times (TRMCH) larger then the one used
by NB. Note that in spite of the different time steps the accuracy of the different schemes is similar.
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Ficure 3. (Kac equation). Details of the distribution function at time ¢t = 2.0 for A¢ = 1.0.
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FIGURE 4. (Kac equation). L? error vs time. Left: At = 0.5 for all Monte Carlo schemes.
Right: At = 0.2 for NB (x), At = 0.4 for TRMC1 (O), At = 0.6 for TRMC2 (+) and At = 0.8
for TRMCH (o).

Next we compare Bird’s method with the recursive TRMCR algorithm. We recall that both methods do not
contain time discretization errors and involves multiple collisions thus higher accuracy is expected with respect
to the previous schemes.

Table 1 shows the behavior of the relative Lo-error for ¢’ = 2t/+/m ranging from 0 to 15 where the Maxwellian
equilibrium state is reached and different values of m,,, for TRMCR have been used. It is remarkable how
uniform accuracy in time is essentially obtained for mmax = 1000 (for ¢’ = 10 the maximum value is . = 13819),
but even the values 100 and 25 give reasonable approximations with a slight deterioration of the accuracy at
intermediate times. All the three different truncations provide the same result at ¢’ = 15 since all particles are
sampled from a Maxwellian. Note that in this case the maximum depth of the trees is simply 0 since the first
term N; < 1 and step 3 of algorithm 4.10 stops at n = 1.
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In Table 2 the corresponding number of collisions is reported. Sampling two particles from the Maxwellian
is counted as one collision. The better efficiency of TRMCR, with respect to Bird’s method is clear (for ¢’ > 7
the number of collisions in TRMCR methods is much smaller than in Bird’s method).

TaBLE 1. (Kac equation). Relative Ly error norm in time for TRMCR with mya = 1000,
100, 25 and Bird’s method. We have set t' = 2t/+/7.

time Mmax = 1000 | Mmax = 100 | mmax = 25 | Bird’s method
t'=0 0.010390 0.010390 0.010390 0.010390
=1 0.006633 0.006633 0.006633 0.008301
=2 0.005153 0.005153 0.007053 0.010728
t'=3 0.005485 0.005185 0.007532 0.007074
t'=5 0.005933 0.005790 0.021239 0.005914
=7 0.005298 0.017166 0.019607 0.007987
=10 0.006369 0.010085 0.010356 0.006796
t' =15 0.006202 0.006202 0.006202 0.006293

TaBLE 2. (Kac equation). Number of collisions in time for TRMCR with m,., = 1000, 100,
25 and Bird’s method. We have set t' = 2¢/+/7.

time Mmax = 1000 | Mmax = 100 | Mmax = 25 | m Bird’s method
=1 22166 22166 22166 | 18 22156
=2 44224 44224 43607 | 48 44312
=3 66365 66389 53455 | 112 66468
=5 110146 75053 36274 | 533 110779
=7 130895 39305 27218 | 2280 155090
t' =10 41347 25958 25139 | 13819 221557
t'=15 25000 25000 25000 | 0 332336

5.2. Maxwell molecules

Next we consider the numerical solution of the two-dimensional homogeneous Boltzmann equation for
Maxwell molecules.
An exact solution for this equation is given by

1 1 v? v’
100 = 50 [~ 2@~ €0 (1~ 36| o0

where C(t) = 1 — (1/2)e /5.

The density distribution is obtained by reconstructing the function on a regular grid of spacing Av = 0.25 by
the “weighted area rule” [19] and the simulations have been performed for ¢ € [0, 16] by starting with N = 103
particles.

In Fig. 5 we show the L? norm of the error in time for both NB and TRMC schemes. In the first picture
we report the results obtained with the same time step At = 1.0. The results confirm the gain of accuracy of
the TRMC methods on the transient time scale. Next, the results obtained with different time steps, chosen in
such a way that the different errors are roughly the same, are also reported.
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FIGURE 6. (Maxwell molecules). Fourth order moment vs time. Left: At = 0.15 for NB (%)
and At = 0.6 for TRMCH (o). Right: At = 0.3 for TRMC1 (x) and At = 0.45 for TRMC2
(¢). The line represents the exact solution.

In Fig. 6 we show the time evolution of the fourth order moment of the solution. The results confirm the
gain of accuracy and the reduction of fluctuations of TRMC methods with respect to the NB method for larger
time steps.

The comparison of Bird’s and TRMCR is reported in Table 3 and 4. The results confirm the superior efficiency
of TRMCR with respect to Bird’s method (for t+ = 10 we have a factor ten reduction in the computational cost).
Note that in this case uniform accuracy in time is obtained for m,,,, = 100 whereas m = 25 gives an acceptable
deterioration of accuracy for intermediate times. In this two-dimensional computations, in fact, fluctuations
play a more important rule since we have only twice the number of particles of Kac’s case. Again for ¢ = 15 all
particles are sampled from a Maxwellian.
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TaBLE 3. (Maxwell molecules). Relative Lo error norm in time for TRMCR with mimax = 1000,
100, 25 and Bird’s method

time Mmax = 1000 | Mmax = 100 | mpmax = 25 | Bird’s method
t=0 0.009972 0.009972 0.009972 0.009972
t=1 0.009461 0.009461 0.009461 0.009378
t=2 0.008263 0.008263 0.009039 0.009147
t=3 0.008162 0.009050 0.010919 0.008327
t=5 0.009261 0.010928 0.016342 0.009281
t="7 0.008201 0.011544 0.012152 0.008460
t=10 0.009337 0.008487 0.008978 0.010218
t=15 0.008689 0.008689 0.008689 0.009847

TaBLE 4. (Maxwell molecules). Number of collisions in time for TRMCR with m,ax = 1000,
100, 25 and Bird’s method

time Mmax = 1000 | Mmax = 100 | mmax =25 | M Bird’s method
t=1 49975 49975 49975 | 22 50000
t=2 99879 99879 95880 | 65 100000
t=3 149907 148497 103956 | 166 150000
t=5 249668 124034 63378 | 963 250000
t=7 206706 63784 52037 | 4946 350000
t=10 61294 50679 50093 | 33323 500000
t=15 50000 50000 50000 | O 750000

5.3. Hard Sphere molecules

The last test problem deals with the numerical solution of the Boltzmann equation for Hard Sphere molecules
(VHS, for a = 1) with C, = 1.

The initial condition is the same used for the Maxwell molecules. The “exact” solution has been computed
using NB method with 2 x 105 particles and At =5 x 1073.

As in the previous case, the density distribution is obtained by reconstructing the function on a regular grid
of spacing Av = 0.25 by the “weighted area rule” and the simulations have been performed for ¢ € [0,16] by
starting with V = 10° particles.

In Fig. 7 we show the time evolution of the fourth order moment of the solution. The results confirm the
gain of accuracy and the reduction of fluctuations of the TRMCH method with respect to NB method for larger
time steps.

Next we report the number of dummy collisions and the number of effective collisions per time step performed
by NB and TRMCH (Fig. 8).

Remark 5.1. We conclude this section with some additional considerations on the efficiency of the previous
Monte Carlo methods.

First, in spite of the fact that the time step for TRMC1, TRMC2, TRMC3, TRMCH methods can be chosen
larger than that of NB, the number of dummy collision is higher for NB. The reason is that this number is
proportional to uAt for NB, and it is proportional to 1 — exp(—uAt) for the other methods.

Second, we emphasize that Bird, TRMC2, TRMC3, and TRMCR take into account multiple collisions of
particles during the same time step. Thus, although the direct combination of the previous schemes with a
solver for the transport step gives a scheme which is still first order, we expect that the overall accuracy of the
solution will be improved also in space non-homogeneous problems (see Section 6).
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For space non-homogeneous situations where uniform accuracy in time is a highly desirable property the
most promising method seems to be the recursive TRMC. In particular the depth of the truncated trees may
be adapted to the space cells accordingly to the problem under study.

Finally, it is remarkable that in the homogeneous test problems we have presented here, the accuracy of the
virtually first order TRMCH is higher than the accuracy of the second order TRMC2. In fact, the effect of the
reduction of fluctuation given by the deterministic evolution of the Maxwellian part is stronger than the gain
in time accuracy given by the multiple collisions of particles.
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6. SPACE NON-HOMOGENEOUS CASE

In this section we consider the full space non-homogeneous Boltzmann equation. We shall illustrate the
method with some simple application in one space dimension.

The splitting approach with particle method is particularly simple. The region 2 is divided into a certain
number N, of cells, and for each cell J one counts the number of particles per cell, Ny. Then during the
collision step, the space homogeneous Boltzmann equation is solved by Monte Carlo in each cell, assuming that
the density is constant in each cell. Each particle may collide only with particles within the same cell.

The solution of the collision step in the time interval t,,¢,+1 can be performed by one of the techniques
illustrated in the previous sections (Bird scheme, Nanbu-Babovsky scheme, first or second order TRMC, and
so on). In the space homogeneous case we assumed that the density function was a probability density, and
therefore its in integral over velocity was one. In the space non-homogeneous case, the integral in velocity gives
the number density of the the gas, i.e.

fl@,v,t)dv =2
R3 m

where m is the mass of the atom of the gas. The treatment of the previous section can be repeated, with the
modification that the parameter u in Eq. (25) is in this case given by

p=drst
m
The density p in each cell, in turn, is proportional to the number of particles in the cell. More precisely, the

density is given by
pPJ = .N:]T)’L)‘<

where m* is the “mass” of the simulation particles, which in general is much larger than the effective mass of
a particle. The reason of this is that one wants to simulate physical systems with a large number of particles,
by a much smaller number of simulation particles. As a result, a simulation particle usually represents several
physical particles. Detailed discussions about this can be found, for example, in [4].

During the collision step, mass, momentum and energy in each cell remain constant.

At time ¢, = nAt, each particle is characterized by a position, 27, and a velocity, v]'. Before the collision
step, one has to determine the particle belonging to each cell. From the point of view of the implementation,
one possibility to achieve this is to perform a sweep on all the particles and to determine in which cell each
particle lies. This can be obtained, for example, by creating two vectors, kp[/N] and cp[N,], where N is the total
number of particles, with the following meaning: the particles in cell J are all the particles with index kpl[k],
with cp[J — 1] < k < cp[J]. Such ordering of the particles can be constructed very quickly in O(NN) operations.

After the collision step, the velocity of the particles is updated, and each particle has been assigned a new
velocity, let us call it 9;, ¢ = 1,... | N.

The convection step is performed very easily, with a single loop over all the particles, namely

If there are no boundaries, then the new positions and velocities of the particles at the new time t,; will
simply be

The presence of boundaries will be considered in the next section.
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As we shall see, the time step At is mainly determined by the requirement that the particles do not travel
more than a few cells in one time step. This requirement is related to a stability requirement of upwind schemes
for the numerical solution of the single scalar equation.

The time step used in the numerical solution of the space homogeneous Boltzmann equation, on the other
hand, is determined by different requirements. For example, in the case of NB scheme, one has to require
positivity of the probability, and therefore the collisional time step must satisfy the restriction

P S Ateon < 1 (64)
m

This condition can be guaranteed by dividing the convection time step, At, into an integer number of smaller
collision time steps, Atcon, such that condition (64) is satisfied.

TR schemes do not have such restriction, and therefore can generate more efficient codes. An application to
some space non-homogeneous problems will be shown later.

6.1. Implementation of boundary conditions

In this section we shall discuss how to deal with boundaries. Let us suppose, for simplicity, that our problem
is one dimensional in space. Let 2 = [0, L] be the computational domain in space. We shall distinguish between
different kinds of boundary conditions. Boundary conditions are applied during the convection step, after the
candidate positions ; have been determined.

6.1.1. Periodic BC

In the simple case of periodic boundary conditions, one has to check whether the candidate position is still
in 2, and if not, add or subtract the period. Here is a schematic description of the process

Algorithm 6.1.

fori=1to NV
if 0<@; <L
set :r?“ =i, vt =4,
if 2, <0
set :L’;H_l =x;+ L, ot = Vs,
if Z; > L
set 2"t =3, — L, oM =4
end for

6.1.2. Reflecting boundary conditions

In this case the particle is simply reflected by the wall if the candidate space coordinate is out of the domain.
This case corresponds to a reflection scattering kernel given by K (v* — v) = d(v* —v+2n(n-v)). Algorithmically,
this can be realized as follows

Algorithm 6.2.

fori=1to N
if 0<z; <L
n+l __ ~ n+1l _ ~
set x, ' =I;, v; =1y,
if 2, <0or Z; > L
+1 _ - ~ +1 _ _~ +1 _ ~ +1 _ ~
set 277 =b—|Z; — b|sgn(vix), v = Ui, UZ/ =y, UL =0,
end for

where b denotes either 0 or L. The generalization of the above condition to more dimensions is straightforward.
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6.1.3. Mazwell’s boundary conditions

In this case the particle is either specularly reflected, or absorbed by the boundary, and re-emitted with
a Maxwellian distribution corresponding to the thermal equilibrium with the wall. The reflection scattering
kernel is given by

K" = v) =aMy@)|v-n|+ (1 —a)d(v” —v—2n(n-v")), (v*-n<0, v-n>0).

Here « is the so called accommodation coefficient, and M, (v) is the Maxwellian distribution corresponding to
a gas in thermodynamic equilibrium with the wall. Algorithmically, the boundary condition is implemented in
this way. Suppose, for example, that Z; < 0. Then, with probability 1 — a the particle will undergo a specular
reflection. With probability « the particle is sampled from the half Maxwellian M,,(v), v, > 0. In this case the
new positions and velocities are computed according to

Algorithm 6.3.
1. compute Af = |%;/7,],
2. sample ¥ from the Maxwellian M,,(v), and assign v
3. compute a;?“ = UZUHAtN.

1 = |17”;|, 'UZj_l

n+

. n+l __ ~.
i = Viy, Vj, = Viz,

An analogue procedure can be used at the wall located at @ = L.

6.1.4. Inflow boundary conditions

These conditions are encountered, for example, when computing the structure of a stationary shock. They
are imposed on the left and right boundary, by filling the computational domain with particles sampled from
a distribution proportional to the flux |v,|M (p,u,T)(v), where M (p,u,T) denotes the Maxwellian distribution
with density p, mean velocity v and temperature 7. Density, velocity and temperature are those assigned at
the left and right boundary, and are related by the Rankine-Hugoniot relations [46]

pLYuL = PRUR,
PLU% +pr = PRU% + PR,
ur(Er +pr) = wur(ERr+pr).

The expected number of incoming particles is obtained by integrating the flux on the boundary. On the left
boundary, for example, one has

400
< NP >= SAa:At/ veM(nr,ur,Tr)(v) dv, (65)
0

where S is the cross sectional area of the tube, n, = pr/m is the number density on the left of the computational
domain, Az is the cell size. These parameters are related to the average number of particles per cell on the left
boundary by the relation

< N >=SAzng.

Similarly, new particles are created at the right boundary.

The position of the new particles is determined as follows. Suppose a new particle with velocity v* is
generated during the time step, at the boundary. Since the particle is assumed to be generated at a random
instant, uniformly distributed in the time interval [t,¢ + At], then its position at time ¢ + At is given by

¥ =b+ v ALE,

where b is either 0 (left boundary) or L (right boundary), and ¢ is a uniformly distributed random number in
[0,1].
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If one creates new particles according to Eq. (65) and the corresponding formula for the particles coming
from the right, then the total number of particles in the domain is not constant, but fluctuates around the
mean. This effect results in a fluctuation in the shock position. If time average is used to obtains a smoother
profile, then the shock thickness will appear much larger than the exact one. In order to avoid this effect, one
can impose that the number of particles is constant. This can be done by counting the number of particles
N'°st which leave the domain in a time step At, and replacing them by the same number of new particles. This
is obtained, for example, by computing N7*% and N3V according to the formulas

< NPV >
New  —  Tround L Nlost
L <<Ngew>+<N§ew> ’

new  __ lost new
Npew = Nlost _ ypew

6.2. Shock wave profiles

The test problem deals with the numerical solution of the space non-homogeneous Boltzmann equation for
hard sphere molecules (VHS, for a = 1) with C,, = 1. We present some numerical results for one-dimensional
stationary shock profiles. In particular we have computed the structure of the shock for different Knudsen
numbers, from the rarefied regime up to the fluid limit. In all our numerical tests the gas is initially at the
upstream equilibrium state in the left half-space and in the downstream equilibrium state in the right-half space.
The upstream state is determined from the downstream state using the Rankine-Hugoniot relations.

In the present calculations, the downstream state is characterized by

p=10, T =10, M=3.0,
where M is the Mach number of the shock. The downstream mean velocity is then given by

Uy = —M~/YT, uy =0,

with v = 2 since we have considered a 2D monatomic gas in velocity space.

The infinite physical space is truncated to the finite region [—7.5,7.5]. The technique previously illustrated
has been used to keep the number of particles constant during the time evolution. We report the result obtained
with the different schemes using 50 space cells and 500 particles in each downstream cell. Since we are computing
a stationary solution after a fixed initial time, we can strongly improve the accuracy of the Monte Carlo solution
by averaging in time the solution itself. To this aim we started accumulating statistics at time ¢t = 5 and we
average up to t = 20 which corresponds approximatively to 1500 time steps. The reference solution in the
rarefied and intermediate regime is obtained using the Nanbu-Babovsky (NB) method with 200 space cells and
500 particles in each downstream cell and averaging over approximatively 8000 time steps. All the results are
reported on the space interval [—4.5,4.5].

In Fig. 9 we plot the result obtained in the rarefied regime (e = 1) using the different Monte Carlo methods.
The computational cost of the methods is comparable since here we are far from the fluid limit. As expected,
the results show that essentially the TRMC methods and the NB method are equivalent and provide a good
description of the rarefied shock.

Next we consider the intermediate regime (¢ = 0.1). Two different time steps have been used for NB, a
convection time step At and a collision time step Ateon = At/10. The collision time step for TRMC is equal
to the convection time step. The result show that, despite the larger time step, the accuracy of the solution
obtained with TRMC schemes is essentially the same of NB (see Fig. 10).

Finally we give the result of the computations close to the Euler limit (e = 107°). The profiles obtained with
the TRMC methods are reported in Fig. 11. Due to the small Knudsen number the NB method is unusable in
practice in this test. Note that the TRMC methods are all equivalent to Pullin’s method. Thus we have plotted
only one TRMC solution.
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26

T(x.)

FIGURE 9. Shock wave profiles (rarefied regime): NB(+) and first order TRMC (x) (left
column), second order (x) and third order (o) TRMC (right column) for e = 1.0 and At = 0.025.
From top to bottom: p, u, T. The line is the reference solution.
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At = 0.0025 for NB, At = 0.025 for TRMC. From top to bottom: p, u, T. The line is the
reference solution.

[2] H. BABOVSKY, R. ILLNER, A convergence proof for Nanbu’s simulation method for the full Boltzmann equation.
SIAM J. Numer. Anal. 26 pp. 45-65, (1989).
[3] G.A. BIRD, Direct simulation and the Boltzmann equation. Physics of Fluids A, 13, 2672-2681, 1970.



74 LORENZO PARESCHI AND GIOVANNI RUSSO

26

x
=
241 x
221
x
oL
18-
z
=
16
14r x
12-
WL x
0gl— . . . . . . .
-4 -3 -2 -1 0 1 2 3 4
X
-15
=
ol x
-25F
2 -3 x
>
=35
_al
x
P I . . . . . . . .
-4 -3 -2 -1 0 1 2 3 4
X
5
45F x b
ab |
35 b
x
3r 4
225 ]
g
2F 4
15F b
x
e
05 b
ol . . . . . . . .
-4 -3 -2 -1 0 1 2 3 4

FIGURE 11. Shock wave profiles (fluid regime): first order TRMC (x) for ¢ = 1078 and
At = 0.025. From top to bottom: p, u, T

[4] G.A. BIRD, Molecular Gas Dynamics. Oxford University Press, London, 1976.

[6] A.V. BOBYLEV, Ezact solutions of the nonlinear Boltzmann equation and of its models. Translated from Molecular
gas dynamics (Russian), 50-54, ”Nauka”, Moscow, 1982. Fluid Mech.—Soviet Res. 13 (1984), no. 4, 105-110 (1985).

[6] J.F. BOURGAT, P. LETALLEC, B. PERTHAME, Y. Q1U, Coupling Boltzmann and Euler equations without overlapping.
In “Domain Decomposition”, AMS, 1992.



AN INTRODUCTION TO MONTE CARLO METHODS FOR THE BOLTZMANN EQUATION 75

[7] R.E. CAFLISCH, Monte Carlo and quasi-Monte Carlo methods. Acta numerica, 1998, 1-49, Acta Numer., 7, Cam-
bridge Univ. Press, Cambridge, 1998.

[8] R.E. CAFLIsCcH, L. PARESCHI, Towards an hybrid scheme for rarefied gas dynamics. IMA volumes in Appl. Math.
(to appear).

[9] C. CERCIGNANI, The Boltzmann equation and its applications. Springer-Verlag, Berlin, (1988).

[10] C. CERCIGNANI, R. ILLNER, M. PULVIRENTI, The mathematical theory of dilute gases. Springer-Verlag, New York,
(1995).

[11] F. CoroN, B. PERTHAME Numerical passage from kinetic to fluid equations. STAM J. Numer. Anal., 28, (1991),
pp. 26-42.

[12] L. DESVILLETTES, R.E. PERALTA HERRERA, A vectorizable simulation method for the Boltzmann equation. Math-
ematical Modeling and Numerical Analysis, 28 (1994), pp. 745-760.

[13] S.M. ErRMAKOV, V.V. NEKRUTKIN, A.S. SIPIN, Random processes for classical equations of mathematical physics.
Kluwer Academic Publishers, Dordrecht, 1989.

[14] M.H. ERNST, Ezact solutions of the nonlinear Boltzmann equation and related kinetic models. Nonequilibrium
Phenomena I. The Boltzmann equation, North-Holland, (1983), pp. 52-119.

[15] J.A. FLECK JR., J.D. CUMMINGS, An implicit Monte Carlo scheme for calculating time and frequency dependent
nonlinear radiation transport. Journal of Computational Physics, 8, 313-342, 1971.

[16] E. GABETTA, L. PAREscHI, G. TOSCANI, Relazation schemes for nonlinear kinetic equations. STAM J. Numer.
Anal., 34 (1997), pp. 2168-2194.

[17] E. HAIRER, G. WANNER, Solving ordinary differential equations, Vol.2 Stiff and differential-algebraic problems.
Springer-Verlag, New York, 1987.

[18] D.B. HasH, H.A. HASSAN Assessment of schemes for coupling Monte Carlo and Navier-Stokes solution methods.
J. Thermophys. Heat Transf., 10, 242-249, 1996.

[19] R.W. HOCKNEY, J.W. EAasTwo0OD, Computer simulation using particles. Mc-Graw Hill International Book Co.,
1981.

[20] M. KAc, Probability and related topics in physical sciences. Lectures in Applied Mathematics, Interscience Publish-
ers, London-New York, 1957.

[21] M.H. KaALos, P.A. WHITLOCK, Monte Carlo Methods, Volume I: Basics. John Wiley & Sons, New York, 1986.

[22] A.I. KHISAMUTDINOV, L.L. SIDORENKO, Monte Carlo fictitious collision algorithms for nonlinear Boltzmann equa-
tion. Monte Carlo Methods Appl. 1 (1995), no. 3, 221-240.

[23] C. Lcor, A quasi-Monte Carlo method for the Boltzmann equation. Math. Comp. 56 (1991), no. 194, 621-644.

[24] F. MALLINGER, P. LE TALLEC, Coupling Boltzmann and Navier-Stokes Equations by Half Fluzes. J. Comp. Phys.,
136, (1997), pp. 51-67.

[25] H.P. McKEAN, An ezponential formula for solving Boltzmann’s equation for a Mazwellian gas. J. Combinatorial
Theory, 2 (1967), pp. 358-382.

[26] W. MOROKOFF, R.E. CAFLISCH Quasi-Monte Carlo Integration. J. Comput. Phys., . 122 (1995), pp. 218-230.

[27] J.N. Moss, J.M. PrICE, Direct simulation of AFE forebody and wake flow with thermal radiation. In Rarefied
Gas Dynamics: Theoretical and Computational Techniques, Progress in Aeronautics and Astronautics, 118, pages
413-431. Proceedings of the 16th International Symposium on Rarefied Gas Dynamics, 1988.

[28] E.P. MUNTZ, Rarefied gas dynamics. Annual Review of Fluid Mechanics, 21, 387-417, 1989.

[29] K. NANBU Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent Gases. J. Phys. Soc.
Japan, 52 (1983), pp. 2042-2049.

[30] H. NEUNZERT, J. STRUCKMEIER, Particle methods for the Boltzmann equation. Acta numerica, 1995, 417-457,
Cambridge Univ. Press, Cambridge, 1995.

[31] T. OuwADA, Higher order approzimation methods for the Boltzmann equation. Journal of Computational Physics,
139 (1998), pp. 1-14.

[32] L. PARESCHI, R.E. CAFLISCH, An implicit Monte Carlo method for rarefied gas dynamics. I. The space homogeneous
case. J. Comput. Phys., 154 (1999), pp. 90-116.

[33] L. ParEscHI, G. Russo, Asymptotic preserving Monte Carlo methods for the Boltzmann equation. Transp. Theo.
Stat. Phys., 29 (2000), pp. 415-430.

[34] L. ParescHI, G. Russo, Time relazed Monte Carlo methods for the Boltzmann equation, STAM J. Sci. Comp.
submitted.

[35] L. PARESCHI, B. WENNBERG, A recursive Monte Carlo method for the Boltzmann equation in the Mazwellian case.
Monte Carlo Methods and Applications (to appear).



76 LORENZO PARESCHI AND GIOVANNI RUSSO

[36] B. PERTHAME Introduction to the theory of random particle methods for Boltzmann equation. In Advances in Kinetic
Theory and Computing, B. Perthame Editor, World Scientific, (1994).

[37] D.I. PULLIN Direct simulation methods for compressible inviscid ideal gas-flow. J. Comp. Phys., 34, (1980), pp. 231-
244.

[38] D.I. PULLIN, Generation of normal variates with given sample. J. Statist. Comput. Simul., 9 (1979), pp. 303-309.

[39] A.K. REBROV, Studies on physical gas dynamics of jets as applied to vacuum pumps. In V. Boffi and C. Cercignani,
editors, Proceedings of the 15th International Symposium on Rarefied Gas Dynamics, pages 455—473, 1986.

[40] S. RyasaNow, W. WAGNER, A stochastic weighted particle method for the Boltzmann equation. J. Comput. Phys.
124 (1996), no. 2, 243-253.

[41] S.V. ROGASINSKY, Solution of stationary boundary value problems for the Boltzmann equation by the Monte Carlo
method. Monte Carlo Methods Appl. 5 (1999), no. 3, 263-280.

[42] R. ROVEDA, D.B. GOLDSTEIN, P.L. VARGHESE Hybrid Euler/Direct Simulation Monte Carlo calculation of unsteady
sit flow. preprint, 2000.

[43] G. Russo, R.E. CAFLISCH, Implicit methods for kinetic equations. In Rarefied Gas Dynamics: Theory and Sim-
ulations, Progress in Aeronautics and Astronautics, v. 159, pages 344-352. Proceedings of the 18th International
Symposium on Rarefied Gas Dynamics, (1992).

[44] G. STRANG, On the construction and the comparison of difference schemes. SIAM J. Numer. Anal., 5 (1968),
pp. 506-517.

[45] W. WAGNER, A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation. J.
Statist. Phys., 66 (1992), 1011-1044.

[46] G.B. WHITHAM, Linear and nonlinear waves. Wiley-Interscience, (1974).

[47] E. WILD, On Boltzmann’s equation in the kinetic theory of gases. Proc. Camb. Phil. Soc., 47 (1951), pp. 602-609.



