
NASA Contractor Report 195045

ICASE Report No. 95-11

I
!

S
INTRODUCTION TO MULTIGRID METHODS

P. Wesseling (NASA-CR-IeS045) INTROOUCTIONTO
MULTIGR[D METHODS Final Report

([CASE) 137 p

N95-Zb395

Unclas

G3/64 0049081

Contract No. NAS 1 - 19480

February 1995

Inslitute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

INTRODUCTION TO MULTIGRID METHODS

Abstract

These notes were writleu for au h_troductory course on the application of multigrid

methods to elliptic and hyI)erlx_]ic partial differenlial equations for engineers, physicists and

applied n_athematicians. "Fhe use of n_ore advanced mathemalical lools, such as funclional

analysis, is avoided. The course is i)l(,('nded 1o be accessible t.o a wide audience of users

of computational methods. \Ve restrict ourselves to finit.e volume and finite (titf'('rellce dis-

cv('tizatkm. The Basic pvinciph's are giveu. Smoothing methods au<t Vourier smoothing

analysis are rcviewe<l. The fuTMamental mul(igri<t algorithm is studied. The s)lloo(hing

and coarse grid approxir_m.tion 1)ropert.ies are discussed. Multigrid schedules and struclured

1)rogramming of nmll.igrid algorithms are Irealed. t{ol)ustness and eIficiencv are considered.

*Hesoarch was supportod by the National Aeronautics amt Space Administration und,'r NASA ('onlracl

No. NAS1-19480 while the author was in residence al. l.he lnsl.iiute for Compuler Applications in Science

and Engineering ([(:ASE), NASA Langl,'y [{esearch (:enler. Hampton, VA 23681-0001.

1 Introduction

Readership

The purpose of these notes is to present, at graduate level, an introduction to the application

of multigrid methods to elliptic and hyperbolic partial differential equations for engineers,

physicists and applied mathematicians. The reader is assumed to be familiar with the basics

of the analysis of partial differential equations and of numerical mathematics, but the use

of more advanced mathematical tools, such as functional analysis, is avoided. The course

is intended to be accessible to a wide audience of users of computational methods. We do

not, therefore, delve deeply into the mathematical foundations. This is done in the excelient

monograph by Hackbusch [57], which treats many aspects of multigrid, and also contains

many practical details. The book [141] is more accessible to non-mathematicians, and pays

more attention to applications, especially in computational fluid dynamics.

Other introductory material can be found in the article Brandt [20], the first three chap-

ters of [85] and the short elementary introduction [27]. The notes are based on parts of [141],

where further details may be found, and other subjects are discussed, notably applications in

computational fluid dynamics.

Significance of multigrid methods for scientific computation

Needless to say, elliptic and hyperbolic partial differential equations are, by and large, at the

heart of most mathematical models used in engineering and physics, giving rise to extensive

computations. Often the problems that one would like to solve exceed the capacity of even

the most powerful computers, or the time required is too great to allow inclusion of advanced

mathematical models in the design process of technical apparatus, from microchips to aircraft,

making design optimization more difficult. Multigrid methods are a prime source of impor-

tant advances in algorithmic efficiency, finding a rapidly increasing number of users. Unlike

other known methods, multigrid offers the possibility of solving problems with N unknowns

with O(N) work and storage, not just for special cases, but for large classes of problems.

Historical development of multigrid methods

Table 1.0.1, based on the multigrid bibliography in [85], illustrates the rapid growth of the

multigrid literature, a growth which has continued unabated since 1985.

As shown by Table 1.0.1, multigrid methods have been developed only recently. In what

probably was the first 'true' multigrid publication, Fedorenko [43] formulated a multigrid al-

gorithm for the standard five-point finite difference discretization of the Poisson equation on

a square, proving that the work required to reach a given precison is O(N). This work was

generalized to the central difference discretization of the general linear elliptic partial differ-

ential equation (3.2.1) in _ = (0, 1) × (0, 1) with variable smooth coefficients by Bachvalov [8].

Thetheoreticalworkestimateswerepessimistic,andthemethodwasnot put into practiceat
the time. Thefirst practicalresultswerereportedin a pioneeringpaperby Brandt [19],who
publishedanotherpaperin 1977[20],clearlyoutlining themain principlesand thepractical
utility of multigrid methods,whichdrewwideattentionandmarkedthe beginningof rapid
development.The multigrid methodwasdiscoveredindependentlyby Hackbusch[50],who
laid firm mathematicalfoundationsand providedreliablemethods([52], [53], [54]). i re-
port by Frederickson[47]describinganefficientmultigridalgorithmfor the Poissonequation
led the presentauthorto the developmentof a similarmethodfor thevorticity-streamfunc-
tion formulationof the Navier-Stokes equations, resulting in an efficient method ([135], [143]).

At first there was much debate and scepticism about the true merits of multigrid methods.

Only after sufficient initiation satisfactory results could be obtained. This led a number of

researchers to the development of stronger and more transparent convergence proofs ([4], [93],

[94], [51], [54], [136], [137]) (see [57] for a survey of theoretical developments). Although rate

of convergence proofs of multigrid methods are complicated, their structure has now become

more or less standartized and trasparenr. Other outhors have tried to spead confidence in

multigrid methods by providing efficient and reliable computer programs, as much as possi-

ble of 'black-box' type, for uninitiated users. A survey will be given later. The 'multigrid

guide' of Bran& ([16], [23]) was provided to give guidelines for researchers writing their own

multigrid programs.

Year 64 66 71 72 73 75 76 77 78 79 80 81 82 83 84 85

Number 1 1 1 1 1 1 3 ll l0 22 31 70 78 96 94 149

Table 1.0.1: Years number of multigrid publications

Scope of these notes

The following topics will not be treated here: parabolic equations, eigenvalue problems and

integral equations. For an introduction to the application of multigrid methods to these

subjects, see [56], [57] and [18]. There is relatively little material in these areas, although

multigrid can be applied profitably. For important recent advances in the field of integral

equations, see [25] an(/ [130]. A recent publication on parabolic multigrid is [91]. Finite

element methods will not be discussed, but finite volume and finite difference discretization

will be taken as the point of departure. Although most theoretical work has been done in a

variational framework, most applications use finite volumes or finite differences. The princi-

ples are the same, however, and the reader should have no difficulty in applying the principles

outlined in this book in a finite element context.

Multigrid principlesaremuchmorewidelyapplicablethanjust to tile numericalsolution
of differentialand integralequations.Applicati<>nsin suchdiverseareasascontrol theory,
optimization,pattern recognition,computationaltomographyandparticlephysicsarebegin-
ningto appear.Fora surveyof thewiderangingapplicabilityof multigrid principles,see[17],
[X8].

Notation

The notation is explainedasit occurs. Latin letter like u denote unknown functions. The

bold version u denotes a grid fimction, with value u3 in grid point ;r.i, intended as the discrete

approximation of u(xj).

2 The basic principle of multigrid methods for partial differ-

ential equations

2.1 Introduction

In this chapter, the basic principle of multigrid for partial differential equations will be ex-

plained by studying a one-dimensional model problem. Of course, one-dimensional problems

do not require application of multigrid methods, since for the algebraic systems that result

from discretization direct solution is efficient, but in one dimension multigrid methods can be

analysed by elementary methods, and their essential principle is easily demonstrated.

Introductions to the basic principles of multigrid methods are given by [20], [27], [28] and

[14l]. More advanced expositions are given by [112], [16] and [57], (:hapter 2.

2.2 The basic principle

One-dimensional model problem

The following model problem will be considered

- d2u/dx 2 = f(x) in t-t = (0, 1), u(0) = du(l)/dx = 0

A computational grid is defined by

c; = {x _ _ : _ = _ = jr,, j = 1,2, ...,2,_, I, =- _/2,,}

The points {xj} are called the vcrticcs of the grid.

Equation (2.2.1) is discretized with finite differences as

(2.2.1)

(2.2.2)

h-2(2uj - u2) = fl

h-2(-Uj_l + 2uj - uj+l) = fj, j = 2,3,...,2n- 1 (2.2.3)

1

where fi = f(xi) and ui is intended to approximate u(xj). The solution of Equation (2.2.1)

is denoted by u, the solution of Equation (2.2.3) by u and the value of u in xj by u i uj

approximates the solution in the vertex xj; thus Equation (2.2.3) is called a vertex-centered

discretization. The number of meshes in G is even, to facilitate application of a two-grid

method. The system (2.2.3) is denoted by

Au = f (2.2.4)

Gauss-Seidel iteration

In multidimensional applications of finite difference methods, the matrix A is large and sparse,

and the non-zero pattern has a regular structure. These circumstances favour the use of

iterative methods for solving (2.2.4). We will present one such method. Indicating the ruth

iterand by a superscript m, the Gauss-Seidel iteration method for solving (2.2.3) is defined

by, assuming an initial guess u ° is given,

2u'_ = u'_ -1 + h2 fl

_trn 2U 7 ----. _rn--1 h 2- j-1 + j+a + fj, j=2,3,...,2n-1

m m lh2
--_2n--1 + _$2n : f2n

2

Fourier analysis of convergence

For ease of analysis, we replace the boundary conditions by periodic boundary conditions:

u(1) = u(0) (2.2.6)

Then the error e "_ = u '_ - u °° is periodic and satisfies

-- e m 2e_ -._ e m-1+ 5+, , e7 = (2.2.7)

As will be discussed in more detail later, such a periodic grid function can be represented by

the following Fourier series:

e_ = _ cmexp(ijO,), O, =- _r(_/n (2.2.8)
a=--n+l

Because of the orthogonality of {eliOt}, it suffies to substitute e'_ -1 m-1 ijoo= ca e in (2.2.7).

This gives e'_ = cme ii°" with

c TM = g(O,_)em_-1, g(Oc_) = ei°'_/(2 - e -i°°) (2.2.9)

The functiong(O_) is called the amplification factor. It measures the growth or decay of a

Fourier mode of the error during an iteration. We find

Ig(O_)l= (5 - 4 cos Oc,) -]/2 (2.2.10)

At first it seems that Gauss-Seidel does not converge, because

max{]g(O_)l : O_- _r_/n, ,_ = -n + 1, -n + 2, ..., n} = Ig(O)l= 1 (2.2.11)

However, with periodic boundary conditions the solution of (2.2.1) is determined up to a

constant only, so that there is no need to require that the Fourier mode _ = 0 decays during

iteration. Equation (2.2.11), therefore, is not a correct measure of convergence, but the

following quantity is:

max{lg(e_,)l: 0_ : _a/n, a = -n + 1,-n + 2,..., n, _ # 0} = Ig(0,)l

= {1- 2_1_ + 0(0,_)}-'/_ = 1 -4_h _ + o(h4). (2.2.12)

It follows that the rate of convergence deteriorates as h _ 0. Apart from special cases,

in the context of elliptic equations this is found to be true of all socalled basic iterative

methods (more on these later; well known examples are the Jacobi, Gauss-Seidel and successive

over-relaxation methods) by which a grid function value is updated using only neighbouring

vertices. This deterioration of rate of convergence is found to occur also with other kinds of

boundary conditions. The purpose of multigrid is to avoid this deterioration, and to achieve

a rate of convergence which is independent of h.

The essential multigrid principle

The rate of convergence of basic iterative methods can be improved with multigrid methods.

The basic observation is that (2.2.10) shows that Ig(6_)l decreases as a increases. This

means that, although long wavellength Fourier modes ((_ close to 1) decay slowly (Ig(O_,)l =

1 - O(h2)), short wavelength Fourier modes are reduced rapidly. The essential multigrid

principle is to approximate the smooth (long wavelength) part of the error on coarser grids.

The non-smooth or rough part is reduced with a small number (independent of h) of iterations

with a basic iterative method on the fine grid.

Fourier smoothing analysis

In order to be able to verify whether a basic iterative method gives a good reduction of the

rough part of the error, the concept of roughness has to be defined precisely.

Definition 2.2.1 The set of rough wavenumbers Or is defined by

or = {0, = _/n,)_1> c,_,_ = -n + 1,-n + 2, ...,n) (2.2.13)

where 0 < c < 1 is fixed constant independent of n.

The performance of a smoothing method is measured by its smoothing factor p, defined as

follows.

Definition 2.2.2 The smoothing factor p is defined by

p = ma×{Ig(0)l : 0n C Or} (2.2.14)

When for a basic iterative method p < 1 is bounded away from 1 uniformly in h, we say that

the method is a smoother. Note that p depends on the iterative method and on the problem.

For Gauss-Seidel and the present model problem p is easily determined. Equation (2.2.10)

shows that Ig] decreases monotonically, so that

p = (5 - 4coscTr) -'/2 (2.2.15)

Hence, for the present problem Gauss-Seidel is a smoother.

It is convenient to standardize the choice of c. On]y the Fourier modes that cannot be

represented on the coarse grid need to be reduced by the basic iterative method; thus it is

natural to let these modes constitute Or. We choose the coarse grid by doubling the mesh-size

of G. The Fourier modes on this grid have wavenumbers 0, given by (2.2.8) with n replaced

by n/2 (assuming for simplicity n to be even). The remaining wavenumbers are defined to

be non-smooth, and are given by (2.2.13) with

c = 1/2 (2.2.16)

Equation (2.2.15) then gives the following smoothing factor for Gauss-Seidel

p = 5 -1/2 (2.2.17)

This type of Fourier smoothing analysis was originally introduced by Bran& [20]. It is a

useful and simple tool. When the boundary conditions are not periodic, its predictions are

found to remain qualitatively correct, except in the case of singular perturbation problems,

to be discussed later.

With smoothly varying coefficients, experience shows that a smoother which performs well

in the 'frozen coefficient' casc_ will also perform well for variable coefficients. By the 'frozen

coefficient' case we mean a set of constant coefficient cases, with coefficient values equal to the

values of the variable coefficients under consideration in a sufficiently large sample of points

in the domain.

6

Exercise 2.2.1 Determinethesmoothingfactorof thedampedJacobimethod(definedlater)
to problem(2.2.5)with boundaryconditions(2.2.6).Notethat with dampingparameterw = 1
this is not a smoother.

Exercise 2.2.2 Determine the smoothing factor of the Jacobi method applied to problem

(2.2.5) with Dirichlet boundary conditions u(0) = u(1) = 0, by using the Fourier sine series.

Note that the smoothing factor is the same as obtained with the exponential Fourier series.

Exercise 2.2.3 Determine the smoothing factor of the Gauss-Seidel method for central

discretization of the convection-diffusion equation cdu/dx- Ed2u/dx 2 = f. Show that for

[clh/: >> 1 and c < -1 we have no smoother.

2.3 The two-grid algorithm

Coarse grid approximation

A coarse grid G is defined by doubting the mesh-size of G:

O= {x E IR : x = xj = jh, j= 1,2,...,n, h = l/n} (2.3.1)

The vertices of G also belong to G; thus this is called vertex-centered coarsening. The original

grid G is called the fine grid. Let

U:G _ _, U:G _ _ (2.3.2)

be the sets of fine and coarse grid functions, respectively. A prolongation operator P : C _ U

is defined by linear interpolation:

1

Pft2j = ftj, Pu2j+l = _(ftj + uj+l) (2.3.3)

Overbars indicate coarse grid quantities. A restriction operator R : U ---*(/is defined by the

following weighted average

I I I

Ruj = -_u2j-: + _u2j + _u2j+l (2.3.4)

where uj is defined to be zero outside G. Note that the matrices P and R are related by

R = lpT, but this property is not essential.

The fine grid equation (2.2.4) must be approximated by a coarse grid equation

Like the finite grid matrix A, the coarse grid matrix ,7t may be obtained by discretizing

Equation (2.2.1). This is called discretization coarse grid approximation. An alternative is

the following. The fine grid problem (2.2.4) is equivalent to

(Au, v) = (f,v), u _ U, W e Y (2.3.5)

with (.,.) the standard inner product on U. We want to find an approximated solution P_

with 12 E /]. This entails restriction of the test functions v to a subspace with the same

dimension as /), that is, test functions of the type _bO with _ E /), and P a prolongation

operator that may be different from P:

(AP_t, Pf_) = (f, P_), _ E U, V_ E (J (2.3.6)

or

(P*AP_,O) = (P*f,_), _ e _], V_ e (] (2.3.7)

where now of course (., .) is over /), and superscript * denotes the adjoint (or transpose in

this case). Equation (2.3.7) is equivalent to

fi,_ = f (2.3.8)

with

_4 = RAP (2.3.9)

and f = tlf; we have replaced P* by R. This choice of A is called Galerkin coarse grid

approximation.

With A, P and R given by (2.2.3), (2.3.3) and (2.3.4), Equation (2.3.9) results in the following

"_a_l = h-2(2_,1 - _2)

;re. = +

j=2,3,...,n-1 (2.3.10)

which is the coarse grid equivalent of the left-hand side of (2.2.3). Hence, in the present

case there is no difference between Galerkin and discretization coarse grid approximation.

The derivation of (2.3.10) is discussed in Exercise 2.3.1. The formula (2.3.9) has theoretical

advantages, as we shall see.

Coarse grid correction

Let/_ be an approximation to the solution of (2.2.4). The error e =- _-u is to be approximated

on the coarse grid. We have

Ae = -v - Air- f (2.3.11)

8

Thecoarsegrid approximation_,of -e satisfies

.:t(t = Rr (2.3.12)

In a two-grid method it is assumed that (2.3.12) is solved exactly, the coarse grid correction

to be added to/t is P_2:

/L := _ + P_ (2.3.13)

Linear two-grld algorithm

The two-grid algorithm for linear problems consists of smoothing on the fine grid, approxima-

tion of the required correction on the coarse grid, prolongation of the coarse grid correction

to the fine grid, and again smoothing on the fine grid. The precise definition of the two-grid

algorithm is

comment Two-grid algorithm;

Initiafize u°;

for i := 1 step 1 until ntg do

ul/z := S(u°,A,f, vI);

r := f -- Aul/3;

_t := _4-1Rr;

U2/3 :___ ul/3 + P_;

u] := S(u 2/3, A, f, v2);

ltO .= _1;

od (2.3.14)

The number of two-grid iterations carried out is ntg. S(u °, A, f, Vl) stands for Vl smoothing

iterations, for example with the Gauss-Seidel method discussed earlier, applied to Au = f,

starting with u °. The first application of S is called pre-smoothing, the second post-smoothing.

Exercise 2.3.1 Derive (2.3.10) (Hint. It is easy to write down RAui in the interior and at

the boundaries. Next, one replaces ui by Pui.)

2.4 Two-grid analysis

The purpose of two-grid analysis (as of multigrid analysis) is to show that the rate of conver-

gence is independent of the mesh-size h. We will analyse algorithm (2.3.14) for the special

case Vl = 0 (no-presmoothing).

Coarse grid correction

From (2.3.14) it follows that after coarse grid correction the error e 2/3 = u 2/3 - u satisfies

e 2/3 -- e 1/3 + P_t 1/3 = Ee 1/3 (2.4.1)

with the iteration matrix or error amplification matrix E defined by

E - I - pA-1RA (2.4.2)

We will express e 2/3 explicitly in terms of e 1/3. This is possible only in the present simple

one-dimensional case, which is our main motivation for studying this case. Let

= 1/3 (2.4.3)e 1/3 d+ P_, with _j - %j

Then it follows that

e 2/3 -- Ee 1/3 = Ed

We find from (2.4.3) that

d2j = 0,

Furthermore, from (2.4.5) it follows that

so that

11/3 1/3 1 1/3

d2j+l = -_ej "4- e2j+l -- -2e2j+2

(2.4.4)

(2.4.5)

RAd = 0 (2.4.6)

e _/a = d (2.4.7)

Smoothing

Next, we consider the effect of post-smoothing by one Gauss-Seidel iteration. From (2.2.5) it

follows that the error after post-smoothing e 1 = u I - u is related to e 2/3 by

2el = e_/3

e 1 2e_ = 2/3-- j-1 "{- Vj+l ,

--eln_l + eln = 0

Using (2.4.5)(2.4.7) this can be rewritten as

j = 2,3,...,2n- 1

e] = 0

1 d _e_j_ 2e_j = _ 2_+,+

eL = 4.-,

j = 1,2, ...,n- 1

(2.4.8)

(2.4.9)

(2.4.10)

By induction it is easy to see that

Id2_l_<_lldll_, I]dll_ = max{ldj[: j = 1,2,...,2n}

IO

Since d = e2/3, we see that Gauss-Seidel reduces the maximum norm of the error by a factor

2/3 or less.

Rate of convergence

Since e 1/3 = 0 because of the boundary conditions, it follows from (2.4.5) that

llAe°lo (2.4.11)

since e 1/3 = e ° (no pre-smoothing).

From (2.4.9) it follows that

Ae_j _ 3 - _d2j-1- 1 d -- _d2j+l gi 2j-3 --. (2.4.12)
Aelj_l = 1 1-- _ e2j

Hence, using (2.4.10),

IAe_jl < Ildl[o_, IAle2j-ll <__l[dll_o (2.4.13)

Substitution of (2.4.11) gives

II,'111oo < _ll,'°lloo (2.4.14)

where r - Ae is the residual. This shows that the maximum norm is reduced by a factor of

5/12 or better, independent of the mesh-size.

This type of analysis is restricted to the particular case at hand. More general cases will be

treated later by Fourier-analysis. There a drawback is of course the assumption of periodic

boundary conditions. The general proofs of rate of convergence referred to in the introduction

do not give sharp estimates. Therefore the sharper estimates obtainable by Fourier analysis

are more useful for debugging codes. On the sharpness of rate of convergence predictions

based on Fourier analysis, see [24].

Again: the essential principle

How is the essential principle of multigrid, discussed in Section 2.2, recognized in the foregoing

analysis? Equations (2.4.6) and (2.4.7) show that

RAe 2/a = 0 (2.4.15)

Application of R means taking a local average with positive weights; thus (2.4.15) implies

that Ae 2/a has many sign changes, and is therefore rough. Since Ae 2/a = Au 2/2 - f is

the residual, we see that after coarse grid correction the residual is rough. The smoother

is efficient in reducing this non-smooth residual further, which explains the h-independent

ll

reductionshownin (2.4.14).

Exercise 2.4.1 In the definition of G (2.2.2) and G (2.3.1) we have not included the point

x = 0, where a Dirichlet condition holds. If Neumann condition is given at x = 0, the point

z = 0 must be included in G and G. If one wants to write a general multigrid program for

both cases, x = 0 has to be included. Repeat the foregoing analysis of the two-grid algorithm

with z = 0 included in G and G. Note that including z = 0 makes A non-symmetric. This

difficulty does not occur with cell-centered discretization, to be discussed in the next chapter.

3 Basic Iterative Methods

3.1 Introduction

Smoothing methods in multigrid algorithms are usually taken from the class of basic iterative

methods, to be defined below. This chapter presents an introduction to these methods. A

more detailed account may be found in [141].

Basic iterative methods

Suppose that discretization of the partial differential equation to be solved leads to the fol-

lowing linear algebraic system

Ay=b (3.1.1)

Let the matrix A be split as

A = M - N (3.1.2)

with M non-singular. Then the following iteration method for the solution of (3.1.1) is called

a basic iterative method:

My m+l = Ny TM + b (3.1.3)

or

with

ym+, = Sym + Tb (3.1.4)

S = M-1N , T = M -1

so that we have

y,_+l = sym + M-lb , S = M-1N , N = M- A

The matrix S is called the iteration matrix of iteration method (3.1.6).

Basic iterative method may be damped, by modifying (3.1.6) as follows

y* = Sy '_ + M-lb

y,_+l = 0:y* + (1 - oJ)y "_

(3.1.5)

(3.1.6)

(3.1.7)

12

By eliminationof y* one obtains

y,n+l = SSyra + wM-lb (3.1.8)

with

S* = wS+ (1 - w)I (3.1.9)

The eigenvalues of the undamped iteration matrix S and the damped iteration matrix S* are

related by

A(S*) = w_(S) + I - _, (3.1.10)

Although the possibility that a divergent method (3.1.6) or (3.1.8) is a good smoother (a con-

cept to be explained later) cannot be excluded, the most fikely candidates for good smoothing

methods are to be found among convergent methods. In the next section, therefore, some

results on convergence of basic iterative methods are presented. For more background, see

[1291 and [151].

Exercise 3,1.1 Show that (3.1.8) corresponds to the splitting

M*= M/w, N*= A- M* (3.1.11)

3.2 Convergence of basic iterative methods

Convergence

In the convergence theory for (3.1.3) the following concepts play an important role. We have

My = Ny + b, so that the error e TM = y"_ - y satisfies

e m+l = Sem (3.2.1)

As shown in many textbooks, we have

Theorem 3.2.2 Convergence of (3.1.3) is equivalent to

p(S < 1 (3.2.2)

with p(S) the spectral radius of S.

Regular splittings and M- and K-matrices

Definition 3.2.2 The splitting (3.1.2)is called vegularif M -1 > 0 and N > 0 (elementwise).

The splitting is convergent when (3.1.3) converges.

Definition 3.2.3 ([129], Definition 3.3). The matrix A is called an M-matrix if aij < 0 for

13

all i,j with i _ j, A is non-singular and A -1 > 0 (elementwise).

Theorem 3.2.3 A regular splitting of am M-matrix is convergent.

Proof. See [129] Theorem 3.13. []

Unfortunately, a regular splitting of an M-matrix does not necessary give a smoothing method.

A counterexample is the Jacobi method (to be discussed shortly) applied to Laplace's equa-

tion (see later). In practice, however, it is easy to find good smoothing methods if A is an

M-matrix. As discussed in [145], a convergent iterative method can always be turned into a

smoothing method by introduction of damping. We will find later that often the efficacy of

smoothing methods to be enhanced significantly by damping. Damped version of the methods

to be discussed are obtained easily, using equations (3.1.8), (3.1.9) and (3.1.10).

Hence, it is worthwhile to try to discretize in such way that the resulting matrix A is

an M-matrix. In order to make it easy to see if a discretization matrix is an M-matrix we

present the following theorem.

Definition 3.2.4 A matrix A is called irreducible if from (3.1.1) one cannot extract a sub-

system that can be solved independently.

Definition 3.2.5 A matrix A is called a K-matrix if

a, > 0, Vi, (3.2.3)

alj <_ O, Vi,j with i _ j (3.2.4)

and

aij > 0, Vi,
J

with strict inequality for at least one i.

Theorem 3.2.4 An irreducible K-matrix is an M-matrix.

(3.2.5)

Proof. See [141]. []

Note that inspection of the K-matrix property is easy.

The following theorem is helpful in the construction of regular splittings.

Theorem 3.2.6 Let A be an M-matrix. If M is obtained by replacing certain elements aid

with i # j by values bij satisfying aid < bij < O, then A = M - N is a regular splitting.

14

Proof. This theorem is an easy generalization of Theorem 3.14 in [129] suggested by Theorem

2.2in [87]. []

The basic iterative methods to be considered all result in regular splittings, and lead to

numerically stable algorithms, if A is an M-matrix. This is one reason why it is advisable

to discretize the partial differential equation to be solved in such a way that the resulting

matrix is an M-matrix. This may require upwind differencing for first derivatives. Another

reason is the exclusion of numerical wiggles in the computed solution, because a monotonicity

principle is associated with the M-matrix property.

3.3 Examples of basic iterative methods: Jacobi and Gauss-Seidel

We present a number of (mostly) common basic iterative methods by defining the correspond-

ing splittings (3.1.2). We assume that A arises from a discretization on a two-dimensional

structured grid.

Point Jacobi. M = diag (A).

Block Jaeobi. M is obtained from A by replacing aij for all i,j with j # i,i:k 1 by zero.

With the forward ordering of the grid points of Figure 3.3.1 this gives horizontal line Jacobi;

with the forward vertical line ordering of Figure 3.3.2 one obtains vertical line Jacobi. One

horizontal line Jacobi iteration followed by one vertical line Jacobi iteratin gives alternating

Jacobi.

16 17 18 19 20 5 4 3 2 1 18 9 19 10 20

ll 12 13 14 15 10 9 8 7 6 6 16 7 17 8

6 7 8 9 10 15 14 13 12 11 13 4 14 5 15

1 2 3 4 5 20 19 18 17 16 1 11 2 12 3

Forward Backward White-black

10 14 17 19 20 16 19 17 20 18 17 13 9 5 1

6 9 13 16 18 11 14 12 15 13 19 15 11 7 3

3 5 8 12 15 6 9 7 10 8 18 14 10 6 2

1 2 4 7 ll 1 4 2 5 3 20 16 12 8 4

Diagonal Horizontal forward Vertical backward

white-black white-black

Figure 3.3.1: Grid point orderings for point Gauss-Seidel.

Point Gauss-Seidel. M is obtained from A replacing aij for all i,j with j > i by zero.

15

4 8 12 16 20 16 17 18 19 20 4 16 8 20 12
3 7 11 15 19 6 7 8 9 10 3 15 7 19 11
2 6 I0 14 18 ll 12 13 14 15 2 14 6 18 10
1 5 9 13 17 1 2 3 4 5 1 13 5 17 9

Forward Horizontal Verticai
verticailine zebra zebra

Figure 3.3.2: Grid point orderings for block Gauss-Seidel.

Block Gauss-Seidel. M is obtained from A by replacing a_ for all i,j with j > i + 1 by

zero.

From Theorem 4.2.8 it is immediately clear that, if A is an M-matrix, then the Jacobi and

Gauss-seidel methods correspond to regular splittigs.

Gaus-Seidel variants

It turns out that the efficiency of Gauss-Seidel methods depends strongly on the ordering of

equations and unknowns in many applications. Also, the possibilities of vectorized and par-

ailel computing depend strongly on this ordering. We now, therefore, discuss some possible

orderings. The equations and unknowns are associated in a natural way with points in a

computational grid. It suffices, therefore, to discuss orderings of computational grid points.

We restrict ourselves to a two-dimensionai grid G, which is enough to illustrate the basic

ideas. G is defined by

G= {(i,j):i= 1,2,...,I;j= 1,2,...,J} (3.3.1)

The points of G represent either vertices or cell centres, depending on the discretization

method.

Forward or lexicographic ordering

The grid points are numbered as follows

k = i + (j - 1)I (3.3.2)

Backward ordering

This ordering corresponds to the enumeration

k = IJ + 1 - i- (j- 1)I (3.3.3)

16

White-black ordering
This ordering corresponds to a chessboard colouring of G, numbering first the black points

and then the white points, or vice versa; cf. Figure 3.3.1.

Diagonal ordering

The points are numbered per diagonal, starting in a corner; see Figure 3.3.1. Diferent variants

are ol_tained by starting in different corners. If the matrix A corresponds to a discrete oper-

ator with a stencil as in Figure 3.3.3(b), then point Gauss-Seidel with the diagonal ordering

of Figure 3.3.1 is mathematically equivalent to forward Gauss-Seidel.

(a_ (b| (c}

Figure 3.3.3: Discretization stencils.

Point Gauss-Seidel-Jacobi

We propose this variant in order to facilitate vectorized and parallel computing; more on this

shortly. M is obtained from A by replacing aij by zero except aii and ai,i-l. We call this

point Gauss-Seidel-Jacobi because this is a compromise between the point Gauss-Seidel and

Jacobi methods discussed above. Four different methods are obtained with the following four

orderings: the forward and backward orderings of Figure 3.3.1, the forward vertical line or-

dering of Figure 3.3.2, and this last ordering reversed. Applying these methods in succession

results in four-direction point Gauss-Seidel-Jacobi.

White-black line Gauss-Seidel

This can be seen as a mixture of lexicographic and white-black ordering. The concept is best

illustrated with a few examples. With horizontal forward white-black Gauss-Seidel the grid

points are visited horizontal line by horizontal line in order of increasing j (forward), while

per line the grid points are numbered in white-black order, cf. Figure 3.3.1. The lines can also

be taken in order of decreasing j, resulting in horizontal backward white-black Gaus-Seidel.

Doing one after the other gives horizontal symmetric white-back Gauss-Seidel. Doing one

after the other gives horizontal symmetric white-black Gauss-SeideL The lines can also be

17

takenvertically; Figure3.3.1illustratesvertical backward white-black Gauss-Seidel. Combin-

ing horizontal and vertical symmetric whte-black Gauss-Seidel gives alternating white-black

Gauss-Seidel. White-black line Gauss-Seidel ordering has been proposed in [128].

Orderings for block Gauss-Seidel

With block Gauss-Seidel, the unknowns corresponding to lines in the grid are updated simul-

taneously. Forward and backward horizontal line Gauss-Seidel correspond to the forward and

backward ordering, respectively, in Figure 3.3.1. Figure 3.3.2 gives some more orderings for

block Gauss-Seidel.

Symmetric horizontal line Gauss-Seidel is forward horizontal line Gauss-Seidel followed

by backward horizontal line Gauss-Seidel, or vice versa.Alternating zebra Gauss-Seidel is

horizontal zebra followed by vertical zebra Gauss-Seidel, or vice versa. Other combinations

come to mind easily.

Vectorlzed and parallel computing

The basic iterative methods discussed above differ in their suitability for computing with

vector or parallel machines. Since the updated quantities are mutually independent, Jacobi

parallizes and vectorizes completely, with vector length I • J. If the structure of the stencil

[A] is as in Figure 3.3.3(c), then with zebra Gauss-Seidel the updated blocks are mutually

independent, and can be handled simultaneously on a vector or a parallel machine. The

same is true for point Gauss-Seidel if one chooses a suitable four-colour ordering scheme.

The vector length for horizontal or vertical zebra Gauss-Seidel is J or I, respectively. The

white and black groups in white-black Gauss-Seidel are mutually independent if the structure

of [A] is given by Figure 3.3.4. The vector length is I • J/2. With diagonal Gauss-Seidel,

the points inside a diagonal are mutually independent if the structure of [A] is given by

Figure 3.3.3(b), if the diagonals are chosen as in Figure 3.3.1. The same is true when [A]

has the structure given in Figure 3.3.3(a), if the diagonals are rotated by 90 °. The average

vector length is roughly I/2 or J/2, depending on the length of largest the diagonal in the

grid. With Gauss-Seidel-Jacobi lines in the grid can be handled in parallel; for example, with

the forward ordering of Figure 3.3.1 the points on vertical lines Gauss-Seidel points of the

same colour can be updated simultaneously, resulting in a vector length of I/2 or J/2, as the

case may be.

Exercise 3.3.1 Let A = L + D + U, with llj = 0 for j _ i, D = diag (A), and uij = 0 for

j _> i. Show that the iteration matrix of symmetric point Gauss-Seidel is given by

S = (U + D)-IL(L + D)-IU (3.3.4)

Exercise 3.3.2 Prove Theorem 3.3.1.

18

Figure3.3.4:Five-pointstencil.

3.4 Examples of basic iterative methods: incomplete point LU factoriza-

tion

Complete LU factorization

When solving Ay = b directly, a factorization A = LU is constructed, with L and U a lower

and an upper triangular matrix. This we call complete factorization. When A represents a

discrete operator with stencil structure, for example, as in Figure 3.3.3, then L and U turn

out to be much less sparse than A, which renders this method inefficient for the class of

problems under consideration.

Incomplete point factorization

With incomplete factorization or incomplete LU factorization (ILU) one generates a splitting

A = M - N with M having sparse and easy to compute lower and upper triangular factors
L and U:

M = LU (3.4.1)

If A is symmetric one chooses a symmetric factorization:

An alternative factorization of M is

M = LL T (3.4.2)

M = LD-1U (3.4.3)

With incomplete point factorization, D is chosen to be a diagonal matrix, and diag (L) =

diag (U) = D, so that (3.4.3) and (3.4.1) are equivalent. L,D and U are determined as

follows. A graph _ of the incomplete decomposition is defined, consisting of two-tuples (i,j)

for which the elements lij, dii and uij ae allowed to be non-zero. Then L, D and U are defined

by

(LD-1U)kt = akt, V(k,l) E G (3.4.4)

We will discuss a few variants of ILU factorization. These result in a splitting A = M - N

with M = LD -1U. Modified incomplete point factorization is obtained if D is defined by

19

(3.4.4)is changed to D + a/9, with a E]// a parameter, and /) a diagonal matrix defined

by dkk = _ Inkil • From now on the modified version will be discussed, since the unmodified
t_k

version follows as a special case. This or similar modifications have been investigated in the

context of multigrid methods in [65], [97], [83], [82] and [145], [147]. A srvey is given in [142].

We will discuss a few variants of modified ILU factorization.

Five-point ILU

Let the grid be given by (3.3.1), let the grid points be ordered according to (3.3.2), and let

the structure of the stencil be given by Figure 3.3.3. Then the graph of A is

= {(k,k- I), (k,k- 1), (k,k), (k,k+ 1), (k,k+ I)} (3.4.5)

For brevity the following notation is introduced

ai, -- ak,k-l,'Ck = ak,k-1, dk = akk, qk = ak,k+l, gk -" ak,k+l (3.4.6)

Let the graph of the incomplete factorization be given by (3.4.5), and let the non-zero elements

of L, D and U be called _k, 7k, _k, #k and rlk; the locations of these elements are identical

to those of ak,...,gk, respectively. Because the graph contains five elements, the resulting

method is called five-point ILU. Let c_, ..., y be the IJ * IJ matrices with elements c_k, ..., 71k,

respectively, and similarly for a, ..., g. Then one can write

LD-1U = a + 7 + _f + # + _l + a_f-lp + a_f-lrl + 7_f-lp + 7_-I _ (3.4.7)

From (3.4.4) it follows

a=a, 7=c, _u=q, r/=g

and, introducing modification as described above,

(3.4.8)

(3.4.9)

The rest matrix N is given by

N = a_-lq + e_-Ig + ad (3.4.10)

The only non-zero entries of N are

nk,k-I+l = ak_kllqk-1, nk,k+l-1 =ck_-kl_lgk-1 (3.4.11)
nkk = a(Ink,k-l+ll + [nk,k+I-1[)

ttere and in the following elements in which indices outside the range [1, I J] occur are to be

replaced by zero. From (3.4.9) the following recursion is obtained:

l_k = dk - a#_-kl_tgk-! -- ck6-[l_lq_-i + nkk (3.4.12)

2O

This factorizationhasbeenstudiedin [41].
From(3.4.12)it followsthat a can overwrite d, so that the only additional storage required

is for N. When required, the residual b- Ay ra+l can be computed as follows without using

A:

b - Ay m+l = N(y m+l - y) (3.4.13)

which follows easily from (3.1.3). Since N is usually more sparse than A, (3.4.13) is a cheap

way to compute the residual. For all methods of type (3.1.3) one needs to store only M and

N, and A can be overwritten.

Seven-point ILU

The terminology seven-point IL U indicates that the graph of the incomplete factorization has

seven elements. The graph G is chosen as follows:

G = {(k,k:l:I), (k,k=l: I7= 1), (k,k:t: 1), (k,k)} (3.4.14)

For the computation of L,D and U see [141]. L, DandU can overwrite A. The only

additional storage required is for N. Or, if one prefers, elements of N can be computed when

needed.

Nine-point ILU

The principles are the same as for five- and seven-point ILU. Now the graph G has nine

elements, chosen as follows

= G1U {(k,k+I:l= 1)} (3.4.15)

with G1 given by (3.4.14).

For the computation of L, D and U see [141].

Alternating ILU

Alternating ILU consists of one ILU iteration of the type just discussed or similar, followed

by a second ILU iteration based on a different ordering of the grid points. As an example, let

the grid be defined by (3.3.1), and let the grid points be numbered according to

k = IJ+l-j-(i- 1)g (3.4.16)

This ordering is illustrated in Figure 3.4.1, and will be called here the second backward or-

dering, to distinguish it from the backward ordering defined by (3.3.3). The ordering (3.4.16)

will turn out to be preferable in applications to be discussed later. The computation of the

corresponding incomplete factorization factors L, D and O is discussed in [141]. If alternating

ILU is used, L, D and U are already stored in the place of A, so that additional storage is

required for L, D and U. /_r can be stored, or is easily computed, as one prefers.

21

17 13 9 5 1
18 14 10 6 2
19 15 11 7 3
20 16 12 8 4

Figure3.4.1:Illustration of second backward ordering.

General ILU

Other ILU variant are obtained for other choices of G. See [88] for some possibilities. In

general it is advisable to choose G equal to or slightly larger than the graph of A. If _ is

smaller that the graph of A then nothing changes in the algorithms just presented, except

that the elements of A outside _ are subtracted from N.

The following algorithm computes an ILU factorization for general _ by incomplete Gauss

elimination. A is an n × n matrix. We choose diag (L) = diag (U).

Algorithm I. Incomplete Gauss elimination

A ° := A

for r := 1 step 1 until n do
r

begin art := sqrt (a_71)
r-lJ r

forj>rA(r,j) Egdoarj:=arj �art
r r-1 _r

for i > r A (i, r) E _ do air := air /t_rr

for (i,j) E GAi > rAj > r A (i,r) E G A (r,j) E _ do
at.-1 r r

ai_ := t) -- airarj

od od od

end of algorithm 1.

A n contains L and U. In [57] one finds an algorithm for the LD-1U version of ILU, for

arbitrary g. See [143] and [138] for applications of ILU with a fairly complicated G (Navier-

Stokes equations in the vorticity-stream function formulation).

Final remarks

Existence of ILU factorizations and numerical stability of the associated algorithms has been

proved in [87] if A is an M-matrix; it is also shown that the associated splitting is regular, so

that ILU converges according to Theorem 4.2.3. For information on efficient implementations

of ILU on vector and parallel computers, see [69], [68], [116], [117], [118], [119], [103] and [14].

22

Exercise 4.4.1 Derive algorithms to compute symmetric ILU factorizations A = LD -1L T -

N and A = LL T - N for A symmetric. See [87].

Exercise 4.4.2 Let A = L + D + U, with D = diag (A), lij = 0, j > i and u_j = O, j < i.

Show that (3.4.3) results in symmetric point Gauss-Seidel (cf. Exercise 3.3.1). This shows

that symmetric point Gauss-Seidel is a special instance of incomplete point factorization.

3.5 Examples of basic iterative methods: incomplete block LU factoriza-

tion

Complete line LU factorization

The basic idea of incomplete block LU-factorization (IBLU) (also called incomplete line LU-

factorization (ILLU) in the literature) is presented by means of the following example. Let

the stencil of the difference equations to be solved be given by Figure 3.3.3(c). The grid point

ordering is given by (3.3.2). Then the matrix A of the system to be solved is as follows:

B1 U1

L2 B2 U2

A= "'. "'. "'. (3.5.1)

• .. ".. VJ_l

Lj By

with Lj, Bj and Uj I × I tridiagonal matrices.

First, we show that there is a matrix D such that

A = (L + D)D-I(D + U) (3.5.2)

where

L

D

I
I

0

L2 "'.

"..

D1

D2

Lj 0

Dj

, U=

)
0 U1

..°

"'. U j-i

0

(3.5.3)

23

Wecall (3.5.2a line LUfactorization of A, because the blocks in L, D and U correspond to

(in our case horizontal) lines in the computational grid. From (3.5.2) it follows that

A = L + D + U + LD-1U (3.5.4)

One finds that LD-1U is the following block-diagonal matrix

0 L2D-(1U1
LD-IU = .. (3.5.5)

LdD_I_I Ud-1

From (3.5.4) and (3.5.5) the following recursion to compute D is obtained

D1 = B1 , Dj = B_ - LjD_.I_IUj , j = 2,3,...,J (3.5.6)

Provided D_ -1 exists, this shows that one can find D such that (3.5.2) holds.

Nine-point IBLU

The matrices Dj are full; therefore incomplete variants of (3.5.2) have been proposed. An

incomplete variant is obtained by replacing LjD_11Uj in (3.5.6) by its tridiagonal part (i.e.

replacing all elements with indices i, m with m # i, i + 1 by zero):

1)1 = Bi , Dj = Bj-tridiag (LjD_.I_1Uj) (3.5.7)

The IBLU factorization of A is defined as

A = (L + b)D-l(b + U) - N (3.5.8)

There are three non-zero elements per row in L, /) and U; thus we call this nine-point IBLU.

For an algorithm to compute/_ and/)-1 see [141].

The IBLU iterative method

With IBLU, the basic iterative method (3.1.3) becomes

r = b- Ay TM (3.5.9)

(L + D)D-I(D + V)y m+l -- r (3.5.10)

ym+l := ym+l + ym (3.5.11)

Equation (3.5.10) is solved as follows

Solve (L +/))ym+l = _, (3.5.12)

24

r := Dy m+l (3.5.13)

Solve (/) + L)y _+1 = r (3.5.14)

With the block partioning used before, and with yj and rj denoting /-dimensional vectors

corresponding to block j, Equation (3.5.12) is solved as follows:

~ ~ . n+l

Dly'_ +1 = rl, Djuj = rj - Lj-lY__I, j = 2, 3,...,J (3.5.15)

Equation (3.5.14) is solved in a similar fashion.

Other IBLU variants

Other IBLU variants are obtained by taking other graphs for L,/_ and U. When A corre-

sponds to the five-point stencil of Figure 3.3.3, L and U are diagonal matrices, resulting in the

five-point IBLU variants. When A corresponds to the seven-point stencils of Figure 3.3.3(a),

(b), L and U are bidiagonal, resulting in seven-point IBLU. There are also other possibilities

to approximate LjDj_ 1Uj by a sparse matrix. See [6], [33], [7], [99], [107] for other versions

of IBLU; the first three publications also give existence proofs for/gj if A is an M-matrix; this

condition is slightly weakened in [99]. Vectorization and parallelization aspects are discused

in IV].

Exercise 3.5.1 Derive an algorithm to compute a symmetric IBLU factorization A =

(L + D)b-I(D + L - N for A symmetric. See [33].

3.6 Some methods for non-M-matrices

When non-self-adjoint partial differential equations are discretized it my happen that the

resulting matrix A is not an M-matrix. This depends on the type of discretization and

the values of the coefficients. Examples of other applications leading to non-M-matrix dis-

cretizations are the biharmonic equation and the Stokes and Navier-Stokes equations of fluid

dynamics.

Defect correction

Defect correction can be used when one has a second-order accurate discretization with a

matrix A that is not an M-matrix, and a first-order discretization with a matrix/3 which is

an M-matrix, for example because B is obtained with upwind discretization, or because B

contains artificial viscosity. Then one can obtain second-order results as follows.

Algorithm I. Defect correction

25

begin Solve Bfl = b

fori :=1 step 1 untilndo

By = b- Aft + Bfl

_t :---- Y

od

end of algorithm 1.

It suffices in practice to take n = 1 or 2. For simple problems it can be shown that for n = 1

already y has second-order accuracy. B is an M-matrix; thus the methods discussed before

can be used to solve for y.

Distributive iteration

Instead of solving Ay = b one may also solve

ABel = b, y = B_I (3.6.1)

This may be called post-conditioning, in analogy with preconditioning, where one solves

BAy = Bb. B is chosen such that AB is an M-matrix or a small perturbation of an

M-matrix, such that the splitting

AB = M- N (3.6.2)

leads to a convergent iteration method. From (3.6.2) follows the following splitting for the

original matrix A

A = MB -1 - NB -1 (3.6.3)

This leads to the following iteration method

MB-ly m+l = NB-ly m + b (3.6.4)

or

y,_-I = ym + BM-I(b _ Ay,_) (3.6.5)

The iteration method is based on (3.6.3) rather that on (3.6.2), because if M is modified so

that (3.6.2) does not hold, then, obviously, (3.6.5) still converges to the right solution, if it

converges. Such modifications of M occur in applications of post-conditioned iteration to the

Stokes and Navier-Stokes equations.

Iteration method (3.6.4) is called distributive iteration, because the correction M-l(b-

Ay m) is distributed over the elements of y by the matrix B. A general treatment of this

approach is given in [144], [146], [148], [150], [149], where it is shown that a number of well

known iterative methods for the Stokes and Navier-Stokes equations can be interpreted as
distributive iteration methods.

26

Taking B = A T and choosing (3.6.2) to be the Gauss-Seidel or Jacobi splitting results in

the Kaczmarz [78] or Cimmino [32] methods, respectively. These methods converge for every

regular A, because Gauss-Seidel and Jacobi converge for symmetric positive definite matrices

(a proof of this elementary result may be found in [70]. Convergence is, however, usually

slow.

4 Smoothing analysis

4.1 Introduction

The convergence behaviour of a multigrid algorithm depends strongly on he smoother. The

efficiency of smoothing methods is problem-dependent. When a smoother is efficient for a

large class of problems it is called robust. This concept will be made more precise shortly

for a certain class of problems. Not every convergent method has the smoothing property,

but for symmetric matrices it can be shown that by the introduction of suitable amount of

damping every convergent method acquires the smoothing property. This property says little

about the actual efficiency. A convenient tool for the study of smoothing efficiency is Fourier

analysis, which is also easily applied to the non-symmetric case. Fourier smoothing analysis

is the main topic of this chapter.

Many different smoothing methods are employed by users of multigrid methods. Of course,

in order to explain the basic principles of smoothing analysis it suffices to discuss only a few

methods by way of illustration. To facilitate the making of a good choice of a smoothing

method for a particular application it is, however, useful to gather smoothing analysis results

which are scattered through the literature in one place, and to complete the information

where results for important cases are lacking.

4.2 The smoothing property

The smoothing method is assumed to be a basic iterative method as defined by (3.1.3). We

will assume that A is a K-matrix. Often, the smoother is obtained in the way described in

Theorem 3.2.5; in practice one rarely encounters anything else.

The smoothing property is defined as follows ([57]):

Definition 4.2.1 Smoothing property. S has the smoothing property if there exist a

constant Cs and a function _l(u) independent of the mesh-size h such that

I]AS_II <_ Csh-2m_l(u), r/(_') --* 0 for _ --* oo (4.2.1)

where 2m is the order of the partial differential equation to be solved.

27

Here S is the iteration matrix defined by (3.1.5). The smoothing property implies converse

[141] but, as already remarked, the converse is not true. In [145] it is shown that a convergent

method can be turned into a smoother by damping; for a fuller discussion see [141].

Discussion

In [57] the smoothing property is shown for a number of iterative methods. The smooth-

ing property of incomplete factorization methods is studied in [145], [147]. Non-symmetric

problems can be handled by perturbation arguments, as indicated by [57]. When the non-

symmetric part is dominant, however, as in singular perturbation problems, this does not

lead to useful results. Fourier smoothing analysis (which, however, also has its limitations)

can handle the non-symmetric case easily, and also provides an easy way to optimize values

of damping parameters and to predict smoothing efficiency. The introduction of damping

does not necessarily give a robust smoother. The differential equation may contain a param-

eter, such that when it tends to a certain limit, smoothing efficiency deteriorates. Examples

and further discussion of robustness will follow. We will concentrate on Fourier smoothing

analysis.

4.3 Elements of Fourier analysis in grid-function space

As preparation we start with the one-dimensional case.

The one-dimenslonal case

Theorem 4.3.1. Discrete Fourier transform. Let I = {0, 1, 2, ..., n-l}. Every u : I _

can be written as

m+p

,, = ckV(e),
k _ -- 'l'D,

g,j(Ok) = exp(ijOk), Ok = 2_rk/n, j e I (4.3.1)

where p = 0, m = (n - 1)/2 for n odd and p = 1, m = n/2- 1 for n even, and

n-I

Ck -" n -1 Z uj_bj(--Ok)

j=O

The functions ¢(0) are called Fourier modes or Fourier components.

elementary theorem see [141].

The multi-dimensional case

Define

_bj(O) = exp(ijO)

(4.3.2)

For a proof of this

(4.3.3)

28

with j E I, O E O, with

I={j:j=(jl,j2,...,jd),j_=O, 1,2,...,n_-l,a=l,2,...,d} (4.3.4)

o = {0: e = (0,, o2, ..., 0d), =

k_ = -ms,-ms + 1,...,m_+p_, a = 1,2,...,d} (4.3.5)

where p_ = 0, m_, = (n_- 1)/2 for n_ odd and p_ = 1, m_ = n_/2- 1 for n_ even.

Furthermore,
d

jO = Y_jc, O_, (4.3.6)
_1

Theorem 4.3.2. Discrete Fourier transform in d dimensions. Every u : I _ /R can
be written as

uj = _ coCj(O) (4.3.7)
8EO

with
d

co = N-' __ ujOj(-O), N = I-I n_ (4.3.8)
jEI ct=l

For a proof see [141].

The Fourier series (4.3.7) is appropriate for d-dimensional vertex- or ceU-centered grids with

periodic boundary conditions. For the use of Fourier sine or cosine series to accommodate

Dirichlet or Neumann conditions, see [141].

4.4 The Fourier smoothing factor

Definition of the local mode smoothing factor

Let the problem to be solved on grid G be denoted by

Au = f (4.4.1)

and let the smoothing method to be used be given by (3.1.6):

u := Su + M-l f , S = M-1N, M - N = A (4.4.2)

According to (3.2.1) the relation between the error before and after u smoothing iterations is

e 1 = S_e ° (4.4.3)

We now make the following assumption.

29

Assumption (i). TheoperatorS has a complete set of eigenfunctions or local modes denoted

by ¢(9), 0 E O, with O some discrete index set.

Hence

Sv_p(O) = Av(O)¢(8) (4.4.4)

with)_(8) the eigenvalue belonging to ¢(8). we can write

0Ee

and obtain

c_ = Av(8)c ° (4.4.5)

The eigenvalue 2(8) is also called the amplification factor of the local mode ¢(8).

Next, assume that among the eigenfunctions _b(8) we somehow distinguish between smooth

eigenfunctions (8 E Os) and rough eigenfunctions (8 E Or):

O=OsUOr, OsNOr =_ (4.4.6)

We now make the following definition.

Definition 4.4.1. Local mode smoothing factor. The local mode smoothing factor p of

the smoothing method (4.4.2) is defined by

p = sup{IA(8)t : 8 e Or} (4.4.7)

Hence, after v smoothings the amplitude of the rough components of the error are multiplied

by a factor pV or smaller.

Fourier smoothing analysis

In order to obtain from this analysis a useful tool for examining the quality of smooth-

ing methods we must be able to easily determine p, and to choose Os such that an error

e = _b(8), 8 E Os is well reduced by coarse grid correction. This can be done if Assumption

(ii) is satisfied.

Assumption (ii). The eigenfunctions _b(8) of S are harmonic functions.

This assumption means that the series preceding (4.4.5) is a Fourier series. When this is so

p is also called the Fourier smoothing .[actor. In the next section we will give conditions such

that Assumption (ii) holds, and show how p is easily determined; but first we discuss the

choice of Or.

3O

Aliasing
Considerthe vertex-centeredgrid G given by (4.4.8) with n_ even, and the corresponding

coarse grid G defined by doubling the mesh-size:

G= {x E l_d : x = jh, j = (Jl,J2, jd), h = (hl,h_,...,hd),

j_ =O, 1,2,...,n_,, h,_ = 1/n_, a = 1,2,...,d} (4.4.8)

= {x e IR d :x =j[_, j = (Jl,J2,...,Jd), f_ = ([_l,]_a,...,-hd),

j_ = 0,1, 2, ..., _m /_ = 1/fi_, (_= 1,2,...,d} (4.4.9)

with f_ = n_,/2. Let d = 1, and assume that the eigenfunctions of S on the fine grid G are

the Fourier modes of Theorem 4.3.1: Cj(0) = exp(ijS), with

0 E 0 = {0 : 0 = 2rrk/nl, k = -nl/2 + 1, -nl/2 + 2,...,nl/2} (4.4.10)

so that an arbitrary grid function v on G can be represented by the following Fourier series

vj = _ co_l,j(O) (4.4.11)
OEO

An arbitrary grid function _ on (_ can be represented by

= o j(O) (4.4.12)

with e(0): G---, _, Cj(O) = exp(ijO), and

_) = {0:0 = 27rk/_l, k = -_/2 + 1, -gl/2 + 2, ..., hl/2} (4.4.13)

assuming for simplicity that _1 is even. The coarse grid point _-j = j/_ coincides with the fine

grid point x2i = 2jh. In these points the coarse grid Fourier mode ¢(0) takes on the value

_)j(O) = exp(ijO) = exp(i2jO) (4.4.14)

For -n_/4 + 1 _< k _< nl/4 the fine grid Fourier mode _b(0k) takes on in the coarse grid points

xj the values of _j(Ok) = exp(2_rijk/f_l) = _j(2_rk/fil), and we see that it coincides with

the coarse grid mode _(0k) in the coarse grid points. But this is also the case for another fine

grid mode. Define k' as follows

k'0 < k _< fil/2 : = -nl/2 + k
k' =-fil/2 < k <_ 0 : nl/2 + k

31

Then the fine grid Fourier mode _b(0k,) also coincides with _(0h) in the coarse grid points.

On the coarse grid, lb(0k,) cannot be distinguished from Ib(0k). This is called aliasing: the

rapidly varying function _b(Ok,) takes on the appearance of the much smoother function ¢(0k)

on the coarse grid.

Smooth and rough Fourier modes

Because on the coarse grid G the rapidly varying function _b(0k,) cannot be approximated,

and cannot be distinguished from ¢(0k), where is no hope that the part of the error which

consists of Fourier modes _p(0k,), k' given by (4.4.15), can be approximated on the coarse

grid (_. This part of the error is called rough or non-smooth. The rough Fourier modes are

defined to be _b(0k,), with k' given by (4.4.15), that is

kf *-'7• I-n,�2 + 1, -n,/2 + 2,..., -n,/4} U {n,/4, n,/4 + 1, n,/2} (4.4.16)

This gives us the set of rough wavenumbers Or {0 : 0 2_rk'/nl : according to (4.4.16)},

or

Or = {8 : 0 = 2_rk/nl, k = -nl/2 + 1, -nl/2 + 2,...,nl/2

and 0 • [-_r, -_r/2] U [r/2, r]} (4.4.17)

The set of smooth wavenumbers Os is defined as Os = 0 \Or, 0 given by (4.4.10) with d = 1,

or

Os = {0 : 0 = 2rrk/nl, k = -nl/2 + 1, -nl/2 + 2, ..., n_/2

and 0 E (-_r/2, 7r/2)} (4.4.18)

The smooth and rough parts v_ and vr of a grid function v : G _ _ can now be defined

precisely by

v, = E co¢(o), _,r = E coco(o)
0EO_ 0EOr

_-1 (4.4.19)
co= n(_ E vj_,j(-O)

j=0

In d dimensions the generalization of (4.4.17)and (4.4.18)(periodic boundary cpnditions) is

0 = {o :o = (ol, o_,..., Od), o_ = 2rrk_/n_,

d

o, = o a H (-,_/2, ,_/2),

k_ "- -n,/2 + 1, ...,n_/2}

Or=O\O_
(4.4.20)

32

02

O1

Figure4.4.1: Smooth(@s) and rough (07, hatched) wavenumber sets in two dimensions,

standard coarsering.

Figure 4.4.1 gives a graphical illustration of the smooth and rough wavenumber sets

(4.4.20) for d = 2. Or and Os are discrete sets in the two concentric squares. As the

mesh-size is decreased (na is increased) these discrete sets become more densely distributed.

Semi-coarsening

The above definition of Or and Os in two dimensions is appropriate for standard coarsening,

i.e. G is obtained from G by doubling the mesh-size ha in all directions a = 1,2,...,d.

With semi-coarsering there is at least one direction in which ha in (_ is the same as in G.

Of course, in this direction no aliasing occurs, and all Fourier modes on G in this direction

can be resolved on G, so hey are not included in Or. To give an example in two dimensions,

assume hi = hi (semi-coarsering in the x_-direction). Then (4.4.20) is replaced by

=0 n × = 0 \ (4.4.21)

Figure 4.4.2 gives a graphical illustration.

Mesh-size independent definition of smoothing factor

We have a smoothing method on the grid G if uniformly in no there exists a p* such that

p_< p* < 1, V%, a = 1,2,...,d (4.4.22)

However, p as defined by (4.4.7) depends on no, because 07 depends on no. In order to

obtain a mesh-independent condition which implies (4.4.23) we define a se¢ Or D Or with Or

33

yJ//,
V/'.-;¢,

Os

-_-01

Figure 4.4.2: Smooth (Os) and rough (Or, hatched) wavenumber sets in two dimensions,

semi-coarsening in x2 direction.

independent of n_ and define

so that

/3= p{IA(0)I : o • Or} (4.4.23)

p <_ fi (4.4.24)

and we have a smoothing method if/3 < 1. For example, if Or is defined by (4.4.20), then we

may define _)r as follows:

d d

0,.= (4.4.25)
a=l c_=l

This type of Fourier analysis, and definition (4.4.23) of the smoothing factor, have been

introduced by Brandt (1977). It may happen that A(0) still depends on the mesh-size, in

which case/3 is not really independent of the mesh-size, of course.

Modification of smoothing factor for Dirichlet boundary conditions

If A(9) is smooth, then/3 - p = O(h'_) for some m _> 1. It may, however, happen that there

is a parameter in the differential equation, say e, such that for example fi - p = O(h2/e).

Then, for e << 1 (singular perturbation problems), for practical values of h_ there may be

a large difference between p and /3. Even if/3 - 1, one may still have a good smoother.

Large discrepancies between predictions based on fi and practical observations may occur

for singular perturbation problems when the boundary conditions are not periodic. It turns

34

out that discrepanciesdueto the fact that the boundaryconditionsarenot of the assumed
typearisemainly from thepresenceor absenceof wavenumbercomponents8s = 0 (present

with periodic boundary conditions, absent with Dirichlet boundary conditions). It has been

observed [29], [83], [147] that when using the exponential Fourier series (4.3.7) for smoothing

analysis of a practical case with Dirichlet boundary conditions, often better agreement with

practical results is obtained by leaving wavenumbers with 0_ = 0 out, changing the definition

of Or in (4.4.7) from (4.4.20) to

O D : {0:0 : (01, _2, ..., 0d), Oa : 27rka/nc_, ks _ O, ks = -na/2 + 1, ..., na/2}

d

o_ : 0Dn 17[(-_/2, _/2), o_ : 0D\ o_ (4.4.26)
s--'--I

where the superscript D serves to indicate the case of Dirichlet boundary conditions. The

smoothing factor is now defined as

PD = sup{]A(O)l : 0 e 0 D} (4.4.27)

Figure 4.4.3 gives an illustration of O_D, which is a discrete set within the hatched region, for

d = 2. Further support for the usefulness of definitions (4.4.26) and (4.4.27) will be given in

the next section.

Notice that we have the following inequality

PD _< P _< P (4.4.28)

If we have a Neumann boundary condition at both x_ = 0 and xs = 1, then 0u = 0 cannot

be excluded, but if one has for example Dirichlet at xa = 0 and Neumann at x_ = 1 then the

error cannot contain a constant mode in the x_ direction, and 0_ = 0 can again be excluded.

Exercise 4.4.1 Suppose hi = phi (hi : mesh-size of G, hi : mesh-size of G, one-dimensional

case, # some integer), and assume periodic boundary conditions. Show that we have aliasing

for

ok = 2_k/n,, k e z_n {(-nl/2,-n,/2.] u [n,/2_,_/2])

and define sets 0_, Os.

4.5 Fourier smoothing analysis

Explicit expression for the amplification factor

In order to determine the smoothing factor p, _ or PD according to definitions (4.4.7), (4.4.23)

and (4.4.27) we have to solve the eigenvalue problem S_/,(0) = A(0)_b(0) with S given by

35

K 02

R

01
K

Figure 4.4.3: Rough wavenumber set (O D, hatched) in two dimensions, with exclusion of

0a = 0 modes; standard coarsening.

(4.4.2). Hence, we have to solve N¢(8) = _(O)M!b(O). In stencil notation (to be more fully

discussed later) this becomes, in d dimensions,

y_ N(m,j)¢m+j(O)=)_(0) _ M(m,j)¢m+j(O), me 2gd

je 2g a je 2g d

(4.2.1)

with 2g = {0, 4-1, 4-2, ...).

We now assume the following.

Assumption (i). M(m,j) and N(m,j) do not depend on m.

This assumption is satisfied if the coefficients in the partial differential equation to be solved

are constant, the mesh-size of G is uniform and the boundary conditions are periodic. We write

M(j), N(j) instead of M(m,j), N(m,j). As a consequence of Assumption (i), Assumption

(ii) of Section 4.4 is satisfied: the eigenfunctions of S are given by (4.3.3), since

N(j)exp{i(j + m)O] = exp(imO) y_ N(j)exp(ijO)

je,_ d j6,_ d

so that _2,n(O) = exp(im6) satisfies (4.5.1) with

A(0)= _ N(j)exp(ijO)/ _ M(j)exp(ijO)

je2g '_ 362g d

(4.5.2)

36

Periodicityrequieresthat exp(im_8_)= exp[i(m_+ n_)8_], or exp(in_8_) = 1. Hence 8 E O,

as defined by (4.3.5), assuming n_ to be even. Hence, the eigenfunctions are the Fourier

modes of Theorem 4.3.2.

Variable coefficients, robustness of smoother

In general the coefficients of the partial differential equation to be solved will be variable, of

course. Hence Assumption (i) will not be satisfied. The assumption of uniform mesh-size is

less demanding, because ofen the computational grid G is a boundary fitted grid, obtained

by a mapping from the physical space and is constructed such that G is rectangular and

has uniform mesh size. This facilitates the implementation of the boundary conditions and

of a multigrid code. For the purpose of Fourier smoothing analysis the coefficients M(m,j)

and N(m,j) are locally 'frozen'. We may expect to have a good smoother if fi < 1 for all

values M(j), N(j) that occur. This is supported by theoretical arguments advanced in [57],

Section 8.2.2.

A smoother is called robust if it works for a large class of problems. Robustness is a

quantitative property, which can be defined more precisely once a set of suitable test problems

has been defined.

Test problems

In order to investigate and compare efficiency and robustness of smoothing methods the

following two special cases in two dimensions are useful

- (Ec2 + s2)u,l_ - 2(e - 1)csu,_2 - (_s 2 + c2)u,2_ = 0 (4.5.3)

- _(U,ll + u,22) + cu,1 + su,2 = 0 (4.5.4)

with c = cos/3, s = sin/3. There are two constant parameters to be varied: e > 0 and /3.

Equation (4.5.3) is called the rotated anisotropic diffusion equation, because it is obtained by

a rotation of the coordinate axes over an angle/3 from the anisotropic diffusion equation:

Eu,ll -- u,_ = s (4.5.5)

Equation (4.5.3) models not only anisotropic diffusion, but also variation of mesh aspect ratio,

because with 3 = 0,_ = 1 and mesh aspect ration hi�h2 = _-1/2 discretization results in the

same stencil as with _ = 6, hl/h2 = 1 apart from a scale factor. With _ _ k_r/2, k = 0, 1,2,3,

(4.5.3) also brings in a mixed derivative, which may arise in practice because of the use of non-

orthogonal boundary-fitted coordinates. Equation (4.5.4) is the convection-diffusion equation.

It is not self-adjoint. For s << 1 it is a singular perturbation problem, and is almost hyper-

bolic. Hyperbolic, almost hyperbolic and convection-dominated problems are common in fluid

dynamics.

37

Equations(4.5.3)and(4.5.4)arenot only usefulfor testingsmoothingmethods,but also
for testingcompletemultigrid algorithms.General(asopposedto Fourieranalysis)multigrid
convergence theory is not uniform in the coefficients of the differential equation, and the the-

oretical rate of convergence is not bounded away from 1 as e I 0 or e --. oo. In the absence

of theoretical justification, one has to resort to numerical experiments to validate a method,

and equations (4.5.3) and (4.5.4) constitute a set of discriminating test problems.

Finite difference discretization results in the following stencil for (4.5.3), assuming hi =

h2 = h and multiplying by h2:

[A]- (Ec _ + s2)[-1 2 - 1]

+ (e-1)c8 -] 2 -1 +(e8 2) 2
0 -1 1 -1

(4.5.6)

The matrix corresponding to this stencil is not a K-matrix (see Definition 3.2.6) if ¢- 1)cs > O.

If that is the case one can replace the stencil for the mixed derivative by

I 0 1 -1
1 -2 1

-1 1 0
(4.5.7)

We will not, however use (4.5.7) in what follows.

A more symmetric stencil for [A] is obtained if the mixed derivative is approximated by

the average of the stencil employed in (4.5.6) and (4.5.7), namely

1 0 -1 1
1 0 0 0

2 -1 0 1

Note that for [A] in (4.5.6) to correspond to a K-matrix it is also necessary that

(4.5.8)

ec 2+s 2+(E-1)cs>_0 and es 2÷c 2+(s-1)cs>_O (4.5.9)

This condition will be violated ife differs enough from 1 for certain values ofc= cos/_, s = sin _.

With (4.5.8) there are always (if (¢ - 1)c8 _ 0) positive off-diagonal elements, so that we never

have a K-matrix. On the other hand, the 'wrong' elements are a factor 1/2 smaller than with

the other two options. Smoothing analysis will show which of these variants lend themselves

most for multigrid solution methods.

38

Finite differencediscretizationresultsin the followingstencilfor (4.5.4),with hi = h2 = h

and multiplying by h2:

i1114 [11[A]=e -1 +c [-1 0 1]+s 0 (4.5.10)
-1 -1

In (4.5.10) central differences have been used to discretize the convection terms in (4.5.4).

With upwind differences we obtain

-1] h[A]=z -1 4 -1 +_[-c-[c[21c [
-1

+ _ 21sl
-s-lsl

c- Icl]

(4.5.11)

Stencil (4.5.10) gives a K-matrix only if the well known conditions on the mesh P6clet numbers
are fulfilled:

Iclh/e < 2, IsJh/e < 2 (4.5.12)

Stencil (4.5.11) always results in a K-matrix, which is the main motivation for using up-

wind differences. Often, in applications (for example, fluid dynamics) conditions (4.5.12) are

violated, and discretization (4.5.10) is hard to handle with multigrid methods; therefore dis-

cretization (4.5.11) will mainly be considered.

Definition of robustness

We can now define robustness more precisely: a smoothing methods is called robust if, for the

above test problems, p < p* < 1 or PD _< P* < 1 with p* independent of e and h, for some

h0>h>0.

39

Numerical calculation of Fourier smoothing factor

Using the explicit expression (4.5.2) for A(0), it is not difficult to compute IA(0)I , and to find

its largest value on the discrete set Or or O_D and hence the Fourier smoothing factors p or

PD. By choosing in the definition of Or (for example (4.4.20) or (4.4.21) various values of

n_ one may gather numerical evidence that (4.4.22) is satisfied. Computation of the mesh-

independent smoothing factor fi defined in (4.4.23) is more difficult numerically, since this

involves finding a maximum on an infinite set. In simple cases p can be found analytically, as

we shall see shortly. Extrema of IA(0)l or Or are found where 01A(0)I/0O_ = 0, a = 1,2, ..., d

and at the boundary of Or. Of course, for a specific application one can compute p for the

values of n_ occurring in this application, without worring about the limit na --* _. In the

following, we often present results for nl = n2 = n = 64. It is found that the smoothing

factors p, pD do not change much if n is increased beyond 64, except in those cases where p

and PD differ appreciably. An analysis will be given of what happens in those cases.

All smoothing methods to be discussed in this chapter have been defined in Section 3.3

to 3.5.

Local smoothing

Local freezing of the coefficients is not realistic near points where the coefficients are not

smooth. Such points may occur if the computational grid has been obtained as a boundary

fitted coordinate mapping of physical domain with non-smooth boundary. Near points on

the boundary which are the images of the points where the physical domain boundary is not

smooth, and where the mapping is singular, the smoothing performance often deteriorates.

This effect may be counterbalanced by performing additional local smoothing in a few grid

points in a neighbourhood of these singular points. Because only a few points are involved,

the additional cost is usually low, apart from considerations of vector and parallel computing.

This procedure is described in [23] and [9] and analysed theoretically in [110] and [24].

4.6 Jacobi smoothing

Anisotropic diffusion equation

Point Jacobi

Point Jacobi with damping corresponds to the following splitting (cf. Exercise 3.1.1), in

stencil notation:

M(0) = w-lA(O), M(j) = O, j _ 0 (4.6.1)

Assuming periodic boundary conditions we obtain, using (4.5.9) and (4.5.2), in the special

case c = l, s=O

A(O) = 1 +_z(ecos 01-e +cos 02- 1)/(1+e) (4.6.2)

4O

Becauseof symmetryOr can be confinedto the hatchedregionof Figure4.6.1. Clearly,
fi_> [p(_r, Tr)[=]l-2w]_> lforwt_(0,1). For_E(0,1) wehavefor0ECDEF: kQr, r)_<

02

K

u/2[

u/2
01

Figure 4.6.1: Rough wavenumbers for damped Jacobi.

A(0, r/2), or 1 - 2w < A(0) _< 1 - w/(1 + e). For 0 E ABCG we have

A(r, _/2) < _(e) < _(_/2, 0),

or 1 - [(1+ 2e)/(1 + e)]co_ A(0)< 1 - [e/(1 + e)]w.

Hence

1 + 2_¢ol, L1 e
- _ - T--_ol} (4.6.3)¢ = max{ll - 2_[, I1 1 + el' 11 1 + e +

p=(2+e)/(2+3e), w=(2+2e)/(2+3e) (4.6.4)

For z = 1 (Laplace's equation) we have/5 = 3/5, w = 4/5. For e << 1 this is not agood

smoother, since lim/5 = 1. The case e > 1 follows from the case e < 1 by replasing e by 1/e.
elO

Note that p is attained for 0 E Or, so that here

p = fi (4.6.5)

For w = 1 we have/_ = 1, so that we have an example of a convergent method which is not a

smoother.

Dirichlet boundary conditions

In the case of point Jacobi smoothing the Fourier sine series is applicable (see [141]), so

that Dirichlet boundary conditions can be handled exactly. It is found that with the sine

series A(0) is still given by (4.6.2), so all that needs to be done is to replace Or by O D in the

preceding analysis. This is an example where our heuristic definition of PD leads to the correct

41

result. Assumenl = n2 = n. The whole of OD is within the hatched region of Figure 4.6.1.

Reasoning as before we obtain, for 0 < _ < 1:

A(Tr, 7r) < A(0) < A(2r/n, _/2), _(_, r/2) < A(0) _< _(_/2, 2_r/n) (4.6.6)

Hence PD = max(ll -- 2wl, I1 -- ew(1 + 2"_r2/n2)/(1 + e)l, so that P/9 -- P+ O(n-2), and again

we conclude that point Jacobi is not a robust smoother for the anisotropic diffusion equation.

Line Jacobi

We start again with some analytical considerations. Damped vertical line Jacobi iteration

applied to the discretized anisotropic diffusion equation (4.5.6) with c = 1, s = 0 corresponds

to the splitting

[1][Ml=w -1 0 2+2e 0 (4.6.7)

-1

The amplification factor is given by

2(8) = wEcos 81/(1 +E - cos 82) + 1 -w (4.6.8)

both for the exponential and the sine Fourier series. We note immediately that]A(r, 0)1 = 1

if w = 1, so that for w = 1 this seems to be a bad smoother. This is surprising, because as

s _ 0 the method becomes an exact solver. This apparent contradiction is resolved by taking

boundary conditions into account. In Example 4.6.1 it is shown that

PD = = E/(1 + : - cos m) for = 1 (4.6.9)

where _ = 2;r/n. As n _ _ we have

RD _-- (1 + 2_r2h2/e)-I (4.6.10)

so that indeed lim PD = 0. Better smoothing performance may be obtained by varying w. In
_10

Example 4.6.1 it is shown that fi is minimized by

2+2e

w - 3 + 2e (4.6.11)

Note that for 0 < e < 1 we have 2/3 < w _< 4/5, so that the optimum value of w is only

weakly dependent on e. We also find that for w in this range the smoothing factor depends

only weakly on w. We will see shortly that fortunately this seems to be true for more general

problems also.

With w according to (4.6.11) we have

p = (1 + 2e)/(1 + 3_) (4.6.12)

42

Choosingw = 0.7 we obtain

b = max{1 - 0.7/(1 + ¢), 0.6) (4.6.13)

which shows that we have a good smoother for all 0 _< _ < 1, with an _-independent w.

Example 4.6.1. Derivation of (4.6.9) and (4.6.11). Note that A(0) is real, and that we need

to consider only 0a _> 0. It is found that 0_/001 = 0 only for 0a = 0, Tr. Starting with pD,

we see that max{[2(0)l: 0 E O D) is attained on the boundary of 0 D. Assume nl = n2 = n,

and define _ = 2_r/n. It is easily see that max(IX(0)[: 0 E O D) will be either IA(_, 7r/2)[or

{)_(_, ¢P)I. If w = 1 it is IX(Tr, _)l, which gives us (4.6.9). We will determine the optimum value

of w not for PD but for p. It is sufficient to look for the maximum of IX(0)I on the boundary

of Or. It is easily seen that

p = maxIIA(O,_r/2)l , IA(Tr, O)]) = max{1 -w/(1 + e),]1 - 2wl)

which shows that we must take 0 < w < 1. We find that the optimal w is given by (4.6.11).

Note that in this case we have p -- p.

Equation (4.5.5), for which the proceeding analysis was done, corresponds to/3 = 0 in (4.5.3).

For/3 = _r/2 damped vertical line Jacobi does not work, but damped horizontal line Jacobi

should be used. The general case may be handled by alternating Jacobi: vertical line followed

by horizontal line Jacobi. Each step is damped separately with a fixed problem-independent

value of w. After some experimentation w = 0.7 was found to be suitable; (cf. (4.6.12) and

(4.6.13). Table 4.6.1 presents results. Here and in the remainder of this chapter we take

nl -- n_ = n, and/3 is sampled with intervals of 15°, unless stated otherwise. The worst case

found is included in the tables that follow.

Increasing n, or finer sampling of/3 around 450 or 0 °, does not result in larger values

of p and PD than those listed in Table 4.6.1. It may be concluded that damped alternating

Jacobi with a fixed damping parameter of w = 0.7 is an efficient and robust smoother for the

rotated anisotropic diffusion equation, provided the mixed derivative is discretized according

to (4.5.8). Note the good vectorization and parallelization potential of this method.

43

(4.5.6) (4.5.8)
p, PD _ P, PP

1 0.28 any 0.28 any

10 -1 0.63 450 0.38 450

10 -2 0.95 450 0.44 450

10 -3 1.00 450 0.45 450

10 -5 1.00 450 0.45 450

10 -s 1.00 450 0.45 450

Table 4.6.1: Fourier smoothing factors P, PD for the rotated anisotropic diffusion equation

(4.5.3) discretized according to (4.5.6) or (4.5.8); damped alternating Jacobi smoothing;

w -- 0.7; n--64.

Convection-diffusion equation

Point Jacobi

For the convection-diffusion equation discretized with stencil (4.5.11) the amplification factor

of damped point Jacobi is given by

A(0) = w(2cos 91 +2cos 82+P_e ie' +Ple-i°2)/(4+P1 +P2)+ 1-w (4.6.14)

where P1 = chic, P2 = sh/e. Consider the special case: P1 = 0, /)2 = 4/_. Then

A(lr, 0) = 1 - w + ¢0/(1 + _) (4.6.15)

so that [A(?r, 0)[--* 1 as _ _ 0, for all w, hence there is no value of w for which this smoother

is robust for the convection-diffusion equation.

Line Jaeobi

Let us apply the line Jacobi variant which was found to be robust for the rotated anisotropic

diffusion equation, namely damped alternating Jacobi with w = 0.7, to the convection-

diffusion test problem. Results are presented in Table 4.6.2.

Finer sampling of j3 around j3 = 0 ° and increasing n does not result in significant changes.

Numerical experiments show w =- 0.7 to be a good value. It may be concluded that damped

alternating Jacobi with a fixed damping parameter (for example, w = 0.7) is a robust and

efficient smoother for the convection-diffusion test problem. The same was just found to be

true for the rotated anisotropic diffusion test problem. The method vectorizes and parallelizes

easily, so that all in all is an attractive smoother.

44

p /3 PD /3
1 0.28 0° 0.28 0 °

10-1 0.28 0° 0.29 0 °

10 -2 0.29 0° 0.29 0 °

10 -3 0.29 0° 0.29 0 °

10 -5 0.40 0° 0.30 0 °

Table 4.6.2: Fourier smoothing factors p, PD for the convection-diffusion equation discretized

according to (4.5.11); damped alternating line Jacobi smoothing; w = 0.7; n = 64.

Exercise 4.6.1 Assume semi-coarsening as discussed in Section 4.4: hi = hi,]z2 = h2/2.

Show that damped point Jacobi is a good smoother for equation (4.5.5) with 0 < _ _< 1.

Exercise 4.6.2 Show that lim p = 1 for alternating Jacobi with damping parameter w - 1

applied to the convection-diffusion test problem.

4.7 Gauss-Seidel smoothing

Anisotropic diffusion equation

Point Gauss-Seidel

Forward point Gauss-Seidel iteration applied to (4.5.3) with c = 1, s = 0 corresponds to the

splitting

I °] [][MI= -E 2c+2 0 , [N]= 0 0 e (4.7.1)
-1 0

The amplification factor is given by

(0) = (ee iO + eiO2)/(--ce -i01 + 2s + 2 - e i°2) (4.7.2)

For e = 1 (Laplace's equation) one obtains

= 1_(./2, cos-'(4/5))l = 1/2 (4.7.3)

To illustrate the technicalities that may be involved in determining # analytically, we give the

details of the derivation of (4.7.3) in the following example.

Example 4.7.1. Smoothing factor of forward point Gauss-Seidel for Laplace equa-

tion. We can write

IA(o)? -- (1 + cos/3)/(9 - 8cos _-cos _- + cos /3) (4.7.4)

45

with a = 91 + 92, fl = 01 - 02. Because of symmetry only t_, /_ > 0 has to be considered. We

h av e

0]A(0)12/0a = 0 for sin(t_/2)cos(fl/2) = 0 (4.7.5)

This gives c_ = 0 or (_ = 2_r or j3 = _r. For fl = r we have aminimum: IAI2 = 0. With

= 0 we have [2(0)12 = cos2(fl/2)/(2 - cos(fl/2)) 2, which reaches a maximum for/3 = 27r,

i.e. at the boundary of O_. With c_ = 2_r we are also on the boundary of 0_. Hence, the

maximum of I),(0)[is reached on the boundary of Or. We have]A(r/2, 02)12 = (1 +sin 02)/(9+

sin 02 - 4 cos 02), of which the 02 derivative equals 0 of 8 A cos 02 - 4 sin 02 - 4 = 0, hence

02 = -7r/2, which gives a minimum, or 02 = + cos (4/5). The largest maximum is ob-

tained for 02 = cos -1 (4/5). The extrema of IA(Tr,021 are studied in similar fashion. Since

A(01,02) = A(02,01) there is not need to study [A(01,Tr/2)[and [A(0:,Tr)[. Equation (4.7.3)

follows.

We will not determine/_ analytically for e _ 1, because this is very cumbersome. To do this

numerically is easy, of course. Note that lim A(_r, 0) = 1, lira A(_r,0) = -1, so that forward

point Gauss-Seidel is not a robust smoother for the anisotropic diffusion equation, if standard

coarsening is used. See also Exercise 4.7.1.

With semi-coarsening in the x2 direction we obtain in Example 4.7.2: fi < {(1 + e)/(5 +

¢)} 1/2, which is satisfactory for e < 1. For ¢ >_ 1 one should use semi-coarsening in the

xl-direction. Since in practice one may ave E << 1 in one part of the domain and E _>> 1 in

another, semi-coarsening gives a robust method with this smoother only if the direction of

semi-coarsening is varied in the domain, which results in more complicated code than standard

multigrid.

Example 4.7.2. Influence of semi-coarsening. We will show

< [(1 4- _)/(5 4- _)]1/2

for the smoother defined by 94.7.1) with semi-coarsening in the x2 direction.

it follows that one may write IA(0)] -2 = 1 + (2 + 2s)p(0) with p(0) = (2 + 2e - 2e cos 0_ -

2 cos 02)/[1 + e2 + 2e cos (01 - 02]. In this case, _)r is given in Figure 4.4.2. On O_ we have

/_(0) >_ (2 + 2s - 2ecos 01 - 2cos 02)/(1 + s)2 > 2/(1 + :)2 .

Hence IA(O)I :> [i+ 4/(1 + e)]-,/2, and (4.7.6) follows.

(4.7.6)

From (4.7.2)

For backward Gauss-Seidel the amplification factor is A(-0), with A(0) given by (4.7.2), so

that the amplification factor of symmetric Gauss-Seidel is given by A(-0)A(0). From (4.7.2)

it follows that]A(0)I = I),(-0)1, so that the smoothing factor is the square of the smoothing

46

factor for forwardpoint Gauss-Seidel,hence,symmetricGauss-Seidelis alsonot robust for
the anisotropicdiffusionequation. Also, point Gauss-Seidel-Jacobi(Section3.3) doesnot
workfor this test problem.

Thegeneralrule is: points that are strongly coupled must be updated simultaneously. Here

we mean by strongly coupled points: points with large coefficients (absolute) in [A]. For

example, in the case of Equation (4.5.5) with s _ 1 points on the same vertical line are

strongly coupled. Updating these points simultaneously leads to the use of line Gauss-Seidel.

Line Gauss-Seidel

Forward vertical line Gauss-Seidel iteration applied to the anisotropic diffusion equation

(4.5.5) corresponds to the splitting

11 [0[M]= -E 2e+2 0 , IN]= 0 0 e (4.7.7)

-1 0

The amplification factor is given by

() = ee_e_/(2e + 2 - 2 cos 62 - ze-i°_)

and we find Example 4.7.3, which follows shortly:

/5 ----max{5 -1/2, (2/g -t- 1) -1 }

(4.7.8)

(4.7.9)

Hence, limp = 5 -1/2. This is surprising, because for e = 0 we have, with Dirichlet bound-
el0

ary conditions, uncoupled non-singular tridiagonM systems along vertical lines, so that the

smoother is an exact solver, just as in the case of line Jacobi smoothing, discussed before. The

behaviour of this smoother in practice is better predicted by taking the influence of Dirichlet

boundary conditions into account. We find in Example 4.7.3 below:

(4.7.10)
>(1 + v)/2 : PD = E[__ + (2E + 2)(2E + 2 - 2_cos _)]-1/2

with _p = 2rh, h = i/n, assuming for simplicity nl : n2 : n. For E < (1 -J¢- Vf5)/2 and h I 0

this can be approximated by

(4.7.11)PD _ [1 + (2 + y:,2/e)2]-l/:_

and we see that the behaviour ofpD ass 10, h I 0 depends on qa2/¢ = 4n2h2/¢. For h _0

with E fixed we have PD "_ fi and recover (4.7.9); for ¢ _ 0 with h fixed we obtain PD '_ O. To

47

givea practicalexample,with h = 1/128 and e = 10-6 we have PD _- 0.0004.

Example 4.7.3. Derivation of (4.7.9) and (4.7.10). It is convenient to work with

[A(O)1-2. We have

}A(0)1-2 = [(2e + 2- ecos 01 - 2cos 02)2 + e2 sin 2 01]/e 2 .

Min {IA(0)1-2 : 0 E OD} is determined as follows. We need to consider only _ > 0. It is

found that 01A(0)1-2/002 = 0 for 02 = 0 for 02 = 0, r only. Hence the minimum is attained

on the boundary of O_. Choose for simplicity nl = n2 = n, and define qo= 21r/n. It is easily

seen that in O D we have

I (01,)1-2 > 1 (,02)J -2 >

I)_(_-,02)1-2 >_ I),(_-,_a)[-2 , [A(81,_-/2)l-2>lA(_p, rc/2)[2 ,

> > IA(,r)l-2

For e < (1 + V_)/ the minimum is IX(r/2,_)l-2; for e _> (1 + v_)/2, the minimum is

]X(cp, r/2)1-2. This gives us (4.7.10). We continue with (4.7.9). The behaviour of]A(0)I on

the boundary of _)_ is found simply by letting _a _ 0 in the preceding results. Now there is

also the possibility of a minimum in the interior of _)_, because 02 = 0 is allowed, but this

leads to the minimum in (_r/2, 0), which is on the boundary, and (4.7.9) follows.

Equations (4.7.9) and (4.7.10) predict bad smoothing when e >> 1. Of course, for e >> 1

horizontal line Gauss-Seidel should be used. A good smoother for arbitrary e is alternating

line Gauss-Seidel. For analytical results, see [141]. Table 4.7.1 presents numerical values of

p and PD for a number of cases. We take nl = n2 = n = 64, 3 = krc/12, k = 0,1,2,...,23 in

(4.5.3), and present results only for a value of _ for which the largest p or PD is obtained. In

the cases listed, p = PP. Alternating line Gauss-Seidel is found to be a robust smoother for

the rotated anisotropic diffusion equation if the mixed derivative is discretized according to

(4.5.8), but not if (4.5.6) is used. Using under-relaxation does not change this conclusion.

Convection-diffusion equation

Point Gauss-Seidel

Forward point Gauss-Seidel iteration applied to the central discretization of the convection-

diffusion equation (4.5.10) is not a good smoother, see [141].

For the upwind discretization (4.5.11) one obtains, assuming c > 0, s > 0:

eia'[1 + (]rll - P1)/2] + ei°=[1 + (]P2J - P2)/2]

A(6)= 4+lp, l+lp21_e_iO,[l+(p,+lp, i)/2]_e_O2[l+(P2+lP21)/2] (4.7.12)

with P1 = ch/e, P2 = sh/e the mesh-P4clet numbers (for simplicity we assume nl = n2).

For P1 > 0, P2 < 0 we have I_(0, _r)l =]P2/(4- P2)I, which tends to 1 as I/2] -'-* oo. To avoid

48

(4.5.6) (4.5.8)

e P, PD _ P, PD t_

1 0.15 any 0.15 any

10 -1 0.38 105 o 0.37 15o

10 -2 0.86 45 o 0.54 15 o

10 -3 0.98 450 0.58 150

10 -s 1.00 450 0.59 150

Table 4.7.1: Fourier smoothing factors p, pD for the rotated anisotropic diffusion equation

(4.5.3) discretized according to (4.5.6) and (4.5.8); alternating line Gauss-Seidel smoothing;

n=64.

this the order in which the grid points are visited has to be reversed: backward Gauss-Seidel.

Symmetric point Gauss-Seidel (forward followed by backward) therefore is more promising

for the convection-diffusion equation. Table 4.7.2 gives some numerical results for p, for

nl = n2 = 64. We give results for a value of_ in the set {t_ = k_r/12 : k = 0,1,2,..,23} for

which the largest p and pD are obtained.

Although this is not obvious from Table 4.7.2, the type of boundary condition may make

a large difference. For instance, for _ = 0 and _ _ 0 one finds numerically for forward point

Gauss-Seidel: p = IX(0, rr/2)l = l/v/'5, whereas lira PD = 0, which is more realistic, since as
¢10

E _ 0 the smoother becomes an exact solver. The difference between p and PD is explained

I y2_by noting that for _1 = _o = 27rhand ¢p << 1 we have [A(_,_'/2)I 2 = 1/(5+y+_ j with

y = 2rrh2v.

For ¢ << 1 and B = 105 ° Table 4.7.2 shows rather large smoothing factors. In fact, symmetric

point Gauss-Seidel smoothing is not robust for this test problem. This can be seen as follows.

If P1<0, P2 >0wefind

1-P_+i 1+P2-i

_(2'0) = 3 Pa+i'3-PI+P2-i(1-Pa)
(4.7.13)

Choosing 1°1 = -aP2 one obtains, assuming P2 >> 1, aP2 >> 1:

[(3,0) _ (1 + cQ -2 (4.7.14)

so that p may get close to 1 if _ is small. The remedy is to include more sweep directions.

Four-direction point Gauss-Seidel (consisting of four successive sweeps with four orderings:

49

P PD t_

1 0.25 0.25 0

10-1 0.27 0.25 0

10-2 0.45 0.28 1050

10-3 0.71 0.50 1050

10 -5 0.77 0.71 1050

Table 4.7.2: Fourier smoothing factors p, pD for the convection-diffusion equation discretized

according to (4.5.11); symmetric point Gauss-Seidel smoothing.

the forward and backward orderings of Figure 3.3.1, the forward vertical line ordering of Fig-

ure 3.3.1, and this last ordering reversed) is robust for this test problem, as illustrated by

Table 4.7.3.

As before, we have taken /_ = kr/12, k = 0,1,2,...,23; Table 4.7.3 gives results only

for a value of fl for which the largest p and PD are obtained. Clearly, four-direction point

Gauss-Seidel is an excellent smoother for the convection-diffusion equation. It is found that

p and PD change little when n is increased further.

Another useful smoother for this test problem is four-direction point Gauss-Seidel-Jacobi,

¢ # PD

1 0.040 0.040 0°

10 -1 0.043 0.042 0°

10 -2 0.069 0.068 0°

10 -3 0.16 0.12 0°

10-s 0.20 0.0015 150

Table 4.7.3: Fourier smoothing factors p, PD for the convection-diffusion equation discretized

according to (4.5.11); four-direction point Gauss-Seidel smoothing; n -- 64.

defined in Section 3.3. As an example, we give for discretization (4.5.11) the splitting for the

forward step:

[°l[M]=g -1 4 0 +h[--c--lcl 2]c] 0] (4.7.15)
0

[N] = [M] - [A]

5O

Theamplificationfactoriseasilyderived°Table4.7.4givesresults,samplingfl as before. The

results are satisfactory, but there seems to be a degradation of smoothing performance in the

vicinity of/3 = 0 ° (and similarly near t_ = kTr/2, k = l, 2, 3). Finer sampling with intervals

of 1° gives the results of Table 4.7.5.

This smoother is clearly usable, but it is found that damping improves performance still

further. Numerical experiments show that w = 0.8 is a good value; each step is damped

separately. Results are given in Table 4.7.6. Clearly, this is an efficient and robust smoother

for the convection-diffusion equation, with w fixed at w = 0.8. Choosing w = 1 gives a little

improvement for e/h >_0.1, but in practice a fixed value of w is to be preferred, of course.

e p PD

1 0.130 0.130 0 °

10 -1 0.130 0.130 450

10 -3 0.127 0.127 450

10 -3 0.247 0.242 15°

10 -5 0.509 0.494 15°

10-s 0.514 0.499 15°

Table 4.7.4: Fourier smoothing factors p, PD for the convection-diffusion equation discretized

according to (4.5.11); four-direction point Gauss-Seidel-Jacobi smoothing; n = 64.

rt p /_ PD /_

10 -s 64 0.947 1° 0.562 80

I0 -s 128 0.949 1° 0.680 50

Table 4.7.5: Fourier smoothing factors p, PD for the convection-diffusion equation discretized

according to (4.5.11); four-direction point Gauss-Seidel-Jacobi smoothing.

Line Gauss-Seidel

For forward vertical line Gauss-Seidel we have

x(o) = _'e,[1- P_-IP_1)12]1{4+ I&l + le21- eia'[1-4-(Pl JrIP_I)/2]

-ei°2[1 + (IP:l -/:'2)/2] - ei°2[1+ (P2 + 1P21)/2]} (4.7.16)

51

e p, PD /_

1.0 0.214 0 °

10 -I 0.214 0°

10 -2 0.214 450

10 -3 0.217 450

10 -5 0.218 450

10 -s 0.218 450

Table 4.7.6: Fourier smoothing factors, p, PD for the convection-diffusion equation discretized

according to (4.5.11); four-direction point Gauss-Seidel-Jacobi smoothing with damping pa-

rameter w = 0.8; n = 64.

For P1 < 0, P2 > 0 this gives IA(Tr,0)l = (1 - P1)/(3- P1), which tends to 1 as IPI] ---, oo,

so that this smoother is not robust. Alternating line Gauss-Seidel is also not robust for this

test problem. If P2 < 0, P1 = (_P2, c_ > 0 and IP21 >> 1, laP21 >> 1 then

A(O, Tr/2) _ ia/(1 + a - i) (4.7.17)

so that IA(0, r¢/2)l _ c_/[(1 + _)2 + 111/2, which tends to 1 if _ >> 1. Symmetric (forward fol-

lowed by backward) horizontal and vertical line Gauss-Seidel are robust for this test problem.

Table 4.7.7 presents some results. Again, n = 64 and fl = kr/2, k = 0, 1,2, ...,23; Table 4.7.7

e p Z pv
1 0.20 900 0.20 900

10-a 0.20 900 0.20 900

10-2 0.20 900 0.20 900

10-3 0.30 00 0.26 0°

I0-s 0.33 0° 0.0019 750

Table 4.7.7: Fourier smoothing factors, p, PD for the convection-diffusion equation discretized

according to (4.5.11); symmetric vertical line Gauss-Seidel smoothing; n = 64.

gives results only for the worst case in/_.

We will not ana]yse these results further. Numerically we find that for fl = 0 and e << 1 that

p = (A(0,_'/2) = (1 + P1)/(9+3P1) _- 1/3. As E _ 0, PD depends on the value ofn_. It is
clear that we have a robust smoother.

52

We may concludethat alternatingsymmetricline Gauss-Seidelis robust for both test
problems,providedthe mixed derivativeis discretizedaccordingto (4.5.8). A disadvantage
of this smootheris that it doesnot lenditself to vectorizedor parallelcomputing.
The Jacobi-typemethodsdiscussedearlierandGauss-Seidel with pattern orderings (white-

black, zebra) are more favourable in this respect. Fourier smoothing analysis of Gauss-Seidel

with pattern orderings is more involved, and is postponed to a later section.

Exercise 4.7.1 Show that damped point Gauss-Seidel is not robust for the rotated anisotropic

diffusion equation with c = 1, s = 0, with standard coarsening.

Exercise 4.7.2 An Exercise 4.7.1, but for Gauss-Seidel-Jacobi method.

4.8 Incomplete point LU smoothing

For Fourier analysis it is necessary that [M] and [N] are constant, i.e. do not depend on the

location in the grid. For the methods just discussed this is the case if [A] is constant. For

incomplete factorization smoothing methods this is not, however, sufficient. Near the bound-

aries of the domain [M] (and hence [N] = [M]-[A]) varies, usually tending rapidly to a con-

stant stencil away from the boundaries. Nevertheless, useful predictions about the smoothing

performance of incomplete factorization smoothing can be made by means of Fourier analysis.

How this can be done is best illustrated by means of an example.

Five-point ILU

This incomplete factorization has been defined in Section 4.4, in standard matrix notation.

In Section 4.4 A was assumed to have a five-point stencil. With application to test problem

(4.5.6) in mind, A is assumed to have the seven-point given below. In stencil notation we

[A]

[D]i

have

f g

c d

a

0

0 (5_

0

q

b

0

[/;],

[u];

0

c _f_ 0

a

g

0 $i q

0

(4.8.1)

where i = (il, i2). We will study the unmodified version. For 8i we have the recursion (3.4.12)

with a = 0:

_ --. d- ag/_fi_e 2 - cq/_i-e, (4.8.2)

where e_ -- (1,0), e_ = (0, 1). Terms involving negative values of i_, _ - 1 or 2, are to be

repaced by zero. We will show the following Lemma.

53

Lemma 4.8.1. If

then

a+c+d+q+g>0, a, c, q, g _< 0, d>0 (4.8.3)

• .lim (fi = _ - d12 + [d214 - (ag + cq)] 1/_ (4.8.4)
_1 _t2 ''* OO

The proof is given in [141]. Note that (4.8.3) is satisfied if b = f = 0 and A is a K-matrix

(Section 3.2). Obviously, _ is real, and $ _> d. The rate at which the limit is reached in (4.8.4)

is studied in [141]. A sufficient number of mesh points away from the boundaries of the grid

G we have approximately (ii = df, and replacing (5i by (f we obtain for [M] = [L][D-1][U]:

[U] = c
a a

(4.8.5)

and standard Fourier smoothing analysis can be applied. Equation (4.8.5) is derived eas-

ily by nothing that in stencil notation (ABu)i = EjEkA(i,j)B(i + j,k)ui+j+k, so that

A(i,j)B(i+j, k) gives a contribution to C(i,j+k), where C = AB; by summing all contribu-

tions one obtains C(i, 1). An explicit expression for C(i, I) is C(i, l) = EjA(i,j)B(i +j, l -j),

since one can write (Cu)i = EtEjA(i,j)B(i + j,l- j)ui+l.

Smoothing factor of five-point ILU

The modified version of incomplete factorization will be studied. As remarked in [145] modi-

fication is better than damping, because if the error matrix N is small with a = 0 it will also

be small with cr # 0. The optimum a depends on the problem. A fixed a for all problems is to

be preferred. From the analysis and experiments in [145] and [147] and our own experiments

it follows that a = 0.5 is a good choice for all point-factorizations considered here and all

problems. Results will be presented with a = 0 and a = 0.5. The modified version of the

recursion (3.4.12) for _ is

_k = d- ag/_k-I - cq/_k-1 + o'{[aq/_k-i -- b] + Icg/__l - fl} (4.8.6)

The limiting value (5 in the interior of the domain, far from the boundaries, satisfies (4.8.6)

with the subscripts omitted, and is easily determined numerically by the following recursion

5k+l = d - (aq + cq)/_k + a{laq/Sk - bl + Icg/g_ - f[} (4.8.7)

The amplification factor is given by

(e) = {(aq/ - b)exp[@, - e2)] + (eg/_- f)exp[@2 -el)] + ap}/

+qexp(iOi) + cgexp[i(02 - 01)11_ + gc_p(iO_)} (4.8.8)

54

where p = laq/a - b[+ [cg/6 - fl.

Anisotropic diffusion equation

For the (non-rotated fl = 0°) anisotropic diffusion equation with discretization (4.5.6) we have

g =a=-l, c= q=-E, d=2+2E, b=f =0, and we obtain: 6= I+E+[2E(I+a)] a/2'

and

A(0)= [Ecos(al - o2)16+ oU6]I

[1 + _ + a¢/6- ¢cosO1 - cos02 -t- _cos(O1 - 02)/6] (4.8.9)

We will study a few special cases. For z = 1 and a = 0 we find in [141]:

= I,\(_r/2,-_r/3)l = (2vf3 + _- 1)-' __ 0.2035 (4.8.10)

The case e = 1, a ¢ 0 is analytically less tractable. For e << 1 we find in [141]:

O < a < 112: fi _- IAOr,O) = (1- a)/(26- l+a)

1/2 _<_ < 1 : p u 1_(_/2) = _/(_ + 6)
(4.8.11)

0 _< o" < 1/2: PD '_ I_(_,_)1-- (1 - _)/(26- 1 + _ + 6_-2/2_) (4.8.12)
1/2 < a _< 1 : PD _- I,_(_r/2,r)l = (_ + v)(a + 6 + 6r2/2E)

where r = 27r/n2. These analytical results are confirmed by Table 4.8.1. For example, for

e = 10-3 , n2 = 64 and a = 1/2 equation (4.8.12) gives PD -_ 0.090, p _ 1/3. Table 4.8.1

includes the worst case for/3 in the set {/3 = k_r/12, k = 0, 1,2, ...,23). Here we have another

example showing that the influence of the type of the boundary conditions on smoothing

analysis may be important. For the non-rotated anisotropic diffusion equation (/3 = 0 ° or

/3 = 90 °) we have a robust smoother both for a = 0 and a = 1/2, provided the boundary

conditions are of Dirichlet type at those parts of the boundary that are perpendicular to the

direction of strong coupling. When /3 is arbitrary, five-point ILU is not a robust smoother

with a = 0 or a = 1/2. We have not experimented with other values of a, because, as it will

turn out, there are other smoothers that are robust, with a fixed choice of a, that does not

depend on the problem.

55

P P PD PD

a /3=0 °,900 /3= 150 /3=0 °,900 /3= 150

1 0 0.20 0.20 0.20 0.20

10-1 0 0.48 1.48 0.46 1.44

10-2 0 0.77 7.84 0.58 6.90

10-3 0 0.92 13.0 0.16 10.8

10 -5 0 0.99 13.9 0.002 11.5

1 0.5 0.20 0.20 0.20 0.20

10 -1 0.5 0.26 0.78* 0.26 0.78*

10-2 0.5 0.30 1.06 0.025 1.01

10 -3 0.5 0.32 1.25 0.089 1.18

10-5 0.5 0.33 1.27 0.001 1.20

Table 4.8.1: Fourier smoothing factors, p, pl9 for the rotated anisotropic diffusion equation

discretized according to (4.5.6); five-point ILU smoothing; n = 64. In the cases marked with

*, /3 = 450

Convection-diffusion equation

Let us take P1 = -aP2, a > 0, P2 > 0, where 1='1= oh�E, P2 = 8h/e. Then we have for the

convection-diffusion equation discretized according to (4.5.11): a = -1 - P2, b = f = 0, c =

-1, d = 4 + (1 + a)P2, q = -1 - aP2, g = -1. After some manipulation one finds that if

a << l, P2 >> 1, aP2 >> 1, then A(x/2, 0) _ i as P2 _ _. This is accordance with Table 4.8.2.

The worst case obtained when/3 is varied according to/3 -- kr/12, k = O, 1,2, ...,23 is listed.

Clearly, five-point ILU is not robust for the convection-diffusion equation, at least for a = 0

and a = 0.5

Seven-point ILU

Seven-point ILU tends to be more efficient and robust than five-point ILU. Assume

[A]= c d q (4.8.13)
a b

The seven-point incomplete factorization A = LD-_U-N discussed in Section 4.4 is defined

in stencil notation as follows:

[L]i= 7i _i 0 , [Di= 0 _i 0 , [U]i= 0 (fi #i (4.8.14)

ai 3i 0 0 0 0

56

P PD /3 p PD

(r=0 a=0.5

1 0.20 0.20 0° 0.20 0.20

10-1 0.21 0.21 0 ° 0.20 0.20

10-2 0.24 0.24 1200 0.24 0.24

10 -3 0.60 0.60 1050 0.48 0.48

10-s 0.77 0.71 105 o 0.59 0.58

Table 4.8.2: Fourier smoothing factors p, PD for the convection-diffusion equation discretized

according to (4.5.11); five-point ILU smoothing; n = 64

We have, taking the limit i _ oc, assuming the limit exists and writing limi-.oo ai = a etc.,

a = a, /3 = b- au/_, 3' = c- a¢/_, (4.8.15)
=

with _ the appropriate root of

= d - (ag + _(+ 7#)¢f + a(I/_#/_f [+ 17(/_[) (4.8.16)

Numerical evidence indicates that the limiting _ resulting as i --_ o0 is the same as that for

the following recursion,

/_o = b, 7o=C, _o=d, #o=q, (o = f

_j+l = b - a#j/_j, 7j+1 = c - a(j/Sj (4.8.17)

JZj+I = q --]_j+lg/_j, _j+l = f -- "Yj+lg/_j

For M we find M = LD-1U = A + N, with

[00][N] = 0 P3 ,

0 0 0 Pl

The amplification factor is given by

A(e) =

pz = (Ipll+lp211)

{P3 + P, exp[i(20, - 02)] + P2 exp[-i(201 - 02)]}/

{aexp(-iO2) + bexp[i(02 - 01)] + Px exp[i(201 - 02)] + cexp(-i01)

+d + P3 + q exp(i01) + P2 exp[-i(201 - 82)]

+f exp[-i(O_ - 02)] + g exp(i02)}

(4.8.18)

(4.8.19)

57

Anisotropic diffusion equation

For the anisotropic diffusion problem discretized according to (4.5.9) we have symmetry:

= 7, _ =/3, g - a, f = b, q = c, so that (4.8.19) becomes

A(e)= [_,p+ pcos(201 - o_]/

[a cos 02 + b cos(O, - 02) + c cos 01 + d/2 + ap + p cos(201 - 02)1 (4.8.20)

with p =/3p/6.

With rotation angle/3 = 900 and e << 1 we find in [141]:

O<a< 1/2: _lA(O,_r)l"
- - - 2e+#p-v (4.8.21)

1/2 > _,> 1: p ~ J_(o,_/2)} ~
-- -- ¢+ap

0 _< O" < 1/2 : PD "_ [A(_ °, w)l _- I(a - 1 + 2qo2)/[_f2(2 + _2/2e) + a - 111 (4.8.22)

1/2 < a < 1 : pv _- IA(_,_r/2)l _- l(a + 2_)/[_2(1 + _2/2e) + a - 2_}l

with _o = 2_r/nl. These results agree approximately with Table 4.8.3. For example, for

E = 10 -3, rtl ---=64 Equation (4.8.22) gives PD "_ 0.152 for a = 0, and PD "_ 0.103 for a = 0.5.

Table 4.8.3 includes the worst case for/3 in the set {_ = k_r/12, k = 0, 1,2, ..., 23}. Equations

(4.8.21) and (4.8.22) and Table 4.8.3 show that the boundary conditions may have an impor-

tant influence. For rotation angle/3 = 0 or/3 = 90 °, seven-point ILU is a good smoother for

P P PD PD

s a /3 = 0° /3 = 900 p,/3 /3 = 0 ° /3 = 900 PD,/3

1 0 0.13 0.13 0.13,

10 -1 0 0.17 0.27 0.45,

10 -2 0 0.17 0.61 1.35

10 -3 0 0.17 0.84 1.69.

10 -s 0 0.17 0.98 1.7+

1 0.5 0.11 0.11 1.11

10 -a 0.5 0.089 0.23 0.50

10-2 0.5 0.091 0.27 0.77

10-3 0.5 0.091 0.31 0.82

10 -s 0.5 0.086 0.33 0.83

any 0.12 0.12 0.12, any

75° 0.16 0.27 0.44, 75°

75° 0.11 0.45 1.26, 750

750 0.02 0.16 1.55, 75°

75° 10 -4 0.002 1.59, 750

any 0.11 0.11 0.11, any

600 0.087 0.23 0.50, 600

600 0.075 0.25 0.77, 600

600 0.029 0.097 0.82, 60°

600 4 x 10 -4 10 -3 0.82, 600

Table 4.8.3: Fourier smoothing factors p, pD for the rotated anisotropic diffusion equation

discretized according (4.5.6); seven-point ILU smoothing; n = 64

the anisotropic diffusion equation. With a = 0.5 we have a robust smoother; finer sampling

58

of g and increasing n gives results indicating that p and PD are bounded away from 1. For

some values of _ this smoother is not, however, very effective. One might try other values of

(r to diminish PD. A more efficient and robust ILU type smoother will be introduced shortly.

In [141] it is shown that for t3 = 45 o and E << 1

p __-max { _-_ , (4.8.23)

Hence, the optimal value of a for this case is a = 0.5, for which p _ 1/3.

Convection-diffusion equation

Table 4.8.4 gives some results for the convection-diffusion equation. The worst case for _ is

the set {_ = kzc/12 : k = 0, 1,2,...,23} is listed. It is found numerically that p << 1 and

PD << 1 when E << 1, except for t3 close to 0° or 180 °, where p and PD are found to be

larger than for other values of/_, which may spell trouble. We, therefore, do some analysis.

Numerically it is found that for E << 1 and Is] << 1 we have p __]A(0,_r/2)[, both for a = 0

and a = 1/2. We proceed to determine A(0, r/2). Assume c < 0, s > 0; then (4.5.11)gives

a = -s-hs, b = 0, c= -_, d = 4E-ch+sh, q = -_+hc, f = 0, g = -c. Equations

(4.8.15) and (4.8.16) give, assuming E << 1 , Is[<< 1 and keeping only leading terms in e and

s, /3 __ (_ + sh)ch/tf, 7 _- -_, tz _- ch, (__ O, 5 __ (s - c)h, Pl _- (_ + sh)c2/(s - c) 2, P2 = O.

Substitution in (4.8.19) and neglect of a few higher order terms results in

+ i)
A(O, _r/2) __ (4.8.24)

(r + 2)(1 - 2 tan/3) + a(1 + r) + i(1 - 2rtan t3)

where r = sh/g, so that

a=O a=0.5

P PD /_ P PD t3

1 0.13 0.12 90 o 0.11 0.11 0 °

10 -1 0.13 0.13 900 0.12 0.12 0°

lO -2 0.16 0.16 0° 0.17 0.17 1650

10 -3 0.44 0.43 1650 0.37 0.37 165 °

lO -s 0.58 0.54 165 ° 0.47 0.47 1650

Table 4.8.4: Fourier smoothing factors p, PD for the convection-diffusion equation discretized

according to (4.5.11); seven-point ILU smoothing; n = 64

p2_(r+l)2(_r2+l)/{[(rT2)(l_2tan f_)+a(1 +r)]2+ (1_ 2rtan fl)2} (4.8.25)

59

hence,
p2 _< (a2 + 1)/(a + 1) 2 (4.8.26)

Choosing a = 1/2, (4.8.26) gives p _< ½V_ _- 0.75, so that the smoother is robust. With

a = 0, inequality (4.8.26) does not keep p away from 1. Equation (4.8.25) gives, for a = 0:

limp= l/v/5, lira p=(1-4tan ri+8tan 2 ri)-l/2 (4.8.27)
T"--_0 T--*OO

This is confirmed by numerical experiments. With a = 1/2 we have a robust smoother for

the convection-diffusion equation. Alternating ILU, to be discussed shortly, may, however,

be more efficient. With a = 0, p << 1 except in a small neighbourhood of ri = 0° and

= 180 °. Since in practice r remains finite, some smoothing effect remains. For example,

for s = 0.1 (j5 __ 174.3), h = 1/64 and _ = 10 -s we have r "_ 156 and (4.8.27) gives p _ 0.82.

This explains why in practice seven-point ILU with a = 0 is a satisfactory smoother for the

convection-diffusion equation but ¢r = 1/2 gives a better smoother.

fgP]
[A]= c d q (4.8.28)

z a b

Nine-point ILU

Assume

Reasoning as before, we have

[000][000][L]= "r e 0 , D= 0 e 0 , U= 0 e .
_ oL ri 0 0 0 0 0 0

(4.8.29)

For w, _,..., v we have equations (4.4.22) in [141], here interpreted as equations for scalar

unknowns. The relevant solution of three equations may be obtained as the limit of the

following recursion

C_o= a, rio=b, 70=c, _f0=d, #o = q, (o = f, _o = g

cu+l = a - z#j/_hj, rij+I = b - aj+l#j/_j

"yj+l= c - (_,Tj+ _j+l(j)/_j

nj+l = {IZj+lUjl "at-[z_jl + I_j+lpl-gv I"/j+lCjl}/_j (4.8.30)

_fj+l = d - (zp + aj+lrlj + rij+l(j + 7j+l#j)/_j + anj+l

#j+l = q- (Oj+lP+ rij+lrlj)/°'j+l

G+I = f - 7j+l_Tj/6j, r/j+l = g - 7j+1P/6j+l

(4.8.31)

For M we find M = LD-1U = A + N, with

N=_ z(0 (rn 0 _p
o o o /3_

6O

with n = I_(I + Iz(} +]/3P] + I/3#1. The amplification factor is given by

)frO) = B(O)/{(B(O) + m(0)} (4.8.32)

where

B(O) = {7(exp [i(02 - 201)] + z(exp (-2i01)

+flpexp (2i01) + fl#exp [i(201 - 02] + an}/3

and

A(O) = zexp [-i(01 + 02)] + aexp (-i02) + bexp[i(01 - 82)1 + cexp (-i01)

+d + qexp (iO,) + fexp [i(02 - 01)] + gexp (i02) + pexp [i(01 + 02)]

Anisotropie diffusion equation

For the anisotropic diffusion equation discretized according to (4.5.6) the nine-point ILU fac-

torization is identical to the seven-point ILU factorization. Table 4.8.5 gives results for the

case that the mixed derivative is discretized according to (4.5.8). In this case seven-point ILU

performs poorly. When the mixed derivative is absent (/3 = 0 ° or/3 = 90 °) nine-point ILU

is identical to seven-point ILU. Therefore Table 4.8.5 gives only the worst case for/3 in the

set {/3 = k/2_r, k = O, 1,2, ...,23}. Clearly, the smoother is not robust for a = 0. But also

for a = 1/2 there are values of/3 for which this smoother is not very effective. For example,

with finer sampling of/3 around 75° one finds a local maximum of approximately PD = 0.73

for fl = 85 °.

2

¢ P fl PD fl P fl PD /3

1 0.13 any 0.12 any 0.11 any 0.11 any
10-t 0.52 750 0.50 750 0.42 750 0.42 600

10 -2 1.51 75° 1.34 75° 0.63 750 0.63 75°

l0 -3 1.87 750 1.62 75° 0.68 75° 0.68 75°

l0 -_ 1.92 75° 1.66 75° 0.68 75° 0.68 75°

Table 4.8.5: Fourier smoothing factors p, pD for the rotated anisoptropic diffusion equation

discretized according to (4.5.6), but the mixed derivative discretized according to (4.5.8);

nine-point ILU smoothing; n = 64

61

Alternating seven-point ILU

The amplification factor of the second part (corresponding to the second backward grid point

ordering defined by (3.4.16)) of alternating seven-point ILU smoothing, with factors denoted

by L, D, U, may be determined as follows. Let [A] be given by (4.8.13). The stencil repre-

sentation of the incomplete factorization discussed in Section 3.4 is

[00] 1[L]= o _ , [b]= o _ o , [v]= _ $ o
o H o o _ o

(4.8.33)

In [141] it is shown that (_,/_, ..., f? are given by (4.8.15) and (4.8.16), provided the following

substitutions are made:

a---* q, b--, b, c _ g, d _ d, q --* a, f _ f, g _ c

The iteration matrix is/_/ .t,b-10 = A +/_. According to [141],

(4.8.34)

IN] =

0 0 0

0 P3 0

0 0 0

(4.8.35)

with t51 = _/2/6, /52 = _(/6, iv3 = a(lfill + 1/521). It follows that the amplification factor A(0)

of the second step of alternating seven-point ILU smoothing is given by

A(O) = {i63 + t5, exp [i(01- 202)] + p2exp [i(202- 01)]}/

{aexp (-i02) + bexp [i(01 - 02)] + cexp (i01) + d + P3 + qexp (i0)

+/exp [-i(01 - 02)] + gexp (i02) +/_: exp [i(01 - 202)]

+/_2 exp [i(202 - 01)} (4.8.36)

The amplification factor of alternating seven-point ILU is given by A(0)A(0), with A(0) given

by (4.8.19).

Anisotropic diffusion equation

Table 4.8.6 gives some results for the rotated anisotropic diffusion equation. The worst case

for/3 in the set {_ = kTr/12, k = O, 1,2, ...,23} is included. We see that with a = 0.5 we have

a robust smoother for this test case. Similar results (not given here) are obtained when the

mixed derivative is approximated by (4.5.8) with alternating nine-point ILU.

62

P PD

a /_ = 0 °, 900 3 = 0 °, 900 P, PD t3

1 0 9 x 10 -3 9 x 10 -3 9 x 10 -3 any

10 -1 0 0.021 0.021 0.061 300

10 -2 0 0.041 0.024 0.25 450

10 -3 0 0.057 3 × 10 -3 0.61 450

10 -5 0 0.064 10 -6 0.94 450

1 0.5 4 x 10 -3 4 x 10 -3 4 x 10 -3 any

10 -1 0.5 0.014 0.014 0.028 15 °

l0 -2 0.5 0.20 0.012 0.058 45 °

10 -3 0.5 0.026 2 x 10 -3 0.090 450

10 -s 0.5 0.028 0 0.11 45 °

Table 4.8.6: Fourier smoothing factors p, pD for the rotated anisotropic diffusion equation

discretized according to (4.5.6); alternating seven-point ILU smoothing; n = 64

Convectlon-diffusion equation

Symmetry considerations imply that the second step of alternating seven-point ILU smoothing

has, for E << 1,p __ 1 for /3 around 90 ° and 270 °. Here, however, the first step has p << 1.

Hence, we expect the alternating smoother to be robust for the convection-diffusion equation.

This is confirmed by the results of Table 4.8.7. The worst case for 3 in the set {3 = k_/12 :

k = 0, 1,2, ..,23} is listed.

To sum up, alternating modified point ILU is robust and very efficient in all cases. The use

of alternating ILU has been proposed in [97].

a=O 0=0.5

P, PD fl P, PD /_

1.0 9 X 10 -3 0° 4 X 10 -3 0°

10 -1 9 X 10 -3 00 4 X 10 -3 0°

10 -2 0.019 1050 7 × 10 -3 00

10 -3 0.063 1050 0.027 1200

10 -s 0.086 1050 0.036 1050

Table 4.8.7: Fourier smoothing factors p, pD for the convection-diffusion equation discretized

according to (4.5.11); alternating seven-point ILU smoothing; n = 64

63

Modification has been analyzed and tested in [65], [971, [83l, [82], [145] and [1471.

4.9 Incomplete block factorization smoothing

For the smoothing analysis of incomplete block factorization we refer to [141]. We present

some results.

Anisotropic diffusion equation

Tables 4.9.1 and 4.9.2 give results for the two discretizations (4.5.6) and (4.5.8) of the rotated

anisotropic diffusion equation. The worst cases for/3 in the set {8 = kTr/12, k = 0, 1, ..,23}

are included. In cases where the elements of/) do not settle down quickly to values indepen-

dent of location as one moves away from the grid boundaries, so that in these cases Fourier

smoothing analysis is not realistic.

P P PD PD

s /_=0 ° /_=90 ° p,/3 fl=0 ° /_--900 pD,]_

1 0.058 0.058 0.058, any 0.056 0.056 0.056, any

10 -1 0.108 0.133 0.133,900 0.102 0.116 0.I16,900

10 -2 0.149 0.176 0.131, 45 ° 0.195 0.078 0.131,45 °

10 -3 0.164" 0.194 0.157",45 ° 0.025* 0.005 0.157",45 °

10 -s 0.141 0.120 0.166",450 0 ° 0 0.166",45 °

Table 4.9.1: Fourier smoothing factors p, PD for the rotated anisotropic diffusion equation

discretized according to (4.5.6); IBLU smoothing; n = 64. The symbol * indicates that

the coefficients do not become constant rapidly away from the boundaries; therefore the

corresponding value is not realistic.

Convection-diffusion equation

Table 4.9.3 gives results for the convection-diffusion equation, sampling/_ as before.

If is clear that IBLU is an efficient smoother for all cases. This is confirmed by the multigrid

results presented in [107].

4.10 Fourier analysis of white-black and zebra Gauss-Seidel smoothing

The Fourier analysis of white-black and zebra Gauss-Seidel smoothing requires special treat-

ment, because the Fourier modes ¢(0) as defined in Section 4.3 are not invariant under these

iteration methods. The Fourier analysis of these methods is discussed in detail in [112]. They

use sinusoidal Fourier modes. The resulting analysis is applicable only to special cases of the

64

P P PD PD

e /_=0 ° _=900 fil=O ° fl=900

1 0.058 0.058 0.056 0.056

10-1 0.108 0.133 0.102 0.116

10-2 0.49 0.176 0.096 0.078

10-3 0.164" 0.194 0.025* 5 × 10 -3

10-5 0.141" 0.200 0.000" 0.000

Table 4.9.2: Fourier smoothing factors p, PD for the rotated anisotropic diffusion equation dis-

cretized according to (4.5.6) but with mixed derivative according to (4.5.8); IBLU smoothing;

n = 64. The symbol * has the same meaning as in the preceding table.

P t3 PD

1.0 0.058 0° 0.056 0°

10-1 0.061 0° 0.058 0°

10-2 0.092 0° 0.090 0 °

10 -3 0.173 0° 0.121 0°

10-5 0.200 0° 10-3 150

Table 4.9.3: Fourier smoothing factors p, PD for the convection-diffusion equation discretized

according to (4.5.11); IBLU smoothing; n = 64.

set of test problems defined in Section 4.5.

Fourier modes.
Therefore we will continue to use exponential

The amplification matrix

Speciahzing to two dimensions and assuming nl and n2 to be even, we have

with

g,j(O) = exp (ijO)

j=(jl,j2), j_=0,1,2,...,n_-I

/9 E 0 = {(01,82), 8_ = 27rk,_/n,_, k,_ = -m_,,-m_,+ 1,...,too + 1}

and

(4.10.1)

(4.10.2)

(4.10.3)

65

wherem_ = n_/2 - 1. Define

0' e e_ = e n [-7r/2, _r/2) _ ,

03:01-- (0)sign(O_)r '

02 = 01_ (sign(O_)r)sign(O_)Tr

04 = 01- (sign(O])r)0

(4.10.4)

where sign(t) = -I, t < 0; sign(t) = 1, t > 0. Note that O_ almost coincides with the set of

smooth wavenumbers Os defined by (4.4.20). As we will see, Span {_b(01), _(02), ¢(03), _(04)}

is left invariant by the smoothing methods considered in this section.

Let _,(0)= (_(01), _(02), ¢(03), g)(04)) T. the Fourier representation of an arbitrary periodic

grid function (4.3.7) can be written as

= c0r¢j(0) (4.10.5)
OEes

with co a vector of dimension 4.

Ifthe error before smoothing is c0T¢(0), then after smoothing it is given by (A(O)co)TXl,(O),

with A(O) a 4 × 4 matrix, called the amplification matrix.

The smoothing factor

The set of smooth wavenumbers O, has been defined by (4.4.20). Comparison with O_ as

defined by (4.10.4) shows that ¢(0k), k = 2,3,4 are rough Fourier modes, whereas ¢(0 _)

is smooth, except when 01 = -_'/2 or 021 = -_r/2. The projection operator on the space

spanned by the rough Fourier modes is, therefore, given by the following diagonal matrix

)
Q(O) = 1 (4.10.6)

1

1

with g(0) = 1 if 01 = -7r/2 and 02 = -_r/2, and $(0) = 0 otherwise. Hence, a suitable

definition of the Fourier smoothing factor is

p = max{x(Q(O)A(O)): 0 e 0,} (4.10.7)

with X the spectral radius.

The influence of Dirichlet boundary conditions can be taken into account heuristically in a

similar way as before. Wavenumbers of the type (0, O_) and (0_,0), s = 1,3,4, are to be

66

disregated(note that 0_ = 0 cannot occur), that is, the corresponding elements of co are to

be replaced by zero. This can be implemented by replacing QA by PQA with

pl(O))

1 0

f(9) = 0 p3(0)

p4(o)

(4.10.8)

where pl(8) = 0 if 81 ----- 0 and/or 82 = 0, and pl(8) ---- 1 otherwise; p3(8) -- 0 if 81 = 0 (hence

01a = 0), and p3(8) = 1 otherwise; similarly, p4(8) = 0 if 82 = 0 (hence 02 = 0), and p4(8) = 1

otherwise. The definition of the smoothing factor in the case of Dirichlet boundary conditions

can now be given as

PD = max {x(P(8)Q(8)A(8)) : 8 E 0_}

Analogous to (4.4.23) a mesh-size independent smoothing factor/_ is defined as

(4.10.9)

(4.10.10)fi = sup{x(Q(8)A(8)) : 8 e 0s}

with Os = (-rr/2, r/2) 2.

White-black Gauss-Seidel

Let A have the five-point stencil given by (4.8.1) with b = f = 0. The use of white-

black Gauss-Seidel makes no sense for the seven-point stencil (4.8.1) or the nine-point stencil

(4.8.28), since the unknowns in points of the same colour cannot be updated independently.

For these stencil multi-coloured Gass-Seidel can be used, but we will not go into this.

Define grid points (jl,j2) with jl + j2 even to be white and the remainder black. We

will study white-black Gauss-Seide with damping. Let e ° be the initial error , e 1/3 the error

after the white step, e 2/3 the error after the black step, and e I the error after damping with

parameter w. Then we have

E_/3 --(aeO 02 +cO 0 o= _ ej_el -4-qej+cl + gcj+c2)/d,
el/3 o

j = ej,

jl + j2 even
(4.10.11)

jl + j2 odd.

The relation between e 2/3 and e 1/3 iS obtained from (4.10.11)by interchanging even and odd.

The final error e I is given by
1 .2/3

ej = _j + (1- _)e ° (4.10.12)

Let the Fourier representation of e _, a = 0, 1/3,2/3, 1 be given by

= c TCs(8) •
OEe_

67

o _j(08), s = 1,2,3 or 4, thenIf ej =

el/3
j = #(0s)¢j(08), jl +J2 even

e_/a = 42j(08), jl + j2 odd

with ,(0) = -[aexp (-i02) + cexp (-i01) + qexp (i01) + gexp (i02)/d. Hence

ej/3 1 1= + 1)exp (ij0") + 0,(o 8)- 1)
-- " . 08x exp [ijl(O_ 7r)] exp [_32(2 - lr)]

(4.10.13)

(4.10.14)

so that

l+#l -1-#1 0 0)
c_/3 1 #1 - 1 1 - #1 0 0 c_, 0 E O_ (4.10.15)

=2 0 0 1+#2 -1 -/z2

0 0 g2 - 1 1 -/z2

where /_1 = #(0), #2 = (aexp (-iO2) - cexp (-iO1) - qexp (i01) + gexp (iO2))/d. If the

black step is treated in a similar way one finds, combining the two steps and incorporating

the damping step,

with

c_ = {wa(o) + (1 -w)I)c_

-m(l+m) o o

1 #,(1-#1) #1(#1-1) 0 0

a(8) = _ 0 0 #2(1 + #2) -#2(1 + _t2)

0 0 #2(1 - #2) #2(_t2 - 1)

(4.10.16)

(4.10.17)

Hence

P(O)Q(O)A(O)

p_#l(1 + #1) -plSgl(1 + Pl) 0 0

1 #1(1 -- _1) _1(_1 -- 1) 0 0

= 2 0 0 p3tt2(1 +/_2) --P392(1 +/.t2)

0 0 P4#2(1 -- #2) P4g2(#2 -- 1)
)

(4.10.18)

The eigenvalues of PQA are

1

A,(O)=O, A_(O)=_m{m-l+pl_(l+_l)),

1

/_3(0) = O, /_4(0) -----_#2[P3 -- P4 "4- #2(P3 + P4))
(4.10.19)

68

andthetwo typesof Fouriersmoothingfactor arefoundto be

P, PD = max {IwA2(O) + 1 - w[, [wA4(O) + 1 - wl: 0 e OF} (4.10.20)

where Pl = P3 = P4 ---- 1 in (4.10.19) gives p, and choosing Pa, P3, P4 as defined after equation

(4.10.8) gives PD.

With w = 1 we have ¢5 = #D = 1/4 for Laplace's equation [112]. This is better than

lexicographic Gauss-Seidel, for which p = 1/2 (Section 4.7). Furthermore, obviously, white-

black Gauss-Seidel lends itself very well for vectorized and parallel computing. This fact,

combined with the good smoothing properties for the Laplace equation, has led to some of

the fastest Poisson solvers in existence, based on multigrid with white-black smoothing [13],

[113].

Convection-diffusion equation

With /3 = 0 equation (4.5.11) gives a = -e, c = -e - h, d = 4¢ + h, q = -e, g = -e, so

that #1,2(0,-7r/2) = (2 + P)/(4 + P), with P = h/e the mesh P6clet number. Hence, with

Pl = P3 = P4 = 1 we have A2,4(o, -rr/2) = (2 + P)2/(4 + p)2, so that p _ 1 as P _ oe for all

_o, and the same is true for PP. Hence white-black Gauss-seidel is not a good smoother for

this test problem.

Smoothing factor of zebra Gauss-Seidel

Let A have the following nine-point stencil:

[A]= c
Z

d q (4.10.21)
a b

Let us consider horizontal zebra smoothing with damping. Define grid points (jl,j2) with j2

even to be white and the remainder to be black. Let e ° be the initial error, e 1/3 the error

after the 'white' step, e 2/3 the error after the 'black' step, and e 1 the error after damping

with parameter w. Then we have

c al3 i13 __113
_j-el + d_j + q_j+el

0 0 EO 0 EO),= -(zej__,__2 + aE°-_2 + bej+___2 + f J-_,+_ + geJ+_2 + P J+_ +_2

j2 even

e_/3 0= ej , j2 odd (4.10.22)

(4.10.23)

where ez = (1,0) and e2 = (0, 1).

69

The relationbetweene2/3ande1/3is obtainedfrom (4.10.23)by interchangingevenand

odd,andthefinal errore1is givenby (4.10.12).
It turnsout that zebraiteration leavescertaintwo-dimensionalsubspacesinvariantin Fourier

space.In orderto facilitatetheanalysisofalternatingzebra,for whichtheinvariantsubspaces
are the sameasfor white-black,wecontinuethe useof thefour-dimensionalsubspaces¢(8)
introducedearlier.

In [141]it is shownthat theeigenvaluesof P(O)Q(O)A(8) are

A,(O) = O, X2(O) = ½pl_fttl(1 + #,)- lp3#,(1 - #l),

.)_4(0) = ½#2(1 + .2)+ ½P4#2(.2- 1)

_3(0) = 0
(4.10.24)

with

#1(0) = --

+

{z exp(-i(01 + 02)] + a exp(-i02) + b exp[i(01 - 02)]

f exp[i(02 - 01)] + g exp(02) + p exp[i(01 + 02)}/

[c exp(-i01) + d + q exp(i01)]

and #2 = p1(01 - 7r, 02 - rr).

The two types of Fourier smoothing factor are given by (4.10.20), taking _2,X4 from

(4.10.24).

Anisotropic diffusion equation

For E = 1 (Laplace's equation), w = 1 (no damping) and Pl = P3 = P4 = 1 (periodic boundary

conditions) we have #1(0) = cos 02/(2-cos 01) and #2(0) = - cos 02/(2+cos 01). One finds

max {la_(0)l : 0 e o_} -- la=(_/2,0)t = ¼and max {la4(0)1: 0 e e_} = la4(_/2,_/2)1 = l,so
__ 1

that the smoothing factor is/_ = p - _.

For e << 1 and the rotation angle/_ = 0 we have strong coupling in the vertical direction, so

that horizontal zebra smoothing is not expected to work. We have/_2(0) = - cos 02/(1 + e +

eCOS 01) , SO that I,_4(_r/2,0)l = (1 + e) -2, hence limpD _> 1. Furthermore, with cp = 2_r/n,
elO

we have IA4(_/2),_)1-- cos2 _,/(1 + _)2, so that _PD >_ 1 -O(h2). Damping does not help

here. We conclude that horizontal zebra is not robust for the anisotropic diffusion equation,

and the same is true for vertical zebra, of course.

Convection-dlffusion equation

With convection angle/_ = _r/2 in (4.5.11) we have

#2(0) = [(1 + P) exp (-i02) + exp (i02)]/(4 + P + 2 cos 01) ,

7O

where P = h/e is the mesh P6clet number. With p4 = 1 (periodic boundary conditions) we

have A4 = #2, so that A4(Tr/2,0) = (2+ P)2/(4+ P) 2, and we see that wA4(Tr/2,0)+ 1 -w _ 1

for P >> 1, so that p > 1 for P >> I for all w. Hence, zebra smoothing is not suitable for the

convection-diffusion equation at large mesh P6clet number.

Smoothing factor of alternating zebra Gauss-Seidel

As we saw, horizontal zebra smoothing does not work when there is strong coupling (large

diffusion coefficient or strong convection) in the vertical direction. This suggests the use of

alternating zebra: horizontal and vertical zebra combined. Following the suggestion in Ill2],

we will arrange alternating zebra in the following 'symmetric' way: in vertical zebra we do

first the 'black' step and then the 'white' step, because this gives slightly better smoothing

factors, and leads to identical results for/3 = 0° and/3 = 90°. The 4 × 4 amplification matrix

of vertical zebra is found to be

1 0 v2(v2 + 1) u2(v2 + 1) 0 JA,(8) = _ 0 u2(u2 - l) v2(v2 - l) 0

- 1) 0 0 ,.,(., - 1)

(4.10.25)

where

u,(O) = -{zexp [-i(O, + 02)] + bexp [i(01 - 02)] + cexp (-i01)

+qexp (iO1) + fexp [i(02 - O1)] + pexp [i(01 + 02)]}/

[a exp (-i02) + d + 9 exp (i02)]

and v2(O) = l]l(01 -71", 02-7r). We will consider two types of damping: damping the horizontal

and vertical steps separately (to be referred to as double damping) and damping only after

the two steps have been completed. Double damping results in an amplification matrix given

by

A = PQ[(i - Wd)I + wdav][(1 - Wd)I + wdah] (4.10.26)

where Ah is given in [141]. In the case of single damping, put wa = 1 in (4.10.26) and replace

A by

A: (1 - w,)l + wsa (4.10.27)

The eigenvalues of the 4 × 4 matrix A are easily determined numerically.

Anisotropic diffusion equation

Tables 4.10.1 and 4.10.2 give results for the smoothing factors p, PD for the rotated anisotropic

diffusion equation. The worst cases for the rotation angle fl in the set {/3 = klr/12, k =

0, 1,2, ..., 23) are included. For the results of Table 4.10.1 no damping was used. Introduction

71

of damping (Wdi t 1 or ws it 1) gives no improvement. However, as shown by Table 4.10.2, if

the mixed derivative is discretized according to (4.5.8) good results are obtained. For cases

with e = 1 or/3 = 0° or _ = 90 ° the two discretizations are identical of course, so for these

cases without damping Table 4.10.1 applies. For Table 4.10.2 fl has been sampled with an

p PD

e _ = 0°,90 ° /3 = 00,900 P, PD /3

1 0.048 0.048 0.048 any

10 -1 0.102 0.100 0.480 450

10-2 0.122 0.121 0.924 45 °

10 -3 0.124 0.070 0.992 450

10 -5 0.125 0.001 1.000 450

Table 4.10.1: Fourier smoothing factors P, PD for the rotated anisotropic diffusion equation

discretized according to (4.5.6); alternating zebra smoothing; n = 64

ws = 1 ws = 0.7

P, PD

e P, PD fl _=0°,90 ° P, PD

1 0.048 any 0.317 0.317 any

l0 -1 0.229 300 0.302 0.460 340

10-2 0.426 14° 0.300 0.598 14°

10-3 0.503 80 0.300 0.653 80

10 -s 0.537 4 ° 0.300 0.668 8°

10 -s 0.538 40 0.300 0.668 8°

Table 4.10.2: Fourier smoothing factors p, pD for the rotated anisotropic diffusion equation

discretized according to(4.5.6) but with the mixed approximated by (4.5.8); alternating zebra

smoothing with single damping; n = 64

interval of 2 °. Symmetry means that only/_ E [0°, 45 °] needs to be considered. Results with

single damping (w_ = 0.7) are included. Clearly, damping is not needed in this case and

even somewhat disadvantageous. As will be seen shortly, this method, however, works for the

convection diffusion test problem only if damping is applied. Numerical experiments show

that a fixed value ofws = 0.7 is suitable, and that there is not much difference between single

damping and double damping. We present results only for single damping.

72

Convection-diffusion equation

For Table 4.10.3,/) has been sampled with intervals of 2°; the worst cases are presented° The

results of Table 4.10.3 show that alternating zebra without damping is a reasonable smoother

w_ = 1 w_ = 0.7

E p _ PD /_ P, PD

1 0.048 0° 0.048 0° 0.317 0°

10 -7 0.049 0° 0.049 0 ° 0.318 20 °

10-2 0.080 280 0.079 260 0.324 420

l0 -3 0.413 24 ° 0.369 280 0.375 44 °

l0 -5 0.948 4 ° 0.584 22 ° 0.443 4°

l0 -s 0.995 20 0.587 220 0.448 4°

Table 4.10.3: Fourier smoothing factors p for the convection-diffusion equation discretized

according to (4.5.11); alternating zebra smoothing with single damping; n = 64

for the convection-diffusion equation. If the mesh P_clet numbers hcos _/s or hsin /3/s

becomes large (> 100, say), p approaches 1, but PD remains reasonable.

A fixed damping parameter ws = 0.7 gives good results also for p. The value ws = 0.7 was

chosen after some experimentation.

We see that with ws = 0.7 alternating zebra is robust and reasonably efficient for both

the convection-diffusion and the rotated anisotropic diffusion equation, provided the mixed

derivative is discretized according to (4.5.8).

4.11 Multistage smoothing methods

As we will see, multistage smoothing methods are also of the basic iterative method type

(3.1.3) (of the semi-iterative kind, as will be explained), but in the multigrid literature they

are usually looked upon as techniques to solve systems of ordinary differential equations,

arising from the spatial discretization of systems of hyperbolic or almost hyperbolic partial

differential equations.

The convection-diffusion test problem (4.5.4) is of this type, but (4.5.3) is not. We will,

therefore, consider the application of multistage smoothing to (4.5.4) only. Multistage meth-

ods have been introduced in [74] for the solution of the Euler equations of gas dynamics, and

as smoothing methods in a multigrid approach in [71]. For the simple scMar test problem

73

(4.5.4) multistage smoothing is less efficient than the better ones of the smoothing methods

discussed before. The simple test problem (4.5.4), however, lends itself well for explaining

the basic principles of multistage smoothing, which is the purpose of this section.

Artificial time-derivative

The basic idea of multistage smoothing is to add a time-derivative to the equation to be

solved, and to use a time-stepping method to damp the short wavelength components of the

error. The time-stepping method is of multistage (Runge-Kutta) type. Damping of short

waves occurs only if the discretization is dissipative, which implies that for hyperbolic or

almost hyperbolic problems some form of upwind discretization must be used, or an artificial

dissipation term must be added. Such measures are required anyway to obtain good solutions.

The test problem (4.5.4) is replaced by

Ou

Ot _(u,11 + u,22) + cu,1 + su,2 = f (4.11.1)

Spatial discretization according to (4.5.10) or (4.5.11)gives a system of ordinary differential

equations denoted by
du

= -h-2Au + f (4.11.2)
dt

where A is the operator defined in (4.5.10) or (4.5.11); u is the vector of grid function values.

Multistage method

The time-derivative in (4.11.2) is an artefact; the purpose is to solve Au = h2f. Hence, the

temporal accuracy of the discretization is irrelevant. Denoting the time-level by a superscript

n and stage number k by a superscript (k), a p-stage (Runge-Kutta) discretization of (4.11.2)

is given by

u (°) = u '_

u (k) = u (°)- ckvh-lAu (k-U + ckAtf, k = 1,2,...,p

un+ 1 = u(P) (4.11.3)

with cv = 1. Here u = At/h is the so-called Courant-Frederichs-Lewy (CFL) number. Elimi-

nating u(k), this can be rewritten as

(4.11.4)u_+ 1 = pp(-vh-l A)u _ + Qp_l(-vh-l A)f

with the amplification polynomial Pp a polynomial of degree p,defined by

(4.11.5)Pp(z) = 1+ z(1 + ep_lz(1 + + clz)...)

and Qv-1 is polynomial of degree p - 1 which plays no role in further discussion.

74

Semi-iterative methods

Obviously,equation(4.11.6)canbeinterpretedasaniterativemethodfor solvingh-ZAu = f

of the type introduced in Section 4.1 with iteration matrix

S = Pp(-uh-lA) (4.]1.6)

Such methods, for which the iteration matrix is a polynomial in the matrix of the system to

be solved, are called semi-iterative methods. See [129] for the theory of such methods. For

p = 1 (one-stage method) we have

S = I- uh-lA (4.11.7)

which is in fact the damped Jacobi method (Section 4.3) with diagonal scaling (diag (A) = I),

also known as the one-stage Richardson method. As a solution method for differential equa-

tions this is known as the forward Euler method. Following the trend in the multigrid liter-

ature, we will analyse method (4.11.3) as a multistage method for differentia] equations, but

the analysis could be couched in the language of linear algebra just as well.

The amplification factor

The time step At is restricted by stability. In order to assess this stability restriction and the

smoothing behaviour of (4.11.4), the Fourier series (4.3.7) is substituted for u. It suffices to

consider only one component u = ¢(9), 9 E O. We have vh-lA¢(9) = uh-1#(9)¢(9). With

A defined by (4.5.1 l) one finds

#(9) = 4_+ h(IcJ+ I_l)- (2_ + hlcl)cos 91

-(29 +h]s]) cos 82 + ihcsin 81 + ihssin 82 (4.11.8)

and

u,_+l = g(O)u _

with the amplification factor g(9) given by

(4.11.9)

g(O) = Pp(-u#(9)/h) (4.11.10)

The smoothing factor

The smoothing factor is defined as before:

p = ma_ {Jg(9)l: e e or} (4.11.11)

in the case of periodic boundary conditions, and

pD = max{[g(O)l : 0 _ 0 D} (4.11.12)

75

for Dirichlet boundary conditions.

Stability condition

Stability requires that

[g(e)l _< 1, VO • O (4.11.13)

The stability domain D of the multistage method is defined as

D = {z • C: IPp(z) _< 1) (4.11.14)

Stability requires that v is chosen such that z = -vp(O)/h • D, V0 • O. If p < 1 but

(4.11.13) is not satisfied, rough modes are damped but smooth modes are amplified, so that

the multistage method is unsuitable.

Local time-stepping

When the coefficients c and s in the convection-diffusion equation (4.11.1) are replaced by

general variable coefficients vl and v2 (in fluid mechanics applications vl, v2 are fluid velocity

components), an appropriate definition of the CFL number is

v = vAt/h, v = Iv, l + Iv2[(4.11.15)

Hence, if At is the same in every spatial grid point, as would be required for temporal ac-

curacy, v will be variable if v is not constant. For smoothing purposes it is better to fix v

at some favourable value, so that At will be different in different grid points and on different

grids in multigrid applications. This is called local time-stepping.

Optimization of the coefficients

The stability restriction on the CFL number v and the smoothing factor p depend on the

coefficients ck. In the classical Runge-Kutta methods for solving ordinary differential equa-

tions these are chosen to optimize stability and accuracy. For analyses see for example [115],

[106]. For smoothing ck is chosen not to enhance accuracy but smoothing; smoothing is also

influenced by v. The optimum values of v and ck are problem dependent. Some analysis

of the optimization problem involved may be found in [127]. In general, this optimization

problem can only be solved numerically.

We proceed with a few examples.

A four-stage method

Based upon an analysis of Catalano and Deconinck (prive-communication), in which optimal

coefficients ck and CFL number v are sought for the upwind discretization (4.5.11) of (4.11.1)

with E = 0, we choose

cl = 0.07, c2 = 0.19, c3 = 0.42, v = 2.0 (4.11.16)

76

E _=0 ° /_=150 /_=300. /_=450

0 1.00 0.593 0.477 0.581

l0 -5 0.997 0.591 0.482 0.587

Table 4.11.1: Smoothing factor p for (4.11.1) discretized according to (4.5.11); four-stage

method; n = 64

Table 4.11.1 gives some results.

It is found that PD differs very little from p. It is not necessary to choose /_ outside

[0°,45°], since the results are symmetric in' /_. For ¢ > 10 -3 the method becomes unstable

for certain values of _. Hence, for problems in which the mesh P_clet number varies widely

in the domain it would seem necessary to adopt ck and v to the local stencil. With _ = 0 all

multistage smoothers have p = 1 for grid-aligned flow (fl = 0° or 90 °) : waves perpendicular

to the flow are not damped.

A five-stage method

The following method has been proposed in [73] for a central discretization of the Euler

equations of gas dynamics:

c, = 1/4, c: = 1/6, c3 = 3/8, c4 = 1/2 (4.11.17)

The method has also been applied to the compressible Navier-Stokes equations in [75]. We

will apply this method to test problem (4.11.1) with the central discretization (4.5.10). Since

#(8) = ih(csin 81 + ssin 82) we have #(0,_) = 0, hence Ig(0,_r)[= 1, so that we have no

smoother. An artificial dissipation term is therefore added to (4.11.2), which becomes

du

-- = -h-2Au - h-lBu+ f (4.11 18)
dt

with

[B] = X

where X is a parameter.

We have Bg,(8) = _7(8)¢(8) with

1

-4

1 -4 12 -4 1

-4

1

(4.11.19)

77

0 ° 150 300 45 o

p 0.70 0.77 0.82 0.82

Table 4.11.2: Smoothing factor p for (4.11.1) discretized according to (4.5.10); five-stage

method; n = 64

_(0)= 4X[(1-cos 01) 2 +(1-cos 02) 2] (4.11.20)

For reasons of efficiency the artificial dissipation term is updated in [73] only in the first two

stages. This gives the following five-stage method:

u(k) = u(°)-cku(h-lA + B)u (k-_), k= l,2

u (k) = u (°) - ckv(h-_Au (k-l) + Bu (1), k = 3,4,5 (4.11.21)

The amplification polynomial now depends on two arguments zl, z2 defined by zl = vh-l#(O),

z2 = vy(O), and is given by the following algorithm:

P1= 1- cx(z + zz), P: = 1- c (zl + z2)P
P3 = 1 - c3zl P2 - C3ZlP2 - c3z2 P1, P4 = 1 - C4Zl P3 - c4z2 P1

Ph(zl,z2) = 1 - ziP4 -- z2P1

(4.11.22)

In one dimension Jameson and Baker [73] advocate v = 3 and X = 0.04; for stability v should

not be much larger than 3. In two dimensions max {vh -1]#(8)]} = v(c + s) < vv_. Choosing

vvf2 = 3 gives v "_ 2.1. With v = 2.1 and)¢ = 0.04 we obtain the results of Table 4.11.2, for

both E = 0 and £ = 10 -5. Again, PD _-- P. This method allows only ¢ << 1; for example, for

¢ = 10 -3 and _ = 450 we find p = 0.96.

78

Final remarks

Advantagesof multistagesmoothingareexcellentvectorizationand parallelizationpoten-
tial, andeasygeneralization to systems of differential equations. Multistage methods are in

widespread use for hyperbolic and almost hyperbolic systems in computational fluid dynam-

ics. They are not, however, robust, because, like all point-wise smoothing methods, they do

not work when the unknowns are strongly coupled in one direction due to high mesh aspect

ratios. Also their smoothing factors are not small. Various strategems have been proposed in

the literature to improve multistage smoothing, such as residual averaging, including implicit

stages, and local adaptation of ck, but we will not discuss this here; see [73], [75] and [127].

4.12 Concluding remarks

In this chapter Fourier smoothing analysis has been explained, and efficiency and robustness

of a great number of smoothing methods has been investigated by determining the smoothing

factors p and PD for the two-dimensional test problems (4.5.3) and (4.5.4). The following

methods work for both problems, assuming the mixed derivative in (4.5.3) is suitably dis-

cretized, either with (4.5.6) or (4.5.8):

(i) Damped alternating Jacobi;

(ii) Alternating symmetric line Gauss-Seidel;

(iii) Alternating modified incomplete point factorization;

(iv) Incomplete block factorization;

(v) Alternating damped zebra Gauss-Seidel.

Where damping is needed the damping parameter can be fixed, independent of the problem.

It is important to take the type of boundary condition into account. The heuristic way in

which this has been done within the framework of Fourier smoothing analysis correlates well

with multigrid convergence results obtained in practice.

Generalization of incomplete factorization to systems of differential equations and to non-

linear equations is less straightforward than for the other methods. Application to the incom-

pressible Navier-Stokes equations has, however, been worked out in [144], [146], [148], [150]

and [149], and is discussed in [141].

Of course, in three dimensions robust and efficient smoothers are more elusive than in two

dimensions. Incomplete block factorization, the most powerful smoother in two dimensions,

is not robust in three dimensions [81]. Robust three-dimensional smoothers can be found

79

amongmethodsthat solveaccuratelyin planes(planeGauss-Seidel) [I 14]. For a successful

multigrid approach to a complicated three-dimensional problem using ILU type smoothing,

see [1241, [122], [125], [123].

5 Prolongation, restriction and coarse grid approximation

5.1 Introduction

In this chapter the transfer operations between fine and coarse grids are discussed.

Fine grids

The domain _ in which the partial differential equation is to be solved is assumed to be the

d-dimensional unit cube. In the case of vertex-centered discretization, the computational grid

is defined by

G = {x E 1_d : x = jh, j = (jl,j:,...,jd), h = (hl,h2,...,hd),

j_ = 0, 1, 2, ..., n_, ha = 1/n,_, a = 1,2,...,d} (5.1.1)

In the case of cell-centered discretization, G is defined by

G = {x E j_d : x = (j -- s)h, j = (Jl,j2, ...,Jd), S = (I, 1, ..., I)/2,

h = (hi, h2, ..., hd), j_ = 1, 2, ..., no, h_ = 1/n_, a = l, 2, ..., d} (5.1.2)

These grids, on which the given problem is to be solved, are called fine grids. Without danger

of confusion, we will also consider G to be the set of d-tuples j occuring in (5.1.1) or (5.1.2).

Coarse grids

In this chapter it suffices to consider only one coarse grid. From the vertex-centered grid

(5.1.1) a coarse grid is derived by vertex-centered coarsening, and from the cell-centered grid

(5.1.2) a coarse grid is derived by cell-centered coarsening. Coarse grid quantities will be

identified by an overbar. Vertex-centered coarsening consists of deleting every other vertex in

each direction. Cell-centered coarsening consists of taking unions of fine grid cells to obtain

coarse grid cells. Figures 5.1.1 and 5.1.2 give an illustration. It is assumed that na in (5.1.1)

and (5.1.2) is even.

Denote spaces of grid function by U:

U={u:G-,_}, 0={£t:G_/} (5.1.3)

The transfer operators are denoted by P and R:

P:O_U, R:U_C (5.1.4)

8O

0

G:

0

Xl=0

1 2 3 4 1 2 3 4

I . i . I : I : I
: : : : G

1 2 1 2

• , _l , I , I

x 1 = I x l = 0 x I = 1

Figure 5.1.1: Vertex-centered and cell-centered coarsening in one dimension. (. grid points)

P is called prolongation, and R restriction°

Here only vertex-centered coarsening will be discussed. For cell-centered coarsening, see

[141].

5.2 Stencil notation

In order to obtain a concise description of the transfer operators, stencil notation will be used.

Stencil notation for operators of type U _ U

Let A : U _ U be a linear operator. Then, using stencil notation, Au can be denoted by

(Au)i = _ A(i,j)ui+j, i e G (5.2.1)

je2g d

with 2g = {0, 5=1, -I-2, ...}. Th'e subscript i = (ia, i2, ..., id) identifies a point in the computa-

tional grid in the usual way; ef. Figure 5.1.2 for the case d = 2.

The set SA defined by

S A= {jeg_d:3iEG with A(i,j)_O} (5.2.2)

is called the structure of A. The set of values A(i,j) with j E S A is called the stencil of A

at grid point i. Often the word 'stencil' refers more specifically to an array of values denoted

by [A]_ in which the values of A(i,j) are given; for example, in two dimensions,

[A(i,-e, + e2) A(i, e2)]
[A]_ = A(i,-ca) A(i,O) A(i, ea) (5.2.3)

A(i,-e2) A(i, el - e2)

where e] = (1,0) and e2 = (0, 1). For the representation of three-dimensional stencils, see

[141].

81

_" j]

J2

4

3

2

1

0

0

12

2

m

G

1 2 3 4 "-"'-_ j 1 I

I j2

l J2

4 • • • •

3 • • • •

2 • • • •

2 3 4

0

0 1 2"--""_ Jl 1 2 _ Jl

Vertex-centred Cell -centred

Figure 5.1.2: Vertex-centered and cell-centered coarsening in two dimensions. (, grid points.)

Example 5.2.1 One-dimensional discrete Laplacian:

[A]i = h-2[-1 2 - 1] (5.2.4)

Steneil notation for restriction operators

Let R : U --+/Y be a restriction operator. Then, using stencil notation, Ru can be represented

by

(Ru)i = y_ R(i,j)u_i+j, i E G (5.2.5)

j E,_ a

Example 5.2.2 Consider vertex-centered grids G, G' for d = 1 as defined by (5.1.1) and as

depicted in Figure 5.1.1. Let R be defined by

1

Rui = wiu2i-1 + -_u2i + eiu2i+l, i = O, 1, ..., n/2 (5.2.6)

82

with w0 = 0; wi = 1/4, i _ 0; ei = 1/4, i ¢ n/2; en/2 = 0. Then we have (cf. (5.2.5)):

R(i,-1) = wi, R(i,O) = 1/2, R(i, 1)= ei (5.2.7)

or

= 1/2 ed (5.2.S)

We can also write [R] = [1 2 1]/4 and stipulate that stencil elements that refer to values

of u at points outside G are to be replaced by 0.

The relation between the stencil of an operator and that of its adjoint

For prolongation operators, a nice definition of stencil notation is less obvious than for restric-

tion operators. As a preparation for the introduction of a suitable definition we first discuss

the relation between the stencil of an operator and its adjoint. Define the inner product on

U in the usual way:

(u, v) = E uivi (5.2.9)

ie_ 'd

where u and v are defined to be zero outside G. Define the transpose A* of A : u _ U in

the usual way by

(Au, v) = (u,A*v), Vu, v C U (5.2.10)

Defining A(i,j) = 0 for i ¢ G or j _ SA we can write

(Au, v) = _ _ A(i,j)ui+jvi = _ _ A(i,k- i)ukvi

i,je 2gd i,ke 2gd (5.2.11)
= E uk E A(i,k-i)vi=(u,A*v)

kE _/d iE __/d

with

(a*v)k= E a(i,k-i)v,=
ie2_ d ie2g d ie2g d

Hence, we obtain the following relation between the stencils of A and A*:

A*(k, i) = A(k + i, -i) (5.2.13)

Stencil notation for prolongation operators

If R : U --* 0, then R* : /J --* U is a prolongation. The stencil of R* is obtained in similar

fashion as that of A*. Defining R(i,j) = 0 for i _ G or j _ SR, we have

(Ru, v)= E E R(i,j)u2i+j_i= E E R(i,k-2i)uk_i
i 2g"
,je i,ke 2_a (5.2.14)

= _ uk Z R(i,k-2i)_i=(u,R*v)

kE_ n iEff, d

(5.2.12)

83

with R* : 0 _ U defined by

(R*_)k = _ R(i,k- 2i)_i (5.2.15)

iE_ e

Equation (5.2.15) shows how to define the stencil of a prolongation operator P : 0 _ U:

(P'fi)i = _ P*(j,i- 2j)fij (5.2.16)

Hence, a convenient way to define P is by specifying P*. Equation (5.2.16) is the desired

stencil notation for prolongation operators.

Suppose a rule has been specified to determine P_ for given _, then P*(k, m) can be obtained

as follows. Choose _ = Sk as follows

--" --k

f= 1, _fj =0, j#k (5.2.17)

Then (5.2.16) gives P*(k, i - 2k) = (P$)i, or

P*(k,j) = (PSk)2k+j, k e (_, j E G. (5.2.18)

In other words, [P*]k is precisely the image of Sk under P.

The usefulness of stencil notation will become increasingly clear in what follows.

Exercise 5.2.1 Verify that (5.2.13) and (5.2.15) imply that, if A and R are represented by

matrices, A* and R* follow from A and R by interchanging rows and columns. (Remark: for

d = 1 this is easy; for d > 1 this exercise is a bit technical in the case of R).

Exercise 5.2.2 Show that if the matrix representation of A : U _ U is symmetric, then its

stencil has the property A(k, i) -" A(k + i, -i).

5.3 Interpolating transfer operators

We begin by giving a number of examples of prolongation operators, based on interpolation.

Let d = 1, and let G and G be vertex-centred (cf. Figure 5.1.1). Defining P : /) _ U by

linear interpolation, we have

1

(P'a)2i - "ui, (PO')2i+l -- _(fii -t- _i+1) (5.3.1)

Using (5.3.1) we find that the stencil of P* is given by

[P*] = l[1 2 1] (5.3.2)

84

In two dimensions,linear interpolation is exact for functions f(xl, x2) = 1, Xl, X2, and takes

place in triangles, cf. Figure 5.3.1. Choosing triangles ABD and ACD for interpolation, one
1 - 1 -

obtains UA = f_A, ua = 7(uA + fLl_), ue = -_(ua + _tD) etc. Alternatively, one may choose

C d D

b e c

A a B

Figure 5.3.1: Interpolation in two dimensions, vertex-centered grids. (Coarse grid point:

capital letters; fine grid points: capital and lower case letters.)

triangles ABC and BDC, which makes no essential difference. Bilinear interpolation is exact

for functions f(xl, x2) = 1, xl, x2, xlx2, and takes place in the rectangle ABCD. The only
1

difference with linear interpolation is that now ue = _(UA + uB + uc + UD). In other words:
1 -- --

u2i+e_+_ = _(u_ + ui+_ + fii+_ + ui+_+e2), with el = (1,0) and e2 = (0, 1).

The stencil for bilinear interpolation is

111 2 1][P*]=4 2 4 2 (5.3.3)
1 2 1

For the three-dimensional case, see [141].

Restrictions

We can be brief about restrictions. One may simply take

R = aP* (5.3.4)

with a a suitable scaling factor. The scaling of R, i.e. the value of _j R(i,j), is important.

If Ru is to be a coarse grid approximation of u (this situation occurs in non-linear multigrid

methods, which will be discussed later, then one should obviously have __,j R(i,j) = 1. If

however, R is used to transfer the residual r to the coarse grid, then the correct value of

_j R(i,j) depends on the scaling of the coarse and fine grid problems. The rule is that the

coarse grid problem should be consistent with the differential problem in the same way as

the fine grid problem. This means the following. Let the differential equation to be solved be

denoted as

Lu = s (5.3.5)

and the discrete approximation on the fine grid by

Au = b (5.3.6)

85

Supposethat (5.3.6)isscaledsuchthat it is consistentwith h_Lu = h_s with h a measure of

the mesh-size of G. Finite volume discretization leads naturally to (_ = d with d the number

of dimensions; often (5.3.6) is scaled in order to get rid of divisions by h. Let the discrete

approximation of (5.3.5) on the coarse grid G be denoted by

;ta = nb (5.3.7)

and let ,?t approximate h_L. Then Rb should approximate has. Since b approximates h_s,

we find a scaling rule, as follows.

Rule scaling of R:

R(i,j) = (h/h) _ (5.3.8)
i

We emphasize that this rule applies only if R is to be applied to right-hand sides and/or

residuals. Depending on theway the boundary conditions are implemented, at the boundaries

ot may be different from the interior. Hence the scaling of R should be different at the

boundary. Another reason why _j R(i,j) may come out different at the boundary is that

use is made of the fact that due to the boundary conditions the residual to be restricted is

known to be zero in certain points.

A restriction that cannot be obtained by (5.3.4) with interpolating prolongation is injection:

(Ru)i = au2_ (5.3.9)

Accuracy condition for transfer operators

The proofs of mesh-size independent rate of convergence of MG assume that P and R satisfy

certain conditions [21], [57]. The last reference (p. 149) gives the following simple condition:

mp+ mR > 2m (5.3.10)

A necessary condition (not discussed here) is given in [66]. Here orders rap, mR of P and R

are defined as the highest degree plus one of the polynomials that are interpolated exactly by

P or sR*, respectively, with s a scaling factor that can be chosen freely, and 2m is the order

of the partial differential equation to be solved. For example, (5.3.9) has mR = 0, (5.3.3) has

mp = 2. Practical experience (see e.g. [139]) confirms that (5.3.10)is necessary.

86

Operator-dependent transfer operators

If the coefficients in the differential equations are discontinuous across certain interfaces be-

tween subdomalns of different physical properties, then u _ C1(_), and linear interpolation

across discontinuities in u,_ is inaccurate. (See [141] for more details). Instead of interpola-

tion, operator-dependent prolongation has to be used. Such prolongations aim to approximate

the correct jump condition by using information from the discrete operator. They are required

only in vertex-centered multigrid, but not in cell-centered multigrid, as shown in [141], where

a full discussion of operator-dependent transfer operators may be found.

5.4 Coarse grid Galerkin approximation

The problem to be solved on the fine grid is denoted by

Au = f (5.4.1)

The two-grid algorithm (2.3.14) requires an approximation A of A on the coarse grid. There

are basically two ways to chose __, as already discussed in Chapter 2.

(i) Discretization coarse grid approximation(DCA): like A, _I is obtained by discretization

of the partial differential equation.

(ii) Galerkin coarse grid approximation (GCA):

_4 = RAP (5.4.2)

A discussion of (5.4.2) has been given in Chapter 2.
The construction of .;t with DCA does not need to be discussed further. We will use stencil

notation to obtain simple formulae to compute ,_I with GCA. The two methods will be

compared, and some theoretical back-ground will be given.

Explicit formula for coarse grid operator

The matrices R and P are very sparse and have a rather irregular sparsity pattern. Stencil

notation provides a very simple and convenient storage scheme. Storage rather than repeated

evaluation is to be recommended if R and P are operator-dependent. We will derive formulae

for _A using stencil notation. We have (cf. (5.2.16))

(P_.) = y_ P*(j, i - 2j)_j (5.4.3)

Unless indicated otherwise, summation takes place over 2gd. Equation (5.2.1) gives

(AP_)i= _A(i,k)(Piz)i+k= _-_A(i,k)P*(j,i+k- 2j)fij (5.4.4)

k k j

87

Finally,equation(5.2.5)gives

(RAPi_)i = E R(i,m)(APu)2i+m
m

= _R(i,m)A(2i+ m,k)P*(j,2i+ m+ k- 2j)_j
m k 3

(5.4.5)

With the change of variables j = i + n this becomes

(J4_), = _ _ _ R(i,m)A(2i + m,k)P*(i + n,m + k - 2n)fii+,_
m k n

(5.4.6)

from which it follows that

f4(i,n) = _-_y_ R(i,m)A(2i + m,k)P*(i + n,m + k- 2n)
m k

(5.4.7)

For calculation of _I by computer the ranges of m and k have to be finite. S A is the structure

of A as defined in (5.2.2), and S R is the structure R, i.e.

S R={jE2gd:3ieG with R(i,j)_O} (5.4.8)

Equation (5.4.7) is equivalent to

f4(i,n) = _ _ R(i,m)A(2i+ m,k)P*(i + n,m + k- 2n)

m_s R k_s A

(5.4.9)

With this formula, computation of _l is straightforward, as we will now show.

Calculation of coarse grid operator by computer

For efficient computation of .4 it is useful to first determine Sji. This can be done with the

following algorithm

Algorithm STRURAP

comment Calculation of S_[

begin S A =/0

for q E Sp. do

for m E S R do

for k E S A do

begin n = (m + k - q)/2

i f (n E 2g d) then S f4 = S f4 O n

end

od od od

end STRURAP

88

HavingdeterminedS A it is a simple matter to compute A. This can be done with the fol-

lowing algorithm.

Algorithm CA LRA P

comment Calculation of

begin A = 0

for n E S A do

for m E S R do

for k E S A do

q=m+k-2n

if q E Sp. then

G'I = {iEG:2i+mEG}N{iEG:i+nEQ}

for i E G1 do

A(i, n) =)_(i, n) + R(i, m)A(2i + m, k)P'(i + n, q)

od od od

end CALRAP

Keeping computation on vector and parallel machines in mind, the algorithm has been de-

signed such that the innermost loop is the longest.

To illustrate how G1 is obtained we given an example in two dimensions. Let G and G be

given by

G = {iE 2g2:0<il <2nl, 0<i2_<2n2}

= {iE2g2:O<il<nl,0<_i2<_n2}

Then i E G1 is equivalent so

max(-j_, -m_,/2, O) _< i. _< min(n,_ - ra_/2, n,_ - j,_, n_) a = 1,2

It is easy to see that the inner loop vectorizes along grid lines.

Comparision of discretization and Galerkin coarse grid approximation

Although DCA seems more straightford, GCA has some advantages. The coarsest grids em-

ployed in multigrid methods may be very coarse. On such very coarse grids DCA may be

unreliable if the coefficients are variable, because these coefficients are sampled in very few

points. An example where multigrid fails because of this effect is given in [137]. The situation

can be remedied by not sampling the coefficients pointwise on the coarse grids, but taking

suitable averages. This is, however, precisely that GCA does accurately and automaticaly.

89

For the samereasonGCA is to beusedfor interfaceproblems(discontinuouscoefficients),
in whichcasethe dangerof pointwisesamplingof coefficientsis mostobvious.Another ad-
vantageof GCA is that it is purelyalgebraicin nature;no usein madeof the underlying
differentialequation. This opensthe possibilityof developingautonomousor 'black box'
multigrid subroutines,requiringas input only a matrix and right-handside. On the other
hand,for non-linearproblemsandfor systemsof differentialequationsthereisnogeneralway
to implementGCA. Both DCA and GCA are in widespread use.

Structure of coarse grid operator stencil

Galerkin coarse grid approximation will be useful only if S_ is not (much) larger than SA,

otherwise the important property of MG, that computing work is proportional to the number

of unknowns, may get lost. For examples and further discussion of CGA, including the possible

loss of the K-matrix property on coarse grids, see [141].

6 Multigrid algorithms

6.1 Introduction

The order in which the grids are visited is called the multigrid schedule. Several schedules will

be discussed. All multigrid algorithms are variants of what may be called the basic multigrid

algorithm. This basic algorithm is nonlinear, and contains linear multigrid as a special case.

The most elegant description of the basic multigrid algorithm is by means of a recursive

formulation. FORTRAN does not allow recursion, thus we also present a non-recursive for-

mulation. This can be done in many ways, and various flow diagrams have been presented in

the literature. If, however, one constructs a structure diagram not many possibilities remain,

and a well structured non-recursive algorithm containing only one goto statement results.

The decision whether to go a finer or to a coarser grid is taken in one place only.

6.2 The basic two-grid algorithm

Preliminaries

Let a sequence {G k : k = 1,2,...,K} of increasingly finer grids be given. Let U k be the

set of grid functions G k ---* _ on Gk; a grid function U k E U k stands for m functions in

the case where we want to solve a set of equations for m unknowns. Let there be given

transfer operators pk : Uk-1 _ U k (prolongation) and R k : U k ---, U k-1 (restriction). Let

the problem to be solved on G k be denoted by

Lk(u _) = b k (6.2.1)

9O

TheoperatorL k may be linear or non-linear. Let on every grid a smoothing algorithm be

defined, denoted by S(u, v, f, v, k). S changes an initial guess u k into an improved approxi-

mation v k with right-hand side fk by vk iterations with a suitable smoothing method. The

use of the same symbol u k for the solution of (6.2.1) and for approximations of this solution

will not cause confusion; the meaning of u k will be clear from the context. On the coarse

grid G 1 we sometimes wish to solve (6.2.1) exactly; in general we do not wish to be specific

about this, and we write S(u,v, f, *, 1) for smoothing or solving on G 1.

The nonlinear two-grid algorithm

Let us first assume that we have only two grids G k and G k-1. The following algorithm is a

generalization of the linear two-grid algorithm discussed in Section 2.3. Let some approxima-

tion _k of the solution on G k be given. How _k may be obtained will be discussed later. The

non-linear two-grid algorithm is defined as follows. Let fk = b k.

(1)

(2)
(3)
(4)
(5)
(6)
(7)

Subroutine TG (-h,u, f, k)

comment nonlinear two-grid algorithm

begin

s(_,u,y,.,k)

rk = ff - Lk(u k)
Choose _k-1, sk-i

fk-1 = Lk-l(_k-1) + Sk_lRk-lrk

S('h,u,f,,,k- 1)

u k = u k + (1/sk_l)Pk(u k-I -,hk-l)

S(u,u,y,_,k)

end of TG

A call of TG gives us one two-grid iteration. The following program performs ntg two-grid

iterations:

Choose _k

fk = b k

for i = 1 step 1 until ntg do

TG (i,,u,f,k)

od

Discussion

Subroutine TG is a straightforward implementation of the basic multigrid principles discussed

in Chapter 2, but there are a few subtleties involved.

We proceed with a discussion of subroutine TG. Statement (1) represents vk smoothing it-

91

erations(pre-smoothing),starting from an initial guess_tk. In (2) the residual v k is com-

puted; r k is going to steer the coarse grid correction. Because 'short wavelength accuracy'

already achieved in u k must not get lost, u k is to be kept, and a correction _u k (containing

'long wavelength information') is to be added to u k. In the non-linear case, r k cannot be

taken for the right-hand side of the problem for 8uk; L(Su k) = v k might not even have a

solution. For the same reason, Rk-lr k cannot be the right-hand side for the coarse grid

problem on G k-l. Instead, it is added in (4) to Lk-l(lik-1), with £tk-1 an approximation

to the solution of (6.2.1) in some sense (e.g. Pit k-1 _ solution of equation (6.2.1). Ob-

viously, Lk-l(u k-l) = Lk-l(_ k-l) has a solution, and if Rk-lv k is not too large, then

Lk-l(u k-l) = Lk-l(_ k-l) + Rk-ar k can also be solved, which is done in statement (5) (ex-

actly or approximately).

Rk-lr k will be small when _ik is close to the solution of equation (6.2.1), i.e. when the

algorithm is close to convergence. In order to cope with situations where Rk-lr k is not smal

enough, the parameter st_-i is introduced. By choosing Sk-i small enough one can bring fk-1

arbitrarily close to Lk-l(£_k-l). Hence, solvability of Lk-l(u k-l) = fk-_ can be ensured.

Furthermore, in bifurcation problems, u k-1 can be kept on the same branch as £tk-1 by

means of Sk-i. In (6) the coarse grid correction is added to u k. Omission of the factor 1/sk-i

would mean that only part of the coarse grid correction is added to u k, which amounts to

damping of the coarse grid correction; this would slow down convergence. Finally, statement

(7) represents #k smoothing iterations (post-smoothing).

The linear two-grid algorithm

It is instructive to see what happens when L k is linear. It is reasonable to assume that then

L k-1 is also linear. Furthermore, let us assume that the smoothing method is linear, that is

to say, statement (5) is equivalent to

uk-1 = ak-I + Bk-l(fk-1 _ Lk-l_k-1) (6.2.2)

with B k-i some linear operator. With fk-i from statement (4) this gives

uk-1 .= _k-1 + sk_lBk-lRk-lrk (6.2.3)

Statement (6) gives

u k = u k + PkBk-lRk-lrk (6.2.4)

and we see that the coarse grid correction pkBk-lRk-ark is independent of the choice of

sk-1 and _ik-I in the linear cas. Hence, we may as well choose sk__ = 1 and £_-_ = 0 in the

linear case. This gives us the following linear two-grid algorithm.

92

Subroutine LTG (_,u, f,k)

comment linear two-grid algorithm

begin

r k = fk _ Lku k

fk-1 = Rk-lr k

_k-1 =0

1)
u k = u k -t- pkuk-1

end of LTG

Choice of _ik-I and sk-i

There are several possibilities for the choice of ",ik-1 . One possibility is

_k-1 _- &k-lUk (6.2.5)

where Rk-_ is a restriction operator which may or may not be the same as R k-1.

With the choice sk-m = 1 this gives us the first non-linear multigrid algorithm that has

appeared, the FAS (full approximation storage) algorithm proposed by Brandt [20]. The more

general algorithm embodied in subroutine TG, containing the parameter sk-1 and leaving the

choice of _ik-1 open, has been proposed by Hackbusch [54], [49], [57]. In principle it is possible

to keep uk-1 fixed, provided it is sufficiently close to the solution of Lk-l(u k-l) = bk-1. This

decreases the cost per iteration, since Lk-l(it k-l) needs to be evaluated only once, but the

rate of convergence may be slower than with _k-i defined by (5). We will not discuss this

variant. Another choice of _h-1 is provided by nested iteration, which will be discussed later.

Hackbusch [54], [49], [57] gives the following guidelines for the choice of _ik-m and the param-

eter sk-1. Let the non-linear equation Lk-l(u k-l) = fk-I be solvable for [Ifk-1]l < Pk-1.

Let IILk-l(_k-1)l[< pk-1/2. Choose sk-1 such that HSk_lRk-lrhll < pk-1/2, for example:

1

sk-, = Pk-1/llRk-lrkll. (6.2.6)

Then I]f _:-1 [I < Pk-1, so that the coarse grid problems has a solution.

6.3 The basic multigrid algorithm

The recursive non-linear multigrid algorithm

The basic multigrid algorithm follows from the two-grid algorithm by replacing the coarse

93

grid solutionstatement(statement(5) in subroutineTG) by 7k multigrid iterations. This

leads to

(1)

(2)
(a)
(4)
(5)

(6)

(7)
(8)

Subroutine MG1 (it, u,f,k,7)

comment recursive non-linear multigrid algorithm

begin

if (k eq 1) then

s(_, u, I,., k)

else

S(_,u,f ,v,k)
rk = fk _ Lk(u k)

Choose _k-1, sk-1

fk-i = Lk-l(,ak-1) + sk_lRk-lrk

for i = 1 step luntil 7k do

MG1 (£t,u,f,k- 1,7)
od

u k = u k + (1/Sk_l)Pk(u k-1 - ,l_,k-l)

S(u,u,f,p,k)

endi f

end of MG1

After our discussion of the two-grid algorithm, this algorithm is self explanatory.

The following program carries out nmg multigrid iterations, starting on the finest grid GK:

Program 1:

Choose aiK

fK __ bK

for i = 1 step 1 until nmg do

MG1 (£t, u, f, K, 7)

od

94

The recursive linear multigrid algorithm

The linear multigrid algorithm follows easily from the linear two-grid algorithm LTG:

Subroutine LMG (_,u, f,k)

comment recursive linear multigrid algorithm

begin

if (k = 1) then

S(_, u, f, ,, k)
else

S(_, u, f, v, k)

r k = fk _ Lku k

fk-I = Rk-lrk

6k-1 = 0

for i = 1 step 1 until 7k do

LMG (i_,u,f,k-1)
_k-1 = uk-I

od

U k = U k+ gkuk-1

S(u,u,I,_,k)

endi f

end LMG

Here _ plays the role of an initial guess.

Multigrid schedules

The order in which the grids are visited is called the multigrid schedule or multigrid cycle.

If the parameters 7k, k = 1,2, ...,K - 1 are fixed in advance we have a fixed schedule; if 7k

depends on intermediate computational results we have an adaptive schedule. Figure 6.3.1

shows the order in which the grids are visited with 7k = 1 and 7k = 2, k = l, 2, ..., K- 1, in the

case K = 4. A dot represents a smoothing operation. Because of the shape of these diagrams,

these schedules are called the V-, W- and sawtooth cycles, respectively. The sawtooth cycle is

a special case of the V-cycle, in which smoothing before coarse grid correction (pre-smoothing)

is deleted. A schedule intermediate between these two cycles is the F-cycle. In this cycle coarse

grid correction takes place by means of one F-cycle followed by one V-cycle. Figure 6.3.2 gives

a diagram for the F-cycle, with K = 5.

Recursive algorithm for V-, F- and W-cycle

A version of subroutine MG1 for the V-, W- and F-cycles is as follows. The parameter 7 is

now an integer instead of an integer array.

95

k

'yk=l
4

3

2

1

yk = 1

Figure 6.3.1: V-, W- and sawtooth-cycle diagrams.

yk = 1

Subroutine MG2 (£_, u, f, k, 7)

comment nonlinear multigrid algorithm V-, W-, or F-cycle

begin

if (k eq 1) then

s(_, u, f, o, k)
if (cycle eq F) then T= l endi f

else

A

for i = 1 step 1 until 7 do

MG2 (_, u, f, k - 1,7)

od

B

if (keq K and cycle eq F) then 7 = 2endif

endi f

end MG2

Here A and B represent statements (2) to (5) and (7) and (8) in subroutine MG1.

following program carries out nmg V-, W-, or F-cycles.

The

96

k

5

4

3

2

1

Figure 6.3.2: F-cycle diagram.

Program 2:

Choose _K

fK = b g

if (cycle eq W or cycle eq F) thenT=2elseT= 1

for i = 1 step l until nmg do

MG2 (6, u, f, K, 7)

od

Adaptive schedule

An example of an adaptive strategy is the following. Suppose we do not carry out a fixed

number of multigrid iterations on level G k, but wish to continue to carry out multigrid

interactions, until the problem on G k is solved to within a specified accuracy. Let the accuracy

requirement be

IILk(ua) - fkl] <_ ¢k = _kllLk+'(u k+l) --fk+l]l (6.3.1)

with 6 E (0, 1) a parameter.

At first sight, a more natural definition ofe k would seem to be Ek = _]]J'kl]. Since j,k does

not, however, go to zero on convergence, this would lead to skipping of coarse grid correction

when u k+l approaches convergence. Analysis of the linear case leads naturally to condition

(6.3.1). An adaptive multigrid schedule with criterion (6.3.1) is implemented in the following

algorithm. In order to make the algorithm finite, the maximum number of multigrid iterations
allowed is 7.

97

(1)

Subroutine MG3 (_2, u, f,k)

comment recursive nonlinear multigrid algorithm with adaptive

schedule

begin

if (k eq 1) then

S(_, u, .f, °, k)

else

A

tk-: -- Ilrkll - _k

while (tk-1 >

od

B

endi f

end MG3

Ek-1 ---- _Sk-1 Ilrkll

nk-1 -" _'

0 and uk-1 > O)

MG3 (_t,u,l,k- 1)

nk-1 = nk-1 -- 1

tk-i = IILk-I (_k-1)_yk-1 II- Ek-_

Here A and B stand for the same groups of statements as in subroutine MG2. The purpose

of statement (1) is to allow the possibility that the required accuracy is already reached by

pre-smoothing on G k, so that coarse grid correction can be skipped. The following program

solves the problem on G K within a specified tolerance, using the adaptive subroutine MG3:

Program 3 :

Choose £tK

fK = bK; _K = tol * [IbKII ; tK = IILK(_ g) - bg[I- EK

n = nmg

while (tK > 0 and n > O) do

MG3 (_,u, f, K)

n=n-1

tK = IILK(_ K) -- bKII -- _f

od

The number of iterations is limited by mng.

Storage requirements

Let the finest grid G K be either of the vertex-centered type given by (5.1.1) or of the cell-

centered type given by (5.1.2). Let in both cases n_ = n (K) = m_. 2 K. Let the coarse

98

gridsG k, k = K - 1, K - 2, ..., 1 be constructed by successive doubling of the mesh-sizes ha

(standard coarsening). Hence, the number of grid-points Nk of G k is

d

Nk = 1-[(1 + ma '2 k) -_ M2 kd (6.3.2)

in the vertex-centered case, with

and

d

M= lima,
aml

Ark = M2 kd (6.3.3)

in the cell-centered case. In order to be able to solve efficiency on the coarsest grid G 1 it is

desirable that mr is small. Henceforth, we will not distinguish between the vertex-centered

and cell-centered case, and assume that Nk is given by (6.3.3).

It is to be expected that the amount of storage reqired for the computations that take

place on G k is given by cl Nk, with cl some constant independent of k. Then the total amount

of storage required is given by

K 2 d

el _ Nk _- 2d _ 1el NK (6.3.4)
k=l

Hence, as compared to single grid solutions on method selected, the use of multigrid increases

the storage required by a factor of 2d/(2 d- 1), which is 4/3 in two and 8/7 in three dimensions,

so that the additional storage requirement posed by multigrid seems modest.

Next, suppose that semi-coarsening (cf. Section 7.3) is used for the construction of the coarse

grids G k, k < K. Assume that in one coordinate direction the mesh-size is the same on all

grids. Then

Nk = M2 K+k(d-l) (6.3.5)

and the total amount of storage required is given by

K 2d-1

el Z Nk _- 2d_1 _ lclNK (6.3.6)
k=l

Now the total amount of storage required by multigrid compared with single grid solution on

G K increases by a factor 2 in two and 4/3 in three dimensions. Hence, in two dimensions the

storage cost associated with semi-coarsening multigrid is not negligible.

99

Computational work
We will estimatethe computationalworkof oneiteration with the fixedschedulealgorithm
MG2. A closeapproximationof the computationalwork wk to be performed on Gk will be

wk = c:N_, assuming the number of pre- and post-smoothings uk and #k are independent of

k, and that the operators L k are of similar complexity (for example, in the linear case, L k are

matrices of equal sparsity). More precisely, let us define wk to be all computing work involved

in MG2 (re, u, f, k), except the recursive call of MG2. Let Wk be all work involved in MG2

(re, u, J', k). Let 3,k = 3', k = 2, 3, ..., K- 1, in subroutine MG2 (e.g., the V- or W-cycles).

Assume standard coarsering. Then

Wk = c2M2 kd + 3,Wk-i

In [141] it is shown that if

then

with I4zg -_- WK/(c2NK)

(6.3.7)

zy -- 3,/2 d < 1 (6.3.8)

I]VK < IzV = 1/(1 - _) (6.3.9)

The following conclusions may be drawn from (6.3.10). I]VKis the ration of multigrid work and

work on the finest grid. The bulk of the work on the finest grid usually consists of smoothing.

Hence, I_K - 1 is a measure of the additional work required to accelerate smoothing on the

finest grid G K by means of multigrid.

If _ _> 1 the work W/< is superlinear in the number of unknowns NK, see [141].

If q < 1 equation (6.3.9) gives

WK < c2NK/(1 - _) (6.3.10)

so that WK is linear in NK. It is furthermore significant that the constant of proportionality

c2/(1 - _/) is small. This because c2 is just a little greater than the work per grid point of the

smoothing method, which is supposed to be a simple iterative method (if not, multigrid

is not applied in an appropriate way). Since an (perhaps the main) attractive feaure of

multigrid is the possibility to realize linear computational complexity with small constant of

proportionality, one chooses "_ < 1, or 3, < 2_. In practice it is usually found that 3' > 2 does

not result in significantly faster convergence. The rapid growth of WK with 3' means that it

is advantageous to choose 3' <_ 2, which is why the V- and W-cycles are widely nsed.

The computational cost of the F-cycle may be estimated as follows. In Figure 6.3.3 the

diagram of the F-cycle has been redrawn, distinguishing between the work that is done on

I00

G k preceding coarse grid correction (pre-work, statements A in subroutine MG2) and after

coarse grid correction (post-work, statements B in subroutine MG2). The amount of pre-

and post-work together is c2M2 kd, as before. It follows from the diagram, that on G k the

cost of pre- and post-work is incurred jk times, with Jk = K - k + 1, k = 2,3,...,K, and

ja = K- 1. For convenience we redefine jl = K, bearing our earlier remarks on the inaccuracy

and unimportance of the estimate of the work in G 1 in mind. One obtains

We have

K

WK = c2M _(K - k + 1)2 kd (6.3.11)
k=l

K

E k2kd =
k=l

2(K+l)d 2 d

(2d_ 1)2[g(2d- 1)- 11+ (2d_ 1) 2 (6.3.12)

as is checked easily. It follows that

WK = c2M(2 d(K+2) + K + 1 - K2d)/(2 d- 1) 2

5

4

3

2

1

Figure 6.3.3: F-cycle (o pre-work, . post-work).

so that

i_/_- < ITV= 1/(1- 2-d) 2 (6.3.13)

Table 6.3.1 gives I)d as given by (6.3.9) and (6.3.13) for a number of cases. The ratio of

multigrid over single grid work is seen to be not large, especially in three dimensions. The

101

d 2 3

V-cycle 4/3 8/7

F-cycle 16/9 64/49

W-cycle 2 4/3

7 = 3 4 8/5

Table 6.3.1: Values of 1_, standard coarsening

F-cycle is not much cheaper than the W-cycle. In three dimensions the cost of the V-, F- and

W-cycles is almost the same.

Suppose next that semi-coarsening is used. Assume that in one coordinate direction the

mesh-size is the same on all grids. The number of grid-points Nk of G k is given by (6.3.5).

With 7k = 7, k = 2, 3, ..., K- 1 we obtain

Wk = c2M2 K+k(d-1) + 7Wk-1 (6.3.14)

Hence Wk is given by (6.3.8) and W by (6.3.9) with _ = 7/24-1. For the F-cycle we obtain

Hence

K

WK = c2M2 K _-_(K - k + 1)2 k(d-D (6.3.15)
k=l

WK < I/V = 1/(1 -21-d) 2

d 2 3

V-cycle 2 4/3

F-cycle 4 16/9

W-cycle - 2

7=3 - 4

Table 6.3.2: Values of _/V, semi-coarsening

Table 6.3.2 gives I_ for a number of cases. In two dimensions 7 = 2 or 3 is not useful, because

_> 1. It may happen that the rate of convergence of the V-cycle is not independent of the

102

mesh-size,for exampleif a singularperturbationproblemis beingsolved(e.g. convection-
diffusionproblemwith E<<1),or whenthe solutioncontainssingularities.With the W-cycle
wehave_ = 1 with semi-coarsening, hence Wk = K. In practice, K is usually not greater

than 6 or 7, so that the W-cycle is still affordable. The F-cycle may be more efficient.

Work units

The ideal computing method to approximate the behaviour of a given physical problem in-

volves an amount of computing work that is proportional to the number and size of the

physicM changes that are modeled. This has been put forward as the 'golden rule of compu-

tation' by Brandt [16]. As has been emphasized by Brand in a number of publications, e.g.

[20], [21], [22], [16], this involves not only the choice of methods to solve (6.2.1), but also the

choice of the mathematical model and its discretization. The discretization and solution pro-

cesses should be interwined, leading to adaptive disretization. We shall not discuss adaptive

methods here, but regard (6.2.1) as given. A practical measure of the minimum computing

work to solve (6.2.1) is as follows. Let us define one work unit (WU) as the amount of comput-

ing work required to evaluate the residual Lg(u K) - b K of Equation 6.2.1) on the finest grid

G K. Then it is to be expected that (6.2.1) cannot be solved at a cost less than few WU, and

one should be content if this is realized. Many publications show that this goal can indeed

be achieved with multigrid for significant physical problems, for example in computational

fluid dynamics. In practice the work involved in smoothing is by far the dominant part of the

total work. One may, therefore, also define one work unit, following [20], as the work involved

in one smoothing iteration on the finest grid G K. This agrees more or less with the first

definition only if the smoothing algorithm is simple and cheap. As was already mentioned, if

this is not the case multigrid is not applied in an appropriate way. One smoothing iteration

on G k then adds 2 d(k-K) WU to the total work. It is a good habit, followed by many authors,

to publish convergence histories in terms of work units. This facilitaties comparisons between

methods, and helps in developing and improving multigrid codes.

6.4 Nested iteration

The algorithm

Nested iteration, also called full multigrid (FMG, [22], [16]) is based on the following idea.

When no a priori information about the solution is available to assist in the choice of the

initial guess u g on the finest grid G K, it is obviously wasteful to start the computation on

the finest grid, as is done by subroutines MGi, i = 1,2,3 of the preceding section. With

an unfortunate choice of the initial u K, the algorithm might even diverge for a nonlinear

problem. Computing on the coarse grids is so much cheaper, thus it is better to use the

coarse grids to provide an informed guess for u K. At the same time, this gives us a choice

for _k k < K. Nested iteration is defined by the following algorithm.

103

(1)

(2)

(3)

Program 1

comment nested iteration algorithm
Choose _1

S(_,'_, f,., 1)

for k = 2 step 1 until K do

uk = _k = pk_k-i

for i = 1 step 1 until 7k do

MG (_,u,f,k)

od

od

Of course, the value of 7k inside MG may be different from 7k.

Choice of prolongation operator

The prolongation operator /3k does not need to be identical to pk. In fact, there may be

good reason to choose it differently. As discussed in [57] (for a simplified analysis see [141]),

it is often advisable to choose/_k such that

mp > rn¢ (6.4.1)

where mp is the order of the prolongation operator as defined in Section 5.3, and mc is the

order of consistency of the discretizations L k, here assumed to be the same on all grids. Of-

ten mc = 2 (second-order schemes). Then (6.4.1) implies that _k is exact for second-order

polynomials.

Note that nested iteration provides _k; this is an alternative to (6.2.5).

As discussed in [57] and [141], if MG converges well then the nested iteration algorithm

results in a u g which differs from the solution of (6.2.1) by an amount of the order of the

truncation error. If one desires, the accuracy of u h" may be improved further by following

the nested iteration algorithm with a few more multigrid iterations.

Computational cost of nested iteration

Let "_k = 7, k = 2, 3, ..., K, in the nested iteration algorithm, let Wk be the work involved in

MG (_., u, f, k), and assume for simplicity that the (negligible) work on G 1 equals I411. Then

the computational work W,a of the nested iteration algorithm, neglecting the cost of/_k, is

given by
K

:
k=l

104

AssumeinsideMg 7_= 7, k = 2,3,...,K and let _ = 7/24 < 1. Note that 7 and _ may be

different. Then it follows from (6.3.9) that

K

^ c2 c2"_ NK (6.4.3)
< Nk (1 -

k=l

Defining a work unit as 1 WU = c2NK, i.e. approximately the work of (u + #) smoothing

iterations on the finest grid, the cost of a nested iteration is

W,,, : @/[(1 - @)(1 - 2-d)]WU (6.4.4)

Table 6.4.1 gives the number of work units required for nested iteration for a number of cases.

The cost of nested iteration is seen to be just a few work units. Hence the fundamental

property, which makes multigrid methods so attractive: multigrid methods can solve many

problems to within truncation error at a cost of cN arithmetic operations. Here N is the

number of unknowns, and c is a constant which depends on the problem and on the multigrid

method (choice of smoothing method and of the parameters uk,#k, Tk). If the cost of the

residual b K - LK(u K) is bN, then c need not be larger than a small multiple of b. Other

numerical methods for elliptic equations require O(N _) operations with a > 1, achieving

O(N In N) only in special cases (e.g. separable equations). A class of methods which is com-

petitive with multigrid for linear problems in practice are preconditioned conjugate gradient

methods. Practice and theory (for special cases) indicate that these require O(N _) opera-

tions, with a = 5/4 in two and a = 9/8 in three dimensions. Comparisons will be given later.

d

7 2 3

1 16/9 64/49

2 8/3 48/21

Table 6.4.1: Computational cost of nested iteration in work units; _ = 1

6.5 Non-recursive formulation of the basic multigrid algorithm

Structure diagram for fixed multigrid schedule

In FORTRAN, resursion is not allowed: a subroutine cannot call itself. The subroutines MG1,

2, 3 of Section 6.3 cannot, therefore, be implemented directly in FORTRAN. A non-recursive

version will, therefore, be presented. At the same time, we will allow grater flexibility in the

105

decisionwhetherto go to a fineror to a coarsesgrid.

Variousflow diagrams describing non-recursive multigrid algorithms have been published,

for example in [20] and [57]. In order to arrive at a well structured program, we begin by

presenting a structure diagram. A structure diagram allows much less freedom in the design

of the control structure of an algorithm than a flow diagram. We found basically only one

way to represent the multigrid algorithm in a structure diagram ([134], [140]). This structure

diagram might, therefore, be called the canonical form of the basic multigrid algorithm. The

structure diagram is given in Figure 6.5.1. This diagram is equivalent to Program 2 calling

MG2 to do nmg multigrid iterations with finest grid G g in Section 6.3. The schedule is fixed

and includes the V-, W- and F-cycles. Parts A and B are specified after subroutine MG2 in

Section 6.3. Care has been taken that the program also works as a single grid method for

K=I.

FORTRAN implementation of while clause

Apart from the while clause, the structure diagram of Figure 6.5.1 can be expressed directly

in FORTRAN. A FORTRAN implementation of a while clause is as follows. Suppose we

have the following program

while (n(K) > O) do

Statement 1

n(Z) = ...

Statement 2

od

A FORTRAN version of this program is

10 if (n(K) > O) then

Statement 1

n(g) = ...
Statement 2

goto 10

endi f

106

Choose_K and7
eommentT= 1 :V-cycle: 7=2;W-cycle
fK =b K; k= K; nK =nmg

if (cycle eq F) then "/= 2 endi f

while (nh >_ O) do

k = k- 1 s(_, _,, /, ., k)

nk = 7 if (cycle eq F) then

7=1

endi f

k=k+l

B
if (cycle eq F) then

7=2

endi f

nk = nk -- 1

Figure 6.5.1: Structure diagram of non-recursive multigrid algorithm with fixed schedule,

including V-, W- and F-cycles.
107

Thegoto statement required for the FORTRAN version of the while clause is the only go_o

needed in the FORTRAN implementation of the structure diagram of Figure 6.5.1. This

FORTRAN implementation is quite obvious, and will not be given.

Testing of multigrid software

A simple way to test whether a multigrid algorithm is functioning properly is to measure the

residual before and after each smoothing operation, and before and after each visit coarser

grids. If a significant reduction of the size of the residual is not found, then the relevant

part of the algorithm (smoothing or coarse grid correction) is not functioning proporly. For

simple test problems predictions by Fourier smoothing analysis and the contraction number

of the multigrid method should be correlated. If the coarse grid problem is solved exactly (a

situation usually approximately realized with the W-cycle) the multigrid contraction number

should usually be approximately equal to the smoothing factor.

Local smoothing

It may, however, happen, happen that for a well designed multigrid algorithm the contraction

number is significantly worse than predicted by the smoothing factor. This may be caused

by the fact that Fourier smoothing analysis is locally not applicable. The cause may be a

local singularity in the solution. This occurs for example when the physical domain has a

reentrant corner The coordinate mapping from the physical domain onto the computational

rectangle is singular at that point. It may well be that the the smoothing method does not

reduce the residual sufficiently in the neighbourhood of this singularity, a fact that does not

remain undetected if the testing procedures recommended above are applied. The remedy is

to apply additional local smoothing in a small number of points in the neighbourhood of the

singularity. This procedure is recommended in [16], [17], [18], [9], and justified theoretically

in [ll0] and [24]. This local smoothing is applied only to a small number of points, thus the

computing work involved is negligible.

6.6 Remarks on software

Multigrid software development can be approached in various ways, two of which will be

examined here.

The first approach is to develop general building blocks and diagnostic tools, which helps

users to develop their own software for particular applications without having to start from

scratch, users will, therefore, need a basic knowledge of multigrid methods. Such software

tool are described in [26].

The second approach is to develop autonomous (black box) programs, for which the user

has to specify only the problem on the finest grid. A program or subroutine may be called

108

autonomousif it doesnotrequireanyadditionalinput from theuserapartfromproblemspec-
ification,consistingof the lineardiscretesystemof equationsto besolvedandtheright-hand
side.Theuserdoesnot needto knowanythingaboutmultigrid methods.Thesubroutineis
perceivedby theuserasif it werejust anotherlinearalgebrasolutionmethod.This approach
is adoptedby the MGD codes[133],[67],[69], [68],[107],[108],whichareavailablein the
NAG library, andby the MGCScode[36].
Of course,it is possibleto steera middlecoursebetweenthe two approachesjust outlined,
allowingor requiringthe userto specifydetailsaboutthe multigridmethodto beused,such
asofferinga selectionof smoothingmethods,for example.Programsdevelopedin this vein
are BOXMG [37], [38], [39], the MG00seriesof codes[45], [44], [113]which is available
in ELLPACK [100],MUDPACK [3], [2], and the PLTMG codeIll], [10], [12]. Exept for
PLTMG and MGD, the userspecifiesthe lineardifferentialequationto be solvedand the
programgeneratesa finite differencediscretization.PLTMG generatesadaptivefinite ele-
mentdisretizationsof non-linearequations,and thereforehasa muchwiderscopethen the
otherpackages.Asa consequence,it isnot (meantto be)asolverasfastastheothermethods.

By sacrificinggeneralityfor efficiencyveryfast multigrid methodscanbe obtainedfor
specialproblems,suchasthe Poissonor theHehnholtzequation.In MG00this canbedone
by settingcertainparameters.A veryfast multigridcodefor the Poissonequationhasbeen
developedin [13].This isprobablythe fastesttwo-dimensionalPoissonsolverin existence.
If onewantsto emulatea linearalgebraicsystemssolver,with only the finegrid matrix and
right-handsidesupliedby theuser,then theseof coarsegrid GMerkinappoximation(Chap-
ter 5) is mandatory.Coarsegrid Galerkin approximation is also required if the coefficients

in the differential equations are discontinuous. Coarse grid Galerkin approximation is used

in MGD, MGCS and BOXMG; the last two codes use operator-dependent transfer operators

and are applicable to problems with discontinuous coefficients.

In an autonomous subroutine the method cannot be adapted to the problem, so that user

expertise is not required. The method must, therefore, be very robust. If one of the smoothers

that were fund to be robust in Chapter 4 is used, the required degree of robustness is indeed

obtained for linear problems.

Non-linear problems may be solved with multigrid codes for linear problems in various

ways. The problem may be linearized and solved iteratively, for example by Newton method.

This works well as long as the Jacobian of the non-linear discrete problem is non-singular.

It may well happen, however, that the given continuous problem has no Frechet derivative.

In this case the condition of the Jacobian deteriorates as the grid is refined, and the Newton

method does not converge rapidly or not at all. An example of this situation is given [96],

[95]. The non-finear multigrid method can be used safely and efficiently, because the global

109

systemis not linearized. A systematic way of applying numerical software outside the class

of problems to which the software is directly applicable is the defect correction approach. In

[5] and [15] it is pointed out how this ties in with multigrid methods.

Much software is made available on MGNeto

6.7 Comparison with conjugate gradient methods

Although the scope and applicability of multigrid principles are much broader, multigrid

methods can be regarded as very efficient ways to solve linear systems arising from discretiza-

tion of partial differential equations. As such multigrid can be viewed as a technique to

accelerate the convergence of basic iterative methods (called smoothers in the multigrid con-

text). Another powerful technique to accelerate basic iterative methods for linear problems

that also has come to fruition relatively recently is provided by conjugate gradient and re-

lated methods. For an introduction to conjugate gradient acceleration of iterative methods,

see [63], [48] or (for a very brief synopsis) [141].

It is surprising that, although the algorithm is much simpler, the rate of convergence of

conjugate gradient methods is harder to estimate theoretically than for multigrid methods. In

two dimensions, O(N s/4) computational complexity, and probably O(N 9/s) in three dimen-

sions seems to hold approximately quite generally for conjugate gradient methods precondi-

tioned by approximate factorization, which comes close to the O(N) of multigrid methods.

Conjugate gradient acceleration of multigrid

The conjugate gradient method can be used to accelerate any iterative method, including

multigrid methods. If the multigrid algorithm is well designed and fits the problem it will

converge fast, making conjugate gradient acceleration superfluous or even wasteful. If multi-

grid does not converge fast one may try to remedy this by improving the algorithm (for

example, introducing additional local smoothing near singularities, or adapting the smoother

to the problem), but if this is impossible because an autonomous (black box) multigrid code is

used, or difficult because one cannot identify the cause of the trouble, then conjugate gradient

acceleration is an easy and often very efficient way out.

The non-symmetric case

A severe limitation of conjugate gradient methods is their restriction to linear systems with

symmetric positive definite matrices. A number of conjugate gradient type methods have

been proposed that are applicable to the non-symmetric case. Although no theoretical es-

timates are available, their rate of convergence is often satisfactory in practice. Two such

methods are CGS (conjugate gradient squared), described in [107], [108], [105] and [141], and

GMRES, described in [102], [121], [120], [131], [132]. Good convergence is expected if the

eigen eigenvalues of A have positive real part, cf. the remarks on convergence in [105].

110

Comparison of conjugate gradient and multigrid methods

Realistic estimates of the performance in practice of conjugate gradient and multigrid methods

by purely theoretical means are possible only for very simple problems. Therefore numerical

experiments are necessary to obtain insight and confidence in the efficiency and robustness

of a particular method. Numerical experiments can be used only to rule out methods that

fail, not to guarantee good performance of a method for problems that have not yet been

attempted. Nevertheless, one strives to build up confidence by carefully choosing tests prob-

lems, trying to make them representative for large classes of problems, taking into account

the nature of the mathematical models that occur in the field of application that one has in

mind. For the development of conjugate gradient and multigrid methods, in particular the

subject areas of computational fluid dynamics, petroleum reservoir engineering and neutron

diffusion are pace-setting.

Important constant coefficient test problems are (4.5.3) and (4.5.4). Problems with con-

stant coefficients are thought to be representative of problems with smoothly varying coeffi-

cients. Of course, in the code to be tested the fact that the coefficients are constant should

not be exploited. As pointed out in [35], one should keep in mind that for constant coefficient

problems the spectrum of the matrix resulting from discretization can have very special prop-

erties, that are not present when the coefficients are variable. Therefore one should also carry

out tests with variable coefficients, especially with conjugate gradient methods, for which the

properties of the spectrum are very important. For multigrid methods, constant coefficient

test problems are often more demanding than variable coefficient problems, because it may

happen that the smoothing process is not effective for certain combinations of e and/3. This

fact goes easily unnoticed with variable coefficients, where the unfavourable values of E and

B perhaps occur only in a small part of the domain.

In petroleum reservoir engineering and neutron diffusion problems quite often equations

with strongly discontinuous coefficients appear. For these problems equations (4.5.3) and

(4.5.4) are not representative. Suitable test problems with strongly discontinuous coefficients

have been proposed in [111] and [79]; a definition of these test problems may also be found

in [80]. In Kershaw's problem the domain is non-rectangular, but is a rectangular polygon.

The matrix for both problems is symmetric positive definite. With vertex-centered multigrid,

operator-dependent transfer operators have to be used, of course.

The four test problems just mentioned, i.e. (4.5.3), (4.5.4) and the problems of Stone

and Kershaw, are gaining acceptance among conjugate gradient and multigrid practitioners

as standard test problems. Given these test problems, the dilemma of robustness versus

efficiency presents itself. Should one try to devise a single code to handle all problems (ro-

bustness), or develop codes that handle only a subset, but do so more efficiently than a robust

111

code?This dilemmais not novel,andjust asin otherpartsof numericalmathematics,we
expectthat both approacheswill befruitful, andno single'best'codewill emerge.

Numericalexperimentsfor thetestproblemsof StoneandKershawandequations(4.5.3)
and (4.5.4),comparingCGSandmultigrid, aredescribedin [107],usingILU and IBLU pre-
conditioningandsmoothing. As expected, the rate of convergence of multigrid is unaffected

when the mesh size is decreased, whereas CGS slow down. On a 65 × 65 grid there is not great

difference in efficiency. Another comparison of conjugate gradients and multigrid is presented

in [40]. Robustness and efficiency of conjugate gradient and multigrid methods are deter-

mined to a large extent by the preconditioning and the smoothing method respectively. The

smoothing methods that were found to be robust on the basis of Fourier smoothing analysis in

Chapter 4 suffice, also as preconditioners. It may be concluded that for medium-sized linear

problems conjugate gradient methods are about equally efficient as multigrid in accelerating

basic iterative methods. As such they are limited to linear problems, unlike multigrid. On

the other hand, conjugate gradient methods are much easier to program, especially when the

computational grid is non-rectangular.

7 Finite volume discretization

7.1 Introduction

In this chapter some essentials of finite volume discretization of partial differential equations

are summarised. For a more complete elementary introduction, see for example [46] or [89].

We will pay special attention to the handling of discontinuous coefficients, because there seem

to be no texts giving a comprehensive account of discretization methods for this situation.

Discontinuous coefficients arise in important application areas, such as porous media flows

(reservoir engineering), and require special treatment in the multigrid context. Furthermore,

hyperbolic systems will be briefly discussed.

7.2 An elliptic equation

Cartesian tensor notation is used with convectional summation over repeated Greek subscripts

(not over Latin subscripts). Greek subscripts stand for dimension indices and have range 1, 2,

..., d with d the number of space dimensions. The subscript ,_ denotes the partial derivative

with respect to xa.

The general single second-order elliptic equation can be written as

Lu =_ -(aa_u,_),Z + (b_u),_ + cu = s in _ C _d (7.2.1)

112

The diffusiontensoraaz is assumed to be symmetric: a_ = a;_a. The boundary conditions

will be discussed later. Uniform eUipticity is assumed: there exists a constant C > 0 such

that

a_v_v_ > Cv_v_, Vv E IR d (7.2.2)

For d = 2 this is equivalent to Equation (7.2.9).

The domain fl

The domain _ is taken to be the d-dimensional unit cube. This greatly simplifies the con-

struction of the various grids and the transfer operators between them, used in multigrid.

In practice, multigrid for finite difference and finite volume discretization can in principe be

applied to more general domains, but the description of the method becomes complicated,

and general domains will not be discussed here. This is not a serious limitation, because the

current main trend in grid generation consists of decomposition of the physical domain in

subdomains, each of which is mapped onto a cubic computational domain. In general, such

mappings change the coefficients in (7.2.1). As a result, special properties, such as separa-

bility or the coefficients being constant, may be lost, but this does not seriously hamper the

application of multigrid, because this approach is applicable to (7.2.1) in its general form.

This is one of the strengths of multigrid as compared with older methods.

The weak formulation

Assume that a is discontinuous along some manifold F C _, which we will call an interface;

then Equation (7.2.1) now has to be interpreted in the weak sense, as follows. From (7.2.1)

it follows that
#

(Lu, v)=(s,v) Vv• H, (u,v)=_ /uvdn (7.2.3)

f_

where H is a suitable Sobolev space. Define

a(u,v) - fa_;_u_v,zd_2- f a_zu_nzvdF

fl o_ (7.2.4)

with n z the x_ component of the outward unit normal on the boundary 0n of f_. Application

of the Gauss divergence theorem gives

(Lu, v) = a(u, v) + b(u, v) + (cu, v) (7.2.5)

The weak formulation of (7.2.1) is

Find u• H such that a(u, v) + b(u, v) + (cu, v)=(s,v), VvE [t (7.2.6)

113

Forsuitablechoicesof H, H and boundary conditions, existence and uniqueness of the solution

of (7.2.6) has been established. For more details on the weak formulation (not needed here),

see for example [31] or [58].

The jump condition

Consider the case with one interface F, which divides _ in two parts _1 and _2, in each of

which aa_ is continuous. At F, a_,_(x) is discontinuous. Let indices 1 and 2 denote quantities

on F at the side of _1 and _2, respectively. Application of the Gauss divergence theorem to

(7.2.5) gives, if u is smooth enough in _t 1 and _22,

/ / I l 221a(u,v)=- (ac,_U,c_),_vd_+ (ac_u,a- a_u,.)n_vdr (7.2.7)

n\r r

Hence, the solution of (7.2.6), if it is smooth enough in fll and _2, satisfies (7.2.1) in _ \ F,

together with the following jump condition on the interface F

1 1 1 2 2 l
a,_u,c,n _ = ac,_U,o,n _ on F (7.2.8)

This means that where aa_ is discontinuous, so is u,_. This has to be taken into account in

constructing discrete approximations.

Exercise 3.2.1. Show that in two dimensions Equation (7.2.2) is equivalent to

alia22 -a_2 > 0 (7.2.9)

7.3 A one-dimensional example

The basic ideas of finite difference and finite volume discretization taking discontinuities in

ao_ into account will be explained for the following example

-(au,1),l =s, x en=(0,1) (7.3.1)

Boundary conditions will be given later.

Finite difference discretization

A computational grid G C _ is defined by

G = {z E _: z = xj = jh, j = 0, 1,2,...,n, h = 1/n} (7.3.2)

Forward and backward difference operators are defined by

Auj =_ (uj+l - uj)/h, Vuj = (uj - uj_l)/h (7.3.3)

114

A finite difference approximation of (7.3.1) is obtained by replacing d/dx by A or V. A nice

symmetric formula is

- _{V(aA)+A(aV)}uj = sj, j = 1,2,...,n- 1

where aj = s(xj) and uj is the numerical approximation of u(xj).

Equation (7.3.4) gives

{-(aj-1 + aj)uj_l + (aj-1 + 2aj + aj+l)uj - (aj + aj+l)uj+l}/2h 2 = sj, (7.3.5)
j = 1,2,...,n- 1

If the boundary condition at x = 0 is u(0) = f (Dirichlet), we elimine u0 from (7.3.5) with

Uo = f. If the boundary condition is a(0)uj(0) = f (Neumann), we write down (7.3.5)

for j = 0 and replace the quantity -(a-1 + ao)u-1 + (a-1 + ao)Uo by 2f. If the boundary

condition is ClUl(0)+ c2u(O) = f (Robin), we again write down (7.3.5)for j = 0, and replace

the quantity just mentioned by 2(f - c2uo)a(O)/cl. The boundary condition at x = 1 is

handled in a similar way.

An interface problem

In order to show that (7.3.4) can be inaccurate for interface problems, we consider the following

example

a(x)=e, O<x <_x*, a(x)--" 1, x* <x< 1 (7.3.6)

The boundary conditions are: u(0) = 0, u(1) = 1. The jump condition (7.2.8) becomes

e lim = lim u,l (7.3.7)
xlx* U,l xlx*

By postulating a piecewise linear solution the solution of (7.3.1) and (7.3.7) is found to be

u = ax, ogx<x*, u=eax+l-ea, x* <x < 1,

a = 1/(x'-ex*+g) - - (7.3.8)

Assume xk < x* < xk+l. By postulation a piecewise linear solution

uj:e_j, O<_j<_k, uj:_j-_n+l, k+l<_j<n (7.3.9)

one finds that the solution of (7.3.5), with the boundary conditions given above, is given by

(7.3.9) with

/_=ea, a= ¢_--7 +e(n-k)+k (7.3.10)

Hence
xk

Uk = eh(1 - e)/(1 + e) + (1 - e)xk + e

(7.3.4)

Written out in full,

(7.3.11)

115

Let x* = Xk+ 1. The exact solution in xk is

u(xk) = x_
(1 - _)xk+l + e

Hence, the error satisfies

(7.3.12)

uk - u(xk) = O /(e I - s h/_' (7.3.13)
\1+¢/

As another example, let x* = x_ + hi2. The numerical solution in xk is still given by (7.3.11).

The exact solution in xk is

Xk

u(xk) = (1 - E)xk + ¢ + h(1 - _)/2 (7.3.14)

The error in zk satisfies

\¢(1((1-- -E)2+)uk - u(xk) = 0 e) h (7.3.15)

When a(x) is continuous (e = 1) the error is zero. For general continuous a(x) the error is

O(h2). When a(x) is discontinuous, the error of (7.3.4) increases to O(h).

Finite volume discretization

By starting from the weak formulation (7.2.6) and using finite volume discretization one may

obtain O(h 2) accuracy for discontinuous a(x). The domain _ is (almost) covered by ceils or

finite volumes _j,

f_j -- (xj - hi2, xj + hi2), j = 1,2, ..., n- 1 (7.3.16)

Let v(x) be the characteristic function of f_j

v(x) = O, x C. l}j; v(x) = l, z E _j (7.3.17)

A convenient unified treatment of both cases: a(x) continuous and a(x) discontinuous, is as

follows. We approximate a(x) by a piecewise constant function that has a constant value aj

in each l}j. Of course, this works best if discontinuities of a(x) he at boundaries of finite

volumes _j. One may take aj = a(xj), or

aj = h -1 [adFt.

f_j

With this approximation of a(x) and v according to (7.3.17) one obtains from (7.2.7)

a(u,v) = - f (au,1),ld

ixJ+h/2= -au,l xj-h/2 if l_<j_<n- 1 (7.3.18)

116

By taking successively j = 1,2, ..,n - 1, Equation (7.2.6) leads to n - 1 equations for the n- 1

unknowns uj(Uo = 0 and un = 1 are given), after making further approximations in (7.3.18).

In order to approximate au,l(X j + h/2) we proceed as follows. Because au,1 is smooth,

u,1 (xj + h/2) does not exist if a(x) jumps at x = xj + hi2. Hence, it is a bad idea to discretize

u,l (xj + h/2). Instead, we write

273+1 Xj+I Xj+l

u j+l
=fa,idx= f auadx -(au,)j+,/,f dx

_j Xj

where we have exploited the smoothness of au,l. We have

X3+l

f ldx = h/wj

X3

with wj the harmonic average of aj and aj+l:

(7.3.19)

(7.3.20)

wj __ 2ajaj+,/(aj + aj+l) (7.3.21)

and we obtain the following approximation:

(au,1)j+l/2 _ wj(uj+l - uj)/h (7.3.22)

With equations (7.3.18) and (7.3.22), the weak formulation (7.2.6) leads to the following

discretization:

Wj_I(Uj -- Uj_l)/h - wj(uj+ 1 - uj)/h = hsj, j = 1,2, ...,n- 1 (7.3,23)

with

=_ h -1 /sdx8j g

J

nj

When a(x) is smooth, wj _ (aj + aj+l)/2, and we recover the finite difference approximation

(7.3.5).

Equation (7.3.23) can be solved in a similar way as (7.3.5) for the interface problem under

consideration. Assume x* = x_ + hi2. Hence

wj =¢, l_<j<k; wk =2c/(l+s); wj = 1, k<j<_n-1. (7.3.24)

Again postulating a solution as in (7.3.9) one finds

= = - we(k + 1 - n) + wk] (7.3.25)

117

or

a = [(1 - _)/2 + e(n - k) + k] -1 = h/[(xk + h/2)(1 - e) + E] (7.3.26)

Comparison with (7.3.8) shows that uj = u(xj): the numerical error is zero. In more general

circumstances the error will be O(h2). Hence, finite volume discretization is more accurate

than finite difference discretization for interface problems.

Exercise 3.3.1 The discrete maximum and 12 norms are defined by, respectively,

{j=_0n }1/2
lulo_ = max{Iujl : 0 <_ j <_ n}, lul0 = h u_ (7.3.27)

Estimate the error in the numerical solution given by (7.3.9) in these norms.

7.4 Cell-centered discretization in two dimensions

Cell-centered grid

The domain _ is divided in cells as before, but now the grid points are the centers of the

cells, see Figure 7.4.1. The computational grid G is defined by

h = (hi,h2), ja - 1,2,...,na, ha = 1/na} (7.4.1)

The cell with centre xj is called _j. Note that in a cell-centered grid there are no grid points

on the boundary ¢0_t.

Finite volume discretization in two dimensions

Integration of (7.2.1) over a finite volume _j gives, with c -- s _= 0 for brevity,

- [a_u,an_dF + [b_un_dF =0 (7.4.2)

Fj Fj

with Fj the boundary of _j and n the outward unit normal. Let us (denote) the "east" part

of Fj, at xl = (jl + ½)hi, by Fe. On Fe,n = (1,0).

The convection term

We write

bl h2(blu)j_ +1/2,j2 (7.4.3)ud_

F_

118

it
x 2

X 1

-4'

Figure 7.4.1: Ceil-centered grid. (. grid points; finite volume boundaries.)

Central discretization gives

(blu)j,+l/2,j 2 = blu)j + (blu)jl+l,j2} (7.4.4)

Upwind discretization gives

(biu)jl+l/2,j2 _ 2{(51 + [bl[u)j _- 2{(hi -[bli)U}jl+l,j 2 (7.4.5)

If a12 = 0 then (7.4.4) results in a K-matrix (definition 3.2.5) only if with w defined below

hlbj,+l,j21 <_ 2, hibj'-l'J21 < 2 (7.4.6)

wjl + l /2j_ Wjl -1/2,j2

whereas, if a12 = 0, (7.4.5) always results in a K-matrix. The advantages of having a K-matrix

are

• Monotonicity: absence of numerical wiggles.

• Good behaviour of iterative solution methods, including multigrid, as discussed in Chap-

ter 4.

The diffusion term

We write

f a, lu,_dF "_ h2(a_lu,_)j_+l./2j2 (7.4.7)

F_

119

and approximate the flux Fj_+I/2,j2 = (a_lu,c,)jl+l/2j2 in a similar way as in the one-

dimensiona_ case, taking into account the fact that (u:)j+l/2j2 does not exist, but F and u,2

are smooth. We have

2:jl._l,j 2 _:31 -_.1,32

u j_+l,j_
Jl,j2 = f u,ldXl -- f _7_ (al'u, ')dx'

x J1 J2 xsl ,J2

_'31"_1'J2 I

f Z-;7,,dzl= hl/ws
xj

_ji@1,1/2

= f _-_T{(alaU,,) - al2u,2}dz,
x Jl J2

xjt +l/2,J2 x#1+1,1/2

_-- Fjl+I/2,j 2 f 1-'-dxl _ (u2)jlTi/2,j2 f al2/alldXl
all

.Z'j .Z'j

(7.4.8)
We now assume that a12 = 0, or else that u,2 may be approximated by

1 IU jl,j2kl U jl+l,j_..kl

(U,2)jl"kl/2,J2 ---- 4ht j_,h-1 + jl+l,j2-1} (7.4.9)

This will be accurate only of aaf_ is smooth at the north and south edges, the general case

seems not to have been investigated.

We obtain, with
xJl+l,J2 .

wj,+,/2,j: =- h / f l--_-dxl (7.4.10)
J all

"g'J1 ,*_2

"0 U jl-i-l,j2 /_,
Fj_+_/2,.i2= wj_+i/2,.i_J_,.i2/'_+ (u,2)j_+l/2,j2

2_31 4-1,J 2

al2/alldXl

x.71 ,._2

With (7.4.9) the K-matrix property is lost. The off-diagonal elements with the wrong side

are much smaller than those generated by central discretization of the convection term at

high P6clet number, and usually results obtained and performance of iterative methods are

still satisfactory. See [141] for more details, including a discretization that gives a K-matrix

for al_ # O.

7.5 A hyperbolic system

Hyperbolic system of conservation laws

In this section we consider the following hyperbolic system of conservation laws:

o_, of(,,) og(u)
O---t+ 0-----_+ Oy -s, (z,y) e_, te(0,T]

(7.5.1)

120

where

[0,T] × --, S, c [0,T] × l,g: (7.5.2)

Here So is the set of admissible states. For example, if one of the p unknowns, u_ say, is

the fluid density or the speed of sound in a fluid mechanics application, then u_ < 0 is not

admissible. Equation (7.5.1) is a system of p equations with p unknowns. Here we abandon

Cartesian tensor notation for the more convenient notation above. Equation (7.5.1) is assumed

to be hyperbolic.

Definition 7.5.1 Equation (7.5.1) is called hyperbolic with respect to t if there exist for all

E [0, 27r) and admissible u a real diagonal matrix D(u, _) and non-singular matrix R(u, _2)
such that

A(u, ¢p)R(u, _) = R(u, _)O(u, _p) (7.5.3)

where

A(u,,#) = cos Of,u/(_ + sin O,,__jn(_,._ (7.5.4)
Ou Ou

The main example to date of systems of type (7.5.1) to which multigrid methods have been

applied successfully are the Euler equations of gas dynamics. See [34] for more details on

the mathematical properties of these equations and of hyperbolic systems in general. For

numerical aspects of hyperbolic systems, see [101] or [104].

For the discretization of (7.5.1), schemes of aaw-Wendroff type (see [101]) have long been pop-

ular and still are widely used. These schemes are explicit and, for time-dependent problems,

there is no need for multigrid: stability and accuracy restrictions on the time step At are

about equaly severe. If the time-dependent formulation is used solely as a means to compute

a steady state, then one would like to be unrestricted in the choice of At ands/or use artificial

means to get rid of the transients quickly.

In [92] a method has been proposed to do this using multiple grids. This method has

been developed further in [76], [30] and [77]. The method is restricted to Lax-Wendroff type

formulations.

Finite volume diseretization

Following the main trend in contemporary computational fluid dynamics, we discuss only the

cell-centered case. The grid is given in Figure 7.4.1. Integration of (7.5.1) over _j gives, using

the Gauss divergence theorem,

d rude+/(f(u)n_+ g(u)n_)dF= /Sd_ (7.5.5)

l'_j Fj flj

121

whereFj is the boundaryof _2j.With theapproximations

[,,d_ __ I_l_j, [Sd_ __ I_jJsj (7.5.6)

12j flj

where [fli[is the area of f_j, Equation (7.5.5) becomes

I_jlduj/dt +/(f(u)n_: + g(u)%)dr = [_jlsj (7.5.7)

Fj

The time discretization will not be discussed. The space discretization takes place by approx-

imating the integral over Fj.

Let A = xj +(hl/2,-h2/2), B = xj +(hl/2, h_/2), so that AB is part ofrj. On AB, n_ = 1

and n u = O. We write
B

f l(u)dx2 h2f(u)c (7.5.8)
A

with C the midpoint of AB. Central space discretization is obtained with

f(u)C _- f(_i) + -_f(uj+e,) (7.5.9)

In the presence of shocks, this does not lead to the correct weak solution, unless thermo-

dynamic irreversibility is enforced. This may be done by introducing artificial viscosity, an

approach followed in [72]. Another approach is to use upwind space discretization, obtained

by flux splitting:

f(u) = f+(u) + f-(u) (7.5.10)

with f±(u) choosen such that the eigenvalues of the Jacobians of f+(u) satisfy

(Of+/Ou) > O, ,(Of-/cOu) <_ 0 (7.5.11)

There are many splittings satisfying (7.5.11). For a survey of flux splitting, see [64] and [126].

With upwind discretization, f(u)c is approximated by

f(u)c "_ f+(uj + f-(uj+_,)) (7.5.12)

The implementation of boundary conditions for hyperbolic systems is not simple, and will

not be discussed here; the reader is referred to the literature mentioned above.

Exercise 7.$.1 Show that the flux splitting (7.4.5) satisfies (7.5.11).

122

8 Conclusion

An introduction has been presented to the application of multigrid methods to the numerical

solution of elliptic and hyperbolic partial differential equations.

Because robustness is stongly influenced by the smoothing method used, much attention has

been given to smoothing analysis, and many possible smoothing methods have been presented.

An attempt has been made to review much of the literature, to help the reader to find his

way quickly to material relevant to his interests. For more information, see [141].

In this book application of multigrid to the eqations of fluid dynamics is reviewed, a topic

not covered here. There the full potential equation, the Euler equations, the compressible

Navier-Stokes equations and the incompressible Navier-Stokes and Boussinesq equations are
treated.

The principles discussed in these notes hold quite generally, making solution possible at a cost

of a few work units, as discussed in chapter 6, for problems more difficult than considered
here.

References

°

,

.

.

.

.

Braunschweig/Wiesbaden, 1985. Vieweg. Proceedings, Oberwolfach 1984. Notes on

Numerical Fluid Mechanics l l.

J.C. Adams. FMG results with the multigrid software package MUDPACK. In J. Man-

del, S.F. Mccormick, J.E. Dendy, Jr., C. Farhat, G. Lonsdale, S.V. Parter, J.W. Ruge,

and K. Stiiben, editors, Proc. of the Fourth Copper Mountain Conference on Multigrid

Methods, pages 1-12, Philadelphia, 1989. SIAM.

J.C. Adams. MUDPACK: Multigrid portable FORTRAN software for the efficient

solution of linear elliptic partial differential equations. Appl. Math. and Comp., 34:113-
146, 1989.

G.P. Astrakhantsev. An interative method of solving elliptic net problems. U.S.S.R.

Comp. Math. and Math. Phys., 11 no.2:171-182, 1971.

W. Auzinger and H.J. Stetter. Defect correction and multigrid iterations. In Hackbusch

and Trottenberg (1982), pages 327-351.

O. Axelsson, S. Brinkkemper, and V.P. Ii'in. On some versions of incomplete block

matrix factorization iterative methods. Lin. Algebra Appl. 59, pages 3-15, 1984.

123

7. O.AxelssonandB. Polman.On approximatefactorizationmethodsfor blockmatrices
suitablefor vectorandparallelprocessors.Lin. Alg. Appl. 77, pages 3-26, 1986.

8. N.S. Bachvalov. On the convergence of a relaxation method with natural constraints

on the elliptic operator. USSR Comp. Math. and Math. Phys 6, pages 101-135, 1966.

9. D. Bai and A. Brandt. Local mesh refinement multilevel techniques. SIAM J. Sci Star.

Comp. 8, pages 109-134, 1987.

10. R.E. Bank. A comparison of two multi-level iterative methods for nonsymmetric and

indefinite elliptic finite element equations. SIAM J. Numer. Anal., 18:724-743, 1981.

11. R.E. Bank. A multi-level iterative method for nonlinear elliptic equations. In M.H.

Schultz, editor, Elliptic problem solvers, pages 1-16, New York, 1981. Academic Press.

12. R.E. Bank and A.H. Sherman. An adaptive multi-level method for elliptic boundary

value problems. Computing, 26:91-105, 1981.

13. D. Barkai and A. Brandt. Vectorized multigrid poisson solver for the cdc cyber 205.

Appl. Math. Comput. 13, pages 215-227, 1983.

14. P. Bastian and G. Horton. Parallization of robust multi-grid methods: ILU factorization

and frequency decomposition method. In Hackbusch and Rannacher (1990), pages 24-

36.

15. K. BShmer, P. Hemker, and H. Stetter. The defect correction approach. Computing,

Suppl., 5:1-32, 1984.

16. A. Brandt. Guide to multigrid development. In Hackbusch and Trottenberg (1982),

pages 220-312.

17. A. Brandt. Multilevel computations: Review and recent developments. In McCormick

(1988), pages 35-62.

18. A. Brandt. The Weizmann Institute research in multilevel computation: 1988 report.

In J. Mandel et al. (1989), pages 13-53.

19. A. Brandt. Multi-level adaptive technique (MLAT) for fast numerical solution to bound-

ary value problems. In H. Cabannes and R. Temam, editors, Proc. Third Int. Conf.

on Numerical Methods in Fluid Mechanics, Vol. 1, pages 82-89, Berlin, 1973. Springer-

Verlag. Lecture Notes in Physics 18.

20. A. Brandt. Multi-level adaptive solutions to boundary value problems. Math. Comp.,

31:333-390, 1977.

124

21. A. Brandt. Multi-level adaptivetechniquesMLAT for partial differentialequations:
Ideasand software. In J. Rice,editor, Proceedings of Symposium on Mathematical

Software, pages 277-318, New York, 1977. Academic Press.

22. A. Brandt. Multilevel adaptive computations in fluid dynamics. AIAA J., 18:1165-1172,

1980.

23. A. Brandt. Multigrid techniques: 1984 guide, with applications to fluid dynamics. GMD

Studien no. 85, P.O. Box 1240, D-2505, Sankt Augustin, Germany, 1984. Gesellschaft

ffir Mathematik und Datenverarbeitung.

24. A. Brandt. Rigorous quantitative analysis of multigrid. SIAM J. Numer. Anal., 1994.

To appear.

25. A. Brandt and A.A. Lubrecht. Multilevel matrix multiplication and fast solution of

integral equations. J. Comp. Phys., 90:348-370, 1990.

26. A. Brandt and D. Ophir. Gridpack: Toward unification of general grid programming.

In Engquist and Smedsaas (1983), pages 269-290.

27. W.L. Briggs. A multigrid tutorial. SIAM, Philadelphia, 1987.

28. W.L. Briggs and S.F. McCormick. Introduction. chapter 1. In McCormick (1987), 1987.

29. T.F. Chan and H.C. Elman. Fourier analysis of iterative methods for elliptic boundary

value problems. SIAM Rev. 31, pages 20-49, 1989.

30. R.V. Chima and G.M. Johnson. Efficient solution of the Euler and Navier-Stokes equa-

tions with a vectorized multiple-grid algorithm. AIAA J., 23:23-32, 1985.

31. Ph.G. Ciarlet. The Finite Element Method for elliptic problems. North-Holland, Ams-

terdam, 1978.

32. G. Cimmino. La ricerca scientifica ser. ii 1. In Pubblicazioni dell'Instituto per le Appli-

cazioni del Calculo 34, pages 326-333, 1938.

33. P. Concus, G.H. Golub, and G. Meurant. Block preconditioning for the conjugate

gradient method. SIAM J. Sci. Star. Comp. 6, pages 220-252, 1985.

34. R. Courant and K.O. Friedrichs. Supersonic Flow and Shock Waves. Springer-Verlag,

New York, 1949.

35. A.R. Curtiss. On a property of some test equations for finite difference or finite element

methods. IMA J. Numer. Anal., 1:369-375, 1981.

125

36. P.M.deZeeuw.Matrix-dependentprolongationsandrestrictionsin ablackboxmultigrid
solver.J. of Comp. and Appl. Math., 3:1-27, 1990.

37. J.E. Dendy Jr. Black box multigrid. J. Comp. Phys., 48:366-386, 1982.

38. J.E. Dendy Jr. Black box multigrid for nonsymmetric problems. Appl. Math. Comp.,

13:261-284, 1983.

39. J.E. Dendy Jr. Black box multigrid for systems. Appl. Math. Comp., 19:57-74, 1986.

40. J.E. Dendy, Jr. and J.M. Hyman. Multi-grid and ICCG for problems with interfaces, in

M.H. Schultz, editor, Elliptic problem solvers, pages 247-253, New York, 1981. Academic

Press.

41. T. Dupont, R.P. Kendall, and H.H. Jr. Rachford. An approximate factorization pro-

cedure for solving self-adjoint difference equations. SIAM J. Numer. Anal. 5, pages

559-573, 1968.

42. B. Enquist and T. Smedsaas, editors. PDE software: Modules interfaces and systems,

Amsterdam, 1984. North-Holland. Procs. IFIP WG 2.5 Working Conference.

43. R.P. Fedorenko. The speed of convergence of one iterative process. USSR comp. Math.

and Math. Phys., 4 no. 3:227-235, 1964.

44. H. Foerster and K. Witsch. Multigrid software for the solution of elliptic problems on

rectangular domains: MG00 (Release 1). In Hackbusch and Trottenberg (1982), pages

427-460.

45. H. Foerster and K. Witsch. On efficient multigrid software for elliptic problems on

rectangular domains. Math. Comp. Simulation, 23:293-298, 1981.

46. G.E. Forsythe and W.R. Wasow. Finite Difference Methods for Partial Differential

Equations. Wiley, New York etc., 1960.

47. P.O. Frederickson. Fast approximate inversion of large elliptic systems. Report 7-75,

Lakehead University, Thunderbay, Canada, 1975.

48. G.H. Golub and C.F. Van Loan. Matrix Computations (second edition). The Johns

Hopkins University Press, Baltimore, 1989.

49. W. Hackbusch. Mnltigrid convergence theory. In Hackbusch and Trottenberg (1982),

pages 177-219.

126

50. W. Hackbusch.Ein iterativesVerfahrenzur schnellenAuflSsungelliptischerRandwert-
probleme.Report76-12,Universit£tKSln,1976.

51. W. Hackbusch.On the convergenceof a multi-grid iteration appliedto finite element
equations.TechnicalReport77-8,Universit£tzu KSln,1977.

52. W. Hackbusch.On the multi-gridmethodappliedto differenceequations.Computing,

20:291-306, 1978.

53. W. Hackbusch. Survey of convergence proofs for multi-grid iterations. In J. Frehse,

D. Pallaschke, and U. Trottenberg, editors, Special topics of applied mathematics, pages

151-164, Amsterdam, 1980. North-Holland. Proceedings, Bonn, Oct. 1979.

54. W. Hackbusch. On the convergence of multi-grid iterations. BeitrSge Numer. Math. 9,

pages 231-329, 1981.

55. W. Hackbusch, editor. E O_cient solutions o/ elliptic systems, Braunschweig/Wiesbaden,

1984. Vieweg. Notes on Numerical Fluid Mechanics 10.

56. W. Hackbusch. Parabolic multi-grid methods. In R. Glowinski and J.L. Lions, editors,

Computing methods in applied sciences and engineering VI, pages 189-197, Amsterdam,

1984. North-Holland. Proc. of the Sixth Int. Symposium, Versailles, Dec. 1983.

57. W. Hackbusch. Multi-grid methods and applications. Springer-Verlag, Berlin, 1985.

58. W. Hackbusch. Theorie und Numerik elliptischer Di_erentialgleichungen. Teubner,

Stuttgart, 1986.

59. W. Hackbusch, editor. Robust Multi-Grid Methods, Braunschweig, 1989. Vieweg. Proc.

4th GAMM-Seminar, Kiel, 1988. Notes on Numerical Fluid Mechanics 23.

60. W. Hackbusch and R. Rannacher, editors. Numerical treatment of the Navier-Stokes

equations, Braunschweig, 1990. Vieweg. Notes on Numerical Fluid Mechanics 30.

61. W. Hackbusch and U. Trottenberg, editors. Multigrid methods, Berlin, 1982. Springer-

Verlag. Lecture Notes in Mathematics (960).

62. W. Hackbusch and U. Trottenberg, editors. Multigrid Methods H, Berlin, 1986. Springer-

Verlag. Lecture Notes in Mathematics 1228.

63. L.A. Hageman and D.M. Young. Applied iterative methods. Academic Press, New York,

1981.

127

64. A. Harten,P.D. Lax, and B. Van Leer. On upstreamdifferencingand Godunov-type
schemesfor hyperbolicconservationlaws. SIAM Review, 25:35-61, 1983.

65. P.W. Hemker. The incomplete LU-decomposition as a relaxation method in multi-grid

algorithms. In J.H. Miller, editor, Boundary and Interior Layers - Computational and

Asymptotic Methods, pages 306-311, Dublin, 1980. Boole Press.

66. P.W. Hemker. On the order of prolongations and restrictions in multigrid procedures.

J. of Comp. and Appl. Math., 32:423-429, 1990.

67. P.W. Hemker, R. Kettler, P. Wesseling, and P.M. De Zeeuw. Multigrid methods: De-

velopment of fast solvers. Appl. Math. Comp., 13:311-326, 1983.

68. P.W. Hemker and P.M. de Zeeuw. Some implementations of multigrid linear systems

solvers. In Paddon and Holstein (1985), pages 85-116.

69. P.W. Hemker, P. Wesseling, and P.M. de Zeeuw. A portable vector-code for autonomous

multigrid modules. In Enquist and Smedsaas (1984), pages 29-40.

70. E. Isaacson and H.B. Keller. Analysis of Numerical Methods. John Wiley and Sons,

New York, 1966.

71. A. Jameson. Solution of the euler equations for two-dimensional flow by a multigrid

method. Appl. Math. and Comp. 13, pages 327-355, 1983.

72. A. Jameson. Computational transonics. Comm. Pure Appl. Math., 41:507-549, 1988.

73. A. Jameson and T.J. Baker. Multigrid solution of the euler equations for aircraft

configurations. AIAA-Paper 84-0093, 1984.

74. A. Jameson, W. Schmidt, and E. Turkel. Numerical solution of the euler equations by

finite volume methods using Runge-Kutta time stepping schemes. AIAA Paper 81-1259,

1981.

75. M. Jayaram and A. Jameson. Multigrid solution of the navier-stokes equations for flow

over wings. AIAA-Paper 88-0705, 1988.

76. G.M. Johnson. Multiple-grid convergence acceleration of viscous and inviscid flow com-

putations. Appl. Math. Comp., 13:375-398, 1983.

77. G.M. Johnson and J.M. Swisshelm. Multiple-grid solution of the three-dimensional

Euler and Navier-Stokes equations. In Soubbaramayer and Boujot(1985), pages 286-

290.

128

78. S. Kaczmarz. Angen_herte auflSsung von systemen, linearer gleichungen. Bulletin de

l'Academie Polonaise des Sciences et Lettres A, 35:355-357, 1937.

79. D. S. Kershaw. The incomplete Choleski-conjugate gradient method for the iterative

solution of systems of linear equations. J. Comp. Phys., 26:43-65, 1978.

80. R. Kettler. Analysis and comparison of relaxation schemes in robust multigrid and

conjugate gradient methods. In Hackbusch and Trottenberg (1982), pages 502-534.

81. R. Kettler and P. Wesseling. Aspects of multigrid methods for problems in three di-

mensions. Appl. Math. Comp., 19:159-168, 1986.

82. M. Khahl. Local mode smoothing analysis of various incomplete factorization iterative

methods. In Hackbusch (1989), pages 155-164.

83. M. Khalil. Analysis of Linear Multigrid Methods for Elliptic Differential Equations with

Discontinuous and Anisotropic Coefficients. PhD thesis, Delft University of Technology,

Delft, The Netherlands, 1989.

84. J. Mandel, S.F. McCormick, J.E. Dendy, Jr., C. Farhat, G. Lonsdale, S.V. Patter, J.W.

Ruge, and K. Stfiben, editors. Proceedings of the Fourth Copper Mountain Conference

on Multigrid Methods, Philadelphia, 1989. SIAM.

85. S.F. McCormick, editor. Multigrid methods, Philadelphia, 1987. SIAM. Frontiers in

Applied Mathematics 3.

86. S.F. McCormick, editor. Multigrid methods, New. York, 1988. Marcel Dekker Inc. Lec-

ture Notes in Pure and Applied Mathematics 110.

87. J.A. Meijerink and H.A. Van der Vorst. An iterative solution method for finear systems

of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148-162,

1977.

88. J.A. Meijerink and H.A. Van der Vorst. Guidelines for the usage of incomplete de-

compositions in solving sets of linear equations as they occur in practical problems. J.

Comput. Phys., 44:134-155, 1981.

89. A.R. Mitchell and D. F. Griffiths. The Finite Difference Method in Partial Differential

Equations. Wiley, Chichester, 1980.

90. K.W. Morton and M.J. Baines, editors. Numerical Methods for Fluid Dynamics I1,

Oxford, 1986. Clarendon Press.

129

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

S.Murata, N. Satofuka,andT. Kushiyama.Parabolicmulti-grid methodfor incom-
pressibleviscousflowsusingagroupexplicit relaxationscheme.Comp. 8J Fluids, 19:33-

41, 1991.

R.H. Ni. A multiple grid scheme for solving Euler equations. AIAA J., 20:1565-1571,

1982.

R.A. Nicolaides. On multiple grid and related techniques for solving discrete elliptic

systems. J. Comp. Phys., 19:418-431, 1975.

R.A. Nicolaides. On the 12 convergence of an algorithm for solving finite element equa-

tions. Math. Comp., 31:892-906, 1977.

Z. Nowak. Calculations of transonic flows around single and multi-element airfoils on a

small computer. In Braess and Hackbusch (I985), pages 84-101.

Z. Nowak and P. Wesseling. Multigrid acceleration of an iterative method with ap-

plication to compressible flow. In R. Glowinski and J.-L. Lions, editors, Computing

Methods in Applied Sciences and Engineering VI, pages 199-217, Amsterdam, 1984.
North-Holland.

K.-D. Oertel and K. Stfiben. Multigrid with ILU-smoothing: Systematic tests and

improvements. In Hackbusch(1989), pages 188-199.

D.J. Paddon and H. Holstein, editors. Multigrid Methods for Integral and Differential

Equations, Oxford, 1985. Clarendon Press.

B. Polman. Incomplete blockwise factorizations of (block) H-matrices. Lin. Alg. Appl.,

90:119-132, 1987.

R. Rice and R.F. Boisvert. Solving Elliptic Systems Using ELLPACK, volume 2 of

Springer Series in Comp. Math. Springer-Verlag, Berlin, 1985.

R.D. Richtmyer and K.W. Morton. Difference Methods for Initial Value Problems. John

Wiley, New York, 1967.

Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for

solving non-symmetric linear systems. SIAM J. Sci. Star. Comp., 7:856-869, 1986.

J.J.F.M. Schlichting and H.A. Van der Vorst. Solving 3D block bidiagonal linear systems

on vector computers. J. of Comp. and Appl. Math., 27:323-330, 1989.

G.A. Sod. Numerical Methods in Fluid Dynamics: Initial and Initial Boundary-Value

Problems. Cambridge University Press, Cambridge, 1985.

130

105oP,Sonneveld.CGS,a fastLanczos-typesolverfor nonsymmetriclinearsystems.SIAM
J. Sci. Stat. Comput., 10:36 52, 1989,

106. P. Sonneveld and B. Van Leer. A minimax problem along the imaginary axis. Nieuw

Archief voor Wiskunde, 3:19 22, 1985.

107. P. Sonneveld, P. Wesseling, and P.M. de Zeeuw. Multigrid and conjugate gradient

methods as convergence acceleration techniques. In Paddon and Holstein (1985), pages

117-168, 1985.

108. P. Sonneveld, P. Wesseling, and P.M. de Zeeuw. Multigrid and conjugate gradient

acceleration of basic iterative methods. In Morton and Baines (1986), pages 347-368,

1986.

109. Soubbaranlayer and J.P. Boujot_ editors. Ninth International Conference on Numerical

Methods in Fluid Dynamics, Berlin, 1985. Springer-Verlag.

110. R.P. Stevenson. On the Validity of local mode analysis of multi-grid methods. PhD

thesis, University of Utrecht, The Netherlands, 1990.

111. H.L. Stone. Iterative solution of implicit approximations of multi-dimensionM partial

difference equations. SIAM J. Num. Anal., 5, 1.968.

112. K. Stiiben and U. Trottenberg. Multigrid methods: Fundamental algorithms, model

problem analysis and applications. In Hackbusch and Trottenberg (1982), pages 1 176,

1982.

113. K. Stiiben, U. Trottenberg, and K. Witsch. Software development based on multigrid

techniques. In Engquist and Smedsaas (1984), pages 241-267.

114. C.-A. Thole and U. Trottenberg. Basic smoothing procedures for the inultigrid treat-

meat of elliptic 3D-operators. Appl. Math. Comp., 19:333-345, 1986.

115. P.J. Van der Houwen. Construction of integration formulas for initial-value problems.

North-Holland, Amsterdam, 1977.

116. lt.A. Van der Vorst. A vectorizable variant of some ICCG methods. SIAM J. Sei. Star.

Comp., 3:350 356, 1982.

117. tt.A. Van der Vorst. The performance of FORTRAN implementations for preconditioned

conjugate gradients on vector computers. Parallel Computing, 3:49-58, 1986.

118. H.A. Van der Vorst. High performance preconditioning. SIAM J. Sei. Stat. Comp.,

10:1174 -1185, 1989.

131

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

H.A. Van der Vorst. ICCG and related methods for 3D problems on vector computers.

Computer Physics Comm., 53:223-235, 1989.

H.A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods.

Numer. L.A.A., 1993. to appear.

H.A. van der Vorst and C. Vuik. The superlinear convergence behaviour of GMRES.

J. Comput. Appl. Math., 48:327-341, 1993.

A.J. Van der Wees. FAS multigrid employing ILU/SIP smoothing: a robust fast solver

for 3D transonic potential flow. In Hackbusch and Trottenberg (1986), pages 315-331.

A.J. Van der Wees. Impact of multigrid smoothing analysis on three-dimensional po-

tential flow calculations. In Mandel et al. (1989), pages 399-416.

A.J. Van der Wees. Robust calculation of 3D potential flow based on the nonlinear FAS

multi-grid method and a mixed ILU/SIP algorithm. In J.G. Verwer, editor, Colloquium

Topics in Applied Numerical Analysis, pages 419-459, Amsterdam, 1984. Centre for

Mathematics and Computer Science. CWI Syllabus.

A.J. Van der Wees. A nonlinear multigrid method for three-dimensional transonic po-

tential flow. PhD thesis, Delft University of Technology, 1988.

B. Van Leer. On the relation between the upwind-differencing schemes of Godunov,

Enquist-Osher and Roe. SIAM J. Sci. Star. Comp., 5:1-20, 1984.

B. Van Leer, C.-H. Ted, and K.G. Powell. Design of optimally smoothing multistage

schemes for the euler equations. AIAA Paper 89-1933-CP, 1989.

S.P. Vanka and K. Misegades. Vectorized multigrid fluid flow calculations on a cray

x-mp48. AIAA Paper 86-0059, 1986.

R.S. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey,

1962.

C.H. Venner. Multilevel solution of the EHL line and point contact problems. PhD

thesis, Twente University, Enschede, The Netherlands, 1991.

C. Vuik. Further experiences with GMRESR. Supercomputer, 55:13-27, 1993.

C. Vuik. Solution of the discretized incompressible Navier-Stokes equations with the

GMRES method. Int. J. for Num. Meth. Fluids, 16:507-523, 1993.

132

133.P.Wesseling.A robust and efficient multigrid method. In Hackbusch and Trottenberg

(1982), pages 614-630.

134. P. Wesseling. Two remarks on multigrid methods. In Hackbusch (1989), pages 209-216.

135. P. Wesseling. Numerical solution of the stationary navier-stokes equations by means of

a multiple grid method and newton iteration. Technical Report Report NA-18, Dept.

of Technical Math. and Inf., Delft University of Technology, 1977.

136. P. Wesseling. The rate of convergence of a multiple grid method. In G.A. Watson,

editor, Numerical Analysis. Proceedings, Dundee 1979, pages 164-184, Berlin, 1980.

Springer-Verlag. Lecture Notes in Math. 773.

137. P. Wesseling. Theoretical and practical aspects of a multigrid method. SIAM J. Sci.

Star. Comp. 3, pages 387-407, 1982.

138. P. Wesseling. Multigrid solution of the Navier-Stokes equations in the vorticity-

streamfunction formulation. In Hackbusch (1984), pages 145-154, 1984.

139. P. Wesseling. Linear multigrid methods. In McCormick (1987), pages 31-56, 1987.

140. P. Wesseling. Multigrid methods in computational fluid dynamics. Z. angew. Math.

Mech., 70:T337-T348, 1990.

141. P. WesselJng. An introduction to multigrid methods. John Wiley & Sons, Chichester,

1992.

142. P. Wesseling. The role of incomplete LU-factorization in multigrid methods. In W. Hack-

busch and C. Wittum, editors, Incomplete decompositions (ILl/) - Algorithms, theory

and applications, pages 202-214, Vieweg, 1993. Braunschweig.

143. P. Wesseling and P. Sonneveld. Numerical experiments with a multiple grid and a

preconditioned Lanczos type method. In R. Rautmann, editor, Approximation methods

for Navier-Stokes problems, pages 543-562, Berlin, 1980. Springer-Verlag. Lecture Notes

in Math. 771.

144. G. Wittum. Distributive iterationen fiir indefinite Systeme als Glatter in Mehrgitter-

verfahren am Beispiel tier Stokes- und Navier-Stokes-Gleichungen mit Schwerpunkt auf

unvollstandingen Zerlegungen. PhD thesis, Christan-Albrechts Universit£t, Kiel, 1986.

145. G. Wittum. Linear iterations as smoothers in multigrid methods: Theory with ap-

plications to incomplete decompositions. Impact of Comp. Science Engng., 1:180-215,

1989.

133

146.

147.

148.

149.

150.

151.

G.Wittum. Multi-gridmethodsfor StokesandNavier-Stokesequationswith transform-
ing smoothers:Algorithmsandnumericalresults°Numer. Math., 54:543-563, 1989o

G. Wittum. On the robustness of ILU smoothing. SIAM J. Sci. Star. Comp., 10:699-

717, 1989.

G. Wittum. On the convergence of multi-grid methods with transforming smoothers.

Num. Math., 57:15-38, 1990.

G. Wittum. R-transforming smoothers for the incompressible Navier- Stokes equations.

In W. Hackbusch and R. Rannacher, editors, Numerical treatment of the Navier-Stokes

equations, pages 153-162, Braunschweig, 1990. Vieweg. Notes on Numerical Fluid Me-
chanics 30.

G. Wittum. The use of fast solvers in computational fluid dynamics. In P. Wesseling,

editor, Proceedings of the Eighth GAMM-Conference on Numerical Methods in Fluid

Mechanics, pages 574-581, Braunschweig/Wiesbaden, 1990. Vieweg-Verlag. Notes on

Numerical Fluid Mechanics 29.

D.M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York,

1971.

134

Form Approved

REPORT DOCUMENTATION PAGE OMBNo o7o4o_se

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for revqewmg instruchons, searching e_Jstmg data sources

gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regardmg this burden estimate or any other aspect o1 this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, l)prectorate for Information OperaUons and Reports, 1P]L, Jefferson

Davis t4ighway. Suite 1204, Arlington, VA 22202 4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704 011q£). Washington DI 2050_

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE

February 1995

4. TITLE AND SUBTITLE

INTRODUCTION TO MULTIGRII) METItODS

6. AUTHOR(S)

P. Wesseling

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

[[amplon, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

]]ampton, VA 23681-0001

3. REPORT TYPE AND DATES COVERED

Contractor Report

5. FUNDING NUMBERS

C NASI-19,IS()

o(),.>, I)-o_-I) I

8. PERFORMING ORGANIZATION

REPORT NUMBER

[(:AS[; Report No. 9.5-11

10. SPONSORING/MON ITORING

AGENCY REPORT NUMBER

NASA CR-1_5()45

ICASE Report No. 95-11

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

12a, DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Snbject Category 6,t

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

These notes were written for an introductory course on the application of multigrid me|hods 1o t'llipt ic and hyl_erbolic

partial differential equations for engineers, physicists and applied mathematicians. The use of more advancetl

mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audierlce

of users of computational methods. We restricl ourselves to finile volume and finite difference discrelization, The

basic principles are given. Smoothing methods and Fourier sm.oolhing analysis are reviewed. The fundalnental

multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed, hlulligrid

schedules and structured programming of multigrid algorithms are treated. Robust hess and efficiency are considered.

14. SUBJECT TERMS

Multigrid; Iter_tive Methods; Partial Differential Equations

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500 '

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

136

16. PRICE CODE

A07

19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)

I'rescHbedby ANSI SId /:_q 1H
2_ I02

