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ABSTRACT

In recent years, networkmodels have been proposed as an alternative representation of psychometric
constructs such as depression. In such models, the covariance between observables (e.g., symptoms
like depressed mood, feelings of worthlessness, and guilt) is explained in terms of a pattern of causal
interactions between these observables, which contrasts with classical interpretations in which the
observables are conceptualized as the e�ects of a re�ective latent variable. However, few investiga-
tions have been directed at the question how these di�erent models relate to each other. To shed
light on this issue, the current paper explores the relation between one of the most important net-
workmodels—the Isingmodel fromphysics—andoneof themost important latent variablemodels—
the Item Response Theory (IRT) model from psychometrics. The Isingmodel describes the interaction
between states of particles that are connected in a network, whereas the IRT model describes the
probability distribution associated with item responses in a psychometric test as a function of a latent
variable. Despite the divergent backgrounds of the models, we show a broad equivalence between
them and also illustrate several opportunities that arise from this connection.

Introduction

The question of how observables (e.g., behaviors,

responses to questionnaire items, or cognitive test perfor-

mance) should be related to theoretical constructs (e.g.,

attitudes, mental disorders, or intelligence) is central to

the discipline of psychometrics (Borsboom & Molenaar,

2015). Despite the wide variety of constructs covered in

psychometric work and the great �exibility of mathemat-

ical representations, however, the collection of relations

between constructs and behaviors that have been envis-

aged in psychometric models is surprisingly limited. We

can think of four ways in which this connection between

constructs and observations has been construed.

First, theoretical constructs have been conceptual-

ized as inductive summaries of attributes or behaviors as

displayed by a person (Cronbach & Meehl, 1955). For

instance, one could count the total number of times a

researcher has been cited and label this quantity “scien-

ti�c impact.” This characterization attaches a verbal label

to an overall summary of observable features of a person,

but does not explicitly involve inference to an underlying

attribute; it simply recodes the observations in a useful

way. The statistical model most often associated with this

idea is the Principal Component Analysis (PCA) model

CONTACT M. Marsman m.marsman@uva.nl Department of Psychological Methods, University of Amsterdam, Nieuwe Achtergracht B, PO Box ,
 NK Amsterdam, The Netherlands.

(Pearson, 1901), which o�ers a systematic method of con-

structing a weighted sumscore that summarizes the vari-

ance in the observables. Importantly, such data-reductive

models do not typically involve an inference that goes

beyond the information present in the observations (i.e.,

if one knows the observations and the model, one knows

the component scores).

Second, theoretical constructs have been conceived of

as behavior domains (also called universes of behaviors).

In this interpretation, a construct such as, say, “addition

ability” is conceptualized as a measure on the domain

of addition (the so-called behavior domain; McDonald,

2003); for instance, as the total number of all possible

addition items that a person can solve. An addition test

may then be constructed as a �nite sample of items from

this domain. Thus, in this case the construct could also be

seen as an inductive summary (namely, of the behavior

domain), but it does not coincide with the test score.

This is because the test score captures some, but not all

of the observables that constitute the behavior domain.

The required inductive inference from test score to con-

struct is then typically considered a species of statistical

generalization (Markus & Borsboom, 2013), and the

model most naturally associated with this idea is that of
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Generalizability Theory (Brennan, 2001; Cronbach,

Rajaratnam, & Gleser, 1963; Cronbach, Gleser, Harinder,

& Rajaratnam, 1972), although under certain assump-

tions this conceptualization can also imply a latent

variable model (Ellis & Junker, 1997; McDonald, 2003).

Third, theoretical constructs have been viewed as com-

mon e�ects of a set of observable features. For example,

Bollen and Lennox (1991) give the example of life stress,

whichmay be assessed by recording the number of stress-

ful events that a person has experienced in the past year.

The assumption that underwrites this approach is that

more stressful events generate more psychological stress

(the theoretical construct of interest), so that the num-

ber of experienced events can function as a proxy for a

person’s experienced stress. Models associated with this

idea are known as formative models (Edwards & Bagozzi,

2000). In the statistical model that this conceptualiza-

tion motivates, a latent variable is regressed on a set of

observables to statistically encode the assumption that the

observables cause the latent variable. Thus, in formative

models, the relation between indicators and construct is

causal, and the inference characterizing the measurement

process could be characterized as forward causal inference,

that is, from causes to e�ects.

Fourth, theoretical constructs have been considered

to be the common cause of observable behaviors. This

conception could in fact be considered to be the �rst

psychometric theory, as it coincides with the birth of psy-

chometric modeling: the postulation by Spearman (1904)

that the variance in cognitive test scores is causally deter-

mined by the pervasive in�uence of general intelligence. A

corollary of this theory is that we can infer a person’s level

of general intelligence from his or her performance on a

set of cognitive tests. The idea that we learn about a per-

son’s standing on an attribute like general intelligence by

exploiting the causal relation between that attribute and

our measures, is known as re�ective measurement. The

conceptualization o�ered in re�ectivemeasurement is, we

think, currently the most widely espoused theory among

psychologists working in �elds like intelligence, personal-

ity, and attitude research. Importantly, in this model, the

relation between the theoretical construct and its psycho-

metric indicator is considered to be causal, which implies

that measurement is a species of causal inference, as it is

in the formative case—however, in contrast to the forma-

tive case, here the inference is backward (from e�ects to

causes). The statistical model most often associated with

re�ective model is the common factor model (Bollen &

Lennox, 1991; Edwards & Bagozzi, 2000), although Item

ResponseTheory (IRT)models have also been interpreted

re�ectively (Waller & Reise, 2010).

The models mentioned above have in some form or

another, all been around for at least half a century, and it

may seem that they exhaust the conceptual possibilities

for relating observables to theoretical constructs. This,

however, is not the case. Recently, a �fth conceptual

model has been added to the pantheon of psychometric

theories on the relation between constructs and obser-

vations, namely, the network model (Borsboom, 2008;

Borsboom & Cramer, 2013; Cramer, Waldorp, van der

Maas, & Borsboom, 2010). The idea that underlies this

model, �rst articulated by van der Maas et al. (2006) is

that observable features (e.g., symptoms of depression)

may form a network of mutually reinforcing entities

connected by causal relations. In this case, the relation

between construct and observables is mereological (a

part-whole relation) rather than causal (the observables

are part of the construct, but do not stand in a causal

relation to it). Although network models can be con-

structed in many ways, the class of statistical models

that has become associated with these models in the

past few years is the class of graphical models, in which

variables are represented as nodes, while (the absence of)

edges between nodes encode (the absence of) conditional

associations between nodes (Lauritzen, 1996).

In the current paper, we study the relation between

network models and existing psychometric models on

the relation between constructs and observations, most

importantly, the re�ective latent variable model. As will

become apparent, even though the conceptual framework

that motivates the statistical representation in a psycho-

metric model may be strikingly di�erent for network

models and latent variable models, the network models

and latent variable models turn out to be strongly related;

so strongly, in fact, that we are able to establish a general

correspondence between the model representations and,

in certain cases, full statistical equivalence. This allows

us to open up a surprising connection between one of

the most intensively studied network models in physics—

namely, the Ising (1925) model—and one of the most

intensively studied latent variable models—namely, the

Item Response Theory (IRT) model (e.g., Embretson &

Reise, 2000; Mellenbergh, 1994; van der Linden & Ham-

bleton, 1997). This opens up a new�eld of research in psy-

chometrics, and o�ers a novel way of looking at theories

of psychological measurement.

Our primary aim is to organize the results about the

relations between network models and latent variable

models, and to study these relations from a psychometric

point of view. The structure of this paper is as follows.

First, we explain the logic of network models, starting

from the original formulation of the Ising model. Second,

we show that a particular restricted form of the Ising

model—namely, the Curie-Weiss model (Kac, 1968)—is

statistically equivalent to a particular class of Rasch

(1960) models, known as the family of extended Rasch

models (E-RMs; Tjur, 1982) and, speci�cally, themarginal

Rasch model (M-RM; Bock & Aitken, 1981). Third, we
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Figure . A network of statistical models with the edges showing equivalence relation between the models subject to the constraints
given on the edge labels. The edges are directed and originate from themore general model. The nodes refer to the extended Raschmodel
(E-RM), marginal Rasch model (M-RM), multidimensional two-parameter logistic model (MD-PLM), Ising model (Ising), Curie-Weiss model
(Curie-Weiss), and Logistic regression (LR).

establish a broad connection between multidimen-

sional IRT models, speci�cally the multidimensional

two-parameter logistic model (MD-2PLM; Reckase,

2009), and Ising models de�ned on an arbitrary net-

work topology. In these two sections, we will detail the

theory connecting the statistical models that are shown

in Figure 1 and illustrate this theory with new insights

that are relevant to existing psychometric theory. Finally,

we discuss new perspectives on general psychometric

problems that arise from this work and illustrate what the

model equivalence means in practice.

The Ising networkmodel from theoretical

physics

Themain character in our story is a theoreticalmodel that

was introduced nearly a century ago in the physics liter-

ature (Lenz, 1920) to describe the orientation of particles

that are placed on a square grid called a lattice graph (e.g.,

Brush, 1967; Niss, 2005). Figure 2 shows such a lattice

graph, which is a simple network that consists of n nodes

(circles) with edges (solid lines) between adjacent nodes.

Each node on the lattice graph represents a particle that

has a spin xi, i = 1, . . . , n, that is restricted to either point

up “↑” or point down “↓”. These spin randomvariables are

typically coded as xi = +1 for “↑” and xi = −1 for “↓”.1
That is, the model that was introduced by Lenz (1920),

and further studied by his student Ising (1925), describes

a nearest neighbor network of binary random variables:

p(x) = p(x1, x2, . . . , xn)

=
exp

{
∑n

i=1 µixi +
∑

<i, j> σi jxix j

}

∑

x exp
{
∑n

i=1 µixi +
∑

<i, j> σi jxix j

} , (1)

 In statistics, it is common practice to code binary variables as x ∈ {0, 1}. We
will use the±1 coding for historical purposes and because it makes some of
the mathematics particularly simple.

Figure . A square 3 × 3 lattice where the nodes (circles) refer to
the upward “↑” or downward “↓” orientation of particles, and it is
assumed that the particles only interact with their nearest neigh-
bors (indicated with solid lines).

where the sum
∑

<i, j> ranges over all node pairs (i, j)

that are direct neighbors on the lattice graph, which are

indicated with solid lines in Figure 2, and
∑

x is the sum

over all 2n possible con�gurations x = (x1, . . . , xn) of n

spins. The spins tends to point upward (xi = +1) when

their main e�ects are positive (µi > 0) and downward

(xi = −1) when their main e�ects are negative (µi < 0).

Furthermore, any two spins xi and x j that are direct

neighbors on the lattice graph tend to be in the same

state when their interaction e�ect is positive (σi j > 0)

and tend to be in di�erent states when their interaction is

negative (σi j < 0). This model is now known as the Ising

model, although some refer to it as the Lenz-Ising model

(e.g., Brush, 1967; Niss, 2005, 2009, 2011).

From a statistical perspective, the Ising model is a

simple nontrivial network model involving main e�ects

and pairwise interactions. Despite its simplicity, the Ising
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Figure . A network of five selected major depression (MD) and
generalized anxiety disorder (GAD) symptoms that are taken from
the fourth edition of the Diagnostic and Statistical Manual of Men-
tal Disorders (DSM-IV; a complete version of this network is shown
in Borsboom& Cramer, ). Irritability (I) and chronic worrying (C)
are GAD symptoms, weight problems (W) and depressed mood (D)
areMD symptoms, and sleep problems (S) is a symptomof bothMD
and GAD.

model is well known for its ability to describe com-

plex phenomena that originate from its local interac-

tions. With an estimated 800 papers written about the

Ising model every year (Stutz & Williams, 1999), it

has become one of the most in�uential models from

statistical physics, �nding applications in such diverse

�elds as image restoration (Geman & Geman, 1984),

biology (Fierst & Phillips, 2015), sociology (Galam,

Gefen, & Shapir, 1982; Galam & Moscovici, 1991), and

more recently psychology (Epskamp, Maris, Waldorp, &

Borsboom, in press) and educational measurement

(Marsman, Maris, Bechger, & Glas, 2015). For instance,

the spins may refer to the presence or absence of symp-

toms in psychopathology, and to the correct or incorrect

answers to items in an educational test.

To illustrate the model, we consider a simple example

from the psychopathology literature. In Figure 3, we show

a network of a selection of major depression (MD) and

generalized anxiety disorder (GAD) symptoms, which

are taken from the fourth edition of the Diagnostic and

Statistical Manual of Mental Disorders (DSM-IV; the

complete n = 15 variable network is shown in Borsboom

& Cramer, 2013). The network in Figure 3 consists of

two cliques of three symptoms: the GAD symptoms

irritability (I), chronic worrying (C), and sleep problems

(S) form one clique and the MD symptoms weight prob-

lems (W), depressed mood (D) and sleep problems (S)

form another. The symptom sleep problems (S) is shared

between the two disorders/cliques, which is known as a

so-called bridge symptom. Note that the two unique GAD

symptoms (I and C) have no immediate link to the two

MD symptoms (D and W), indicating that chronic worry

(C) a�ects having a depressed mood (D) only indirectly

via the bridge symptom sleep problems (S). Thus, the two

unique GAD symptoms are independent of the unique

MD symptoms conditional upon the bridge symptom (S),

Figure . A common cause representation of the manifest rela-
tions between GAD and MD symptoms in Figure .

as indicated in Figure 3 by an absence of edges connecting

these variables.

The (Ising) network model di�ers markedly from

the common cause model that is traditionally used in

psychopathology, which represents the observed depen-

dence and independence relations using latent variables

(Borsboom, 2008). Such a latent variable representation

for the �ve variable symptomnetwork is shown in Figure 4

and assumes the existence of two latent variables; one for

GAD and one for MD. The primary distinction between

the two conceptual models that are shown in Figures 3

and 4 is in what causes the variations in the observables

(e.g., symptoms, item scores).Whereas the common cause

model suggests that a person develops a symptombecause

he or she is depressed, the direct interaction model sug-

gests that a symptom develops under the in�uence of

other symptoms or (observable) external factors.

Despite the fact that these conceptual models di�er

markedly in their interpretation as to what causes covari-

ances in observables, it has been previously noted that

the associated statistical models are closely related. For

example, Cox and Wermuth (2002) showed that there

is an approximate relation between the Ising model, or

quadratic exponential distribution (Cox, 1972), and the

IRT model of Rasch (1960). Moreover, Molenaar (2003,

p. 82) speci�cally suggested that there exists a formal con-

nection between the Ising model and the IRT models

of Rasch and Birnbaum (1968). This formal connection

between the Ising model and IRT models was recently

established and it is the aim of the present paper to detail

this connection. We �rst consider a simplest nontrivial

case; the fully connected Ising model and its connection

to a one-factor latent variable model.

The Curie-Weiss and Raschmodels

The Ising model’s success in physics is due to the fact

that it is one of the simplest models that exhibits a phase
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Figure . A graphical representation of the Curie-Weiss network.
The nodes (circles) refer to the upward “↑” and downward “↓”ori-
entation of particles and each particle interacts with each other
particle (solid lines).

transition (shifting from one state of matter to another;

Brout, 1968). However, the study of phase transitions with

the Ising model proved to be very di�cult and enticed

the study of phase transitions in even simpler mod-

els. Most notable is the Curie-Weiss model (Kac, 1968;

Kochmański, Paskiewicz, &Wolski, 2013), also known as

the fully connected Ising model:

p(x) =
exp

{
∑n

i=1 µixi +
∑n

i=1

∑n
j=1 σxix j

}

∑

x exp
{
∑n

i=1 µixi +
∑n

i=1

∑n
j=1 σxix j

}

=
exp

{
∑n

i=1 µixi + σx2+
}

∑

x exp
{
∑n

i=1 µixi + σx2+
} , (2)

in which x+ =
∑n

i=1 xi refers to the sum of the node

states, that is, it is the analog of a total test score in

psychometrics. Whereas the Ising model allows the inter-

action strength σi j to vary between node-pairs, most

notably that σi j = 0 whenever node i and j are no direct

neighbors in Figure 2, the Curie-Weiss model assumes

that there is a constant interaction σ > 0 between each

pair of nodes, which induces a network such as that shown

in Figure 5.

From a psychometric perspective, it is clear that the

relations in Figure 5 also correspond to amodelwith a sin-

gle latent variable. From this perspective, it is interesting

to observe that the Curie-Weiss model is closely related

to the extended-Rasch model (E-RM; Cressie & Holland,

1983; Tjur, 1982), a particular item response model origi-

nating from educational and psychological measurement

(Anderson, Li, & Vermunt, 2007; Hessen, 2011; Maris,

Bechger, & San Martin, 2015). In the E-RM, the distribu-

tion of n binary variables x—typically the scores of items

on a test—is given by

p(x) =
∏n

i=1 β
xi
i λx+

∑

x

∏n
i=1 β

xi
i λx+

, (3)

where the βi relate to the di�culties of items on the test

and the λx+ to the probability of scoring 2x+ − n out of n

items correctly. It can be shown that the E-RM consists of

two parts (e.g., Maris et al., 2015): a marginal probability

p(x+ | β, λ) characterizing the distribution of total scores

x+ (e.g., scores achieved by pupils on an educational test,

or number of symptoms of subjects in a clinical popula-

tion), and a conditional probability p(x | x+, β) charac-

terizing the distribution of the item scores/symptomatic

states given that the total score was x+. Comparing the

expression for the Curie-Weiss model in Equation (2) and

that for the E-RM in Equation (3), we see that they are

equivalent subject to the constraints:

logβi = µi

log λx+ = σx2+.

That is, whenever a quadratic relation holds between the

total scores x+ and the log of the λx+ parameters in the

E-RM, the E-RM is equivalent to the Curie-Weiss model.

It seems that we have made little progress, as the

expressions for both the Curie-Weiss model in Equation

(2) and the E-RM in Equation (3) do not involve latent

variables. This is not the case, however, as the E-RM has

been studied in the psychometric literature mostly due

to its connection to a latent variable model known as

the marginal-Rasch model (M-RM; Bock & Aitken, 1981;

Glas, 1989). Consider again Equation (2), and suppose

that we obtain a latent variable that explains all connec-

tions in theCurie-Weissmodel, such that the observations

are independent given the latent variable:

p(x | θ ) =
n

∏

i=1

p(xi | θ ).

A particular example of such a conditional distribution is

an IRTmodel known as the Raschmodel2 (Rasch, 1960):

p(x | θ ) =
n

∏

i=1

exp {xi(θ − δi)}
exp {δi − θ} + exp {θ − δi}

,

where the δi are commonly referred to as item di�culties.

In the M-RM, the distribution of the n binary variables x

is then expressed as

p(x) =
∫ ∞

−∞
p(x | θ ) f (θ ) dθ

=
∫ ∞

−∞

n
∏

i=1

exp {xi(θ − δi)}
exp {δi − θ} + exp {θ − δi}

f (θ ) dθ, (4)

 Note that we have used the ±1 coding to express the Rasch model, which
is slightly different than the usual expression for binary variables y = (1 +
x)/2 ∈ {0, 1}:

p(Yi = yi | θ , δi) =
exp

{

yi(θ − δi)
}

1 + exp {θ − δi}
.

This difference is only cosmetic as one can simply traverse between the two
notational schemes.
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where f (θ ) is a population or structural model for the

latent variable θ (Adams et al., 1997). This structural

model is typically assumed to be a normal distribution.

It can be shown that the marginal probability p(x) given

by the M-RM consists of the same two parts as the E-RM

(e.g., de Leeuw&Verhelst, 1986), except that themarginal

probability p(x+ | β, λ) is modeled with a latent variable

in the M-RM. Importantly, the E-RM simpli�es to an M-

RM if and only if the λs constitute a sequence of moments

(Cressie &Holland, 1983; see Theorem 3 in Hessen, 2011,

for the moment sequence of a normal structural model).

This suggests that there exists an explicit relation between

a one factormodel (the unidimensional Raschmodel) and

the fully connected network in Figure 5.

Whereas the connection between the E-RM and the

M-RM has been known for many decades, the connec-

tion between the Curie-Weiss model and the M-RM was

only recently observed (Epskamp et al., in press;Marsman

et al., 2015). The relation stems from an application of the

Gaussian integral:

exp{a2} =
∫ ∞

−∞

1
√

π
exp{2aθ − θ2}dθ.

Kac (1968) realized that the exponential of a square can

be replaced by the integral on the right-hand side, and

applied this representation to exp(σx2+) in the expression

for the Curie-Weiss model. We then only need a bit of

algebra to obtain the M-RM in Equation (4), with δi =
−µi.

3 This is an important result as it implies the statisti-

cal equivalence of the network approach in Figure 5 and

the latent variable approach in Figure 6.

The structural model that results from the derivation is

not the typically used normal distribution, but the slightly

peculiar:

g(θ ) =
∑

x

g(x, θ ) =
∑

x

p(x)g(θ | x),

where the posterior distribution g(θ | x) is a normal dis-

tribution with mean 2σx+ and variance 2σ . That is, g(θ )

reduces to a mixture of n + 1 di�erent normal (poste-

rior) distributions; one for every possible test score. In

the graphical modeling literature, the joint distribution

g(x, θ ) is known as a homogenous conditional Gaussian

distribution (HCG; Lauritzen & Wermuth, 1989), a dis-

tribution that was �rst studied by Olkin and Tate (1961,

see also; Tate, 1954, 1966). Some instances of the struc-

tural model are shown in Figure 7, which reveals a close

 That the Curie-Weiss model is a marginal Rasch model and was proposed
in the physics literature far before the Rasch model was introduced in the
psychometric literature, gives a counter-example to the maxim of Andrew
Gelman: “whatever you do, somebody in psychometrics already did it
long before” (see http://andrewgelman.com////a_longstanding/).
In fact, the Raschmodel itself was already proposed by the physicist and logi-
cian Zermelo back in  (see also Zermelo, ).

Figure . A graphical representation of the Rasch model. The
observables (squares) refer to the upward “↑” and downward “↓”
orientation of particles and each particle interacts with another
particle only through the latent variable�.

g
(θ
)

Figure . Some instances of the structural model g(θ ) for the
n = 6 variable network. The solid line refers to the distribution
with σ = 0.1 and the µi equally spaced between −1 and +1. The
dashed line refers to the distribution with σ = 0.2 and the µi

equally spaced between −1 and +1. The dotted line refers to the
distributionwithσ = 0.1and theµi equally spacedbetween−0.2
and+1.

resemblance to a mixture of two normal distributions

with equal variances and their respective means placed

symmetrically about zero. For an interaction e�ect σ that

is su�ciently small, Figure 7 reveals that g(θ ) is close to

the typically used normal model.

The relation between the Curie-Weiss model and the

M-RM with structural model g(θ ) has been established

before in the psychometric literature on log-multiplicative

association models (LMA; Anderson & Vermunt, 2000;

Anderson & Yu, 2007; Anderson et al., 2007; Holland,

1990). However, it was not realized that the marginal

distribution p(x) (i.e., the LMA model) was a Curie-

Weiss model. In return, the Gaussian integral repre-

sentation that was introduced by Kac (1968) has been

http://andrewgelman.com/2009/01/26/a_longstanding/
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used in physics to study the Curie-Weiss model (e.g.,

Emch & Knops, 1970), and has been independently

(re-)discovered throughout the statistical sciences (Lau-

ritzen &Wermuth, 1989; McCullagh, 1994; Olkin & Tate,

1961). Here, however, it was not realized that the condi-

tional distribution p(x | θ ) is a Rasch model.

New insight I: The structural model g(θ) and

psychometric theory

The structural model and the normal posterior

distribution

Even though we have observed that g(θ ) is close to

the typically used normal structural model when σ is

su�ciently small, or can be closely approximated using

a mixture of two normal distributions otherwise (e.g.,

Marsman, Maris, & Bechger, 2012), the use of g(θ ) as

structuralmodel leads to a qualitatively di�erentmarginal

IRT model. For one thing, the item di�culty parameters

δi are completely identi�ed in the M-RM with g(θ ) as

structural model, something that cannot be said in the

general case when using a (mixture of) normal distribu-

tion(s) for the structural model f (θ ). Speci�cally, in a

regular M-RM the item parameters δ only have their rel-

ative di�erences identi�ed, but not their absolute value. It

is clear that this observation has an immediate impact on

the assessment of measurement invariance—di�erential

item functioning (DIF) in the IRT literature—as the

nonidenti�ability imposes restrictions as to what can

or cannot be assessed in DIF analyses (e.g., Bechger &

Maris, 2015). However, that the structural model g(θ )

leads to a qualitatively di�erent marginal IRT model is

most apparent in the simple analytically available normal

posterior distribution it implies for the latent variable.

The idea of assuming posterior normality for the latent

variable in the IRT literature can be traced back to a sem-

inal paper by Paul Holland in 1990, which also initiated

the study of LMA models in psychometrics. The topic

of asymptotic posterior normality has subsequently been

pursued by Chang and Stout (1993) and Chang (1996)

(see also; Zhang & Stout, 1997). An important result is

that if the number of variables (items) n tends to become

very large, the posterior distribution converges to a nor-

mal distribution that is centered on the true value �0 of

the latent variable (e.g., Chang & Stout, 1993), and condi-

tionally a strong law of large numbers:

� | Xn
a.s.−→ �0.

However, the posterior normal distribution g(θ | xn) that
is implied by the structural model g(θ ) does not have

the property that it converges in the traditional manner,

since the posterior variance Var(� | xn) = 2σ is constant

and does not decrease when n increases. Furthermore,

the posterior expectations E(� | xn) = 2σx+n diverge as

n grows, and it is unknown how a posterior distribu-

tion given n observations relates to a posterior distribu-

tion given n + 1 observations. It turns out that the study

of the limiting behavior of the latent variable distribu-

tion, and in particular the structuralmodel g(θ ), is related

to the study of the limiting behavior of networks for

n → ∞—known as the thermodynamic limit in physics.

The posterior distribution g(θ | x) and the study of its

limit

Two di�culties arise in the study of thermodynamic lim-

its. A �rst di�culty is that the network models are not

nested in n. That is, for the Curie-Weiss model p(x) we

have that the marginal distribution:

∑

xi

p(x) =
∑

xi

p(x(i), xi) = p(x(i)),

is not a Curie-Weiss model and an application of the

Curie-Weiss model on x(i) will result in a di�erent net-

work (i.e., the Curie-Weiss model is not closed under

marginalization). A second di�culty is that the limiting

distribution tends to solutions that may be trivial from a

theoretical perspective, if σ is not properly scaled. This is

most easily seen in the conditional distribution:

p(xi = +1 | x(i)) =
1

1 + exp
{

− 2µi − 4σ
∑

j �=i x j

} ,

(5)

which is a logistic regression of the “rest score” x(i)
+ =

∑

j �=i x j on xi. Observe that the regression coe�cient has

a constant value that does not decrease with n, but that

the rest score tends to have larger absolute values when n

increases. That is, when n increases the conditional prob-

abilities p(xi = +1 | x(i)) tend to either 0 or 1 for every

variable i. This implies that the joint distribution p(x)

has all its probability mass on the realizations +1n and

−1n—known as the ground states of the model in physics.

Often, this behavior of the model is undesirable from a

theoretical perspective, although it can of course also be

a model in itself, for example, in psychopathology appli-

cations as noted earlier, one could consider the possibility

that growth of the problem network would lead that net-

work to get stuck in one of its ground states—for example,

would be a model for the transition from normal �uctu-

ations in psychological variables to a state of full-blown

disorder.

The di�culties in the study of the thermodynamic

limit also apply to the study of the structural model g(θ ).

Since the structural model explicitly depends on p(x),

it is clear that the problem of nonnested Curie-Weiss

models also has implications for the structural model.

To see that the scaling of σ is also important for the

structural model, observe that it has one of two forms

when µi = 0: it is unimodal when σ is su�ciently small
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θ

θ

Figure . The structural model g(θ ) for n = 6, 7, 8 in the absence
of main effects, that is, µi = 0, and with an interaction strength
σ = 0.075.

and bimodal otherwise.4 Figure 8 shows this structural

model for di�erent values of n and a �xed value of σ ,

revealing that the value of σ for which g(θ )moves from a

unimodal to a bimodal form depends on the value of n.5

When n grows inde�nitely, the two modes tend to −∞
and +∞ for every �xed σ > 0, and consequently p(x)

tends to have all probability mass on the ground states

−1n and +1n. Thus, to observe nontrivial solutions for

both p(x) and g(θ ) in the limit n → ∞, the interaction

strength σ needs to be a decreasing function of n.

It is important to scale the interaction parameter σ

with the right order and it turns out that a proper scaling6

is of order n: σn = σ/n. To see this, note �rst the following

variant of Kac’s equality7:

exp
{

σx2+/n
}

=
∫ ∞

−∞

√
n

2
√

πσ
exp{x+θ − nθ2/4σ }dθ.

 In physics, the value σ is related to the inverse temperature, say (Kac, ):

σ =
λ

κτ

where τ refers to temperature, κ to a constant value (Boltzman’s con-
stant), and λ to the scaled interaction effect. The point τC at which g(θ )

changes between the unimodal and bimodal form is known as the critical
temperature.

 See van der Maas, Kan, Marsman, and Stevenson () for the conceptual
implications of this property in the context of cognitive development and
intelligence.

 Note that there are possibly other scaling factors for which the posterior dis-
tributions converge. For instance,σn = o(n log n). However,wehave already
seen that the constant σn = o(1) provides a trivial solution. It can also be
seen that for the quadratic σn = o(n−2) all posterior distribution converge
to the priormean and themarginal p(x)becomes a uniformdistribution over
the possible configurations x.

 We have used the change of variable θ = 2 σn θ∗ .

θ

θ

Figure. The structuralmodelgn(θ ) forn = 6, 7, 8 in the absence
of main effects, that is, µi = 0, and with a scaled interaction
strength σn = σ/n = 0.45/n. We have used σ = 0.45 since then
the scaled structuralmodel forn = 6 variables shownhere is iden-
tical to the structural model for n = 6 variables in Figure .

When applied to the Curie-Weiss model with interac-

tion strength σ/n, this representation implies an M-RM

with a scaled version of the structural model: a mixture

of normal distributions g(θ | xn) with means 2σ x̄n and

variances 2σ/n. Observe that for this posterior distribu-

tion both the means and variances are scaled by n and

that the posterior distributions converge whenever each

of the 2σ X̄n tend to a unique point �0. This means that

the latent variable is de�ned here as the limit of 2σ X̄n on

an in�nite network, and we implicitly assume that as n

increases the intermediate networks form a sequence of

models that becomebetter approximations of this limiting

network.

Before we proceed, some remarks are in order. First,

we note that even though scaling the interaction strength

by n provides interesting limiting behavior for both p(xn)

and g(θ | xn), it also implies amodel that violates a funda-

mental principle in physics (Kac, 1968), as the interaction

energy between two nodes i and j,−σnxix j, now depends

on the size of the system. Furthermore, in Figure 9 we

illustrate that the structural model gn(θ ) that results from

the derivation, has the property that it becomes more

informative as n increases. Since the structural model

gn(θ ) acts as a prior on the latent variable distribution

(Marsman, Maris, Bechger, & Glas, 2016), we observe a

prior distribution that becomes more informative as n

increases. This may be a peculiar result to the Bayesian

psychometrician.
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FromMark Kac toMark Reckase

The theory that we have developed for the Curie-Weiss

model carries over seamlessly to the more general Ising

model. Let us �rst reiterate the Ising model:

p(x) =
exp

{
∑n

i=1 µixi +
∑n

i=1

∑n
j=1 σi jxix j

}

∑

x exp
{
∑n

i=1 µixi +
∑n

i=1

∑n
j=1 σi jxix j

} ,

where we have used the interaction parameters σi j to

encode the network structure. For instance, for the lattice

in Figure 2 we have that σi j is equal to some constant σ if

nodes i and j are direct neighbors on the lattice and that

σi j is equal to zero when nodes i and j are no direct neigh-

bors. Since we use the ±1 notation for the spin random

variables xi, we observe that the terms σiix
2
i = σii cancel

in the expression for the Ising model, as these terms are

found in both the numerator and the denominator (some-

thing similar occurs in the “usual” {0, 1} notation).
We will use the eigenvalue decomposition of the so-

called connectivity matrix � = [σi j] to relate the Ising

model to a multidimensional IRT model. However, since

the elements σii cancel in the expression of the Ising

model, the diagonal elements of the connectivity matrix

are undetermined. This indeterminacy implies that we

have some degrees of freedom regarding the eigenvalue

decomposition of the connectivity matrix. For now we

will use:

�∗ = � + cI = Q(� + cI)QT = AAT,

whereQ is thematrix of eigenvectors,� a diagonalmatrix

of eigenvalues and we have usedA = Q(� + cI)
1
2 to sim-

plify the notation. The constant c serves to ensure that

�∗ is a positive semi-de�nite matrix by translating the

eigenvalues to be positive. Observe that this translation

does not a�ect the eigenvectors but it does imply that only

the relative eigenvalues—the eigen spectrum—are deter-

mined.

With the eigenvalue decomposition, we can write the

Ising model in the convenient form:

p(x) =
exp

{
∑n

i=1 µixi +
∑n

r=1

(
∑n

i=1 airxi
)2 }

∑

x exp
{
∑n

i=1 µixi +
∑n

r=1

(
∑n

i=1 airxi
)2 }

,

where we have used r to index the columns of A =
[air]. Applying Kac’s integral representation to each of the

factors exp(
∑

i airxi)
2 reveals a multivariate latent vari-

able expression for the Ising model, for which the latent

variable model p(x | θ) is known as the multidimen-

sional two-parameter logistic model (MD-2PL; Reckase,

2009). The MD-2PL is closely related to the factor ana-

lytic model for discretized variables (Takane & de Leeuw,

1987), which is whywewill refer toA as amatrix of factor-

loadings. This formal connection between Ising network

models and multidimensional IRT models proves the

assertion of Molenaar (2003), who was the �rst to note

this correspondence, and shows that to each Ising model

we have a statistically equivalent IRT model.

New insight II: The identi�cation problem of the

multidimensional IRTmodel

The eigenvalue decomposition of�

That the diagonal elements of the connectivity matrix are

not identi�ed certainly has implications for the interpre-

tation of the latent variable model. The main observation

is that there is no unique eigenvalue decomposition or

matrix of loadings A that characterize a connectivity

matrix. For instance, due to the indeterminacy of the

diagonals of the connectivity matrix, we have that for

every diagonal matrix C, the matrix �∗∗ = � + C char-

acterizes the same marginal distribution p(x). That is,

any such diagonal matrix does not alter the o�-diagonal

elements of the connectivity matrix, and thus the o�-

diagonal elements from �∗∗ are identi�ed from the data.

We assume here that the diagonal matrix ensures that the

connectivity matrix �∗∗ is positive semi-de�nite, and use

the eigenvalue decomposition:

�∗∗ = � + C = Q∗∗�∗∗Q∗∗T = A∗∗A∗∗T.

Although this decomposition retains the o�-diagonal ele-

ments from the connectivity matrix, and thus A and A∗∗

characterize the same connectivity matrix (the diagonal

elements are of no interest), it is in general unknown how

A∗∗ relates to A.

That the results can be strikingly di�erent for di�erent

admissible choices for the diagonal elements of the con-

nectivity matrix is illustrated in Figure 10, in which we

show the �rst eigenvector that corresponds to the decom-

position of a connectivity matrix � using cI (left panel)

and to a decomposition using a diagonal matrix C (right

panel). Even though these eigenvectors, and the latent

variable models that are characterized by them, are strik-

ingly di�erent, both characterize the same marginal dis-

tribution. Apart from the di�culty that this observation

imposes on the interpretation of the multidimensional

IRTmodel, it also suggests a problemwith the identi�abil-

ity of parameters in this IRTmodel. It is clear that amatrix

of loadings holds little substance if it is not uniquely deter-

mined from the data, and one should be careful in inter-

preting the elements from such a matrix.

Nonidentification and the low-rank approximation to

AAT

That the matrix of loadings is not uniquely determined

poses a practical problem for estimating the connectivity

matrix using the latent variable representation, as we have

suggested elsewhere (Marsman et al., 2015). First, there

is no issue when we estimate a complete matrix of load-

ings since from this complete matrix of loadings we can
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Figure . The first eigenvector corresponding to a decomposition of � + cI (left panel) and the first eigenvector corresponding to a
decomposition of� + C (right panel).

construct the connectivity matrix. However, the connec-

tivity matrix is typically large and consists of a substantial

number of unknown parameters: n(n − 1)/2 to be pre-

cise. Using a well-known result from Eckart and Young

(1936), who proved that the best rank R approximation to

the full (connectivity) matrix is one where all but the R

largest eigenvalues are equated to zero, we have suggested

a low-rank approximation to the full-connectivity matrix.

However, this low-rank approximation is not uniquely

determined. We have used the diagonal matrix cI in our

decomposition, which ensures that the largest estimated

eigenvalues are also the largest eigenvalues of the com-

plete connectivity matrix. However, the indeterminacy

of the decomposition required us to consider the e�ect

of choosing R on the connectivity matrix, not the esti-

mated matrix of loadings. To this aim, we have used pos-

terior predictive checks (Gelman, Meng, & Stern, 1996;

Rubin, 1984), correlating the o�-diagonal elements from

the observed matrix of statistics that are su�cient for �,

that is,

S = [si j] =
N

∑

p=1

xpixp j,

where p indexes theN observations, with the o�-diagonal

elements from the matrix of su�cient statistics computed

on data generated using di�erent ranks of approximation.

New insight III: Di�erentmechanisms to generate

correlations

The common cause model, and the network or direct

interaction model provide two distinct interpretations

for the correlations that we observe in our data. In the

common cause model it is assumed that the observed

correlations are the result of an unobserved factor that is

shared among observations, and in the network approach

it is assumed that the observed correlations between

variables are the result of their direct causal in�uences

on each other. In theory, however, there may exist many

such possible interpretations. A speci�c alternative, for

instance, results from conceptualizing a theoretical con-

struct as the direct e�ect of observables, known as a

collider variable (Greenland, Pearl, & Robins, 1999; Pearl,

2000). Figure 11 shows such a common e�ect represen-

tation, in which the state of the observables X collectively

cause the e�ect Y ; for instance, observing major depres-

sion symptoms in a patient and the ensuing psychiatric

evaluation of depression. Even though the observables

may be marginally independent (Blalock, 1971; Bollen

& Lennox, 1991), conditioning on the common e�ect

results in associations between the observables (Elwert &

Winship, 2014; Greenland et al., 1999; Greenland, 2003;

Heckman, 1979; Hernán, Hernández-Diaz, & Robins,

2004). This provides us with a third possible interpreta-

tion; associations that arise through conditioning on a

common e�ect.

The formative model is probably the most widely

known example of a model in which the observables X

form causes of a (latent) common e�ect. For example,

stressful life events such as getting divorced, changing

jobs, or moving to a new home, are causes to the e�ect

Figure . Agraphical representation of the common effectmodel.
The observables X are the collective cause of the effectY .
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“exposure to stress” (Bollen & Lennox, 1991). The rela-

tion between the observables and the e�ect is usually of a

linear nature, such that the higher a person scores on these

observables, the more this person is exposed to stress.

The formative model is typically used to predict the e�ect

variable rather than to explain the relations between the

causes.

We can use the aforementioned selection mechanism

to form a third possible explanation for the relations

among observables. Conditioning on the common e�ect

in a collider model where the observables are marginally

independent and each positively a�ects the common

e�ect in a linear fashion, will result in negative asso-

ciations between the observables. For example, given

the information that a person has been diagnosed with

depression but does have a particular symptom increases

the probability that this person has any of the other

depression symptoms. Observe that the relation between

the observables and the e�ect does not need to be linear,

and that there exist collider models that imply other

structures for the associations among observables.

Recently, Kruis and Maris (2016) introduced the fol-

lowing collider model for the joint distribution of the

observables X and their e�ectY ;

p(x, y) =
n

∏

i=1

exp {xiµi}
exp {+µi} + exp {−µi}

⎛

⎝

exp
{

σx2+
}

sup
x

exp
{

σx2+
}

⎞

⎠

y

×

⎛

⎝1 −
exp

{

σx2+
}

sup
x

exp
{

σx2+
}

⎞

⎠

1−y

,

where the e�ect can take on the valuesY = 0 andY = 1,

and σ denotes the weight of Y on the Xi and is assumed

to be equal for all observables. Kruis and Maris (2016)

showed that the conditional distribution of observables

X given the e�ect Y , that is, p(x | Y = 1), is equivalent

to the Curie-Weiss model. This connection can also be

extended to the Ising model by replacing σx2+ with the

weighted sum (
∑

i airxi)
2, as we did before for the latent

variable representation, and introducing an e�ect Yr for

every eigenvector. In this manner, the structure that is

generated with an Ising model can also be generated with

this collider model.

In contrast to a linear relation between causes and

e�ect, the collider model that is proposed by Kruis and

Maris (2016) suggests a quadratic relation. Since the

observables take on the values xi = −1 and xi = +1,

the model implies that when more observables are in the

same state (either negative or positive) the probability of

the e�ect being present increases if σ > 0, or decreases if

σ < 0. It thus follows that conditioning on the e�ect being

present (y = 1) implies that observables have a higher

probability of being in the same state than in opposite

states, thus inducing positive associations between the

observables, given that σ > 0. When σ < 0, the oppo-

site is implied: conditioning on the e�ect being present

implies that variables have a higher probability to be

in opposite states, thus inducing negative associations

between the observables.

Causal versus statistical interpretations of the

equivalent models

In evaluating the theoretical status of the presentedmodel

equivalence, it is important tomake a distinction between

the conceptual psychometric model (e.g., individual dif-

ferences in a focal construct cause individual di�er-

ences in the observed variables) and the statistical model

typically associated with that conceptual model (e.g.,

the observations can be described by a common factor

model). The reason that this distinction is important, is

that several conceptual models can imply the same sta-

tistical model in a given data set. For example, behav-

ior domains and re�ective measurement models both can

be represented by the latent variable model. In a behav-

ior domain interpretation, the latent variable then corre-

sponds to a tail measure de�ned on a behavior domain

(roughly, a total score on an in�nite set of items; Ellis

& Junker, 1997). In a re�ective interpretation, the latent

variable corresponds to an unobserved common cause

of the items, which screens o� the empirical correlations

between them (Pearl, 2000; Reichenbach, 1956). Because

multiple conceptual models map to the same statistical

model, the �t of a statistical model (i.e., a model that

describes the joint probability distribution on a set of

observables) does not license a de�nitive inference to a

conceptual model (i.e., a model that describes the relation

between observables and constructs), even though a con-

ceptual model may unambiguously imply a particular sta-

tistical model.

For instance, in its original �eld of application, the

model formulation in Equation (1) represents the phys-

ical interaction between particles. In this case, although

the model utilizes statistical terminology to describe the

relation between the particles, the model is not purely

statistical, but also expresses causal information. For

example, in the physical case, if the orientation of one

of the particles were to be �xed by an external interven-

tion, this would change the behavior of the neighboring

particles as well; in particular, a manipulation that �xes

the state of one of the particles would lead the remaining

particles to form a new Ising model, for which the �xed

particles would enter into the equation as part of themain

e�ects (see Epskamp et al., in press, Equation (6)). Thus,

in this case the model does not merely describe the sta-

tistical associations between a set of variables de�ned on
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the system, but also encodes the way in which the system

would change upon manipulations of the system. As a

result, in addition to representing statistical dependencies

in a data set, in this case the edges connecting the nodes

may also be interpreted as (giving rise to) bidirectional

causal relations. The structure in Figure 2 then encodes

a graphical causal model (Pearl, 2000), which could be

conceptually �eshed out in terms of an interventionist

framework, where by X counts as a cause of Y if an inter-

vention on X were to change the probability distribution

of Y (Woodward, 2003).

It is important to note that this causal interpretation is

not mandated by the probabilistic structure represented

in Equation (1) in itself. Statistically speaking, the model

is merely a convenient representation of a probability dis-

tribution that is described by a loglinear homogenous

association model (i.e., a loglinear model with an inter-

cept and pairwise interaction terms, but without higher

order interactions; Wickens, 1989). This loglinear model

in itself does not carry any causal information, because

it does not mandate how the system will change upon

manipulation of its constituent variables. Thus, to get to

the implication of how the system would behave under a

given intervention that �xes the state of a given variable in

the model, the statistical model has to be augmented by

causal assumptions (Pearl, 2000). These causal assump-

tions require theoretical motivation. In the classical appli-

cation of the Ising model in physics, this motivation is

given by the general theory of magnetism. In the case

of the psychopathology example in Figure 3, they could

be motivated by, for example, observations of patients,

general knowledge of the human system, or research that

involves interventions on individual symptoms.

Finally, it is useful to point out the asymmetry in mov-

ing from the conceptual model to the statistical model

versus moving in the other direction. A theoretical model

can have de�nite implications for the type of statistical

model that one expects to hold for the observations.

For instance, if one believes that correlated individual

di�erences in cognitive test scores are due to the common

in�uence of general intelligence or mental energy, as

Spearman (1904) did, this motivates the expectation that

a common factor model will �t the data. However, this

motivation is not unique to the common cause model. If

another researcher believes that individual di�erences in

cognitive test scores are correlated, because they sample

the same cognitive processes, as Thomson (1916) did, this

can (and does) also lead to the expectation that a common

factor model will describe the data. Finally, it has been

shown that the mutualism model of van der Maas et al.

(2006), in which cognitive tests measure attributes that

reinforce each other during development, also implies

the �t of a common factor model. Because each of these

models implies the same probability distribution for the

data, one cannot conclude from the �t of the statistical

model that the conceptual model is accurate.

Thus, causal interpretations do not follow from the sta-

tistical model alone, as indeed they never do. In addi-

tion, the mapping from statistical association structure

to a generating causal structure is typically one-to-many,

which means that many di�erent underlying causal mod-

els can generate the same set of statistical relations. This

fact blocks direct inference from the statistical model to

the causal model, a problem known to SEM researchers

as the problem of equivalent models (Markus, 2002), to

philosophers as (one of the incarnations of) the problem

of induction (Hume, 1896), and to the general audience as

the platitude “correlation does not imply causality.” How-

ever, given a set of equivalent conceptual models, it is

often possible to disentangle which one is most accurate

by extending one’s set ofmeasurements, or through exper-

imental interventions for which the models imply diver-

gent predictions.

Figure 12 suggests some ways in which this may

happen. We start with two di�erent conceptual mod-

els (represented in the middle panel). For instance, one

researcher may posit a re�ective latent variable model,

which speci�es correlations between observables to arise

from the pervasive in�uence of a common cause, while

another researcher may hold that these correlations arise

from reciprocal causal relations in a fully connected

network structure. In this case, both researchers would

expect the same probability distribution to describe the

data, which can be either represented as an IRT model

using a latent variable, or as a fully connected network of

conditional associations; this is the equivalence we have

exploited in the current paper. Yet, if the possibility to

intervene causally arises, it is still possible to disentangle

the conceptual models: for an intervention in one indica-

tor variable (which can be represented using Pearl’s do-

operator; Pearl, 2000) will change the probability distri-

bution of other indicator variables in a network model,

but not in a common cause model. Thus, the equivalence

shown here is not a full-blown equivalence of theoretical

models, but only of statistical models that describe a given

data set. Importantly, however, this does mean that causal

interventions will have to play a central role in research

that tries to distinguish common cause explanations from

network explanations of correlation patterns in the data.

Of course, this onlyworks if one has a fully re�ective latent

variable model as one’s conceptual model, in which there

is no feedback between the indicator variables and the

latent variable; as soon as such feedback is allowed, the

current setup would not allow one to distinguish the con-

ceptual models.

It is important to observe that statistical equivalence

can never be fully eradicated. Even when we have a causal

intervention, that will by necessity result in a data set
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Figure . The relation between conceptual, statistical, and causal models. Two different conceptual models (middle panel) that imply the
same statistical observation model (top panel) can often still be teased apart using causal interventions (bottom panel).

that again has two possible statistically equivalent descrip-

tions, using either a multidimensional IRT model or an

Ising model. Rather than weeding out statistical equiva-

lence in general, causal interventions thus allow one to

distinguish between particular sets of conceptual models.

Network psychometrics in practice

Figure 7 illustrates that the latent variable distribution

g(θ ) that is used in theM-RMrepresentation of theCurie-

Weiss model can generate di�erent shapes. Most impor-

tantly, the latent variable distribution resembles a normal

distributionwhen the interaction strength σ is su�ciently

low (or equivalently that the temperature τ is su�ciently

high, see footnote 4). This suggests that an M-RM with

the typically used normal latent variable model f (θ ) will

�t to data that comes from a Curie-Weiss model with a

su�ciently low interaction strength σ , but it will not �t

when σ is too high. In this case the latent variable distri-

bution g(θ ) that is used in theM-RMrepresentation of the

Curie-Weiss model becomes either skewed or bimodal,

see, Figure 7. We provide two illustrations of the practi-

cal application of the M-RM to data that comes from a

Curie-Weiss network. The �rst illustration con�rms our

intuition that the M-RM with the typically used normal

latent variable model f (θ )will �t to data that is generated

from a Curie-Weiss model when the interaction strength

is su�ciently low, but not when the interaction strength

is too high. The second illustration demonstrates that for

cases where σ is too high the �t of the M-RM can be

signi�cantly improved when a �nite mixture of nor-

mal distributions is used as latent variable model f (θ )

instead of the usual normal distribution (Marsman et al.,

2012). Speci�cally, with a mixture of two normal distri-

butions we are able to generate the bimodal and skew

latent variable distributions that are observed when σ is

high.
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A serious complication in the evaluation of the latent

variable model f (θ ) is that the latent variables are not

observed. To overcome this complication, wemay replace

each of the nonobserved latent variables θ with a plausible

value θ∗ (Mislevy, 1991, 1993; Mislevy, Beaton, Kaplan,

& Sheehan, 1992). A plausible value for a person p with

an observed con�guration of scores xp is a random draw

from his or her posterior distribution f (θ | xp). Observe
that replacing the nonobserved latent variables with plau-

sible values is much like imputing missing data points

(Rubin, 1987). The plausible values are used to infer about

the �t of the latent variable model f (θ ) by comparing

their empirical CDF with the CDF of the latent variable

model using the Kolmogorov–Smirnov (KS) test (e.g.,

Berger & Zhou, 2014). The reason that we use plausi-

ble values to evaluate the �t of the latent variable model

f (θ ) is two-fold. First, the true latent variable distribu-

tion g(θ ) is not known in practice, and plausible values

o�er a practical alternative since they can be analyzed

as if the latent variables were observed. Second, we have

shown that themarginal distribution of plausible values is

the best estimator of the true—but unknown—latent vari-

able distribution (Marsman et al., 2016). Speci�cally, our

results imply that the marginal distribution of plausible

values will be closer8 to the true—but unknown—latent

variable distribution than the latent variable model f (θ ),

except when the latent variable model f (θ ) and the true

latent variable distribution g(θ ) are the same. One way to

interpret this result is that the model f (θ )—the normal

distribution—acts like a prior on the distribution of latent

variables, and that the observed data are used to update

this prior to a posterior distribution of the latent variables;

the distribution of plausible values.

Illustration I: TheM-RMwith a normal latent variable

model f (θ)

In the �rst illustration, we will use a Normal(λ, φ) dis-

tribution for the latent variables in the M-RM. We �x

the item di�culty parameters of the Rasch model to the

Curie-Weiss model’s main e�ects (i.e., δi = −µi), and

focus on evaluating the �t of the normal latent variable

model. The unknown parameters λ and φ need to be esti-

mated from the data. We will use a Bayesian approach

to estimate both the unknown model parameters and the

latent variables. To this aim, we need to specify a prior

distribution for the two unknown parameters, and here

we will use Je�reys’s prior p(λ, φ) ∝ φ−1 (Je�reys, 1961).

The advantage of this prior distribution is that it is rela-

tively noninformative. With the prior distribution spec-

i�ed, we can invoke Bayes’ rule to formulate the joint

 In expected Kullback–Leibler divergence.

posterior distribution

p(θ, λ, φ | X) ∝ p(X | θ)p(θ | λ, φ)p(λ, φ),

where the latent variable model p(θ | λ, φ) is the

Normal(λ, φ) distribution, the conditional distribution

of the observed data p(X | θ) is the Rasch model, and

X denotes the matrix of observations. In our analyses,

we generate N = 10, 000 cases from an n = 20 variable

Curie-Weiss network, such thatX is of dimensionN by n.

Observe that the joint posterior distribution is not avail-

able in closed form, butwe canmake use of theGibbs sam-

pler to simulate from it (Geman & Geman, 1984; Gelfand

& Smith, 1990).

Simulating from the joint posterior distribution

p(θ, λ, φ | X) using the Gibbs sampler boils down to

simulating from three distinct full-conditional distribu-

tions. The �rst full-conditional distribution is the pos-

terior distribution of the population mean p(λ | θ, φ),

which is equal to a Normal(θ̄ , φ/
√
N) distribution.

The second full-conditional distribution is the poste-

rior distribution of the population standard deviation

p(φ | θ, λ), and we �nd that the precision φ−2 a posteriori

follows a Gamma(N/2,
∑

p(θp − λ)2/2) distribution.

The �nal full-conditional distribution is that of the latent

variables p(θ | X, λ, φ), which conveniently factors in

N independent posterior distributions p(θp | xp, λ, φ),

for p = 1, . . . ,N. These posterior distributions are not

available in closed form, but Marsman, Maris, Bechger,

and Glas (2017) recently proposed an independence

chain Metropolis approach (Tierney, 1994, 1998) that is

based on the Exchange algorithm of Murray, Ghahra-

mani, and MacKay (2006) to e�ciently simulate from

p(θp | xp, λ, φ).

We generated 25 data sets each for a range of interac-

tion strengths σ . For each data set, we apply our M-RM

and estimate the model’s parameters and latent variables

using the Gibbs sampler. In each case, we ran the Gibbs

sampler for 500 iterations. The average acceptance rate of

our independence Metropolis approach to simulate from

the posteriors of the latent variables was approximately

94%,which ensured that convergence of theMarkov chain

was almost immediate. Observe that the plausible values

are a by-product of our Gibbs sampler, that is, they are

the draws from the full-conditional posterior distribution

p(θ | X, λ, φ). We compute P-values from the KS-tests9

applied to the plausible values that were generated every

50th iteration of the Gibbs sampler, so that for every value

 The KS-test is a nonparametric test for the equality of two (continuous) one-
dimensional probability distributions, which can be used to compare an
empirical CDF against a reference distribution (e.g., Berger & Zhou, ).
Here,we compare the empirical CDFof plausible values against the estimated
Normal CDF (i.e., the reference distribution). The associated null-hypothesis
stipulates that the empirical CDF of plausible values coincides with the esti-
mated Normal CDF.
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Figure . The left panel shows the average P-value obtained from KS-tests comparing the empirical CDF of plausible value with the
Normal CDF for different values of the interaction strength σ . The right panel shows the true CDF of the latent variables (gray solid line),
the estimated Normal CDF (black solid line), and the empirical CDF of plausible values (black dotted line) for σ = 0.04.

of σ we obtain the P-values from 10 repetitions for each

of the 25 data sets.

The results are shown in the left panel of Figure 13,

where we plot the average P-value against the inter-

action strength σ . Observe that for σ values that are

smaller than approximately 0.027 the P-values average to

approximately 0.5, the expected P-value under H0. At

about the value σ = 0.033 the KS-test is signi�cant at an

α-level of 0.05, which indicates that the plausible value

distribution and the normal latent variable model have

diverged. To gauge the severity of this mismatch, we

show the true latent variable distribution g(θ ) (gray solid

line), our normal latent variable model f (θ ) (black solid

line) and the empirical CDF of plausible values (black

dotted line) in the right panel of Figure 13 for σ = 0.04.

Observe that the distribution of plausible values is able to

reproduce the bimodal shape of g(θ ), where the normal

latent variable model f (θ ) cannot reproduce this shape.

However, we can also observe clear di�erences between

the distribution of plausible values and the true latent

variable distribution. The primary reason for this di�er-

ence is that the normal latent variable model still has a

strong in�uence on the distribution of plausible values.

However, convergence of the distribution of plausible

values to the true latent variable distribution g(θ ) might

be improved by using a more �exible prior latent variable

model f (θ ) (Marsman et al., 2016), such as a mixture of

normal distributions.

Illustration II: TheM-RMwith amixture latent

variablemodel f (θ)

To accommodate for a bimodal or skewed distribution

of latent variables, we proposed to use a discrete mixture

of normal distributions as a latent variable model in the

M-RM (Marsman et al., 2012). Speci�cally, we have used

the two component mixture of normals,

p(θ | λ1, λ2, φ1, φ2, γ )

= γ pnormal(θ | λ1, φ1) + (1 − γ ) pnormal(θ | λ2, φ2),

where pnormal(θ | λi, φi) denotes the normal density with

mean λi and variance φ2
i , and showed that this mixture

can generate bimodal and skewed latent variable distri-

butions. The mixture distribution may be interpreted as

follows. Suppose that you �ip a coin z that lands heads

(z = 1) with probability equal to γ and lands tails (z =
0) with probability 1 − γ . We generate the latent vari-

able θ from a Normal(λ1, φ1) distribution if the coin

lands heads, and generate the latent variable from a

Normal(λ2, φ2) distribution if the coin lands tails. This

interpretation suggests an augmented variable approach

to analyze the discrete mixture model: Introduce a binary

augmented variable z that allocates cases to one of the two

mixture components, such that

p(θ | λ1, λ2, φ1, φ2, z) =
{

Normal(λ1, φ1) if z = 1

Normal(λ2, φ2) if z = 0.
(6)

Wewill use this two-componentmixture as latent variable

model f (θ ).

We will again use a Bayesian approach to estimate

the unknown parameters of the latent variable model

f (θ ) and the latent variables. As before, we will use Jef-

freys’s approach to specify a noninformative prior for the

unknown population parameters

p(λ1, λ2, φ1, φ2, γ ) ∝
1

φ1φ2

√
γ (1 − γ )

.

This leads to the following joint posterior distribution:

p(θ, z, λ1, λ2, φ1, φ2, γ | X) ∝ p(X | θ)

p(θ | λ1, λ2, φ1, φ2, z)p(z | γ )p(λ1, λ2, φ1, φ2, γ ),



30 M. MARSMAN ET AL.

Figure . The left panel shows the average P-value obtained from KS-tests comparing the empirical CDF of plausible value with the
estimated Normalmixture CDF for different values of the interaction strength σ . The right panel shows the true CDF of the latent variables
(gray solid line), the estimated Normal mixture CDF (black solid line), and the empirical CDF of plausible values (black dotted line) for
σ = 0.04.

where the conditional distribution p(θ | λ1, λ2, φ1, φ2, z)

is the distribution in (6), and p(z | γ ) is a Bernoulli(γ )

distribution. Simulating from the joint posterior distri-

bution p(θ, z, λ1, λ2, φ1, φ2, γ | X) using the Gibbs sam-

pler boils down to simulating from the following �ve full-

conditional distributions:

(1) The full-conditionals of the N binary allocation

variables are Bernoulli distributions with success

probabilities:

p(zp = 1 | λ1, λ2, φ1, φ2, γ , θp)

=
γ 1

φ1
e
− 1

2φ21
(θp−λ1)

2

γ 1
φ1
e
− 1

2φ21
(θp−λ1)2 + (1 − γ ) 1

φ2
e
− 1

2φ22
(θp−λ2)2

,

for p = 1, . . . ,N.

(2) The full-conditionals of the latent variables p(θ |
xp, λ1, λ2, φ1, φ2, zp) are of the same form as

before, except that the “prior” on θ is the

Normal(λ1, φ1) distribution for cases where zp =
1 and the Normal(λ2, φ2) distribution for cases

where zp = 0.

(3) The full-conditionals of the two populationmeans

λ1 and λ2 are normal distributions. Speci�cally,

the full-conditional ofλ1 is aNormal(θ̄1, φ1/
√
n1),

where θ̄1 is the mean of the n1 cases for which z =
1 (i.e., n1 =

∑

p zp). Similarly, the full-conditional

of λ2 is a Normal(θ̄2, φ2/
√
n2), where θ̄2 is the

mean of the n2 cases for which z = 0 (i.e., n2 =
∑

p(1 − zp) = N − n1).

(4) The full-conditionals of the two precision param-

eters φ−2
1 and φ−2

2 are gamma distributions.

Speci�cally, the full-conditional of φ−2
1 is a

Gamma(n1/2,
∑

p(zpθp − λ1)
2/2) distribution,

and the full-conditional distribution of φ−2
2 is a

Gamma(n2/2,
∑

p((1 − zp)θp − λ2)
2/2) distri-

bution.

(5) The full-conditional of the mixture probability γ

is a Beta(n1 + 0.5, n2 + 0.5) distribution.

Thus, each of the full-conditional distributions is read-

ily sampled from.

The results of our analysis with the mixture model are

shown in the left panel of Figure 14. Observe that the

P-values10 now average to approximately 0.5 across the

entire range of interaction strengths σ , which indicate

that the plausible values and the mixture model did not

diverge. The true latent variable distribution g(θ ) (gray

solid line), our mixture latent variable model f (θ ) (black

solid line) and the empirical CDF of plausible values (back

dotted line) are shown in the right panel of Figure 14

for σ = 0.04. Observe that both the mixture distribu-

tion f (θ ) and the plausible value distribution now closely

resemble the true latent variable distribution g(θ ).

We conclude that even though the data come from a

statistical model that is associated with a wildly distinct

conceptual framework, the M-RM that is associated to a

common cause interpretation �ts the data remarkablywell

in practice. Especially the use of a mixture of two normal

distributions as a latent variable model provides a good �t

of the M-RM to network data, and with only three addi-

tional parameters this is a small price to pay. These results

imply that many of the methods that have been designed

to analyze binary data using marginal IRT models are

also useful to analyze binary data from a network per-

spective, and vice versa. That is, the statistical equivalence

might not only bring new theoretical insights but also

provide practical bene�ts. For instance, we may use IRT

Using the estimated mixture of Normal CDFs as reference distribution in the
KS-test.
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models to handle missing observations in applications of

network models (Marsman, Waldorp, & Maris, 2016), or

may use network models to reveal the residual structure

in an IRT analysis (Chen, Li, Liu, & Ying, 2016; Epskamp,

Rhemtulla, & Borsboom, 2017).

Discussion

The current paper has explored connections between the

worlds of statistical physics and psychometrics. By estab-

lishing the equivalence of two canonical models from

these �elds—the Lenz-Ising model and the IRT model—

a systematic connection has been forged that allows us to

cross-fertilize each of the �eldswith representations, tech-

niques, and insights from the other. In particular, we think

that psychometrics stands to gain from this connection,

because the network modeling framework yields a the-

oretically plausible modeling approach for dealing with

classic psychometric questions.

We have shown that Kac’s Gaussian integral represen-

tation can be used to relate the network models of Lenz

and Ising to the latent variable models of Rasch and Reck-

ase. Speci�cally, the models were seen to correspond to a

di�erent factorization of the joint distribution of theman-

ifest and latent variables:

p(x | θ)g(θ) = p(x)g(θ | x),

where the latter factorization also revealed the graphical

models that were originally proposed by Olkin & Tate,

and later popularized by Lauritzen & Wermuth. We have

investigated some of the implications of these relations to

the existing psychometric theory.

That the network models of Lenz and Ising directly

relate to the IRT models of Rasch and Reckase implies

that every observed association (of binary random vari-

ables) can be given two interpretations: The associations

can be interpreted to arise from a direct in�uence between

variables or due to an underlying and unobserved (set

of) common cause(s). Additionally, we have shown that

the recent work of Kruis and Maris (2016) provides yet

a third possible interpretation; an observed association

that results from conditioning on a common e�ect. In

fact, there might be many possible ways to interpret an

observed association, and the �t of a statisticalmodel does

not guarantee that we have chosen the right one. This

urges us to be cautious with our interpretations, espe-

cially since this may have a strong in�uence on the type

of questions that we ask (i.e., the research that we per-

form) or, more importantly, the type of questions that

we do not ask. For instance, questions about measure-

ment invariance and correlational structure may be inter-

esting from a common cause approach but not from a

network approach, whereas researchers that take a net-

work approach are more likely to ask questions about

the dynamical aspects of a system, such as hysteresis

and critical slowing down. The observed statistical equiv-

alences make it easier to switch between the concep-

tual approaches, such that we can study di�erent aspects

of our substantive theories. Ultimately, this will further

our understanding about the many distinct psychological

constructs that have been formulated, and how they relate

to observable behaviors.

It is also important, then, to investigate how the

network of statistical models in Figure 1 expands to

include other models. Several relations to statistical

models displayed in Figure 1 can be observed in the

psychometric-, econometric-, statistics-, and physics-

literature. For instance, relations between the item

response theory models in Figure 1 and other latent vari-

able models have been described by Takane and de Leeuw

(1987) and Thissen and Steinberg (1986), but see also the

work ofKamata andBauer (2008) andBartolucci andPen-

noni (2007), for instance. Furthermore, these IRTmodels

were also studied in relation tomodels that originate from

mathematical psychology by Tuerlinckx and de Boeck

(2005) and van der Maas, Molenaar, Maris, Kievit, and

Borsboom (2011). Similarly, we observe in the physics lit-

erature that the Ising networkmodel is a special case of the

Potts network model (Ashkin & Teller, 1943; Potts, 1952),

Markov random �elds (Kindermann & Snell, 1980), and

it has also been related to the percolation theory of Broad-

bent andHammersley (1957) through thework of Fortuin

and Kasteleyn (1972). Finally, we observe that the work

described in Hessen (2012) provides an interesting exten-

sion to models for categorical random variables. With-

out trying to produce an exhaustive list of relations to

the models considered in this article, we hope that it is

clear that the network of statistical models displayed in

Figure 1 is a small subset of a formidable network of statis-

tical models. What is not clear, however, is how these sta-

tistical models that originate from distinct scienti�c �elds

relate to one another, but the relations that have been dis-

cussed in this paper form an important �rst step to answer

this question.
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