
An Introduction to Neural

Information Retrieval

Suggested Citation: Bhaskar Mitra and Nick Craswell (2018), “An Introduction to
Neural Information Retrieval”, : Vol. xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.

Bhaskar Mitra
Microsoft, University College London

Montreal, Canada

bmitra@microsoft.com

Nick Craswell
Microsoft

Bellevue, USA

nickcr@microsoft.com

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

Contents

1 Introduction 3

2 Fundamentals of text retrieval 8

2.1 IR tasks . 8

2.2 Desiderata of IR models 11

2.3 Notation . 17

2.4 Metrics . 17

2.5 Traditional IR models . 19

2.6 Neural approaches to IR 23

3 Unsupervised learning of term representations 27

3.1 A tale of two representations 27

3.2 Notions of similarity . 31

3.3 Observed feature spaces 34

3.4 Latent feature spaces . 35

4 Term embeddings for IR 42

4.1 Query-document matching 43

4.2 Query expansion . 49

5 Supervised learning to rank 51

5.1 Input features . 52

5.2 Loss functions . 52

6 Deep neural networks 62

6.1 Input text representations 63

6.2 Standard architectures . 65

6.3 Neural toolkits . 72

7 Deep neural networks for IR 74

7.1 Document autoencoders 76

7.2 Siamese networks . 76

7.3 Interaction-based networks 78

7.4 Lexical and semantic matching 80

7.5 Matching with multiple document fields 83

8 Conclusion 85

Acknowledgements 89

References 90

An Introduction to Neural
Information Retrieval
Bhaskar Mitra1 and Nick Craswell2

1Microsoft, University College London; bmitra@microsoft.com
2Microsoft; nickcr@microsoft.com

ABSTRACT

Neural ranking models for information retrieval (IR) use shal-

low or deep neural networks to rank search results in response

to a query. Traditional learning to rank models employ super-

vised machine learning (ML) techniques—including neural

networks—over hand-crafted IR features. By contrast, more

recently proposed neural models learn representations of lan-

guage from raw text that can bridge the gap between query

and document vocabulary. Unlike classical learning to rank

models and non-neural approaches to IR, these new ML tech-

niques are data-hungry, requiring large scale training data

before they can be deployed. This tutorial introduces basic

concepts and intuitions behind neural IR models, and places

them in the context of classical non-neural approaches to IR.

We begin by introducing fundamental concepts of retrieval

and different neural and non-neural approaches to unsuper-

vised learning of vector representations of text. We then

review IR methods that employ these pre-trained neural vec-

tor representations without learning the IR task end-to-end.

We introduce the Learning to Rank (LTR) framework next,

discussing standard loss functions for ranking. We follow

that with an overview of deep neural networks (DNNs),

including standard architectures and implementations. Fi-

nally, we review supervised neural learning to rank models,

Bhaskar Mitra and Nick Craswell (2018), “An Introduction to Neural Information
Retrieval”, : Vol. xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.

2

including recent DNN architectures trained end-to-end for

ranking tasks. We conclude with a discussion on potential

future directions for neural IR.

1

Introduction

Since the turn of the decade, there have been dramatic improvements

in performance in computer vision, speech recognition, and machine

translation tasks, witnessed in research and in real-world applications

(LeCun et al., 2015). These breakthroughs were largely fuelled by recent

advances in neural network models, usually with multiple hidden layers,

known as deep architectures (Krizhevsky et al., 2012; LeCun et al.,

2015; Hinton et al., 2012; Bahdanau et al., 2014; Deng, Yu, et al., 2014)

combined with the availability of large datasets (Wissner-Gross, 2016)

and cheap compute power for model training. Exciting novel applications,

such as conversational agents (Vinyals and Le, 2015; Sordoni et al.,

2015b), have also emerged, as well as game-playing agents with human-

level performance (Silver et al., 2016; Mnih et al., 2015). Work has

now begun in the information retrieval (IR) community to apply these

neural methods, leading to the possibility of advancing the state of the

art or even achieving breakthrough performance as in these other fields.

Retrieval of information can take many forms (White, 2016). Users

can express their information need in the form of a text query—by

typing on a keyboard, by selecting a query suggestion, or by voice

recognition—or the query can be in the form of an image, or in some

3

4 Introduction

cases the need can be implicit. Retrieval can involve ranking existing

pieces of content, such as documents or short-text answers, or composing

new responses incorporating retrieved information. Both the information

need and the retrieved results may use the same modality (e.g., retrieving

text documents in response to keyword queries), or be different (e.g.,

image search using text queries). If the query is ambiguous, retrieval

system may consider user history, physical location, temporal changes

in information, or other context when ranking results. IR systems may

also help users formulate their intent (e.g., via query auto-completion

or query suggestion) and can extract succinct summaries of results that

take the user’s query into account.

We note that many natural language processing tasks exist that are

not IR. Machine translation of text from one human language to another

is not an IR task, because translating language and searching a corpus

to satisfy a user’s information need are different. However, translation

could be used in an IR system, to enable cross-language retrieval on a

multilingual corpus (Oard and Diekema, 1998). Named entity linking,

where text is disambiguated through linking to a knowledgebase, is not

an IR task in itself. However, an IR system could use entity linking to

enhance its performance on IR tasks. In general, many natural language

processing tasks do not involve information access and retrieval, so are

not IR tasks, but some can still be useful as part of a larger IR system.

Neural IR is the application of shallow or deep
neural networks to IR tasks. Other natural lan-

guage processing capabilities such as machine trans-
lation and named entity linking are not neural IR
but could be used in an IR system.

Neural IR refers to the application of shallow or deep neural net-

works to retrieval tasks. Neural models have been employed in many

IR scenarios—including ad-hoc retrieval, recommender systems, multi-

5

media search, and even conversational systems that generate answers

in response to natural language questions. This tutorial serves as an

introduction to neural methods for ranking documents in response to a

query, an important IR task. We scope our discussions to a single task

to allow for more thorough treatment of the fundamentals as opposed

to providing a shallow survey of neural approaches to all IR tasks.

A search query may typically contain a few terms, while the docu-

ment length, depending on the scenario, may range from a few terms

to hundreds of sentences or more. Neural models for IR use vector rep-

resentations of text, and usually contain a large number of parameters

that need to be tuned. ML models with large set of parameters typically

benefit from large quantity of training data (Brill, 2003; Taylor et al.,

2006; Rajaraman, 2008; Halevy et al., 2009; Sun et al., 2017). Unlike

traditional learning to rank (LTR) approaches (Liu, 2009) that train ML

models over a set of hand-crafted features, recent neural models for IR

typically accept the raw text of a query and document as input. Learn-

ing suitable representations of text also demands large-scale datasets

for training (Mitra et al., 2017a). Therefore, unlike classical IR models,

these neural approaches tend to be data hungry, with performance that

improves with more training data.

Text representations can be learnt in an unsupervised or supervised

fashion. The supervised approach uses IR data such as labelled query-

document pairs, to learn a representation that is optimized end-to-

end for the task at hand. If sufficient IR labels are not available, the

unsupervised approach learns a representation using just the queries

and/or documents. In the latter case, different unsupervised learning

setups may lead to vector representations that capture different notions

of text similarity. When applying such representations, the choice of

unsupervised learning setup should be carefully considered, to yield a

notion of text similarity that is suitable for the target task. Traditional

IR models such as Latent Semantic Analysis (LSA) (Deerwester et

al., 1990) learn dense vector representations of terms and documents.

Neural representation learning models share commonalities with these

traditional approaches. Much of our understanding of these traditional

approaches from decades of research can be extended to these modern

representation learning models.

6 Introduction

2014 2015 2016 2017 2018

1 %

4 %

8 %

23 %

42 %

0
1

0
2

0
3

0
4

0
5

0

Year

%
 o

f
S

IG
IR

 p
a

p
e

rs

re
la

te
d

 t
o

 n
e

u
ra

l
IR

Figure 1.1: The percentage of neural IR papers at the ACM SIGIR conference—as
determined by a manual inspection of the papers—shows a clear trend in the growing
popularity of the field.

In other fields, the design of neural network models has been in-

formed by characteristics of the application and data. For example,

the datasets and successful architectures are quite different in visual

object recognition, speech recognition, and game playing agents. While

IR shares some common attributes with the field of natural language

processing, it also comes with its own set of unique challenges. IR sys-

tems must deal with short queries that may contain previously unseen

vocabulary, to match against documents that vary in length, to find

relevant documents that may also contain large sections of irrelevant

text. IR systems should learn patterns in query and document text that

indicate relevance, even if query and document use different vocabulary,

and even if the patterns are task-specific or context-specific.

The goal of this tutorial is to introduce the fundamentals of neu-

ral IR, in context of traditional IR research, with visual examples to

illustrate key concepts and a consistent mathematical notation for de-

scribing key models. Section 2 presents a survey of IR tasks, challenges,

metrics and non-neural models—as well as a brief overview of different

neural approaches to IR. Section 3 introduces neural and non-neural

7

methods for learning term embeddings, without the use of supervision

from IR labels, and with a focus on the notions of similarity. Section 4

surveys some specific approaches for incorporating such unsupervised

embeddings in IR. Section 5 introduces supervised learning to rank mod-

els. Section 6 introduces the fundamentals of deep models—including

standard architectures and toolkits—before Section 7 surveys some

specific approaches for incorporating deep neural networks (DNNs) in

IR. Section 8 is our discussion, including future work, and conclusion.

Motivation for this tutorial Neural IR is an emerging field. Research

publication in the area has been increasing (Figure 1.1), along with rele-

vant workshops (Craswell et al., 2016a; Craswell et al., 2016b; Craswell

et al., 2017; Craswell et al., 2018), tutorials (Li and Lu, n.d.; Mitra and

Craswell, 2017; Kenter et al., 2017; Kenter et al., 2018a; Kenter et al.,

2018b), and plenary talks (Manning, 2016; Craswell, 2017). Because this

growth in interest is fairly recent, some researchers with IR expertise

may be unfamiliar with neural models, and other researchers who have

already worked with neural models may be unfamiliar with IR. The

purpose of this tutorial is to bridge the gap, by describing the relevant

IR concepts and neural methods in the current literature.

A thorough review of the fundamentals of IR or neural networks,

however, are beyond the scope of this tutorial. We refer interested

readers to the following books for a general overview of traditional IR.

1. Modern information retrieval, by Baeza-Yates and Ribeiro-Neto

(1999)

2. Introduction to information retrieval, by Manning et al. (2008)

3. Search engines: Information retrieval in practice, by Croft et al.

(2010)

Similarly, we recommend the following as companion reading mate-

rials for machine learning and neural network fundamentals.

1. The elements of statistical learning, by Hastie et al. (2001)

2. Pattern recognition and machine learning, by Bishop (2006)

3. Deep learning, by Goodfellow et al. (2016)

2

Fundamentals of text retrieval

We focus on text retrieval in IR, where the user enters a text query and

the system returns a ranked list of search results. Search results may

be passages of text or full text documents. The system’s goal is to rank

the user’s preferred search results at the top. This problem is a central

one in the IR literature, with well-understood challenges and solutions.

This section provides an overview of those, such that we can refer to

them in subsequent sections.

2.1 IR tasks

Text retrieval methods for full text documents and for short text passages

have application in ad hoc retrieval systems and question answering

systems, respectively.

Ad-hoc retrieval Ranked document retrieval is a classic problem in

information retrieval, as in the main task of the Text Retrieval Confer-

ence (Voorhees, Harman, et al., 2005), and performed by commercial

search engines such as Google, Bing, Baidu, or Yandex. TREC tasks

may offer a choice of query length, ranging from a few terms to a few

sentences, whereas search engine queries tend to be at the shorter end

8

2.1. IR tasks 9

of the range. In an operational search engine, the retrieval system uses

specialized index structures to search potentially billions of documents.

The results ranking is presented in a search engine results page (SERP),

with each result appearing as a summary and a hyperlink. The engine

can instrument the SERP, gathering implicit feedback on the quality of

search results such as click decisions and dwell times.

A ranking model can take a variety of input features. Some ranking

features may depend on the document alone, such as how popular the

document is with users, how many incoming links it has, or to what

extent document seems problematic according to a Web spam classifier.

Other features depend on how the query matches the text content of

the document. Still more features match the query against document

metadata, such as referred text of incoming hyperlink anchors, or the

text of queries from previous users that led to clicks on this document.

Because anchors and click queries are a succinct description of the

document, they can be a useful source of ranking evidence, but they

are not always available. A newly created document would not have

much link or click text. Also, not every document is popular enough

to have past links and clicks, but it still may be the best search result

for a user’s rare or tail query. In such cases, when text metadata is

unavailable, it is crucial to estimate the document’s relevance primarily

based on its text content.

In the text retrieval community, retrieving documents for short-

text queries by considering the long body text of the document is

an important challenge. These ad-hoc retrieval tasks have been an

important part of the Text REtrieval Conference (TREC) (Voorhees

and Harman, 2000), starting with the original tasks searching newswire

and government documents, and later with the Web track1 among

others. The TREC participants are provided a set of, say fifty, search

queries and a document collection containing 500-700K newswire and

other documents. Top ranked documents retrieved for each query from

the collection by different competing retrieval systems are assessed by

human annotators based on their relevance to the query. Given a query,

the goal of the IR model is to rank documents with better assessor

1http://www10.wwwconference.org/cdrom/papers/317/node2.html

http://www10.wwwconference.org/cdrom/papers/317/node2.html

10 Fundamentals of text retrieval

ratings higher than the rest of the documents in the collection. In §2.4,

we describe standard IR metrics for quantifying model performance given

the ranked documents retrieved by the model and the corresponding

assessor judgments for a given query.

This tutorial focuses on text retrieval systems
that rank either long documents or short an-

swers in response to queries that are typically few
terms in length.

Question-answering Question-answering tasks may range from choos-

ing between multiple choices (typically entities or binary true-or-false

decisions) (Richardson et al., 2013; Hermann et al., 2015; Hill et al.,

2015; Weston et al., 2015) to ranking spans of text or passages (Voorhees

and Tice, 2000; Yang et al., 2015; Rajpurkar et al., 2016; Agichtein et al.,

2015; Ferrucci et al., 2010), and may even include synthesizing textual

responses by gathering evidence from one or more sources (Nguyen

et al., 2016b; Mitra et al., 2016b). TREC question-answering experi-

ments (Voorhees and Tice, 2000) has participating IR systems retrieve

spans of text, rather than documents, in response to questions. IBM’s

DeepQA (Ferrucci et al., 2010) system—behind the Watson project

that famously demonstrated human-level performance on the American

TV quiz show, “Jeopardy!”—also has a primary search phase, whose

goal is to find as many potentially answer-bearing passages of text as

possible. With respect to the question-answering task, the scope of this

tutorial is limited to ranking answer containing passages in response to

natural language questions or short query texts.

Retrieving short spans of text pose different challenges than ranking

documents. Unlike the long body text of documents, single sentences

or short passages tend to be on point with respect to a single topic.

However, answers often tend to use different vocabulary than the one

used to frame the question. For example, the span of text that contains

the answer to the question “what year was Martin Luther King Jr.

2.2. Desiderata of IR models 11

born?” may not contain the term “year”. However, the phrase “what

year” implies that the correct answer text should contain a year—such

as ‘1929’ in this case. Therefore, IR systems that focus on the question-

answering task need to model the patterns expected in the answer

passage based on the intent of the question.

2.2 Desiderata of IR models

Before we describe any specific IR model, it is important for us to

discuss some of the attributes that we desire from a good retrieval

system. For any IR system, the relevance of the retrieved items to the

input query is of foremost importance. But relevance measurements can

be nuanced by the properties of robustness, sensitivity and efficiency

that we expect the system to demonstrate. These attributes not only

guide our model designs but also serve as yard sticks for comparing the

different neural and non-neural approaches.

Semantic understanding Most traditional approaches to ad-hoc re-

trieval count repetitions of the query terms in the document text. Exact

term matching between query and document text, while simple, serves

as a foundation for many IR systems. Different weighting and normal-

ization schemes over these counts leads to a variety of TF-IDF models,

such as BM25 (Robertson, Zaragoza, et al., 2009). However, by only

inspecting the query terms the IR model ignores all the evidence of

aboutness from the rest of the document. So, when ranking for the query

“Australia” only the occurrences of “Australia” in the document are

considered—although the frequency of other terms like “Sydney” or

“kangaroo” may be highly informative. In the case of the query “what

channel are the seahawks on today”, the query term “channel” provides

hints to the IR model to pay attention to the occurrences of “ESPN”

or “Sky Sports” in the document text—none of which appears in the

query itself.

Semantic understanding, however, goes beyond mapping query terms

to document terms (Li, Xu, et al., 2014). A good IR model may consider

the terms “hot” and “warm” related, as well as the terms “dog” and

“puppy”—but must also distinguish that a user who submits the query

12 Fundamentals of text retrieval

●

●

●

●

● ●

● ● ●

●●

●●

●●●●●

●●●●

●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6

log10(query ID)

lo
g

1
0
(q

u
e

ry
 f
re

q
u

e
n

c
y
)

(a) Distribution of query impressions

●

●

● ●

● ●

●

●

●

●●

●●●

●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●

●

●

●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6

log10(document ID)

lo
g

1
0
(d

o
c
u

m
e

n
t
fr

e
q

u
e

n
c
y
)

(b) Distribution of document clicks

Figure 2.1: A Log-Log plot of frequency versus rank for query impressions and
document clicks in the AOL query logs (Pass et al., 2006). The plots highlight that
these quantities follow a Zipfian distribution.

“hot dog” is not looking for a “warm puppy” (Levy, 2011). At the more

ambitious end of the spectrum, semantic understanding would involve

logical reasons by the IR system—so for the query “concerts during

SIGIR” it associates a specific edition of the conference (the upcoming

one) and considers both its location and dates when recommending

concerts nearby during the correct week.

These examples motivate that IR models should have some latent

representations of intent as expressed by the query and of the different

topics in the document text—so that inexact matching can be performed

that goes beyond lexical term counting.

Robustness to rare inputs Query frequencies in most IR tasks follow

a Zipfian distribution (Xie and O’Hallaron, 2002) (see Figure 2.1). In

the publicly available AOL query logs (Pass et al., 2006), for example,

more than 70% of the distinct queries are seen only once in the period of

three months from which the queries are sampled. In the same dataset,

more than 50% of the distinct documents are clicked only once. A good

IR method must be able to retrieve these infrequently searched-for

documents and perform reasonably well on queries containing terms

that appear extremely rarely, if ever, in its historical logs.

Many IR models that learn latent representations of text from data

often naively assume a fixed size vocabulary. These models perform

2.2. Desiderata of IR models 13

poorly when the query consists of terms rarely (or never) seen during

training. Even if the model does not assume a fixed vocabulary, the

quality of the latent representations may depend heavily on how often

the terms under consideration appear in the training dataset. Exact

matching models, like BM25 (Robertson, Zaragoza, et al., 2009), on the

other hand can precisely retrieve documents containing rare terms.

Semantic understanding in an IR model cannot come at the cost

of poor retrieval performance on queries containing rare terms. When

dealing with a query such as “pekarovic land company” the IR model will

benefit from considering exact matches of the rare term “pekarovic”. In

practice an IR model may need to effectively trade-off exact and inexact

matching for a query term. However, the decision of when to perform

exact matching can itself be informed by semantic understanding of the

context in which the terms appear in addition to the terms themselves.

Learning latent representation of text is im-
portant for dealing with vocabulary mismatch,

but exact matching is also important to deal with
rare terms and intents.

Robustness to corpus variance An interesting consideration for IR

models is how well they perform on corpora whose distributions are

different from the data that the model was trained on. Models like

BM25 (Robertson, Zaragoza, et al., 2009) have very few parameters

and often demonstrate reasonable performance “out of the box” on new

corpora with little or no additional tuning of parameters. Supervised

deep learning models containing millions (or even billions) of parameters,

on the other hand, are known to be more sensitive to distributional

differences between training and evaluation data, and have been shown

to be especially vulnerable to adversarial inputs (Szegedy et al., 2013).

The application of unsupervised term embeddings on collections and

tasks that are different from the original data the representations were

trained on is common in the literature. While these can be seen as

14 Fundamentals of text retrieval

examples of successful transfer learning, there is also evidence (Diaz

et al., 2016) that term embeddings trained on collections distributionally

closer to the test samples perform significantly better.

Some of the variances in performance of deep models on new corpora

is offset by better retrieval on the test corpus that is distributionally

closer to the training data, where the model may have picked up crucial

corpus specific patterns. For example, it may be understandable if a

model that learns term representations based on the text of Shake-

speare’s Hamlet is effective at retrieving passages relevant to a search

query from The Bard’s other works, but performs poorly when the

retrieval task involves a corpus of song lyrics by Jay-Z. However, the

poor performances on new corpus can also be indicative that the model

is overfitting, or suffering from the Clever Hans2 effect (Sturm, 2014).

For example, an IR model trained on recent news corpus may learn to

associate “Theresa May” with the query “uk prime minister” and as a

consequence may perform poorly on older TREC datasets where the

connection to “John Major” may be more appropriate.

ML models that are hyper-sensitive to corpus distributions may be

vulnerable when faced with unexpected changes in distributions in the

test data (Cohen et al., 2018). This can be particularly problematic

when the test distributions naturally evolve over time due to underlying

changes in the user population or behaviour. The models may need to

be re-trained periodically or designed to be invariant to such changes.

Robustness to variable length inputs Typical text collections contain

documents of varied lengths (see Figure 2.2). A good IR system must be

able to deal with documents of different lengths without over-retrieving

either long or short documents. Relevant documents may contain ir-

relevant sections, and the relevant content may either be localized,

or spread over multiple sections in the document. Document length

normalization is well-studied in the context of IR models (e.g., pivoted

length normalization (Singhal et al., 1996)), and this existing research

should inform the design of any new IR models.

2https://en.wikipedia.org/wiki/Clever_Hans

https://en.wikipedia.org/wiki/Clever_Hans

2.2. Desiderata of IR models 15

0−
10

K

10
−2

0K

20
−3

0K

30
−4

0K

40
−5

0K

50
−6

0K

60
−7

0K

70
−8

0K

80
−9

0K

90
−1

00
K

10
0−

11
0K

11
0−

12
0K

12
0−

13
0K

13
0−

14
0K

14
0−

15
0K

15
0−

16
0K

16
0−

17
0K

17
0−

18
0K

18
0−

19
0K

19
0−

21
0K

21
0−

22
0K

22
0−

24
0K

24
0−

25
0K

25
0−

26
0K

0
2
0
0

4
0
0

6
0
0

8
0
0

Page length in bytes

N
u
m

b
e
r

o
f
a
rt

ic
le

s

Figure 2.2: Distribution of document length (in bytes) of Wikipedia featured articles
as of June 30, 2014. Source: https://en.wikipedia.org/wiki/Wikipedia:Featured_
articles/By_length.

Robustness to errors in input No IR system should assume error-free

inputs—neither when considering the user query nor when inspecting the

documents in the collection. While traditional IR models have typically

involved specific components for error correction—such as automatic

spell corrections over queries—new IR models may adopt different

strategies towards error handling by operating at the character-level

and/or by learning better representations from noisy texts.

Sensitivity to context Retrieval in the wild can leverage many implicit

and explicit context information.3 The query “weather” may refer to the

weather in Seattle or in London depending on where the user is located.

An IR model may retrieve different results for the query “decorations”

depending on the current season. The query “giants match highlights”

may be better disambiguated if the system knows whether the user is

a fan of baseball or American football, whether she is located on the

East or the West coast of USA, or if the model has knowledge of recent

sport fixtures. In conversational IR systems, the correct response to the

3In proactive retrieval scenarios (Liebling et al., 2012; Song and Guo, 2016;
Benetka et al., 2017; Shokouhi and Guo, 2015), the retrieval can even be triggered
based solely on implicit context without any explicit query submission from the user.

https://en.wikipedia.org/wiki/Wikipedia:Featured_articles/By_length
https://en.wikipedia.org/wiki/Wikipedia:Featured_articles/By_length

16 Fundamentals of text retrieval

question “When did she become the prime minister?” would depend

on disambiguating the correct entity based on the context of references

made in the previous turns of the conversation. Relevance in many

applications is, therefore, situated in the user and task context, and is

an important consideration in the design of IR systems.

Efficiency Efficiency of retrieval is one of the salient points of any

retrieval system. A typical commercial Web search engine may deal

with tens of thousands of queries per second4—retrieving results for

each query from an index containing billions of documents. Search

engines typically involve large multi-tier architectures and the retrieval

process generally consists of multiple stages of pruning the candidate

set of documents (Matveeva et al., 2006; Wang et al., 2011). The IR

model at the bottom of this telescoping setup may need to sift through

billions of documents—while the model at the top may only need to

re-rank between tens of promising documents. The retrieval approaches

that are suitable at one level of the stack may be highly impractical

at a different step—models at the bottom need to be fast but mostly

focus on eliminating irrelevant or junk results, while models at the top

tend to develop more sophisticated notions of relevance, and focus on

distinguishing between documents that are much closer on the relevance

scale. So far, much of the focus on neural IR approaches have been

limited to re-ranking top-n documents.

A telescoping setup involves a multi-tier archi-
tecture, where different IR models prune the

set of candidate documents further at each stage.
The model at the beginning needs to retrieve from
the full collection, whereas the final model needs to
re-rank only the top candidates.

4http://www.internetlivestats.com/one-second/#google-band

http://www.internetlivestats.com/one-second/#google-band

2.3. Notation 17

Table 2.1: Notation used in this tutorial.

Meaning Notation

Single query q

Single document d

Set of queries Q

Collection of documents D

Term in query q tq

Term in document d td

Full vocabulary of all terms T

Set of ranked results retrieved for query q Rq

Result tuple (document d at rank i) 〈i, d〉, where 〈i, d〉 ∈ Rq

Relevance label of document d for query q relq(d)

di is more relevant than dj for query q relq(di) > relq(dj), or di ≻
q

dj

Frequency of term t in document d tf(t, d)

Number of documents that contain term t df(t)

Vector representation of text z ~vz

Probability function for an event E p(E)

While this list of desired attributes of an IR model is in no way complete,

it serves as a reference for comparing many of the neural and non-neural

approaches described in the rest of this tutorial.

2.3 Notation

We adopt some common notation for this tutorial shown in Table 2.1.

We use lower-case to denote vectors (e.g., ~x) and upper-case for tensors

of higher dimensions (e.g., X). The ground truth relq(d) in Table 2.1

may be based on either manual relevance annotations or be implicitly

derived from user behaviour on SERP (e.g., from clicks).

2.4 Metrics

A large number of IR studies (Granka et al., 2004; Joachims et al., 2005;

Guan and Cutrell, 2007; Joachims et al., 2007; Diaz et al., 2013; Mitra

et al., 2014; Hofmann et al., 2014; Lagun et al., 2014) have demonstrated

18 Fundamentals of text retrieval

that users of retrieval systems tend to pay attention mostly to top-ranked

results. IR metrics, therefore, focus on rank-based comparisons of the

retrieved result set R to an ideal ranking of documents, as determined

by manual judgments or implicit feedback from user behaviour data.

These metrics are typically computed at a rank position, say k, and

then averaged over all queries in the test set. Unless otherwise specified,

R refers to the top-k results retrieved by the model. Next, we describe

a few standard metrics used in IR evaluations.

IR metrics focus on rank-based evaluation of
retrieved results using ground truth informa-

tion, as determined by manual judgments or implicit
feedback from user behaviour data.

Precision and recall Precision and recall both compute the fraction

of relevant documents retrieved for a query q, but with respect to the

total number of documents in the retrieved set Rq and the total number

of relevant documents in the collection D, respectively. Both metrics

assume that the relevance labels are binary.

Precisionq =

∑

〈i,d〉∈Rq
relq(d)

|Rq|
(2.1)

Recallq =

∑

〈i,d〉∈Rq
relq(d)

∑

d∈D relq(d)
(2.2)

Mean reciprocal rank (MRR) Mean reciprocal rank (Craswell, 2009)

is also computed over binary relevance judgments. It is given as the

reciprocal rank of the first relevant document averaged over all queries.

RRq = max
〈i,d〉∈Rq

relq(d)

i
(2.3)

2.5. Traditional IR models 19

Mean average precision (MAP) The average precision (Zhu, 2004)

for a ranked list of documents R is given by,

AvePq =

∑

〈i,d〉∈Rq
Precisionq,i × relq(d)
∑

d∈D relq(d)
(2.4)

where, Precisionq,i is the precision computed at rank i for the

query q. The average precision metric is generally used when relevance

judgments are binary, although variants using graded judgments have

also been proposed (Robertson et al., 2010). The mean of the average

precision over all queries gives the MAP score for the whole set.

Normalized discounted cumulative gain (NDCG) There are a few

different variants of the discounted cumulative gain (DCGq) metric

(Järvelin and Kekäläinen, 2002) which can be used when graded rele-

vance judgments are available for a query q—say, on a five-point scale

between zero to four. One incarnation of this metric is as follows.

DCGq =
∑

〈i,d〉∈Rq

2relq(d) − 1

log2(i + 1)
(2.5)

The ideal DCG (IDCGq) is computed the same way but by assuming

an ideal rank order for the documents up to rank k. The normalized

DCG (NDCGq) is then given by,

NDCGq =
DCGq

IDCGq

(2.6)

2.5 Traditional IR models

In this section, we introduce a few of the traditional IR approaches. The

decades of insights from these IR models not only inform the design

of our new neural based approaches, but these models also serve as

important baselines for comparison. They also highlight the various

desiderata that we expect the neural IR models to incorporate.

20 Fundamentals of text retrieval

BM25 There is a broad family of statistical functions in IR that

consider the number of occurrences of each query term in the document—

i.e., term-frequency (TF)—and the corresponding inverse document

frequency (IDF) of the same terms in the full collection (as an indicator

of the informativeness of the term). One theoretical basis for such

formulations is the probabilistic model of IR that yielded the popular

BM25 (Robertson, Zaragoza, et al., 2009) ranking function.

BM25(q, d) =
∑

tq∈q

idf(tq) ·
tf(tq, d) · (k1 + 1)

tf(tq, d) + k1 ·
(

1 − b + b · |d|
avgdl

) (2.7)

where, avgdl is the average length of documents in the collection

D, and k1 and b are parameters that are usually tuned on a validation

dataset. In practice, k1 is sometimes set to some default value in the

range [1.2, 2.0] and b as 0.75. The idf(t) is computed as,

idf(t) = log
|D| − df(t) + 0.5

df(t) + 0.5
(2.8)

BM25 aggregates the contributions from individual terms but ignores

any phrasal or proximity signals between the occurrences of the different

query terms in the document. A variant of BM25 (Zaragoza et al., 2004;

Robertson et al., 2004) also considers documents as composed of several

fields (such as, title, body, and anchor texts).

Language modelling (LM) In the language modelling based approach

(Ponte and Croft, 1998; Hiemstra, 2001; Zhai and Lafferty, 2001), docu-

ments are ranked by the posterior probability p(d|q).

p(d|q) =
p(q|d).p(d)

∑

d̄∈D p(q|d̄).p(d̄)
(2.9)

∝ p(q|d).p(d) (2.10)

= p(q|d) , assuming p(d) is uniform (2.11)

=
∏

tq∈q

p(tq|d) (2.12)

2.5. Traditional IR models 21

p̂(E) is the maximum likelihood estimate (MLE) of the probability

of event E , and p(q|d) indicates the probability of generating query q

by randomly sampling terms from document d. In its simplest form, we

can estimate p(tq|d) by,

p(tq|d) =
tf(tq, d)

|d|
(2.13)

However, most formulations of language modelling based retrieval

typically employ some form of smoothing (Zhai and Lafferty, 2001) by

sampling terms from both the document d and the full collection D.

The two common smoothing methods are:

1. Jelinek-Mercer smoothing (Jelinek and Mercer, 1980)

p(tq|d) =

(

λ
tf(tq, d)

|d|
+ (1 − λ)

∑

d̄∈D tf(tq, d̄)
∑

d̄∈D |d̄|

)

(2.14)

2. Dirichlet Prior Smoothing (MacKay and Peto, 1995)

p(tq|d) =

(

tf(tq, d) + µ

∑

d̄∈D tf(tq, d̄)
∑

d̄∈D |d̄|

)

/

(

|d| + µ

)

(2.15)

Both TF-IDF and language modelling based approaches estimate doc-

ument relevance based on the count of only the query terms in the

document. The position of these occurrences and the relationship with

other terms in the document are ignored.

Translation models Berger and Lafferty (1999) proposed an alter-

native method to estimate p(tq|d) in the language modelling based

IR approach (Equation 2.12), by assuming that the query q is being

generated via a “translation” process from the document d.

p(tq|d) =
∑

td∈d

p(tq|td) · p(td|d) (2.16)

22 Fundamentals of text retrieval

The p(tq|td) component allows the model to garner evidence of

relevance from non-query terms in the document. Berger and Lafferty

(1999) propose to estimate p(tq|td) from query-document paired data

similar to techniques in statistical machine translation (Brown et al.,

1990; Brown et al., 1993)—but other approaches for estimation have

also been explored (Zuccon et al., 2015).

Dependence model None of the three IR models described so far

consider proximity between query terms. To address this, Metzler and

Croft (2005) proposed a linear model over proximity-based features.

DM(q, d) = (1 − λow − λuw)
∑

tq∈q

log

(

(1 − αd)
tf(tq, d)

|d|
+ αd

∑

d̄∈D tf(tq, d̄)
∑

d̄∈D |d̄|

)

+λow

∑

cq∈ow(q)

log

(

(1 − αd)
tf#1(cq, d)

|d|
+ αd

∑

d̄∈D tf#1(cq, d̄)
∑

d̄∈D |d̄|

)

+λuw

∑

cq∈uw(q)

log

(

(1 − αd)
tf#uwN (cq, d)

|d|
+ αd

∑

d̄∈D tf#uwN (cq, d̄)
∑

d̄∈D |d̄|

)

(2.17)

where, ow(q) and uw(q) are the set of all contiguous n-grams (or phrases)
and the set of all bags of terms that can be generated from query q. tf#1 and
tf#uwN are the ordered-window and unordered-window operators from Indri
(Strohman et al., 2005). Finally, λow and λuw are the tuneable parameters of
the model.

Pseudo relevance feedback (PRF) PRF-based methods—e.g., Relevance
Models (RM) (Lavrenko, 2008; Lavrenko and Croft, 2001)—typically demon-
strate strong performance at the cost of executing an additional round of
retrieval. The set of ranked documents R1 from the first round of retrieval is
used to select expansion terms to augment the query which is used to retrieve
a new ranked set of documents R2 that is presented to the user.

The underlying approach to scoring a document in RM is by computing
the KL divergence (Lafferty and Zhai, 2001) between the query language model
θq and the document language model θd.

score(q, d) = −
∑

t∈T

p(t|θq)log
p(t|θq)

p(t|θd)
(2.18)

2.6. Neural approaches to IR 23

Without PRF,

p(t|θq) =
tf(t, q)

|q|
(2.19)

But under the RM3 (Abdul-Jaleel et al., 2004) formulation the new query
language model θ̄q is estimated by,

p(t|θ̄q) = α
tf(t, q)

|q|
+ (1 − α)

∑

d∈R1

p(t|θd)p(d)
∏

t̄∈q

p(t̄|θd) (2.20)

Besides language models, PRF based query expansion has also been ex-
plored in the context of other retrieval approaches (e.g., (Robertson et al.,
1996; Miao et al., 2012)). By expanding the query using the results from the
first round of retrieval PRF based approaches tend to be more robust to the
vocabulary mismatch problem plaguing many other traditional IR methods.

TF-IDF and language modelling based ap-
proaches only consider the count of query term

occurrences in the document. Dependence model
considers phrasal matches. Translation and PRF
models can deal with vocabulary mismatch between
query and document.

2.6 Neural approaches to IR

Document ranking comprises of performing three primary steps—generate
a representation of the query that specifies the information need, generate
a representation of the document that captures the distribution over the
information contained, and match the query and the document representations
to estimate their mutual relevance. All existing neural approaches to IR can be
broadly categorized based on whether they influence the query representation,
the document representation, or in estimating relevance. A neural approach
may impact one or more of these stages shown in Figure 2.3.

Neural networks are useful as learning to rank models as we will discuss
in Section 5. In these models, a joint representation of query and document is

24 Fundamentals of text retrieval

query text

generate query
representation

doc text

generate doc
representation

estimate relevance

query
vector

doc
vector

point of query
representation

point of match

point of doc
representation

Figure 2.3: Document ranking typically involves a query and a document represen-
tation steps, followed by a matching stage. Neural models can be useful either for
generating good representations or in estimating relevance, or both.

generated using manually designed features and the neural network is used
only at the point of match to estimate relevance, as shown in Figure 2.4a. In
§7.4, we will discuss DNN models, such as (Guo et al., 2016a; Mitra et al.,
2017a), that estimate relevance based on patterns of exact query term matches
in the document. Unlike traditional learning to rank models, however, these
architectures (shown in Figure 2.4b) depend less on manual feature engineering
and more on automatically detecting regularities in good matching patterns.

Neural IR models can be categorized based
on whether they influence the query represen-

tation, the document representation, the relevance
estimation, or a combination of these steps.

In contrast, many (shallow and deep) neural IR models depend on learning
useful low-dimensional vector representations—or embeddings—of query and
document text, and using them within traditional IR models or in conjunction
with simple similarity metrics (e.g., cosine similarity). These models shown in

2.6. Neural approaches to IR 25

query text doc text

generate manually designed features

deep neural network for matching

(a) Learning to rank using manually designed
features (e.g., Liu (2009))

query text

generate query

term vector

doc text

generate doc

term vector

generate matching patterns

query

term vector

doc

term vector

deep neural network for matching

(b) Estimating relevance from patterns of ex-
act matches (e.g., (Guo et al., 2016a; Mitra
et al., 2017a))

query text

generate query

embedding

doc text

generate doc

embedding

cosine similarity

query

embedding

doc

embedding

(c) Learning query and document representa-
tions for matching (e.g., (Huang et al., 2013;
Mitra et al., 2016a))

query text

query expansion

using embeddings

doc text

generate doc

term vector

query likelihood

query

term vector

doc

term vector

(d) Query expansion using neural embeddings
(e.g., (Roy et al., 2016; Diaz et al., 2016))

Figure 2.4: Examples of different neural approaches to IR. In (a) and (b) the neural
network is only used at the point of matching, whereas in (c) the focus is on learning
effective representations of text using neural methods. Neural models can also be
used to expand or augment the query before applying traditional IR techniques, as
shown in (d).

26 Fundamentals of text retrieval

Figure 2.4c may learn the embeddings by optimizing directly for the IR task
(e.g., (Huang et al., 2013)), or in an unsupervised setting (e.g., (Mitra et al.,
2016a)). Finally, Figure 2.4d shows IR approaches where the neural models
are used for query expansion (Diaz et al., 2016; Roy et al., 2016).

While the taxonomy of neural approaches described in this section is rather
simple, it does provide an intuitive framework for comparing the different
neural approaches in IR and highlights the similarities and distinctions between
these different techniques.

3

Unsupervised learning of term representations

3.1 A tale of two representations

Vector representations are fundamental to both information retrieval and
machine learning. In IR, terms are typically the smallest unit of representation
for indexing and retrieval. Therefore, many IR models—both non-neural and
neural—focus on learning good vector representations of terms. Different vector
representations exhibit different levels of generalization—some consider every
term as a distinct entity while others learn to identify common attributes.
Different representation schemes derive different notions of similarity between
terms from the definition of the corresponding vector spaces. Some representa-
tions operate over fixed-size vocabularies, while the design of others obviate
such constraints. They also differ on the properties of compositionality that
defines how representations for larger units of information, such as passages
and documents, can be derived from individual term vectors. These are some
of the important considerations for choosing a term representation suitable for
a specific task.

Local representations Under local (or one-hot) representations, every term
in a fixed size vocabulary T is represented by a binary vector ~v ∈ {0, 1}|T |,
where only one of the values in the vector is one and all the others are set to
zero. Each position in the vector ~v corresponds to a term. The term “banana”,
under this representation, is given by a vector that has the value one in the
position corresponding to “banana” and zero everywhere else. Similarly, the

27

28 Unsupervised learning of term representations

banana

mango

dog

(a) Local representation

banana

mango

dog

fruit elongate ovatebarks has tail

(b) Distributed representation

Figure 3.1: Under local representations the terms “banana”, “mango”, and “dog”
are distinct items. But distributed vector representations may recognize that “banana”
and “mango” are both fruits, but “dog” is different.

terms “mango” and “dog” are represented by setting different positions in the
vector to one. Figure 3.1a highlights that under this scheme each term is a
unique entity, and “banana” is as distinct from “dog” as it is from “mango”.
Terms outside of the vocabulary either have no representation or are denoted
by a special “UNK” symbol under this scheme.

Distributed representations Under distributed representations every term
is represented by a vector ~v ∈ R

|k|. ~v can be a sparse or a dense vector—a vector
of hand-crafted features or a latent representation in which the individual
dimensions are not interpretable in isolation. The key underlying hypothesis
for any distributed representation scheme, however, is that by representing a
term by its attributes allows for defining some notion of similarity between the
different terms based on the chosen properties. For example, in Figure 3.1b
“banana” is more similar to “mango” than “dog” because they are both fruits,
but yet different because of other properties that are not shared between the
two, such as shape.

Under a local or one-hot representation ev-
ery item is distinct. But when items have dis-

tributed or feature based representation, then the
similarity between two items is determined based
on the similarity between their features.

A key consideration in any feature based distributed representation is the
choice of the features themselves. One approach involves representing terms
by features that capture their distributional properties. This is motivated by

3.1. A tale of two representations 29

banana

Doc 8Doc 3 Doc 12

(a) In-document features

banana

likeflies afruit

(b) Neighbouring-term features

banana

fruit-4 a-1flies-3 like-2 fruit+1

(c) Neighbouring-term w/ distance features

banana

nan#ba anana# ban

(d) Character-trigraph features

Figure 3.2: Examples of different feature-based distributed representations of the
term “banana”. The representations in (a), (b), and (c) are based on external contexts
in which the term frequently occurs, while (d) is based on properties intrinsic to the
term. The representation scheme in (a) depends on the documents containing the
term while the scheme shown in (b) and (c) depends on other terms that appears
in its neighbourhood. The scheme (b) ignores inter-term distances. Therefore, in
the sentence “Time flies like an arrow; fruit flies like a banana”, the feature “fruit”
describes both the terms “banana” and “arrow”. However, in the representation
scheme of (c) the feature “fruit−4” is positive for “banana”, and the feature “fruit+1”
for “arrow”.

the distributional hypothesis (Harris, 1954) that states that terms that are
used (or occur) in similar context tend to be semantically similar. Firth (1957)
famously purported this idea of distributional semantics1 by stating “a word is
characterized by the company it keeps”. However, the distribution of different
types of context may model different semantics of a term. Figure 3.2 shows three
different sparse vector representations of the term “banana” corresponding to
different distributional feature spaces—documents containing the term (e.g.,
LSA (Deerwester et al., 1990)), neighbouring terms in a window (e.g., HAL
(Lund and Burgess, 1996), COALS (Rohde et al., 2006), and (Bullinaria and
Levy, 2007)), and neighbouring terms with distance (e.g., (Levy et al., 2014)).
Finally, Figure 3.2d shows a vector representation of “banana” based on the

1Readers should take note that while many distributed representations take
advantage of distributional properties, the two concepts are not synonymous. A term
can have a distributed representation based on non-distributional features—e.g.,
parts of speech classification and character trigraphs in the term.

30 Unsupervised learning of term representations

banana

mango
dog

Figure 3.3: A vector space representation of terms puts “banana” closer to “mango”
because they share more common attributes than “banana” and “dog”.

character trigraphs in the term itself—instead of external contexts in which
the term occurs. In §3.2 we will discuss how choosing different distributional
features for term representation leads to different nuanced notions of semantic
similarity between them. When the vectors are high-dimensional, sparse, and
based on observable features we refer to them as observed (or explicit) vector
representations (Levy et al., 2014). When the vectors are dense, small (k ≪ |T |),
and learnt from data then we instead refer to them as latent vector spaces,
or embeddings. In both observed and latent vector spaces, several distance
metrics can be used to define the similarity between terms, although cosine
similarity is commonly used.

sim(~vi, ~vj) = cos(~vi, ~vj) =
~v ⊺

i ~vj

‖~vi‖‖~vj‖
(3.1)

Most embeddings are learnt from observed features, and hence the dis-
cussions in §3.2 about different notions of similarity are also relevant to the
embedding models. In §3.3 and §3.4 we discuss observed and latent space
representations. In the context of neural models, distributed representations
generally refer to learnt embeddings. The idea of ‘local’ and ‘distributed’ rep-
resentations has a specific significance in the context of neural networks. Each
concept, entity, or term can be represented within a neural network by the
activation of a single neuron (local representation) or by the combined pattern
of activations of several neurons (distributed representation) (Hinton, 1984).

Finally, with respect to compositionality, it is important to understand that
distributed representations of items are often derived from local or distributed
representation of its parts. For example, a document can be represented by the
sum of the one-hot vectors or embeddings corresponding to the terms in the

3.2. Notions of similarity 31

Table 3.1: A toy corpus of short documents that we consider for the discussion on
different notions of similarity between terms under different distributed represen-
tations. The choice of the feature space that is used for generating the distributed
representation determines which terms are closer in the vector space, as shown in
Figure 3.4.

Sample documents

doc 01 Seattle map doc 09 Denver map

doc 02 Seattle weather doc 10 Denver weather

doc 03 Seahawks jerseys doc 11 Broncos jerseys

doc 04 Seahawks highlights doc 12 Broncos highlights

doc 05 Seattle Seahawks Wilson doc 13 Denver Broncos Lynch

doc 06 Seattle Seahawks Sherman doc 14 Denver Broncos Sanchez

doc 07 Seattle Seahawks Browner doc 15 Denver Broncos Miller

doc 08 Seattle Seahawks Ifedi doc 16 Denver Broncos Marshall

document. The resultant vector, in both cases, corresponds to a distributed
bag-of-terms representation. Similarly, the character trigraph representation of
terms in Figure 3.2d is simply an aggregation over the one-hot representations
of the constituent trigraphs.

3.2 Notions of similarity

Any vector representation inherently defines some notion of relatedness between
terms. Is “Seattle” closer to “Sydney” or to “Seahawks”? The answer depends
on the type of relationship we are interested in. If we want terms of similar
type to be closer, then “Sydney” is more similar to “Seattle” because they are
both cities. However, if we are interested to find terms that co-occur in the
same document or passage, then “Seahawks”—Seattle’s football team—should
be closer. The former represents a typical, or type-based notion of similarity
while the latter exhibits a more topical sense of relatedness.

If we want to compare “Seattle” with “Sydney” and “Seahawks based on
their respective vector representations, then the underlying feature space needs
to align with the notion of similarity that we are interested in. It is, therefore,
important for the readers to build an intuition about the choice of features
and the notion of similarity they encompass. This can be demonstrated by
using a toy corpus, such as the one in Table 3.1. Figure 3.4a shows that the
“in documents” features naturally lend to a topical sense of similarity between
the terms, while the “neighbouring terms with distances” features in Figure
3.4c gives rise to a more typical notion of relatedness. Using “neighbouring
terms” without the inter-term distances as features, however, produces a

32 Unsupervised learning of term representations

mixture of topical and typical relationships. This is because when the term
distances (denoted as superscripts) are considered in the feature definition
then the document “Seattle Seahawks Wilson” produces the bag-of-features
{Seahawks+1, Wilson+2} for “Seattle” which is non-overlapping with the bag-
of-features {Seattle−1, Wilson+1} for “Seahawks”. However, when the feature
definition ignores the term-distances then there is a partial overlap between the
bag-of-features {Seahawks, Wilson} and {Seattle, Wilson} corresponding to
“Seattle” and “Seahawks”, respectively. The overlap increases when a larger
window-size over the neighbouring terms is employed pushing the notion of
similarity closer to a topical definition. This effect of the windows size on the
latent vector space was reported by Levy and Goldberg (2014) in the context
of term embeddings.

Different vector representations capture differ-
ent notions of similarity between terms. “Seat-

tle” may be closer to either “Sydney” (typically sim-
ilar) or “Seahawks” (topically similar) depending on
the choice of vector dimensions.

Readers should note that the set of all inter-term relationships goes beyond
the two notions of typical and topical that we discuss in this section. For
example, vector representations could cluster terms closer based on linguistic
styles—e.g., terms that appear in thriller novels versus in children’s rhymes,
or in British versus American English. However, the notions of typical and
topical similarities frequently come up in discussions in the context of many
IR and NLP tasks—sometimes under different names such as Paradigmatic
and Syntagmatic relations2—and the idea itself goes back at least as far as
Saussure (De Saussure, 1916; Harris, 2001; Chandler, 1994; Sahlgren, 2006).

2Interestingly, the notion of Paradigmatic (typical) and Syntagmatic (topical)
relationships show up almost universally—not just in text. In vision, for example, the
different images of “nose” are typically similar to each other, while sharing topical
relationship with images of “eyes” and “ears”. Curiously, Barthes (1977) extended
the analogy to garments. Paradigmatic relationships exist between items of the same
type (e.g., different style of boots) and the proper Syntagmatic juxtaposition of items
from these different Paradigms—from hats to boots—forms a fashionable ensemble.

3.2. Notions of similarity 33

Seahawks

Denver

Broncos

Doc 02

Doc 01

Seattle

Doc 04

Doc 03

Doc 06

Doc 05

Doc 08

Doc 07

Doc 10

Doc 09

Doc 12

Doc 11

Doc 14

Doc 13

Doc 16

Doc 15

(a) “In-documents” features

Seahawks

Denver

Broncos

Denver

Seattle

Seattle

Broncos

Seahawks

weather

map

highlights

jerseys

Sherman

Wilson

Ifedi

Browner

Sanchez

Lynch

Marshall

Miller

(b) “Neighbouring terms” features

Seahawks

Denver

Broncos

Denver-1
Seattle-1

Seattle

Broncos+1
Seahawks+1

weather+1
map+1

highlights+1
jerseys+1

Wilson+2
Wilson+1

Sherman+2
Sherman+1

Browner+2
Browner+1

Ifedi+2
Ifedi+1

Lynch+2
Lynch+1

Sanchez+2
Sanchez+1

Miller+2
Miller+1

Marshall+2
Marshall+1

(c) “Neighbouring terms w/ distances” features

Figure 3.4: The figure shows different distributed representations for the four
terms—”Seattle”, “Seahawks”, “Denver”, and “Broncos”—based on the toy corpus
in Table 3.1. Shaded circles indicate non-zero values in the vectors—the darker shade
highlights the vector dimensions where more than one vector has a non-zero value.
When the representation is based on the documents that the terms occur in then
“Seattle” is more similar to “Seahawks” than to “Denver”. The representation scheme
in (a) is, therefore, more aligned with a topical notion of similarity. In contrast, in
(c) each term is represented by a vector of neighbouring terms—where the distances
between the terms are taken into consideration—which puts “Seattle” closer to
“Denver” demonstrating a typical, or type-based, similarity. When the inter-term
distances are ignored, as in (b), a mix of typical and topical similarities is observed.
Finally, it is worth noting that neighbouring-terms based vector representations leads
to similarities between terms that do not necessarily occur in the same document,
and hence the term-term relationships are less sparse than when only in-document
features are considered.

34 Unsupervised learning of term representations

Seahawks

Denver

Broncos

Seattle

Seahawks – Seattle + Denver

Denver

Seattle

Broncos

Seahawks

weather

map

highlights

jerseys

Sherman

Wilson

Ifedi

Browner

Sanchez

Lynch

Marshall

Miller

Figure 3.5: A visual demonstration of term analogies via simple vector algebra.
The shaded circles denote non-zero values. Darker shade is used to highlight the
non-zero values along the vector dimensions for which the output of ~vSeahawks −

~vSeattle + ~vDenver is positive. The output vector is closest to ~vBroncos as shown in
this toy example.

3.3 Observed feature spaces

Observed feature space representations can be broadly categorized based on
their choice of distributional features (e.g., in documents, neighbouring terms
with or without distances, etc.) and different weighting schemes (e.g., TF-IDF,
positive pointwise mutual information, etc.) applied over the raw counts. We
direct the readers to (Turney and Pantel, 2010; Baroni and Lenci, 2010) which
are good surveys of many existing observed vector representation schemes.

Levy et al. (2014) demonstrated that explicit vector representations are
amenable to the term analogy task using simple vector operations. A term
analogy task involves answering questions of the form “man is to woman as
king is to ____?”—the correct answer to which in this case happens to
be “queen”. In NLP, term analogies are typically performed by simple vector
operations of the following form followed by a nearest-neighbour search,

~vSeahawks − ~vSeattle + ~vDenver ≈ ~vBroncos (3.2)

It may be surprising to some readers that the vector obtained by the
simple algebraic operations ~vSeahawks − ~vSeattle + ~vDenver produces a vector
close to the vector ~vBroncos. We present a visual intuition of why this works
in practice in Figure 3.5, but we refer the readers to (Levy et al., 2014; Arora
et al., 2015) for a more rigorous mathematical handling of this subject.

3.4. Latent feature spaces 35

3.4 Latent feature spaces

While observed vector spaces based on distributional features can capture
interesting relationships between terms, they have one big drawback—the
resultant representations are highly sparse and high-dimensional. The number
of dimensions, for example, may be the same as the vocabulary size, which is
unwieldy for most practical tasks. An alternative is to learn lower dimensional
representations that retains useful attributes from the observed feature spaces.

An embedding is a representation of items in a new space such that
the properties of—and the relationships between—the items are preserved.
Goodfellow et al. (2016) articulate that the goal of an embedding is to generate
a simpler representation—where simplification may mean a reduction in the
number of dimensions, an increase in the sparseness of the representation,
disentangling the principle components of the vector space, or a combination of
these goals. In the context of term embeddings, the explicit feature vectors—like
those discussed in §3.3—constitutes the original representation. An embedding
trained from these features assimilate the properties of the terms and the
inter-term relationships observable in the original feature space.

An embedding is a representation of items in
a new space such that the properties of—and

the relationships between—the items are preserved
from the original representation.

Common approaches for learning embeddings include either factorizing
the term-feature matrix (e.g.LSA (Deerwester et al., 1990)) or using gradient
descent based methods that try to predict the features given the term (e.g.,
(Bengio et al., 2003; Mikolov et al., 2013a)). Baroni et al. (2014) empirically
demonstrate that these feature-predicting models that learn lower dimensional
representations, in fact, also perform better than explicit counting based models
on different tasks—possibly due to better generalization across terms—although
some counter evidence the claim of better performances from embedding models
have also been reported in the literature (Levy et al., 2015).

The sparse feature spaces of §3.3 are easier to visualize and leads to more
intuitive explanations—while their latent counterparts may be more practically
useful. Therefore, it may be useful to think sparse, but act dense in many
scenarios. In the rest of this section, we will describe some of these neural and
non-neural latent space models.

36 Unsupervised learning of term representations

Latent Semantic Analysis (LSA) LSA (Deerwester et al., 1990) involves
performing singular value decomposition (SVD) (Golub and Reinsch, 1970) on
a term-document (or term-passage) matrix X to obtain its low-rank approxi-
mation (Markovsky, 2011). SVD on X involves solving X = UΣV T , where U
and V are orthogonal matrices and Σ is a diagonal matrix.3

X U Σ V ⊺

(~dj) (~dj)

↓ ↓

(~t
⊺

i
)→

x1,1 . . . x1,|D|

...
. . .

...

x|T |,1 . . . x|T |,|D|

= (~t
⊺

i
)→

~u1

. . .

~ul

·

σ1 . . . 0

...
. . .

...
0 . . . σl

·

[

~v1

]

...
[

~vl

]

(3.3)

σ1, . . . , σl, ~u1, . . . , ~ul, and ~v1, . . . , ~vl are the singular values, and the left
and the right singular vectors, respectively. The k largest singular values—and
corresponding singular vectors from U and V —is the rank k approximation of
X (Xk = UkΣkV T

k) and Σk
~ti is the embedding for the ith term.

While LSA operate on a term-document matrix, matrix factorization based
approaches can also be applied to term-term matrices (Rohde et al., 2006;
Bullinaria and Levy, 2012; Lebret and Collobert, 2013).

Probabilistic Latent Semantic Analysis (PLSA) PLSA (Hofmann, 1999)
learns low-dimensional representations of terms and documents by modelling
their co-occurrence p(t, d) as follows,

p(t, d) = p(d)
∑

c∈C

p(c|d)P (t|c) (3.4)

where, C is the set of latent topics—and the number of topics |C| is
a hyperparameter of the model. Both p(c|d) and P (t|c) are modelled as
multinomial distributions and their parameters are typically learned using
the EM algorithm (Dempster et al., 1977). After learning the parameters
of the model, a term ti can be represented as a distribution over the latent
topics [p(c0|ti), . . . , p(c|C|−1|ti)]. In a related approach called Latent Dirichlet
Allocation (LDA) (Blei et al., 2003), each document is represented by a
Dirichlet prior instead of a fixed variable.

Neural term embedding models are typically trained by setting up a predic-
tion task. Instead of factorizing the term-feature matrix—as in LSA—neural

3The matrix visualization is taken from https://en.wikipedia.org/wiki/Latent_
semantic_analysis.

https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_semantic_analysis

3.4. Latent feature spaces 37

models are trained to predict the term from its features. The model learns
dense low-dimensional representations in the process of minimizing the predic-
tion error. These approaches are based on the information bottleneck method
(Tishby et al., 2000)—discussed more in §6.2—with the low-dimensional rep-
resentations acting as the bottleneck. The training data may contain many
instances of the same term-feature pair proportional to their frequency in
the corpus (e.g., word2vec (Mikolov et al., 2013a)), or their counts can be
pre-aggregated (e.g., GloVe (Pennington et al., 2014)).

Instead of factorizing the term-feature matrix,
neural models learn embeddings by setting up

a feature prediction task and employ architectures
motivated by the information bottleneck principle.

Word2vec For word2vec (Mikolov et al., 2013a; Mikolov et al., 2013b;
Mikolov et al., 2013c; Goldberg and Levy, 2014; Rong, 2014), the features
for a term are made up of its neighbours within a fixed size window over
the text. The skip-gram architecture (see Figure 3.6a) is a simple one hidden
layer neural network. Both the input and the output of the model are one-hot
vectors and the loss function is as follows,

Lskip−gram = −
1

|S|

|S|
∑

i=1

∑

−c≤j≤+c,j 6=0

log(p(ti+j |ti)) (3.5)

where, p(ti+j |ti) =
exp ((Wout~vti+j

)⊺(Win~vti
))

∑|T |
k=1 exp ((Wout~vtk

)⊺(Win~vti
))

(3.6)

S is the set of all windows over the training text and c is the number of
neighbours we want to predict on either side of the term ti. The denominator
for the softmax function for computing p(ti+j |ti) sums over all the terms in
the vocabulary. This is prohibitively costly and in practice either hierarchical-
softmax (Morin and Bengio, 2005) or negative sampling is employed, which we
discuss more in §5.2. Note that the model has two different weight matrices Win

and Wout that constitute the learnable parameters of the models. Win gives
us the IN embeddings corresponding to the input terms and Wout corresponds
to the OUT embeddings for the output terms. Generally, only Win is used
and Wout is discarded after training. We discuss an IR application that makes
use of both the IN and the OUT embeddings in §4.1.

38 Unsupervised learning of term representations

Win Wout

ti ti+j

(a) Skip-gram

Win
Wout

t i
+
2

t i
+
1

t i
-
2

t i
-
1

t
i*

t
i

(b) Continuous bag-of-words (CBOW)

Figure 3.6: The (a) skip-gram and the (b) continuous bag-of-words (CBOW)
architectures of word2vec. The architecture is a neural network with a single hidden
layer whose size is much smaller than that of the input and the output layers.
Both models use one-hot representations of terms in the input and the output. The
learnable parameters of the model comprise of the two weight matrices Win and
Wout that corresponds to the embeddings the model learns for the input and the
output terms, respectively. The skip-gram model trains by minimizing the error
in predicting a term given one of its neighbours. The CBOW model, in contrast,
predicts a term from a bag of its neighbouring terms.

3.4. Latent feature spaces 39

The continuous bag-of-words (CBOW) architecture (see Figure 3.6b) is
similar to the skip-gram model, except that the task is to predict the middle
term given all the neighbouring terms in the window. The CBOW model
creates a single training sample with the sum of the one-hot vectors of the
neighbouring terms as input and the one-hot vector ~vti

—corresponding to the
middle term—as the expected output. Contrast this with the skip-gram model
that creates 2 × c samples by individually pairing each neighbouring term with
the middle term. During training, the skip-gram model trains slower than the
CBOW model (Mikolov et al., 2013a) because it creates more training samples
from the same windows of text.

LCBOW = −
1

|S|

|S|
∑

i=1

log(p(ti|ti−c, . . . , ti−1, ti+1, . . . , ti+c)) (3.7)

Word2vec gained particular popularity for its ability to perform term
analogies using simple vector algebra, similar to what we discussed in §3.3. For
domains where the interpretability of the embeddings is important, Sun et al.
(2016b) introduced an additional constraint in the loss function to encourage
more sparseness in the learnt representations.

Lsparse−CBOW = Lsparse−CBOW − λ
∑

t∈T

‖~vt‖1 (3.8)

GloVe The skip-gram model trains on individual term-neighbour pairs. If
we aggregate all the training samples such that xij is the frequency of the pair
〈ti, tj〉 in the training data, then the loss function changes to,

Lskip−gram = −

|T |
∑

i=1

|T |
∑

j=1

xij log(p(tj |ti)) (3.9)

= −

|T |
∑

i=1

xi

|T |
∑

j=1

xij

xi

log(p(tj |ti)) (3.10)

= −

|T |
∑

i=1

xi

|T |
∑

j=1

p̄(tj |ti)log(p(tj |ti)) (3.11)

=

|T |
∑

i=1

xiH(p̄(tj |ti), p(tj |ti)) (3.12)

40 Unsupervised learning of term representations

Wd,in Wt,out

dj ti

ti+2ti+1ti-2 ti-1

Wt,in

Figure 3.7: The paragraph2vec architecture as proposed by Le and Mikolov (2014)
trains by predicting a term given a document (or passage) ID containing the term.
By trying to minimize the prediction error, the model learns an embedding for the
term as well as for the document. In some variants of the architecture, optionally
the neighbouring terms are also provided as input—as shown in the dotted box.

H(. . .) is the cross-entropy error between the actual co-occurrence proba-
bility p̄(tj |ti) and the one predicted by the model p(tj |ti). This is similar to the
loss function for GloVe (Pennington et al., 2014) if we replace the cross-entropy
error with a squared-error and apply a saturation function f(. . .) over the
actual co-occurrence frequencies.

LGloV e = −

|T |
∑

i=1

|T |
∑

j=1

f(xij)(log(xij − ~v ⊺

wi
~vwj

))2 (3.13)

(3.14)

3.4. Latent feature spaces 41

where,

f(x) =

{

(x/xmax)α, ifx ≤ xmax

1, otherwise
(3.15)

GloVe is trained using AdaGrad (Duchi et al., 2011). Similar to word2vec,
GloVe also generates two different (IN and OUT) embeddings, but unlike
word2vec it generally uses the sum of the IN and the OUT vectors as the
embedding for each term in the vocabulary.

Paragraph2vec Following the popularity of word2vec (Mikolov et al., 2013a;
Mikolov et al., 2013b), similar neural architectures (Le and Mikolov, 2014;
Grbovic et al., 2015b; Grbovic et al., 2015a; Sun et al., 2015; Ai et al., 2016b; Ai
et al., 2016a) have been proposed that trains on term-document co-occurrences.
The training typically involves predicting a term given the ID of a document
or a passage that contains the term. In some variants, as shown in Figure 3.7,
neighbouring terms are also provided as input. The key motivation for training
on term-document pairs is to learn an embedding that is more aligned with a
topical notion of term-term similarity—which is often more appropriate for
IR tasks. The term-document relationship, however, tends to be more sparse
(Yan et al., 2013)—including neighbouring term features may compensate
for some of that sparsity. In the context of IR tasks, Ai et al. (2016b) and
Ai et al. (2016a) proposed a number of IR-motivated changes to the original
Paragraph2vec (Le and Mikolov, 2014) model training—including, document
frequency based negative sampling and document length based regularization.

4

Term embeddings for IR

Traditional IR models use local representations of terms for query-document
matching. The most straight-forward use case for term embeddings in IR
is to enable inexact matching in the embedding space. In §2.2, we argued
the importance of inspecting non-query terms in the document for garnering
evidence of relevance. For example, even from a shallow manual inspection, it
is possible to conclude that the passage in Figure 4.1a is about Albuquerque
because it contains “metropolitan”, “population”, and “area” among other
informative terms. On the other hand, the passage in Figure 4.1b contains
“simulator”, “interpreter”, and “Altair” which suggest that the passage is
instead more likely related to computers and technology. In traditional term
counting based IR approaches these signals are often ignored.

Term embeddings can be useful for inexact
matching—either by deriving latent vector

representations of the query and the document text
for matching, or as a mechanism for selecting addi-
tional terms for query expansion.

42

4.1. Query-document matching 43

Albuquerque is the most populous city in the U.S. state of New
Mexico. The high-altitude city serves as the county seat of Bernalillo
County, and it is situated in the central part of the state, straddling
the Rio Grande. The city population is 557,169 as of the July 1,
2014 population estimate from the United States Census Bureau,
and ranks as the 32nd-largest city in the U.S. The Albuquerque
metropolitan statistical area (or MSA) has a population of 907,301
according to the United States Census Bureau’s most recently
available estimate for 2015.

(a) About Albuquerque

Allen suggested that they could program a BASIC interpreter for
the device; after a call from Gates claiming to have a working
interpreter, MITS requested a demonstration. Since they didn’t
actually have one, Allen worked on a simulator for the Altair while
Gates developed the interpreter. Although they developed the
interpreter on a simulator and not the actual device, the interpreter
worked flawlessly when they demonstrated the interpreter to MITS
in Albuquerque, New Mexico in March 1975; MITS agreed to
distribute it, marketing it as Altair BASIC.

(b) Not about Albuquerque

Figure 4.1: Two passages both containing exactly a single occurrence of the query
term “Albuquerque”. However, the passage in (a) contains other terms such as
“population” and “area” that are relevant to a description of the city. In contrast,
the terms in passage (b) suggest that it is unlikely to be about the city, and only
mentions the city potentially in a different context.

Unsupervised term embeddings can be incorporated into existing IR ap-
proaches for inexact matching. These approaches can be broadly categorized
as those that compare the query with the document directly in the embedding
space; and those that use embeddings to generate suitable query expansion
candidates from a global vocabulary and then perform retrieval based on the
expanded query. We discuss both these classes of approaches in the remainder
of this section.

4.1 Query-document matching

One strategy for using term embeddings in IR involves deriving a dense
vector representation for the query and the document from the embeddings
of the individual terms in the corresponding texts. The term embeddings can
be aggregated in different ways, although using the average word (or term)
embeddings (AWE) is quite common (Kiros et al., 2014; Le and Mikolov, 2014;

44 Term embeddings for IR

Vulić and Moens, 2015; Mitra et al., 2016a; Nalisnick et al., 2016; Kenter et al.,
2016; Sun et al., 2016a). Non-linear combinations of term vectors—such as
using Fisher Kernel Framework (Clinchant and Perronnin, 2013)—have also
been explored, as well as other families of aggregate functions of which AWE
has been shown to be a special case (Zamani and Croft, 2016b).

The query and the document embeddings themselves can be compared
using a variety of similarity metrics, such as cosine similarity or dot-product.
For example,

sim(q, d) = cos(~vq, ~vd) =
~v ⊺

q ~vd

‖~vq‖‖~vd‖
(4.1)

where, ~vq =
1

|q|

∑

tq∈q

~vtq

‖~vtq
‖

(4.2)

~vd =
1

|d|

∑

td∈d

~vtd

‖~vtd
‖

(4.3)

An important consideration here is the choice of the term embeddings that
is appropriate for the retrieval scenario. While, LSA (Deerwester et al., 1990),
word2vec (Mikolov et al., 2013b), and GloVe (Pennington et al., 2014) are
commonly used—it is important to understand how the notion of inter-term
similarity modelled by a specific vector space may influence its performance on
a retrieval task. In the example in Figure 4.1, we want to rank documents that
contains related terms—such as “population” or “area”—higher. These terms
are topically similar to the query term “Albuquerque”. Intuitively, a document
about “Tucson”—which is typically similar to “Albuquerque”—is unlikely to
satisfy the user intent. The discussion in §3.2 on how input features influence
the notion of similarity in the learnt vector space is relevant here.

Models, such as LSA (Deerwester et al., 1990) and Paragraph2vec (Le
and Mikolov, 2014), that consider term-document pairs generally capture
topical similarities in the learnt vector space. On the other hand, word2vec
(Mikolov et al., 2013b) and GloVe (Pennington et al., 2014) embeddings may
incorporate a mixture of topical and typical notions of relatedness. The inter-
term relationships modelled in these latent spaces may be closer to type-based
similarities when trained with short window sizes or on short text, such as on
keyword queries (Levy and Goldberg, 2014; Mitra et al., 2016a).

In §3.4, we note that the word2vec model learns two different embeddings—
IN and OUT—corresponding to the input and the output terms. In retrieval,
if a query contains a term ti then—in addition to the frequency of occurrences
of ti in the document—we may also consider the presence of a different term tj

in the document to be a supporting evidence of relevance if the pair of terms
〈ti, tj〉 frequently co-occurs in the collection. As shown in Equation 3.5, in

4.1. Query-document matching 45

Table 4.1: Different nearest neighbours in the word2vec embedding space based
on whether we compute IN-IN, OUT-OUT, or IN-OUT similarities between the
terms. The examples are from (Nalisnick et al., 2016; Mitra et al., 2016a) where the
word2vec embeddings are trained on search queries. Training on short query text,
however, makes the inter-term similarity more pronouncedly typical (where, “Yale”
is closer to “Harvard” and “NYU”) when both terms are represented using their IN
vectors. In contrast, the IN-OUT similarity (where, “Yale” is closer to “faculty” and
“alumni”) mirrors more the topical notions of relatedness.

yale seahawks

IN-IN OUT-OUT IN-OUT IN-IN OUT-OUT IN-OUT

yale yale yale seahawks seahawks seahawks

harvard uconn faculty 49ers broncos highlights

nyu harvard alumni broncos 49ers jerseys

cornell tulane orientation packers nfl tshirts

tulane nyu haven nfl packers seattle

tufts tufts graduate steelers steelers hats

the skip-gram model this probability of co-occurrence p(tj |ti) is proportional
to (Wout~vtj

)⊺(Win~vti
)—i.e., the dot product between the IN embeddings of

ti and the OUT embeddings of tj . Therefore, Nalisnick et al. (2016) point
out that when using word2vec embeddings for estimating the relevance of a
document to a query, it is more appropriate to compute the IN-OUT similarity
between the query and the document terms. In other words, the query terms
should be represented using the IN embeddings and the document terms using
the OUT embeddings. Table 4.1 highlights the difference between IN-IN or
IN-OUT similarities between terms.

The proposed Dual Embedding Space Model (DESM)1 (Nalisnick et al.,
2016; Mitra et al., 2016a) estimates the query-document relevance as follows,

DESMin−out(q, d) =
1

|q|

∑

tq∈q

~v ⊺

tq,in~vd,out

‖~vtq,in‖‖~vd,out‖
(4.4)

~vd,out =
1

|d|

∑

td∈d

~vtd,out

‖~vtd,out‖
(4.5)

An alternative to representing queries and documents as an aggregate of
their term embeddings is to incorporate the term representations into existing

1The dual term embeddings trained on Bing queries is available for download at
https://www.microsoft.com/en-us/download/details.aspx?id=52597

https://www.microsoft.com/en-us/download/details.aspx?id=52597

46 Term embeddings for IR

IR models, such as the ones we discussed in §2.5. Zuccon et al. (2015) proposed
the Neural Translation Language Model (NTLM) that uses the similarity
between term embeddings as a measure for term-term translation probability
p(tq|td) in Equation 2.17.

p(tq|td) =
cos(~vtq

, ~vtd
)

∑

t∈T cos(~vt, ~vtd
)

(4.6)

On similar lines, Ganguly et al. (2015) proposed the Generalized Language
Model (GLM) which extends the Language Model based approach in Equation
2.15 to,

p(d|q) =
∏

tq∈q

(

λ
tf(tq, d)

|d|

+ α

∑

td∈d (sim(~vtq
, ~vtd

) · tf(td, d))
∑

td1
∈d

∑

td2
∈d sim(~vtd1

, ~vtd2
) · |d|

2

+ β

∑

t̄∈Nt
(sim(~vtq

, ~vt̄) ·
∑

d̄∈D tf(t̄, d̄))
∑

td1
∈Nt

∑

td2
∈Nt

sim(~vtd1
, ~vtd2

) ·
∑

d̄∈D |d̄| · |Nt|

+ (1 − α − β − λ)

∑

d̄∈D tf(tq, d̄)
∑

d̄∈D |d̄|

)

(4.7)

where, Nt is the set of nearest-neighbours of term t. Ai et al. (2016a)
incorporate paragraph vectors (Le and Mikolov, 2014) into the query-likelihood
model (Ponte and Croft, 1998).

Another approach, based on the Earth Mover’s Distance (EMD) (Rubner
et al., 1998), involves estimating similarity between pairs of documents by
computing the minimum distance in the embedding space that each term in
the first document needs to travel to reach the terms in the second document.
This measure, commonly referred to as the Word Mover’s Distance (WMD),
was originally proposed by Wan et al. (Wan and Peng, 2005; Wan, 2007),
but used WordNet and topic categories instead of embeddings for defining
the distance between terms. Term embeddings were later incorporated into
the model by Kusner et al. (Kusner et al., 2015; Huang et al., 2016). Finally,
Guo et al. (2016b) incorporated similar notion of distance into the Non-linear
Word Transportation (NWT) model that estimates relevance between a a query
and a document. The NWT model involves solving the following constrained
optimization problem,

4.1. Query-document matching 47

max
∑

tq∈q

log

(

∑

td∈u(d)

f(tq, td) · max
(

cos(~vtq
, ~vtd

), 0
)idf(tq)+b

)

(4.8)

subject to f(tq, td) ≥ 0, ∀tq ∈ q, td ∈ d (4.9)

and
∑

tq∈q

f(tq, td) =

tf(td) + µ

∑

d̄∈D
tf(tq,d̄)

∑

d̄∈D
|d̄|

|d| + µ
, ∀td ∈ d (4.10)

where, idf(t) =
|D| − df(t) + 0.5

df(t) + 0.5
(4.11)

u(d) is the set of all unique terms in document d, and b is a constant.
Another term-alignment based distance metric was proposed by Kenter

and Rijke (n.d.) for computing short-text similarity. The design of the saliency-
weighted semantic network (SWSN) is motivated by the BM25 (Robertson,
Zaragoza, et al., 2009) formulation.

swsn(sl, ss) =
∑

tl∈sl

idf(tl) ·
sem(tl, ss) · (k1 + 1)

sem(tl, ss) + k1 ·
(

1 − b + b · |ss|
avgsl

)

(4.12)

where, sem(t, s) = max
t̄∈s

cos(~vt, ~vt̄) (4.13)

Here ss is the shorter of the two sentences to be compared, and sl the
longer sentence.

Figure 4.2 highlights the distinct strengths and weaknesses of matching using
local and distributed representations of terms for retrieval. For the query
“Cambridge”, a local representation (or exact matching) based model can easily
distinguish between the passage on Cambridge (Figure 4.2a) and the one on
Oxford (Figure 4.2b). However, the model is easily duped by a non-relevant
passage that has been artificially injected with the term “Cambridge” (Figure
4.2c). The embedding space based matching, on the other hand, can spot that
the other terms in the passage provide clear indication that the passage is not
about a city, but fails to realize that the passage about Oxford (Figure 4.2b) is
inappropriate for the same query.

Embedding based models often perform poorly when the retrieval is per-
formed over the full document collection (Mitra et al., 2016a). However, as
seen in the example of Figure 4.2, the errors made by embedding based models
and exact matching models may be different—and the combination of the two

48 Term embeddings for IR

the city of cambridge is a university city and the county town of

cambridgeshire , england . it lies in east anglia , on the river cam , about 50 miles (

80 km) north of london . according to the united kingdom census 2011 , its population

was 123867 (including 24488 students) . this makes cambridge the second largest city

in cambridgeshire after peterborough , and the 54th largest in the united kingdom

. there is archaeological evidence of settlement in the area during the bronze age and roman

times ; under viking rule cambridge became an important trading centre
. the first town charters were granted in the 12th century , although city status was not conferred

until 1951 .

(a) Passage about the city of Cambridge

oxford is a city in the south east region of england and the county town of oxfordshire

. with a population of 159994 it is the 52nd largest city in the united kingdom , and one of

the fastest growing and most ethnically diverse . oxford has a broad economic base . its

industries include motor manufacturing , education , publishing and a large number

of information technology and sciencebased businesses , some being academic offshoots . the city is

known worldwide as the home of the university of oxford , the oldest university in the

englishspeaking world . buildings in oxford demonstrate examples of every english architectural period

since the arrival of the saxons , including the mid18thcentury radcliffe camera . oxford is known as the

city of dreaming spires , a term coined by poet matthew arnold .

(b) Passage about the city of Oxford

the cambridge (giraffa camelopardalis) is an african eventoed ungulate mammal ,

the tallest living terrestrial animal and the largest ruminant . its species name refers to its camellike

shape and its leopardlike colouring . its chief distinguishing characteristics are its extremely long neck and

legs , its hornlike ossicones , and its distinctive coat patterns . it is classified under the family giraffidae , along with its

closest extant relative , the okapi . the nine subspecies are distinguished by their coat patterns

. the scattered range of giraffes extends from chad in the north to south africa in the south ,

and from niger in the west to somalia in the east . giraffes usually inhabit savannas , grasslands

, and open woodlands .

(c) Passage about giraffes, but ’giraffe’ is replaced by ’Cambridge’

Figure 4.2: A visualization of IN-OUT similarities between terms in different
passages with the query term “Cambridge”. The visualization reveals that, besides
the term “Cambridge”, many other terms in the passages about both Cambridge
and Oxford have high similarity to the query term. The passage (c) is adapted from
a passage on giraffes by replacing all the occurrences of the term “giraffe” with
“cambridge”. However, none of the other terms in (c) are found to be relevant to the
query term. An embedding based approach may be able to determine that passage
(c) is non-relevant to the query “Cambridge”, but fail to realize that passage (b)
is also non-relevant. A term counting-based model, on the other hand, can easily
identify that passage (b) is non-relevant but may rank passage (c) incorrectly high.

4.2. Query expansion 49

is often preffered (Hofmann, 1999; Ganguly et al., 2015; Mitra et al., 2016a;
Ai et al., 2016a). Another technique is to use the embedding based model to
re-rank only a subset of the documents retrieved by a different—generally
an exact matching based—IR model. The chaining of different IR models
where each successive model re-ranks a smaller number of candidate docu-
ments is called Telescoping (Matveeva et al., 2006). Telescoping evaluations
are common in the neural IR literature (Mitra et al., 2016a; Huang et al., 2013;
Shen et al., 2014a; Guo et al., 2016a; Mitra et al., 2017a) and the results are
representative of performances of these models on re-ranking tasks. However,
as Mitra et al. (2016a) demonstrate, good performances on re-ranking tasks
may not be indicative how the model would perform if the retrieval involves
larger document collections.

Embedding based models often make different
errors than exact matching models, and the

combination of the two may be more effective.

4.2 Query expansion

Instead of comparing the query and the document directly in the embedding
space, an alternative approach is to use term embeddings to find good expansion
candidates from a global vocabulary, and then retrieving documents using
the expanded query. Different functions (Diaz et al., 2016; Roy et al., 2016;
Zamani and Croft, 2016a) have been proposed for estimating the relevance of
candidate terms to the query—all of them involves comparing the candidate
term individually to every query term using their vector representations, and
then aggregating the scores. For example, (Diaz et al., 2016; Roy et al., 2016)
estimate the relevance of candidate term tc as,

score(tc, q) =
1

|q|

∑

tq∈q

cos(~vtc
, ~vtq

) (4.14)

Term embedding based query expansion on its own performs worse than
pseudo-relevance feedback (Roy et al., 2016). But like the models in the
previous section, shows better performances when used in combination with
PRF (Zamani and Croft, 2016a).

Diaz et al. (2016) explored the idea of query-specific term embeddings
and found that they are more effective in identifying good expansion terms

50 Term embeddings for IR

(a) Global embedding (b) Local embedding

Figure 4.3: A two-dimensional visualization of term embeddings when the vector
space is trained on a (a) global corpus and a (b) query-specific corpus, respectively.
The grey circles represent individual terms in the vocabulary. The white circle
represents the query “ocean remote sensing” as the centroid of the embeddings of
the individual query terms, and the light grey circles correspond to good expansion
terms for this query. When the representations are query-specific then the meaning
of the terms are better disambiguated, and more likely to result in the selection of
good expansion terms.

than a global representation (see Figure 4.3). The local model proposed by
Diaz et al. (2016) incorporate relevance feedback in the process of learning
the term embeddings—a set of documents is retrieved for the query and a
query-specific term embedding model is trained. This local embedding model is
then employed for identifying expansion candidates for the query for a second
round of document retrieval.

Query-specific local analysis is more effective
for query expansion than approaches that per-

form global analysis.

Term embeddings have also been explored for re-weighting query terms (Zheng
and Callan, 2015) and finding relevant query re-writes (Grbovic et al., 2015b),
as well as in the context of other IR tasks such as cross-lingual retrieval (Vulić
and Moens, 2015) and entity retrieval (Van Gysel et al., 2016a; Van Gysel et al.,
2016b). In §7, we will discuss neural network models with deeper architectures
and their applications to retrieval.

5

Supervised learning to rank

Learning to rank (LTR) for IR uses training data relq(d), such as human
relevance labels and click data, to train towards an IR objective. This is
distinct from the models in the previous section, which do not rely on IR
data for ranking or for learning term representations. LTR models represent a
rankable item—e.g., a query-document pair—as a feature vector ~x ∈ R

n. The
ranking model f : ~x → R is trained to map the vector to a real-valued score
such that for a given query more relevant documents are scored higher and
some chosen rank-based metric is maximized. The model training is said to be
end-to-end if the parameters of f are learned all at once rather than in parts,
and if the vector ~x contains simple features rather than models. Liu (2009)
categorizes the different LTR approaches based on their training objectives.

• In the pointwise approach, the relevance information relq(d) is in the
form of a numerical value associated with every query-document pair
with input vector ~xq,d. The numerical relevance label can be derived from
binary or graded relevance judgments or from implicit user feedback,
such as a clickthrough rate. A regression model is typically trained on
the data to predict the numerical value relq(d) given ~xq,d.

• In the pairwise approach, the relevance information is in the form of
preferences between pairs of documents with respect to individual queries
(e.g., di ≻

q
dj). The ranking problem in this case reduces to that of a

binary classification to predict the more relevant document.

• Finally, the listwise approach involves directly optimizing for a rank-

51

52 Supervised learning to rank

based metric such as NDCG—which is more challenging because these
metrics are often not continuous (and hence not differentiable) with
respect to the model parameters.

Many machine learning models—including support vector machines (Yue
et al., 2007), neural networks (Burges et al., 2005), and boosted decision trees
(Wu et al., 2010)—have been employed over the years for the LTR task, and a
correspondingly large number of different loss functions have been explored.

In learning to rank, direct supervision is used
to optimize the model for a ranking task.

5.1 Input features

Traditional LTR models employ hand-crafted features for representing query-
document pairs in ~x. The design of these features typically encodes key IR
insights and belong to one of the three categories.

• Query-independent or static features (e.g., incoming link count and
document length)

• Query-dependent or dynamic features (e.g., BM25)

• Query-level features (e.g., query length)

In contrast, in recently proposed neural LTR models the deep architecture
is responsible for feature learning from simple vector representations of the
input which may resemble the schemes described in §6.1 (e.g., (Huang et al.,
2013)) or the interaction-based representations that we discuss later in §7.3
(e.g., (Mitra et al., 2017a; Pang et al., 2016a)). These features, learnt from
the query and document texts, can be combined with other features that may
not be possible to infer from the content, such as document popularity (Shan
et al., 2016).

5.2 Loss functions

In ad-hoc retrieval, the LTR model needs to rank the documents in a collection
D in response to a query. When training a neural model for this task, the ideal
ranking of documents for a query q from the training dataset can be determined
based on the relevance labels relq(d) associated with each document d ∈ D.

5.2. Loss functions 53

In the pointwise approach, the neural model is trained to directly estimate
relq(d), which can be a numeric value or a categorical label.

Regression loss Given ~xq,d, the task of estimating the relevance label
relq(d) can be cast as a regression problem, and a standard loss function—such
as the square loss—can be employed.

Lsquared = ‖relq(d) − s(~xq,d)‖2 (5.1)

where, s(~xq,d) is the score predicted by the model and relq(d) can either be
the value of the relevance label (Cossock and Zhang, 2006) or the one-hot
representation when the label is categorical (Fuhr, 1989).

Classification loss When the relevance labels in the training data are
categorical, it makes more sense to treat the label prediction problem as a
multiclass classification. The neural model under this setting, estimates the
probability of a label y given ~xq,d. The probability of the correct label yq,d

(= relq(d)) can be obtained by the softmax function,

p(yq,d|q, d) = p(yq,d|~xq,d) =
eγ·s
(

~xq,d , yq,d

)

∑

y∈Y eγ·s(~xq,d , y)
(5.2)

The softmax function normalizes the score of the correct label against the
set of all possible labels Y . The cross-entropy loss can then be applied (Li
et al., 2008) as follows,

Lclassification = −log
(

p(yq,d|q, d)
)

= −log
(eγ·s

(

~xq,d , yq,d

)

∑

y∈Y eγ·s(~xq,d , y)

)

(5.3)

However, a ranking model does not need to estimate the true relevance label
accurately as long as it ranks the relevant documents D+ over all the other
candidates in D. Typically, only a few documents from D are relevant to
q. If we assume a binary notion of relevance, then the problem is similar to
multi-label classification—or, multiclass classification if we assume a single
relevant document d+ per query—where the candidate documents are the
classes. Next, we discuss loss functions for LTR models that tries to predict
the relevant document by maximizing p(d+|q). Note that this is different from
the classification loss in Equation 5.3 which maximizes p(yq,d|q, d).

54 Supervised learning to rank

Contrastive loss In representation learning models, a relevant document
should be closer to the query representation than a non-relevant document.
The contrastive loss (Chopra et al., 2005; Hadsell et al., 2006)—common in
image retrieval—learns the model parameters by minimizing the distance
between a relevant pair, while increasing the distance between dissimilar items.

LContrastive(q, d, yq,d) = yq,d · Lpos(distq,d) (5.4)

+ (1 − yq,d) · Lneg(distq,d) (5.5)

Contrastive loss assumes that the relevance label yq,d ∈ {0, 1} is binary.
For each training sample, either Lpos or Lneg is applied over the distance
distq,d as predicted by the model. In particular, Hadsell et al. (2006) use the
following formulation of this loss function.

LContrastive(q, d, yq,d) = yq,d ·
1

2

(

max(0, m − distq,d)
)2

(5.6)

+ (1 − yq,d) · (distq,d)2 (5.7)

where, m is a margin.

Cross-Entropy loss over documents The probability of ranking d+ over
all the other documents in the collection D is given by the softmax function,

p(d+|q) =
eγ·s
(

q,d+
)

∑

d∈D eγ·s(q,d)
(5.8)

The cross-entropy (CE) loss then maximizes the difference between scores
generated by the model for relevant and less relevant documents.

LCE(q, d+, D) = −log
(

p(d+|q)
)

(5.9)

= −log
(eγ·s

(

q,d+
)

∑

d∈D eγ·s(q,d)

)

(5.10)

However, when D is the full collection then computing the softmax (i.e. the
denominator in Equation 5.10) is prohibitively expensive. Coincidentally, the
CE loss is also useful for non-IR tasks, such as language modelling (Bengio
et al., 2003; Mikolov et al., 2013a), where the model needs to predict a
single term from a large vocabulary given its neighbours as input. Several
different approaches have been proposed in the LM literature to address this
computational complexity that is relevant to our discussion. We briefly describe
some of these strategies here.

5.2. Loss functions 55

Hierarchical softmax Instead of computing p(d+|q) directly, Goodman
(2001) groups the candidates D into a set of classes C, and then predicts the
correct class c+ given q followed by predicting d+ given 〈c+, q〉.

p(d+|q) = p(d+|c+, x) · p(c+|q) (5.11)

The computational cost in this modified approach is a function of |C|+ |c+|
which is typically much smaller than |D|. Further computational efficiency
can be achieved by employing a hierarchy of such classes (Morin and Bengio,
2005; Mnih and Hinton, 2009). The hierarchy of classes is typically based
on either similarity between candidates (Brown et al., 1992; Le et al., 2011;
Mikolov et al., 2013a), or frequency binning (Mikolov et al., 2011). Zweig
and Makarychev (2013) and Grave et al. (2016) have explored strategies for
building the hierarchy that directly minimizes the computational complexity.

Computing the cross-entropy loss with a soft-
max is costly because the softmax normaliza-

tion involves scoring every candidate in the collec-
tion using the trained model. Alternatives include
applying hierarchical categories over candidates or
approximating the loss function by considering only
a sample of candidates from the collection.

Importance sampling (IS) An alternative to computing the exact softmax,
is to approximately estimate it using sampling based approaches. Note, that
we can re-write Equation 5.10 as follows,

LCE(q, d+, D) = −log
(eγ·s

(

q,d+
)

∑

d∈D eγ·s(q,d)

)

(5.12)

= −γ · s
(

q, d+
)

+ log
∑

d∈D

eγ·s(q,d) (5.13)

To train a neural model using back-propagation, we need to compute the
gradient ∇θ of the loss LCE with respect to the model parameters θ,

56 Supervised learning to rank

∇θLCE(q, d+, Y) = −γ∇θ · s
(

q, d+
)

+ ∇θlog
∑

d∈D

eγ·s(q,d) (5.14)

= −γ∇θ · s
(

q, d+
)

+
∇θ

∑

d∈D eγ·s(q,d)

∑

d∈D eγ·s(q,d)
(5.15)

= −γ∇θ · s
(

q, d+
)

+

∑

d∈D ∇θeγ·s(q,d)

∑

d∈D eγ·s(q,d)
(5.16)

= −γ∇θ · s
(

q, d+
)

+

∑

d∈D γ · eγ·s(q,d)∇θs(q, d)
∑

d∈D eγ·s(q,d)
(5.17)

= −γ∇θ · s
(

q, d+
)

+ γ
∑

d∈D

eγ·s(q,d)

∑

d∈D eγ·s(q,d)
∇θs(q, d) (5.18)

= −γ∇θ · s
(

q, d+
)

+ γ
∑

d∈D

p(d|q)∇θs(q, d) (5.19)

As Senécal and Bengio (2003) point out, the first component of the gradient
γ∇θs

(

q, d+
)

is the positive reinforcement to the model for the correct can-
didate d+ and the second component γ

∑

d∈D p(d|q)∇θs(q, d) is the negative
reinforcement corresponding to all the other (incorrect) candidates. The key
idea behind sampling based approaches is to estimate the second component
without computing the costly sum over the whole candidate set. In IS (Bengio,
Senécal, et al., 2003; Jean et al., 2014; Bengio and Senécal, 2008; Jozefowicz
et al., 2016), Monte-Carlo method is used to estimate the second component.

Noise Contrastive Estimation (NCE) In NCE (Gutmann and Hyvärinen,
2010; Mnih and Teh, 2012; Vaswani et al., 2013), the task is modified to that
of a binary classification. The model is trained to distinguish a sample drawn
from a true distribution p(d|q) from a sample drawn from a noisy distribution
p̃(d). The training data contains k noisy samples for every true sample. Let, E
and Ē indicate that a sample is drawn from the true and the noisy distributions,
respectively. Then,

p(E|q, d) =
p(d|q)

p(d|q) + k × p̃(d)
(5.20)

p(Ē |q, d) =
k × p̃(d)

p(d|q) + k × p̃(d)
(5.21)

We want our model to learn the true distribution p(d|q). Remember, that

5.2. Loss functions 57

according to our model,

p(d|q) =
eγ·s(q,d)

∑

d̄∈D eγ·s(q,d̄)
(5.22)

=
eγ·s(q,d)

z(q)
(5.23)

A key efficiency trick involves setting z(q) to 1 (Mnih and Teh, 2012;
Vaswani et al., 2013; Zoph et al., 2016). Therefore,

p(d|q) = eγ·s(q,d) (5.24)

Putting Equation 5.24 back in Equation 5.20 and 5.21.

p(E|q, d) =
eγ·s(q,d)

eγ·s(q,d) + k × p̃(d)
(5.25)

p(Ē |q, d) =
k × p̃(d)

eγ·s(q,d) + k × p̃(d)
(5.26)

Finally, the NCE loss is given by,

LNCE = −
∑

〈x,d+〉

(

log p(E|x, d+) +

k
∑

i=1

log p(Ē |x, y−
i)

)

(5.27)

= −
∑

〈x,d+〉

(

log
eγ·s(q,d+)

eγ·s(q,d+) + k × p̃(d+)
+

k
∑

i=1

log
k × p̃(y−

i)

eγ·s(q,d−

i
) + k × p̃(y−

i)

)

(5.28)

Note, that the outer summation iterates over all the positive 〈x, d+〉 pairs
in the training data.

Negative sampling (NEG) Mikolov et al. (2013b) modify the NCE loss
by replacing k × p̃(d) with 1 in Equation 5.25 and 5.26.

p(E|q, d) =
eγ·s(q,d)

eγ·s(q,d) + 1
(5.29)

=
1

1 + e−γ·s(q,d)
(5.30)

p(Ē |q, d) =
1

1 + eγ·s(q,d)
(5.31)

58 Supervised learning to rank

which changes the NCE loss to the NEG loss.

LNEG = −
∑

〈x,d+〉

(

log
1

1 + e−γ·s(q,d+)
+

k
∑

i=1

log
1

1 + eγ·s(q,d−

i
)

)

(5.32)

BlackOut Related to both IS and NCE, is BlackOut (Ji et al., 2015). It
is an extension of the DropOut (Srivastava et al., 2014) method that is
often employed to avoid over-fitting in neural models with large number of
parameters. DropOut is typically applied to the input or hidden layers of the
network and involves randomly dropping a subset of the neural units and their
corresponding connections. BlackOut applies the same idea to the output layer
of the network for efficiently computing the loss. We refer readers to (Ji et al.,
2015) for more rigorous discussions on the relationship between IS, NCE, and
DropOut.

For document retrieval Huang et al. (2013) approximate the cross-entropy loss
of Equation 5.10 by replacing D with D′—where, D′ = {d+} ∪ D− and D−

is a fixed number of randomly sampled candidates. Mitra et al. (2017a) use
a similar loss function but focus on the document re-ranking task where the
neural model needs to distinguish the relevant documents from less relevant
(but likely not completely non-relevant) candidates. Therefore, in their work
the re-ranking model is trained with negative examples which comprise of
documents retrieved by an existing IR system but manually judged as less
relevant, instead of being sampled uniformly from the collection. IS, NCE,
NEG, and these other sampling based approaches approximate the comparison
with the full collection based on a sampled subset. For additional notes on
these approaches, we refer the readers to (Dyer, 2014; Chen et al., 2015b;
Ruder, 2016).

In a typical retrieval scenario, however, multiple documents may be relevant
to the same query q, and the notion of relevance among this set of documents
D+ may be further graded. Some LTR approaches consider pairs of documents
for the same query and minimize the average number of inversions in ranking—
i.e., di ≻

q
dj but dj is ranked higher than di. The pairwise loss employed in

these approaches has the following form (Chen et al., 2009),

Lpairwise = φ(si − sj) (5.33)

where, some possible choices for φ include,

• Hinge function φ(z) = max(0, 1 − z) (Herbrich et al., 2000; Schroff et al.,
2015)

5.2. Loss functions 59

• Exponential function φ(z) = e−z (Freund et al., 2003)

• Logistic function φ(z) = log(1 + e−z) (Burges et al., 2005)

RankNet loss RankNet (Burges et al., 2005) is a pairwise loss function
that has been a popular choice for training neural LTR models and was
also for many years an industry favourite, such as at the commercial Web
search engine Bing.1 Under the RankNet loss, the model is trained on triples
〈q, di, dj〉 consisting of a query q and a pair of documents di and dj with
different relevance labels—such that di is more relevant than dj (i.e., di ≻

q
dj)—

and corresponding feature vectors 〈~xi, ~xj〉. The model f : Rn → R, typically
a neural network but can also be any other machine learning model whose
output is differentiable with respect to its parameters, computes the scores
si = f(~xi) and sj = f(~xj), where ideally si > sj . Given the scores 〈si, sj〉, the
probability that di would be ranked higher than dj is given by,

pij ≡ p(si > sj) ≡
1

1 + e−σ(si−sj)
(5.34)

where, the constant σ determines the shape of the sigmoid. During training,
the probability of ranking di higher than dj for q is maximised. Let Sij ∈
{−1, 0, +1} be the true preference label between di and dj for the training
sample— denoting di is less, equal, or more relevant than dj , respectively.
Then the desired probability of ranking di over dj is given by p̄ij = 1

2 (1 + Sij).
The cross-entropy loss L between the desired probability p̄ij and the predicted
probability pij is given by,

L = −p̄ij log(pij) − (1 − p̄ij)log(1 − pij) (5.35)

=
1

2
(1 − Sij)σ(si − sj) + log(1 + e−σ(si−sj)) (5.36)

= log(1 + e−σ(si−sj)) if, di ≻
q

dj(Sij = 1) (5.37)

Note that L is differentiable with respect to the model output si and hence
the model can be trained using gradient descent. We direct the interested
reader to (Burges, 2010) for more detailed derivations for computing the
gradients for RankNet.

Readers should note the obvious connection between the CE loss described
previously and the RankNet loss. If in the denominator of Equation 5.10, we
only sum over a pair of relevant and non-relevant documents then it reduces

1https://www.microsoft.com/en-us/research/blog/
ranknet-a-ranking-retrospective/

https://www.microsoft.com/en-us/research/blog/ranknet-a-ranking-retrospective/
https://www.microsoft.com/en-us/research/blog/ranknet-a-ranking-retrospective/

60 Supervised learning to rank

to the logistic-loss function of RankNet described in Equation 5.37. So, at
the level of a single training sample, the key distinction between the two is
whether we compare the relevant document to a single less relevant candidate
or the full collection. However, in case of RankNet, it is important to consider
how the pairs are sampled as the training is influenced by their distribution.

The key limitation of pairwise objective functions is that the rank inversion of
any pair of documents is considered equally harmful. This is, however, generally
untrue for most IR metrics where a significantly large penalty is associated
with inversions at the top rank positions. For example, consider two different
result lists for the same query—result list A ranks two relevant documents at
position one and 50, while result list B ranks the same two relevant documents
at positions three and 40. While the result set A has more rank inversions
compared to result set B (48 vs. 40), it would fare better on typical IR metrics,
such as NDCG. Therefore, to optimize for a rank-based metric we need to
incorporate listwise objectives—that are sensitive to these differences—in our
model training. However, the rank-based metrics are generally non-continuous
and non-differentiable, which makes them difficult to incorporate in the loss
function.

LambdaRank loss Burges et al. (2006) make two key observations: (i) the
gradient should be bigger for pairs of documents that produce a bigger impact
in NDCG by swapping positions, and (ii) to train a model we don’t need the
costs themselves, only the gradients (of the costs w.r.t model scores). This
leads to the LambdaRank loss which weights the gradients from the RankNet
loss by the NDCG delta that would result from swapping the rank position of
the pair of documents.

λLambdaRank = λRankNet · |∆NDCG| (5.38)

This formulation of LambdaRank can optimize directly for NDCG (Donmez
et al., 2009; Yue and Burges, 2007), and any other IR measure by incorporating
the corresponding delta change in Equation 5.38.

ListNet and ListMLE loss The probability of observing a particular rank
order can be estimated from the individual document scores using different
models (Luce, 1959; Plackett, 1975; Mallows, 1957). For example, according to
the Luce model (Luce, 1959), given four items {d1, d2, d3, d4} the probability
of observing a particular rank-order, say [d2, d1, d4, d3], is given by:

5.2. Loss functions 61

p(π|s) =
φ(s2)

φ(s1) + φ(s2) + φ(s3) + φ(s4)
×

φ(s1)

φ(s1) + φ(s3) + φ(s4)

×
φ(s4)

φ(s3) + φ(s4)

(5.39)

where, π is a particular permutation and φ is a transformation (e.g., linear,
exponential, or sigmoid) over the score si corresponding to item di. Using
this model, we can compute the probability distribution over all possible
permutations based on the model scores and the ground truth labels. The
K-L divergence between these two distributions gives us the ListNet loss (Cao
et al., 2007).

However, computing the probability distribution over all possible permu-
tations is computationally expensive, even when restricted to only the top-K
items. The ListMLE loss (Xia et al., 2008) instead computes the probability of
the ideal permutation based on the ground truth. However, with categorical
labels more than one ideal permutation may be possible which should be
handled appropriately.

Many of the challenges discussed in this section are common to both retrieval
tasks as well as multiclass and multilabel classification with extremely large
number of classes—often referred to as extreme classification (Bhatia et al.,
2016; Varma and Cisse, 2015; Cisse et al., 2016). Ad-hoc retrieval can be posed
as an extreme classification task under a binary notion of relevance and a fixed
collection constraint. New loss functions (e.g. the spherical loss family (Vincent
et al., 2016; Brébisson and Vincent, 2015; Brébisson and Vincent, 2016)) have
been explored for these large scale classification tasks which may be relevant
for neural retrieval research. The problem of learning from sparse biased labels
(Joachims et al., 2017; Jain et al., 2016) is also an important challenge in
these frameworks. Finally, deep neural models for LTR with significantly large
number of parameters may require large amount of training data for supervised
learning. Alternative training schemes—e.g., using weak supervision signals
(Dehghani et al., 2017b; Dehghani et al., 2017a) or adversarial learning (Wang
et al., 2017; Cohen et al., 2018)—are emerging.

6

Deep neural networks

Deep neural network models consist of chains of tensor operations. The tensor
operation can range from parameterized linear transformations (e.g., multipli-
cation with a weight matrix, or the addition of a bias vector) to elementwise
application of non-linear functions, such as tanh or rectified linear units (ReLU)
(Hahnloser et al., 2000; Nair and Hinton, 2010; Jarrett et al., 2009). Figure 6.1
shows a simple feed-forward neural network with fully-connected layers. For
an input vector ~x, the model produces the output ~y as follows,

~y = tanh(W2 · tanh(W1 · ~x +~b1) +~b2) (6.1)

The model training involves tuning the parameters W1, ~b1, W2, and ~b2

to minimize the loss between the expected output and the output predicted
by the final layer. The parameters are usually trained discriminatively using
backpropagation (Schmidhuber, 2015; Bengio et al., 2009; Hecht-Nielsen et al.,
1988). During forward-pass each layer generates an output conditioned on its
input, and during backward pass each layer computes the error gradient with
respect to its parameters and its inputs.

The design of a DNN typically involves many choices of architectures and
hyper-parameters. Neural networks with as few a single hidden layer—but
with sufficient number of hidden nodes—can theoretically approximate any
function (Hornik et al., 1989). In practice, however, deeper architectures—
sometimes with as many as 1000 layers (He et al., 2016)—have been shown
to perform significantly better than shallower networks. For readers who are

62

6.1. Input text representations 63

forward pass

backward pass

W1 W2

input actual

output

loss

expected

output

(a) A neural network with a single hidden layer.

non-

linearity

(tanh)

input

linear

transform

(W1, b1)

non-

linearity

(tanh)

linear

transform

(W2, b2)

actual

output

forward pass

backward pass

expected

output

loss

(b) The same neural network viewed as a chain of computational steps.

Figure 6.1: Two different visualizations of a feed-forward neural network with a sin-
gle hidden layer. In (a), the addition of the bias vector and the non-linearity function
is implicit. Figure (b) shows the same network but as a sequence of computational
nodes. Most neural network toolkits implement a set of standard computational
nodes that can be connected to build more sophisticated neural architectures.

less familiar with neural network models, we present a simple example in
Figure 6.2 to illustrate how hidden layers enable these models to capture non-
linear relationships. We direct readers to (Montufar et al., 2014) for further
discussions on how additional hidden layers help.

The rest of this section is dedicated to the discussion of input representa-
tions and standard architectures for deep neural models.

6.1 Input text representations

Neural models that learn representations of text take raw text as input. A key
consideration is how the text should be represented at the input layer of the
model. Figure 6.3 shows some of the common input representations of text.

Some neural models (Jozefowicz et al., 2016; Graves, 2013; Sutskever et al.,
2011; Kim et al., 2015) operate at the character-level. In these models, each

64 Deep neural networks

Input features Hidden layers
Label

surface kerberos book library H1 H2

1 0 1 0 1 0 ✓
1 1 0 0 0 0 ✗
0 1 0 1 0 1 ✓
0 0 1 1 0 0 ✗

library booksurface kerberos

+0.5 +0.5

-1

-1 -1

-1

+1 +1

+0.5 +0.5

H1 H2

Figure 6.2: Consider a toy binary classification task on a corpus of four short
texts—“surface book”, “kerberos library”, “library book”, and “kerberos surface”—
where the model needs to predict if the text is related to computers. The first two
texts—“Surface Book” and “kerberos library”—are positive under this classification,
and the latter two negative. The input feature space consists of four binary features
that indicate whether each of the four terms from the vocabulary is present in the
text. The table shows that the specified classes are not linearly separable with respect
to the input feature space. However, if we add couple of hidden nodes, as shown in
the diagram, then the classes can be linearly separated with respect to the output of
the hidden layer.

character is typically represented by a one-hot vector. The vector dimensions—
referred to as channels—in this case equals the number of allowed characters in
the vocabulary. These models incorporate the least amount of prior knowledge
about the language in the input representation—for example, these models
are often required to learn about tokenization from scratch by treating space
as just another character in the vocabulary. The representation of longer
texts, such as sentences, can be derived by concatenating or summing the
character-level vectors as shown in Figure 6.3a.

Input representation of text is typically in
the form of one-hot representations—of char-

acters, character n-grams, or terms—or pre-trained
embeddings.

The input text can also be pre-tokenized into terms—where each term is

6.2. Standard architectures 65

represented by either a sparse vector or using pre-trained term embeddings
(Figure 6.3d). Terms may have a one-hot (or local) representation where each
term has an unique ID (Figure 6.3b), or the term vector can be derived
by aggregating one-hot vectors of its constituting characters (or character
n-graphs) as shown in Figure 6.3c. If pre-trained embeddings are used for
term representation, then the embedding vectors can be further tuned during
training or kept fixed.

Similar to character-level models, the term vectors are further aggregated
(by concatenation or sum) to obtain the representation of longer chunks of text,
such as sentences. While one-hot representations of terms (Figure 6.3b) are
common in many NLP tasks, historically pre-trained embeddings (e.g., (Pang
et al., 2016b; Hu et al., 2014)) and character n-graph based representations
(e.g., (Huang et al., 2013; Mitra et al., 2017a)) are more commonplace in IR.

6.2 Standard architectures

In this section, we describe few standard neural architectures commonly used
in IR. For broader overview of neural architectures and design patterns please
refer to (Goodfellow et al., 2016; LeCun et al., 2015; Schmidhuber, 2015).

All shift-invariant neural operations, includ-
ing convolutional and recurrent layers, move

a fixed size window over the input space with fixed
stride. Each window is projected by a parameter-
ized neural operation, or cell, often followed by an
aggregation step, such as pooling.

Shift-invariant neural operations Convolutional (LeCun et al., 2004; Jar-
rett et al., 2009; Krizhevsky et al., 2012; LeCun et al., 2010) and recurrent
(Mikolov et al., 2010; Graves et al., 2009; Sak et al., 2014; Hochreiter and
Schmidhuber, 1997) architectures are commonplace in many deep learning
applications. These neural operations are part of a broader family of shift-
invariant architectures. The key intuition behind these architectures stem from
the natural regularities observable in most inputs. In vision, for example, the
task of detecting a face should be invariant to whether the image is shifted,
rotated, or scaled. Similarly, the meaning of an English sentence should, in

66 Deep neural networks

d o g s h a v e o w n e r s c a t s h a v e s t a f f

o
n
e
-h

o
t

ve
ct

o
rs

concatenate

ch
a
n

n
e
ls

[chars x channels]

(a) Character-level input

d o g s h a v e o w n e r s c a t s h a v e s t a f f

o
n
e
-h

o
t

ve
ct

o
rs

concatenate

sum sum sum sum sum sum

ch
a
n

n
e
ls

[words x channels]

(b) Term-level input w/ bag-of-characters per term

d o g s # # h a v e # # o w n e r s # # c a t s # # h a v e # # s t a f f

o
n
e
-h

o
t

ve
ct

o
rs

concatenate or sum

sum sum sum sum sum sum

ch
a
n

n
e
ls

[words x channels] or [1 x channels]

(c) Term-level input w/ bag-of-trigraphs per term

d o g s h a v e o w n e r s c a t s h a v e s t a f f

p
re

-t
ra

in
e
d

e
m

b
e
d

d
in

g
s

concatenate or sum

ch
a
n

n
e
ls

[words x channels] or [1 x channels]

(d) Term-level input w/ pre-trained term embeddings

Figure 6.3: Examples of different representation strategies for text input to deep
neural network models. The smallest granularity of representation can be a character
or a term. The vector can be a sparse local representation, or a pre-trained embedding.

6.2. Standard architectures 67

output

(a) Convolution or pooling

co
n
v
o
lu
ti
o
n

p
o
o
li
n
g

output

(b) Convolution w/ global pooling

output

(c) Recurrent

output

(d) Recursive or tree

Figure 6.4: Standard shift-invariant neural architectures including convolutional
neural networks (CNN), recurrent neural networks (RNN), pooling layers, and
tree-structured neural networks.

most cases, stay consistent independent of which part of the document it
appears in. Therefore, intuitively a neural model for object recognition or text
understanding should not learn an independent logic for the same action ap-
plied to different parts of the input space. All shift-invariant neural operations
fundamentally employ a window-based approach. A fixed size window moves
over the input space with fixed stride in each step. A (typically parameter-
ized) function—referred to as a kernel, or a filter, or a cell—is applied over
each instance of the window. The parameters of the cell are shared across all
the instances of the input window. The shared parameters not only imply a
smaller number of total parameters in the model, but also more supervision
per parameter per training sample due to the repeated application.

Figure 6.4a shows an example of a cell being applied on a sequence of

68 Deep neural networks

terms—with a window size of three terms—in each step. A common cell
implementation involves multiplying with a weight matrix—in which case
the architecture in Figure 6.4a is referred as convolutional. An example of a
cell without any parameters is pooling—which consists of aggregating (e.g.,
by computing the max or the average per channel) over all the terms in the
window. Note, that the length of the input sequence can be variable in both
cases and the length of the output of a convolutional (or pooling) layer is a
function of the input length. Figure 6.4b shows an example of global pooling—
where the window spans over the whole input—being applied on top of a
convolutional layer. The global pooling strategy is common for generating a
fixed size output from a variable length input.1

In convolution or pooling, each window is applied independently. In con-
trast, in the recurrent architecture of Figure 6.4c the cell not only considers
the input window but also the output of the previous instance of the cell as its
input. Many different cell architectures have been explored for recurrent neural
networks (RNN)—although Elman network (Elman, 1990), Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997), and Gated Recurrent
Unit (GRU) (Chung et al., 2014; Cho et al., 2014) are commonly used. RNNs
are popularly applied to sequences but can also be useful for two (and higher)
dimensional inputs (Wan et al., 2016).

One consideration when using convolutional or recurrent layers is how the
window outputs are aggregated. Convolutional layers are typically followed by
pooling or fully-connected layers that perform a global aggregation over all
the window instances. While a fully-connected layer is aware of each window
position, a global pooling layer is typically agnostic to it. However, unlike
a fully-connected layer, a global max-pooling operation can be applied to a
variable size input. Where a global aggregation strategy may be less appropriate
(e.g., long sequences), recurrent networks with memory (Weston et al., 2014;
Sukhbaatar et al., 2015; Bordes et al., 2015) and/or attention (Mnih et al.,
2014; Xu et al., 2015; Luong et al., 2015; Hermann et al., 2015; Chorowski
et al., 2015) may be useful.

Finally, Figure 6.4c shows tree-structured (or recursive) neural networks
(Goller and Kuchler, 1996; Socher et al., 2011b; Bowman et al., 2016; Tai et al.,
2015; Socher et al., 2011a) where the same cell is applied at multiple levels in
a tree-like hierarchical fashion.

Autoencoders The autoencoder architecture (Bengio et al., 2007; Ranzato
et al., 2006; Bengio et al., 2009) is based on the information bottleneck method
(Tishby et al., 2000). The goal is to learn a compressed representation ~x ∈ R

k

of items from their higher-dimensional vector representations ~v ∈ R
K , such

1It may be obvious, but worth pointing out, that a global convolutional layer is
exactly the same as a fully-connected layer.

6.2. Standard architectures 69

that k ≪ K. The model has an hour-glass shape as shown in Figure 6.5a and
is trained by feeding in the high-dimensional vector inputs and trying to re-
construct the same representation at the output layer. The lower-dimensional
middle layer forces the encoder part of the model to extract the minimal
sufficient statistics of ~v into ~x, such that the decoder part of the network can
reconstruct the original input back from ~x. The model is trained by minimizing
the reconstruction error between the input ~v and the actual output of the
decoder ~v′. The squared-loss is commonly employed.

Lautoencoder(~v, ~v′) = ‖~v − ~v′‖2 (6.2)

Both autoencoders and Siamese networks
learn compressed representations of the input.

In autoencoders, the learnt representation is opti-
mized for reducing reconstruction errors, whereas
Siamese networks optimize to better discriminate
similar pairs from dissimilar ones.

Siamese networks Siamese networks were originally proposed for compar-
ing fingerprints (Baldi and Chauvin, 1993) and signatures (Bromley et al.,
1993). Yih et al. (2011) later adapted the same architecture for comparing
short texts. The siamese network, as seen in Figure 6.5b, resembles the autoen-
coder architecture (if you squint hard enough)—but unlike the latter is trained
on pairs of inputs 〈input1, input2〉. The architecture consists of two models
(model1 and model2) that project input1 and input2, respectively, to ~v1 and
~v2 in a common latent space. A pre-defined metric (e.g., cosine similarity) is
used to then compute the similarity between ~v1 and ~v2. The model parameters
are optimized such that ~v1 and ~v2 are closer when the two inputs are expected
to be similar, and further away otherwise.

One possible loss function is the logistic loss. If each training sample
consist of a triple 〈~vq, ~vd1, ~vd2〉, such that sim(~vq, ~vd1) should be greater than
sim(~vq, ~vd2), then we minimize,

Lsiamese(~vq, ~vd1, ~vd2) = log
(

1 + e−γ(sim(~vq, ~vd1)−sim(~vq, ~vd2))
)

(6.3)

70 Deep neural networks

input output

embedding

encode decode

(a) Autoencoder

input1 input2

embedding1

model1

similarity
function

embedding2

model2

(b) Siamese network

Figure 6.5: Both (a) the autoencoder and (b) the Siamese network architectures
are designed to learn compressed representations of inputs. In an autoencoder the
embeddings are learnt by minimizing the self-reconstruction error, whereas a Siamese
network focuses on retaining the information that is necessary for determining the
similarity between a pair of items (say, a query and a document).

6.2. Standard architectures 71

input output

σ

encode

sample

sampled
embedding

decode

μ

Figure 6.6: Instead of directly generating an encoded representation, variational
autoencoders sample the latent vector from the generated vector of means µ and
standard deviations σ. This local variation forces the model to learn a smoother and
more continuous latent space.

where, γ is a constant that is often set to 10. Typically, both the models—
model1 and model2—share identical architectures, but can also choose to share
the same parameters. In image retrieval, the contrastive loss (Chopra et al.,
2005; Hadsell et al., 2006) is also used for training Siamese networks.

It is important to note that, unlike the autoencoder, the minimal sufficient
statistics retained by a Siamese network is dictated by which information it
deems important for determining the similarity between the paired items.

Variational autoencoders (VAE) In Variational autoencoders (Kingma
and Welling, 2014; Rezende et al., 2014), the encoder part of the network gen-
erates two separate vectors—the vector of means µ and the vector of standard
deviations σ. The latent representation ~x of the input is then generated by
sampling a random variable xi with mean µi and standard deviation σi along
each of the k latent dimensions.

~x = [x0 ∼ N(µ0, σ2
0), . . . , xi ∼ N(µi, σ2

i), . . . , xk−1 ∼ N(µk−1, σ2
k−1)] (6.4)

By sampling the latent representation, we expose the decoder to a certain
degree of local variations in its input that should force the model to learn a
smoother continuous latent space. The VAE is trained by jointly minimizing
the reconstruction loss—similar to vanilla autoencoders—and an additional

72 Deep neural networks

component to the loss function which is the KL-divergence between the latent
variable xi and a unit gaussian.

LVAE = Lreconstruction + LKL−divergence (6.5)

= ‖~v − ~v′‖2 +

k
∑

i

σ2
i + µ2

i − log(σi) − 1 (6.6)

Without the LKL−divergence component the model can learn very different
µ for different classes of inputs and minimize the λ to be arbitrarily small such
that the learnt latent space is no longer smooth or continuous. Readers should
note that the sampling step is non-differentiable, but the model can be trained
using the “reparameterization trick” proposed by Kingma and Welling (2014).

An important application of VAE is for the synthesis of new items (e.g., images
(Gregor et al., 2015) or text (Bahuleyan et al., 2017)) not observed in the
training collection. Another popular class of techniques for synthesis includes
the Generative Adversarial Networks.

Generative Adversarial Networks (GAN) Goodfellow et al. (2014) pro-
posed a framework for training generative models under an adversarial setting.
GANs typically consist of two separate neural networks—a generator network
and a discriminator network. The goal of the generator network is to synthe-
size new (fake) items that mimic similar distributions as items that exist in
the training collection. The goal of the discriminator network is to correctly
distinguish between a true item and an item produced by the generator. The
generator is trained to maximize the probability of the discriminator wrongly
classifying the true and the generated item—which corresponds to a minimax
two-player game.

6.3 Neural toolkits

In recent years, the advent of numerous flexible toolkits (Jia et al., 2014; Yu
et al., n.d.; Abadi et al., 2016; Collobert et al., 2011a; Chen et al., 2015a;
Al-Rfou et al., 2016; Tokui et al., 2015; Neubig et al., 2017) has had a catalytic
influence on the area of neural networks. Most of the toolkits define a set of
common neural operations that—like Lego2 blocks—can be composed to build
complex network architectures. Each instance of these neural operations or
computation nodes can have associated learnable parameters that are updated

2https://en.wikipedia.org/wiki/Lego

https://en.wikipedia.org/wiki/Lego

6.3. Neural toolkits 73

during training, and these parameters can be shared between different parts of
the network if necessary. Every computation node under this framework must
implement the appropriate logic for,

• computing the output of the node given the input (forward-pass)

• computing the gradient of the loss with respect to the inputs, given the
gradient of the loss with respect to the output (backward-pass)

• computing the gradient of the loss with respect to its parameters, given
the gradient of the loss with respect to the output (backward-pass)

A deep neural network, such as the one in Figure 6.1 or ones with much
more complex architectures (e.g., (He et al., 2016; Szegedy et al., 2015; Larsson
et al., 2016)), can then be specified by chaining instances of these available
computation nodes, and trained end-to-end on large datasets using backpropa-
gation over GPUs or CPUs. In IR, various application interfaces (Van Gysel
et al., 2017a; Mitra et al., 2017b) bind these neural toolkits with existing
retrieval/indexing frameworks, such as Indri (Strohman et al., 2005). Refer to
(Shi et al., 2016) for a comparison of different neural toolkits based on their
speed of training using standard performance benchmarks.

7

Deep neural networks for IR

Traditionally, deep neural network models have much larger number of learnable
parameters than their shallower counterparts. A DNN with a large set of
parameters can easily overfit to smaller training datasets (Zhang et al., 2016).
Therefore, during model design it is typical to strike a balance between the
number of model parameters and the size of the data available for training.
Data for ad-hoc retrieval mainly consists of,

• Corpus of search queries

• Corpus of candidate documents

• Ground truth—in the form of either explicit human relevance judgments
or implicit labels (e.g., from clicks)—for query-document pairs

While both large scale corpora of search queries (Pass et al., 2006; Craswell
et al., 2009) and documents (Callan et al., 2009; Craswell et al., 2003; Bailey
et al., 2003) are publicly available for IR research, the amount of relevance
judgments that can be associated with them are often limited outside of
large industrial research labs—mostly due to user privacy concerns. We note
that we are interested in datasets where the raw text of the query and the
document is available. Therefore, this excludes large scale public labelled
datasets for learning-to-rank (e.g., (Liu et al., 2007)) that don’t contain the
textual contents.

The proportion of labelled and unlabelled data that is available influences
the level of supervision that can be employed for training these deep models.

74

75

Most of the models we covered in Section 4 operate under the data regime where
large corpus of documents or queries is available, but limited (or no) labelled
data. Under such settings where no direct supervision or relevance judgments is
provided, typically an unsupervised approach is employed (e.g., (Salakhutdinov
and Hinton, 2009)). The unlabelled document (or query) corpus is used to
learn good text representations, and then these learnt representations are
incorporated into an existing retrieval model or a query-document similarity
metric. If small amounts of labelled data are available, then that can be
leveraged to train a retrieval model with few parameters that in turn uses text
representations that is pre-trained on larger unlabelled corpus. Examples of
such semi-supervised training includes models such as (Pang et al., 2016b; Pang
et al., 2016a; Guo et al., 2016a). In contrast, fully-supervised models—e.g.,
(Huang et al., 2013; Severyn and Moschitti, 2015; Mitra et al., 2017a; Nanni
et al., 2017; Cohen and Croft, 2016)—optimize directly for the target task by
training on large number of labelled query-document pairs.

DNNs for IR can learn text representations in

situ, or use pre-trained embeddings. When pre-
trained embeddings are employed, care should be
taken to make sure the representations are suitable
for the task.

It is also useful to distinguish between deep neural models that focus on
ranking long documents, from those that rank short texts (e.g., for the question-
answering task, or for document ranking where the document representation is
based on a short text field like title). The challenges in short text ranking are
somewhat distinct from those involved in the ad-hoc retrieval task (Cohen et
al., 2016). When computing similarity between pairs of short-texts, vocabulary
mismatches are more likely than when the retrieved items contain long text
descriptions (Metzler et al., 2007). Neural models that perform matching
in a latent space tend to be more robust towards the vocabulary mismatch
problem compared to lexical term-based matching models. On the other hand,
documents with long body texts may contain mixture of many topics and the
query matches may be spread over the whole document. A neural document
ranking model must effectively aggregate the relevant matches from different
parts of a long document. In the rest of this section, we discuss several neural
architectures and approaches to document ranking.

76 Deep neural networks for IR

7.1 Document autoencoders

Salakhutdinov and Hinton (2009) proposed Semantic Hashing—one of the
earliest deep neural models for ad-hoc retrieval. The model is a deep autoen-
coder trained under unsupervised setting on unlabelled document collection.
The model considers each document as a bag-of-terms and uses one-hot vector
representation for the terms—considering only top two thousand most popular
terms in the corpus after removing stopwords. Salakhutdinov and Hinton (2009)
first pre-train the model layer-by-layer, and then train it further end-to-end for
additional tuning. After fine tuning the output of the model are thresholded
to generate binary vector encoding of the documents. Given a search query, a
corresponding hash is generated, and the relevant candidate documents quickly
retrieved that match the same hash vector. A standard IR model can then be
employed to rank between the selected documents.

Semantic hashing is an example of a document encoder based approach
to IR. Variational autoencoders have also been explored (Chaidaroon and
Fang, 2017) on similar lines. While vocabulary sizes of few thousand distinct
terms may be too small for most practical IR tasks, a larger vocabulary
or a different term representation strategy—such as the character trigraph
based representation of Figure 6.3c—may be considered in practice. Another
shortcoming of the autoencoder architecture is that it minimizes the document
reconstruction error which may not align well with the goal of the target IR
task. A better alternative may be to train on query-document paired data
where the choice of what constitutes as the minimal sufficient statistics of the
document is influenced by what is important for determining relevance of the
document to likely search queries. In line with this intuition, we next discuss
the Siamese architecture based models.

7.2 Siamese networks

In recent years, several deep neural models based on the Siamese architecture
have been explored especially for short text matching. The Deep Semantic
Similarity Model (DSSM) (Huang et al., 2013) is one such architecture that
trains on query and document title pairs where both the pieces of texts are
represented as bags-of-character-trigraphs. The DSSM architecture consists of
two deep models—for the query and the document—with all fully-connected
layers and cosine distance as the choice of similarity function in the middle.
Huang et al. (2013) proposed to train the model on clickthrough data where
each training sample consists of a query q, a positive document d+ (a document
that was clicked by a user on the SERP for that query), and a set of negative
documents D− randomly sampled with uniform probability from the full
collection. The model is trained my minimizing the cross-entropy loss,

7.2. Siamese networks 77

Table 7.1: Comparing the nearest neighbours for “seattle” and “taylor swift” in the
CDSSM embedding spaces when the model is trained on query-document pairs vs.
query prefix-suffix pairs. The former resembles a topical notion of similarity between
terms while the latter is more typical in the definition of inter-term similarities.

seattle taylor swift

Query-Document Prefix-Suffix Query-Document Prefix-Suffix

weather seattle chicago taylor swift.com lady gaga

seattle weather san antonio taylor swift lyrics meghan trainor

seattle washington denver how old is taylor swift megan trainor

ikea seattle salt lake city taylor swift twitter nicki minaj

west seattle blog seattle wa taylor swift new song anna kendrick

Ldssm(q, d+, D−) = −log
(eγ·cos

(

~q, ~d+

)

∑

d∈D eγ·cos
(

~q,~d
)

)

(7.1)

where, D = {d+} ∪ D− (7.2)

While, DSSM (Huang et al., 2013) employs deep fully-connected architec-
ture for the query and the document models, more sophisticated architectures
involving convolutional layers (Shen et al., 2014b; Gao et al., 2014; Shen
et al., 2014a; Hu et al., 2014), recurrent layers (Palangi et al., 2015; Palangi
et al., 2014), and tree-structured networks (Tai et al., 2015) have also been
explored. The similarity function can also be parameterized and implemented
as additional layers of the neural network as in (Severyn and Moschitti, 2015).
Most of these models have been evaluated on the short text matching task,
but Mitra et al. (2017a) recently reported meaningful performances on the
long document ranking task from models like DSSM (Huang et al., 2013) and
CDSSM (Shen et al., 2014a) under telescoping evaluation. Mitra et al. (2017a)
also show that sampling the negative documents uniformly from the collection
is less effective to using documents that are closer to the query intent but
judged as non-relelvant by human annotators in similar evaluation settings.

Notions of similarity It is important to emphasize that our earlier discus-
sion in §3.2 on different notions of similarity between terms that can be learnt
by shallow embedding models is also relevant in the context of these deeper
architectures. In the case of Siamese networks, such as the convolutional-DSSM
(CDSSM) (Shen et al., 2014a), the notion of similarity being modelled depends

78 Deep neural networks for IR

interaction matrix

neural network

q
u
e
ry

document

Figure 7.1: Schematic view of an interaction matrix generated by comparing
windows of text from the query and the document. A deep neural network—such
as a CNN—operates over the interaction matrix to find patterns of matches that
suggest relevance of the document to the query.

on the choice of the paired data that the model is trained on. When the
CDSSM is trained on query and document title pairs (Shen et al., 2014a) then
the notion of similarity is more topical in nature. Mitra and Craswell (2015)
trained the same CDSSM architecture on query prefix-suffix pairs which, in
contrast, captures a more typical notion of similarity, as shown in Table 7.1.
In a related work, Mitra (2015) demonstrated that the CDSSM model when
trained on session-query pairs is amenable to vector-based text analogies.

~vthings to do in london − ~vlondon + ~vnew york ≈ ~vnew york tourist attractions (7.3)

~vuniversity of washington − ~vseattle + ~vdenver ≈ ~vuniversity of colorado (7.4)

~vnew york + ~vnewspaper ≈ ~vnew york times (7.5)

By modelling different notions of similarity these deep neural models tend
to be more suitable for other IR tasks, such as query auto-completion (Mitra
and Craswell, 2015) or session-based personalization (Mitra, 2015).

7.3 Interaction-based networks

Siamese networks represent both the query and the document using single
embedding vectors. Alternatively, we can individually compare different parts
of the query with different parts of the document, and then aggregate these
partial evidences of relevance. Especially, when dealing with long documents—
that may contain a mixture of many topics—such a strategy may be more

7.3. Interaction-based networks 79

The President of the United States of America (POTUS) is the elected head of state
and head of government of the United States. The president leads the executive
branch of the federal government and is the commander in chief of the United States
Armed Forces. Barack Hussein Obama II (born August 4, 1961) is an American
politician who is the 44th and current President of the United States. He is the
first African American to hold the office and the first president born outside the
continental United States.

(a) Lexical model

The President of the United States of America (POTUS) is the elected head of state
and head of government of the United States. The president leads the executive
branch of the federal government and is the commander in chief of the United States
Armed Forces. Barack Hussein Obama II (born August 4, 1961) is an American
politician who is the 44th and current President of the United States. He is the
first African American to hold the office and the first president born outside the
continental United States.

(b) Semantic model

Figure 7.2: Analysis of term importance for estimating the relevance of a passage
to the query “United States President” by a lexical and a semantic deep neural
network model. The lexical model only considers the matches of the query terms in
the document but gives more emphasis to earlier occurrences. The semantic model
is able to extract evidence of relevance from related terms such as “Obama” and
“federal”.

effective than trying to represent the full document as a single low-dimensional
vector. Typically, in these approaches a sliding window is moved over both
the query and the document text and each instance of the window over
the query is compared (or “interacts”) against each instance of the window
over the document text (see Figure 7.1). The terms within each window
can be represented in different ways including, one-hot vectors, pre-trained
embeddings, or embeddings that are updated during the model training. A
neural model (typically convolutional) operates over the generated interaction
matrix and aggregates the evidence across all the pairs of windows compared.

Long documents may contain a mixture of
many topics. So, comparing the query repre-

sentation individually to windows of text from the
document may be more effective than learning a sin-
gle vector representation for the document.

80 Deep neural networks for IR

query text

generate query

term vector

doc text

generate doc

term vector

generate interaction matrix

query

term vector

doc

term vector

query text

generate query

embedding

doc text

generate doc

embedding

hadamard product

query

embedding

doc

embedding

fully connected layers for matching fully connected layers for matching

sum

lexical matching model semantic matching model

Figure 7.3: In the Duet architecture (Mitra et al., 2017a), the two sub-networks
are jointly trained and the final output is a linear combination of the outputs of the
lexical and the semantic matching sub-networks. The lexical matching sub-network
(left) uses a convolutional model that operates over a binary interaction matrix.1The
semantic matching sub-network (right) learns representations of query and document
text for effective matching in the latent space. Cross-entropy loss is used to train the
network similar to other models in §7.2.

The interaction matrix based approach have been explored both for short
text matching (Lu and Li, 2013; Hu et al., 2014; Yin et al., 2015; Pang et
al., 2016b; Yang et al., 2016; Wan et al., 2015), as well as for ranking long
documents (Mitra et al., 2017a; Pang et al., 2016a; Hui et al., 2017; Hui et al.,
2018).

7.4 Lexical and semantic matching

Much of the explorations in neural IR models have focused on learning good
representations of text. However, these representation learning models tend to
perform poorly when dealing with rare terms and search intents. In §2.2, we
highlighted the importance of modelling rare terms in IR. Based on similar
motivations, Guo et al. (2016a) and Mitra et al. (2017a) have recently empha-
sized the importance of modelling lexical matches using deep neural networks.
Mitra et al. (2017a) argue that Web search is a “tale of two queries”. For the
query “pekarovic land company”, it is easier to estimate relevance based on

7.4. Lexical and semantic matching 81

●

BM25

●

QL

● DM

●

LSA

●

DSSM

●

CDSSM

●

DESM

● DRMM

●

Duet (Lexical) ●

Duet (Semantic)
●Duet

Figure 7.4: A demonstration that IR models that focus on lexical matching tend to
perform well on queries that are distinct from queries on which semantic matching
models achieve good relevance. Each model is represented by a vector of NDCG
scores achieved on a set of test queries. For visualization, t-SNE (Maaten and Hinton,
2008) is used to plot the points in a two-dimensional space. Lexical matching models
(BM25, QL, DM, DRMM, and Duet-Lexical) are seen to form a cluster—as well as
the models that focus on representation learning.

patterns of exact matches of the rare term “pekarovic”. On the other hand,
a neural model focused on matching in the latent space is unlikely to have a
good representation for this rare term. In contrast, for the query “what channel
are the seahawks on today”, the target document likely contains “ESPN” or
“Sky Sports”—not the term “channel”. A representation learning neural model
can associate occurrences of “ESPN” in the document as positive evidence
towards the document being relevant to the query. Figure 7.2 highlights the
difference between the terms that influence the estimation of relevance of
the same query-passage pair by a lexical matching and a semantic matching
model. A good neural IR model should incorporate both lexical and semantic
matching signals (Mitra et al., 2017a).

Guo et al. (2016a) proposed to use histogram-based features in their DNN
model to capture lexical notion of relevance. Mitra et al. (2017a) leverage large

1It is important to emphasize, that while Mitra et al. (2017a) and others have
used interaction-based representation for modelling lexical matches, the two ideas
are distinct. Some interaction-matrix based representations compare texts using their
pre-trained embeddings (Hu et al., 2014; Yin et al., 2015). Similarly, lexical matching
can be modelled without employing an interaction matrix based representation (Guo
et al., 2016a).

82 Deep neural networks for IR

Table 7.2: Different document fields may be useful for matching different aspects
of the query intent. For example, for the query “roar music video” the document
title may be useful for matching the name of the song, whereas the URL may be
more informative on whether the document is likely to satisfy the video intent. A
neural representation learning model may emphasize on the video intent in the query
embedding that it learns to match against the URL field and pay more attention to
matching the name of the song against the title field. By combining the two signals
the model can better discriminate the relevant document from the rest.

Text fields Field matches

URL Title URL Title Combined

Doc #1 youtube.com/watch?v=CevxZvSJLk8 Katy Perry - Roar ✓ ✓ ✓

Doc #2 youtube.com/watch?v=nfWlot6h_JM Taylor Swift - Shake It Off ✓ ✗ ✗

Doc #3 wikipedia.org/wiki/Roar_(song) Roar (song) ✗ ✓ ✗

Doc #4 wikipedia.org/wiki/Shake_It_Off Shake It Off ✗ ✗ ✗

scale labelled data from Bing to train a Duet architecture2 (Figure 7.3) that
learns to identify good patterns of both lexical and semantic matches jointly.
Neural models that focus on lexical matching typically have fewer parameters
and can be trained under small data regimes—unlike their counterparts that
focus on learning representations of text.

A query level analysis indicates that both traditional non-neural IR ap-
proaches and more recent neural methods tend to perform well on different
segments of queries depending on whether they focus on lexical or semantic
matching. Figure 7.4 plots a few of these models based on their per-query
NDCG values on a set of test queries.

IR models that use exact matching tend to
perform well on different queries than models

that employ inexact matching. Models that combine
both performs best.

2A CNTK implementation of the duet architecture is available at
https://github.com/bmitra-msft/NDRM/blob/master/notebooks/Duet.ipynb

https://github.com/bmitra-msft/NDRM/blob/master/notebooks/Duet.ipynb

7.5. Matching with multiple document fields 83

doc body text

generate
embedding

field
embeddings

hadamard
product

match vector

doc URL text

generate
embedding

field
embeddings

hadamard
product

match vector

doc title text

generate
embedding

field
embeddings

hadamard
product

match vector

doc incoming
anchor texts

generate
embedding

instance
embeddings

average pool w/
empty instance

masking

field
embedding

hadamard
product

match vector

doc clicked
query texts

generate
embedding

instance
embeddings

average pool w/
empty instance

masking

field
embedding

hadamard
product

match vector

q
u
e
ry

 t
e
xt

generate
embedding 3

generate
embedding 2

generate
embedding 4

generate
embedding 5

generate
embedding 1

concatenate w/ field-level dropout

fully connected layers to compute score

Figure 7.5: A neural architecture for ranking documents with multiple document
fields. A new latent space is learnt—corresponding to each field—and the query
and the document are compared in each of these latent spaces to generate a match
vector. The relevance of the document to the query is estimated by aggregating the
matching signals across the different latent spaces.

7.5 Matching with multiple document fields

Commercial Web search engines, such as Google and Bing, consider more
than just the document content for matching. Anchor texts corresponding to
incoming hyperlinks and the query text for which the document may have been
previously viewed are among the various sources that may provide additional
description of the document. Incorporating these different sources of document
description is useful to determine the relevance of the document to a search
query (Robertson et al., 2004). It is, therefore, important to study neural
models that can effectively leverage multiple document fields for the ranking
task.

Zamani et al. (2018) recently studied some of the principles for designing
neural architectures for ranking documents with multiple fields. They find that

84 Deep neural networks for IR

learning separate latent spaces for matching the query against the different
document fields is more effective than using a shared latent space for all
the fields. This may be because the different document fields may contain
information relevant to different aspects of the query intent. For example, for
the query “roar music video” shown in Table 7.2, the URL sub-model of the
deep neural network may learn a latent space that considers the implicit domain
intent in the query, which may be different than the query representation
that the title sub-model may find appropriate for matching. Similar to the
findings by Robertson et al. (2004), they also observe that learning a document
representation based on all the available fields is superior to combining the
relevance scores computed on each individual field. Finally, a field-level dropout
is proposed for regularizing against over-dependency on any individual field—
e.g.the clicked queries field— during model training. The architecture proposed
by Zamani et al. (2018) is shown in Figure 7.5.

8

Conclusion

We present a tutorial on neural methods for information retrieval. For machine
learning researchers who may be less familiar with IR tasks, we introduced
the fundamentals of traditional IR models and metrics. For IR researchers,
we summarized key concepts related to representation learning with (shallow
or deep) neural networks. Finally, we presented some of the recent neural
methods for document ranking and question-answer matching.

We have focused on retrieval of long and short text. In the case of long
text, the model must deal with variable length documents, where the relevant
sections of a document may be surrounded by irrelevant text. For both long
and short text, but particularly for short, IR models should also deal with the
query-document vocabulary mismatch problem, by learning how patterns of
query terms and (different) document terms can indicate relevance. Models
should also consider lexical matches when the query contains rare terms—such
as a person’s name or a product model number—not seen during training, and
to avoid retrieving semantically related but irrelevant results.

An ideal IR model would be able to infer the meaning of a query from
context. Given a query about the Prime Minister of UK, for example, it may be
obvious from context whether it refers to John Major or Teresa May—perhaps
due to the time period of the corpus, or it may need to be disambiguated
based on other context such as the other query terms or the user’s short
or long-term history. If the model learns a representation that encodes this
context, perhaps making Prime Minister close to Teresa May in a latent space,
it is like a library. To scale to a large corpus, this memorization would need to

85

86 Conclusion

cover a massive number of connections between entities and contexts, which
could potentially be limited by model capacity. Memorization could also cause
update problems, for example if there is a new Prime Minister but the model
and most documents still refer to the old one. To avoid these problems, another
design could avoid memorizing connections in the corpus, and instead perform
some per-query process that reads the corpus and perhaps even reasons about
the content, like a librarian.

Should the ideal IR model behave like a library

that knows about everything in the Universe,
or like a librarian who can effectively retrieve with-
out memorizing the corpus?

Many of the breakthroughs in deep learning have been motivated by
the needs of specific application areas. Convolutional neural networks, for
example, are particularly popular with the vision community, whereas recurrent
architectures find more applications in speech recognition and NLP. It is likely
that the specific nature of IR tasks and data will inform our choice of neural
architectures and drive us towards new designs. Future IR explorations may
also be motivated by developments in related areas, such as NLP. Neural
architectures that have been evaluated on non-IR tasks (Zhao et al., 2015;
Kalchbrenner et al., 2014; Denil et al., 2014; Kim, 2014; Collobert et al., 2011b)
can be investigated in the retrieval context. New methods for training neural
IR models—e.g., using reinforcement (Nogueira and Cho, 2017; Buck et al.,
2017; Rosset et al., 2018) or adversarial learning (Wang et al., 2017; Cohen
et al., 2018)—may also emerge as important directions for future explorations.

However, given the pace at which the area of deep learning is growing, in
terms of the number of new architectures and training regimes, we should be
wary of the combinatorial explosion of trying every model on every IR task. We
should not disproportionately focus on maximizing quantitative improvements
and in the process, neglect theoretical understanding and qualitative insights.
It would be a bad outcome for the field if these explorations do not grow
our understanding of the fundamental principles of machine learning and
information retrieval. Neural models should not be the hammer that we try on
every IR task, or we may risk reducing every IR task to a nail.1 Rather, these
new models should also be the lens through which researchers gain new insights

1https://en.wikipedia.org/wiki/Law_of_the_instrument

https://en.wikipedia.org/wiki/Law_of_the_instrument

87

into the underlying principles of IR tasks. This may imply that sometimes we
prefer neural models that, if not interpretable, then at least are amenable to
analysis and interrogation. We may elicit more insights from simpler models
while more sophisticated models may achieve state-of-the-art performances.
As a community, we may need to focus on both to achieve results that are
both impactful as well as insightful.

The hope of neural IR is that the unique chal-
lenges of IR tasks will motivate new break-

throughs in deep learning, as well as these new mod-
els will grow our understanding of core IR tasks.

The focus of this tutorial has been on ad-hoc retrieval and to a lesser
extent on question-answering. However, neural approaches have shown in-
teresting applications to other existing retrieval scenarios, including query
auto-completion (Mitra and Craswell, 2015), query recommendation (Sordoni
et al., 2015a), session modelling (Mitra, 2015), modelling diversity (Xia et al.,
2016), modelling user click behaviours (Borisov et al., 2016b; Borisov et al.,
2016a), proactive recommendations (Luukkonen et al., 2016; Van Gysel et al.,
2017b), entity ranking (Van Gysel et al., 2016a; Van Gysel et al., 2016b),
multi-modal retrieval (Ma et al., 2015), knowledge-based IR (Nguyen et al.,
2016a), conversational agents (Yan et al., 2016; Zhou et al., 2016), and even
optimizing for multiple IR tasks (Liu et al., n.d.). In addition, recent trends
suggest that advances in deep neural networks methods are also fuelling emerg-
ing IR scenarios such as conversational IR (Yan et al., 2016; Zhou et al., 2016)
and multi-modal retrieval (Ma et al., 2015). Neural methods may have an even
bigger impact on some of these other IR tasks, perhaps enabling applications
that were previously impossible.

IR also has a role in the context of the ambitions of the machine learning
community. Retrieval is key to many one-shot learning approaches (Koch,
2015; Vinyals et al., 2016). Ghazvininejad et al. (2017) proposed to “search”
external information sources in the process of solving complex tasks using
neural networks. The idea of learning local representations proposed by Diaz
et al. (2016) may be applicable to non-IR tasks. While we look at applying
neural methods to IR, we should also look for opportunities to leverage IR
techniques as part of—or in combination with—neural and other machine
learning models.

Finally, we must also renew our focus on the fundamentals, including

88 Conclusion

benchmarking and reproducibility. An important prerequisite to enable the
“neural IR train” to steam forward is to build shared public resources—e.g.,
large scale datasets for training and evaluation, and repository of shared model
implementations—and to ensure that appropriate bindings exist (e.g., (Van
Gysel et al., 2017a; Mitra et al., 2017b)) between popular IR frameworks and
popular toolkits from the neural network community. At the time of writing,
the IR community does not yet have large shared label sets for training and
testing deep models. This problem could be addressed by a data generation
and sharing initiative of sufficient scale, comparable to the computer vision
community’s ImageNet database (Russakovsky et al., 2015).

The emergence of new IR tasks also demands rethinking many of our
existing metrics. The metrics that may be appropriate for evaluating document
ranking systems may be inadequate when the system generates textual answers
in response to information seeking questions. In the latter scenario, the metric
should distinguish between whether the response differs from the ground truth
in the information content or in phrasing of the answer (Mitra et al., 2016b;
Liu et al., 2016; Galley et al., 2015). As multi-turn interactions with retrieval
systems become more common, the definition of task success will also need to
evolve accordingly. Neural IR should not only focus on novel techniques, but
also encompass all these other aspects.

Acknowledgements

We would like to thank many of our colleagues in the field who contributed
directly or indirectly to this tutorial. The editors, Maarten de Rijke and Mark
Sanderson, and the anonymous reviewers provided invaluable feedback and
suggestions that improved the content and presentation of this tutorial. Our
colleagues, Fernando Diaz and Rich Caruana, significantly shaped our views
and work in neural IR through countless collaborations and discussions. We
have also been influenced and learnt from all of our other collaborators, includ-
ing Elbio Renato Torres Abib, Amit Agarwal, Peter Bailey, Payal Bajaj, David
Barber, Paul Bennett, Bodo Billerbeck, Daniel Campos, Nicola Cancedda,
Daniel Cohen, W. Bruce Croft, Li Deng, Laura Dietz, Susan Dumais, Jianfeng
Gao, Gargi Ghosh, David Hawking, Katja Hofmann, Damien Jose, Gabriella
Kazai, Grzegorz Kukla, Widad Machmouchi, Matt Magnusson, Rangan Ma-
jumder, Clemens Marschner, Piotr Mirowski, Eric Nalisnick, Federico Nanni,
Filip Radlinski, Navid Rekabsaz, Roy Rosemarin, Mir Rosenberg, Corby Ros-
set, Frank Seide, Milad Shokouhi, Grady Simon, Alessandro Sordoni, Saurabh
Tiwary, Christophe Van Gysel, Matteo Venanzi, Emine Yilmaz, Dong Yu, and
Hamed Zamani. Finally, our colleagues Hosein Azarbonyad, Alexey Borisov,
W. Bruce Croft, Maarten de Rijke, Mostafa Dehghani, Jiafeng Guo, Tom
Kenter, and Christophe Van Gysel have been partners with us in co-organizing
multiple workshops and tutorials on neural IR which have been tremendous
learning experiences.

89

References

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al. 2016. “Tensorflow:

Large-scale machine learning on heterogeneous distributed systems”.

arXiv preprint arXiv:1603.04467.

Abdul-Jaleel, N., J. Allan, W. B. Croft, F. Diaz, L. Larkey, X. Li, M. D.

Smucker, and C. Wade. 2004. “UMass at TREC 2004: Novelty and

HARD”.

Agichtein, E., D. Carmel, D. Pelleg, Y. Pinter, and D. Harman. 2015.

“Overview of the TREC 2015 LiveQA Track.” In: TREC.

Ai, Q., L. Yang, J. Guo, and W. B. Croft. 2016a. “Analysis of the

paragraph vector model for information retrieval”. In: Proc. ICTIR.

ACM. 133–142.

Ai, Q., L. Yang, J. Guo, and W. B. Croft. 2016b. “Improving language

estimation with the paragraph vector model for ad-hoc retrieval”.

In: Proc. SIGIR. ACM. 869–872.

Arora, S., Y. Li, Y. Liang, T. Ma, and A. Risteski. 2015. “Rand-walk: A

latent variable model approach to word embeddings”. arXiv preprint

arXiv:1502.03520.

Baeza-Yates, R. and B. Ribeiro-Neto. 1999. Modern information re-

trieval. Vol. 463. ACM press New York.

90

References 91

Bahdanau, D., K. Cho, and Y. Bengio. 2014. “Neural machine trans-

lation by jointly learning to align and translate”. arXiv preprint

arXiv:1409.0473.

Bahuleyan, H., L. Mou, O. Vechtomova, and P. Poupart. 2017. “Varia-

tional Attention for Sequence-to-Sequence Models”. arXiv preprint

arXiv:1712.08207.

Bailey, P., N. Craswell, and D. Hawking. 2003. “Engineering a multi-

purpose test collection for web retrieval experiments”. Information

Processing & Management. 39(6): 853–871.

Baldi, P. and Y. Chauvin. 1993. “Neural networks for fingerprint recog-

nition”. Neural Computation. 5(3): 402–418.

Baroni, M., G. Dinu, and G. Kruszewski. 2014. “Don’t count, predict!

a systematic comparison of context-counting vs. context-predicting

semantic vectors”. In: Proc. ACL. Vol. 1. 238–247.

Baroni, M. and A. Lenci. 2010. “Distributional memory: A general

framework for corpus-based semantics”. Computational Linguistics.

36(4): 673–721.

Barthes, R. 1977. Elements of semiology. Macmillan.

Benetka, J. R., K. Balog, and K. Nørvåg. 2017. “Anticipating Infor-

mation Needs Based on Check-in Activity”. In: WSDM. ACM. 41–

50.

Bengio, Y. et al. 2009. “Learning deep architectures for AI”. Foundations

and trends R© in Machine Learning. 2(1): 1–127.

Bengio, Y., R. Ducharme, P. Vincent, and C. Jauvin. 2003. “A neural

probabilistic language model”. Journal of machine learning research.

3(Feb): 1137–1155.

Bengio, Y., P. Lamblin, D. Popovici, H. Larochelle, et al. 2007. “Greedy

layer-wise training of deep networks”. Proc. NIPS. 19: 153.

Bengio, Y. and J.-S. Senécal. 2008. “Adaptive importance sampling to

accelerate training of a neural probabilistic language model”. IEEE

Transactions on Neural Networks. 19(4): 713–722.

Bengio, Y., J.-S. Senécal, et al. 2003. “Quick Training of Probabilistic

Neural Nets by Importance Sampling.” In: AISTATS.

Berger, A. and J. Lafferty. 1999. “Information retrieval as statistical

translation”. In: Proc. SIGIR. ACM. 222–229.

92 References

Bhatia, K., P. Jain, and M. Varma. 2016. “The extreme classification

repository: multi-label datasets & code”. Accessed June 7, 2017.

url: http://manikvarma.org/downloads/XC/XMLRepository.html.

Bishop, C. M. 2006. Pattern recognition and machine learning. Springer-

Verlag New York.

Blei, D. M., A. Y. Ng, and M. I. Jordan. 2003. “Latent dirichlet alloca-

tion”. the Journal of machine Learning research. 3: 993–1022.

Bordes, A., N. Usunier, S. Chopra, and J. Weston. 2015. “Large-scale

simple question answering with memory networks”. arXiv preprint

arXiv:1506.02075.

Borisov, A., I. Markov, M. de Rijke, and P. Serdyukov. 2016a. “A

context-aware time model for web search”. In: Proc. SIGIR. ACM.

205–214.

Borisov, A., I. Markov, M. de Rijke, and P. Serdyukov. 2016b. “A

neural click model for web search”. In: Proc. WWW. Proc. WWW.

531–541.

Bowman, S. R., J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning,

and C. Potts. 2016. “A fast unified model for parsing and sentence

understanding”. arXiv preprint arXiv:1603.06021.

Brébisson, A. de and P. Vincent. 2015. “An exploration of softmax

alternatives belonging to the spherical loss family”. arXiv preprint

arXiv:1511.05042.

Brébisson, A. de and P. Vincent. 2016. “The Z-loss: a shift and scale

invariant classification loss belonging to the Spherical Family”. arXiv

preprint arXiv:1604.08859.

Brill, E. 2003. “Processing natural language without natural language

processing”. In: International Conference on Intelligent Text Pro-

cessing and Computational Linguistics. Springer. 360–369.

Bromley, J., J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,

E. Säckinger, and R. Shah. 1993. “Signature Verification Using A

"Siamese" Time Delay Neural Network”. IJPRAI. 7(4): 669–688.

Brown, P. F., J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek,

J. D. Lafferty, R. L. Mercer, and P. S. Roossin. 1990. “A statistical

approach to machine translation”. Computational linguistics. 16(2):

79–85.

http://manikvarma.org/downloads/XC/XMLRepository.html

References 93

Brown, P. F., P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C.

Lai. 1992. “Class-based n-gram models of natural language”. Com-

putational linguistics. 18(4): 467–479.

Brown, P. F., V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer. 1993.

“The mathematics of statistical machine translation: Parameter

estimation”. Computational linguistics. 19(2): 263–311.

Buck, C., J. Bulian, M. Ciaramita, A. Gesmundo, N. Houlsby, W.

Gajewski, and W. Wang. 2017. “Ask the right questions: Active

question reformulation with reinforcement learning”. arXiv preprint

arXiv:1705.07830.

Bullinaria, J. A. and J. P. Levy. 2007. “Extracting semantic representa-

tions from word co-occurrence statistics: A computational study”.

Behavior research methods. 39(3): 510–526.

Bullinaria, J. A. and J. P. Levy. 2012. “Extracting semantic representa-

tions from word co-occurrence statistics: stop-lists, stemming, and

SVD”. Behavior research methods. 44(3): 890–907.

Burges, C., T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,

and G. Hullender. 2005. “Learning to rank using gradient descent”.

In: Proc. ICML. ACM. 89–96.

Burges, C. J. 2010. “From ranknet to lambdarank to lambdamart: An

overview”. Learning. 11(23-581): 81.

Burges, C. J., R. Ragno, and Q. V. Le. 2006. “Learning to rank with

nonsmooth cost functions”. In: NIPS. Vol. 6. 193–200.

Callan, J., M. Hoy, C. Yoo, and L. Zhao. 2009. “Clueweb09 data set”.

Cao, Z., T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. 2007. “Learning to

rank: from pairwise approach to listwise approach”. In: Proc. ICML.

ACM. 129–136.

Chaidaroon, S. and Y. Fang. 2017. “Variational Deep Semantic Hashing

for Text Documents”. In: Proc. SIGIR.

Chandler, D. 1994. “Semiotics for beginners”.

Chen, T., M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,

C. Zhang, and Z. Zhang. 2015a. “Mxnet: A flexible and efficient

machine learning library for heterogeneous distributed systems”.

arXiv preprint arXiv:1512.01274.

94 References

Chen, W., T.-Y. Liu, Y. Lan, Z.-M. Ma, and H. Li. 2009. “Ranking

measures and loss functions in learning to rank”. In: Advances in

Neural Information Processing Systems. 315–323.

Chen, W., D. Grangier, and M. Auli. 2015b. “Strategies for training large

vocabulary neural language models”. arXiv preprint arXiv:1512.04906.

Cho, K., B. Van Merriënboer, D. Bahdanau, and Y. Bengio. 2014.

“On the properties of neural machine translation: Encoder-decoder

approaches”. arXiv preprint arXiv:1409.1259.

Chopra, S., R. Hadsell, and Y. LeCun. 2005. “Learning a similarity

metric discriminatively, with application to face verification”. In:

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on. Vol. 1. IEEE. 539–546.

Chorowski, J. K., D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio.

2015. “Attention-based models for speech recognition”. In: Proc.

NIPS. 577–585.

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio. 2014. “Empirical

evaluation of gated recurrent neural networks on sequence modeling”.

arXiv preprint arXiv:1412.3555.

Cisse, M., M. Varma, and S. Bengio. 2016. “Extreme Classification

2016: The NIPS Workshop on Multi-class and Multi-label Learning

in Extremely Large Label Spaces”. Accessed June 7, 2017. url:

http://manikvarma.org/events/XC16/.

Clinchant, S. and F. Perronnin. 2013. “Aggregating continuous word

embeddings for information retrieval”. In: Proceedings of the Work-

shop on Continuous Vector Space Models and their Compositionality.

100–109.

Cohen, D., Q. Ai, and W. B. Croft. 2016. “Adaptability of neural net-

works on varying granularity ir tasks”. arXiv preprint arXiv:1606.07565.

Cohen, D. and W. B. Croft. 2016. “End to End Long Short Term

Memory Networks for Non-Factoid Question Answering”. In: Proc.

ICTIR. ACM. 143–146.

Cohen, D., B. Mitra, K. Hofmann, and B. Croft. 2018. “Cross Do-

main Regularization for Neural Ranking Models using Adversarial

Learning”. In: Proc. SIGIR. ACM.

http://manikvarma.org/events/XC16/

References 95

Collobert, R., K. Kavukcuoglu, and C. Farabet. 2011a. “Torch7: A

matlab-like environment for machine learning”. In: BigLearn, NIPS

Workshop. No. EPFL-CONF-192376.

Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P.

Kuksa. 2011b. “Natural language processing (almost) from scratch”.

The Journal of Machine Learning Research. 12: 2493–2537.

Cossock, D. and T. Zhang. 2006. “Subset ranking using regression”. In:

COLT. Vol. 6. Springer. 605–619.

Craswell, N. 2009. “Mean reciprocal rank”. In: Encyclopedia of Database

Systems. Springer. 1703–1703.

Craswell, N. 2017. “Neural Models for Full Text Search”. In: Proc.

WSDM. ACM. 251–251.

Craswell, N., W. B. Croft, J. Guo, B. Mitra, and M. de Rijke. 2016a.

“Neu-IR: The SIGIR 2016 Workshop on Neural Information Re-

trieval”.

Craswell, N., W. B. Croft, J. Guo, B. Mitra, and M. de Rijke. 2016b. “Re-

port on the SIGIR 2016 Workshop on Neural Information Retrieval

(Neu-IR)”. ACM Sigir forum. 50(2): 96–103.

Craswell, N., W. B. Croft, M. de Rijke, J. Guo, and B. Mitra. 2017.

“Neu-IR’17: Neural Information Retrieval”. In: Proc. SIGIR. ACM.

Craswell, N., W. B. Croft, M. de Rijke, J. Guo, and B. Mitra. 2018.

“Report on the Second SIGIR Workshop on Neural Information

Retrieval (Neu-IR’17)”. In: ACM SIGIR Forum. Vol. 51. No. 3.

ACM. 152–158.

Craswell, N., D. Hawking, R. Wilkinson, and M. Wu. 2003. “Overview

of the TREC 2002 Web track”. In: TREC. Vol. 3. 12th.

Craswell, N., R. Jones, G. Dupret, and E. Viegas. 2009. Proceedings of

the 2009 workshop on Web Search Click Data. ACM.

Croft, W. B., D. Metzler, and T. Strohman. 2010. Search engines:

Information retrieval in practice. Vol. 283. Addison-Wesley Reading.

De Saussure, F. 1916. “Cours de linguistique générale, publié par Ch”.

Bally et A. Sechehaye avec la collaboration de A. Riedlinger. Paris:

Payot.

Deerwester, S. C., S. T. Dumais, T. K. Landauer, G. W. Furnas, and

R. A. Harshman. 1990. “Indexing by latent semantic analysis”.

JASIS. 41(6): 391–407.

96 References

Dehghani, M., A. Severyn, S. Rothe, and J. Kamps. 2017a. “Learning to

Learn from Weak Supervision by Full Supervision”. arXiv preprint

arXiv:1711.11383.

Dehghani, M., H. Zamani, A. Severyn, J. Kamps, and W. B. Croft.

2017b. “Neural ranking models with weak supervision”. In: Proc.

SIGIR. ACM. 65–74.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. “Maximum

likelihood from incomplete data via the EM algorithm”. Journal of

the royal statistical society. Series B (methodological): 1–38.

Deng, L., D. Yu, et al. 2014. “Deep learning: methods and applications”.

Foundations and Trends R© in Signal Processing. 7(3–4): 197–387.

Denil, M., A. Demiraj, N. Kalchbrenner, P. Blunsom, and N. de Freitas.

2014. “Modelling, visualising and summarising documents with a sin-

gle convolutional neural network”. arXiv preprint arXiv:1406.3830.

Diaz, F., B. Mitra, and N. Craswell. 2016. “Query Expansion with

Locally-Trained Word Embeddings”. In: Proc. ACL.

Diaz, F., R. White, G. Buscher, and D. Liebling. 2013. “Robust models

of mouse movement on dynamic web search results pages”. In:

Proceedings of the 22nd ACM international conference on Conference

on information & knowledge management. ACM. 1451–1460.

Donmez, P., K. M. Svore, and C. J. Burges. 2009. “On the local opti-

mality of LambdaRank”. In: Proc. SIGIR. ACM. 460–467.

Duchi, J., E. Hazan, and Y. Singer. 2011. “Adaptive subgradient meth-

ods for online learning and stochastic optimization”. Journal of

Machine Learning Research. 12(Jul): 2121–2159.

Dyer, C. 2014. “Notes on Noise Contrastive Estimation and Negative

Sampling”. arXiv preprint arXiv:1410.8251.

Elman, J. L. 1990. “Finding structure in time”. Cognitive science. 14(2):

179–211.

Ferrucci, D., E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A.

Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. Prager, et al.

2010. “Building Watson: An overview of the DeepQA project”. AI

magazine. 31(3): 59–79.

Firth, J. R. 1957. “A synopsis of linguistic theory, 1930-1955”.

References 97

Freund, Y., R. Iyer, R. E. Schapire, and Y. Singer. 2003. “An efficient

boosting algorithm for combining preferences”. Journal of machine

learning research. 4(Nov): 933–969.

Fuhr, N. 1989. “Optimum polynomial retrieval functions based on the

probability ranking principle”. ACM Transactions on Information

Systems (TOIS). 7(3): 183–204.

Galley, M., C. Brockett, A. Sordoni, Y. Ji, M. Auli, C. Quirk, M.

Mitchell, J. Gao, and B. Dolan. 2015. “deltaBLEU: A discriminative

metric for generation tasks with intrinsically diverse targets”. arXiv

preprint arXiv:1506.06863.

Ganguly, D., D. Roy, M. Mitra, and G. J. Jones. 2015. “Word Embedding

based Generalized Language Model for Information Retrieval”. In:

Proc. SIGIR. ACM. 795–798.

Gao, J., P. Pantel, M. Gamon, X. He, L. Deng, and Y. Shen. 2014.

“Modeling interestingness with deep neural networks”. In: Proc.

EMNLP.

Ghazvininejad, M., C. Brockett, M.-W. Chang, B. Dolan, J. Gao, W.-t.

Yih, and M. Galley. 2017. “A Knowledge-Grounded Neural Conver-

sation Model”. arXiv preprint arXiv:1702.01932.

Goldberg, Y. and O. Levy. 2014. “word2vec Explained: deriving Mikolov

et al.’s negative-sampling word-embedding method”. arXiv preprint

arXiv:1402.3722.

Goller, C. and A. Kuchler. 1996. “Learning task-dependent distributed

representations by backpropagation through structure”. In: Neural

Networks, 1996., IEEE International Conference on. Vol. 1. IEEE.

347–352.

Golub, G. H. and C. Reinsch. 1970. “Singular value decomposition and

least squares solutions”. Numerische mathematik. 14(5): 403–420.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep learning. MIT

Press.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio. 2014. “Generative adversarial

nets”. In: Proc. NIPS. 2672–2680.

Goodman, J. 2001. “Classes for fast maximum entropy training”. In:

Acoustics, Speech, and Signal Processing, 2001. Proceedings.(ICASSP’01).

2001 IEEE International Conference on. Vol. 1. IEEE. 561–564.

98 References

Granka, L. A., T. Joachims, and G. Gay. 2004. “Eye-tracking analysis

of user behavior in WWW search”. In: Proc. SIGIR. ACM. 478–479.

Grave, E., A. Joulin, M. Cissé, D. Grangier, and H. Jégou. 2016. “Effi-

cient softmax approximation for GPUs”. arXiv preprint arXiv:1609.04309.

Graves, A. 2013. “Generating sequences with recurrent neural networks”.

arXiv preprint arXiv:1308.0850.

Graves, A., M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J.

Schmidhuber. 2009. “A novel connectionist system for unconstrained

handwriting recognition”. IEEE transactions on pattern analysis

and machine intelligence. 31(5): 855–868.

Grbovic, M., N. Djuric, V. Radosavljevic, and N. Bhamidipati. 2015a.

“Search Retargeting using Directed Query Embeddings”. In: Proc.

WWW. International World Wide Web Conferences Steering Com-

mittee. 37–38.

Grbovic, M., N. Djuric, V. Radosavljevic, F. Silvestri, and N. Bhamidi-

pati. 2015b. “Context-and Content-aware Embeddings for Query

Rewriting in Sponsored Search”. In: Proc. SIGIR. ACM. 383–392.

Gregor, K., I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra.

2015. “DRAW: A recurrent neural network for image generation”.

arXiv preprint arXiv:1502.04623.

Guan, Z. and E. Cutrell. 2007. “An eye tracking study of the effect of

target rank on web search”. In: Proc. SIGCHI. ACM. 417–420.

Guo, J., Y. Fan, Q. Ai, and W. B. Croft. 2016a. “A Deep Relevance

Matching Model for Ad-hoc Retrieval”. In: Proc. CIKM. ACM. 55–

64.

Guo, J., Y. Fan, Q. Ai, and W. B. Croft. 2016b. “Semantic Matching

by Non-Linear Word Transportation for Information Retrieval”. In:

Proc. CIKM. ACM. 701–710.

Gutmann, M. and A. Hyvärinen. 2010. “Noise-contrastive estimation:

A new estimation principle for unnormalized statistical models.” In:

AISTATS. Vol. 1. No. 2. 6.

Hadsell, R., S. Chopra, and Y. LeCun. 2006. “Dimensionality reduction

by learning an invariant mapping”. In: Computer vision and pattern

recognition, 2006 IEEE computer society conference on. Vol. 2. IEEE.

1735–1742.

References 99

Hahnloser, R. H., R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and

H. S. Seung. 2000. “Digital selection and analogue amplification

coexist in a cortex-inspired silicon circuit”. Nature. 405(6789): 947–

951.

Halevy, A., P. Norvig, and F. Pereira. 2009. “The unreasonable effec-

tiveness of data”. IEEE Intelligent Systems. 24(2): 8–12.

Harris, R. 2001. Saussure and his Interpreters. Edinburgh University

Press.

Harris, Z. S. 1954. “Distributional structure”. Word. 10(2-3): 146–162.

Hastie, T., R. Tibshirani, and J. Friedman. 2001. “The elements of

statistical learning. 2001”.

He, K., X. Zhang, S. Ren, and J. Sun. 2016. “Deep residual learning for

image recognition”. In: Proc. CVPR. 770–778.

Hecht-Nielsen, R. et al. 1988. “Theory of the backpropagation neural

network.” Neural Networks. 1(Supplement-1): 445–448.

Herbrich, R., T. Graepel, and K. Obermayer. 2000. “Large margin rank

boundaries for ordinal regression”.

Hermann, K. M., T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay,

M. Suleyman, and P. Blunsom. 2015. “Teaching machines to read

and comprehend”. In: Proc. NIPS. 1693–1701.

Hiemstra, D. 2001. Using language models for information retrieval.

Taaluitgeverij Neslia Paniculata.

Hill, F., A. Bordes, S. Chopra, and J. Weston. 2015. “The Goldilocks

Principle: Reading Children’s Books with Explicit Memory Repre-

sentations”. arXiv preprint arXiv:1511.02301.

Hinton, G. E. 1984. “Distributed representations”.

Hinton, G., L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A.

Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. 2012. “Deep

neural networks for acoustic modeling in speech recognition: The

shared views of four research groups”. Signal Processing Magazine,

IEEE. 29(6): 82–97.

Hochreiter, S. and J. Schmidhuber. 1997. “Long short-term memory”.

Neural computation. 9(8): 1735–1780.

Hofmann, K., B. Mitra, F. Radlinski, and M. Shokouhi. 2014. “An Eye-

tracking Study of User Interactions with Query Auto Completion”.

In: Proc. CIKM. ACM. 549–558.

100 References

Hofmann, T. 1999. “Probabilistic latent semantic indexing”. In: Proc.

SIGIR. ACM. 50–57.

Hornik, K., M. Stinchcombe, and H. White. 1989. “Multilayer feedfor-

ward networks are universal approximators”. Neural networks. 2(5):

359–366.

Hu, B., Z. Lu, H. Li, and Q. Chen. 2014. “Convolutional neural network

architectures for matching natural language sentences”. In: Proc.

NIPS. 2042–2050.

Huang, G., C. Guo, M. J. Kusner, Y. Sun, F. Sha, and K. Q. Weinberger.

2016. “Supervised Word Mover’s Distance”. In: Proc. NIPS. 4862–

4870.

Huang, P.-S., X. He, J. Gao, L. Deng, A. Acero, and L. Heck. 2013.

“Learning deep structured semantic models for web search using

clickthrough data”. In: Proc. CIKM. ACM. 2333–2338.

Hui, K., A. Yates, K. Berberich, and G. de Melo. 2017. “PACRR: A

Position-Aware Neural IR Model for Relevance Matching”. In: Proc.

EMNLP. 1049–1058.

Hui, K., A. Yates, K. Berberich, and G. de Melo. 2018. “Co-PACRR: A

Context-Aware Neural IR Model for Ad-hoc Retrieval”. In: Proceed-

ings of the 11th ACM International Conference on Web Search and

Data Mining. WSDM. Vol. 18. 2.

Jain, H., Y. Prabhu, and M. Varma. 2016. “Extreme Multi-label Loss

Functions for Recommendation, Tagging, Ranking & Other Missing

Label Applications”. In: Proc. SIGKDD. ACM. 935–944.

Jarrett, K., K. Kavukcuoglu, Y. LeCun, et al. 2009. “What is the

best multi-stage architecture for object recognition?” In: Computer

Vision, 2009 IEEE 12th International Conference on. IEEE. 2146–

2153.

Järvelin, K. and J. Kekäläinen. 2002. “Cumulated gain-based evalua-

tion of IR techniques”. ACM Transactions on Information Systems

(TOIS). 20(4): 422–446.

Jean, S., K. Cho, R. Memisevic, and Y. Bengio. 2014. “On Using Very

Large Target Vocabulary for Neural Machine Translation”. arXiv

preprint arXiv:1412.2007.

References 101

Jelinek, F. and R. Mercer. 1980. “Interpolated estimation of Markov

source parameters from sparse data”. In: Proc. Workshop on Pattern

Recognition in Practice, 1980.

Ji, S., S. Vishwanathan, N. Satish, M. J. Anderson, and P. Dubey. 2015.

“Blackout: Speeding up recurrent neural network language models

with very large vocabularies”. arXiv preprint arXiv:1511.06909.

Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell. 2014. “Caffe: Convolutional archi-

tecture for fast feature embedding”. In: Proceedings of the 22nd

ACM international conference on Multimedia. ACM. 675–678.

Joachims, T., L. Granka, B. Pan, H. Hembrooke, and G. Gay. 2005.

“Accurately interpreting clickthrough data as implicit feedback”. In:

Proc. SIGIR. Acm. 154–161.

Joachims, T., L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and

G. Gay. 2007. “Evaluating the accuracy of implicit feedback from

clicks and query reformulations in web search”. ACM Transactions

on Information Systems (TOIS). 25(2): 7.

Joachims, T., A. Swaminathan, and T. Schnabel. 2017. “Unbiased

learning-to-rank with biased feedback”. In: Proc. WSDM. ACM.

781–789.

Jozefowicz, R., O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. 2016.

“Exploring the limits of language modeling”. arXiv preprint arXiv:1602.02410.

Kalchbrenner, N., E. Grefenstette, and P. Blunsom. 2014. “A convo-

lutional neural network for modelling sentences”. arXiv preprint

arXiv:1404.2188.

Kenter, T., A. Borisov, and M. de Rijke. 2016. “Siamese cbow: Optimiz-

ing word embeddings for sentence representations”. arXiv preprint

arXiv:1606.04640.

Kenter, T., A. Borisov, C. Van Gysel, M. Dehghani, M. de Rijke, and B.

Mitra. 2017. “Neural Networks for Information Retrieval (NN4IR)”.

In: Proc. SIGIR. ACM.

Kenter, T., A. Borisov, C. Van Gysel, M. Dehghani, M. de Rijke, and

B. Mitra. 2018a. “Neural networks for information retrieval”. In:

Proc. WSDM. ACM. 779–780.

102 References

Kenter, T., A. Borisov, C. Van Gysel, M. Dehghani, M. de Rijke, and

B. Mitra. 2018b. “Neural networks for information retrieval”. In:

Proc. ECIR.

Kenter, T. and M. de Rijke. “Short Text Similarity with Word Embed-

dings”. In: Proc. CIKM. Vol. 15. 115.

Kim, Y. 2014. “Convolutional neural networks for sentence classifica-

tion”. arXiv preprint arXiv:1408.5882.

Kim, Y., Y. Jernite, D. Sontag, and A. M. Rush. 2015. “Character-aware

neural language models”. arXiv preprint arXiv:1508.06615.

Kingma, D. P. and M. Welling. 2014. “Auto-encoding variational bayes”.

In: Proc. ICLR.

Kiros, R., R. Zemel, and R. R. Salakhutdinov. 2014. “A multiplicative

model for learning distributed text-based attribute representations”.

In: Proc. NIPS. 2348–2356.

Koch, G. 2015. “Siamese neural networks for one-shot image recognition”.

PhD thesis. University of Toronto.

Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. “Imagenet classi-

fication with deep convolutional neural networks”. In: Proc. NIPS.

1097–1105.

Kusner, M., Y. Sun, N. Kolkin, and K. Weinberger. 2015. “From word

embeddings to document distances”. In: Proc. ICML. 957–966.

Lafferty, J. and C. Zhai. 2001. “Document language models, query

models, and risk minimization for information retrieval”. In: Proc.

SIGIR. ACM. 111–119.

Lagun, D., C.-H. Hsieh, D. Webster, and V. Navalpakkam. 2014. “To-

wards better measurement of attention and satisfaction in mobile

search”. In: Proc. SIGIR. ACM. 113–122.

Larsson, G., M. Maire, and G. Shakhnarovich. 2016. “Fractalnet: Ultra-

deep neural networks without residuals”. arXiv preprint arXiv:1605.07648.

Lavrenko, V. 2008. A generative theory of relevance. Vol. 26. Springer

Science & Business Media.

Lavrenko, V. and W. B. Croft. 2001. “Relevance based language models”.

In: Proc. SIGIR. ACM. 120–127.

References 103

Le, H.-S., I. Oparin, A. Allauzen, J.-L. Gauvain, and F. Yvon. 2011.

“Structured output layer neural network language model”. In: Acous-

tics, Speech and Signal Processing (ICASSP), 2011 IEEE Interna-

tional Conference on. IEEE. 5524–5527.

Le, Q. V. and T. Mikolov. 2014. “Distributed Representations of Sen-

tences and Documents.” In: ICML. Vol. 14. 1188–1196.

Lebret, R. and R. Collobert. 2013. “Word emdeddings through hellinger

PCA”. arXiv preprint arXiv:1312.5542.

LeCun, Y., Y. Bengio, and G. Hinton. 2015. “Deep learning”. Nature.

521(7553): 436–444.

LeCun, Y., F. J. Huang, and L. Bottou. 2004. “Learning methods for

generic object recognition with invariance to pose and lighting”.

In: Computer Vision and Pattern Recognition, 2004. CVPR 2004.

Proceedings of the 2004 IEEE Computer Society Conference on.

Vol. 2. IEEE. II–104.

LeCun, Y., K. Kavukcuoglu, and C. Farabet. 2010. “Convolutional

networks and applications in vision”. In: Circuits and Systems (IS-

CAS), Proceedings of 2010 IEEE International Symposium on. IEEE.

253–256.

Levy, O. and Y. Goldberg. 2014. “Dependencybased word embeddings”.

In: Proc. ACL. Vol. 2. 302–308.

Levy, O., Y. Goldberg, and I. Dagan. 2015. “Improving distributional

similarity with lessons learned from word embeddings”. Transactions

of the Association for Computational Linguistics. 3: 211–225.

Levy, O., Y. Goldberg, and I. Ramat-Gan. 2014. “Linguistic regularities

in sparse and explicit word representations”. CoNLL-2014 : 171.

Levy, S. 2011. In the plex: How Google thinks, works, and shapes our

lives. Simon and Schuster.

Li, H. and Z. Lu. “Deep Learning for Information Retrieval”.

Li, H., J. Xu, et al. 2014. “Semantic matching in search”. Foundations

and Trends R© in Information Retrieval. 7(5): 343–469.

Li, P., Q. Wu, and C. J. Burges. 2008. “Mcrank: Learning to rank

using multiple classification and gradient boosting”. In: Advances

in neural information processing systems. 897–904.

104 References

Liebling, D. J., P. N. Bennett, and R. W. White. 2012. “Anticipatory

search: using context to initiate search”. In: SIGIR. ACM. 1035–

1036.

Liu, C.-W., R. Lowe, I. V. Serban, M. Noseworthy, L. Charlin, and

J. Pineau. 2016. “How NOT to evaluate your dialogue system: An

empirical study of unsupervised evaluation metrics for dialogue

response generation”. arXiv preprint arXiv:1603.08023.

Liu, T.-Y. 2009. “Learning to Rank for Information Retrieval”. Foun-

dation and Trends in Information Retrieval. 3(3): 225–331.

Liu, T.-Y., J. Xu, T. Qin, W. Xiong, and H. Li. 2007. “Letor: Benchmark

dataset for research on learning to rank for information retrieval”.

In: Proceedings of SIGIR 2007 workshop on learning to rank for

information retrieval. 3–10.

Liu, X., J. Gao, X. He, L. Deng, K. Duh, and Y.-Y. Wang. “Representa-

tion Learning Using Multi-Task Deep Neural Networks for Semantic

Classification and Information Retrieval”. Proc. NAACL, May 2015.

Lu, Z. and H. Li. 2013. “A deep architecture for matching short texts”.

In: Proc. NIPS. 1367–1375.

Luce, R. D. 1959. “Individual choice behavior.”

Lund, K. and C. Burgess. 1996. “Producing high-dimensional semantic

spaces from lexical co-occurrence”. Behavior Research Methods,

Instruments, & Computers. 28(2): 203–208.

Luong, M.-T., H. Pham, and C. D. Manning. 2015. “Effective ap-

proaches to attention-based neural machine translation”. arXiv

preprint arXiv:1508.04025.

Luukkonen, P., M. Koskela, and P. Floréen. 2016. “Lstm-based predic-

tions for proactive information retrieval”. arXiv preprint arXiv:1606.06137.

Ma, L., Z. Lu, L. Shang, and H. Li. 2015. “Multimodal convolutional

neural networks for matching image and sentence”. In: Proceedings

of the IEEE International Conference on Computer Vision. 2623–

2631.

Maaten, L. v. d. and G. Hinton. 2008. “Visualizing data using t-SNE”.

Journal of Machine Learning Research. 9(Nov): 2579–2605.

MacKay, D. J. and L. C. B. Peto. 1995. “A hierarchical Dirichlet

language model”. Natural language engineering. 1(3): 289–308.

References 105

Mallows, C. L. 1957. “Non-null ranking models. I”. Biometrika. 44(1/2):

114–130.

Manning, C. 2016. “Understanding Human Language: Can NLP and

Deep Learning Help?” In: Proc. SIGIR. ACM. 1–1.

Manning, C. D., P. Raghavan, H. Schütze, et al. 2008. Introduction to

information retrieval. Vol. 1. Cambridge university press Cambridge.

Markovsky, I. 2011. Low rank approximation: algorithms, implementa-

tion, applications. Springer Science & Business Media.

Matveeva, I., C. Burges, T. Burkard, A. Laucius, and L. Wong. 2006.

“High accuracy retrieval with multiple nested ranker”. In: Proc.

SIGIR. ACM. 437–444.

Metzler, D. and W. B. Croft. 2005. “A Markov random field model for

term dependencies”. In: Proc. SIGIR. ACM. 472–479.

Metzler, D., S. Dumais, and C. Meek. 2007. “Similarity measures for

short segments of text”. In: European Conference on Information

Retrieval. Springer. 16–27.

Miao, J., J. X. Huang, and Z. Ye. 2012. “Proximity-based rocchio’s

model for pseudo relevance”. In: Proc. SIGIR. ACM. 535–544.

Mikolov, T., K. Chen, G. Corrado, and J. Dean. 2013a. “Efficient

estimation of word representations in vector space”. arXiv preprint

arXiv:1301.3781.

Mikolov, T., M. Karafiát, L. Burget, J. Cernocky, and S. Khudan-

pur. 2010. “Recurrent neural network based language model.” In:

Interspeech. Vol. 2. 3.

Mikolov, T., S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur.

2011. “Extensions of recurrent neural network language model”.

In: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE

International Conference on. IEEE. 5528–5531.

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. 2013b.

“Distributed representations of words and phrases and their compo-

sitionality”. In: Proc. NIPS. 3111–3119.

Mikolov, T., W.-t. Yih, and G. Zweig. 2013c. “Linguistic Regulari-

ties in Continuous Space Word Representations.” In: HLT-NAACL.

Citeseer. 746–751.

106 References

Mitra, B. 2015. “Exploring Session Context using Distributed Repre-

sentations of Queries and Reformulations”. In: Proc. SIGIR. ACM.

3–12.

Mitra, B. and N. Craswell. 2015. “Query Auto-Completion for Rare

Prefixes”. In: Proc. CIKM. ACM.

Mitra, B. and N. Craswell. 2017. “Neural Text Embeddings for Infor-

mation Retrieval”. In: Proc. WSDM. ACM. 813–814.

Mitra, B., F. Diaz, and N. Craswell. 2017a. “Learning to Match Using

Local and Distributed Representations of Text for Web Search”. In:

Proc. WWW. 1291–1299.

Mitra, B., F. Diaz, and N. Craswell. 2017b. “Luandri: a Clean Lua

Interface to the Indri Search Engine”. In: Proc. SIGIR. ACM.

Mitra, B., E. Nalisnick, N. Craswell, and R. Caruana. 2016a. “A Dual

Embedding Space Model for Document Ranking”. arXiv preprint

arXiv:1602.01137.

Mitra, B., M. Shokouhi, F. Radlinski, and K. Hofmann. 2014. “On

User Interactions with Query Auto-Completion”. In: Proc. SIGIR.

1055–1058.

Mitra, B., G. Simon, J. Gao, N. Craswell, and L. Deng. 2016b. “A

Proposal for Evaluating Answer Distillation from Web Data”. In:

Proceedings of the SIGIR 2016 WebQA Workshop.

Mnih, A. and G. E. Hinton. 2009. “A scalable hierarchical distributed

language model”. In: Advances in neural information processing

systems. 1081–1088.

Mnih, A. and Y. W. Teh. 2012. “A fast and simple algorithm for training

neural probabilistic language models”. arXiv preprint arXiv:1206.6426.

Mnih, V., N. Heess, A. Graves, et al. 2014. “Recurrent models of visual

attention”. In: Proc. NIPS. 2204–2212.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostro-

vski, et al. 2015. “Human-level control through deep reinforcement

learning”. Nature. 518(7540): 529–533.

Montufar, G. F., R. Pascanu, K. Cho, and Y. Bengio. 2014. “On the

number of linear regions of deep neural networks”. In: Proc. NIPS.

2924–2932.

References 107

Morin, F. and Y. Bengio. 2005. “Hierarchical Probabilistic Neural

Network Language Model.” In: Aistats. Vol. 5. Citeseer. 246–252.

Nair, V. and G. E. Hinton. 2010. “Rectified linear units improve re-

stricted boltzmann machines”. In: Proc. ICML. 807–814.

Nalisnick, E., B. Mitra, N. Craswell, and R. Caruana. 2016. “Improving

Document Ranking with Dual Word Embeddings”. In: Proc. WWW.

Nanni, F., B. Mitra, M. Magnusson, and L. Dietz. 2017. “Benchmark

for Complex Answer Retrieval”. In: Proc. ICTIR. Amsterdam, The

Netherlands: ACM.

Neubig, G., C. Dyer, Y. Goldberg, A. Matthews, W. Ammar, A. Anas-

tasopoulos, M. Ballesteros, D. Chiang, D. Clothiaux, T. Cohn, et

al. 2017. “DyNet: The Dynamic Neural Network Toolkit”. arXiv

preprint arXiv:1701.03980.

Nguyen, G.-H., L. Tamine, L. Soulier, and N. Bricon-Souf. 2016a. “To-

ward a deep neural approach for knowledge-based ir”. arXiv preprint

arXiv:1606.07211.

Nguyen, T., M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder,

and L. Deng. 2016b. “MS MARCO: A Human Generated MAchine

Reading COmprehension Dataset”. arXiv preprint arXiv:1611.09268.

Nogueira, R. and K. Cho. 2017. “Task-Oriented Query Reformulation

with Reinforcement Learning”. In: Proc. EMNLP. 574–583.

Oard, D. W. and A. R. Diekema. 1998. “Cross-language information

retrieval.” Annual Review of Information Science and Technology

(ARIST). 33: 223–56.

Palangi, H., L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and R.

Ward. 2014. “Semantic Modelling with Long-Short-Term Memory

for Information Retrieval”. arXiv preprint arXiv:1412.6629.

Palangi, H., L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, and

R. Ward. 2015. “Deep Sentence Embedding Using the Long Short

Term Memory Network: Analysis and Application to Information

Retrieval”. arXiv preprint arXiv:1502.06922.

Pang, L., Y. Lan, J. Guo, J. Xu, and X. Cheng. 2016a. “A study of match-

pyramid models on ad-hoc retrieval”. arXiv preprint arXiv:1606.04648.

Pang, L., Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng. 2016b. “Text

Matching as Image Recognition”. In: Proc. AAAI.

108 References

Pass, G., A. Chowdhury, and C. Torgeson. 2006. “A picture of search”.

In: Proc. InfoScale. ACM. isbn: 1-59593-428-6.

Pennington, J., R. Socher, and C. D. Manning. 2014. “Glove: Global

vectors for word representation”. Proc. EMNLP. 12: 1532–1543.

Plackett, R. L. 1975. “The analysis of permutations”. Applied Statistics:

193–202.

Ponte, J. M. and W. B. Croft. 1998. “A language modeling approach to

information retrieval”. In: Proc. SIGIR. ACM. 275–281.

Rajaraman, A. 2008. “More data usually beats better algorithms”.

Datawocky Blog.

Rajpurkar, P., J. Zhang, K. Lopyrev, and P. Liang. 2016. “Squad:

100,000+ questions for machine comprehension of text”. arXiv

preprint arXiv:1606.05250.

Ranzato, M., C. Poultney, S. Chopra, and Y. LeCun. 2006. “Efficient

learning of sparse representations with an energy-based model”. In:

Proc. NIPS. MIT Press. 1137–1144.

Rezende, D. J., S. Mohamed, and D. Wierstra. 2014. “Stochastic back-

propagation and approximate inference in deep generative models”.

In: Proc. ICML.

Al-Rfou, R., G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N.

Ballas, F. Bastien, J. Bayer, A. Belikov, A. Belopolsky, et al. 2016.

“Theano: A Python framework for fast computation of mathematical

expressions”. arXiv preprint arXiv:1605.02688.

Richardson, M., C. J. Burges, and E. Renshaw. 2013. “MCTest: A

Challenge Dataset for the Open-Domain Machine Comprehension

of Text.” In: EMNLP. Vol. 3. 4.

Robertson, S. E., E. Kanoulas, and E. Yilmaz. 2010. “Extending average

precision to graded relevance judgments”. In: Proc. SIGIR. ACM.

603–610.

Robertson, S. E., S. Walker, M. Beaulieu, M. Gatford, and A. Payne.

1996. “Okapi at TREC-4”. In: Proc. TREC. Vol. 500. 73–97.

Robertson, S., H. Zaragoza, et al. 2009. “The probabilistic relevance

framework: BM25 and beyond”. Foundations and Trends R© in In-

formation Retrieval. 3(4): 333–389.

References 109

Robertson, S., H. Zaragoza, and M. Taylor. 2004. “Simple BM25 ex-

tension to multiple weighted fields”. In: Proc. CIKM. ACM. 42–

49.

Rohde, D. L., L. M. Gonnerman, and D. C. Plaut. 2006. “An improved

model of semantic similarity based on lexical co-occurrence”. Com-

munications of the ACM. 8: 627–633.

Rong, X. 2014. “word2vec Parameter Learning Explained”. arXiv

preprint arXiv:1411.2738.

Rosset, C., D. Jose, G. Ghosh, B. Mitra, and S. Tiwary. 2018. “Opti-

mizing Query Evaluations using Reinforcement Learning for Web

Search”. In: Proc. SIGIR. ACM.

Roy, D., D. Paul, M. Mitra, and U. Garain. 2016. “Using Word Embed-

dings for Automatic Query Expansion”. arXiv preprint arXiv:1606.07608.

Rubner, Y., C. Tomasi, and L. J. Guibas. 1998. “A metric for distribu-

tions with applications to image databases”. In: Computer Vision,

1998. Sixth International Conference on. IEEE. 59–66.

Ruder, S. 2016. “Approximating the Softmax for Learning Word Em-

beddings”. Accessed June 7, 2017. url: http://sebastianruder.com/

word-embeddings-softmax/.

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.

Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L.

Fei-Fei. 2015. “ImageNet Large Scale Visual Recognition Challenge”.

International Journal of Computer Vision (IJCV). 115(3): 211–252.

doi: 10.1007/s11263-015-0816-y.

Sahlgren, M. 2006. “The Word-Space Model: Using distributional anal-

ysis to represent syntagmatic and paradigmatic relations between

words in high-dimensional vector spaces”. PhD thesis. Institutionen

för lingvistik.

Sak, H., A. W. Senior, and F. Beaufays. 2014. “Long short-term mem-

ory recurrent neural network architectures for large scale acoustic

modeling.” In: Interspeech. 338–342.

Salakhutdinov, R. and G. Hinton. 2009. “Semantic hashing”. Interna-

tional Journal of Approximate Reasoning. 50(7): 969–978.

Schmidhuber, J. 2015. “Deep learning in neural networks: An overview”.

Neural networks. 61: 85–117.

http://sebastianruder.com/word-embeddings-softmax/
http://sebastianruder.com/word-embeddings-softmax/
https://doi.org/10.1007/s11263-015-0816-y

110 References

Schroff, F., D. Kalenichenko, and J. Philbin. 2015. “Facenet: A unified

embedding for face recognition and clustering”. In: Proc. CVPR.

815–823.

Senécal, J.-S. and Y. Bengio. 2003. “Adaptive importance sampling

to accelerate training of a neural probabilistic language model”.

Tech. rep. Technical report, IDIAP.

Severyn, A. and A. Moschitti. 2015. “Learning to rank short text pairs

with convolutional deep neural networks”. In: Proc. SIGIR. ACM.

373–382.

Shan, Y., T. R. Hoens, J. Jiao, H. Wang, D. Yu, and J. Mao. 2016.

“Deep Crossing: Web-scale modeling without manually crafted com-

binatorial features”. In: Proc. SIGKDD. ACM. 255–262.

Shen, Y., X. He, J. Gao, L. Deng, and G. Mesnil. 2014a. “A latent

semantic model with convolutional-pooling structure for information

retrieval”. In: Proc. CIKM. ACM. 101–110.

Shen, Y., X. He, J. Gao, L. Deng, and G. Mesnil. 2014b. “Learning

semantic representations using convolutional neural networks for

Web search”. In: Proc. WWW. 373–374.

Shi, S., Q. Wang, P. Xu, and X. Chu. 2016. “Benchmarking State-of-the-

Art Deep Learning Software Tools”. arXiv preprint arXiv:1608.07249.

Shokouhi, M. and Q. Guo. 2015. “From queries to cards: Re-ranking

proactive card recommendations based on reactive search history”.

In: SIGIR. ACM. 695–704.

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den

Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M.

Lanctot, et al. 2016. “Mastering the game of Go with deep neural

networks and tree search”. Nature. 529(7587): 484–489.

Singhal, A., C. Buckley, and M. Mitra. 1996. “Pivoted document length

normalization”. In: Proc. SIGIR. ACM. 21–29.

Socher, R., C. C. Lin, C. Manning, and A. Y. Ng. 2011a. “Parsing

natural scenes and natural language with recursive neural networks”.

In: Proc. ICML. 129–136.

Socher, R., J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Man-

ning. 2011b. “Semi-supervised recursive autoencoders for predicting

sentiment distributions”. In: Proc. EMNLP. Association for Compu-

tational Linguistics. 151–161.

References 111

Song, Y. and Q. Guo. 2016. “Query-less: Predicting task repetition for

nextgen proactive search and recommendation engines”. In: WWW.

International World Wide Web Conferences Steering Committee.

543–553.

Sordoni, A., Y. Bengio, H. Vahabi, C. Lioma, J. G. Simonsen, and J.-Y.

Nie. 2015a. “A Hierarchical Recurrent Encoder-Decoder for Genera-

tive Context-Aware Query Suggestion”. arXiv preprint arXiv:1507.02221.

Sordoni, A., M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J.-Y.

Nie, J. Gao, and B. Dolan. 2015b. “A neural network approach

to context-sensitive generation of conversational responses”. In:

Proceedings of NAACL-HLT. arXiv:1506.06714. 196–205.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov. 2014. “Dropout: A simple way to prevent neural networks

from overfitting”. The Journal of Machine Learning Research. 15(1):

1929–1958.

Strohman, T., D. Metzler, H. Turtle, and W. B. Croft. 2005. “Indri:

A language model-based search engine for complex queries”. In:

Proceedings of the International Conference on Intelligent Analysis.

Vol. 2. No. 6. Citeseer. 2–6.

Sturm, B. L. 2014. “A simple method to determine if a music information

retrieval system is a “horse””. IEEE Transactions on Multimedia.

16(6): 1636–1644.

Sukhbaatar, S., J. Weston, R. Fergus, et al. 2015. “End-to-end memory

networks”. In: Proc. NIPS. 2440–2448.

Sun, C., A. Shrivastava, S. Singh, and A. Gupta. 2017. “Revisiting

unreasonable effectiveness of data in deep learning era”. In: 2017

IEEE International Conference on Computer Vision (ICCV). IEEE.

843–852.

Sun, F., J. Guo, Y. Lan, J. Xu, and X. Cheng. 2015. “Learning word

representations by jointly modeling syntagmatic and paradigmatic

relations”. In: Proc. ACL.

Sun, F., J. Guo, Y. Lan, J. Xu, and X. Cheng. 2016a. “Semantic Regulari-

ties in Document Representations”. arXiv preprint arXiv:1603.07603.

Sun, F., J. Guo, Y. Lan, J. Xu, and X. Cheng. 2016b. “Sparse word

embeddings using l1 regularized online learning”. In: Proc. IJCAI.

2915–2921.

112 References

Sutskever, I., J. Martens, and G. E. Hinton. 2011. “Generating text

with recurrent neural networks”. In: Proc. ICML. 1017–1024.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.

Erhan, V. Vanhoucke, and A. Rabinovich. 2015. “Going deeper with

convolutions”. In: Proc. CVPR. 1–9.

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-

low, and R. Fergus. 2013. “Intriguing properties of neural networks”.

arXiv preprint arXiv:1312.6199.

Tai, K. S., R. Socher, and C. D. Manning. 2015. “Improved seman-

tic representations from tree-structured long short-term memory

networks”. arXiv preprint arXiv:1503.00075.

Taylor, M., H. Zaragoza, N. Craswell, S. Robertson, and C. Burges.

2006. “Optimisation methods for ranking functions with multiple

parameters”. In: Proc. CIKM. ACM. 585–593.

Tishby, N., F. C. Pereira, and W. Bialek. 2000. “The information

bottleneck method”. arXiv preprint physics/0004057.

Tokui, S., K. Oono, S. Hido, and J. Clayton. 2015. “Chainer: a next-

generation open source framework for deep learning”. In: Proceed-

ings of workshop on machine learning systems (LearningSys) in the

twenty-ninth annual conference on neural information processing

systems (NIPS).

Turney, P. D. and P. Pantel. 2010. “From frequency to meaning: Vector

space models of semantics”. Journal of artificial intelligence research.

37: 141–188.

Van Gysel, C., E. Kanoulas, and M. de Rijke. 2017a. “Pyndri: a Python

Interface to the Indri Search Engine”. arXiv preprint arXiv:1701.00749.

Van Gysel, C., B. Mitra, M. Venanzi, R. Rosemarin, G. Kukla, P.

Grudzien, and N. Cancedda. 2017b. “Reply With: Proactive Recom-

mendation of Email Attachments”. In: Proc. CIKM.

Van Gysel, C., M. de Rijke, and E. Kanoulas. 2016a. “Learning latent

vector spaces for product search”. In: Proc. CIKM. ACM. 165–174.

Van Gysel, C., M. de Rijke, and M. Worring. 2016b. “Unsupervised,

efficient and semantic expertise retrieval”. In: Proc. WWW. Inter-

national World Wide Web Conferences Steering Committee. 1069–

1079.

References 113

Varma, M. and M. Cisse. 2015. “Extreme Classification 2015: The

NIPS Workshop on Multi-class and Multi-label Learning in Ex-

tremely Large Label Spaces”. Accessed June 7, 2017. url: http:

//manikvarma.org/events/XC15/.

Vaswani, A., Y. Zhao, V. Fossum, and D. Chiang. 2013. “Decoding

with Large-Scale Neural Language Models Improves Translation.”

In: EMNLP. 1387–1392.

Vincent, P., A. de Brébisson, and X. Bouthillier. 2016. “Exact gradient

updates in time independent of output size for the spherical loss

family”. arXiv preprint arXiv:1606.08061.

Vinyals, O., C. Blundell, T. Lillicrap, D. Wierstra, et al. 2016. “Matching

networks for one shot learning”. In: Proc. NIPS. 3630–3638.

Vinyals, O. and Q. Le. 2015. “A neural conversational model”. ICML

Deep Learning Workshop. arXiv:1506.05869.

Voorhees, E. M. and D. Harman. 2000. “Overview of the eighth text

retrieval conference (TREC-8)”: 1–24.

Voorhees, E. M., D. K. Harman, et al. 2005. TREC: Experiment and

evaluation in information retrieval. Vol. 1. MIT press Cambridge.

Voorhees, E. M. and D. M. Tice. 2000. “Building a question answering

test collection”. In: Proc. SIGIR. ACM. 200–207.

Vulić, I. and M.-F. Moens. 2015. “Monolingual and cross-lingual infor-

mation retrieval models based on (bilingual) word embeddings”. In:

Proc. SIGIR. ACM. 363–372.

Wan, S., Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng. 2015. “A deep

architecture for semantic matching with multiple positional sentence

representations”. arXiv preprint arXiv:1511.08277.

Wan, S., Y. Lan, J. Xu, J. Guo, L. Pang, and X. Cheng. 2016. “Match-

srnn: Modeling the recursive matching structure with spatial rnn”.

arXiv preprint arXiv:1604.04378.

Wan, X. 2007. “A novel document similarity measure based on earth

mover’s distance”. Information Sciences. 177(18): 3718–3730.

Wan, X. and Y. Peng. 2005. “The earth mover’s distance as a semantic

measure for document similarity”. In: Proc. CIKM. ACM. 301–302.

http://manikvarma.org/events/XC15/
http://manikvarma.org/events/XC15/

114 References

Wang, J., L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D.

Zhang. 2017. “IRGAN: A Minimax Game for Unifying Generative

and Discriminative Information Retrieval Models”. arXiv preprint

arXiv:1705.10513.

Wang, L., J. Lin, and D. Metzler. 2011. “A cascade ranking model for

efficient ranked retrieval”. In: Proc. SIGIR. ACM. 105–114.

Weston, J., A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer, A.

Joulin, and T. Mikolov. 2015. “Towards ai-complete question answer-

ing: A set of prerequisite toy tasks”. arXiv preprint arXiv:1502.05698.

Weston, J., S. Chopra, and A. Bordes. 2014. “Memory networks”. arXiv

preprint arXiv:1410.3916.

White, R. W. 2016. Interactions with search systems. Cambridge Uni-

versity Press.

Wissner-Gross, A. 2016. “Datasets Over Algorithms”. Edge. com. Re-

trieved. 8.

Wu, Q., C. J. Burges, K. M. Svore, and J. Gao. 2010. “Adapting boosting

for information retrieval measures”. Information Retrieval. 13(3):

254–270.

Xia, F., T.-Y. Liu, J. Wang, W. Zhang, and H. Li. 2008. “Listwise

approach to learning to rank: theory and algorithm”. In: Proc.

ICML. ACM. 1192–1199.

Xia, L., J. Xu, Y. Lan, J. Guo, and X. Cheng. 2016. “Modeling Document

Novelty with Neural Tensor Network for Search Result Diversifica-

tion”. In: Proc. SIGIR. ACM. 395–404.

Xie, Y. and D. O’Hallaron. 2002. “Locality in search engine queries and

its implications for caching”. In: INFOCOM 2002. Twenty-First An-

nual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings. IEEE. Vol. 3. IEEE. 1238–1247.

Xu, K., J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,

and Y. Bengio. 2015. “Show, attend and tell: Neural image caption

generation with visual attention”. In: International Conference on

Machine Learning. 2048–2057.

Yan, R., Y. Song, and H. Wu. 2016. “Learning to respond with deep

neural networks for retrieval-based human-computer conversation

system”. In: Proc. SIGIR. ACM. 55–64.

References 115

Yan, X., J. Guo, S. Liu, X. Cheng, and Y. Wang. 2013. “Learning topics

in short texts by non-negative matrix factorization on term correla-

tion matrix”. In: Proceedings of the SIAM International Conference

on Data Mining.

Yang, L., Q. Ai, J. Guo, and W. B. Croft. 2016. “aNMM: Ranking Short

Answer Texts with Attention-Based Neural Matching Model”. In:

Proc. CIKM. ACM. 287–296.

Yang, Y., W.-t. Yih, and C. Meek. 2015. “WikiQA: A Challenge Dataset

for Open-Domain Question Answering.” In: EMNLP. Citeseer. 2013–

2018.

Yih, W.-t., K. Toutanova, J. C. Platt, and C. Meek. 2011. “Learning

discriminative projections for text similarity measures”. In: Proc.

CoNLL. Association for Computational Linguistics. 247–256.

Yin, W., H. Schütze, B. Xiang, and B. Zhou. 2015. “Abcnn: Attention-

based convolutional neural network for modeling sentence pairs”.

arXiv preprint arXiv:1512.05193.

Yu, D., A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O.

Kuchaiev, Y. Zhang, F. Seide, H. Wang, et al. “An introduction to

computational networks and the computational network toolkit”.

Yue, Y. and C. Burges. 2007. “On using simultaneous perturbation

stochastic approximation for IR measures, and the empirical op-

timality of LambdaRank”. In: NIPS Machine Learning for Web

Search Workshop.

Yue, Y., T. Finley, F. Radlinski, and T. Joachims. 2007. “A support

vector method for optimizing average precision”. In: Proc. SIGIR.

ACM. 271–278.

Zamani, H. and W. B. Croft. 2016a. “Embedding-based query language

models”. In: Proc. ICTIR. ACM. 147–156.

Zamani, H. and W. B. Croft. 2016b. “Estimating embedding vectors

for queries”. In: Proc. ICTIR. ACM. 123–132.

Zamani, H., B. Mitra, X. Song, N. Craswell, and S. Tiwary. 2018.

“Neural Ranking Models with Multiple Document Fields”. In: Proc.

WSDM.

Zaragoza, H., N. Craswell, M. J. Taylor, S. Saria, and S. E. Robertson.

2004. “Microsoft Cambridge at TREC 13: Web and Hard Tracks.”

In: TREC. Vol. 4. 1–1.

116 References

Zhai, C. and J. Lafferty. 2001. “A study of smoothing methods for

language models applied to ad hoc information retrieval”. In: Proc.

SIGIR. ACM. 334–342.

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals. 2016. “Un-

derstanding deep learning requires rethinking generalization”. arXiv

preprint arXiv:1611.03530.

Zhao, H., Z. Lu, and P. Poupart. 2015. “Self-Adaptive Hierarchical

Sentence Model”. arXiv preprint arXiv:1504.05070.

Zheng, G. and J. Callan. 2015. “Learning to Reweight Terms with

Distributed Representations”. In: Proc. SIGIR. ACM. 575–584.

Zhou, X., D. Dong, H. Wu, S. Zhao, R. Yan, D. Yu, X. Liu, and H.

Tian. 2016. “Multi-view response selection for human-computer

conversation”. EMNLP’16.

Zhu, M. 2004. “Recall, precision and average precision”. Department of

Statistics and Actuarial Science, University of Waterloo, Waterloo.

2: 30.

Zoph, B., A. Vaswani, J. May, and K. Knight. 2016. “Simple, fast noise-

contrastive estimation for large rnn vocabularies”. In: Proceedings

of NAACL-HLT. 1217–1222.

Zuccon, G., B. Koopman, P. Bruza, and L. Azzopardi. 2015. “Integrating

and evaluating neural word embeddings in information retrieval”.

In: Proc. ADCS. ACM. 12.

Zweig, G. and K. Makarychev. 2013. “Speed regularization and optimal-

ity in word classing”. In: Acoustics, Speech and Signal Processing

(ICASSP), 2013 IEEE International Conference on. IEEE. 8237–

8241.

	Introduction
	Fundamentals of text retrieval
	IR tasks
	Desiderata of IR models
	Notation
	Metrics
	Traditional IR models
	Neural approaches to IR

	Unsupervised learning of term representations
	A tale of two representations
	Notions of similarity
	Observed feature spaces
	Latent feature spaces

	Term embeddings for IR
	Query-document matching
	Query expansion

	Supervised learning to rank
	Input features
	Loss functions

	Deep neural networks
	Input text representations
	Standard architectures
	Neural toolkits

	Deep neural networks for IR
	Document autoencoders
	Siamese networks
	Interaction-based networks
	Lexical and semantic matching
	Matching with multiple document fields

	Conclusion
	Acknowledgements
	References

