Sebastian Aniţa Viorel Arnăutu Vincenzo Capasso

An Introduction to Optimal Control Problems in Life Sciences and Economics

From Mathematical Models to Numerical Simulation with MATLAB®

Contents

\mathbf{Sy}	mbol	s and Notations	IX	
1	An introduction to MATLAB [®] . Elementary models			
	wit]	h applications	1	
	1.1	Why MATLAB®?	1	
		1.1.1 Arrays and matrix algebra	1	
		1.1.2 Simple 2D graphics	9	
		1.1.3 Script files and function files	10	
	1.2	Roots and minimum points of 1D functions	16	
	1.3	Array-smart functions	19	
	1.4	Models with ODEs; MATLAB functions ode23 and ode45	22	
	1.5	The spruce budworm model	28	
	1.6	Programming Runge–Kutta methods	32	
	1.7	Systems of ODEs. Models from Life Sciences	34	
	1.8	3D Graphics		
	Bibl	liographical Notes and Remarks	55	
	Exe	rcises	56	
2	Optimal control of ordinary differential systems.			
	Opt	timality conditions	59	
	2.1	Basic problem. Pontryagin's principle	59	
	2.2	Maximizing total consumption	65	
	2.3	Maximizing the total population in a predator-prey system	72	
	2.4	Insulin treatment model	83	
	2.5	Working examples	93	
		2.5.1 HIV treatment	93	
		2.5.2 The control of a SIR model		
		liographical Notes and Remarks		
	\mathbf{Exe}	rcises	97	

3	Optimal control of ordinary differential systems.
	Gradient methods
	3.1 A gradient method
	3.2 A tutorial example for the gradient method105
	3.3 Stock management
	3.4 An optimal harvesting problem
	Bibliographical Notes and Remarks141
	Exercises
4	Optimal harvesting for age-structured population145
-	4.1 The linear age-structured population dynamics
	4.2 The optimal harvesting problem
	4.3 A logistic model with periodic vital rates
	Bibliographical Notes and Remarks
	Exercises
	Exercises
5	Optimal control of diffusive models
	5.1 Diffusion in mathematical models
	5.2 Optimal harvesting for Fisher's model
	5.3 A working example: Control of a reaction-diffusion system 199
	Bibliographical Notes and Remarks
	Exercises
Ap	pendices
• •	A.1 Elements of functional analysis
	A.1.1 The Lebesgue integral
	A.1.2 L^p spaces
	A.1.3 The weak convergence
	A.1.4 The normal cone
	A.1.5 The Gâteaux derivative
	A.2 Bellman's lemma
	A.3 Existence and uniqueness of Carathéodory solution
	A.4 Runge–Kutta methods
	11.7 Itungo Kutta methodo
Ref	ferences
Ind	ex

v