An Introduction to Probabilistic Neural Networks

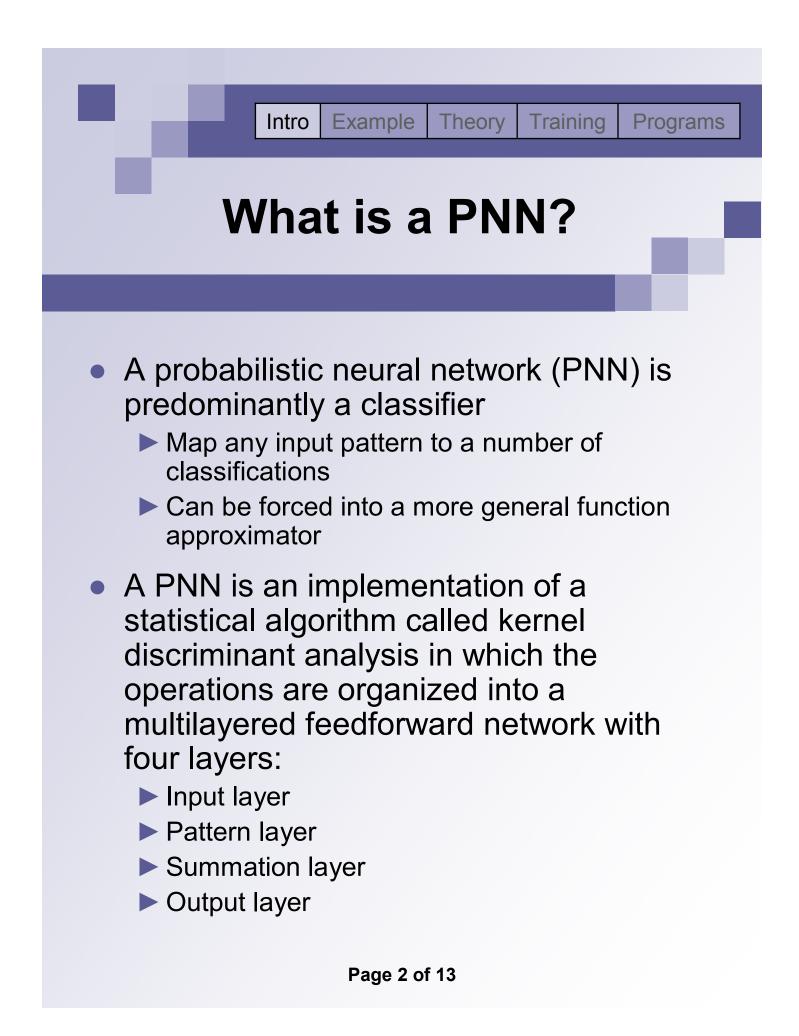
Vincent Cheung Kevin Cannons

Signal & Data Compression Laboratory Electrical & Computer Engineering University of Manitoba Winnipeg, Manitoba, Canada Advisor: Dr. W. Kinsner

June 10, 2002

Outline

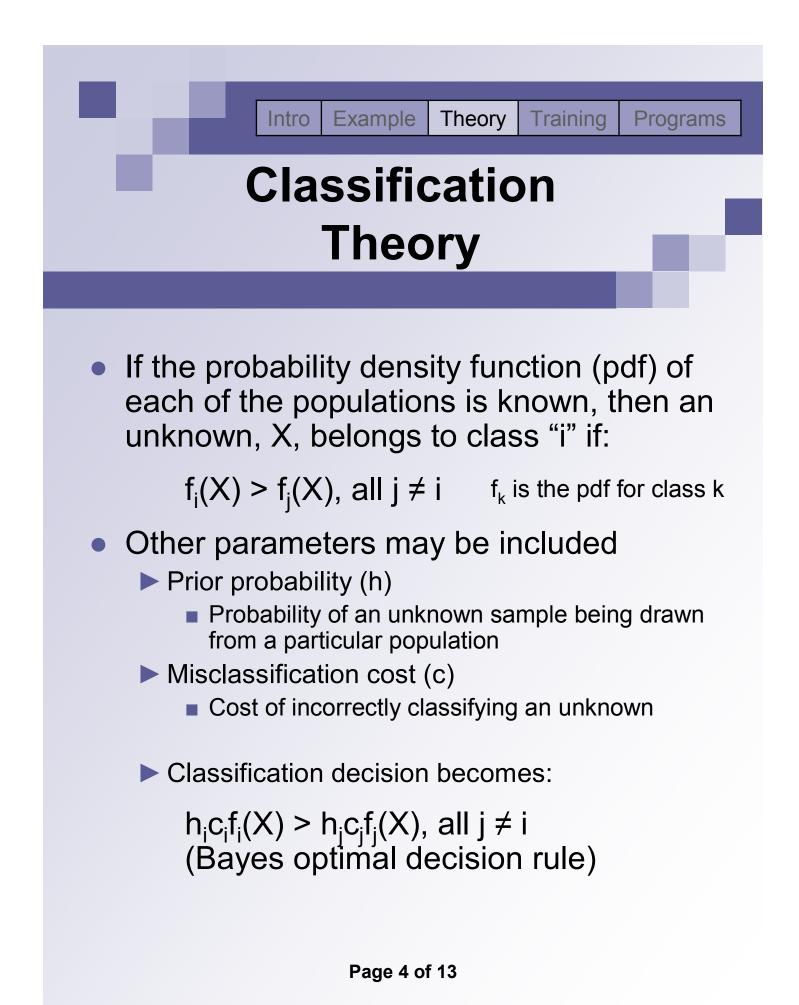
- Introduction
- Classifier Example
- Theory and Architecture
- Training
- Program Implementations
- Conclusion

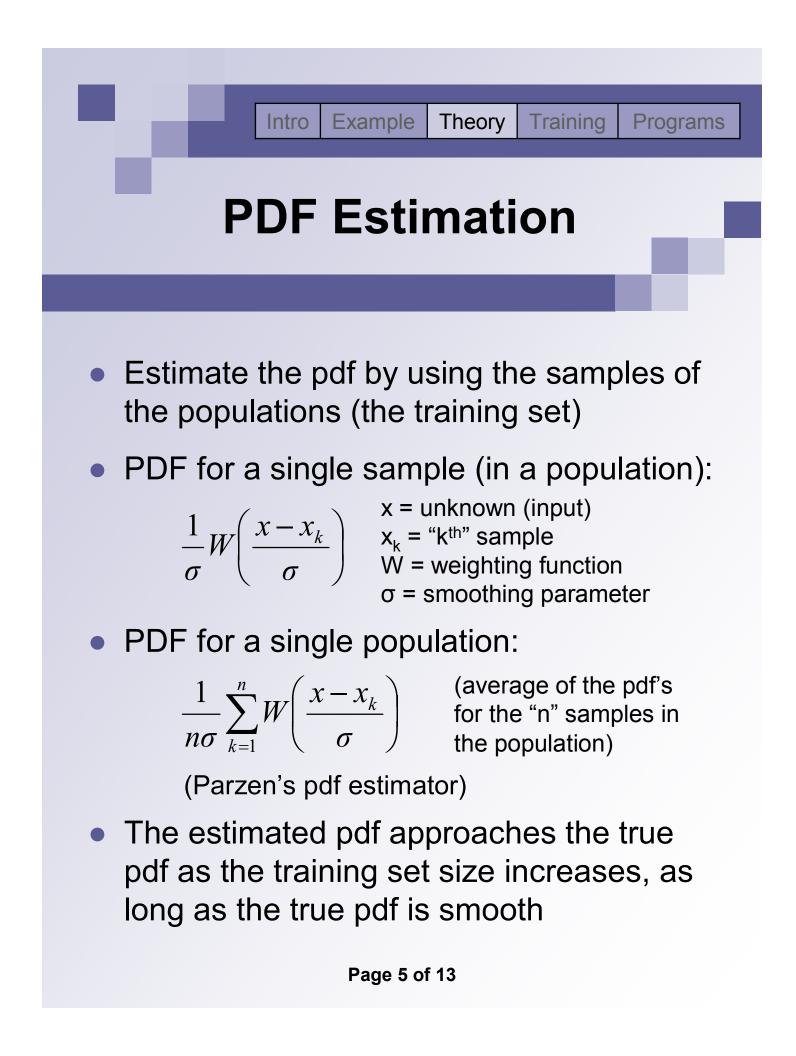


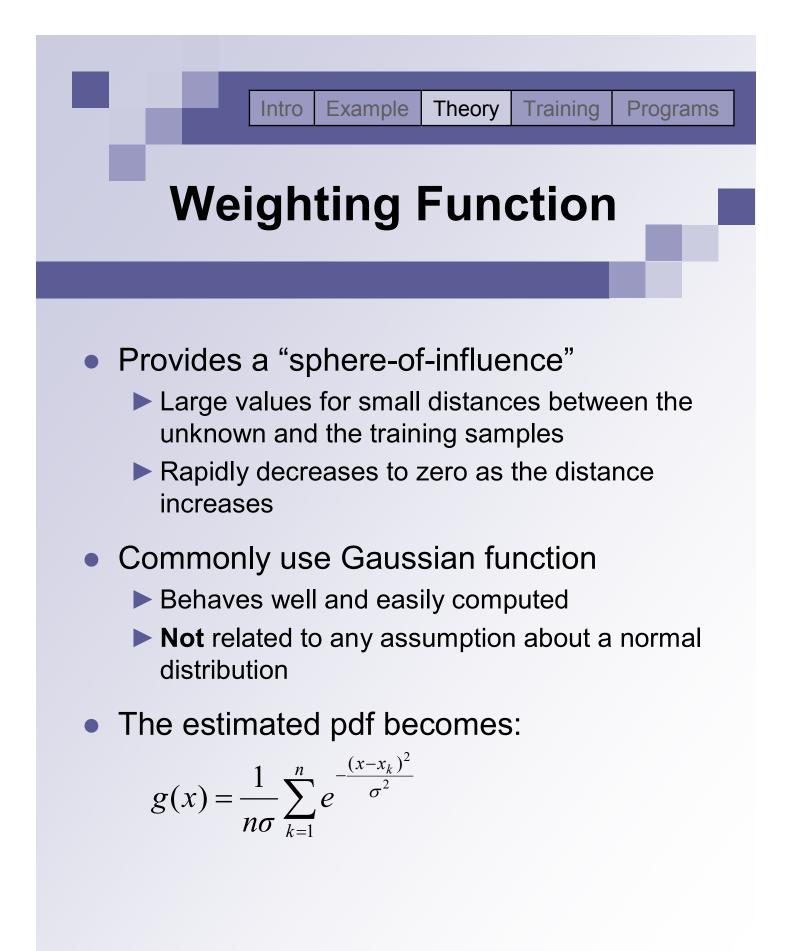
Advantages and Disadvantages

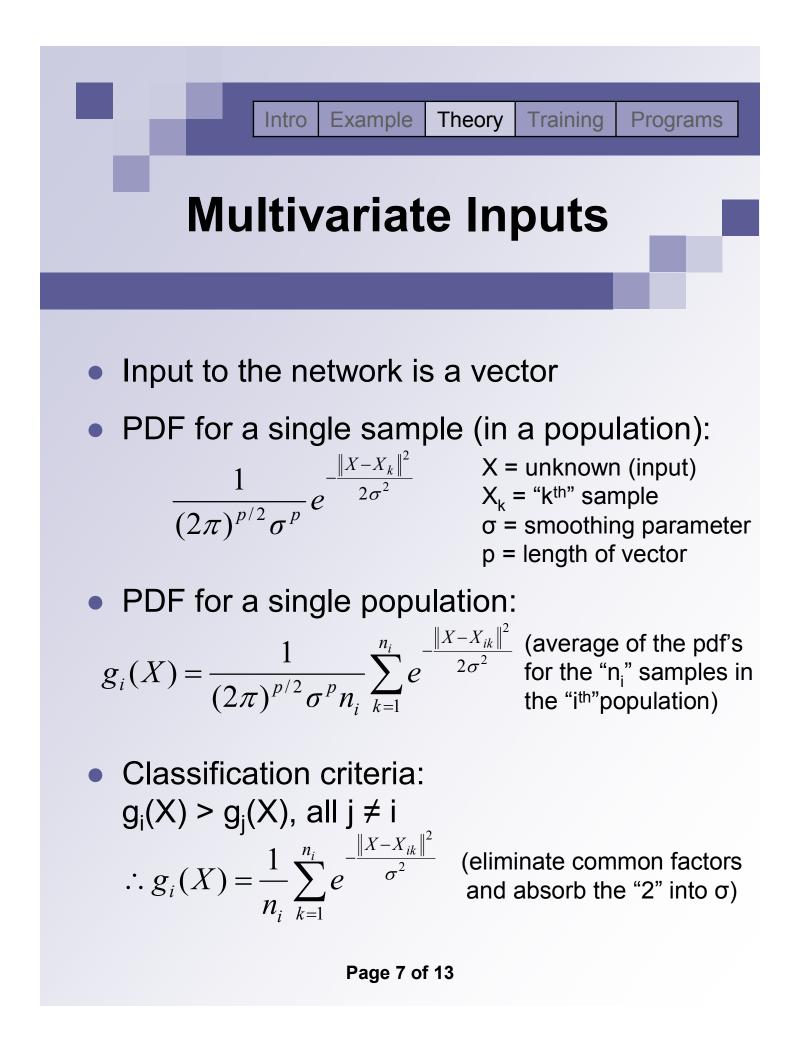
Advantages

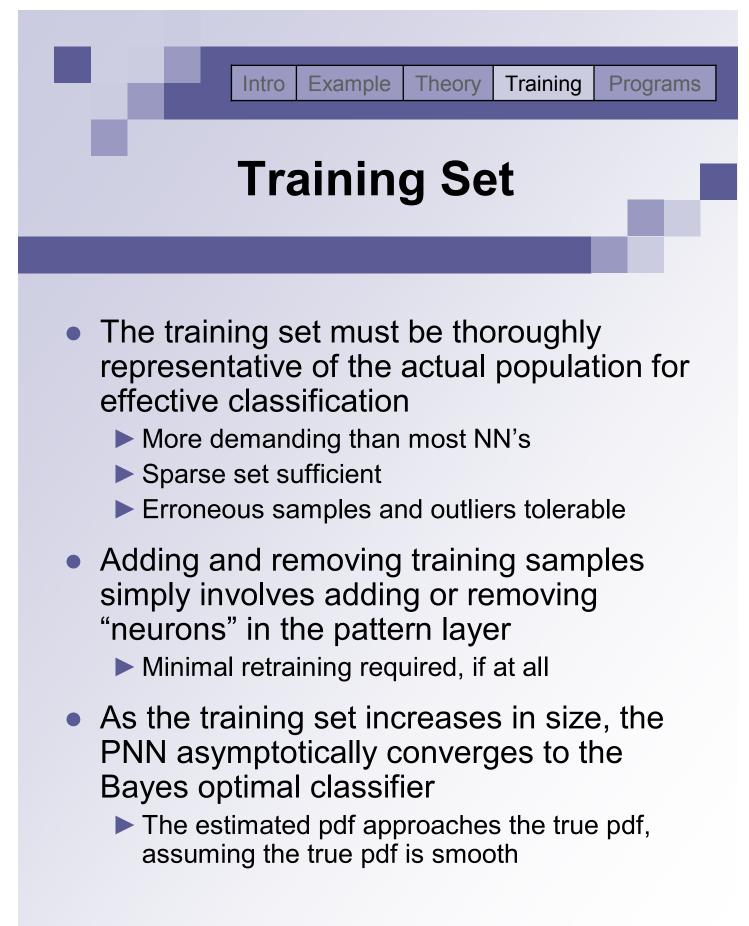
- Fast training process
 - Orders of magnitude faster than backpropagation
- An inherently parallel structure
- Guaranteed to converge to an optimal classifier as the size of the representative training set increases
 - No local minima issues
- Training samples can be added or removed without extensive retraining
- Disadvantages
 - Not as general as backpropagation
 - Large memory requirements
 - Slow execution of the network
 - Requires a representative training set
 - Even more so than other types of NN's

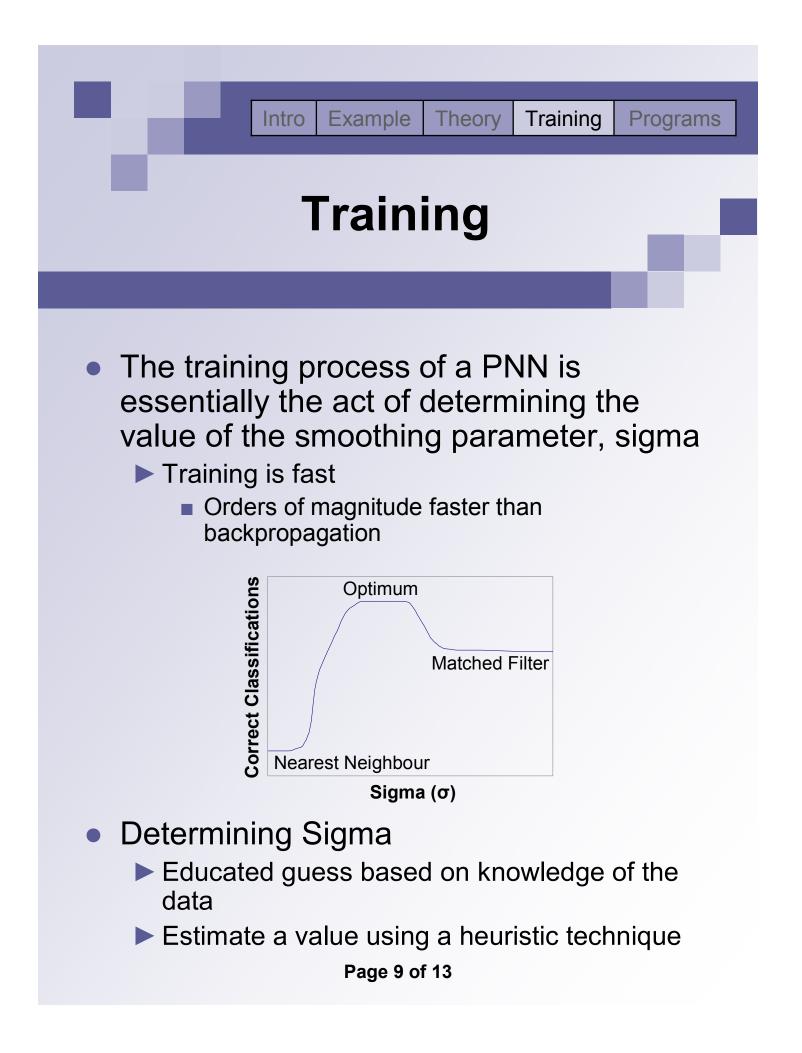












Estimating Sigma Using Jackknifing

- Systematic testing of values for sigma over some range
 - Bounding the optimal value to some interval
 - Shrinking the interval
- Jackknifing is used to grade the performance of each "test" sigma
 - Exclude a single sample from the training set
 - Test if the PNN correctly classifies the excluded sample
 - Iterate the exclusion and testing process for each sample in the training set
 - The number of correct classifications over the entire process is a measure of the performance for that value of sigma
 - Not unbiased measure of performance
 - Training and testing sets not independent
 - Gives a ball park estimate of quality of sigma

Implementations

Current Work

- Basic PNN coded in Java
 - Simple examples
 - Boy/Girl classifier (same as perceptron)
 - Classification of points in R² or R³ into the quadrants
- Multithreaded PNN
 - For parallel processing (on supercomputers)
 - One thread per class
- Future Work
 - Artificially create a time series of a chaotic system and use a PNN to classify its features in order to reconstruct the strange attractor
 - Further test the classification abilities of PNN
 - Test the PNN's tolerance to noisy inputs

Conclusion

- PNN's should be used if
 - A near optimal classifier with a short training time is desired
 - Slow execution speed and large memory requirements can be tolerated
- No extensive testing on our implementation of PNN's have been done
 - Once chaotic time series have been obtained, we will have more challenging data to work with

References

[Mast93] T. Masters, *Practial Neural Network Recipes in C++*, Toronto, ON: Academic Press, Inc., 1993.

[Specht88] D.F. Specht, "Probabilistic Neural Networks for Classification, Mapping, or Associative Memory", *IEEE International Conference on Neural Networks*, vol. I, pp. 525-532, July 1998.

[Specht92] D.F. Specht, "Enhancements to Probabilistic Neural Networks", *International Joint Conference on Neural Networks*, vol. I, pp. 761-768, June 1992.

[Wass93] P. D. Wasserman, *Advanced Methods in Neural Computing*, New York, NY: Van Nostrand Reinhold, 1993.

[Zak98] Anthony Zaknich, *Artificial Neural Networks: An Introductory Course*. [Online]. http://www.maths.uwa.edu.au/~rkealley/ann_all/ann_all.html (as of June 6, 2002).

Simple Classifier Example

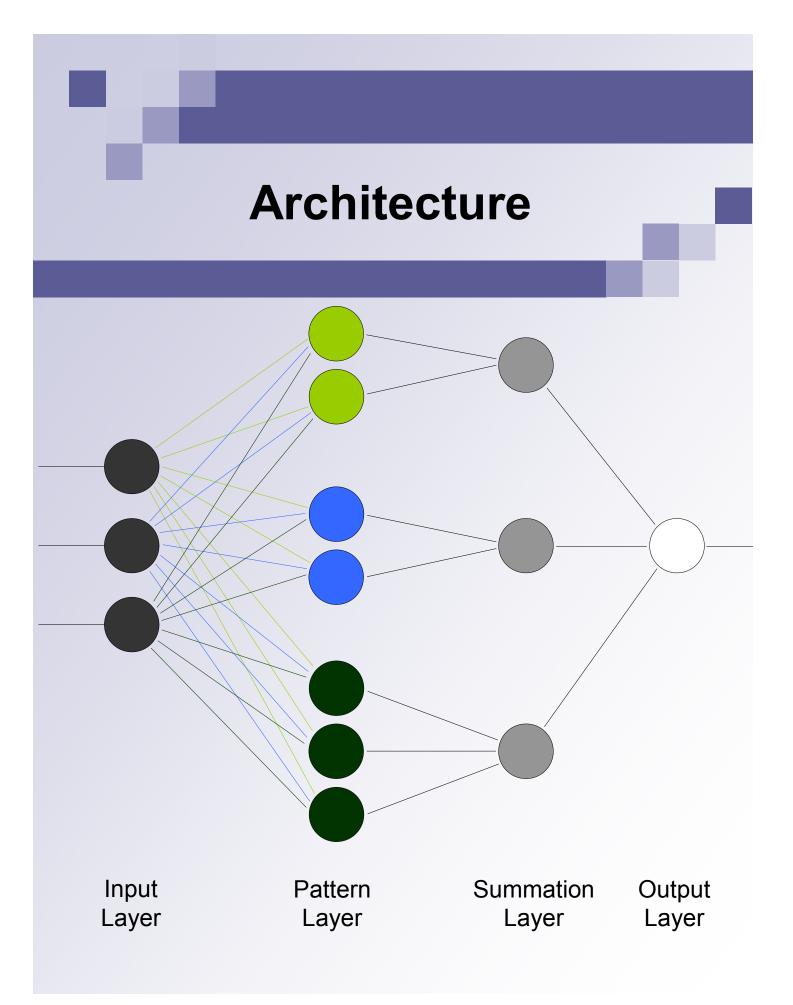
- Idea behind classification using a PNN
- Three classes or populations
 X, O, and
- The "?" is an unknown sample and must be classified into one of the populations
- Nearest neighbour algorithm would classify the "?" as a
 because a
 sample is the closest sample to the "?"
 - In other words, with nearest neighbour, the unknown belongs to the same population as the closest sample

Simple Classifier Example

- A more effective classifier would also take the other samples into consideration in making its decision
- However, not all samples should contribute to the classification of a particular unknown the same amount
 - Samples close to the unknown should have a large contribution (increase the probability of classifying the unknown as that population)
 - Samples far from the unknown should have a small contribution (decrease the probability of classifying the unknown as that population)
 - A "sphere-of-influence"

Simple Classifier Example

- What the more effective classifier would then do is, for each population, calculate the average of all the contributions made by the samples in that population
- The unknown sample is then classified as being a member of the population which has the largest average



Architecture

