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What is a PNN?

● A probabilistic neural network (PNN) is 
predominantly a classifier
►Map any input pattern to a number of 

classifications

►Can be forced into a more general function 
approximator

● A PNN is an implementation of a 
statistical algorithm called kernel 
discriminant analysis in which the 
operations are organized into a 
multilayered feedforward network with 
four layers:
► Input layer

►Pattern layer

►Summation layer

►Output layer

ProgramsTrainingTheoryExampleIntro
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Advantages and 

Disadvantages

● Advantages
►Fast training process 

■ Orders of magnitude faster than 
backpropagation

►An inherently parallel structure

►Guaranteed to converge to an optimal 
classifier as the size of the representative 
training set increases

■ No local minima issues 

►Training samples can be added or removed 
without extensive retraining 

● Disadvantages
►Not as general as backpropagation

►Large memory requirements

►Slow execution of the network

►Requires a representative training set

■ Even more so than other types of NN’s
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Classification

Theory

● If the probability density function (pdf) of 
each of the populations is known, then an 
unknown, X, belongs to class “i” if:

fi(X) > fj(X), all j ≠ i

● Other parameters may be included
►Prior probability (h)

■ Probability of an unknown sample being drawn 
from a particular population

►Misclassification cost (c)

■ Cost of incorrectly classifying an unknown

►Classification decision becomes:

hicifi(X) > hjcjfj(X), all j ≠ i
(Bayes optimal decision rule)

fk is the pdf for class k

ProgramsTrainingTheoryExampleIntro
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PDF Estimation

● Estimate the pdf by using the samples of 

the populations (the training set)

● PDF for a single sample (in a population):

● PDF for a single population:

● The estimated pdf approaches the true 

pdf as the training set size increases, as 

long as the true pdf is smooth
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Weighting Function

● Provides a “sphere-of-influence”

►Large values for small distances between the 

unknown and the training samples

►Rapidly decreases to zero as the distance 

increases

● Commonly use Gaussian function

►Behaves well and easily computed

►Not related to any assumption about a normal 

distribution

● The estimated pdf becomes:
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Multivariate Inputs

● Input to the network is a vector

● PDF for a single sample (in a population):

● PDF for a single population:

● Classification criteria:

gi(X) > gj(X), all j ≠ i
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Training Set

● The training set must be thoroughly 
representative of the actual population for 
effective classification
►More demanding than most NN’s

►Sparse set sufficient

►Erroneous samples and outliers tolerable

● Adding and removing training samples 
simply involves adding or removing 
“neurons” in the pattern layer
►Minimal retraining required, if at all

● As the training set increases in size, the 
PNN asymptotically converges to the 
Bayes optimal classifier
►The estimated pdf approaches the true pdf, 

assuming the true pdf is smooth
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Training

● The training process of a PNN is 
essentially the act of determining the 
value of the smoothing parameter, sigma
►Training is fast

■ Orders of magnitude faster than 
backpropagation

● Determining Sigma
►Educated guess based on knowledge of the 

data

►Estimate a value using a heuristic technique

Nearest Neighbour

Optimum

Matched Filter
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Estimating Sigma 

Using Jackknifing

● Systematic testing of values for sigma 
over some range
►Bounding the optimal value to some interval

►Shrinking the interval

● Jackknifing is used to grade the 
performance of each “test” sigma
►Exclude a single sample from the training set

►Test if the PNN correctly classifies the 
excluded sample

► Iterate the exclusion and testing process for 
each sample in the training set

■ The number of correct classifications over the 
entire process is a measure of the performance 
for that value of sigma

►Not unbiased measure of performance

■ Training and testing sets not independent

■ Gives a ball park estimate of quality of sigma
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Implementations

● Current Work

►Basic PNN coded in Java

■ Simple examples

Boy/Girl classifier (same as perceptron)

Classification of points in R2 or R3 into the 

quadrants

►Multithreaded PNN

■ For parallel processing (on supercomputers)

■ One thread per class

● Future Work

►Artificially create a time series of a chaotic 

system and use a PNN to classify its features 

in order to reconstruct the strange attractor

■ Further test the classification abilities of PNN

■ Test the PNN’s tolerance to noisy inputs

ProgramsTrainingTheoryExampleIntro
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Conclusion

● PNN’s should be used if

►A near optimal classifier with a short training 

time is desired

►Slow execution speed and large memory 

requirements can be tolerated

● No extensive testing on our 

implementation of PNN’s have been done

►Once chaotic time series have been obtained, 

we will have more challenging data to work 

with
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Simple Classifier 

Example

● Idea behind classification using a PNN

● Three classes or populations
►X, O, and �

● The “?” is an unknown sample and must 
be classified into one of the populations

● Nearest neighbour algorithm would 
classify the “?” as a � because a �
sample is the closest sample to the “?”
► In other words, with nearest neighbour, the 

unknown belongs to the same population as 
the closest sample
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Simple Classifier 

Example

● A more effective classifier would also 

take the other samples into consideration 

in making its decision

● However, not all samples should 

contribute to the classification of a 

particular unknown the same amount

►Samples close to the unknown should have a 

large contribution (increase the probability of 

classifying the unknown as that population) 

►Samples far from the unknown should have a 

small contribution (decrease the probability of 

classifying the unknown as that population)

►A “sphere-of-influence”
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Simple Classifier 

Example

● What the more effective classifier would 

then do is, for each population, calculate 

the average of all the contributions made 

by the samples in that population

● The unknown sample is then classified as 

being a member of the population which 

has the largest average
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