
June 10, 2002

An Introduction to

Probabilistic Neural

Networks

Vincent Cheung

Kevin Cannons

Signal & Data Compression Laboratory

Electrical & Computer Engineering

University of Manitoba

Winnipeg, Manitoba, Canada

Advisor: Dr. W. Kinsner

Page 1 of 13

Outline

● Introduction

● Classifier Example

● Theory and Architecture

● Training

● Program Implementations

● Conclusion

Page 2 of 13

What is a PNN?

● A probabilistic neural network (PNN) is
predominantly a classifier
►Map any input pattern to a number of

classifications

►Can be forced into a more general function
approximator

● A PNN is an implementation of a
statistical algorithm called kernel
discriminant analysis in which the
operations are organized into a
multilayered feedforward network with
four layers:
► Input layer

►Pattern layer

►Summation layer

►Output layer

ProgramsTrainingTheoryExampleIntro

Page 3 of 13

Advantages and

Disadvantages

● Advantages
►Fast training process

■ Orders of magnitude faster than
backpropagation

►An inherently parallel structure

►Guaranteed to converge to an optimal
classifier as the size of the representative
training set increases

■ No local minima issues

►Training samples can be added or removed
without extensive retraining

● Disadvantages
►Not as general as backpropagation

►Large memory requirements

►Slow execution of the network

►Requires a representative training set

■ Even more so than other types of NN’s

ProgramsTrainingTheoryExampleIntro

Page 4 of 13

Classification

Theory

● If the probability density function (pdf) of
each of the populations is known, then an
unknown, X, belongs to class “i” if:

fi(X) > fj(X), all j ≠ i

● Other parameters may be included
►Prior probability (h)

■ Probability of an unknown sample being drawn
from a particular population

►Misclassification cost (c)

■ Cost of incorrectly classifying an unknown

►Classification decision becomes:

hicifi(X) > hjcjfj(X), all j ≠ i
(Bayes optimal decision rule)

fk is the pdf for class k

ProgramsTrainingTheoryExampleIntro

Page 5 of 13

PDF Estimation

● Estimate the pdf by using the samples of

the populations (the training set)

● PDF for a single sample (in a population):

● PDF for a single population:

● The estimated pdf approaches the true

pdf as the training set size increases, as

long as the true pdf is smooth

 −
σ
xx

W
σ

k1
x = unknown (input)

xk = “kth” sample

W = weighting function

σ = smoothing parameter

∑
=

 −n

k

k

σ
xx

W
nσ 1

1 (average of the pdf’s

for the “n” samples in

the population)

(Parzen’s pdf estimator)

ProgramsTrainingTheoryExampleIntro

Page 6 of 13

Weighting Function

● Provides a “sphere-of-influence”

►Large values for small distances between the

unknown and the training samples

►Rapidly decreases to zero as the distance

increases

● Commonly use Gaussian function

►Behaves well and easily computed

►Not related to any assumption about a normal

distribution

● The estimated pdf becomes:

∑
=

−
−

=
n

k

xx k

e
nσ

xg
1

)(
2

2

1
)(σ

ProgramsTrainingTheoryExampleIntro

Page 7 of 13

Multivariate Inputs

● Input to the network is a vector

● PDF for a single sample (in a population):

● PDF for a single population:

● Classification criteria:

gi(X) > gj(X), all j ≠ i

2

2

2
2/)2(

1 σ

π

kXX

pp
e

σ

−
−

∑
=

−
−

=
i ikn

k

XX

i

ppi e
nσ

Xg
1

2
2/

2

2

)2(

1
)(σ

π

X = unknown (input)

Xk = “kth” sample

σ = smoothing parameter

p = length of vector

(average of the pdf’s

for the “ni” samples in

the “ith”population)

∑
=

−
−

=∴
i ikn

k

XX

i

i e
n

Xg
1

2

2

1
)(σ (eliminate common factors

and absorb the “2” into σ)

ProgramsTrainingTheoryExampleIntro

Page 8 of 13

Training Set

● The training set must be thoroughly
representative of the actual population for
effective classification
►More demanding than most NN’s

►Sparse set sufficient

►Erroneous samples and outliers tolerable

● Adding and removing training samples
simply involves adding or removing
“neurons” in the pattern layer
►Minimal retraining required, if at all

● As the training set increases in size, the
PNN asymptotically converges to the
Bayes optimal classifier
►The estimated pdf approaches the true pdf,

assuming the true pdf is smooth

ProgramsTrainingTheoryExampleIntro

Page 9 of 13

Training

● The training process of a PNN is
essentially the act of determining the
value of the smoothing parameter, sigma
►Training is fast

■ Orders of magnitude faster than
backpropagation

● Determining Sigma
►Educated guess based on knowledge of the

data

►Estimate a value using a heuristic technique

Nearest Neighbour

Optimum

Matched Filter

C
o

rr
e
c
t

C
la

s
s
if

ic
a
ti

o
n

s

Sigma (σ)

ProgramsTrainingTheoryExampleIntro

Page 10 of 13

Estimating Sigma

Using Jackknifing

● Systematic testing of values for sigma
over some range
►Bounding the optimal value to some interval

►Shrinking the interval

● Jackknifing is used to grade the
performance of each “test” sigma
►Exclude a single sample from the training set

►Test if the PNN correctly classifies the
excluded sample

► Iterate the exclusion and testing process for
each sample in the training set

■ The number of correct classifications over the
entire process is a measure of the performance
for that value of sigma

►Not unbiased measure of performance

■ Training and testing sets not independent

■ Gives a ball park estimate of quality of sigma

ProgramsTrainingTheoryExampleIntro

Page 11 of 13

Implementations

● Current Work

►Basic PNN coded in Java

■ Simple examples

Boy/Girl classifier (same as perceptron)

Classification of points in R2 or R3 into the

quadrants

►Multithreaded PNN

■ For parallel processing (on supercomputers)

■ One thread per class

● Future Work

►Artificially create a time series of a chaotic

system and use a PNN to classify its features

in order to reconstruct the strange attractor

■ Further test the classification abilities of PNN

■ Test the PNN’s tolerance to noisy inputs

ProgramsTrainingTheoryExampleIntro

Page 12 of 13

Conclusion

● PNN’s should be used if

►A near optimal classifier with a short training

time is desired

►Slow execution speed and large memory

requirements can be tolerated

● No extensive testing on our

implementation of PNN’s have been done

►Once chaotic time series have been obtained,

we will have more challenging data to work

with

Page 13 of 13

References

[Mast93] T. Masters, Practial Neural Network Recipes in C++, Toronto, ON: Academic

Press, Inc., 1993.

[Specht88] D.F. Specht, “Probabilistic Neural Networks for Classification, Mapping, or

Associative Memory”, IEEE International Conference on Neural Networks, vol. I, pp.

525-532, July 1998.

[Specht92] D.F. Specht, “Enhancements to Probabilistic Neural Networks”, International

Joint Conference on Neural Networks, vol. I, pp. 761-768, June 1992.

[Wass93] P. D. Wasserman, Advanced Methods in Neural Computing, New York, NY:

Van Nostrand Reinhold, 1993.

[Zak98] Anthony Zaknich, Artificial Neural Networks: An Introductory Course. [Online].

http://www.maths.uwa.edu.au/~rkealley/ann_all/ann_all.html (as of June 6, 2002).

Page 14 of 13

Simple Classifier

Example

● Idea behind classification using a PNN

● Three classes or populations
►X, O, and �

● The “?” is an unknown sample and must
be classified into one of the populations

● Nearest neighbour algorithm would
classify the “?” as a � because a �
sample is the closest sample to the “?”
► In other words, with nearest neighbour, the

unknown belongs to the same population as
the closest sample

Page 15 of 13

Simple Classifier

Example

● A more effective classifier would also

take the other samples into consideration

in making its decision

● However, not all samples should

contribute to the classification of a

particular unknown the same amount

►Samples close to the unknown should have a

large contribution (increase the probability of

classifying the unknown as that population)

►Samples far from the unknown should have a

small contribution (decrease the probability of

classifying the unknown as that population)

►A “sphere-of-influence”

Page 16 of 13

Simple Classifier

Example

● What the more effective classifier would

then do is, for each population, calculate

the average of all the contributions made

by the samples in that population

● The unknown sample is then classified as

being a member of the population which

has the largest average

Architecture

Input

Layer

Pattern

Layer

Summation

Layer

Output

Layer

Architecture

∑
=

−
−

=
i ikn

k

XX

i

i e
n

Xg
1

2

2

1
)(σ

1

2

3

X11

X12

X21

X22

X31

X32

X33

Input

Layer

Pattern

Layer

(Training Set)

Summation

Layer

Output

Layer

X

y11 =

y12 =

y21

y22

y31

y32

y33

g1(X) =

g2(X)

g3(X)

Output =

Class of

Max(g1, g2, g3)

2

2

11

σ
XX

e

−
−

2

1211 yy +

2

2

12

σ
XX

e

−
−

