
An Introduction to Python

Release 2.2.2

Guido van Rossum
Fred L. Drake, Jr., editor

PythonLabs

Email: python-docs@python.org

A catalogue record for this book is available from the British Library.

First printing, April 2003 (14/4/2003).

Published by Network Theory Limited.

15 Royal Park
Clifton
Bristol BS8 3AL
United Kingdom

Email: info@network-theory.co.uk

ISBN 0-9541617-6-9

Further information about this book is available from
http://www.network-theory.co.uk/python/manual/

Additional section authors:
Using Lists as Stacks by Ka-Ping Yee
Floating Point Arithmetic — Issues and Limitations by Tim Peters
Unicode Strings by Marc-Andre Lemburg

Summary of changes made for this edition by Network Theory Ltd:

Minor editing of text and examples for formatting as a book. Added Publisher’s

preface. Moved Abstract to Introduction. Additional entries and modifications

to index. Some paragraphs, sentences and footnotes removed/edited for con-

ciseness. A complete set of differences can be found at http://www.network-

theory.co.uk/python/manual/src/

Copyright c© 2001 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All
rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights re-
served.

See the end of this document for complete license and permissions infor-
mation.

Contents

Publisher’s Preface 1

Introduction 3

1 Whetting Your Appetite 5
1.1 Where From Here . 6

2 Using the Python Interpreter 7
2.1 Invoking the Interpreter 7
2.2 The Interpreter and Its Environment 9

3 An Informal Introduction to Python 11
3.1 Using Python as a Calculator 11
3.2 First Steps Towards Programming 22

4 More Control Flow Tools 25
4.1 if Statements . 25
4.2 for Statements . 25
4.3 The range() Function 26
4.4 break and continue Statements, and else Clauses on Loops 27
4.5 pass Statements . 28
4.6 Defining Functions . 28
4.7 More on Defining Functions 30

5 Data Structures 37
5.1 More on Lists . 37
5.2 The del statement . 42
5.3 Tuples and Sequences . 42
5.4 Dictionaries . 44
5.5 Looping Techniques . 45
5.6 More on Conditions . 45
5.7 Comparing Sequences and Other Types 46

6 Modules 49
6.1 More on Modules . 50
6.2 Standard Modules . 52
6.3 The dir() Function . 53
6.4 Packages . 55

i

7 Input and Output 59
7.1 Fancier Output Formatting 59
7.2 Reading and Writing Files 62

8 Errors and Exceptions 67
8.1 Syntax Errors . 67
8.2 Exceptions . 67
8.3 Handling Exceptions . 68
8.4 Raising Exceptions . 71
8.5 User-defined Exceptions 71
8.6 Defining Clean-up Actions 73

9 Classes 75
9.1 A Word About Terminology 75
9.2 Python Scopes and Name Spaces 76
9.3 A First Look at Classes 78
9.4 Random Remarks . 82
9.5 Inheritance . 84
9.6 Private Variables . 85
9.7 Odds and Ends . 86

10 What Now? 89

A Interactive Input Editing and History Substitution 91
A.1 Line Editing . 91
A.2 History Substitution . 91
A.3 Key Bindings . 92
A.4 Commentary . 94

B Floating Point Arithmetic: Issues and Limitations 95
B.1 Representation Error . 98

C History and License 101
C.1 History of the software 101
C.2 Terms and conditions . 102

Index 107

ii

1

Publisher’s Preface

This manual provides an introduction to Python, an object-oriented pro-
gramming language created by Guido van Rossum.

Python is free software. The term “free software” refers to your freedom
to run, copy, distribute, study, change and improve the software. With
Python you have all these freedoms.

You can support free software by becoming an associate member of the
Free Software Foundation. The Free Software Foundation is a tax-exempt
charity dedicated to promoting computer users’ right to use, study, copy,
modify, and redistribute computer programs. It also helps to spread
awareness of the ethical and political issues of freedom in the use of soft-
ware. For more information visit the website www.fsf.org.

The development of Python itself is supported by the Python Software
Foundation. Companies using Python can invest in the language by be-
coming sponsoring members of this group. Further information is avail-
able at http://www.python.org/psf/

Brian Gough
Publisher
April 2003

2

3

Introduction

Python is an easy to learn, powerful programming language. It has ef-
ficient high-level data structures and a simple but effective approach to
object-oriented programming. Python’s elegant syntax and dynamic typ-
ing, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most plat-
forms.

The Python interpreter and the extensive standard library are freely avail-
able in source or binary form for all major platforms from the Python Web
site, http://www.python.org/, and can be freely distributed. The same
site also contains distributions of and pointers to many free third party
Python modules, programs and tools, and additional documentation.

The Python interpreter is easily extended with new functions and data
types implemented in C or C++ (or other languages callable from C).
Python is also suitable as an extension language for customizable appli-
cations.

This tutorial introduces the reader informally to the basic concepts and
features of the Python language and system. It helps to have a Py-
thon interpreter handy for hands-on experience, but all examples are self-
contained, so the tutorial can be read off-line as well.

For a description of standard objects and modules, see the Python Li-
brary Reference document. The Python Reference Manual gives a more
formal definition of the language. To write extensions in C or C++, read
Extending and Embedding the Python Interpreter and the Python/C API
Reference. There are also several books covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single
feature, or even every commonly used feature. Instead, it introduces many
of Python’s most noteworthy features, and will give you a good idea of
the language’s flavor and style. After reading it, you will be able to read
and write Python modules and programs, and you will be ready to learn
more about the various Python library modules described in the Python
Library Reference.

4

5

1 Whetting Your Appetite

If you ever wrote a large shell script, you probably know this feeling:
you’d love to add yet another feature, but it’s already so slow, and so big,
and so complicated; or the feature involves a system call or other function
that is only accessible from C . . . Usually the problem at hand isn’t serious
enough to warrant rewriting the script in C; perhaps the problem requires
variable-length strings or other data types (like sorted lists of file names)
that are easy in the shell but lots of work to implement in C, or perhaps
you’re not sufficiently familiar with C.

Another situation: perhaps you have to work with several C libraries,
and the usual C write/compile/test/re-compile cycle is too slow. You
need to develop software more quickly. Possibly perhaps you’ve written
a program that could use an extension language, and you don’t want to
design a language, write and debug an interpreter for it, then tie it into
your application.

In such cases, Python may be just the language for you. Python is simple
to use, but it is a real programming language, offering much more struc-
ture and support for large programs than the shell has. On the other
hand, it also offers much more error checking than C, and, being a very-
high-level language, it has high-level data types built in, such as flexible
arrays and dictionaries that would cost you days to implement efficiently
in C. Because of its more general data types Python is applicable to a
much larger problem domain than Awk or even Perl, yet many things are
at least as easy in Python as in those languages.

Python allows you to split up your program in modules that can be reused
in other Python programs. It comes with a large collection of standard
modules that you can use as the basis of your programs — or as examples
to start learning to program in Python. There are also built-in modules
that provide things like file I/O, system calls, sockets, and even interfaces
to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time
during program development because no compilation and linking is nec-
essary. The interpreter can be used interactively, which makes it easy to
experiment with features of the language, to write throw-away programs,
or to test functions during bottom-up program development. It is also a
handy desk calculator.

6

Python allows writing very compact and readable programs. Programs
written in Python are typically much shorter than equivalent C or C++
programs, for several reasons:

• the high-level data types allow you to express complex operations
in a single statement;

• statement grouping is done by indentation instead of begin/end
brackets;

• no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add
a new built-in function or module to the interpreter, either to perform
critical operations at maximum speed, or to link Python programs to li-
braries that may only be available in binary form (such as a vendor-specific
graphics library). Once you are really hooked, you can link the Python
interpreter into an application written in C and use it as an extension or
command language for that application.

By the way, the language is named after the BBC show “Monty Python’s
Flying Circus” and has nothing to do with nasty reptiles. Making refer-
ences to Monty Python skits in documentation is not only allowed, it is
encouraged!

1.1 Where From Here

Now that you are all excited about Python, you’ll want to examine it in
some more detail. Since the best way to learn a language is using it, you
are invited here to do so.

In the next chapter, the mechanics of using the interpreter are explained.
This is rather mundane information, but essential for trying out the ex-
amples shown later.

The rest of the tutorial introduces various features of the Python lan-
guage and system through examples, beginning with simple expressions,
statements and data types, through functions and modules, and finally
touching upon advanced concepts like exceptions and user-defined classes.

7

2 Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed as ‘/usr/bin/python’ or
‘/usr/local/bin/python’ on those machines where it is available;
putting the appropriate directory in your Unix shell’s search path makes
it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives
is an installation option, other places are possible; check with your local
Python guru or system administrator. (E.g., ‘/usr/local/python’ is a
popular alternative location.)

Typing an end-of-file character (Control-D on Unix, Control-Z on DOS
or Windows) at the primary prompt causes the interpreter to exit with
a zero exit status. If that doesn’t work, you can exit the interpreter by
typing the following commands: ‘import sys; sys.exit()’.

The interpreter’s line-editing features usually aren’t very sophisticated.
On Unix, whoever installed the interpreter may have enabled support for
the GNU readline library, which adds more elaborate interactive editing
and history features. Perhaps the quickest check to see whether command-
line editing is supported is typing Control-P to the first Python prompt
you get. If it beeps, you have command-line editing; see Appendix A for
an introduction to the keys. If nothing appears to happen, or if ^P is
echoed, command-line editing isn’t available; you’ll only be able to use
backspace to remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with
standard input connected to a tty device, it reads and executes commands
interactively; when called with a file name argument or with a file as
standard input, it reads and executes a script from that file.

A third way of starting the interpreter is ‘python -c command [arg]
...’, which executes the statement(s) in command , analogous to the
shell’s -c option. Since Python statements often contain spaces or other
characters that are special to the shell, it is best to quote command in its
entirety with double quotes.

8

Note that there is a difference between ‘python file’ and ‘python <file’.
In the latter case, input requests from the program, such as calls to
input() and raw input(), are satisfied from file. Since this file has
already been read until the end by the parser before the program starts
executing, the program will encounter end-of-file immediately. In the for-
mer case (which is usually what you want) they are satisfied from whatever
file or device is connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script
and enter interactive mode afterwards. This can be done by passing -i
before the script. (This does not work if the script is read from standard
input, for the same reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments
thereafter are passed to the script in the variable sys.argv, which is a list
of strings. Its length is at least one; when no script and no arguments are
given, sys.argv[0] is an empty string. When the script name is given
as ’-’ (meaning standard input), sys.argv[0] is set to ’-’. When -c
command is used, sys.argv[0] is set to ’-c’. Options found after -c
command are not consumed by the Python interpreter’s option processing
but left in sys.argv for the command to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in
interactive mode. In this mode it prompts for the next command with the
primary prompt, usually three greater-than signs (‘>>> ’); for continuation
lines it prompts with the secondary prompt, by default three dots (‘... ’).
The interpreter prints a welcome message stating its version number and
a copyright notice before printing the first prompt:

python
Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06)
Copyright 1991-1995 Stichting Mathematisch Centrum
>>>

Continuation lines are needed when entering a multi-line construct. As
an example, take a look at this if statement:

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
... print "Be careful not to fall off!"

9

...
Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack
trace. In interactive mode, it then returns to the primary prompt; when
input came from a file, it exits with a nonzero exit status after printing the
stack trace. (Exceptions handled by an except clause in a try statement
are not errors in this context.) Some errors are unconditionally fatal and
cause an exit with a nonzero exit status; this applies to internal inconsis-
tencies and some cases of running out of memory. All error messages are
written to the standard error stream; normal output from the executed
commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the pri-
mary or secondary prompt cancels the input and returns to the primary
prompt. Typing an interrupt while a command is executing raises the
KeyboardInterrupt exception, which may be handled by a try state-
ment.

2.2.2 Executable Python Scripts

On BSD’ish Unix systems, Python scripts can be made directly exe-
cutable, like shell scripts, by putting the line

#! /usr/bin/env python

(assuming that the interpreter is on the user’s PATH) at the beginning of
the script and giving the file an executable mode. The ‘#!’ must be the
first two characters of the file. Note that the hash, or pound, character,
‘#’, is used to start a comment in Python.

2.2.3 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some
standard commands executed every time the interpreter is started. You
can do this by setting an environment variable named PYTHONSTARTUP to
the name of a file containing your start-up commands. This is similar to
the ‘.profile’ feature of the Unix shells.

This file is only read in interactive sessions, not when Python reads com-
mands from a script, and not when ‘/dev/tty’ is given as the explicit

10

source of commands (which otherwise behaves like an interactive session).
It is executed in the same namespace where interactive commands are
executed, so that objects that it defines or imports can be used without
qualification in the interactive session. You can also change the prompts
sys.ps1 and sys.ps2 in this file.

If you want to read an additional start-up file from the current directory,
you can program this in the global start-up file using code like this:

if os.path.isfile(’.pythonrc.py’):
execfile(’.pythonrc.py’)

If you want to use the startup file in a script, you must do this explicitly
in the script:

import os
filename = os.environ.get(’PYTHONSTARTUP’)
if filename and os.path.isfile(filename):

execfile(filename)

11

3 An Informal Introduction to

Python

In the following examples, input and output are distinguished by the
presence or absence of prompts (‘>>> ’ and ‘... ’): to repeat the example,
you must type everything after the prompt, when the prompt appears;
lines that do not begin with a prompt are output from the interpreter.
Note that a secondary prompt on a line by itself in an example means you
must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive
prompt, include comments. Comments in Python start with the hash
character, ‘#’, and extend to the end of the physical line. A comment
may appear at the start of a line or following whitespace or code, but not
within a string literal. A hash character within a string literal is just a
hash character.

Some examples:

this is the first comment
SPAM = 1 # and this is the second comment

... and now a third!
STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait
for the primary prompt, ‘>>> ’. (It shouldn’t take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at
it and it will write the value. Expression syntax is straightforward: the
operators +, -, * and / work just like in most other languages (for example,
Pascal or C); parentheses can be used for grouping. For example:

>>> 2+2
4
>>> # This is a comment

12

... 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4
5
>>> # Integer division returns the floor:
... 7/3
2
>>> 7/-3
-3

Like in C, the equal sign (‘=’) is used to assign a value to a variable. The
value of an assignment is not written:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0

There is full support for floating point; operators with mixed type operands
convert the integer operand to floating point:

>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with
a suffix of ‘j’ or ‘J’. Complex numbers with a nonzero real component are
written as ‘(real+imagj)’, or can be created from the real and imaginary
parts with the ‘complex(real, imag)’ function.

13

>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)

Complex numbers are always represented as two floating point numbers,
the real and imaginary part. To extract these parts from a complex num-
ber z , use z.real and z.imag.

>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

The conversion functions to floating point and integer (float(), int()
and long()) don’t work for complex numbers — there is no one correct
way to convert a complex number to a real number. Use abs(z) to get
its magnitude (as a float) or z.real to get its real part.

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: can’t convert complex to float; use e.g. abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0
>>>

In interactive mode, the last printed expression is assigned to the variable
. This means that when you are using Python as a desk calculator, it is

somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100

14

>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06
>>>

This variable should be treated as read-only by the user. Don’t explicitly
assign a value to it — you would create an independent local variable with
the same name masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be ex-
pressed in several ways. They can be enclosed in single quotes or double
quotes:

>>> ’spam eggs’
’spam eggs’
>>> ’doesn\’t’
"doesn’t"
>>> "doesn’t"
"doesn’t"
>>> ’"Yes," he said.’
’"Yes," he said.’
>>> "\"Yes,\" he said."
’"Yes," he said.’
>>> ’"Isn\’t," she said.’
’"Isn\’t," she said.’

String literals can span multiple lines in several ways. Continuation lines
can be used, with a backslash as the last character on the line indicating
that the next line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that leading whitespace is\
significant."

print hello

15

Note that newlines would still need to be embedded in the string using \n;
the newline following the trailing backslash is discarded. This example
would print the following:

This is a rather long string containing
several lines of text just as you would do in C.

Note that leading whitespace is significant.

If we make the string literal a “raw” string, however, by preceding it
with the prefix r the \n sequences are not converted to newlines, but the
backslash at the end of the line, and the newline character in the source,
are both included in the string as data. Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

Or, strings can be surrounded in a pair of matching triple-quotes: """ or
’’’. End of lines do not need to be escaped when using triple-quotes, but
they will be included in the string.

print """
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

"""

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

The interpreter prints the result of string operations in the same way as
they are typed for input: inside quotes, and with quotes and other funny
characters escaped by backslashes, to show the precise value. The string
is enclosed in double quotes if the string contains a single quote and no

16

double quotes, else it’s enclosed in single quotes. (The print statement,
described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the + operator, and
repeated with *:

>>> word = ’Help’ + ’A’
>>> word
’HelpA’
>>> ’<’ + word*5 + ’>’
’<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the
first line above could also have been written ‘word = ’Help’ ’A’’; this
only works with two literals, not with arbitrary string expressions:

>>> import string
>>> ’str’ ’ing’ # <- This is ok
’string’
>>> string.strip(’str’) + ’ing’ # <- This is ok
’string’
>>> string.strip(’str’) ’ing’ # <- This is invalid
File "<stdin>", line 1, in ?
string.strip(’str’) ’ing’

^
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a
string has subscript (index) 0. There is no separate character type; a
character is simply a string of size one. Like in the language Icon, sub-
strings can be specified with the slice notation: two indices separated by
a colon.

>>> word[4]
’A’
>>> word[0:2]
’He’
>>> word[2:4]
’lp’

Unlike a C string, Python strings cannot be changed. Assigning to an
indexed position in the string results in an error:

>>> word[0] = ’x’

17

Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: object doesn’t support item assignment
>>> word[:1] = ’Splat’
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: object doesn’t support slice assignment

However, creating a new string with the combined content is easy and
efficient:

>>> ’x’ + word[1:]
’xelpA’
>>> ’Splat’ + word[4]
’SplatA’

Slice indices have useful defaults; an omitted first index defaults to zero,
an omitted second index defaults to the size of the string being sliced.

>>> word[:2] # The first two characters
’He’
>>> word[2:] # All but the first two characters
’lpA’

Here’s a useful invariant of slice operations: s[:i] + s[i:] equals s.

>>> word[:2] + word[2:]
’HelpA’
>>> word[:3] + word[3:]
’HelpA’

Degenerate slice indices are handled gracefully: an index that is too large
is replaced by the string size, an upper bound smaller than the lower
bound returns an empty string.

>>> word[1:100]
’elpA’
>>> word[10:]
’’
>>> word[2:1]
’’

Indices may be negative numbers, to start counting from the right. For
example:

18

>>> word[-1] # The last character
’A’
>>> word[-2] # The last-but-one character
’p’
>>> word[-2:] # The last two characters
’pA’
>>> word[:-2] # All but the last two characters
’Hel’

But note that -0 is really the same as 0, so it does not count from the
right!

>>> word[-0] # (since -0 equals 0)
’H’

Out-of-range negative slice indices are truncated, but don’t try this for
single-element (non-slice) indices:

>>> word[-100:]
’HelpA’
>>> word[-10] # error
Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: string index out of range

The best way to remember how slices work is to think of the indices
as pointing between characters, with the left edge of the first character
numbered 0. Then the right edge of the last character of a string of n
characters has index n, for example:

+---+---+---+---+---+
| H | e | l | p | A |
+---+---+---+---+---+
0 1 2 3 4 5
-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the
string; the second row gives the corresponding negative indices. The slice
from i to j consists of all characters between the edges labeled i and j ,
respectively.

For non-negative indices, the length of a slice is the difference of the
indices, if both are within bounds. For example, the length of word[1:3]
is 2.

19

The built-in function len() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’
>>> len(s)
34

3.1.3 Unicode Strings

Python supports characters in different languages using the Unicode stan-
dard. Unicode data can be stored and manipulated in the same way as
strings.

For example, creating Unicode strings in Python is as simple as creating
normal strings:

>>> u’Hello World !’
u’Hello World !’

The prefix ‘u’ in front of the quote indicates that a Unicode string is to be
created. If you want to include special characters in the string, you can
do so using the Python Unicode-Escape encoding. The following example
shows how:

>>> u’Hello\u0020World !’
u’Hello World !’

The escape sequence \u0020 inserts the Unicode character with the hex-
adecimal value 0x0020 (the space character) at the given position.

There is also a raw mode like the one for normal strings, using the prefix
‘ur’ to specify Raw-Unicode-Escape encoding of the string. It will only
apply the above \uXXXX conversion if there are an uneven number of
backslashes in front of the small ’u’.

Python provides additional functions for manipulating Unicode strings.
The built-in function unicode() provides access to standard Unicode en-
codings such as latin-1, ascii, utf-8, and utf-16. The default encod-
ing is normally set to ascii, which passes through characters in the range
0 to 127 and rejects any other characters with an error. When a Unicode
string is printed, written to a file, or converted with str(), conversion
takes place using this default encoding.

>>> u"abc"
u’abc’
>>> str(u"abc")

20

’abc’
>>> u"\u00e4\u00f6\u00fc"
u’\xe4\xf6\xfc’
>>> str(u"\u00e4\u00f6\u00fc")
Traceback (most recent call last):
File "<stdin>", line 1, in ?

UnicodeError: ASCII encoding error: ordinal not
in range(128)

To convert a Unicode string into an 8-bit string using a specific encoding,
Unicode objects provide an encode() method that takes one argument,
the name of the encoding.

>>> u"\u00e4\u00f6\u00fc".encode(’utf-8’)
’\xc3\xa4\xc3\xb6\xc3\xbc’

If you have data in a specific encoding and want to produce a correspond-
ing Unicode string from it, you can use the unicode() function with the
encoding name as the second argument.

>>> unicode(’\xc3\xa4\xc3\xb6\xc3\xbc’, ’utf-8’)
u’\xe4\xf6\xfc’

3.1.4 Lists

Python knows a number of compound data types, used to group together
other values. The most versatile is the list, which can be written as a list
of comma-separated values (items) between square brackets. List items
need not all have the same type.

>>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concate-
nated and so on:

>>> a[0]
’spam’
>>> a[3]
1234
>>> a[-2]
100

21

>>> a[1:-1]
[’eggs’, 100]
>>> a[:2] + [’bacon’, 2*2]
[’spam’, ’eggs’, ’bacon’, 4]
>>> 3*a[:3] + [’Boe!’]
[’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’spam’,
’eggs’, 100, ’Boe!’]

Unlike strings, which are immutable, it is possible to change individual
elements of a list:

>>> a
[’spam’, ’eggs’, 100, 1234]
>>> a[2] = a[2] + 23
>>> a
[’spam’, ’eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of
the list:

>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
... a[0:2] = []
>>> a
[123, 1234]
>>> # Insert some:
... a[1:1] = [’foo’, ’xyzzy’]
>>> a
[123, ’foo’, ’xyzzy’, 1234]
>>> a[:0] = a # Insert copy of a at the beginning
>>> a
[123, ’foo’, ’xyzzy’, 1234, 123, ’foo’, ’xyzzy’, 1234]

The built-in function len() also applies to lists:

>>> len(a)
8

It is possible to nest lists (create lists containing other lists), for example:

22

>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2
>>> p[1].append(’xtra’) # See section 5.1
>>> p
[1, [2, 3, ’xtra’], 4]
>>> q
[2, 3, ’xtra’]

Note that in the last example, p[1] and q really refer to the same object!
We’ll come back to object semantics later.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two
and two together. For instance, we can write an initial sub-sequence of
the Fibonacci series as follows:

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3
5
8

This example introduces several new features.

• The first line contains a multiple assignment: the variables a and
b simultaneously get the new values 0 and 1. On the last line this
is used again, demonstrating that the expressions on the right-hand
side are all evaluated first before any of the assignments take place.

23

The right-hand side expressions are evaluated from the left to the
right.

• The while loop executes as long as the condition (here: b < 10)
remains true. In Python, like in C, any non-zero integer value is
true; zero is false. The condition may also be a string or list value,
in fact any sequence; anything with a non-zero length is true, empty
sequences are false. The test used in the example is a simple com-
parison. The standard comparison operators are written the same
as in C: < (less than), > (greater than), == (equal to), <= (less than
or equal to), >= (greater than or equal to) and != (not equal to).

• The body of the loop is indented: indentation is Python’s way of
grouping statements. Python does not (yet!) provide an intelligent
input line editing facility, so you have to type a tab or space(s) for
each indented line. In practice you will prepare more complicated
input for Python with a text editor; most text editors have an auto-
indent facility. When a compound statement is entered interactively,
it must be followed by a blank line to indicate completion (since the
parser cannot guess when you have typed the last line). Note that
each line within a basic block must be indented by the same amount.

• The print statement writes the value of the expression(s) it is given.
It differs from just writing the expression you want to write (as we
did earlier in the calculator examples) in the way it handles multiple
expressions and strings. Strings are printed without quotes, and a
space is inserted between items, so you can format things nicely, like
this:

>>> i = 256*256
>>> print ’The value of i is’, i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>> a, b = 0, 1
>>> while b < 1000:
... print b,
... a, b = b, a+b
...
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next
prompt if the last line was not completed.

24

25

4 More Control Flow Tools

Besides the while statement just introduced, Python knows the usual
control flow statements found in other languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the if statement. For
example:

>>> x = int(raw_input("Please enter an integer: "))
>>> if x < 0:
... x = 0
... print ’Negative changed to zero’
... elif x == 0:
... print ’Zero’
... elif x == 1:
... print ’Single’
... else:
... print ’More’
...

There can be zero or more elif parts, and the else part is optional.
The keyword ‘elif’ is short for ‘else if’, and is useful to avoid excessive
indentation. An if . . . elif . . . elif . . . sequence is a substitute for the
switch or case statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in
C or Pascal. Rather than always iterating over an arithmetic progression
of numbers (like in Pascal), or giving the user the ability to define both
the iteration step and halting condition (as C), Python’s for statement
iterates over the items of any sequence (a list or a string), in the order
that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
... a = [’egg’, ’chips’, ’spam’]

26

>>> for x in a:
... print x, len(x)
...
egg 3
chips 5
spam 4

It is not safe to modify the sequence being iterated over in the loop (this
can only happen for mutable sequence types, such as lists). If you need
to modify the list you are iterating over (for example, to duplicate se-
lected items) you must iterate over a copy. The slice notation makes this
particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) == 4: a.insert(0, x)
...
>>> a
[’spam’, ’egg’, ’chips’, ’spam’]

4.3 The range() Function

If you do need to iterate over a sequence of numbers, the built-in func-
tion range() comes in handy. It generates lists containing arithmetic
progressions:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range(10) gen-
erates a list of 10 values, exactly the legal indices for items of a sequence
of length 10. It is possible to let the range start at another number, or to
specify a different increment (even negative; sometimes this is called the
‘step’):

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combine range() and len() as
follows:

27

>>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

4.4 break and continue Statements, and
else Clauses on Loops

The break statement, like in C, breaks out of the smallest enclosing for
or while loop.

The continue statement, also borrowed from C, continues with the next
iteration of the loop.

Loop statements may have an else clause; it is executed when the loop
terminates through exhaustion of the list (with for) or when the condition
becomes false (with while), but not when the loop is terminated by a
break statement. This is exemplified by the following loop, which searches
for prime numbers:

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, ’equals’, x, ’*’, n/x
... break
... else:
... # loop fell through without finding a factor
... print n, ’is a prime number’
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

28

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is
required syntactically but the program requires no action. For example:

>>> while 1:
... pass # Busy-wait for keyboard interrupt
...

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary
boundary:

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while b < n:
... print b,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by
the function name and the parenthesized list of formal parameters. The
statements that form the body of the function start at the next line, and
must be indented. The first statement of the function body can optionally
be a string literal; this string literal is the function’s documentation string,
or docstring.

There are tools which use docstrings to automatically produce online or
printed documentation, or to let the user interactively browse through
code; it’s good practice to include docstrings in code that you write, so
try to make a habit of it.

The execution of a function introduces a new symbol table used for the
local variables of the function. More precisely, all variable assignments
in a function store the value in the local symbol table; whereas variable
references first look in the local symbol table, then in the global symbol
table, and then in the table of built-in names. Thus, global variables
cannot be directly assigned a value within a function (unless named in a
global statement), although they may be referenced.

29

The actual parameters (arguments) to a function call are introduced in
the local symbol table of the called function when it is called; thus, argu-
ments are passed using call by value (where the value is always an object
reference, not the value of the object).1 When a function calls another
function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol
table. The value of the function name has a type that is recognized by
the interpreter as a user-defined function. This value can be assigned to
another name which can then also be used as a function. This serves as
a general renaming mechanism:

>>> fib
<function object at 10042ed0>
>>> f = fib
>>> f(100)
1 1 2 3 5 8 13 21 34 55 89

You might object that fib is not a function but a procedure. In Python,
like in C, procedures are just functions that don’t return a value. In fact,
technically speaking, procedures do return a value, albeit a rather boring
one. This value is called None (it’s a built-in name). Writing the value
None is normally suppressed by the interpreter if it would be the only
value written. You can see it if you really want to:

>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the
Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list of the Fibonacci series to n."""
... result = []
... a, b = 0, 1
... while b < n:
... result.append(b) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it

1Actually, call by object reference would be a better description, since if a mutable
object is passed, the caller will see any changes the callee makes to it (items inserted
into a list).

30

>>> f100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

• The return statement returns with a value from a function. return
without an expression argument returns None. Falling off the end
of a procedure also returns None.

• The statement result.append(b) calls a method of the list object
result. A method is a function that ‘belongs’ to an object and
is named obj.methodname, where obj is some object (this may be
an expression), and methodname is the name of a method that is
defined by the object’s type. Different types define different meth-
ods. Methods of different types may have the same name without
causing ambiguity. (It is possible to define your own object types
and methods, using classes, as discussed later in this tutorial.) The
method append() shown in the example, is defined for list objects;
it adds a new element at the end of the list. In this example it is
equivalent to ‘result = result + [b]’, but more efficient.

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments.
There are three forms, which can be combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more argu-
ments. This creates a function that can be called with fewer arguments
than it is defined

def ask_ok(prompt, retries=4, complaint=’Yes or no!’):
while 1:

ok = raw_input(prompt)
if ok in (’y’, ’ye’, ’yes’): return 1
if ok in (’n’, ’no’, ’nop’, ’nope’): return 0
retries = retries - 1
if retries < 0: raise IOError, ’refusenik user’
print complaint

This function can be called either like this: ask ok(’Do you really
want to quit?’) or like this: ask ok(’Delete file?’, 2).

31

The default values are evaluated at the point of function definition in the
defining scope, so that

i = 5

def f(arg=i):
print arg

i = 6
f()

will print 5.

Important warning: The default value is evaluated only once. This
makes a difference when the default is a mutable object such as a list
or dictionary. For example, the following function accumulates the argu-
ments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you
can write the function like this instead:

def f(a, L=None):
if L is None:

L = []
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form ‘keyword
= value’. For instance, the following function:

32

def parrot(voltage, state=’a stiff’, action=’voom’,
type=’Norwegian Blue’):

print "-- This parrot wouldn’t", action,
print "if you put", voltage, "Volts through it."
print "-- Lovely plumage, the", type
print "-- It’s", state, "!"

could be called in any of the following ways:

parrot(1000)
parrot(action = ’VOOOOOM’, voltage = 1000000)
parrot(’a thousand’, state = ’pushing up the daisies’)
parrot(’a million’, ’bereft of life’, ’jump’)

but the following calls would all be invalid:

parrot() # required argument missing

parrot(voltage=5.0, ’dead’) # non-keyword argument
following keyword

parrot(110, voltage=220) # duplicate value for
argument

parrot(actor=’John Cleese’) # unknown keyword

In general, an argument list must have any positional arguments followed
by any keyword arguments, where the keywords must be chosen from the
formal parameter names. It’s not important whether a formal parameter
has a default value or not. No argument may receive a value more than
once — formal parameter names corresponding to positional arguments
cannot be used as keywords in the same calls. Here’s an example that
fails due to this restriction:

>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: keyword parameter redefined

When a final formal parameter of the form **name is present, it receives
a dictionary containing all keyword arguments whose keyword doesn’t

33

correspond to a formal parameter. This may be combined with a formal
parameter of the form *name (described in the next subsection) which
receives a tuple containing the positional arguments beyond the formal
parameter list. (*name must occur before **name.) For example, if we
define a function like this:

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, ’?’
print "-- I’m sorry, we’re all out of", kind
for arg in arguments: print arg
print ’-’*40
keys = keywords.keys()
keys.sort()
for kw in keys: print kw, ’:’, keywords[kw]

It could be called like this:

cheeseshop(’Limburger’, "It’s very runny, sir.",
"It’s really very, VERY runny, sir.",
client=’John Cleese’,
shopkeeper=’Michael Palin’,
sketch=’Cheese Shop Sketch’)

and of course it would print:

-- Do you have any Limburger ?
-- I’m sorry, we’re all out of Limburger
It’s very runny, sir.
It’s really very, VERY runny, sir.
--
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that the sort() method of the list of keyword argument names is
called before printing the contents of the keywords dictionary; if this is
not done, the order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can
be called with an arbitrary number of arguments. These arguments will
be wrapped up in a tuple. Before the variable number of arguments, zero
or more normal arguments may occur.

34

def fprintf(file, format, *args):
file.write(format % args)

4.7.4 Lambda Forms

By popular demand, a few features commonly found in functional pro-
gramming languages and Lisp have been added to Python. With the
lambda keyword, small anonymous functions can be created. Here’s a
function that returns the sum of its two arguments: ‘lambda a, b: a+b’.
Lambda forms can be used wherever function objects are required. They
are syntactically restricted to a single expression. Semantically, they are
just syntactic sugar for a normal function definition. Like nested func-
tion definitions, lambda forms can reference variables from the containing
scope:

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

4.7.5 Documentation Strings

There are emerging conventions about the content and formatting of doc-
umentation strings.

The first line should always be a short, concise summary of the object’s
purpose. For brevity, it should not explicitly state the object’s name or
type, since these are available by other means (except if the name happens
to be a verb describing a function’s operation). This line should begin with
a capital letter and end with a period.

If there are more lines in the documentation string, the second line should
be blank, visually separating the summary from the rest of the descrip-
tion. The following lines should be one or more paragraphs describing the
object’s calling conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals
in Python, so tools that process documentation have to strip indentation if
desired. This is done using the following convention. The first non-blank
line after the first line of the string determines the amount of indentation
for the entire documentation string. (We can’t use the first line since

35

it is generally adjacent to the string’s opening quotes so its indentation
is not apparent in the string literal.) Whitespace “equivalent” to this
indentation is then stripped from the start of all lines of the string. Lines
that are indented less should not occur, but if they occur all their leading
whitespace should be stripped. Equivalence of whitespace should be tested
after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn’t do anything.
... """
... pass
...
>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn’t do anything.

36

37

5 Data Structures

This chapter describes some things you’ve learned about already in more
detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods
of list objects:

append(x)
Add an item to the end of the list; equivalent to a[len(a):] =
[x].

extend(L)
Extend the list by appending all the items in the given list; equiva-
lent to a[len(a):] = L.

insert(i, x)
Insert an item at a given position. The first argument is the index
of the element before which to insert, so a.insert(0, x) inserts
at the front of the list, and a.insert(len(a), x) is equivalent to
a.append(x).

remove(x)
Remove the first item from the list whose value is x . It is an error
if there is no such item.

pop([i])
Remove the item at the given position in the list, and return it. If
no index is specified, a.pop() returns the last item in the list. The
item is also removed from the list. (The square brackets around the
i in the method signature denote that the parameter is optional,
not that you should type square brackets at that position. You will
see this notation frequently in the Python Library Reference.)

index(x)
Return the index in the list of the first item whose value is x . It is
an error if there is no such item.

count(x)
Return the number of times x appears in the list.

38

sort()
Sort the items of the list, in place.

reverse()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.6, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.6), a.count(’x’)
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.6, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.6, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.6]
>>> a.sort()
>>> a
[-1, 1, 66.6, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last
element added is the first element retrieved (“last-in, first-out”). To add
an item to the top of the stack, use append(). To retrieve an item from
the top of the stack, use pop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6

39

>>> stack.pop()
5
>>> stack
[3, 4]

5.1.2 Using Lists as Queues

You can also use a list conveniently as a queue, where the first element
added is the first element retrieved (“first-in, first-out”). To add an item
to the back of the queue, use append(). To retrieve an item from the
front of the queue, use pop() with 0 as the index. For example:

>>> queue = ["Eric", "John", "Michael"]
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)
’Eric’
>>> queue.pop(0)
’John’
>>> queue
[’Michael’, ’Terry’, ’Graham’]

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with
lists: filter(), map(), and reduce().

‘filter(function, sequence)’ returns a sequence (of the same type, if
possible) consisting of those items from the sequence for which func-
tion(item) is true. For example, to compute some primes:

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

‘map(function, sequence)’ calls function(item) for each of the items in
the sequence and returns a list of the return values. For example, to
compute some cubes:

>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

40

More than one sequence may be passed; the function must then have
as many arguments as there are sequences and is called with the corre-
sponding item from each sequence (or None if some sequence is shorter
than another). If None is passed for the function, a function returning its
argument(s) is substituted.

Combining these two special cases, we see that ‘map(None, list1, list2)’
is a convenient way of turning a pair of lists into a list of pairs. For
example:

>>> seq = range(8)
>>> def square(x): return x*x
...
>>> map(None, seq, map(square, seq))
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25),
(6, 36), (7, 49)]

‘reduce(func, sequence)’ returns a single value constructed by calling
the binary function func on the first two items of the sequence, then on
the result and the next item, and so on. For example, to compute the
sum of the numbers 1 through 10:

>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is returned; if the se-
quence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case
the starting value is returned for an empty sequence, and the function is
first applied to the starting value and the first sequence item, then to the
result and the next item, and so on. For example,

>>> def sum(seq):
... def add(x,y): return x+y
... return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0

41

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting
to use of map(), filter() and/or lambda. The resulting list definition
tends often to be clearer than lists built using those constructs. Each
list comprehension consists of an expression followed by a for clause,
then zero or more for or if clauses. The result will be a list resulting
from evaluating the expression in the context of the for and if clauses
which follow it. If the expression would evaluate to a tuple, it must be
parenthesized.

>>> freshfruit = [’ banana’, ’ loganberry ’, ’plum ’]
>>> [weapon.strip() for weapon in freshfruit]
[’banana’, ’loganberry’, ’plum’]
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - need () for tuples
File "<stdin>", line 1, in ?
[x, x**2 for x in vec]

^
SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

To make list comprehensions match the behavior of for loops, assign-
ments to the loop variable remain visible outside of the comprehension:

>>> x = 100 # this gets overwritten
>>> [x**3 for x in range(5)]

42

[0, 1, 8, 27, 64]
>>> x
4 # the final value for range(5)
>>

5.2 The del statement

There is a way to remove an item from a list given its index instead of its
value: the del statement. This can also be used to remove slices from a
list (which we did earlier by assignment of an empty list to the slice). For
example:

>>> a
[-1, 1, 66.6, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.6, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.6, 1234.5]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value
is assigned to it). We’ll find other uses for del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as
indexing and slicing operations. They are two examples of sequence data
types. Since Python is an evolving language, other sequence data types
may be added. There is also another standard sequence data type: the
tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ’hello!’
>>> t[0]
12345
>>> t

43

(12345, 54321, ’hello!’)
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

As you see, on output tuples are alway enclosed in parentheses, so that
nested tuples are interpreted correctly; they may be input with or with-
out surrounding parentheses, although often parentheses are necessary
anyway (if the tuple is part of a larger expression).

Tuples have many uses. For example: (x, y) coordinate pairs, employee
records from a database, etc. Tuples, like strings, are immutable: it is
not possible to assign to the individual items of a tuple (you can simulate
much of the same effect with slicing and concatenation, though). It is also
possible to create tuples which contain mutable objects, such as lists.

A special problem is the construction of tuples containing 0 or 1 items:
the syntax has some extra quirks to accommodate these. Empty tuples
are constructed by an empty pair of parentheses; a tuple with one item
is constructed by following a value with a comma (it is not sufficient to
enclose a single value in parentheses). Ugly, but effective. For example:

>>> empty = ()
>>> singleton = ’hello’, # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
(’hello’,)

The statement t = 12345, 54321, ’hello!’ is an example of tuple
packing: the values 12345, 54321 and ’hello!’ are packed together
in a tuple. The reverse operation is also possible:

>>> x, y, z = t

This is called, appropriately enough, sequence unpacking. Sequence un-
packing requires that the list of variables on the left have the same number
of elements as the length of the sequence. Note that multiple assignment
is really just a combination of tuple packing and sequence unpacking!

There is a small bit of asymmetry here: packing multiple values always
creates a tuple, and unpacking works for any sequence.

44

5.4 Dictionaries

Another useful data type built into Python is the dictionary. Dictio-
naries are sometimes found in other languages as “associative arrays” or
“hashes”. Unlike sequences, which are indexed by a range of numbers, dic-
tionaries are indexed by keys, which can be any immutable type; strings
and numbers can always be keys. Tuples can be used as keys if they
contain only strings, numbers, or tuples; if a tuple contains any mutable
object either directly or indirectly, it cannot be used as a key. You can’t
use lists as keys, since lists can be modified in place using their append()
and extend() methods, as well as slice and indexed assignments.

It is best to think of a dictionary as an unordered set of key: value pairs,
with the requirement that the keys are unique (within one dictionary).
A pair of braces creates an empty dictionary: {}. Placing a comma-
separated list of key:value pairs within the braces adds initial key:value
pairs to the dictionary; this is also the way dictionaries are written on
output.

The main operations on a dictionary are storing a value with some key and
extracting the value given the key. It is also possible to delete a key:value
pair with del. If you store using a key that is already in use, the old
value associated with that key is forgotten. It is an error to extract a
value using a non-existent key.

The keys() method of a dictionary object returns a list of all the keys
used in the dictionary, in random order (if you want it sorted, just apply
the sort() method to the list of keys). To check whether a single key is
in the dictionary, use the has key() method of the dictionary.

Here is a small example using a dictionary:

>>> tel = {’jack’: 4098, ’sape’: 4139}
>>> tel[’guido’] = 4127
>>> tel
{’sape’: 4139, ’guido’: 4127, ’jack’: 4098}
>>> tel[’jack’]
4098
>>> del tel[’sape’]
>>> tel[’irv’] = 4127
>>> tel
{’guido’: 4127, ’irv’: 4127, ’jack’: 4098}
>>> tel.keys()
[’guido’, ’irv’, ’jack’]
>>> tel.has_key(’guido’)
1

45

The dict() constructor builds dictionaries directly from lists of key-value
pairs stored as tuples. When the pairs form a pattern, list comprehensions
can compactly specify the key-value list.

>>> dict([(’sape’, 39), (’guido’, 27), (’jack’, 98)])
{’sape’: 39, ’jack’: 98, ’guido’: 27}
>>> dict([(x, x**2) for x in vec]) # list comprehension
{2: 4, 4: 16, 6: 36}

5.5 Looping Techniques

When looping through dictionaries, the key and corresponding value can
be retrieved at the same time using the items() method.

>>> knights = {’gallahad’: ’pure’, ’robin’: ’brave’}
>>> for k, v in knights.items():
... print k, ’the’, v
...
gallahad the pure
robin the brave

To loop over two or more sequences at the same time, the entries can be
paired with the zip() function.

>>> questions = [’name’, ’quest’, ’favorite color’]
>>> answers = [’lancelot’, ’the holy grail’, ’blue’]
>>> for q, a in zip(questions, answers):
... print ’What is your %s? It is %s.’ % (q, a)
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

5.6 More on Conditions

The conditions used in while and if statements above can contain other
operators besides comparisons.

The comparison operators in and not in check whether a value occurs
(does not occur) in a sequence. The operators is and is not compare
whether two objects are really the same object; this only matters for mu-
table objects like lists. All comparison operators have the same priority,
which is lower than that of all numerical operators.

46

Comparisons can be chained. For example, a < b == c tests whether a
is less than b and moreover b equals c.

Comparisons may be combined by the Boolean operators and and or, and
the outcome of a comparison (or of any other Boolean expression) may
be negated with not. These all have lower priorities than comparison
operators again; between them, not has the highest priority, and or the
lowest, so that A and not B or C is equivalent to (A and (not B)) or
C. Of course, parentheses can be used to express the desired composition.

The Boolean operators and and or are so-called short-circuit operators:
their arguments are evaluated from left to right, and evaluation stops as
soon as the outcome is determined. For example, if A and C are true but
B is false, A and B and C does not evaluate the expression C. In general,
the return value of a short-circuit operator, when used as a general value
and not as a Boolean, is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expres-
sion to a variable. For example,

>>> str1, str2, str3 = ’’, ’Trondheim’, ’Hammer Dance’
>>> non_null = str1 or str2 or str3
>>> non_null
’Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expres-
sions. C programmers may grumble about this, but it avoids a common
class of problems encountered in C programs: typing = in an expression
when == was intended.

5.7 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same se-
quence type. The comparison uses lexicographical ordering: first the first
two items are compared, and if they differ this determines the outcome of
the comparison; if they are equal, the next two items are compared, and
so on, until either sequence is exhausted. If two items to be compared are
themselves sequences of the same type, the lexicographical comparison is
carried out recursively. If all items of two sequences compare equal, the
sequences are considered equal. If one sequence is an initial sub-sequence
of the other, the shorter sequence is the smaller (lesser) one. Lexicograph-
ical ordering for strings uses the ascii ordering for individual characters.
Some examples of comparisons between sequences with the same types:

(1, 2, 3) < (1, 2, 4)

47

[1, 2, 3] < [1, 2, 4]
’ABC’ < ’C’ < ’Pascal’ < ’Python’
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, (’aa’, ’ab’)) < (1, 2, (’abc’, ’a’), 4)

Note that comparing objects of different types is legal. The outcome is
deterministic but arbitrary: the types are ordered by their name. Thus,
a list is always smaller than a string, a string is always smaller than a
tuple, etc. Mixed numeric types are compared according to their numeric
value, so 0 equals 0.0, etc.1

1The rules for comparing objects of different types should not be relied upon; they
may change in a future version of the language.

48

49

6 Modules

If you quit from the Python interpreter and enter it again, the definitions
you have made (functions and variables) are lost. Therefore, if you want
to write a somewhat longer program, you are better off using a text editor
to prepare the input for the interpreter and running it with that file as
input instead. This is known as creating a script. As your program gets
longer, you may want to split it into several files for easier maintenance.
You may also want to use a handy function that you’ve written in several
programs without copying its definition into each program.

To support this, Python has a way to put definitions in a file and use
them in a script or in an interactive instance of the interpreter. Such a
file is called a module; definitions from a module can be imported into
other modules or into the main module (the collection of variables that
you have access to in a script executed at the top level and in calculator
mode).

A module is a file containing Python definitions and statements. The
file name is the module name with the suffix ‘.py’ appended. Within a
module, the module’s name (as a string) is available as the value of the
global variable name . For instance, use your favorite text editor to
create a file called ‘fibo.py’ in the current directory with the following
contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print b,
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

50

Now enter the Python interpreter and import this module with the fol-
lowing command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly
in the current symbol table; it only enters the module name fibo there.
Using the module name you can access the functions:

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
’fibo’

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function defini-
tions. These statements are intended to initialize the module. They are
executed only the first time the module is imported somewhere.1

Each module has its own private symbol table, which is used as the global
symbol table by all functions defined in the module. Thus, the author of
a module can use global variables in the module without worrying about
accidental clashes with a user’s global variables. On the other hand, if
you know what you are doing you can touch a module’s global variables
with the same notation used to refer to its functions, modname.itemname.

Modules can import other modules. It is customary but not required to
place all import statements at the beginning of a module (or script, for
that matter). The imported module names are placed in the importing
module’s global symbol table.

There is a variant of the import statement that imports names from a
module directly into the importing module’s symbol table. For example:

1In fact function definitions are also ‘statements’ that are ‘executed’; the execution
enters the function name in the module’s global symbol table.

51

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are
taken in the local symbol table (so in the example, fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore ().

6.1.1 The Module Search Path

When a module named spam is imported, the interpreter searches for
a file named ‘spam.py’ in the current directory, and then in the list of
directories specified by the environment variable PYTHONPATH. This has
the same syntax as the shell variable PATH, that is, a list of directory
names. When PYTHONPATH is not set, or when the file is not found there,
the search continues in an installation-dependent default path; on Unix,
this is usually ‘.:/usr/local/lib/python’.

Actually, modules are searched for in the list of directories given by the
variable sys.path which is initialized from the directory containing the
input script (or the current directory), PYTHONPATH and the installation-
dependent default. This allows Python programs that know what they’re
doing to modify or replace the module search path. Note that because
the directory containing the script being run is on the search path, it is
important that the script not have the same name as a standard module,
or Python will attempt to load the script as a module when that module
is imported. This will generally be an error. See section 6.2, “Standard
Modules.” for more information.

6.1.2 “Compiled” Python files

As an important speed-up of the start-up time for short programs that
use a lot of standard modules, if a file called ‘spam.pyc’ exists in the
directory where ‘spam.py’ is found, this is assumed to contain an already-
“byte-compiled” version of the module spam. The modification time of the
version of ‘spam.py’ used to create ‘spam.pyc’ is recorded in ‘spam.pyc’,
and the ‘.pyc’ file is ignored if these don’t match.

52

Normally, you don’t need to do anything to create the ‘spam.pyc’ file.
Whenever ‘spam.py’ is successfully compiled, an attempt is made to write
the compiled version to ‘spam.pyc’. It is not an error if this attempt fails;
if for any reason the file is not written completely, the resulting ‘spam.pyc’
file will be recognized as invalid and thus ignored later. The contents of the
‘spam.pyc’ file are platform independent, so a Python module directory
can be shared by machines of different architectures.

Some tips for experts:

• When the Python interpreter is invoked with the -O flag, optimized
code is generated and stored in ‘.pyo’ files. The optimizer currently
doesn’t help much; it only removes assert statements and SET
LINENO instructions. When -O is used, all bytecode is optimized;
.pyc files are ignored and .py files are compiled to optimized byte-
code.

• Passing two -O flags to the Python interpreter (-OO) will cause the
bytecode compiler to perform optimizations that could in some rare
cases result in malfunctioning programs. Currently only doc
strings are removed from the bytecode, resulting in more compact
‘.pyo’ files. Since some programs may rely on having these available,
you should only use this option if you know what you’re doing.

• A program doesn’t run any faster when it is read from a ‘.pyc’ or
‘.pyo’ file than when it is read from a ‘.py’ file; the only thing that’s
faster about ‘.pyc’ or ‘.pyo’ files is the speed with which they are
loaded.

• When a script is run by giving its name on the command line, the
bytecode for the script is never written to a ‘.pyc’ or ‘.pyo’ file.
Thus, the startup time of a script may be reduced by moving most
of its code to a module and having a small bootstrap script that
imports that module. It is also possible to name a ‘.pyc’ or ‘.pyo’
file directly on the command line.

• The module compileall can create ‘.pyc’ files (or ‘.pyo’ files when
-O is used) for all modules in a directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate
document, the Python Library Reference (“Library Reference” hereafter).
Some modules are built into the interpreter; these provide access to oper-
ations that are not part of the core of the language but are nevertheless

53

built in, either for efficiency or to provide access to operating system
primitives such as system calls. The set of such modules is a configura-
tion option which also depends on the underlying platform. For example,
the posix module is only provided on UNIX systems. One particular
module deserves some attention: sys, which is built into every Python
interpreter. The variables sys.ps1 and sys.ps2 define the strings used
as primary and secondary prompts:

>>> import sys
>>> sys.ps1
’>>> ’
>>> sys.ps2
’... ’
>>> sys.ps1 = ’C> ’
C> print ’Yuck!’
Yuck!
C>

These two variables are only defined if the interpreter is in interactive
mode.

The variable sys.path is a list of strings that determine the interpreter’s
search path for modules. It is initialized to a default path taken from the
environment variable PYTHONPATH, or from a built-in default if this is not
set. You can modify it using standard list operations:

>>> import sys
>>> sys.path.append(’/ufs/guido/lib/python’)

6.3 The dir() Function

The built-in function dir() is used to find out which names a module
defines. It returns a sorted list of strings:

>>> import fibo, sys
>>> dir(fibo)
[’__name__’, ’fib’, ’fib2’]
>>> dir(sys)
[’__displayhook__’, ’__doc__’, ’__excepthook__’,
’__name__’, ’__stderr__’, ’__stdin__’, ’__stdout__’,
’_getframe’, ’argv’, ’builtin_module_names’,
’byteorder’, ’copyright’, ’displayhook’, ’exc_info’,
’exc_type’, ’excepthook’, ’exec_prefix’, ’executable’,

54

’exit’, ’getdefaultencoding’, ’getdlopenflags’,
’getrecursionlimit’, ’getrefcount’, ’hexversion’,
’maxint’, ’maxunicode’, ’modules’, ’path’, ’platform’,
’prefix’, ’ps1’, ’ps2’, ’setcheckinterval’,
’setdlopenflags’, ’setprofile’, ’setrecursionlimit’,
’settrace’, ’stderr’, ’stdin’, ’stdout’, ’version’,
’version_info’, ’warnoptions’]

Without arguments, dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo, sys
>>> fib = fibo.fib
>>> dir()
[’__name__’, ’a’, ’fib’, ’fibo’, ’sys’]

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you
want a list of those, they are defined in the standard module builtin :

>>> import __builtin__
>>> dir(__builtin__)
[’ArithmeticError’, ’AssertionError’, ’AttributeError’,
’DeprecationWarning’, ’EOFError’, ’Ellipsis’,
’EnvironmentError’, ’Exception’, ’FloatingPointError’,
’IOError’, ’ImportError’, ’IndentationError’,
’IndexError’, ’KeyError’, ’KeyboardInterrupt’,
’LookupError’, ’MemoryError’, ’NameError’, ’None’,
’NotImplemented’, ’NotImplementedError’, ’OSError’,
’OverflowError’, ’OverflowWarning’, ’ReferenceError’,
’RuntimeError’, ’RuntimeWarning’, ’StandardError’,
’StopIteration’, ’SyntaxError’, ’SyntaxWarning’,
’SystemError’, ’SystemExit’, ’TabError’, ’TypeError’,
’UnboundLocalError’, ’UnicodeError’, ’UserWarning’,
’ValueError’, ’Warning’, ’ZeroDivisionError’, ’_’,
’__debug__’, ’__doc__’, ’__import__’, ’__name__’,
’abs’, ’apply’, ’buffer’, ’callable’, ’chr’,
’classmethod’, ’cmp’, ’coerce’, ’compile’, ’complex’,
’copyright’, ’credits’, ’delattr’, ’dict’, ’dir’,
’divmod’, ’eval’, ’execfile’, ’exit’, ’file’, ’filter’,
’float’, ’getattr’, ’globals’, ’hasattr’, ’hash’,
’help’, ’hex’, ’id’, ’input’, ’int’, ’intern’,
’isinstance’, ’issubclass’, ’iter’, ’len’, ’license’,

55

’list’, ’locals’, ’long’, ’map’, ’max’, ’min’,
’object’, ’oct’, ’open’, ’ord’, ’pow’, ’property’,
’quit’, ’range’, ’raw_input’, ’reduce’, ’reload’,
’repr’, ’round’, ’setattr’, ’slice’, ’staticmethod’,
’str’, ’super’, ’tuple’, ’type’, ’unichr’, ’unicode’,
’vars’, ’xrange’, ’zip’]

6.4 Packages

Packages are a way of structuring Python’s module namespace by using
“dotted module names”. For example, the module name A.B designates a
submodule named ‘B’ in a package named ‘A’. Just like the use of modules
saves the authors of different modules from having to worry about each
other’s global variable names, the use of dotted module names saves the
authors of multi-module packages like NumPy or the Python Imaging
Library from having to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the
uniform handling of sound files and sound data. There are many different
sound file formats (usually recognized by their extension, for example:
‘.wav’, ‘.aiff’, ‘.au’), so you may need to create and maintain a growing
collection of modules for the conversion between the various file formats.
There are also many different operations you might want to perform on
sound data (such as mixing, adding echo, applying an equalizer function,
creating an artificial stereo effect), so in addition you will be writing a
never-ending stream of modules to perform these operations. Here’s a
possible structure for your package (expressed in terms of a hierarchical
filesystem):

Sound/ Top-level package
__init__.py Initialize the sound package
Formats/ Subpackage for file formats

__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...

Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py

56

reverse.py
...

Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

The ‘ init .py’ files are required to make Python treat the directories
as containing packages; this is done to prevent directories with a common
name, such as ‘string’, from unintentionally hiding valid modules that
occur later on the module search path. In the simplest case, ‘ init
.py’ can just be an empty file, but it can also execute initialization code
for the package or set the all variable, described later.

Users of the package can import individual modules from the package, for
example:

import Sound.Effects.echo

This loads the submodule Sound.Effects.echo. It must be referenced
with its full name.

Sound.Effects.echo.echofilter(input, output, delay=0.7,
atten=4)

An alternative way of importing the submodule is:

from Sound.Effects import echo

This also loads the submodule echo, and makes it available without its
package prefix, so it can be used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from Sound.Effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function
echofilter() directly available:

echofilter(input, output, delay=0.7, atten=4)

57

Note that when using from package import item, the item can be either
a submodule (or subpackage) of the package, or some other name defined
in the package, like a function, class or variable. The import statement
first tests whether the item is defined in the package; if not, it assumes it
is a module and attempts to load it. If it fails to find it, an ImportError
exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each
item except for the last must be a package; the last item can be a module
or a package but can’t be a class or function or variable defined in the
previous item.

6.4.1 Importing * From a Package

Now what happens when the user writes from Sound.Effects import
*? Ideally, one would hope that this somehow goes out to the filesystem,
finds which submodules are present in the package, and imports them
all. Unfortunately, this operation does not work very well on Mac and
Windows platforms, where the filesystem does not always have accurate
information about the case of a filename! On these platforms, there is no
guaranteed way to know whether a file ‘ECHO.PY’ should be imported as a
module echo, Echo or ECHO. (For example, Windows 95 has the annoying
practice of showing all file names with a capitalized first letter.) The DOS
8+3 filename restriction adds another interesting problem for long module
names.

The only solution is for the package author to provide an explicit index
of the package. The import statement uses the following convention: if a
package’s ‘ init .py’ code defines a list named all , it is taken
to be the list of module names that should be imported when from pack-
age import * is encountered. It is up to the package author to keep
this list up-to-date when a new version of the package is released. Pack-
age authors may also decide not to support it, if they don’t see a use for
importing * from their package. For example, the file ‘Sounds/Effects/
init .py’ could contain the following code:

__all__ = ["echo", "surround", "reverse"]

This would mean that from Sound.Effects import * would import the
three named submodules of the Sound package.

If all is not defined, the statement from Sound.Effects import
* does not import all submodules from the package Sound.Effects into
the current namespace; it only ensures that the package Sound.Effects
has been imported (possibly running its initialization code, ‘ init

58

.py’) and then imports whatever names are defined in the package. This
includes any names defined (and submodules explicitly loaded) by ‘
init .py’. It also includes any submodules of the package that were
explicitly loaded by previous import statements. Consider this code:

import Sound.Effects.echo
import Sound.Effects.surround
from Sound.Effects import *

In this example, the echo and surround modules are imported in the cur-
rent namespace because they are defined in the Sound.Effects package
when the from...import statement is executed. (This also works when

all is defined.)

Note that in general the practicing of importing * from a module or pack-
age is frowned upon, since it often causes poorly readable code. However,
it is okay to use it to save typing in interactive sessions, and certain mod-
ules are designed to export only names that follow certain patterns.

Remember, there is nothing wrong with using from Package import
specific submodule! In fact, this is the recommended notation unless
the importing module needs to use submodules with the same name from
different packages.

6.4.2 Intra-package References

The submodules often need to refer to each other. For example, the
surround module might use the echo module. In fact, such references are
so common that the import statement first looks in the containing package
before looking in the standard module search path. Thus, the surround
module can simply use import echo or from echo import echofilter.
If the imported module is not found in the current package (the package
of which the current module is a submodule), the import statement looks
for a top-level module with the given name.

When packages are structured into subpackages (as with the Sound pack-
age in the example), there’s no shortcut to refer to submodules of sibling
packages - the full name of the subpackage must be used. For example, if
the module Sound.Filters.vocoder needs to use the echo module in the
Sound.Effects package, it can use from Sound.Effects import echo.

59

7 Input and Output

There are several ways to present the output of a program; data can be
printed in a human-readable form, or written to a file for future use. This
chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we’ve encountered two ways of writing values: expression statements
and the print statement. (A third way is using the write() method of
file objects; the standard output file can be referenced as sys.stdout.
See the Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than
simply printing space-separated values. There are two ways to format your
output; the first way is to do all the string handling yourself; using string
slicing and concatenation operations you can create any lay-out you can
imagine. The standard module string contains some useful operations for
padding strings to a given column width; these will be discussed shortly.
The second way is to use the % operator with a string as the left argument.
The % operator interprets the left argument much like a sprintf()-style
format string to be applied to the right argument, and returns the string
resulting from this formatting operation.

One question remains, of course: how do you convert values to strings?
Luckily, Python has ways to convert any value to a string: pass it to the
repr() or str() functions, or just write the value between reverse quotes
(‘‘, equivalent to repr()).

The str() function is meant to return representations of values which are
fairly human-readable, while repr() is meant to generate representations
which can be read by the interpreter (or will force a SyntaxError if there
is not equivalent syntax). For objects which don’t have a particular rep-
resentation for human consumption, str() will return the same value as
repr(). Many values, such as numbers or structures like lists and dictio-
naries, have the same representation using either function. Strings and
floating point numbers, in particular, have two distinct representations.

Some examples:

>>> s = ’Hello, world.’

60

>>> str(s)
’Hello, world.’
>>> ‘s‘
"’Hello, world.’"
>>> str(0.1)
’0.1’
>>> ‘0.1‘
’0.10000000000000001’
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = ’The value of x is ’ + ‘x‘ + ’, and y is ’ + ‘y‘
>>> print s
The value of x is 32.5, and y is 40000
>>> # Reverse quotes work on other types besides numbers:
... p = [x, y]
>>> ps = repr(p)
>>> ps
’[32.5, 40000]’
>>> # Converting a string adds quotes and backslashes:
... hello = ’hello, world\n’
>>> hellos = ‘hello‘
>>> print hellos
’hello, world\n’
>>> # The argument of reverse quotes may be a tuple:
... ‘x, y, (’spam’, ’eggs’)‘
"(32.5, 40000, (’spam’, ’eggs’))"

Here are two ways to write a table of squares and cubes:

>>> import string
>>> for x in range(1, 11):
... print string.rjust(‘x‘, 2),
... print string.rjust(‘x*x‘, 3),
... # Note trailing comma on previous lines
... print string.rjust(‘x*x*x‘, 4)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512

61

9 81 729
10 100 1000
>>> for x in range(1,11):
... print ’%2d %3d %4d’ % (x, x*x, x*x*x)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

(Note that one space between each column was added by the way print
works: it always adds spaces between its arguments.)

This example demonstrates the function string.rjust(), which right-
justifies a string in a field of a given width by padding it with spaces on the
left. There are similar functions string.ljust() and string.center().
These functions do not write anything, they just return a new string.
If the input string is too long, they don’t truncate it, but return it
unchanged; this will mess up your column lay-out but that’s usually
better than the alternative, which would be lying about a value. (If
you really want truncation you can always add a slice operation, as in
‘string.ljust(x, n)[0:n]’.)

There is another function, string.zfill(), which pads a numeric string
on the left with zeros. It understands about plus and minus signs:

>>> import string
>>> string.zfill(’12’, 5)
’00012’
>>> string.zfill(’-3.14’, 7)
’-003.14’
>>> string.zfill(’3.14159265359’, 5)
’3.14159265359’

Using the % operator looks like this:

>>> import math
>>> print ’PI is approximately %5.3f.’ % math.pi
PI is approximately 3.142.

62

If there is more than one format in the string, you need to pass a tuple
as right operand, as in this example:

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 7678}
>>> for name, phone in table.items():
... print ’%-10s ==> %10d’ % (name, phone)
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

Most formats work exactly as in C and require that you pass the proper
type; however, if you don’t you get an exception, not a core dump. The
%s format is more relaxed: if the corresponding argument is not a string
object, it is converted to a string using the str() built-in function. Using
* to pass the width or precision in as a separate (integer) argument is
supported. The C formats %n and %p are not supported.

If you have a really long format string that you don’t want to split up,
it would be nice if you could reference the variables to be formatted
by name instead of by position. This can be done by using the form
%(name)format, as shown here:

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 7678}
>>> print ’%(Jack)d %(Sjoerd)d %(Dcab)d’ % table
4098 4127 7678

This is particularly useful in combination with the new built-in vars()
function, which returns a dictionary containing all local variables.

7.2 Reading and Writing Files

open() returns a file object, and is most commonly used with two argu-
ments: ‘open(filename, mode)’.

>>> f=open(’/tmp/workfile’, ’w’)
>>> print f
<open file ’/tmp/workfile’, mode ’w’ at 80a0960>

The first argument is a string containing the filename. The second argu-
ment is another string containing a few characters describing the way in
which the file will be used. mode can be ’r’ when the file will only be
read, ’w’ for only writing (any existing file with the same name will be

63

erased), and ’a’ opens the file for appending; any data written to the file
is automatically added to the end. ’r+’ opens the file for both reading
and writing. The mode argument is optional; ’r’ will be assumed if it’s
omitted.

On Windows and the Macintosh, ’b’ appended to the mode opens the
file in binary mode, so there are also modes like ’rb’, ’wb’, and ’r+b’.
Windows makes a distinction between text and binary files; the end-of-
line characters in text files are automatically altered slightly when data
is read or written. This behind-the-scenes modification to file data is fine
for ascii text files, but it’ll corrupt binary data like that in JPEGs or
‘.EXE’ files. Be very careful to use binary mode when reading and writing
such files. (Note that the precise semantics of text mode on the Macintosh
depends on the underlying C library being used.)

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object
called f has already been created.

To read a file’s contents, call f.read(size), which reads some quantity
of data and returns it as a string. size is an optional numeric argument.
When size is omitted or negative, the entire contents of the file will be
read and returned; it’s your problem if the file is twice as large as your
machine’s memory. Otherwise, at most size bytes are read and returned.
If the end of the file has been reached, f.read() will return an empty
string ("").

>>> f.read()
’This is the entire file.\n’
>>> f.read()
’’

f.readline() reads a single line from the file; a newline character (\n)
is left at the end of the string, and is only omitted on the last line of
the file if the file doesn’t end in a newline. This makes the return value
unambiguous; if f.readline() returns an empty string, the end of the
file has been reached, while a blank line is represented by ’\n’, a string
containing only a single newline.

>>> f.readline()
’This is the first line of the file.\n’
>>> f.readline()
’Second line of the file\n’

64

>>> f.readline()
’’

f.readlines() returns a list containing all the lines of data in the file. If
given an optional parameter sizehint , it reads that many bytes from the
file and enough more to complete a line, and returns the lines from that.
This is often used to allow efficient reading of a large file by lines, but
without having to load the entire file in memory. Only complete lines will
be returned.

>>> f.readlines()
[’This is the first line of the file.\n’,
’Second line of the file\n’]

f.write(string) writes the contents of string to the file, returning None.

>>> f.write(’This is a test\n’)

f.tell() returns an integer giving the file object’s current position in
the file, measured in bytes from the beginning of the file. To change the
file object’s position, use ‘f.seek(offset, from what)’. The position is
computed from adding offset to a reference point; the reference point is
selected by the from what argument. A from what value of 0 measures
from the beginning of the file, 1 uses the current file position, and 2 uses
the end of the file as the reference point. from what can be omitted and
defaults to 0, using the beginning of the file as the reference point.

>>> f=open(’/tmp/workfile’, ’r+’)
>>> f.write(’0123456789abcdef’)
>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)
’5’
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
’d’

When you’re done with a file, call f.close() to close it and free up any
system resources taken up by the open file. After calling f.close(),
attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):

65

File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

File objects have some additional methods, such as isatty() and
truncate() which are less frequently used; consult the Library Refer-
ence for a complete guide to file objects.

7.2.2 The pickle Module

Strings can easily be written to and read from a file. Numbers take a
bit more effort, since the read() method only returns strings, which will
have to be passed to a function like string.atoi(), which takes a string
like ’123’ and returns its numeric value 123. However, when you want
to save more complex data types like lists, dictionaries, or class instances,
things get a lot more complicated.

Rather than have users be constantly writing and debugging code to
save complicated data types, Python provides a standard module called
pickle. This is an amazing module that can take almost any Python
object (even some forms of Python code!), and convert it to a string rep-
resentation; this process is called pickling. Reconstructing the object from
the string representation is called unpickling. Between pickling and un-
pickling, the string representing the object may have been stored in a file
or data, or sent over a network connection to some distant machine.

If you have an object x, and a file object f that’s been opened for writing,
the simplest way to pickle the object takes only one line of code:

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened
for reading:

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when
you don’t want to write the pickled data to a file; consult the complete
documentation for pickle in the Library Reference.)

pickle is the standard way to make Python objects which can be stored
and reused by other programs or by a future invocation of the same pro-
gram; the technical term for this is a persistent object. Because pickle is
so widely used, many authors who write Python extensions take care to
ensure that new data types such as matrices can be properly pickled and
unpickled.

66

67

8 Errors and Exceptions

Until now error messages haven’t been more than mentioned, but if you
have tried out the examples you have probably seen some. There are (at
least) two distinguishable kinds of errors: syntax errors and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common
kind of complaint you get while you are still learning Python:

>>> while 1 print ’Hello world’
File "<stdin>", line 1, in ?
while 1 print ’Hello world’

^
SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing
at the earliest point in the line where the error was detected. The error is
caused by (or at least detected at) the token preceding the arrow: in the
example, the error is detected at the keyword print, since a colon (‘:’) is
missing before it. The file name and line number are printed so you know
where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause
an error when an attempt is made to execute it. Errors detected during
execution are called exceptions and are not unconditionally fatal: you will
soon learn how to handle them in Python programs. Most exceptions are
not handled by programs, however, and result in error messages as shown
here:

>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?

ZeroDivisionError: integer division or modulo
>>> 4 + spam*3

68

Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: name ’spam’ is not defined
>>> ’2’ + 2
Traceback (most recent call last):
File "<stdin>", line 1, in ?

TypeError: illegal argument type for built-in operation

The last line of the error message indicates what happened. Exceptions
come in different types, and the type is printed as part of the message: the
types in the example are ZeroDivisionError, NameError and TypeError.
The string printed as the exception type is the name of the built-in name
for the exception that occurred. This is true for all built-in exceptions,
but need not be true for user-defined exceptions (although it is a use-
ful convention). Standard exception names are built-in identifiers (not
reserved keywords).

The rest of the line is a detail whose interpretation depends on the excep-
tion type; its meaning is dependent on the exception type.

The preceding part of the error message shows the context where the ex-
ception happened, in the form of a stack backtrace. In general it contains
a stack backtrace listing source lines; however, it will not display lines
read from standard input.

The Python Library Reference lists the built-in exceptions and their mean-
ings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at
the following example, which asks the user for input until a valid integer
has been entered, but allows the user to interrupt the program (using
Control-C or whatever the operating system supports); note that a user-
generated interruption is signalled by raising the KeyboardInterrupt ex-
ception.

>>> while 1:
... try:
... x = int(raw_input("Enter a number: "))
... break
... except ValueError:
... print "Not a valid number. Try again..."
...

69

The try statement works as follows.

• First, the try clause (the statement(s) between the try and except
keywords) is executed.

• If no exception occurs, the except clause is skipped and execution of
the try statement is finished.

• If an exception occurs during execution of the try clause, the rest of
the clause is skipped. Then if its type matches the exception named
after the except keyword, the rest of the try clause is skipped, the
except clause is executed, and then execution continues after the
try statement.

• If an exception occurs which does not match the exception named
in the except clause, it is passed on to outer try statements; if no
handler is found, it is an unhandled exception and execution stops
with a message as shown above.

A try statement may have more than one except clause, to specify han-
dlers for different exceptions. At most one handler will be executed. Han-
dlers only handle exceptions that occur in the corresponding try clause,
not in other handlers of the same try statement. An except clause may
name multiple exceptions as a parenthesized list, for example:

... except (RuntimeError, TypeError, NameError):

... pass

The last except clause may omit the exception name(s), to serve as a
wildcard. Use this with extreme caution, since it is easy to mask a real
programming error in this way! It can also be used to print an error
message and then re-raise the exception (allowing a caller to handle the
exception as well):

import string, sys

try:
f = open(’myfile.txt’)
s = f.readline()
i = int(string.strip(s))

except IOError, (errno, strerror):
print "I/O error(%s): %s" % (errno, strerror)

except ValueError:
print "Could not convert data to an integer."

70

except:
print "Unexpected error:", sys.exc_info()[0]
raise

The try . . . except statement has an optional else clause, which, when
present, must follow all except clauses. It is useful for code that must be
executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1:]:
try:

f = open(arg, ’r’)
except IOError:

print ’cannot open’, arg
else:

print arg, ’has’, len(f.readlines()), ’lines’
f.close()

The use of the else clause is better than adding additional code to the
try clause because it avoids accidentally catching an exception that wasn’t
raised by the code being protected by the try . . . except statement.

When an exception occurs, it may have an associated value, also known as
the exception’s argument. The presence and type of the argument depend
on the exception type. For exception types which have an argument, the
except clause may specify a variable after the exception name (or list) to
receive the argument’s value, as follows:

>>> try:
... spam()
... except NameError, x:
... print ’name’, x, ’undefined’
...
name spam undefined

If an exception has an argument, it is printed as the last part (‘detail’) of
the message for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately
in the try clause, but also if they occur inside functions that are called
(even indirectly) in the try clause. For example:

>>> def this_fails():
... x = 1/0
...

71

>>> try:
... this_fails()
... except ZeroDivisionError, detail:
... print ’Handling run-time error:’, detail
...
Handling run-time error: integer division or modulo

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception
to occur. For example:

>>> raise NameError, ’HiThere’
Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: HiThere

The first argument to raise names the exception to be raised. The op-
tional second argument specifies the exception’s argument.

If you need to determine whether an exception was raised but don’t intend
to handle it, a simpler form of the raise statement allows you to re-raise
the exception:

>>> try:
... raise NameError, ’HiThere’
... except NameError:
... print ’An exception flew by!’
... raise
...
An exception flew by!
Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception
class. Exceptions should typically be derived from the Exception class,
either directly or indirectly. For example:

>>> class MyError(Exception):
... def __init__(self, value):

72

... self.value = value

... def __str__(self):

... return ‘self.value‘

...
>>> try:
... raise MyError(2*2)
... except MyError, e:
... print ’My exception occurred, value:’, e.value
...
My exception occurred, value: 4
>>> raise MyError, ’oops!’
Traceback (most recent call last):
File "<stdin>", line 1, in ?

__main__.MyError: ’oops!’

Exception classes can be defined which do anything any other class can
do, but are usually kept simple, often only offering a number of attributes
that allow information about the error to be extracted by handlers for
the exception. When creating a module which can raise several distinct
errors, a common practice is to create a base class for exceptions defined
by that module, and subclass that to create specific exception classes for
different error conditions:

class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.

Attributes:
expression -- input expression in which

the error occurred
message -- explanation of the error

"""

def __init__(self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state
transition that’s not allowed.

73

Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific

transition is not allowed
"""

def __init__(self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in “Error,” similar to
the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that
may occur in functions they define. More information on classes is pre-
sented in chapter 9, “Classes.”

8.6 Defining Clean-up Actions

The try statement has another optional clause which is intended to de-
fine clean-up actions that must be executed under all circumstances. For
example:

>>> try:
... raise KeyboardInterrupt
... finally:
... print ’Goodbye, world!’
...
Goodbye, world!
Traceback (most recent call last):
File "<stdin>", line 2, in ?

KeyboardInterrupt

A finally clause is executed whether or not an exception has occurred in
the try clause. When an exception has occurred, it is re-raised after the
finally clause is executed. The finally clause is also executed “on the way
out” when the try statement is left via a break or return statement.

The code in the finally clause is useful for releasing external resources
(such as files or network connections), regardless of whether or not the
use of the resource was successful.

74

A try statement must either have one or more except clauses or one finally
clause, but not both.

75

9 Classes

Python’s class mechanism adds classes to the language with a minimum of
new syntax and semantics. It is a mixture of the class mechanisms found
in C++ and Modula-3. As is true for modules, classes in Python do not
put an absolute barrier between definition and user, but rather rely on
the politeness of the user not to “break into the definition.” The most
important features of classes are retained with full power, however: the
class inheritance mechanism allows multiple base classes, a derived class
can override any methods of its base class or classes, a method can call
the method of a base class with the same name. Objects can contain an
arbitrary amount of private data.

In C++ terminology, all class members (including the data members)
are public, and all member functions are virtual. There are no special
constructors or destructors. As in Modula-3, there are no shorthands for
referencing the object’s members from its methods: the method function
is declared with an explicit first argument representing the object, which
is provided implicitly by the call. As in Smalltalk, classes themselves are
objects, albeit in the wider sense of the word: in Python, all data types are
objects. This provides semantics for importing and renaming. But, just
like in C++ or Modula-3, built-in types cannot be used as base classes for
extension by the user. Also, like in C++ but unlike in Modula-3, most
built-in operators with special syntax (arithmetic operators, subscripting
etc.) can be redefined for class instances.

9.1 A Word About Terminology

Lacking universally accepted terminology to talk about classes, I will make
occasional use of Smalltalk and C++ terms. (I would use Modula-3 terms,
since its object-oriented semantics are closer to those of Python than
C++, but I expect that few readers have heard of it.)

I also have to warn you that there’s a terminological pitfall for object-
oriented readers: the word “object” in Python does not necessarily mean
a class instance. Like C++ and Modula-3, and unlike Smalltalk, not all
types in Python are classes: the basic built-in types like integers and lists
are not, and even somewhat more exotic types like files aren’t. How-
ever, all Python types share a little bit of common semantics that is best
described by using the word object.

76

Objects have individuality, and multiple names (in multiple scopes) can
be bound to the same object. This is known as aliasing in other languages.
This is usually not appreciated on a first glance at Python, and can be
safely ignored when dealing with immutable basic types (numbers, strings,
tuples). However, aliasing has an (intended!) effect on the semantics
of Python code involving mutable objects such as lists, dictionaries, and
most types representing entities outside the program (files, windows, etc.).
This is usually used to the benefit of the program, since aliases behave
like pointers in some respects. For example, passing an object is cheap
since only a pointer is passed by the implementation; and if a function
modifies an object passed as an argument, the caller will see the change
— this obviates the need for two different argument passing mechanisms
as in Pascal.

9.2 Python Scopes and Name Spaces

Before introducing classes, I first have to tell you something about Py-
thon’s scope rules. Class definitions play some neat tricks with names-
paces, and you need to know how scopes and namespaces work to fully
understand what’s going on. Incidentally, knowledge about this subject
is useful for any advanced Python programmer.

Let’s begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are
currently implemented as Python dictionaries, but that’s normally not
noticeable in any way (except for performance), and it may change in the
future. Examples of namespaces are: the set of built-in names (functions
such as abs(), and built-in exception names); the global names in a mod-
ule; and the local names in a function invocation. In a sense the set of
attributes of an object also form a namespace. The important thing to
know about namespaces is that there is absolutely no relation between
names in different namespaces; for instance, two different modules may
both define a function “maximize” without confusion — users of the mod-
ules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot —
for example, in the expression z.real, real is an attribute of the object
z. Strictly speaking, references to names in modules are attribute refer-
ences: in the expression modname.funcname, modname is a module object
and funcname is an attribute of it. In this case there happens to be a

77

straightforward mapping between the module’s attributes and the global
names defined in the module: they share the same namespace! 1

Attributes may be read-only or writable. In the latter case, assignment to
attributes is possible. Module attributes are writable: you can write as-
signments such as ‘modname.the answer = 42’. Writable attributes may
also be deleted with the del statement. For example, ‘del modname.the
answer’ will remove the attribute the answer from the object named by
modname.

Name spaces are created at different moments and have different lifetimes.
The namespace containing the built-in names is created when the Python
interpreter starts up, and is never deleted. The global namespace for a
module is created when the module definition is read in; normally, module
namespaces also last until the interpreter quits. The statements executed
by the top-level invocation of the interpreter, either read from a script
file or interactively, are considered part of a module called main , so
they have their own global namespace. (The built-in names actually also
live in a module; this is called builtin .)

The local namespace for a function is created when the function is called,
and deleted when the function returns or raises an exception that is not
handled within the function. (Actually, forgetting would be a better way
to describe what actually happens.) Of course, recursive invocations each
have their own local namespace.

A scope is a textual region of a Python program where a namespace is
directly accessible. “Directly accessible” here means that an unqualified
reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At
any time during execution, there are at least three nested scopes whose
namespaces are directly accessible: the innermost scope, which is searched
first, contains the local names; the namespaces of any enclosing functions,
which are searched starting with the nearest enclosing scope; the middle
scope, searched next, contains the current module’s global names; and
the outermost scope (searched last) is the namespace containing built-in
names.

If a name is declared global, then all references and assignments go directly
to the middle scope containing the module’s global names. Otherwise, all
variables found outside of the innermost scope are read-only.

1Except for one thing. Module objects have a secret read-only attribute called
dict which returns the dictionary used to implement the module’s namespace;

the name dict is an attribute but not a global name. Obviously, using this
violates the abstraction of namespace implementation, and should be restricted to
things like post-mortem debuggers.

78

Usually, the local scope references the local names of the (textually) cur-
rent function. Outside of functions, the local scope references the same
namespace as the global scope: the module’s namespace. Class definitions
place yet another namespace in the local scope.

It is important to realize that scopes are determined textually: the global
scope of a function defined in a module is that module’s namespace, no
matter from where or by what alias the function is called. On the other
hand, the actual search for names is done dynamically, at run time —
however, the language definition is evolving towards static name resolu-
tion, at “compile” time, so don’t rely on dynamic name resolution! (In
fact, local variables are already determined statically.)

A special quirk of Python is that assignments always go into the inner-
most scope. Assignments do not copy data — they just bind names to
objects. The same is true for deletions: the statement ‘del x’ removes the
binding of x from the namespace referenced by the local scope. In fact, all
operations that introduce new names use the local scope: in particular,
import statements and function definitions bind the module or function
name in the local scope. (The global statement can be used to indicate
that particular variables live in the global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and
some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>
.
.
.
<statement-N>

Class definitions, like function definitions (def statements) must be exe-
cuted before they have any effect. (You could conceivably place a class
definition in a branch of an if statement, or inside a function.)

In practice, the statements inside a class definition will usually be func-
tion definitions, but other statements are allowed, and sometimes useful

79

— we’ll come back to this later. The function definitions inside a class
normally have a peculiar form of argument list, dictated by the calling
conventions for methods — again, this is explained later.

When a class definition is entered, a new namespace is created, and used
as the local scope — thus, all assignments to local variables go into this
new namespace. In particular, function definitions bind the name of the
new function here.

When a class definition is left normally (via the end), a class object is
created. This is basically a wrapper around the contents of the namespace
created by the class definition; we’ll learn more about class objects in the
next section. The original local scope (the one in effect just before the
class definitions was entered) is reinstated, and the class object is bound
here to the class name given in the class definition header (ClassName in
the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and
instantiation.

Attribute references use the standard syntax used for all attribute refer-
ences in Python: obj.name. Valid attribute names are all the names that
were in the class’s namespace when the class object was created. So, if
the class definition looked like this:

class MyClass:
"A simple example class"
i = 12345
def f(self):

return ’hello world’

then MyClass.i and MyClass.f are valid attribute references, returning
an integer and a method object, respectively. Class attributes can also
be assigned to, so you can change the value of MyClass.i by assignment.

doc is also a valid attribute, returning the docstring belonging to
the class: "A simple example class").

Class instantiation uses function notation. Just pretend that the class
object is a parameterless function that returns a new instance of the class.
For example (assuming the above class):

x = MyClass()

80

creates a new instance of the class and assigns this object to the local
variable x.

The instantiation operation (“calling” a class object) creates an empty ob-
ject. Many classes like to create objects in a known initial state. Therefore
a class may define a special method named init (), like this:

def __init__(self):
self.data = []

When a class defines an init () method, class instantiation auto-
matically invokes init () for the newly-created class instance. So
in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the init () method may have arguments for greater flex-
ibility. In that case, arguments given to the class instantiation operator
are passed on to init (). For example,

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations under-
stood by instance objects are attribute references. There are two kinds of
valid attribute names.

The first I’ll call data attributes. These correspond to “instance variables”
in Smalltalk, and to “data members” in C++. Data attributes need not
be declared; like local variables, they spring into existence when they are
first assigned to. For example, if x is the instance of MyClass created
above, the following piece of code will print the value 16, without leaving
a trace:

x.counter = 1
while x.counter < 10:

81

x.counter = x.counter * 2
print x.counter
del x.counter

The second kind of attribute references understood by instance objects
are methods. A method is a function that “belongs to” an object. (In
Python, the term method is not unique to class instances: other object
types can have methods as well. For example, list objects have methods
called append, insert, remove, sort, and so on. However, below, we’ll use
the term method exclusively to mean methods of class instance objects,
unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By def-
inition, all attributes of a class that are (user-defined) function objects
define corresponding methods of its instances. So in our example, x.f is
a valid method reference, since MyClass.f is a function, but x.i is not,
since MyClass.i is not. But x.f is not the same thing as MyClass.f —
it is a method object, not a function object.

9.3.4 Method Objects

Usually, a method is called immediately:

x.f()

In our example, this will return the string ’hello world’. However, it is
not necessary to call a method right away: x.f is a method object, and
can be stored away and called at a later time. For example:

xf = x.f
while 1:

print xf()

will continue to print ‘hello world’ until the end of time.

What exactly happens when a method is called? You may have noticed
that x.f() was called without an argument above, even though the func-
tion definition for f specified an argument. What happened to the argu-
ment? Surely Python raises an exception when a function that requires
an argument is called without any — even if the argument isn’t actually
used...

Actually, you may have guessed the answer: the special thing about meth-
ods is that the object is passed as the first argument of the function. In
our example, the call x.f() is exactly equivalent to MyClass.f(x). In

82

general, calling a method with a list of n arguments is equivalent to call-
ing the corresponding function with an argument list that is created by
inserting the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementa-
tion can perhaps clarify matters. When an instance attribute is referenced
that isn’t a data attribute, its class is searched. If the name denotes a
valid class attribute that is a function object, a method object is created
by packing (pointers to) the instance object and the function object just
found together in an abstract object: this is the method object. When
the method object is called with an argument list, it is unpacked again, a
new argument list is constructed from the instance object and the original
argument list, and the function object is called with this new argument
list.

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid
accidental name conflicts, which may cause hard-to-find bugs in large pro-
grams, it is wise to use some kind of convention that minimizes the chance
of conflicts. Possible conventions include capitalizing method names, pre-
fixing data attribute names with a small unique string (perhaps just an
underscore), or using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary
users (“clients”) of an object. In other words, classes are not usable to
implement pure abstract data types. In fact, nothing in Python makes it
possible to enforce data hiding — it is all based upon convention. (On
the other hand, the Python implementation, written in C, can completely
hide implementation details and control access to an object if necessary;
this can be used by extensions to Python written in C.)

Clients should use data attributes with care — clients may mess up in-
variants maintained by the methods by stamping on their data attributes.
Note that clients may add data attributes of their own to an instance ob-
ject without affecting the validity of the methods, as long as name conflicts
are avoided — again, a naming convention can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!)
from within methods. I find that this actually increases the readability
of methods: there is no chance of confusing local variables and instance
variables when glancing through a method.

Conventionally, the first argument of methods is often called self. This is
nothing more than a convention: the name self has absolutely no special

83

meaning to Python. (Note, however, that by not following the convention
your code may be less readable by other Python programmers, and it is
also conceivable that a class browser program be written which relies upon
such a convention.)

Any function object that is a class attribute defines a method for instances
of that class. It is not necessary that the function definition is textually
enclosed in the class definition: assigning a function object to a local
variable in the class is also ok. For example:

Function defined outside the class
def f1(self, x, y):

return min(x, x+y)

class C:
f = f1
def g(self):

return ’hello world’
h = g

Now f, g and h are all attributes of class C that refer to function objects,
and consequently they are all methods of instances of C — h being exactly
equivalent to g. Note that this practice usually only serves to confuse the
reader of a program.

Methods may call other methods by using method attributes of the self
argument:

class Bag:
def __init__(self):

self.data = []
def add(self, x):

self.data.append(x)
def addtwice(self, x):

self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary func-
tions. The global scope associated with a method is the module con-
taining the class definition. (The class itself is never used as a global
scope!) While one rarely encounters a good reason for using global data
in a method, there are many legitimate uses of the global scope: for one
thing, functions and modules imported into the global scope can be used
by methods, as well as functions and classes defined in it. Usually, the

84

class containing the method is itself defined in this global scope, and in
the next section we’ll find some good reasons why a method would want
to reference its own class!

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class”
without supporting inheritance. The syntax for a derived class definition
looks as follows:

class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>

The name BaseClassName must be defined in a scope containing the de-
rived class definition. Instead of a base class name, an expression is also
allowed. This is useful when the base class is defined in another module,

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base
class. When the class object is constructed, the base class is remembered.
This is used for resolving attribute references: if a requested attribute is
not found in the class, it is searched for in the base class. This rule is
applied recursively if the base class itself is derived from some other class.

There’s nothing special about instantiation of derived classes:
DerivedClassName() creates a new instance of the class. Method refer-
ences are resolved as follows: the corresponding class attribute is searched
for, descending down the chain of base classes if necessary, and the method
reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because meth-
ods have no special privileges when calling other methods of the same
object, a method of a base class that calls another method defined in the
same base class, may in fact end up calling a method of a derived class
that overrides it. (For C++ programmers: all methods in Python are
effectively virtual.)

An overriding method in a derived class may in fact want to extend
rather than simply replace the base class method of the same name.

85

There is a simple way to call the base class method directly: just call
‘BaseClassName.methodname(self, arguments)’. This is occasionally
useful to clients as well. (Note that this only works if the base class is
defined or imported directly in the global scope.)

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class
definition with multiple base classes looks as follows:

class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>

The only rule necessary to explain the semantics is the resolution rule
used for class attribute references. This is depth-first, left-to-right. Thus,
if an attribute is not found in DerivedClassName, it is searched for in
Base1, then (recursively) in the base classes of Base1, and only if it is not
found there, it is searched for in Base2, and so on.

(To some people breadth first — searching Base2 and Base3 before the
base classes of Base1 — looks more natural. However, this would require
you to know whether a particular attribute of Base1 is actually defined
in Base1 or in one of its base classes before you can figure out the conse-
quences of a name conflict with an attribute of Base2. The depth-first rule
makes no differences between direct and inherited attributes of Base1.)

It is clear that indiscriminate use of multiple inheritance is a maintenance
nightmare, given the reliance in Python on conventions to avoid accidental
name conflicts. A well-known problem with multiple inheritance is a class
derived from two classes that happen to have a common base class. While
it is easy enough to figure out what happens in this case (the instance will
have a single copy of “instance variables” or data attributes used by the
common base class), it is not clear that these semantics are in any way
useful.

9.6 Private Variables

There is limited support for class-private identifiers. Any identifier of
the form spam (at least two leading underscores, at most one trailing
underscore) is now textually replaced with classname spam, where

86

classname is the current class name with leading underscore(s) stripped.
This mangling is done without regard of the syntactic position of the iden-
tifier, so it can be used to define class-private instance and class variables,
methods, as well as globals, and even to store instance variables private
to this class on instances of other classes. Truncation may occur when the
mangled name would be longer than 255 characters. Outside classes, or
when the class name consists of only underscores, no mangling occurs.

Name mangling is intended to give classes an easy way to define “private”
instance variables and methods, without having to worry about instance
variables defined by derived classes, or mucking with instance variables by
code outside the class. Note that the mangling rules are designed mostly
to avoid accidents; it still is possible for a determined soul to access or
modify a variable that is considered private. This can even be useful in
special circumstances, such as in the debugger, and that’s one reason why
this loophole is not closed. (Buglet: derivation of a class with the same
name as the base class makes use of private variables of the base class
possible.)

Notice that code passed to exec, eval() or evalfile() does not consider
the classname of the invoking class to be the current class; this is similar to
the effect of the global statement, the effect of which is likewise restricted
to code that is byte-compiled together. The same restriction applies to
getattr(), setattr() and delattr(), as well as when referencing
dict directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record”
or C “struct”, bundling together a couple of named data items. An empty
class definition will do nicely:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = ’John Doe’
john.dept = ’computer lab’
john.salary = 1000

A piece of Python code that expects a particular abstract data type can
often be passed a class that emulates the methods of that data type in-

87

stead. For instance, if you have a function that formats some data from a
file object, you can define a class with methods read() and readline()
that gets the data from a string buffer instead, and pass it as an argument.

Instance method objects have attributes, too: m.im self is the object of
which the method is an instance, and m.im func is the function object
corresponding to the method.

9.7.1 Exceptions as Derived Classes

As described earlier user-defined exceptions can be identified by classes.
Using this mechanism it is possible to create extensible hierarchies of
exceptions.

There are two valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a class
derived from it. The second form is a shorthand for:

raise instance.__class__, instance

A class in an except clause is compatible with an exception if it is the
same class or a base class thereof (but not the other way around — an
except clause listing a derived class is not compatible with a base class).
For example, the following code will print B, C, D in that order:

class B:
pass

class C(B):
pass

class D(C):
pass

for c in [B, C, D]:
try:

raise c()
except D:

print "D"
except C:

print "C"

88

except B:
print "B"

Note that if the except clauses were reversed (with ‘except B’ first), it
would have printed B, B, B — the first matching except clause is triggered.

When an error message is printed for an unhandled exception which is a
class, the class name is printed, then a colon and a space, and finally the
instance converted to a string using the built-in function str().

89

10 What Now?

Reading this tutorial has probably reinforced your interest in using Python
— you should be eager to apply Python to solve your real-world problems.
Now what should you do?

You should read, or at least page through, the Python Library Reference,
which gives complete (though terse) reference material about types, func-
tions, and modules that can save you a lot of time when writing Python
programs. The standard Python distribution includes a lot of code in both
C and Python; there are modules to read Unix mailboxes, retrieve docu-
ments via HTTP, generate random numbers, parse command-line options,
write CGI programs, compress data, and a lot more; skimming through
the Library Reference will give you an idea of what’s available.

The major Python Web site is http://www.python.org/; it contains
code, documentation, and pointers to Python-related pages around the
Web. This Web site is mirrored in various places around the world,
such as Europe, Japan, and Australia; a mirror may be faster than the
main site, depending on your geographical location. A more informal site
is http://starship.python.net/, which contains a bunch of Python-
related personal home pages; many people have downloadable software
there.

For Python-related questions and problem reports, you can post to
the newsgroup comp.lang.python, or send them to the mailing list at
python-list@python.org. The newsgroup and mailing list are gate-
wayed, so messages posted to one will automatically be forwarded to the
other. There are around 120 postings a day, asking (and answering) ques-
tions, suggesting new features, and announcing new modules.

Before posting, be sure to check the list of Frequently Asked Questions
(also called the FAQ), at http://www.python.org/doc/FAQ.html, or
look for it in the ‘Misc/’ directory of the Python source distribution. Mail-
ing list archives are available at http://www.python.org/pipermail/.
The FAQ answers many of the questions that come up again and again,
and may already contain the solution for your problem.

90

91

A Interactive Input Editing and

History Substitution

Some versions of the Python interpreter support editing of the current
input line and history substitution, similar to facilities found in the Korn
shell and the GNU Bash shell. This is implemented using the GNU Read-
line library, which supports Emacs-style and vi-style editing. This library
has its own documentation which I won’t duplicate here; however, the
basics are easily explained. The interactive editing and history described
here are optionally available in the Unix and CygWin versions of the
interpreter.

This chapter does not document the editing facilities of Mark Hammond’s
PythonWin package or the Tk-based environment, IDLE, distributed with
Python. The command-line history recall which operates within DOS
boxes on NT and some other DOS and Windows flavors is yet another
beast.

A.1 Line Editing

If supported, input line editing is active whenever the interpreter prints
a primary or secondary prompt. The current line can be edited using the
conventional Emacs control characters. The most important of these are:
C-A (Control-A) moves the cursor to the beginning of the line, C-E to the
end, C-B moves it one position to the left, C-F to the right. Backspace
erases the character to the left of the cursor, C-D the character to its
right. C-K kills (erases) the rest of the line to the right of the cursor, C-Y
yanks back the last killed string. C-underscore undoes the last change
you made; it can be repeated for cumulative effect.

A.2 History Substitution

History substitution works as follows. All non-empty input lines issued
are saved in a history buffer, and when a new prompt is given you are
positioned on a new line at the bottom of this buffer. C-P moves one line
up (back) in the history buffer, C-N moves one down. Any line in the
history buffer can be edited; an asterisk appears in front of the prompt to
mark a line as modified. Pressing the Return key passes the current line

92

to the interpreter. C-R starts an incremental reverse search; C-S starts a
forward search.

A.3 Key Bindings

The key bindings and some other parameters of the Readline library
can be customized by placing commands in an initialization file called
‘~/.inputrc’. Key bindings have the form

key-name: function-name

or

"string": function-name

and options can be set with

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character
instead of Readline’s default filename completion function. If you insist,
you can override this by putting

Tab: complete

in your ‘~/.inputrc’. (Of course, this makes it harder to type indented
continuation lines.)

93

Automatic completion of variable and module names is optionally avail-
able. To enable it in the interpreter’s interactive mode, add the following
to your startup file:1

import rlcompleter, readline
readline.parse_and_bind(’tab: complete’)

This binds the Tab key to the completion function, so hitting the Tab
key twice suggests completions; it looks at Python statement names, the
current local variables, and the available module names. For dotted ex-
pressions such as string.a, it will evaluate the expression up to the final
‘.’ and then suggest completions from the attributes of the resulting ob-
ject. Note that this may execute application-defined code if an object
with a getattr () method is part of the expression.

A more capable startup file might look like this example. Note that this
deletes the names it creates once they are no longer needed; this is done
since the startup file is executed in the same namespace as the interactive
commands, and removing the names avoids creating side effects in the
interactive environments. You may find it convenient to keep some of
the imported modules, such as os, which turn out to be needed in most
sessions with the interpreter.

Add auto-completion and a stored history file of
commands to your Python interactive interpreter.
Requires Python 2.0+, readline. Autocomplete is bound
to the Esc key by default (you can change it - see
readline docs).
#
Store the file in ~/.pystartup, and set an environment
variable to point to it, e.g. "export
PYTHONSTARTUP=/home/guido/.pystartup" in bash.
#
Note that PYTHONSTARTUP does *not* expand "~", so you
have to put in the full path to your home directory.

import atexit
import os
import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")

1Python will execute the contents of a file identified by the PYTHONSTARTUP environ-
ment variable when you start an interactive interpreter.

94

def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter
del save_history, historyPath

A.4 Commentary

This facility is an enormous step forward compared to earlier versions
of the interpreter; however, some wishes are left: It would be nice if the
proper indentation were suggested on continuation lines (the parser knows
if an indent token is required next). The completion mechanism might
use the interpreter’s symbol table. A command to check (or even suggest)
matching parentheses, quotes, etc., would also be useful.

95

B Floating Point Arithmetic: Issues

and Limitations

Floating-point numbers are represented in computer hardware as base 2
(binary) fractions. For example, the decimal fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values,
the only real difference being that the first is written in base 10 fractional
notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as
binary fractions. A consequence is that, in general, the decimal floating-
point numbers you enter are only approximated by the binary floating-
point numbers actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the
fraction 1/3. You can approximate that as a base 10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you’re willing to write down,
the result will never be exactly 1/3, but will be an increasingly better
approximation to 1/3.

In the same way, no matter how many base 2 digits you’re willing to use,
the decimal value 0.1 cannot be represented exactly as a base 2 fraction.
In base 2, 1/10 is the infinitely repeating fraction

96

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation. This is
why you see things like:

>>> 0.1
0.10000000000000001

On most machines today, that is what you’ll see if you enter 0.1 at a
Python prompt. You may not, though, because the number of bits used
by the hardware to store floating-point values can vary across machines,
and Python only prints a decimal approximation to the true decimal value
of the binary approximation stored by the machine. On most machines, if
Python were to print the true decimal value of the binary approximation
stored for 0.1, it would have to display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

instead! The Python prompt (implicitly) uses the builtin repr() function
to obtain a string version of everything it displays. For floats, repr(float)
rounds the true decimal value to 17 significant digits, giving

0.10000000000000001

repr(float) produces 17 significant digits because it turns out that’s
enough (on most machines) so that eval(repr(x)) == x exactly for all
finite floats x , but rounding to 16 digits is not enough to make that true.

Note that this is in the very nature of binary floating-point: this is not a
bug in Python, it is not a bug in your code either, and you’ll see the same
kind of thing in all languages that support your hardware’s floating-point
arithmetic (although some languages may not display the difference by
default, or in all output modes).

Python’s builtin str() function produces only 12 significant digits, and
you may wish to use that instead. It’s unusual for eval(str(x)) to
reproduce x , but the output may be more pleasant to look at:

>>> print str(0.1)
0.1

It’s important to realize that this is, in a real sense, an illusion: the value
in the machine is not exactly 1/10, you’re simply rounding the display of
the true machine value.

97

Other surprises follow from this one. For example, after seeing

>>> 0.1
0.10000000000000001

you may be tempted to use the round() function to chop it back to the
single digit you expect. But that makes no difference:

>>> round(0.1, 1)
0.10000000000000001

The problem is that the binary floating-point value stored for “0.1” was
already the best possible binary approximation to 1/10, so trying to round
it again can’t make it better: it was already as good as it gets.

Another consequence is that since 0.1 is not exactly 1/10, adding 0.1 to
itself 10 times may not yield exactly 1.0, either:

>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.99999999999999989

Binary floating-point arithmetic holds many surprises like this. The prob-
lem with “0.1” is explained in precise detail below, in the “Representation
Error” section. Still, don’t be unduly wary of floating-point! The errors
in Python float operations are inherited from the floating-point hardware,
and on most machines are on the order of no more than 1 part in 253 per
operation. That’s more than adequate for most tasks, but you do need
to keep in mind that it’s not decimal arithmetic, and that every float
operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point
arithmetic you’ll see the result you expect in the end if you simply round
the display of your final results to the number of decimal digits you expect.
str() usually suffices, and for finer control see the discussion of Pythons’s
% format operator: the %g, %f and %e format codes supply flexible and
easy ways to round float results for display.

98

B.1 Representation Error

This section explains the “0.1” example in detail, and shows how you can
perform an exact analysis of cases like this yourself. Basic familiarity with
binary floating-point representation is assumed.

Representation error refers to the fact that most decimal fractions cannot
be represented exactly as binary (base 2) fractions. This is the chief
reason why Python (or Perl, C, C++, Java, Fortran, and many others)
often won’t display the exact decimal number you expect:

>>> 0.1
0.10000000000000001

Why is that? 1/10 is not exactly representable as a binary fraction. Al-
most all machines today use IEEE-754 floating point arithmetic, and al-
most all platforms map Python floats to IEEE-754 double precision. IEEE
754 double precision numbers contain 53 bits of precision, so on input the
computer strives to convert 0.1 to the closest fraction it can of the form
J/2N where J is an integer containing exactly 53 bits. Rewriting

1/10 ≈ J/2N

as
J ≈ 2N/10

and recalling that J has exactly 53 bits (i.e. 252 ≤ J < 253), the best
value for N is 56:

>>> 2L**52
4503599627370496L
>>> 2L**53
9007199254740992L
>>> 2L**56/10
7205759403792793L

That is, 56 is the only value for N that leaves J with exactly 53 bits. The
best possible value for J is then that quotient rounded:

>>> q, r = divmod(2L**56, 10)
>>> r
6L

Since the remainder is more than half of 10, the best approximation is
obtained by rounding up:

99

>>> q+1
7205759403792794L

Therefore the best possible approximation to 1/10 in double precision is
that over 256, or

7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than
1/10; if we had not rounded up, the quotient would have been a little bit
smaller than 1/10. But in no case can it be exactly 1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given
above, the best double approximation it can get:

>>> .1 * 2L**56
7205759403792794.0

If we multiply that fraction by 1030, we can see the (truncated) value of
its 30 most significant decimal digits:

>>> 7205759403792794L * 10L**30 / 2L**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately
equal to the decimal value 0.100000000000000005551115123125. Round-
ing that to 17 significant digits gives the 0.10000000000000001 that Py-
thon displays (well, will display on any IEEE conforming platform that
does best-possible input and output conversions in its C library — yours
may not!).

100

101

C History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI) in the Netherlands as a successor of a
language called ABC. Guido remains Python’s principal author, although
it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for Na-
tional Research Initiatives (CNRI) in Reston, Virginia where he released
several versions of the software.

In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team. In October of the
same year, the PythonLabs team moved to Zope Corporation (then Digital
Creations). In 2001, the Python Software Foundation (PSF) was formed,
a non-profit organization created specifically to own Python-related Intel-
lectual Property. Zope Corporation is a sponsoring member of the PSF.

The license agreement for the current version of Python is given in the
next section, along with the licenses used by previous versions. The table
below summarizes the release history:

Release Derived
from

Year Owner GPL
compatible?

0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes

Note: GPL-compatible means that it is possible to combine Python with
other software that is released under the GNU General Public License.
Thanks to the many outside volunteers who have worked under Guido’s
direction to make these releases possible.

102

C.2 Terms and conditions
PSF LICENSE AGREEMENT FOR PYTHON 2.2

1. This LICENSE AGREEMENT is between the Python Software Founda-
tion (“PSF”), and the Individual or Organization (“Licensee”) accessing
and otherwise using Python 2.2.2 software in source or binary form and
its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF
hereby grants Licensee a nonexclusive, royalty-free, world-wide license to
reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.2.2 alone or in any
derivative version, provided, however, that PSF’s License Agreement and
PSF’s notice of copyright, i.e., “Copyright c© 2001, 2002 Python Software
Foundation; All Rights Reserved” are retained in Python 2.2.2 alone or
in any derivative version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incor-
porates Python 2.2.2 or any part thereof, and wants to make the derivative
work available to others as provided herein, then Licensee hereby agrees
to include in any such work a brief summary of the changes made to
Python 2.2.2.

4. PSF is making Python 2.2.2 available to Licensee on an “AS IS” ba-
sis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EX-
PRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITA-
TION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION
OR WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.2.2
WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANYOTHER USERS
OF PYTHON 2.2.2 FOR ANY INCIDENTAL, SPECIAL, OR CONSE-
QUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.2.2, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF.

6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relation-
ship of agency, partnership, or joint venture between PSF and Licensee.
This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.2.2, Licensee agrees to
be bound by the terms and conditions of this License Agreement.

103

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE

AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an
office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the Individual or
Organization (“Licensee”) accessing and otherwise using this software in source
or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement,
BeOpen hereby grants Licensee a non-exclusive, royalty-free, world-wide license
to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS
OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN
MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PUR-
POSE OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE
ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS
OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSE-
QUENTIAL DAMAGES OR LOSS AS A RESULT OF USING, MODIFYING
OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by
the law of the State of California, excluding conflict of law provisions. Nothing
in this License Agreement shall be deemed to create any relationship of agency,
partnership, or joint venture between BeOpen and Licensee. This License Agree-
ment does not grant permission to use BeOpen trademarks or trade names in
a trademark sense to endorse or promote products or services of Licensee, or
any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permis-
sions granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

104

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Re-
search Initiatives, having an office at 1895 Preston White Drive, Reston, VA
20191 (“CNRI”), and the Individual or Organization (“Licensee”) accessing and
otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works, dis-
tribute, and otherwise use Python 1.6.1 alone or in any derivative version, pro-
vided, however, that CNRI’s License Agreement and CNRI’s notice of copyright,
i.e., “Copyright c© 1995-2001 Corporation for National Research Initiatives; All
Rights Reserved” are retained in Python 1.6.1 alone or in any derivative ver-
sion prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1
is made available subject to the terms and conditions in CNRI’s License Agree-
ment. This Agreement together with Python 1.6.1 may be located on the In-
ternet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the
Internet using the following URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorpo-
rates Python 1.6.1 or any part thereof, and wants to make the derivative work
available to others as provided herein, then Licensee hereby agrees to include in
any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IM-
PLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES
NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF PYTHON 1.6.1 WILL NOT INFRINGE ANY THIRD
PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF
PYTHON 1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL
DAMAGES OR LOSS AS A RESULT OF MODIFYING, DISTRIBUTING, OR
OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of
its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property
law of the United States, including without limitation the federal copyright law,
and, to the extent such U.S. federal law does not apply, by the law of the Com-
monwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwith-
standing the foregoing, with regard to derivative works based on Python 1.6.1
that incorporate non-separable material that was previously distributed under
the GNU General Public License (GPL), the law of the Commonwealth of Vir-
ginia shall govern this License Agreement only as to issues arising under or with
respect to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this
License Agreement shall be deemed to create any relationship of agency, part-
nership, or joint venture between CNRI and Licensee. This License Agreement
does not grant permission to use CNRI trademarks or trade name in a trade-
mark sense to endorse or promote products or services of Licensee, or any third
party.

105

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing
or otherwise using Python 1.6.1, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR

PYTHON 0.9.0 THROUGH 1.2

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Nether-
lands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of
the software without specific, written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANT-
IES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL STICHTING
MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULT-
ING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFT-
WARE.

106

Index

* and **, formal parameters, 32
-O, optimization, 52
.inputrc, 92
.py file extension, 49
.pyc, compiled files, 51
.pyo files, 52
.pythonrc, 10
=, assignment, 12
==, equality, 23
#, comment character, 11
, last computed value, 13
init , 80

absolute value
of complex number, 13

abstract data types, 82
accessing the elements of a list,

20
adding strings, 16
aliasing

of objects, 75
and, boolean operator, 46
anonymous functions, see lambda

forms
append

introduction to, 30
append() (list method), 37
append mode

opening files, 62
arbitrary argument lists, 33
arguments

arbitrary lists, 33
default, 30
exceptions, 70
keyword, 31

positional, 32
variable numbers of, 30

argv, 8
arithmetic

basic, 11
IEEE floating point, 95

arithmetic progression, 26
ASCII encoding, 19
assignment

disallowed in expression, 46
examples of, 12
multiple, 12
uses innermost scope, 78

associative arrays, see dictionar-
ies

attribute, 76
data, 80
read-only or writable, 77
references, 79

automatic completion, 92
automatic concatenation of strings,

16

base class, 84
for exceptions, 72, 87

binary arithmetic, 95
binary-mode

files, 63
boolean operators, 46
break, 27
builtin

builtin , 77
functions and variables, 54

byte-compiled Python files, 51

107

108

calculator, using Python as a, 11
call

by object reference, 28
by reference, 28
by value, 28

case statement
equivalent in Python, 25

center justification of strings, 61
CGI

libraries for, 89
class, 75

attribute references, 79
class object, 79
definition syntax, 78
inheritance, 84
instantiation, 79
private identifiers, 85
used as exception, 72

clean-up actions
in exceptions, 73

closing a file, 64
CNRI, 101
command-line

automatic completion, 92
history, 91
interactive editing, 7, 91

command-line arguments
invoking Python with, 7
libraries for option parsing,

89
reading from Python, 8

comment character (#), 11
comparison

objects, 47
sequences, 46

comparison operators
for objects, 45
for sequences, 45
numeric, 23

compiled Python files, 51
optimization, 52

completion
command-line, 92

complex numbers, 12
compound data types

dictionaries, 44
lists, 20
sequences, 42
tuples, 42

comprehensions, 41
compression

libraries for, 89
concatenation of strings, 16
constructor, see init
container types, see compound data

types
continuation lines, 8
continuation of multiline strings,

14
continue, 27
control flow, 25

break, 27
continue, 27
elif, 25
else, 25
for, 25
if, 25
pass, 28
return, 30
while, 23

Control-C, 9
conversion functions

numeric, 13
count() (list method), 37
CWI, 101

data attributes, 80
data hiding, 82
data structures, 37
def, 28
default

arguments, 30
slice arguments for strings,

17
defining functions, 28
degenerate slice indices, 17
del, 42

109

deleting an item from a list, 42
derived class, 84

for exceptions, 87
dict(), 45
dictionaries, 44
dir(), 53
displaying output, 59
division

floating-point, 12
integer, 11

documentation strings
docstrings, 28, 34

dotted module names, 55
double quotes, 14
dynamic scope, 77

editing
interactive, 91

elements of a list
accessing, 20

elif statement, 25
else, 27

in exception handlers, 70
else statement, 25
embedded newlines

in strings, 14
empty tuples

initializing, 43
encodings

Unicode, 19
end of file character, 7
environment variables

PATH, 9, 51
PYTHONPATH, 51, 53
PYTHONSTARTUP, 9, 93

error, 67
during execution, exception,

67
handling, stack trace, 9
rounding, 95

evaluation of lambda forms, 34
except statement, 69
exception, 67

argument of, 70

classes, 72
clean-up actions, 73
else, 70
finally, 73
hierarchy, 87
multiple, 69
raising, 71
unhandled, 69
user-defined, 71

exit status of Python, 7
exiting Python, 7
extend() (list method), 37
extension, see file extension

false (0), 23
file, 62

closing, 64
isatty(), 65
object methods, 63
position in, 64
reading lines from, 63
seeking in, 64
storing objects in, 65
truncate(), 65

file extension
.py, 49
.pyc, compiled files, 51

filter(), 39
finally

in exception handlers, 73
first-in first-out (queue), 39
floating-point numbers

display of, 97
inaccuracies in, 95

flow
control of, 25

for statement, 25
formal parameters, 32
format

specifiers, 59
string, 59, 62

forms
lambda, 34

frequently asked questions, 89

110

function object
different from method object,

81
function parameters, see arguments
functional programming, 39
functions

defining, 28
vs procedures, 29

global variables
introduction to, 28

GNU Readline, 7
greater than, 23
greater than or equal to, 23
Guido van Rossum, 101

handling exceptions, 68
has key(), 44
hashes, see dictionaries
history substitution, 91
HTTP

libraries for, 89

IEEE double-precision, 98
if statement, 25
imaginary number, j, 12
imaginary part

of complex number, 13
immutability

and iteration, 26
of strings, 16

import, 49
ImportError exception, 57
importing from packages, 57
importing functions, 49
in, 45
indentation, 22
index

list, 20
string, 16

index() (list method), 37
inheritance, 84

multiple, 85
init

init , 80
init files, 56
inner product, see reduce
innermost scope

used by assignments, 78
input

reading, 59
inputrc, 92
insert() (list method), 37
installation

typical location of Python, 7
instantiation, 79
integer division, 11
interactive editing, 7, 91
interactive mode, 7, 8

entering after a script, 8
interactive startup files, 9
internationalization

Unicode strings, 19
interrupt character, 9
intra-package references, 58
introduction to

numbers, 11
invariants

slice notation, 17
invocation

of methods, 81
invoking Python

with command-line arguments,
7

is
object comparison, 45

is not
object comparison, 45

isatty()
on files, 65

items(), 45
iteration

for, 25
unsafe for mutable sequences,

26

j, imaginary number, 12
joining strings, 16

111

justification of strings, 61

key
of dictionary, 44

keybindings, 92
KeyboardInterrupt, 9
keys(), 44
keyword arguments, 31

lambda forms, 34
last computed value, , 13
last-in first-out (stack), 38
left justification of strings, 61
length

list, 21
string, 18

less than, 23
less than or equal to, 23
lexical scope, 78
lexicographical ordering, 46
license

of Python, 101
line

continuing, 8
editing, 91
reading a single, 63

LISP features
lambda forms, 34

list, 20
comprehensions, 41
index, 20
length of, 21
methods, 37
mutability, 21
nested, 21
slice, 20
used as queues, 39
used as stacks, 38

local namespace, 77
location of Python executable, 7
loop, 45

for, 25
indentation of body, 22

Macintosh
problems with binary files, 63
problems with mixed case file-

names, 57
magnitude

of complex number, 13
Mail

libraries for, 89
map(), 39
member functions, see methods
method, 81

invocation, 81
objects, 81
receives object as first argu-

ment, 82
resolution in multiple inher-

itance, 85
virtual, 75

modules, 49
finding the name of, 49
importing other modules, 50
organized into packages, 55
search path, 51
standard, 52
symbol tables, 50
third-party, 3

multiline statements, 8
multiline strings, 14
multiple assignment, 12
multiple exceptions

handling, 69
multiple inheritance, 85
multiple lines

reading from a file, 64
mutability

and iteration, 26
lists, 21

name conflicts
avoiding by convention, 82

name mangling
class private identifiers, 85

named arguments
in format string, 62

112

namespace, 76
for objects, 76
local, 77

negative indices
strings, 17

nested lists, 21
newlines

embedded in strings, 14
in files, 63

None, 29
not in, 45
numbers

complex, 12
conversion functions, 13
introduction to, 11
zero padding on output, 61

numerical errors, 95

object
attribute references, 79
class object, 79
comparison, 47
equivalence, 45
instantiation, 79
method objects, 81
passed as first argument to

method, 82
persistent, 65
terminology, 75

one, as true, 23
opening files, 62
operators

numeric comparison, 23
optimization, 52
or, boolean operator, 46
ordering

lexicographical, 46
out of range index

strings, 18
output

displaying, 59

packages, 55
import *, 57

references to other packages,
58

packing
of sequences, 43

pairing elements
with zip(), 45

parameters, see arguments
formal, 32

parsing errors, 67
pass, 28
PATH, 9, 51
path

for Python executable, 7
searching for modules, 51

persistence, 65
pickling objects, 65
pop() (list method), 37
position in file, 64
positional arguments, 32
precedence

of boolean operators, 46
precision

of floating point numbers, 98
primary prompt, 8
print

introduction to, 23
without newline, 23

printf, 59
private

symbol table in modules, 50
variables, 85

procedures, 29
prompts

primary and secondary, 8
pyc, compiled files, 51
pyo files, 52
Python

compared with other languages,
5, 75

compiled files, 51
differences from C, 46
license, 102
location of executable, 7

113

mailing lists and newsgroups,
89

origin of name, 6
web site, 89

Python Software Foundation, 101
Python, history of, 101
PYTHONPATH, 51, 53
pythonrc files, 10
PYTHONSTARTUP, 9, 93

questions
frequently asked, 89

queues
using lists as, 39

quitting Python, 7
quotes

single and double, 14
triple, 15

raise
exceptions, 71

random numbers
libraries for, 89

range, 26
raw strings, 15

unicode, 19
raw unicode encoding, 19
read-only

attributes, 77
opening files, 62

reading
input, 59
scripts from standard input,

7
single lines, 63

Readline, 7
readline (built-in module), 93
readlines, 64
real part

of complex number, 13
reduce, 40
reduce(), 39
references

attribute, 79

to other packages, 58
referencing by name

in format string, 62
release history

of Python, 101
remove() (list method), 37
removing a specific item from a

list, 42
repetition of strings, 16
repr(), 59

for floating point numbers,
96

representation error, 98
return statement, 30
return values

None, 29
reverse() (list method), 38
right justification of strings, 61
rlcompleter (standard module),

93
rounding error, 95
runtime errors, see exceptions

scope, 76, 77
scripts

introduction to, 49
making executable, 9
reading from standard input,

7
search path

modules, 51
secondary prompt, 8
seeking in file, 64
self, 82
sequences, 42

comparison, 46
unpacking, 43

serialization
of objects, 65

set operations, 45
short-circuiting

boolean operators, 46
SIGINT, 9
single element tuples

114

initializing, 43
single line, reading, 63
single quotes, 14
size

of a file, 63
slice notation

for strings, 16
slices

assignment to (lists), 21
defaults for strings, 17
degenerate indices, 17
invariants, 17
list, 20
negative indices, 17
out of range index, 18

sort() (list method), 38
sort method

example of, 33
sprintf, 59
stacks

using lists as, 38
standard input

reading script from, 7
standard modules, 52
startup files, 9, 93
storage

of objects, 65
str(), 59

for floating point numbers,
96

on Unicode string, 19
string (standard module), 59
strings

concatenation, 16
documentation, 28, 34
immutability, 16
immutable, 16
indexing and subscripts, 16
introduction, 14
left, right and center justifi-

cation of, 61
length, 18
raw, 15

repetition, 16
triple quoted, 15
Unicode, 19
zero padding, 61

structs
equivalent in Python, 86

subscript
strings, 16

substitution
history, 91

switch statement
equivalent in Python, 25

symbol table, 28
in modules, 50

syntax errors, 67
sys (standard module), 53
sys.argv, 8
sys.ps1, primary prompt, 9
sys.ps2, secondary prompt, 9

tabs
in documentation strings, 35

text-mode
files, 63

third-party modules, 3
this, see self
thowing an exception, see raise
triple quotes, 15
true (1), 23
truncate()

on files, 65
try statement, 69
tuple, 42

immutability, 43
initializing with zero or one

elements, 43
packing, 43

typical installation path of Python,
7

undef, see None, see del
unhandled exceptions, 69
Unicode, 19
unicode() (built-in function), 19

115

unpacking
of sequences, 43

unpickling objects, 65
user-defined exceptions, 71
UTF-8 encoding, 19

value
from dictionary, 44

van Rossum, Guido, 101
variable numbers of arguments,

30
variables

assignment, 12
private, 85

virtual member functions, 75
void, see None

website, www.python.org, 3
while statement, 23
Windows

problems with binary files, 63
problems with mixed case file-

names, 57
writable

attributes, 77
write(), 59

writing to a file, 64
write-only

opening files, 62

zero length tuples
initializing, 43

zero padding
with zfill, 61

zero, as false, 23
zip(), 45

