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ABSTRACT

This chapter provides a concise introduction to Reinforcement Learning (RL) from a machine learning
perspective. It provides the required background to understand the chapters related to RL in this book.

1t makes no assumption on previous knowledge in this research area and includes short descriptions of
some of the latest trends, which are normally excluded from other introductions or overviews on RL.

The chapter provides more emphasis on the general conceptual framework and ideas of RL rather than
on presenting a rigorous mathematical discussion that may require a great deal of effort by the reader.

The first section provides a general introduction to the area. The following section describes the most
common solution techniques. In the third section, some of the most recent techniques proposed to deal
with large search spaces are described. Finally, the last section provides some final remarks and current
research challenges in RL.

INTRODUCTION

Reinforcement Learning (RL) has become one of
the most active research areas in Machine Learn-
ing'. In general terms, its main objective is to learn
how to map states to actions while maximizing a
reward signal. In reinforcement learning an au-
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tonomous agent follows a trial-and-error process
to learn the optimal action to perform in each state
in order to reach its goals. The agent chooses an
action in each state, which may take the agent to
a new state, and receives a reward. By repeating
this process, the agent eventually learns which is
the best action to perform to obtain the maximum
expected accumulated reward. In general, in each
iteration (see Figure 1), the agent perceives its cur-
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Figure 1. Reinforcement learning process
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rent state (s€S), selects an action (a€A4), possibly
changing its state, and receives a reward signal
(r€R). In this process, the agent needs to obtain
useful experiences regarding states, actions, state
transitions and rewards to act optimally and the
evaluation of the system occurs concurrently with
the learning process.

This approach appeals to many researchers
because if they want to teach an agent how to
perform a task, instead of programming it, which
may be a difficult and time-consuming process,
they only need, in principle, to let the agent learn
how to do it by interacting with the environment.

Toillustrate this learning process, suppose that
we want a mobile robot to learn how to reach a
particular destination in an indoor environment.
We can characterize this navigation problem as
a RL problem. The states can be defined in terms
of the information provided by the sensors of the
robot, for instance, if there is an obstacle in front
of the robot or not. We can have a finite set of ac-
tions per state, such as go-forward, go-backward,
go-left and go-right, and the goal may be to go to
a particular place (see Figure 2). Each time the
robot executes an action there is some uncertainty
on the actual next state as the wheels of the robot
often slip on the ground or one wheel may turn
faster than another, leaving the robot in a possibly
different expected state. Upon reaching a goal
state, the robot receives a positive reward and
similarly receives negative regards in undesirable
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states. The robot must choose its actions in order
to increase in the long turn the total accumulated
rewards. By following a trial and error process the
robot learns after several trials which is the best
action to perform on each state to reach the des-
tination point and obtain the maximum expected
accumulated reward.

Deciding which action to take in each state is
asequential decision process. In general, we have
anon-deterministic environment (the same action
in the same state can produce different results).
However, it is assumed to be stationary (i.e., the
transition probabilities do not change over time).
This sequential decision process can be character-
ized by a Markov Decision Process or MDP. As
described in Chapter 3, an MDP, M=<S,4,P,R>,
can be described as follows:

. A finite set of states (S)

. A finite set of actions (4) per state (s)

e Areward function R: Sx A — R

. A transition function P that represent the
probability of reaching state s’€S given an
action a€4 taken at state s€S:P(s’|s,a).

In many settings, the agent receives a constant
reward until reaching a terminal state. For instance,
the robot moves through the environment and it
is until it crashes or reaches a goal state that it
receives a distinctive reward. This introduces
the credit-assignment problem, i.e., if the robot
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Figure 2. Reinforcement Learning process with
a mobile robot where the robot may have differ-
ent possible actions per state and the goal is to
learn how to go to a particular destination while
receiving the maximum total expected reward

eventually reaches a good (bad) state, we would
like to know which actions are responsible for
that. Two distinctive features of RL are that: it
follows a trial and error process, which means
that it should follow an exploration strategy, and
that there is a delayed reward, which introduces
this credit-assignment problem. We will first
introduce different reward models, then talk
about exploration-exploitation strategies and
then describe the concepts of value functions and
policies that are needed to understand how the RL
algorithms work.

Reward Models

Given a state s, € S at some time 7 and an action
a, € A, the agent receives a reward r, and
moves to the next state s . The idea in RL is not
to maximize the immediate rewards but the long
term accumulated reward. We can denote the
total received rewards after certain time i as:

Rf, =Tyt T T T

If there is a terminal state, it is said that we
have episodic tasks, otherwise these tasks are
considered continuous. Inthis last case, we cannot
impose an upper limitin the accumulated rewards,
so an alternative way is to geometrically reduce
the contributions of the rewards as they become
more distant: <<:

o0
o 2 _ k
Ro=r 4+ +7 s+ = 7
k=0

where y is known as the discount rate and it is
between: 0<y < 1.

Since we have a probabilistic transition func-
tion, what we want is to maximize the expected
accumulated reward, and in general, we can have
the following models:

Finite Horizon: the agent tries to optimize the
expected accumulated reward on the next 4 steps,
without considering what happens afterward:

where 7, refers to the reward received after 7 steps
in the future.

This model can be used in two forms: (i)
stationary policy: where in the first state it takes
h next steps, in the next, it takes #—1 steps, etc.,
until the end. The main problem is that it is not
always possible to know how many steps to take.
(1) Receding-horizon control: it always takes the
next A steps.

Infinite Horizon: the rewards received by the
agent are geometrically reduced according to a
discount factor y (0<y < 1):

B> 'n)

Average Reward: the idea is to optimize in the
long run the average reward:
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One problem with this optimization criterion
is that it cannot distinguish between policies that
receive a big reward at the beginning or at the
end of the episode.

Themost widely used model is infinite horizon
and it is the one we will assume from now on.

Exploration and Exploitation

One important aspect in RL is that it must ex-
plore the environment to gather information in
order to build a policy. We do not want to leave
unexplored areas but we also want to use the ac-
cumulated knowledge to make better decisions. In
this sense, there is a balance between exploration
and exploitation. To gain more rewards an agent
can follow certain actions that are known to pro-
duce high immediate rewards, however, in order
to know which is the best action it has to explore
the environment. In many cases the exploration
strategy depends on the time that the agent has
interacted with the environment.

Some common strategies to select actions and
explore the environment are:

. e—greedy: where most of the time the se-
lected action is the one with the largest es-
timated accumulated reward but with prob-
ability € an action is randomly selected.

Softmax: where the probability of selecting
an action depends on its estimated accumulated
reward. The most common being the Boltzmann
or Gibbs distribution, which selects an action on
state s with probability:

eQea)/7

z": Q)T

b=1
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where 7 is a positive parameter (temperature), »
is the number of possible actions at state s, and Q
is a value function that represents the estimated
accumulated rewards and which is described in
the following section.

Value Functions and Policies

In general the actions determine not only the im-
mediate reward, but also in a probabilistic way,
the next state. In RL the transition model is as-
sumed to be Markovian, so the state transitions do
not depend on previous states, and the transition
probabilities are given by:

P(s" | s,a) = P(s

11 :S/|St =5 =a)

The expected reward value is:

R(s"| s,a) = E{r, . |s =sa =a,s, = s’}

The total expected reward depends on the
current state and on the selection of actions in
future states. The selection of actions per state is
given by a policy. More formally, a policy 7 is
a mapping of each state s€ S and action a€ A(s)
to the probability n(s,a) of taking the action a in
state s.

One of the goals in RL is to estimate how good
itis to be in a state (or being in a state and perform
an action). The notion of “goodness” is defined in
terms of future rewards or expected accumulated
rewards which are represented as value functions.
The value function of a state s, denoted by V*(s),
represents the total expected accumulated reward
that the agent can receive starting at state s and
following policy @. Similarly, the value function of
a state s taking action a, is denoted as O"(s,a) and
represents the total expected accumulated reward
that the agent can receive starting at state s, taking
action @ and following a policy m. The idea is to
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find the policy that produces the maximum value
functions rather than the maximum immediate
rewards. The rewards are given by the environ-
ment, but the value functions need to be estimated
(learned) with experience. Reinforcement learning
learns value functions while interacting with the
environment.

The value function for a state s using an infinite
discounted reward model can be expressed as:

Vﬂ(s) = Eﬂ{Rt | 8 = 5} = Ew {Z 7k7ﬂt+k+1 | S = 3}
k=0

Likewise, the value function of a state s with
actionaand policy m(Q"(s,a)) can be expressed as:

Q"(s,a) = E {R, |s, = s,a, = a}

»

o0
— }: k — —
Em-{ Y Tk |8t =8q a}

k=o

If we expand the expression for V7(s):

Vi(s)=E. (R, |s, =)
= EW(ZW"@.A t1 | S = 5)
k=0
=E, (T‘H»l + ’YZ 'Vkrtfuz I 8 = s)
k=0

= Y (s, @) Pl | ,0)| R($' | 5.0) + 1B, (301 e |5, = 9)
s k=0

a

=Y m(s.a)3 S Pls' | 5,0) [R(s' | 5,0) + 4V (5)]

a

(M

where 7(s,a) is the probability of taking action s
in state s under policy 7.

We can similarly derive an equivalent expres-
sion for O"(s,a):

Q(5,0) = 3P [ 5,0)[RE | 5.0) + V7 ()]
@

The last two equations form the basis of the
RL algorithms as value functions are normally

updated in terms of the immediate rewards and
value functions of the following state.

If we choose different policies we obtain
different value functions. For instance, a mobile
robot may choose a right-hand wall-following
policy from which particular value functions
are obtained for particular mazes. A left-hand
wall-following policy produces different value
functions. In general, given a particular policy
we can evaluate the associated value functions
for each state or state-action pair.

In practice, we want to produce the best poli-
cies, i.e., those that produce the largest expected
accumulated rewards. A policy = is defined to be
better than or equal to a policy =’ if its expected
return is greater or equal to that of 7’ for all states.

m>7 if V*(s)>V"(s) forall s €S

There is always at least one policy that is bet-
ter than or equal to all other policies, i.e., an op-
timal policy, 7 . The optimal policy shares the
optimal state value function V" and the optimal
state-action value function Q and can be ex-
pressed as:

V'(s) = max V" (s) and Q (s,a) = maz_Q"(s,a)

Considering Eqgs. 1 and 2, the optimal value
functions can be expressed recursively with the
Bellman optimality equations as:

Vi(s) = ma:caZ:P(s/ | s,a0)[R(s" | s,a) + YV (s")]

Similarly, for Q values:

Q(s,0) = Z P(s'| s,a)[R(s" | 5,a) + 7V (s")]
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Algorithm 1. TD(0) algorithm
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and 1 to the policy to evaluate

episode do
by nm for s
observe the reward r and the next state

1: Initialize V(s) arbitrarily

2: for each episode do

3: Initialize s

4: repeat

5: for each step in the

6: a < action given

7 Perform action a;

s’

8: V(s)—V(s)+aofr+~V(s") = V(s)]
9: s s'

10: end for

11: untils is a terminal state
12: end for

or

Q' (s,a) = ZP(S/ |'s,a)[R(s" | s,a) + ymax ,Q (s',a’)]

So the obvious question now is: how can we
learn such policies? In the next section we review
some common techniques.

SOLUTION TECHNIQUES

There are tree principal ways of solving MDPs: (1)
Dynamic Programming, (ii) Monte Carlo, and (iii)
Temporal Differences or Reinforcement Learning.
Dynamic Programming methods, based on policy
and value iteration are clearly described in Chapter
3. The main idea behind Monte Carlo methods
is to simulate experiences, collect statistics and
return the averages of the accumulated rewards
obtained from the simulated experiences for each
state or state-action pair. In this chapter we will
concentrate only on RL algorithms.

The idea of the RL techniques is to update the
value functions with the next step using the error or
difference between successive predictions. Their
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main advantage is that they represent incremental
algorithms that are easy to compute.

The simplest method TD(0) updates V(s ) as
follows:

V(s,) = V(s,)+alr, +1V(s,,) = V(s,)]

The TD(0) algorithm is described in Algorithm
1. In general, TD methods update the existing
value function using the immediate reward and
the estimated value function of the next state. In
this case the target is based on the immediate next
step information (» + yV(s’)) which is compared
with the actual estimate (¥(s)), producing a 7D
error which is used to update the current value
function. Updating based on existing estimates is
also known as bootstrapping.

RL can be used for control problems, where
we want to learn a value function based on state-
action pairs. As previously mentioned, there is a
trade-off between exploration and exploitation
and the approaches fall into two categories: on-
policy and off-policy strategies. An on-policy
approach learns the value of the policy thatisused
to make the decisions and update value functions
based strictly on experience. An off-policy
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Algorithm 2. SARSA algorithm

Initialize Q (s, a) arbitrarily
for each episode do

Initialize s

Select an a from s using the policy given by O (e.g., €& -greedy)

repeat

for each step in episode do

Perform action a,

Choose a’ and s’

observe r, s’

using the policy derived from Q

Q(s,a) — Qs,a) + alr +7Q(s',a") — Q(s,a)]

s+ s'sa+—a'
end for
until s is a terminal state

end for

approach learns the value of a policy other that
the one used to make the decisions, it can update
the estimated value functions using hypothetical
actions, which may not have actually been tried.
We will first review an on-policy strategy (SAR-
SA) and then an off-policy strategy (Q-learning).

In SARSA, we update value functions consid-
ering an action as follows:

Q(s,.a,) — Q(s,,a,)
+ame+7Q@HnaHJ_'Q@w%ﬂ

The algorithm is almost the same as TD(0)
and is described in Algorithm 2, however, in this
case we are continuously estimating the O values
for a particular policy m, but at the same time we
are changing the policy m in a greedy approach
considering the Q values. It can be proved that
this strategy converges to the optimal policy and
action-value function as long as we visit all the
state-action pairs an infinite number of times.

One of the most important developments in
Reinforcement Learning was an off-policy
algorithm known as Q-learning. The main idea
is to update the value functions as follows
(Watkins, 1989):

Qs;50,) — Qs a,)
+aMHf+7mm%HQ@HU%H)_Q@w%H

The algorithm is described in Algorithm 3 and
it follows an off-policy strategy which means
that this algorithm approximates the optimal
action-value function independently of the policy
being followed.

Another different RL approaches are the Actor-
Critic methods. In essence, these are TD methods
that have two separate memory structures, one of
them is used to represent the policy an the other
one is used to represent the value function. In this
kind of methods the policy structure is known as
the actor, because its goal is to select actions, and
the estimated value function is known as the
critic; the critic qualifies the actions made by the
actor. In Actor-Critic methods learning is always
on-policy since the critic must learn about and
qualify the policy currently followed by the actor.
The evaluation or critique takes the form of a TD
error. This (usually scalar) signal is the only out-
put of the critic and its work is to model the
learning in both the actor and the critic. The main
idea in Actor-Critic methods is to use the TD
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Algorithm 3. Q-learning algorithm

Initialize Q (s, a) arbitrarily

for each episode do

An Introduction to Reinforcement Learning

Initialize sRepeatfor each step in episode do

Select an a from s using the policy given by Q0 (e.g., £ —greedy)

Perform action a,

observe r, §'

Q(s,a) — Q(s,a) + ofr + ymax, Q(s',a") — Q(s,a)]

s s

end for
until s is a terminal state.

end for

error (r+V(s’)-V(s)) to change the policy which
is responsible for choosing the actions. If the TD
error is positive then the tendency to select the
correct action is increased, otherwise it is de-
creased, this tendency is normally changed by
increasing (or decreasing) its probability of being
selected.

SOME RECENT DEVELOPMENTS

In order to obtain an adequate policy, traditional
RL techniques need to visit all the states (or state-
action pairs) several times. This, however, is only
possible in very restricted domains. With large
state and action spaces traditional RL techniques
require large computational resources and long
convergence times.

Since the number of possible states grows
exponentially in the number of features (curse of
dimensionality (Bellman, 1957)), researchers have
proposed different approaches to tackle this prob-
lem. Some of the most common approaches are:
(i) update several value functions at the same time,
(i1) approximate value functions with continuous
functions, (iii) learn and use a model to generate
new experiences, (iv) employ abstractions and/or
hierarchies, and (v) provide additional guidance
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to the agent. We review these approaches in the
following sections.

Update Several Value Functions

In traditional RL each step updates a single value
function using the immediate reward. This means
that if the agent is two steps away from a state
with a very high reward it has to wait until the
immediate state is updated to obtain information
aboutsuch desirable state. One idea is to propagate
information among the visited states in what is
called eligibility traces.

The idea of eligibility traces is to consider the
n next states (or change the n previous states) and
update several value functions.

As stated previously:

T—t-1

Rt =T T +72rt+3 +...+7 Tr

What temporal difference methods doisto use
the estimated accumulated reward expressed as
the value function:

Rt =Tt 7Vt (St+1)
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Algorithm 4. SARSA (7,) with eligibility traces

Initialize Q (s, a) arbitrarily y e(s, a)

Initialize s, a
repeat

for each step in episode do

Take action a and observe r, 8§

= (0Vs,afor each episode do

Select an a from s using the policy derived from Q (e.g.,

€ —greedy)

6 —r+9Q(s"a")—Q(s,a)

e(s,a) «— e(s,a) +1

for all s, a do

Q(s,a) — Q(s,a) + ade(s,a)

e(s,a) «— yAe(s,a)

end for
s—ssa+—a'
end for
untils is a terminal state.

end for

which makes sense since V(s
2
terms (Y7, ., + 71,5 ..0)
However, it also makes sense to use the value
function after two known rewards:

) replace the next

t+1

Rt =T T+ ’y?V;(SH—Q)

and in general for » future steps.

Inpractice, rather than waiting z steps to update
(forwardview), you can update backwards on the
visited states (backward view). It can be proved
that both approaches are equivalent. In the back-
ward view, you store information over the visited
states (the eligibility trace) and use the TD error
to update the visited value functions associated
with the visited states backwards (discounted
by distance).

To implement this idea, each state or state-
action pair is associated with an extra variable,
representing the e/igibility trace denoted by e (s) or
e(s,a). This value is decremented with the length
of the trace created on each episode.

Initially all the e(s) = 0. For TD(A) we mark
only the visited states:
yAe, (s) if s = s,

& (8) =

e (5)F1 if s =35,

and we update the value functions over the visited
states using information from the TD errors.
For SARSA we mark the visited state-action
pairs as following:
YAe, (s,a) if s =5,
e (s,a) =

e, (s,0) 41 if s=s,

and update as described before. SARSA(M) is de-
scribed in Algorithm 4. In this case the reinforce-
ments are accumulated each time the state-action
pair is visited and decay gradually when the
state-action pair is not visited. At each step in an
episode the TD error is propagated backwards to
each previously visited state-action pairaccording
to their current eligibility trace value.
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For Q-learning, however, we need to be care-
ful since some movements are exploratory move-
ments. The problem is that the agent can reach
undesirable states through exploratory actions
that can propagate negative rewards along good
paths. Some options are to maintain the trace
until the first exploratory action is taken, ignoring
exploratory actions, or using a more complicated
scheme that considers all the possible actions
per state.

Approximate Value Functions

So far we have assumed that the value functions
are stored in tabular forms. This works fine for
small domains, but it is impractical for domains
with a large number of states like chess (10!2%)
or backgammon (10°°) or for continuous spaces.
One optionistouseanimplicitrepresentation; a
function. For instance, in games a function is used
to estimate the utility of a state with a weighted
linear function over a set of attributes (fs):

V(i) = w, f (i) + w,f,(3) + ... +w, £ (3)

In chess there are approximately 10 weights,
so there is a significant compression. This rep-
resentation also allows to generalize over non
visited states.

There are many possible options to represent
functions and in general there is a trade off be-
tween expressibility and tractability since models
represented in more expressive languages are more
difficult to learn.

There are several examples of different choices
for expressing value functions, such as neural
networks (Bertsekas & Tsitsiklis, 1996), deci-
sion trees (Chapman & Kaelbling, 1991), SVMs
(Dietterich & Wang, 2002), different Kernels
(Ormoneit & Sen, 2002) and Gaussian processes
(Peters, Vijayakumar, & Schaal, 2003b).

In this chapter, we will only illustrate the ap-
proach withalinear combination of basis functions
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&, 0,,...,¢, of the form Zwigbi where the

i=1
weights (w, € 5) ) need to be learned.

Many supervised learning systems try to
minimize the mean squared error (MSE) under
certain input distribution. If ét denotes the pa-
rameters’ vector of the function we want to learn,
gradient descent techniques adjust the values of
such parameters in the direction that produces the
maximum reduction in the error.

- - 1 _
© - @r _Eava[v (Sr,)_vr(st)]Z

t+1

= 6, +alV7(s) = Vi(s) IV Vi(s)

where o is a positive parameter 0 < o < 1 and
V.- f(©,) denotes a vector of partial derivatives.

Since we do not know V(s )) we have to ap-
proximate it. We can do it with eligibility traces
and update the function © 1 as follows:

where 6, is the TD error:

6t =Tt 'Vvt (St+1) - Vt(st)

and ¢, isavector of eligibility traces, one for each

component &) ,» that is updated as:

é; = ’y)‘ngl + véth(SJ

with €, = 0. It has been shown that in many
cases trying to find an approximate value function
can diverge (Baird, 1995)

Other approaches have been used to relate or
represent interactions among features in differ-
ent ways. They include coarse coding (Hinton,
1984), tile coding (Lim & Kim, 1991), radial basis
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Algorithm 5. Dyna-Q algorithm

Initialize Q (s, a) and Model(s,a)Vs € S,a € A

loop
S «—actual state
a «— e — greedy(s,a)
Take action a observe §' and r
Q(s,a) — Q(s,a) + ofr + ymax,Q(s',a") — Q(s,a)]
Model(s,a) < s'r
for N times do
§ < previous state randomly selected
a < random action taken in s
s'r «— Model(s,a)
Q(s,a) «— Q(s,a) + afr + ymax,Q(s",a") — Q(s,a)]
end for
end loop

functions (Poggio & Girosi, 1989) and Kanerva
coding (Kanerva, 1993).

Learn and Use a Transition Model

With eligibility traces we propagate the TD error
through visited states. If we could have a transi-
tion function, then we could propagate among all
states, which is what value iteration and policy
iteration do.

RL visits many state-action pairs while learn-
ing to approximate value functions, however the
information about these state transitions is lost.
Oneideaisusethis information to constructatran-
sition model while learning. This is appealing for
several reasons: (i) we can converge much faster
to an optimal policy with a transition model, (ii)
we do notneed in general a very precise transition
model and we can refine it as we learn, and (iii)
the transition model can guide the exploration
strategy towards states with poor transition models.

Withatransition model, we can predict the next
state and plan. What is interesting is that we can
use planning also for learning. For a learning sys-
tem, it does not matter if the state-action pairs and
rewards are from real or simulated experiences.

Given a model of the environment, we can
randomly select a state-action pair, use the
model to select the next state, obtain a reward and
update a Q value as if it was part of an episode.
This can be repeated until convergence to @ .

Dyna-Q combines experience with planning
to learn faster a policy. The idea is not only to
learn from experience, but also to learn and use
a model while learning to simulate experience
(see Algorithm 5).

Dyna-Q randomly selects previously visited
state-action pairs. However, better planning can
be performed if it is focused on particular state-
action pairs. For instance, starting in the goal
states and going backwards or in any state with
a large change on its value function. The idea
behind prioritized sweeping is to focus the simu-
lation on states that significantly changed their
value function (see Algorithm 6). The aim is to
simulate new experience only on state-action pairs
whose Q values change above a certain pre-defined
threshold value.

More recently, some related approaches have
been suggested, such as £ (Kearns, 1998) and
R-MAX (Brafman & Tennenholtz, 2002), where
again the idea is to learn while updating a model
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Algorithm 6. Prioritized sweeping
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Initialize Q (s, a) and A{OdeKSﬂUVSE;SMl€14 and QueueP = @

loop
S «—actual state

a «— ¢ — greedy(s,a)

take action a and observe s8' and r

Model(s,a) « s'r
p—|r+ymax, Q(s'a') = Qs,a) |
if p>0then

then insert s, a in QueueP with priority p

end 1if
whileQueueP#@ do
forN times do
s,a «— first(QueueP)
s",r < Model(s,a)

Q(s,a) — Q(s,a) + afr + ymax,Q(s",a") — Q(s,a)]

for all §,a which predicts to reach s do

T «—predicted reward

p—T +ymax, Q(s,a) - Q5,a) |

if p>0,then add

end for
end for
end while

end loop

of its environment by gathering statistics. In E*
an internal mechanism is used to decide whether
to explore or exploit while R-MAX backs up
optimistic rewards through the value function so
that the learned policy effectively plans to visit
insufficiently explored states.

ABSTRACTIONS AND HIERARCHIES

A common approach in Artificial Intelligence to
tackle complex problems is to use abstractions
(Dzeroski, Raedt, & Driessens, 2001, Chapman &
Kaelbling, 1991, Cocora, Kersting, Plagemanny,
Burgardy, & Raedt, 2006, Morales, 2003) and/or
to divide the problem in sub-problems (Ormoneit
& Sen, 2002, Ryan, 1998, Torrey, Shavlik, Walker,
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& Maclin, 2008, Dietterich, 2000), perhaps us-
ing a hierarchy (Govea & Morales, 2006, Cuaya
& Muiioz-Meléndez, 2007). RL has not been an
exception and several approaches have been sug-
gested along these lines.

One common approach is state aggregation
(Singh, Jaakkola, & Jordan, 1996, Otterlo, 2003),
in which several “similar” states are joined and
they all receive the same value, thereby reducing
the state space.

Another possibility is to divide the problem in
sub-problems (Dietterich, 2000), learn a policy for
each sub-problem and then join these policies to
solve the original problem. There has been several
approaches around this idea. One of them learns
sequences of primitive actions (policies) and
treat them as an abstracted action (e.g., Macros
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or Options (Sutton & Barto, 1989)). Another
possibility is to learn sub-policies at a low level
within a hierarchy and use them to learn policies
at a higher level in the hierarchy (e.g., MAXQ
(Dietterich, 2000), HEXQ (Hengst, 2002)).

Actions can also have variable duration, so
it is possible to have abstractions over the ac-
tion sequences, in what is called semi-Markov
decision processes of SMDPs (Sutton, Precup,
& Singh, 1999).

Analternative approach is based on the defini-
tion of finite state machines, in which the RL task
isto decide which machine touse in a hierarchical
abstract machine or HAM (Parr & Russell, 1998).

More recently, authors have used first-order
representations for RL, which can have more
abstract states and produce transferable policies.
The idea is to use first-order representations to
reason about objects and relations between objects
(see (Otterlo, 2009)).

In general some abstractions can introduce
partial observability and at an abstract level the
problem may not longer be Markovian. Even
with convergence at the abstract level does not
mean convergence to an optimal solution at a
primitive level.

ADDITIONAL GUIDANCE

Besides dividing or abstracting the RL problem,
some approaches have focused on speeding up
the learning process in order to develop control
policies in reasonable times for very complex
domains by including additional guidance or
feedback from the user.

One commonly used approach is to “observe”
a person (expert) perform a task (rather than
asking him/her how to do it) and save logs with
information of the performed actions and then
use this information to guide the RL policy search
process. The same idea has been developed under
different flavors known as Behavioural Cloning
(BC) (Bratko, Urbanci¢, & Sammut, 1998), Ap-

prenticeship Learning (Abbeel & Ng, 2004) and
Programming by Demonstration (Billard, Calinon,
Dillmann, & Schaal, 2008).

The simplestapproachistouse the information
from the trace-logs to update the value functions
and then follow the RL process with the initial
value functions already updated with information
of the traces (Singh, Sutton, & Kaelbling, 1996).

Other approaches use the traces to try to derive
a reward function in what is known as inverse
Reinforcement Learning (Ng & Russell, 2000). In
this case, rather than trying to derive a direct map-
ping from states to the actions of the expert, they
derive areward function that penalizes deviations
from the desired trajectories, trying to recover the
expert’s true and unknown reward function (see
also (Schaal, 1997, Abbeel & Ng, 2004)).

An alternative approach is to use the given
traces to learn a set of possible actions to perform
on each state and then use RL to decide which
is the best action among such reduced subset of
actions ((Morales & Sammut, 2004, J. Zaragoza,
2010), see also Chapter 9).

Another approach to provide additional guid-
ance is through the reward function. Reward
shaping attempts to mold the conduct of the agent
by adding additional rewards that encourage a
behavior consistent with some prior knowledge
(Ng,Harada, & Russell, 1999, Marthi, 2007, Grzes
& Kudenko, 2009). As the shaping rewards offer
localized advice, the time to exhibit the intended
behavior can be greatly reduced. Since given an
adequate reward shaping function may not be
easy for some domains, feedback from the user
can be used to provide such guidance. The user
may critique sub-sequences of given traces (e.g.,
(Judah, Roy, Fern, & Dietterich, 2010, Argall,
Browing, & Veloso, 2007)) or the system may try
to learn a model from the user’s feedback (e.g,
(Knox & Stone, 2010)) and use that informa-
tion to adjust the current policy. An alternative
approach, called dynamic reward shaping, is to
provide on-line feedback from the user to change
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the reward function during the learning process
(Tenorio-Gonzalez, Morales, & Pineda, 2010).

Other Approaches

Reinforcement Learning research has grown in
multiple areas. In particular there is substantial
research in multi-agent systems, where the idea is
to develop a control policy for a group of agents
that combine their efforts to perform a common
task. Here an agent has to take into account the
consequences of the actions of the other agents
while trying to find out its right sequence of actions
that, eventually, will lead the group to the goal.
Similarly, RL has been used in adversarial games
or competitive MDPs where there is a sequential
decision problem with several decision makers.
In this setting the transition probabilities depend
on the current state and the actions chosen by all
the agents, however, the immediate reward can
be a different function for each player. Here the
policy of each player is referred to as a strategy
and the overall performance metric depends on
the strategies selected by all the players. When all
the players want to optimize their own objective
normally the solutions of the algorithms arrive to
the Nash equilibrium (see for example (Littman,
1994) for zero-sum games).

As described in Chapter 3, there has been
an increasing interest in developing algorithms
for partially observable states in MDPs in what
are called POMDPs. This has also been the case
for RL and it is known as Partially Observable
Reinforcement Learning (PORL) in which the
agent has to deal with the uncertainty on its cur-
rent state while learning a policy (Ibling, Littman,
& Cassandra, 1998). This setting is common in
mobile robots where the sensors are normally
noisy and the robot may have some uncertainty
of its current state.

Another productive line of research has been
the incorporating of a Bayesian framework into
RL (Strens, 2000, Dearden, Friedman, & Russell,
1998). This has also been extended into multiple
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tasks in a hierarchical approach (Wilson, Fern,
Ray, & Tadepalli,2007) and has been incorporated
also into inverse RL (Ramachandran, 2007). Very
recently there have been interest in combining RL
with optimal control and dynamic programming
techniques for inverse RL (Theodorou, Buchli,
& Schaal, 2010).

Finally, there has been some interesting work
on how to transfer policies to similar domains to
avoid learning from scratch (Fernandez & Veloso,
2006, Sunmola & Laboratory, 2006, Ferguson &
Mahadevan, 2006).

FINAL REMARKS

Reinforcement learning is a very active research
areathathasbeenused in several areas of artificial
intelligence and that has produced some very in-
teresting results in real-world applications. These
range from elevator scheduling (Crites & Barto,
1995), job-shop scheduling (Zhang & Dietterich,
1995), the AGV routing problem (Tadepalli & Ok,
1998), to areas such as Backgammon (Tesauro,
1992), humanoid control (Peters, Vijayakumar, &
Schaal, 2003a), and control of helicopters (Tang,
Singh, Goehausen, & Abbeel, 2010, Abbeel,
Coates, & Ng, 2010).

A general introductory reference is the excel-
lent book by Sutton and Barto (Sutton & Barto,
1989). An on-line version of the book can be found
on Sutton’s webpage. An earlier comprehensive
survey upto 1966 s (Kaelbling, Littman, & Moore,
1996) which is also available from Kaelbling’s
webpage. There are other more recent surveys,
such as (Gosavi, 2008).

There is a large body of literature on specific
topics such as transfer learning in RL (Taylor &
Stone, 2009) or relational reinforcement learning
(Otterlo, 2009), and a continuous flow of cur-
rent research papers on mayor machine learning
forums.
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ENDNOTE

! This can be clearly appreciated by consid-

ering the percentage of articles and special
workshops in this area in some of the main
Machine Learning conferences e.g., Inter-
national Conference on Machine Learning
(www.icml2010.org), Neural Information
Processing Systems (nips.cc), European
Conference on Machine Learning and
Principles and Practice of Knowledge Dis-
covery in Databases (www.ecmlpkdd2010.
org) and special issues in some well-known
journals e.g., Machine Learning Journal
(WwWw.springer.com/computer/ai/jour-
nal/10994), Journal of Machine Learning
Research (jmlr.csail.mit.edu), Computa-
tional Intelligence (www.wiley.com/bw/
journal.asp?ref=0824-7935).



