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Abstract 

In view of increasing application of sensitivity assessment (SA) to environmental 
simulation models, a relatively short, informal introduction to aims and methods of 
SA is given. Their variety, motivation and scope are illustrated by outlines of a broad 
selection of approaches. Methods based on derivatives, algebraic analysis, sparse 
sampling, variance decomposition, Fourier analysis and binary classification are 
included. 
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1  Objective 

This paper is an informal, selective guide to aims and methods of sensitivity 
assessment (SA) for simulation models. The selection is intended to be representative 
but isn’t claimed to be comprehensive. However, some topics which seldom get 
attention will be discussed, for instance algebraic SA in Section 3.3 and regionalised 
SA in Section 3.5.5. More detail can be found via the references. 

 

The paper is motivated by increasing and now widespread recognition of two facts. 
The first is that an environmental (or any other) simulation model’s credibility and 
utility depend on knowledge of how important each parameter is; without SA and 
some idea of the quality of the model’s structure and parameter estimates, we don’t 
know how far to trust any prediction by the model. The second is that the results of 
SA show where the model needs improvement. The more important parameters may 
need refinement. Conversely, parts with little influence on the outputs of interest are 
poorly determined in calibration by those outputs; they should be simplified or 
removed to leave a model well justified by the data.  

 

2 What is sensitivity assessment?  

SA investigates the relations between parameters and outputs of a simulation model. 
In this context “parameters” are primarily equation coefficients and threshold values 
in the model, but may also include features of input (forcing) variables, e.g. their 
values if constant, or the time, duration, location, spatial extent or rate of any changes. 
[Parameters are often called “factors” in SA, and occasionally “inputs”, which is 
confusing]. An “output” is the value of any variable computed by the model or of any 
feature or statistic extracted from it, such as peak or mean value. The supposition is 
that each parameter and output can be described by a single number. This is 
appealingly simple and allows SA to be thought of as examining the shape of the 
response surface of each output to the parameters. It’s also restrictive, of course, and 
may not be tenable if, in particular, the model has dynamics. In that case, an output 
depends at any instant on the history of the inputs, which would take a very large 
(theoretically infinite) number of values to describe fully. What’s more, we may well 
be interested in the whole response to the forcing, measured at a large number of 
instants. Models with dynamics are considered in Section 3.4.  

SA tries to answer such questions as:  

 For each output, in what order of importance do the parameters influence it?  

 Are there parameters which affect the outputs so little that the model should be 
rewritten without them?  

 How well can the combined effect of a collection of parameters be found by 
summing their individual effects?  

 Conversely, what are the significant interactions between parameters in their 
effect on an output? 

 How closely is an output change proportional to the change in parameter value 
which causes it? 

 More broadly, how does the effect of a given change in a parameter value vary 
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with that value?  

These questions need not involve uncertainty, so SA is not the same thing as 
uncertainty assessment (UA). UA is in effect SA together with a specification of 
parameter uncertainties. The two get conflated because SA is often done by looking at 
the output values due to samples from a given distribution of parameter values, as in 
most of the methods described in Section 3.5. In any case, some specification of 
parameter uncertainty, even if only guessed ranges, is needed to define the scope of all 
but the most narrowly focused SA. 

 

It isn’t uncommon to find UA unaccompanied by SA. In most of the system 
identification literature [Norton, 1986; Walter and Pronzato, 1997; Ljung, 1999], 
parameter-estimation techniques provide estimates of parameter uncertainty (e.g. 
covariance) yet rarely try to analyse the sensitivity of the model outputs to those 
parameters. 

 

This paper calls SA sensitivity assessment rather than analysis, as it is much more 
often done by numerical experiment, looking at the results of model runs, than by 
analysis of the model’s equations. That said, such analysis may be possible if the 
model isn’t too elaborate: see Sections 3.3 and 3.4. 

 

3 SA techniques 

 

3.1 Introduction 

 

3.1.1  Assumed mathematical background  

To see how any SA technique works, what assumptions it makes, what its scope and 
limitations are and what its results say, a little mathematics is needed. Only the bare 
essentials will be used here: basic calculus, the idea that a collection of items (model 
parameters, usually) can be viewed as a vector in a space with one axis per item, and 
the concepts of probability density and expectation. 

 

3.1.2  Notation 

In what follows, p denotes parameter and y output; δ means “change in”, so  is change 
in p, not necessarily small. A collection such as m parameters , indexed by a subscript, 
may be written as a single entity in boldface, e.g. p is the vector of elements  (in a 
column, by convention). The rate of change of a single output y with a single 
parameter p may be approximated, in practice, by  where is the change in y caused by 
a finite change . When two parameters  and  have interacting effects on y, the rate of 
change of or of is , approximated by .  

Additive effects or components will be written out fully as summations rather than 
more concisely as vector inner products. For example, if interactions can be ignored 
and the parameter-to-output relations are smooth, the effect of small changes  to  on y 
is approximated by . 



 

 

3.1.3  Motivation of SA techniques 

There are a large number of SA techniques: ways to vary parameter values and 
examine their effects on the outputs. One might well ask why there are so many, when 
all you need to do, apparently, is try a lot of parameter values in succession and record 
the output values. The answer is that unless you are only interested in variation of a 
few parameters at once, over small ranges, it would take an enormous number of 
model runs to explore the parameter-output relations thoroughly. For example, to 
cover all combinations of only 5 values each of 10 parameters, 510 simulation runs are 
needed. At, say, 1 second per run that would take over 16 weeks. We must be much 
more economical. Another factor, seldom given due weight, is the difficulty of 
making sense of a huge volume of sensitivity results. Again we have to be selective. 
Two possibilities are to examine results from a relatively small set of parameter and 
output samples, in the hope that they are representative, or to analyse the model 
algebraically. Where it can be done, algebraic analysis is likely to give more insight 
than a heap of numbers from many model runs. Another way to keep the volume of 
results manageable is to compute sensitivities as quantities averaged over the whole 
credible range of the parameters. This is called global SA, in contrast to local SA of 
sensitivities at particular parameter values. 

We start with the simplest (and most naïve) technique and go on to methods which 
require more thought but yield a great deal of useful information while being 
economical in computing. 

 

3.2  One-at-a-time perturbations 

The simplest idea is to perturb one parameter at a time and see how much the output 
changes. For now, think about a change from  to  in one parameter, causing a change 
in a particular single-number output from  to . [Section 3.4 will look at time-varying 
outputs]. Although  says something about how sensitive  is to alone, it has three 
limitations: (i) it may vary with the size of  i.e. the cause-effect relation may not be 
linear, (ii) it may vary with other parameters, i.e. there may be interaction, and (iii) it 
depends on the units employed for  and . We can get rid of this dependence by 
expressing the changes as proportions  and the result as the normalised sensitivity . 
Alternatively, if we knew the uncertainty in each parameter, we could express a 
change in a parameter value in terms of its standard deviation or range of uncertainty. 
To avoid specifying the size of , the sensitivity is formally defined through the rate of 
change  approached as the parameter change is made ever smaller, giving normalised 
sensitivity . Its value is generally valid only at whatever values  and the other 
parameters have, and relates only to changes in  small enough for any non-linearity in 
the -to- relation to be ignored. Normalisation might be objected to on the grounds that 
when the relation is a straight line not through the origin, it turns a constant sensitivity 
into one which varies with . That’s true, but on the other hand one may well prefer to 
think of changes, errors and uncertainties as proportions (or percentages) rather than 
absolute values. 

 

Although defined for infinitesimal changes,  is estimated from the result of a finite 
parameter change: with all the parameters set to selected values, run the model and 
note, change  alone by a chosen amount  and rerun the model, note  and get  roughly 
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as . Perturbing m parameters in turn, all from the same start, will take m+1 runs. 

 

The first problem in this seemingly straightforward method is to decide on the size of 
: small enough for  to be close to , or big enough to show the effect of realistic 
uncertainty in? A small parameter change has two potential snags. The first is doubt 
over how linear the model is, and thus whether the result of a small change is a useful 
guide to the effects of larger changes. Second, calculation of  may be ill conditioned, 
with  a small difference of large quantities. For these reasons we might prefer a larger 
parameter change, comparable with the uncertainty in. If we don’t know the 
uncertainty, we have to try various values of  to find what causes a significant . After 
choosing  and calculating the sensitivity , we still have to check how far the relation 
between  deviates from a straight line over the credible range of y. A lot of trial and 
error may be needed to choose a range for each parameter and decide how finely to 
subdivide it. 

 

One-at-a-time perturbations have the big weakness that they give no idea how much 
the sensitivity to any particular parameter varies with the values of the others, i.e. how 
strong the interactions are in the effects of varying the parameters. The influence of 
two-parameter interactions in the relation between parameters  and a single output y is 
shown by the second term of the truncated Taylor series 

 (1)  

This expression assumes that the relation between parameters and output has no 
jumps, kinks or abrupt changes in curvature, and the cutting-off after the terms 
assumes that any interactions between three or more parameters have a negligible 
effect on y. 

 

The term of (1) in  gives the effect of interaction between  and  and lets us define 
normalised second-order sensitivity, for , as  

 

 (2) 

[The ½ disappears because (1) includes terms in both and ]. For j = k, to deal with the 
curvature of the relation between  and y, 

 

 (3) 

To find the second derivative  experimentally,  

 (4) 

If we reuse the results which gave the first derivatives, (4) needs only one extra run 
for each of the m(m-1)/2 combinations (j,k) with  and the m with j=k, in all m(m+1)/2 
extra runs. It thus takes m/2 times as much computing to estimate all the second 
derivatives, and hence two-parameter-interaction sensitivities, as the one-parameter 
sensitivities (often called “main effects”).  

 



 

Again the snag is that the results apply only for the parameter values that produced 
them. What’s more, it’s quite possible that higher-order interactions make (1) only 
part of the story. 

 

3.3  Algebraic “no box” SA 

SA is usually performed as if the model were a “black box”, with only designated 
parameters and outputs accessible. However, the model isn’t a “black box”; we know 
its equations and in principle can analyse them. When not too complicated, this 
alternative to numerical experiment can provide highly informative results with little 
or no computing. The model may be so complex that analysis is unattractive, but often 
at least part of the model can be analysed algebraically. Let’s call it “no box” SA 
(Norton, 2008). 

 

With luck, we can derive an expression for the output change which is valid for 
parameter changes of any size from any initial value. 

Example 

Model  with inputs .  

Subtract  from  to get the effect of any specified changes in  on the output: 

 (5) 

This is exact, whatever the sizes of the changes. It’s easy to see some qualitative 
things from it, even without finding the normalised sensitivities:  

  is linear in  at any given  and  is unaffected by ,  or  

 is linear in  at any given ,  and , but  depends on their values 

 is non-linear in  (in a way not obviously well approximated by finding ) 

 there are no interacting effects on y of two or more parameter changes. 

One-at-a-time changes in  would have given exact values for , but  doesn’t 
approximate  well unless .  

It’s worth emphasising that (5) is obtained by first principles, without any use of 
calculus.          □ 

 

This example illustrates how no-box analysis can yield insight through general, exact 
expressions for the sensitivities, as well as avoiding any need for model runs. We 
would be lucky to gain as much insight by black-box SA, even if we inspected the 
results of a large number of runs.  

 

3.4  No-box SA of a dynamical model: influence equations 

So far we’ve looked at models whose outputs depend only on a limited number of 
parameters (some of which may apply to input variables) in a static set of relations. 
Many simulations in fact have dynamics: the outputs at any instant depend on earlier 
input behaviour. In other words, the model has memory. It’s also likely that the entire 
behaviour of the outputs as time goes on, not just a modest number of isolated values, 
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is of interest. Clearly SA of such a model has more to it. Chemical reaction kinetics 
has a considerable literature on the topic (Atherton et al., 1975; Horenko et al., 2005; 
Turanyi, 1990, 2008). 

 

Most such models are written, or can be rewritten, as a set of rate equations for the 
dynamics, together with some algebraic, non-differential equations. Such a model has 
a vector state equation  

 (6) 

for the dynamics. Here state vector x consists of a selection of variables whose values 
at the start time are enough to specify fully the condition of the system, u consists of 
input variables and p of parameters. That leaves a set of algebraic equations to 
describe how the outputs are connected (instantaneously) to the state variables. These 
equations form the vector observation equation 

. (7) 

Here u appears only if some of the influence of input on output is instantaneous, as 
well as through the dynamics. There are systematic ways to select variables making 
up the state and to turn the original model into state-space form, producing the 
(matrix) functions f and h. The main limitation of state-space models is inability to 
deal exactly with pure delays. However, delays can be incorporated approximately by 
use of extra state variables. Moreover, with time-sampled inputs and outputs, as in the 
great majority of environmental models, delays which are integer multiples of the 
sampling interval can be handled precisely. 

The simple form of the state-space model (6) and (7) makes its SA in general terms 
algebraically uncomplicated. If we differentiate (6) with respect to p (not forgetting 
the effect of p via x) and take the inputs to be independent of the parameters, we get 
influence equations 

  (8) 

This is a set of rate equations saying how the unnormalised sensitivities  of the state 
variables to p evolve over time. So long as p doesn’t include any initial state value,  
starts from zero since the initial state is fixed. We solve (8) for  by numerical 
integration, the same sort of process as solving (6), i.e. running the dynamical part of 
the model, but for many more equations. Once  is known, the output sensitivities 
follow from the differentiated version of (7): 

 (9) 

This all looks easy, in principle. 

 

Example 

We examine the same model as in Section 3.3 but with dynamics between the non-
linearity producing  and the multiplication by : 

  (10)  

The model says that  affect y instantaneously but also influences the output through its 
effect on the rate of change of x. The model is already in state-space form, with only 
one state variable (so x is x) and one output, so  is a vector with elements  and 



 

similarly for . Differentiating the state and observation equations as in (8) and (9), 

 (11) 

so, with  initially zero,  throughout. If  is constant, we can integrate  analytically to get 
. As time goes on, tends from zero towards at an ever slower rate. If instead  varies in 
a complicated way with time, we have to do the integration numerically. To find  once 
we have , we need x also, found by integrating the state equation, i.e. running the 
simulation. In any case, , and hence the sensitivities, vary with time.  □ 

 

It isn’t always quite so easy. First, if there are n state variables, is an nm matrix, so 
there are m times as many influence equations in (8) as state equations in (6). 
Similarly there are m times as many in (9) as in (7). Luckily, in most cases many 
elements of  and  will be zero. Second, in (8)  and  vary with x, p, u and t in general, 
so does, and everything on the right-hand side of (9) does, hence  does. For the 
conditions applying in any one model run, this is no great problem; we just update x, 
p, u and t in (8) and (9) as we go. However, it may be hard to interpret sensitivities 
which vary with the variables as well as with the parameters and time. Third and most 
important, again we only get local sensitivities, valid for small variations about 
specified conditions. To explore them across a range of parameter values, initial 
conditions and/or inputs, we may have to generate and examine a huge volume of 
results. For changes in the parameters big enough for the local sensitivities to vary 
significantly, we could add up the output changes due to a series of small parameter 
steps , in other words integrate (8) and (9) over the overall change in p, but it is much 
easier just to rerun the model at the changed parameter values. 

 

One way to reduce the volume of results, at some loss in information, is to find the 
sensitivity of an objective function combining all the outputs, e.g. a time-varying 
weighted sum of squares of relative (proportional) output changes. Results can be 
reduced further by integrating over time if we are content to know average sensitivity 
over a period. 

 

The following sections discuss ways to employ fewer runs in exploring sensitivities 
which vary with the simulation conditions. From here on, we’ll assume that 
sensitivities are independent of time; in a dynamical model they might be made so by 
confining attention to a fixed instant or averaging over some period. 

 

3.5  Sampling-based SA 

 

3.5.1 Introduction 

We want to explore sensitivity over the whole range of credible model parameters 
with an acceptable computational load. Exhaustive, evenly spaced sampling of all 
parameters looks hopeless, even on a coarse grid, unless the model is small; two 
extreme values and one in the middle for each of 20 parameters give almost 3.5 
billion grid points. The best we can do is sample the output at as many points as we 
can afford, trying to spread them well, and reduce the volume of results to be 
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examined by averaging in some way over the whole range of the parameters, i.e. do 
global, rather than local, SA. In global SA, as in other areas where the relative 
influence of a number of factors in a complex process is investigated by sampling, 
there are many ways to address the experiment-design problem of achieving a good 
compromise between sample size and informativeness of the results (Kleijnen, 2005; 
Saltelli et al., 2008b, pp. 53-96). 

 

If we are prepared to swallow the idea that model parameters are random variables, 
any knowledge we have of their probability density function (pdf) can be used to 
concentrate on the most likely regions, as in Section 3.5.2. Once we adopt this view, 
an obvious way to avoid the difficulty of comprehending results at many points is to 
define sensitivities via expected values (probability-weighted averages) of some 
measure of variation. That is what the techniques in Sections 3.5.4 and 3.5.5 do. [In 
doing so, they turn SA into uncertainty analysis; some authors do not distinguish the 
two]. Note, however, that Latin hypercube sampling, Section 3.5.3, and regional 
sensitivity analysis, Section 3.5.6, are global yet may not regard the parameters as 
random variables. 

 

If all we know about each parameter is its credible range, random sampling with 
uniform probability density over the range of each seems logical. However, it isn’t 
ideal, as samples from an m-dimensional uniform distribution leave random-sized 
holes, some big, in parameter space; by chance some regions are very much better 
covered than others. There are several techniques which hope to mitigate this 
problem.  

 

3.5.2  Importance (stratified) sampling 

The idea is to give each of a number of regions in parameter space an equal quota of 
samples, randomly distributed within each region. The regions are defined according 
to both the estimated/guessed probability density of the parameters (uniform or 
Gaussian by default) and the importance of the resulting outcomes, so we can ensure 
adequate coverage of parameter values around where we expect critical  features of 
behaviour (Castaings et al., 2012). The regions need not have equal probabilities, 
although we must include the probabilities in any analysis. 

 

3.5.3  Latin hypercube sampling 

The impressive name dignifies a simple strategy. For each parameter of the m making 
up p, its range is split into N equal-probability divisions and one sample taken in each 
division. An m-vector of parameter values is then made up by random choice from the 
samples for each parameter. The next vector is formed by random choices from the N-
1 remaining samples, and so on until we have used up all the samples. We thus 
generate sample points in only N of the N m subdivisions, in contrast to one or more 
per subdivision in importance sampling. 

As Latin hypercube sampling ensures full coverage of every parameter’s range, it can 
be effective in revealing non-linearities through scatter plots, mainly when one or two 
parameters dominate the effects (Manache and Melching, 2008). 



 

 

3.5.4  The Morris screening method 

An extreme case of trading coverage against computing load is the Morris method 
(Morris, 1991). For models with many parameters, its rôle is to screen the parameters 
to find out which to include in more detailed SA (Ruano et al., 2012). With a modest 
number of model runs, it ranks parameters according to influence on each output and 
extent of non-linearity. The hope is that many of the lower-ranked can be left out of 
later assessment by a more computationally expensive technique. 
 
The method works by stepping m parameters along r trajectories, where r is typically 
less than m. Each trajectory consists of m single-parameter steps. The parameters are 
all perturbed once, in turn, on the trajectory. The step size is a fixed integer multiple 
of a given integral fraction of the factor’s range (usually half the range), with half the 
steps positive. The starting points are random and uniformly distributed, and the 
parameters are stepped in random order. The changes in output due to the r changes in 
each parameter alone are treated as a sample. A large mean of absolute values of the 
changes (Campolongo et al., 2007) indicates large influence of that parameter. Large 
standard deviation indicates that the effect depends strongly on the parameter values, 
implying strong non-linearity (including multilinearity due to products of parameters, 
invisible in single-parameter perturbations). 
 
There is scope for selecting trajectories for good spread, preserving the method’s 
economy and its ability to rank sensitivity and detect non-linearity (Campolongo et 
al., 2007; Norton, 2009). In testing a selection method, small examples may give 
misleading results (Norton, 2009). 
 

3.5.5  Variance-based sampling methods 

 

3.5.5.1  Variance decomposition, variance ratios and sensitivity indices 

So far, computing load has limited how thoroughly we can explore the parameter-
output relations. A radical way to reduce the load is to restrict the nature of the 
information sought. Variance-based SA methods only investigate how much of the 
overall variability of an output y is due to variability of the parameters, singly or in 
combinations. The variability is thought of as being random and measured by 
variance: the mean of the squared deviations from the mean. Squaring emphasises the 
larger deviations and takes equal notice of equal deviations above and below the 
mean. Because variance is a probability-weighted average over the entire range 
considered for all parameters, details of local behaviour are lost; on the other hand, 
such a summary of behaviour is at the least a useful guide to where to focus a 
narrower analysis looking for details. 

 

The trick is to estimate, without too much computing, the output variances with and 
without contributions from various parameter sets. To get down to specifics, fix some 
subset  of the parameters p, leaving free all the other factors which make output y 
vary. This causes y to become, say, with mean . The fixing of  is assumed not to bias 
the output, so  say. The variance    due to all influences on y can be split into the 
variance of  and the mean, over all possible , of the variance left after  is fixed: 
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=+ (12) 

[As this isn’t obvious, here’s a proof. It relies on the fact that for a random variable x,  
so long as the expected values exist (i.e. the integrals which yield them don’t blow out 
to infinity; for bounded model variables, they don’t). Put  for x in this handy result to 
see that , and  for x to see that . Add these two expressions to get , which is var(y) by 
the handy result. □] 

 

The term of the decomposition of  shows how far  accounts for the variability of y, 
that is, how strongly  influences y. The remainder, the mean variance of , indicates the 
influence of all other factors.  The variance ratio   (13) 

is thus a measure of the sensitivity of y to . Being dimensionless, the ratio is 
independent of units. Also, it lies in the range from 0 (no effect of  on y) and 1 ( 
accounts for all the variability of y). The variance-based first-order sensitivity index of 
y to  on its own is . 

 

With interaction possible, a more comprehensive measure of ’s importance is the total 
sensitivity index  of its influence on y both by itself and through all interactions in 
which it takes part. If , the collection of all parameters except  is frozen then  is the 
proportion of the variance of y left once the part due to  alone is accounted for, so 

 (14) 

where the second step uses (12) with  as . The practicality of these sensitivity indices 
depends on whether numerical integration to estimate the means and variances can be 
carried out with a bearable amount of computing. Saltelli et al. (2010) discuss in detail 
how to compute total sensitivity indices. More generally, variance-based SA, or any 
other sampling SA technique which averages over the whole range of credible 
parameter values, ends up having to evaluate multiple integrals over that range. This 
isn’t the place to discuss Monte Carlo integration, based on pseudo-random sample 
sequences, and more rapidly converging quasi-Monte-Carlo schemes (Lemieux, 2009) 
which use low-discrepancy sequences, but the important point, here and in other SA 
sample-based SA methods, is that there are sampling schemes with far more uniform 
coverage than simple sampling from a uniform distribution (Press et al., 1992, pp. 
309-315; Saltelli et al., 2008b, pp. 82-89). For example, Damblin et al. (2013) 
describe optimised Latin hypercube sampling and space-filling designs. 

 

3.5.5.2  The Sobol’ method: decomposition of the parameter-output relation and 
output variance 

This approach takes a broader look at measuring sensitivities in terms of proportions 
of the output variance due to each parameter individually and to combinations. The 
parameters are taken as independent and for the moment each equally likely, after any 
necessary scaling and shifting, to be anywhere in the range [0,1]. The relation 
between output y and parameter vector p is split into components with increasing 
numbers of the parameters: 

 

 (15) 



 

If  and each of the other components of  integrates to zero over [0,1] with respect to 
each of its parameters, then any two of the components , are orthogonal to each other, 
i.e. the integral of their product over the whole of p is zero. [To see this, integrate first 
with respect to a parameter that appears only in one of the components, say the first 
(as at least one does). The other component is constant while we integrate, so the 
integral is that constant times the zero integral of the first component]. The individual 
components in (15) are given by 

= 

= 

etc. (16) 

The orthogonality greatly simplifies the variance of the output; in easy stages, 

 
 (17) 

where q(p) is the (uniform) joint pdf of the parameters and I is the unit box covering 0 
to 1 for every parameter. In the next-to-last step, when we write out the squared sum 
term by term, all the cross-products integrate to zero (they’re orthogonal). In the last 
step, we needn’t consider the means of the ’s, ’s and so on, as they’re all zero. The 
assumption of uniform parameter distribution isn’t essential; any other pdf can be 
absorbed into y and its components in the integrations. 

Equation 15 goes under various names, most often the Sobol’ decomposition (Sobol’, 
1993). We can define sensitivity as variance ratio as in (13); dividing (17) by V, 

 (18) 

where  is defined as ,  as  and so on. This variance decomposition crucially displays 
all interactions, i.e. the influence of all combinations of two or more parameters. As 
noted earlier, the task of evaluating the integrals in (17) relies on finding an effective 
Monte Carlo scheme. 

 

3.5.5.3  Fourier Amplitude Sensitivity Testing: FAST 

This technique is one way to greatly reduce the amount of computation in finding 
variance-based sensitivity indices. Consider computing the variance and mean of the 
output: 

  (19) 

where  is the joint probability density function of the parameters.  If all values in the 
range of  are equally likely,  is constant; we’ll assume so, for simplicity. Numerically, 
integration as in (19) has to sum over many sample points covering the ranges of the 
parameters, a great deal of computing. The FAST technique reduces it by making the 
parameters vary all together, depending on a single variable s. For j=1, 2,...,m, 
parameter  is required to be some chosen function  with s ranging from - to . The 
parameters thus vary in a concerted way along a prescribed path in parameter space. 
Integer  fixes a frequency, since  does  cycles as s goes from - to . 

 

There are two reasons for making the parameters vary like this:  

(i) with the ’s fixed, all the parameters are function of the single variable s, so multiple 
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integrals over p as in (19) become integrals over a single variable, far less work to 
evaluate. To evaluate the integral, we sum over sample values of y along this path, 
instead of over all points of an m-dimensional  grid of values of. The path can be 
made to cover the entire range of all the parameters. There are several possible 
choices of G(.): see below; 

(ii) for any two sinusoids with frequencies which are different integer multiples of a 
base frequency, the integral of their product over a cycle of the base frequency is zero. 
This makes integration to find the variance of y much easier. Essentially the idea is to 
approximate y() by a sum of sinusoids at frequencies given by the ’s and other 
multiples of the base frequency, then  

 (20) 

where the A’s and B’s are the Fourier coefficients 

 (21) 

and M is chosen to give an acceptable approximation.  

[The first step in (20) again uses the handy result variance = mean-square value - 
mean value squared.] 

In a more recent version of FAST, extended FAST (Saltelli, Tarantola and Chan, 1999; 
Wang et al., 2013), each parameter is standardised so that its range is 0 to 1, then  is .  
As s goes from - to ,  does  cycles of a triangular wave with peaks 0 and 1. 
Altogether the parameters follow a zigzag path and cover the whole range of each 
uniformly (but not reaching extremes at the same time) and end up where they started. 
The triangular wave can be resolved into a fundamental at the same frequency and 
harmonics at integer multiples of that frequency (Fourier components). They will give 
rise to output components at those frequencies and integer multiples, and their 
interaction with Fourier components of other parameters’ variation will produce 
output components at the sum and difference frequencies (since e.g.  ). With suitable 
choice of the ’s, the components of the output variance due to  can be pulled out 
readily (by computing the output’s power spectrum in terms of its Fourier 
coefficients; never mind the details). We can thus find the expected fractional output 
variance reduction  you’d get if  were known (fixed), and the total output variance 
fraction  due to  on its own or in combination with other parameters, found as 1- 
fraction due to all interactions not involving . The output samples in these 
computations are uniformly spaced along the p path. They must be at intervals under 
half a period of the highest-frequency component present (which may depend on non-
linearity in the model) to avoid loss or misinterpretation of information by aliasing. 

 

This scheme takes samples in a regular pattern. As in all economical sampling 
schemes for SA, there’s a risk of missing some part of parameter space where 
sensitivities are very high or low or change rapidly. Another limitation of FAST is that 
it makes the parameter variations mutually independent (orthogonal, to be 
mathematical), so it may give unrepresentative results for a model in which parameter 
variations or errors are mutually correlated, e.g. because they are spatially linked. This 
is a problem for any technique which ignores such correlation, and to avoid it one 
needs insight into the physical circumstances modelled. The Sobol' method can be 
extended to tackle correlation by applying the parameters’ joint pdf in computing the 
conditional expectations and multidimensional integrals in section 3.5.5.2. However, 



 

variance decomposition and interaction terms cannot be derived as neatly when 
parameter variations are correlated. 
 

A variation of FAST (Tarantola et al., 2006) reduces the number of model runs by 
employing the same frequency for all factors, randomly permuting the set of samples 
of s to generate the coordinates of the parameters. This random balance design 
technique produces the first-order, variance-based sensitivity indices with a fraction of 
the computing required by FAST for similar accuracy. 

 

A recent development is the “distributed evaluation of local sensitivity analysis” 
(DELSA) approach, where local analysis methods based on derivatives are used to 
examine the distribution of sensitivity across the parameter space (Rakovec et al., 2013). 

 

3.5.6  Regionalised SA (RSA): binary classification of Monte Carlo results 

This is a quite different approach, devised in the 1970’s (Hornberger and Spear, 1980; 
Spear and Hornberger, 1980). It pictures a parameter vector p as a point in m-
dimensional space whose coordinates are the values of the m parameters which make 
up p. For most purposes, it’s good enough to think of p in three dimensions even 
though in practice m is large. 

 

RSA asks the question “What spread of parameter values meets every one of a list of 
requirements?” For instance, a requirement related to SA is to keep each of one or 
more outputs within a specified range. Another possible requirement, for a time-
varying output, is to be above a given value or between given bounds for a given part 
of the time. The method tests sample values of the m parameters making up p against 
all the requirements. Those points which meet them all are accepted and the rest 
rejected. Eventually the cloud of accepted points in parameter space gives an idea of 
the location, extent and shape of the feasible set of all values which meet all 
requirements. The same idea has been widely used to identify acceptable parameter 
values in models with dynamics (Norton, 1987, 1996; Milanese et al., 1996). There, 
the parameters must make the model output match a sequence of output observations 
to within specified bounds. Those requirements are turned into constraints on the 
parameters, the active ones of which define the boundary of the feasible set. In both 
RSA and parameter identification, the aim is to identify, via the feasible set, critical 
parameters or parameter combinations and uninfluential ones. 

 

A notable feature of RSA is that the basic idea of accepting and rejecting parameter 
samples doesn't depend on a prior parameter pdf and doesn't generate preferences 
(e.g. as posterior probability densities) among the feasible values. In this sense it is 
pure SA. The shape of the feasible set may indicate those parameters or combinations 
to which the output is most sensitive, and others to which it is quite insensitive and 
which might be written out of the model. As noted in the next paragraph, complexity 
of the feasible set may make this difficult or even impracticable even without 
considering computational load, but let us have a look at what is involved. First we 
have to scale the parameters so that equal distances in parameter space are equally 
significant. If then the set is thin in direction α, i.e. the feasible points have a small 
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spread in the direction of a line from the origin to some point α with coordinates , then 
the output is highly sensitive to . Conversely if every possible transit of the feasible 
set in some direction β covers a specific large feasible range of , then the output is little 
influenced by that parameter combination. We might therefore fix it, e.g. at the middle 
of its feasible range. That allows one parameter to be written in terms of the others 
and thus eliminated from the model. However, it is not obvious how to identify α or β. 
The feasible set’s extent (thickness) in any specified direction is the longest projection 
in that direction of the line joining two samples, over all pairs of feasible samples. To 
minimise the thickness by varying direction γ, say, we can fix its length, say to 1, 
leaving m-1 degrees of freedom to search over, still a lot of work. It’s much easier 
(and much less informative) to measure the overall sensitivity to a single parameter  
via the difference between the largest and smallest feasible values of . Another 
relatively easy case is that the feasible set is thickest along the longest of all lines 
joining pairs of feasible samples. Its direction is a candidate for β but it’s a heavy task 
to check if the feasible range of  includes some large range throughout the feasible set. 

 

If we are lucky and the feasible set is one not-too-complicated lump (not markedly 
non-convex), we may be able to fit an object such as an m-dimensional box 
(orthotope) or ellipsoid tightly around the feasible set then examine the lengths of its 
axes. This analytically and computationally simple approach is popular in parameter 
identification, where the feasible set is convex if the model is linear in its parameters. 
It is clearly analogous to principal-component analysis. 

 

All of this assumes that the feasible set isn’t too complicated. It’s possible that 
interaction due to non-linear combinations of parameters makes the feasible set 
complicated. If we’re unlucky, it may be folded in places, have holes or even consist 
of two or more disjoint sections. Think, for instance, of a partly folded pancake or an 
American doughnut. In such a case, it may be both thin and thick in the same 
direction, i.e. the output may be highly sensitive to a parameter combination in some 
range and insensitive over another. RSA, like other SA methods, faces the problem of 
interpreting complex behaviour of the model.  

 

Spear, Grieb and Shang (1994) recognise the difficulties outlined above and describe 
an alternative RSA approach to identify high-sensitivity parameter combinations. It 
samples the parameters according to a prior pdf and operates essentially by density 
estimation on the collection of samples, the density being the local proportion of 
samples found to be feasible. It aims to partition parameter space into small regions 
with high densities of feasible points and large ones with low densities. The 
boundaries of these regions and the parameters determining them allow analysis of 
local sensitivity. Spear et al. find in practice that relative sensitivities, including 
interactions, vary greatly between high-sensitivity regions.  

 

There are other practical limitations of RSA. A good deal of initial trial and error may 
be needed to find any samples which meet all the requirements. For instance, 
elaborate models of processes with fairly uncomplicated overall behaviour are often 
met in environmental applications; they typically have acceptable parameter values 



 

spread over a wide range, since some combinations are not much restricted by the 
requirements, yet the feasible set is thin, with at least one combination critical. The 
feasible set then occupies only a small part of the volume of the region defined by the 
test ranges of the parameters. As a result, the proportion of accepted samples may be 
tiny and much of the computing wasted.  

 

3.5.7 Use of an emulator 

As mentioned above, a complex model may represent relatively simple and regular 
behaviour, at least for some inputs and outputs over some parameter ranges. This can 
easily happen when the model is arrived at by aggregating sub-models without ever 
asking whether simplification is possible. In such cases, there is a good chance that a 
much simpler model, an emulator, can be fitted to its sampled parameter-to-output 
behaviour. SA can then be performed on the simpler model, with very large 
computational saving. Among the forms of model employed for emulation are 
Gaussian processes (Oakley and O'Hagan, 2004), where the samples are fitted by 
kriging, and arbitrary polynomial chaos expansion (Crestaux et al., 2009; Oladyshkin 
and Nowak, 2012), where the fitting is by orthogonal polynomials. Regression-based 
smoothing techniques for emulation and SA are described by Storlie et al. (2008) and 
Ratto and Pagano (2010).  

 

The limitation of SA by emulation is that the emulator is, of course, only as good as 
the sample set which it fits. Use of an emulator for SA implies that the sample set 
conveys all the simulation-model behaviour whose sensitivity is of interest. In 
essence, an emulator is no more than an interpolator. Nonetheless, it may be a 
computationally cheap means to reveal features of the sensitivity which would be hard 
to see in the samples obtained from the simulation model. Castelletti et al. (2012) 
provide a framework for dynamic emulation modelling in environmental problems 
and give over 150 references, within a thematic issue on emulation techniques for the 
reduction and SA of complex environmental models in Volume 34 of Environmental 
Modelling and Software (Ratto et al., 2012).  
 

4  Further reading 

The aim of sensitivity analysis is understanding of how model parameters influence 
outputs. Where possible, analysis of derivatives or more general algebraic analysis of 
model equations can provide detailed insight. For more complex models, this may not 
be possible, but in that case sampling methods (such as sparse sampling, variance 
decomposition, Fourier analysis and binary classification) can often provide useful 
information at acceptable computational cost. It is important to be aware of the 
motivation, assumptions, capability and limitations of each method. This introduction 
has provided a sketch of them. A number of readable textbooks on SA techniques 
(Saltelli et al., 2004, 2008a, 2008b) give a more comprehensive picture, in far greater 
detail. Kleijnen (2005), Ratto et al. (2012) and Press et al. (1992) provide reviews of 
many aspects of SA, while Turanyi (2008) offers examples of SA in dynamical 
(reaction kinetics) models. 

 

A complement to SA is investigation of parameter identifiability, i.e. whether a given 
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model structure allows unique parameter values to be obtained from input and output 
measurements in the absence of measurement or model-structure error (structural 
identifiability) or more generally whether satisfactory (unambiguous, accurate 
enough) values can be obtained from realistic measurements. Shin et al. (2014) review 
this topic. 
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