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Preliminary Remarks

Sequential Monte Carlo (SMC) are a set of methods allowing us to
approximate virtually any sequence of probability distributions.

SMC are very popular in physics where they are used to compute
eigenvalues of positive operators, the solution of PDEs/integral
equations or simulate polymers.

We focus here on Applications of SMC to Hidden Markov Models
(HMM) for pedagogical reasons...

... and because this is certainly closer to your interests!

In the HMM framework, SMC are also widely known as Particle
Filtering/Smoothing methods.
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Organization of the Lectures

Filtering, smoothing and parameter estimation in HMM.

SMC for HMM.

Advanced SMC for HMM.

Recent Developments and Open Problems.
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Markov Models

We model the stochastic processes of interest as a discrete-time
Markov process fXkgk�1.

fXkgk�1 is characterized by its initial density

X1 � µ (�)

and its transition density

Xk j (Xk�1 = xk�1) � f ( �j xk�1) .

We introduce the notation xi :j = (xi , xi+1, ..., xj ) for i � j . We have
by de�nition

p (x1:n) = p (x1)
n

∏
k=2

p (xk j x1:k�1)

= µ (x1)
n

∏
k=2

f (xk j xk�1)
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Tracking Example

Assume you want to track a target in the XY plane then you can
consider the 4-dimensional state

Xk = (Xk ,1,Vk ,1,Xk ,2,Vk ,2)
T

The so-called constant velocity model states that

Xk = AXk�1 +Wk , Wk
i.i.d.� N (0,Σ) ,

A =
�
ACV 0
0 ACV

�
,ACV =

�
1 T
0 1

�
,

Σ = σ2
�

ΣCV 0
0 ΣCV

�
, ΣCV =

�
T 3/3 T 2/2
T 2/2 T

�
We obtain that

f (xk j xk�1) = N (xk ;Axk�1,Σ) .
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Speech Enhancement

A basic model for speech signals consists of modelling them as
autoregressive (AR) processes; i.e.

Sk =
d

∑
i=1

αiSk�i + Vk , Vk
i.i.d.� N

�
0, σ2s

�

If we write Uk = (Sk , ...,Sk�d )
T then we have equivalently

Uk = AUk�1 + BVk

where

A =

0BBB@
α1 α2 � � � αd
1

. . .
1

1CCCA , B =
0BBB@
1
0
...
0

1CCCA .
We have

fU (uk j uk�1) = N
�
uk ; (Auk�1)1 , σ

2
s

�
δ(uk�1)1:d�1

((uk )2:d )
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This model could be not �exible enough and we might want
additionally to make the AR coe¢ cient time-varying.

De�ning αk = (αk ,1, αk ,1, . . . , αk ,d ), we could consider

αk = αk�1 +Wk where Wk
i.i.d.� N

�
0, σ2αId

�
which implies that

fα (αk j αk�1) = N
�
αk ; αk�1, σ

2
αId
�
.

The process Xk = (αk ,Uk ) is Markov with transition density

f (xk j xk�1) = N
�
αk ; αk�1, σ

2
αId
�
N
�
uk ; (Akuk�1)1 , σ

2
s

�
�δ(uk�1)1:d�1

((uk )2:d )

where (Ak )1 = αk .
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Econometrics

The (simpli�ed) Heston model (1993) is used to described the
dynamics of an asset price St using the following model for
Xt = log (St )

dXt = µdt + dWt + dZt

where Zt is a jump process.

We can approximate this process by a discrete-time Markov process
using an Euler scheme

Xt+δ = Xt + δµ+Wt+δ,t + Zt+δ,t .

Similar discretization schemes are used for biochemichal networks
(e.g. D. Wilkinson, Stochastic modelling for systems biology, CRC,
2006), disease dynamics (e.g. E.L. Ionides, PNAS, 2006) or
population dynamics.
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Observation Model

We do not observe fXkgk�1; the process is hidden. We only have
access to another related process fYkgk�1 .

We assume that, conditional on fXkgk�1, the observations fYkgk�1
are independent and marginally distributed according to

Yk j (Xk = xk ) � g ( �j xk ) .

Formally this means that

p (y1:n j x1:n) =
n

∏
k=1

g (yk j xk ) .
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Figure: Graphical model representation of HMM
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Tracking Example (cont.)

The observation equation is dependent on the sensor.

Simple case

Yk = CXk +DEk , Ek
i.i.d.� N (0,Σe )

so
g (yk j xk ) = N (yk ;Cxk ,Σe ) .

Complex realistic case (Bearings-only-tracking)

Yk = tan
�1
�
Xk ,2
Xk ,1

�
+ Ek , Ek

i.i.d.� N
�
0, σ2

�
so

g (yk j xk ) = N
�
yk ; tan

�1
�
xk ,2
xk ,1

�
, σ2
�
.
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Stochastic Volatility

We have the following standard model

Xk = φXk�1 + Vk , Vk
i.i.d.� N

�
0, σ2

�
so that

f (xk j xk�1) = N
�
xk ; φxk�1, σ

2� .

We observe

Yk = β exp (Xk/2)Wk , Wk
i.i.d.� N (0, 1)

so that
g (yk j xk ) = N (yk ; β exp (xk ) , 1) .
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Inference in HMM

Given a realization of the observations Y1:n = y1:n, we are interested
in inferring the states X1:n.

We are in a Bayesian framework where

Prior : p (x1:n) = µ (x1)
n

∏
k=2

f (xk j xk�1) ,

Likelihood : p (y1:n j x1:n) =
n

∏
k=1

g (yk j xk )

Using Bayes�rule, we obtain

p (x1:n j y1:n) =
p (y1:n j x1:n) p (x1:n)

p (y1:n)

where the marginal likelihood is given by

p (y1:n) =
Z
p (y1:n j x1:n) p (x1:n) dx1:n.
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Point Estimates

From this posterior distribution, we can compute any point estimate.

The joint Maximum a Posteriori (MAP) sequence is given by

argmax p (x1:n j y1:n)

The marginal MAP is given for k � n by

argmax p (xk j y1:n)

where the marginal smoothing distribution is

p (xk j y1:n) =
Z
p (x1:n j y1:n) dx1:k�1dxk+1:n

We have also the minimum mean square estimate

E [Xk j y1:n ] =
Z
xkp (xk j y1:n) dxk .

Conceptually, there is no problem whatsoever.
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Sequential Inference in HMM

In particular, we will focus here on the sequential estimation of
p (x1:n j y1:n) and p (y1:n); that is at each time n we want update our
knowledge of the hidden process in light of yn.

There is a simple recursion relating p (x1:n�1j y1:n�1) to p (x1:n j y1:n)
given by

p (x1:n j y1:n) = p (x1:n�1j y1:n�1)
f (xn j xn�1) g (yn j xn)

p (yn j y1:n�1)

where

p (yn j y1:n�1) =
Z
g (yn j xn) f (xn j xn�1) p (xn�1j y1:n�1) dxn�1:n.

We will also simply write

p (x1:n j y1:n) ∝ p (x1:n�1j y1:n�1) f (xn j xn�1) g (yn j xn) .
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knowledge of the hidden process in light of yn.
There is a simple recursion relating p (x1:n�1j y1:n�1) to p (x1:n j y1:n)
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The "proof" is trivial and only involves rewriting

p (x1:n j y1:n) =
p (x1:n j y1:n)

p (x1:n�1j y1:n�1)
p (x1:n�1j y1:n�1)

=
p (x1:n, y1:n) /p (y1:n)

p (x1:n�1, y1:n�1) /p (y1:n�1)
p (x1:n�1j y1:n�1)

Now we have

p (x1:n, y1:n)

p (x1:n�1, y1:n�1)
= f (xn j xn�1) g (yn j xn)

and
p (y1:n)

p (y1:n�1)
= p (yn j y1:n�1)

and the result follows.
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In many papers/books in the literature, you will �nd the following
two-step prediction-updating recursion for the marginals so-called
�ltering distributions p (xn j y1:n) which is a direct consequence.

Prediction Step

p (xn j y1:n�1) =
Z
p (xn�1:n j y1:n�1) dxn�1

=
Z
p (xn j xn�1, y1:n�1) p (xn�1j y1:n�1) dxn�1

=
Z
f (xn j xn�1) p (xn�1j y1:n�1) dxn�1.

Updating Step

p (xn j y1:n) =
g (yn j xn) p (xn j y1:n�1)

p (yn j y1:n�1)

Although we will not use directly the �ltering recursion for SMC, the
�ltering distributions will also prove useful.
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(Marginal) Likelihood Evaluation

We have seen that

p (y1:n) =
Z
p (y1:n j x1:n) p (x1:n) dx1:n.

We also have the following decomposition

p (y1:n) = p (y1)
n

∏
k=2

p (yk j y1:k�1)

where

p (yk j y1:k�1) =
Z
p (yk , xk j y1:k�1) dxk

=
Z
g (yk j xk ) p (xk j y1:k�1) dxk

=
Z
g (yk j xk ) f (xn j xn�1) p (xk�1j y1:k�1) dxk�1

We have �broken" an high dimensional integral into the product of
lower dimensional integrals.
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Forward Filtering Backward Smoothing

Assume given n data, you are interested in estimating the marginal
smoothing distributions p (xk j y1:n) for k = 1, ..., n.

Forward pass: compute and store p (xk j y1:k ) and p (xk+1j y1:k ) for
k = 1, ..., n using the updating recursion.

Backward pass: use for k = n� 1, n� 2, ..., 1 the following recursion

p (xk j y1:n) =
Z f (xk+1j xk ) p (xk j y1:k )

p (xk+1j y1:k )
p (xk+1j y1:n) dxk+1.

Remark: Surprisingly, this recursion is almost never used for �nite
state-space HMM.
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Proof.

p (xk j y1:n) =
Z
p (xk , xk+1j y1:n) dxk+1

=
Z
p (xk j xk+1, y1:n) p (xk+1j y1:n) dxk+1

=
Z
p (xk j xk+1, y1:k ) p (xk+1j y1:n) dxk+1

=
Z f (xk+1j xk ) p (xk j y1:k )

p (xk+1j y1:k )
p (xk+1j y1:n) dxk+1
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Two-Filter Smoothing

An alternative approach consists of noting that

p (xk j y1:n) =
p (xk j y1:k ) p (yk+1:n j xk )

p (yk+1:n j y1:k )

In this case, the smoothing distribution is the combination of the
standard forward �lter and the so-called backward information �lter
given by

p (yk+1:n j xk ) =
Z
p (yk+1:n, xk+1j xk ) dxk+1

=
Z
p (yk+1:n j xk+1, xk ) f (xk+1j xk ) dxk+1

=
Z
p (yk+2:n j xk+1) g (yk+1j xk+1) f (xk+1j xk ) dxk+1

We can have
R
p (yk+1:n j xk ) dxk = ∞, this has led to numerous

wrong algorithms in the literature.
Remark: The two-�lter smoother is known as the forward-backward
smoother for �nite state-space HMM!
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Parameter Estimation for HMM

In most applications of interest, we have the initial distribution µ (x1),
the transition density f (xk j xk�1) and observation density g (yk j xk )
dependent on some hyperparameters θ and we write µθ (x1) ,
fθ (xk j xk�1) and gθ (yk j xk ) .

For example, in the tracking example, the variances of both the
dynamic noise and observation noise might be unknown.
In a full Bayesian framework, we set a prior p (θ) on θ. If we de�ne
the extended state Zk =

�
Z 1k ,Z

2
k

�
= (θ,Xk ), we can rewrite

everything as a standard HMM where

Z1 � p
�
z11
�

µz 11

�
z21
�
,

Zk j (Zk�1 = zk�1) � δz 1k�1

�
z1k
�
fz 1k
�
z2k
�� z2k�1� ,

Yk j (Zk = zk ) � gz 1k
�
yk j z2k

�
.

Conceptually, this solution is correct. Practically, the degeneracy of
the transition kernel of fZkgk�1 can cause serious numerical problems
for approximation methods.

Arnaud Doucet () Introduction to SMC MLSS 2007 22 / 28



Parameter Estimation for HMM

In most applications of interest, we have the initial distribution µ (x1),
the transition density f (xk j xk�1) and observation density g (yk j xk )
dependent on some hyperparameters θ and we write µθ (x1) ,
fθ (xk j xk�1) and gθ (yk j xk ) .
For example, in the tracking example, the variances of both the
dynamic noise and observation noise might be unknown.

In a full Bayesian framework, we set a prior p (θ) on θ. If we de�ne
the extended state Zk =

�
Z 1k ,Z

2
k

�
= (θ,Xk ), we can rewrite

everything as a standard HMM where

Z1 � p
�
z11
�

µz 11

�
z21
�
,

Zk j (Zk�1 = zk�1) � δz 1k�1

�
z1k
�
fz 1k
�
z2k
�� z2k�1� ,

Yk j (Zk = zk ) � gz 1k
�
yk j z2k

�
.

Conceptually, this solution is correct. Practically, the degeneracy of
the transition kernel of fZkgk�1 can cause serious numerical problems
for approximation methods.

Arnaud Doucet () Introduction to SMC MLSS 2007 22 / 28



Parameter Estimation for HMM

In most applications of interest, we have the initial distribution µ (x1),
the transition density f (xk j xk�1) and observation density g (yk j xk )
dependent on some hyperparameters θ and we write µθ (x1) ,
fθ (xk j xk�1) and gθ (yk j xk ) .
For example, in the tracking example, the variances of both the
dynamic noise and observation noise might be unknown.
In a full Bayesian framework, we set a prior p (θ) on θ. If we de�ne
the extended state Zk =

�
Z 1k ,Z

2
k

�
= (θ,Xk ), we can rewrite

everything as a standard HMM where

Z1 � p
�
z11
�

µz 11

�
z21
�
,

Zk j (Zk�1 = zk�1) � δz 1k�1

�
z1k
�
fz 1k
�
z2k
�� z2k�1� ,

Yk j (Zk = zk ) � gz 1k
�
yk j z2k

�
.

Conceptually, this solution is correct. Practically, the degeneracy of
the transition kernel of fZkgk�1 can cause serious numerical problems
for approximation methods.

Arnaud Doucet () Introduction to SMC MLSS 2007 22 / 28



Parameter Estimation for HMM

In most applications of interest, we have the initial distribution µ (x1),
the transition density f (xk j xk�1) and observation density g (yk j xk )
dependent on some hyperparameters θ and we write µθ (x1) ,
fθ (xk j xk�1) and gθ (yk j xk ) .
For example, in the tracking example, the variances of both the
dynamic noise and observation noise might be unknown.
In a full Bayesian framework, we set a prior p (θ) on θ. If we de�ne
the extended state Zk =

�
Z 1k ,Z

2
k

�
= (θ,Xk ), we can rewrite

everything as a standard HMM where

Z1 � p
�
z11
�

µz 11

�
z21
�
,

Zk j (Zk�1 = zk�1) � δz 1k�1

�
z1k
�
fz 1k
�
z2k
�� z2k�1� ,

Yk j (Zk = zk ) � gz 1k
�
yk j z2k

�
.

Conceptually, this solution is correct. Practically, the degeneracy of
the transition kernel of fZkgk�1 can cause serious numerical problems
for approximation methods.
Arnaud Doucet () Introduction to SMC MLSS 2007 22 / 28



Maximum Likelihood Parameter Estimation

Standard approaches for parameter estimation consists of computing
the Maximum Likelihood (ML) estimate

θML = argmax log pθ (y1:n)

The likelihood function can be multimodal and there is no guarantee
to �nd its global optimum.

Standard (stochastic) gradient algorithms can be used based for
example on Fisher�s identity

r log pθ (y1:n) =
Z
r log pθ (x1:n, y1:n) .pθ (x1:n j y1:n) dx1:n.

These algorithms can work decently but it can be di¢ cult to scale the
components of the gradients.
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Expectation-Maximization for HMM

We can use as an alternative the popular Expectation-Maximization
algorithm

θ(i ) = argmax Q
�

θ(i ), θ
�

where

Q
�

θ(i ), θ
�
=

Z
log pθ (x1:n, y1:n) .pθ(i�1) (x1:n j y1:n) dx1:n

=
Z
log (µ (x1) g (y1j x1)) .pθ(i�1) (x1j y1:n) dx1

+
n

∑
k=2

Z
log (f (xk j xk�1) g (yk j xk )) .pθ(i�1) (xk�1:k j y1:n) dxk�1:k .

Implementing this algorithm requires being able to compute
expectations with respect to the smoothing distributions
p

θ(i�1) (xk�1:k j y1:n) .
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Closed-form Inference in HMM

We have closed-form solutions for

Finite state-space HMM; i.e. E = fe1, ..., epg as all integrals are
becoming �nite sums
Linear Gaussian models; all the posterior distributions are Gaussian;
e.g. the celebrated Kalman �lter.
A whole reverse engineering literature exists for closed-form solutions in
alternative cases...

In many cases of interest, it is impossible to compute the solution in
closed-form and we need approximations,
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Aim of the Course

Present generic numerical approximation techniques to be able to
perform optimal state and parameter estimation in general non-linear
non-Gaussian models.

These methods are in some sense �asymptotically consistent�; i.e. if
my computational e¤orts increase without bounds, then the
approximations will converge towards the ground thruth.

Most approximation methods are not �asymptotically consistent�and
they might work better for a �xed computational complexity.
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Standard Approximations for Filtering Distributions

Gaussian approximations: Extended Kalman �lter, Unscented Kalman
�lter.

Gaussian sum approximations.

Projection �lters, Variational approximations.

Simple discretization of the state-space.

Analytical methods work in simple cases but are not reliable and it is
di¢ cult to diagnose when they fail.

Standard discretization of the space is expensive and di¢ cult to
implement in high-dimensional scenarios.
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Breakthrough

At the beginning of the 90�s, the optimal �ltering area was considered
virtually dead; there had not been any signi�cant progress for years
then...

Gordon, N.J. Salmond, D.J. Smith, A.F.M. "Novel approach to
nonlinear/non-Gaussian Bayesian state estimation", IEE Proceedings
F: Radar and Signal Processing, vol. 140, no. 2, pp. 107-113, 1993.

This article introduces a simple method which relies neither on a
functional approximation nor a deterministic grid.

This paper was ignored by most researchers for a few years until its
rediscovery in 1996 by Isard & Blake in the �eld of computer vision.
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