Luc Tartar

An Introduction to Sobolev Spaces and Interpolation Spaces

Contents

1	Historical Background	1
2	The Lebesgue Measure, Convolution	9
3	Smoothing by Convolution	15
4	Truncation; Radon Measures; Distributions	17
5	Sobolev Spaces; Multiplication by Smooth Functions	21
6	Density of Tensor Products; Consequences	27
7	Extending the Notion of Support	33
8	Sobolev's Embedding Theorem, $1 \leq p < N$	37
9	Sobolev's Embedding Theorem, $N \leq p \leq \infty$	43
10	Poincaré's Inequality	49
11	The Equivalence Lemma; Compact Embeddings	53
12	Regularity of the Boundary; Consequences	59
13	Traces on the Boundary	65
14	Green's Formula	69
15	The Fourier Transform	73
16	Traces of $H^s(\mathbb{R}^N)$	81
17	Proving that a Point is too Small	85

18	Compact Embeddings 89
19	Lax–Milgram Lemma
20	The Space $H(div; \Omega)$
21	Background on Interpolation; the Complex Method103
22	Real Interpolation; K-Method109
23	Interpolation of L^2 Spaces with Weights
24	Real Interpolation; J-Method
25	Interpolation Inequalities, the Spaces $(E_0, E_1)_{\theta,1}$
26	The Lions–Peetre Reiteration Theorem
27	Maximal Functions
28	Bilinear and Nonlinear Interpolation
29	Obtaining L^p by Interpolation, with the Exact Norm141
30	My Approach to Sobolev's Embedding Theorem
31	My Generalization of Sobolev's Embedding Theorem149
32	Sobolev's Embedding Theorem for Besov Spaces155
33	The Lions–Magenes Space $H_{00}^{1/2}(\Omega)$
34	Defining Sobolev Spaces and Besov Spaces for Ω 163
35	Characterization of $W^{s,p}(\mathbb{R}^N)$
36	Characterization of $W^{s,p}(\Omega)$
37	Variants with BV Spaces
38	Replacing BV by Interpolation Spaces
39	Shocks for Quasi-Linear Hyperbolic Systems
40	Interpolation Spaces as Trace Spaces
41	Duality and Compactness for Interpolation Spaces
42	Miscellaneous Questions

Contents XXV

43	Biographical Information
44	Abbreviations and Mathematical Notation
Rei	ferences
Ind	$\mathbf{lex} \dots \dots$