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Preface

The origins of this book lie in our earlier book Random Processes: A Math-
ematical Approach for Engineers, Prentice Hall, 1986. This book began as
a second edition to the earlier book and the basic goal remains unchanged
— to introduce the fundamental ideas and mechanics of random processes
to engineers in a way that accurately reflects the underlying mathematics,
but does not require an extensive mathematical background and does not
belabor detailed general proofs when simple cases suffice to get the basic
ideas across. In the thirteen years since the original book was published,
however, numerous improvements in the presentation of the material have
been suggested by colleagues, students, teaching assistants, and by our own
teaching experience. The emphasis of the class shifted increasingly towards
examples and a viewpoint that better reflected the course title: An Intro-
duction to Statistical Signal Processing. Much of the basic content of this
course and of the fundamentals of random processes can be viewed as the
analysis of statistical signal processing systems: typically one is given a
probabilistic description for one random object, which can be considered
as an input signal. An operation or mapping or filtering is applied to the
input signal (signal processing) to produce a new random object, the out-
put signal. Fundamental issues include the nature of the basic probabilistic
description and the derivation of the probabilistic description of the output
signal given that of the input signal and a description of the particular oper-
ation performed. A perusal of the literature in statistical signal processing,
communications, control, image and video processing, speech and audio
processing, medical signal processing, geophysical signal processing, and
classical statistical areas of time series analysis, classification and regres-
sion, and pattern recognition show a wide variety of probabilistic models for
input processes and for operations on those processes, where the operations
might be deterministic or random, natural or artificial, linear or nonlinear,
digital or analog, or beneficial or harmful. An introductory course focuses
on the fundamentals underlying the analysis of such systems: the theories
of probability, random processes, systems, and signal processing.

xi



xii PREFACE

When the original book went out of print, the time seemed ripe to
convert the manuscript from the prehistoric troff to LATEX and to undertake
a serious revision of the book in the process. As the revision became more
extensive, the title changed to match the course name and content. We
reprint the original preface to provide some of the original motivation for
the book, and then close this preface with a description of the goals sought
during the revisions.

Preface to Random Processes: An Introduction for

Engineers

Nothing in nature is random . . . A thing appears random
only through the incompleteness of our knowledge. — Spinoza,
Ethics I

I do not believe that God rolls dice. — attributed to Einstein

Laplace argued to the effect that given complete knowledge of the physics
of an experiment, the outcome must always be predictable. This metaphys-
ical argument must be tempered with several facts. The relevant param-
eters may not be measurable with sufficient precision due to mechanical
or theoretical limits. For example, the uncertainty principle prevents the
simultaneous accurate knowledge of both position and momentum. The
deterministic functions may be too complex to compute in finite time. The
computer itself may make errors due to power failures, lightning, or the
general perfidy of inanimate objects. The experiment could take place in
a remote location with the parameters unknown to the observer; for ex-
ample, in a communication link, the transmitted message is unknown a
priori, for if it were not, there would be no need for communication. The
results of the experiment could be reported by an unreliable witness —
either incompetent or dishonest. For these and other reasons, it is useful
to have a theory for the analysis and synthesis of processes that behave in
a random or unpredictable manner. The goal is to construct mathematical
models that lead to reasonably accurate prediction of the long-term average
behavior of random processes. The theory should produce good estimates
of the average behavior of real processes and thereby correct theoretical
derivations with measurable results.

In this book we attempt a development of the basic theory and ap-
plications of random processes that uses the language and viewpoint of
rigorous mathematical treatments of the subject but which requires only a
typical bachelor’s degree level of electrical engineering education including
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elementary discrete and continuous time linear systems theory, elementary
probability, and transform theory and applications. Detailed proofs are
presented only when within the scope of this background. These simple
proofs, however, often provide the groundwork for “handwaving” justifi-
cations of more general and complicated results that are semi-rigorous in
that they can be made rigorous by the appropriate delta-epsilontics of real
analysis or measure theory. A primary goal of this approach is thus to use
intuitive arguments that accurately reflect the underlying mathematics and
which will hold up under scrutiny if the student continues to more advanced
courses. Another goal is to enable the student who might not continue to
more advanced courses to be able to read and generally follow the modern
literature on applications of random processes to information and commu-
nication theory, estimation and detection, control, signal processing, and
stochastic systems theory.

Revision

The most recent (summer 1999) revision fixed numerous typos reported
during the previous year and added quite a bit of material on jointly Gaus-
sian vectors in Chapters 3 and 4 and on minimum mean squared error
estimation of vectors in Chapter 4.

This revision is a work in progress. Revised versions will be made avail-
able through the World Wide Web page

http://www-isl.stanford.edu/~gray/sp.html .
The material is copyrighted by the authors, but is freely available to any
who wish to use it provided only that the contents of the entire text remain
intact and together. A copyright release form is available for printing the
book at the Web page. Comments, corrections, and suggestions should be
sent to rmgray@stanford.edu. Every effort will be made to fix typos and
take suggestions into an account on at least an annual basis.

I hope to put together a revised solutions manual when time permits,
but time has not permitted during the past year.
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Glossary

{ } a collection of points satisfying some property, e.g., {r : r ≤ a} is the
collection of all real numbers less than or equal to a value a

[ ] an interval of real points including the end points, e.g., for a ≤ b
[a, b] = {r : a ≤ r ≤ b}. Called a closed interval.

( ) an interval of real points excluding the end points, e.g., for a ≤ b
(a, b) = {r : a < r < b}.Called an open interval. . Note this is empty if
a = b.

( ], [ ) denote intervals of real points including one endpoint and exclud-
ing the other, e.g., for a ≤ b (a, b] = {r : a < r ≤ b}, [a, b) = {r : a ≤ r < b}.

∅ The empty set, the set that contains no points.

Ω The sample space or universal set, the set that contains all of the
points.

F Sigma-field or event space

P probability measure

PX distribution of a random variable or vector X

pX probability mass function (pmf) of a random variable X

fX probability density function (pdf) of a random variable X

FX cumulative distribution function (cdf) of a random variable X

xv
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E(X) expectation of a random variable X

MX(ju) characteristic function of a random variable X
1F (x) indicator function of a set F

Φ Phi function (Eq. (2.78))

Q Complementary Phi function (Eq. (2.79))



Chapter 1

Introduction

A random or stochastic process is a mathematical model for a phenomenon
that evolves in time in an unpredictable manner from the viewpoint of the
observer. The phenomenon may be a sequence of real-valued measurements
of voltage or temperature, a binary data stream from a computer, a mod-
ulated binary data stream from a modem, a sequence of coin tosses, the
daily Dow-Jones average, radiometer data or photographs from deep space
probes, a sequence of images from a cable television, or any of an infinite
number of possible sequences, waveforms, or signals of any imaginable type.
It may be unpredictable due to such effects as interference or noise in a com-
munication link or storage medium, or it may be an information-bearing
signal-deterministic from the viewpoint of an observer at the transmitter
but random to an observer at the receiver.

The theory of random processes quantifies the above notions so that
one can construct mathematical models of real phenomena that are both
tractable and meaningful in the sense of yielding useful predictions of fu-
ture behavior. Tractability is required in order for the engineer (or anyone
else) to be able to perform analyses and syntheses of random processes,
perhaps with the aid of computers. The “meaningful” requirement is that
the models provide a reasonably good approximation of the actual phe-
nomena. An oversimplified model may provide results and conclusions that
do not apply to the real phenomenon being modeled. An overcomplicated
one may constrain potential applications, render theory too difficult to be
useful, and strain available computational resources. Perhaps the most dis-
tinguishing characteristic between an average engineer and an outstanding
engineer is the ability to derive effective models providing a good balance
between complexity and accuracy.

Random processes usually occur in applications in the context of envi-

1



2 CHAPTER 1. INTRODUCTION

ronments or systems which change the processes to produce other processes.
The intentional operation on a signal produced by one process, an “input
signal,” to produce a new signal, an “output signal,” is generally referred
to as signal processing, a topic easily illustrated by examples.

• A time varying voltage waveform is produced by a human speaking
into a microphone or telephone. This signal can be modeled by a
random process. This signal might be modulated for transmission,
it might be digitized and coded for transmission on a digital link,
noise in the digital link can cause errors in reconstructed bits, the
bits can then be used to reconstruct the original signal within some
fidelity. All of these operations on signals can be considered as signal
processing, although the name is most commonly used for the man-
made operations such as modulation, digitization, and coding, rather
than the natural possibly unavoidable changes such as the addition
of thermal noise or other changes out of our control.

• For very low bit rate digital speech communication applications, the
speech is sometimes converted into a model consisting of a simple
linear filter (called an autoregressive filter) and an input process. The
idea is that the parameters describing the model can be communicated
with fewer bits than can the original signal, but the receiver can
synthesize the human voice at the other end using the model so that
it sounds very much like the original signal.

• Signals including image data transmitted from remote spacecraft are
virtually buried in noise added to them on route and in the front
end amplifiers of the powerful receivers used to retrieve the signals.
By suitably preparing the signals prior to transmission, by suitable
filtering of the received signal plus noise, and by suitable decision or
estimation rules, high quality images have been transmitted through
this very poor channel.

• Signals produced by biomedical measuring devices can display spe-
cific behavior when a patient suddenly changes for the worse. Signal
processing systems can look for these changes and warn medical per-
sonnel when suspicious behavior occurs.

How are these signals characterized? If the signals are random, how
does one find stable behavior or structure to describe the processes? How
do operations on these signals change them? How can one use observations
based on random signals to make intelligent decisions regarding future be-
havior? All of these questions lead to aspects of the theory and application
of random processes.
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Courses and texts on random processes usually fall into either of two
general and distinct categories. One category is the common engineering
approach, which involves fairly elementary probability theory, standard un-
dergraduate Riemann calculus, and a large dose of “cookbook” formulas —
often with insufficient attention paid to conditions under which the formu-
las are valid. The results are often justified by nonrigorous and occasionally
mathematically inaccurate handwaving or intuitive plausibility arguments
that may not reflect the actual underlying mathematical structure and may
not be supportable by a precise proof. While intuitive arguments can be
extremely valuable in providing insight into deep theoretical results, they
can be a handicap if they do not capture the essence of a rigorous proof.

A development of random processes that is insufficiently mathematical
leaves the student ill prepared to generalize the techniques and results when
faced with a real-world example not covered in the text. For example, if
one is faced with the problem of designing signal processing equipment for
predicting or communicating measurements being made for the first time
by a space probe, how does one construct a mathematical model for the
physical process that will be useful for analysis? If one encounters a process
that is neither stationary nor ergodic, what techniques still apply? Can the
law of large numbers still be used to construct a useful model?

An additional problem with an insufficiently mathematical development
is that it does not leave the student adequately prepared to read modern
literature such as the many Transactions of the IEEE. The more advanced
mathematical language of recent work is increasingly used even in simple
cases because it is precise and universal and focuses on the structure com-
mon to all random processes. Even if an engineer is not directly involved
in research, knowledge of the current literature can often provide useful
ideas and techniques for tackling specific problems. Engineers unfamiliar
with basic concepts such as sigma-field and conditional expectation will find
many potentially valuable references shrouded in mystery.

The other category of courses and texts on random processes is the
typical mathematical approach, which requires an advanced mathemati-
cal background of real analysis, measure theory, and integration theory;
it involves precise and careful theorem statements and proofs, and it is
far more careful to specify precisely the conditions required for a result
to hold. Most engineers do not, however, have the required mathematical
background, and the extra care required in a completely rigorous develop-
ment severely limits the number of topics that can be covered in a typical
course — in particular, the applications that are so important to engineers
tend to be neglected. In addition, too much time can be spent with the
formal details, obscuring the often simple and elegant ideas behind a proof.
Often little, if any, physical motivation for the topics is given.
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This book attempts a compromise between the two approaches by giving
the basic, elementary theory and a profusion of examples in the language
and notation of the more advanced mathematical approaches. The intent
is to make the crucial concepts clear in the traditional elementary cases,
such as coin flipping, and thereby to emphasize the mathematical structure
of all random processes in the simplest possible context. The structure is
then further developed by numerous increasingly complex examples of ran-
dom processes that have proved useful in stochastic systems analysis. The
complicated examples are constructed from the simple examples by signal
processing, that is, by using a simple process as an input to a system whose
output is the more complicated process. This has the double advantage
of describing the action of the system, the actual signal processing, and
the interesting random process which is thereby produced. As one might
suspect, signal processing can be used to produce simple processes from
complicated ones.

Careful proofs are constructed only in elementary cases. For example,
the fundamental theorem of expectation is proved only for discrete random
variables, where it is proved simply by a change of variables in a sum.
The continuous analog is subsequently given without a careful proof, but
with the explanation that it is simply the integral analog of the summation
formula and hence can be viewed as a limiting form of the discrete result.
As another example, only weak laws of large numbers are proved in detail
in the mainstream of the text, but the stronger laws are at least stated and
they are discussed in some detail in starred sections.

By these means we strive to capture the spirit of important proofs with-
out undue tedium and to make plausible the required assumptions and con-
straints. This, in turn, should aid the student in determining when certain
tools do or do not apply and what additional tools might be necessary when
new generalizations are required.

A distinct aspect of the mathematical viewpoint is the “grand exper-
iment” view of random processes as being a probability measure on se-
quences (for discrete time) or waveforms (for continuous time) rather than
being an infinity of smaller experiments representing individual outcomes
(called random variables) that are somehow glued together. From this point
of view random variables are merely special cases of random processes. In
fact, the grand experiment viewpoint was popular in the early days of ap-
plications of random processes to systems and was called the “ensemble”
viewpoint in the work of Norbert Wiener and his students. By viewing the
random process as a whole instead of as a collection of pieces, many basic
ideas, such as stationarity and ergodicity, that characterize the dependence
on time of probabilistic descriptions and the relation between time averages
and probabilistic averages are much easier to define and study. This also
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permits a more complete discussion of processes that violate such proba-
bilistic regularity requirements yet still have useful relations between time
and probabilistic averages.

Even though a student completing this book will not be able to fol-
low the details in the literature of many proofs of results involving random
processes, the basic results and their development and implications should
be accessible, and the most common examples of random processes and
classes of random processes should be familiar. In particular, the student
should be well equipped to follow the gist of most arguments in the vari-
ous Transactions of the IEEE dealing with random processes, including the
IEEE Transactions on Signal Processing, IEEE Transactions on Image Pro-
cessing, IEEE Transactions on Speech and Audio Processing, IEEE Trans-
actions on Communications, IEEE Transactions on Control, and IEEE
Transactions on Information Theory.

It also should be mentioned that the authors are electrical engineers
and, as such, have written this text with an electrical engineering flavor.
However, the required knowledge of classical electrical engineering is slight,
and engineers in other fields should be able to follow the material presented.

This book is intended to provide a one-quarter or one-semester course
that develops the basic ideas and language of the theory of random pro-
cesses and provides a rich collection of examples of commonly encountered
processes, properties, and calculations. Although in some cases these ex-
amples may seem somewhat artificial, they are chosen to illustrate the way
engineers should think about random processes and for simplicity and con-
ceptual content rather than to present the method of solution to some
particular application. Sections that can be skimmed or omitted for the
shorter one-quarter curriculum are marked with a star (⋆). Discrete time
processes are given more emphasis than in many texts because they are
simpler to handle and because they are of increasing practical importance
in and digital systems. For example, linear filter input/output relations are
carefully developed for discrete time and then the continuous time analogs
are obtained by replacing sums with integrals.

Most examples are developed by beginning with simple processes and
then filtering or modulating them to obtain more complicated processes.
This provides many examples of typical probabilistic computations and
output of operations on simple processes. Extra tools are introduced as
needed to develop properties of the examples.

The prerequisites for this book are elementary set theory, elementary
probability, and some familiarity with linear systems theory (Fourier anal-
ysis, convolution, discrete and continuous time linear filters, and transfer
functions). The elementary set theory and probability may be found, for ex-
ample, in the classic text by Al Drake [12]. The Fourier and linear systems
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material can by found, for example, in Gray and Goodman [23]. Although
some of these basic topics are reviewed in this book in appendix A, they are
considered prerequisite as the pace and density of material would likely be
overwhelming to someone not already familiar with the fundamental ideas
of probability such as probability mass and density functions (including the
more common named distributions), computing probabilities, derived dis-
tributions, random variables, and expectation. It has long been the authors’
experience that the students having the most difficulty with this material
are those with little or no experience with elementary probability.

Organization of the Book

Chapter 2 provides a careful development of the fundamental concept of
probability theory — a probability space or experiment. The notions of
sample space, event space, and probability measure are introduced, and
several examples are toured. Independence and elementary conditional
probability are developed in some detail. The ideas of signal processing
and of random variables are introduced briefly as functions or operations
on the output of an experiment. This in turn allows mention of the idea
of expectation at an early stage as a generalization of the description of
probabilities by sums or integrals.

Chapter 3 treats the theory of measurements made on experiments:
random variables, which are scalar-valued measurements; random vectors,
which are a vector or finite collection of measurements; and random pro-
cesses, which can be viewed as sequences or waveforms of measurements.
Random variables, vectors, and processes can all be viewed as forms of sig-
nal processing: each operates on “inputs,” which are the sample points of
a probability space, and produces an “output,” which is the resulting sam-
ple value of the random variable, vector, or process. These output points
together constitute an output sample space, which inherits its own proba-
bility measure from the structure of the measurement and the underlying
experiment. As a result, many of the basic properties of random variables,
vectors, and processes follow from those of probability spaces. Probability
distributions are introduced along with probability mass functions, proba-
bility density functions, and cumulative distribution functions. The basic
derived distribution method is described and demonstrated by example. A
wide variety of examples of random variables, vectors, and processes are
treated.

Chapter 4 develops in depth the ideas of expectation, averages of ran-
dom objects with respect to probability distributions. Also called proba-
bilistic averages, statistical averages, and ensemble averages, expectations
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can be thought of as providing simple but important parameters describ-
ing probability distributions. A variety of specific averages are considered,
including mean, variance, characteristic functions, correlation, and covari-
ance. Several examples of unconditional and conditional expectations and
their properties and applications are provided. Perhaps the most impor-
tant application is to the statement and proof of laws of large numbers or
ergodic theorems, which relate long term sample average behavior of ran-
dom processes to expectations. In this chapter laws of large numbers are
proved for simple, but important, classes of random processes. Other im-
portant applications of expectation arise in performing and analyzing signal
processing applications such as detecting, classifying, and estimating data.
Minimum mean squared nonlinear and linear estimation of scalars and vec-
tors is treated in some detail, showing the fundamental connections among
conditional expectation, optimal estimation, and second order moments of
random variables and vectors.

Chapter 5 concentrates on the computation of second-order moments —
the mean and covariance — of a variety of random processes. The primary
example is a form of derived distribution problem: if a given random process
with known second-order moments is put into a linear system what are the
second-order moments of the resulting output random process? This prob-
lem is treated for linear systems represented by convolutions and for linear
modulation systems. Transform techniques are shown to provide a simpli-
fication in the computations, much like their ordinary role in elementary
linear systems theory. The chapter closes with a development of several
results from the theory of linear least-squares estimation. This provides
an example of both the computation and the application of second-order
moments.

Chapter 6 develops a variety of useful models of sometimes complicated
random processes. A powerful approach to modeling complicated random
processes is to consider linear systems driven by simple random processes.
Chapter 5 used this approach to compute second order moments, this chap-
ter goes beyond moments to develop a complete description of the output
processes. To accomplish this, however, one must make additional assump-
tions on the input process and on the form of the linear filters. The general
model of a linear filter driven by a memoryless process is used to develop
several popular models of discrete time random processes. Analogous con-
tinuous time random process models are then developed by direct descrip-
tion of their behavior. The basic class of random processes considered is
the class of independent increment processes, but other processes with sim-
ilar definitions but quite different properties are also introduced. Among
the models considered are autoregressive processes, moving-average pro-
cesses, ARMA (autoregressive-moving average) processes, random walks,
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independent increment processes, Markov processes, Poisson and Gaussian
processes, and the random telegraph wave. We also briefly consider an ex-
ample of a nonlinear system where the output random processes can at least
be partially described — the exponential function of a Gaussian or Poisson
process which models phase or frequency modulation. We close with ex-
amples of a type of “doubly stochastic” process, compound processes made
up by adding a random number of other random effects.

Appendix A sketches several prerequisite definitions and concepts from
elementary set theory and linear systems theory using examples to be en-
countered later in the book. The first subject is crucial at an early stage
and should be reviewed before proceeding to chapter 2. The second subject
is not required until chapter 5, but it serves as a reminder of material with
which the student should already be familiar. Elementary probability is not
reviewed, as our basic development includes elementary probability. The
review of prerequisite material in the appendix serves to collect together
some notation and many definitions that will be used throughout the book.
It is, however, only a brief review and cannot serve as a substitute for
a complete course on the material. This chapter can be given as a first
reading assignment and either skipped or skimmed briefly in class; lectures
can proceed from an introduction, perhaps incorporating some preliminary
material, directly to chapter 2.

Appendix B provides some scattered definitions and results needed in
the book that detract from the main development, but may be of interest
for background or detail. These fall primarily in the realm of calculus and
range from the evaluation of common sums and integrals to a consideration
of different definitions of integration. Many of the sums and integrals should
be prerequisite material, but it has been the authors’ experience that many
students have either forgotten or not seen many of the standard tricks
and hence several of the most important techniques for probability and
signal processing applications are included. Also in this appendix some
background information on limits of double sums and the Lebesgue integral
is provided.

Appendix C collects the common univariate pmf’s and pdf’s along with
their second order moments for reference.

The book concludes with an appendix suggesting supplementary read-
ing, providing occasional historical notes, and delving deeper into some of
the technical issues raised in the book. We assemble in that section refer-
ences on additional background material as well as on books that pursue
the various topics in more depth or on a more advanced level. We feel that
these comments and references are supplementary to the development and
that less clutter results by putting them in a single appendix rather than
strewing them throughout the text. The section is intended as a guide for
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further study, not as an exhaustive description of the relevant literature,
the latter goal being beyond the authors’ interests and stamina.

Each chapter is accompanied by a collection of problems, many of which
have been contributed by collegues, readers, students, and former students.
It is important when doing the problems to justify any “yes/no” answers.
If an answer is “yes,” prove it is so. If the answer is “no,” provide a
counterexample.
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Chapter 2

Probability

2.1 Introduction

The theory of random processes is a branch of probability theory and prob-
ability theory is a special case of the branch of mathematics known as
measure theory. Probability theory and measure theory both concentrate
on functions that assign real numbers to certain sets in an abstract space
according to certain rules. These set functions can be viewed as measures
of the size or weight of the sets. For example, the precise notion of area
in two-dimensional Euclidean space and volume in three-dimensional space
are both examples of measures on sets. Other measures on sets in three
dimensions are mass and weight. Observe that from elementary calculus
we can find volume by integrating a constant over the set. From physics
we can find mass by integrating a mass density or summing point masses
over a set. In both cases the set is a region of three-dimensional space. In
a similar manner, probabilities will be computed by integrals of densities
of probability or sums of “point masses” of probability.

Both probability theory and measure theory consider only nonnegative
real-valued set functions. The value assigned by the function to a set is
called the probability or the measure of the set, respectively. The basic
difference between probability theory and measure theory is that the former
considers only set functions that are normalized in the sense of assigning
the value of 1 to the entire abstract space, corresponding to the intuition
that the abstract space contains every possible outcome of an experiment
and hence should happen with certainty or probability 1. Subsets of the
space have some uncertainty and hence have probability less than 1.

Probability theory begins with the concept of a probability space, which
is a collection of three items:

11
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1. An abstract space Ω, such as encountered in appendix A, called a
sample space, which contains all distinguishable elementary outcomes
or results of an experiment. These points might be names, numbers,
or complicated signals.

2. An event space or sigma-field F consisting of a collection of subsets
of the abstract space which we wish to consider as possible events and
to which we wish to assign a probability. We require that the event
space have an algebraic structure in the following sense: any finite
or infinite sequence of set-theoretic operations (union, intersection,
complementation, difference, symmetric difference) on events must
produce other events, even countably infinite sequences of operations.

3. A probability measure P — an assignment of a number between 0 and
1 to every event, that is, to every set in the event space. A probability
measure must obey certain rules or axioms and will be computed by
integrating or summing, analogous to area, volume, and mass.

This chapter is devoted to developing the ideas underlying the triple
(Ω,F , P ), which is collectively called a probability space or an experiment.
Before making these ideas precise, however, several comments are in order.

First of all, it should be emphasized that a probability space is composed
of three parts; an abstract space is only one part. Do not let the terminology
confuse you: “space” has more than one usage. Having an abstract space
model all possible distinguishable outcomes of an experiment should be
an intuitive idea since it is simply giving a precise mathematical name
to an imprecise English description. Since subsets of the abstract space
correspond to collections of elementary outcomes, it should also be possible
to assign probabilities to such sets. It is a little harder to see, but we can
also argue that we should focus on the sets and not on the individual points
when assigning probabilities since in many cases a probability assignment
known only for points will not be very useful. For example, if we spin a fair
pointer and the outcome is known to be equally likely to be any number
between 0 an 1, then the probability that any particular point such as
.3781984637 or exactly 1/π occurs is 0 because there are an uncountable
infinity of possible points, none more likely than the others1. Hence knowing
only that the probability of each and every point is zero, we would be hard

1A set is countably infinite if it can be put into one-to-one correspondence

with the nonnegative integers and hence can be counted. For example, the set of

positive integers is countable and the set of all rational numbers is countable. The

set of all irrational numbers and the set of all real numbers are both uncountable.

See appendix A for a discussion of countably infinite vs. uncountably infinite

spaces.
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pressed to make any meaningful inferences about the probabilities of other
events such as the outcome being between 1/2 and 3/4. Writers of fiction
(including Patrick O’Brian in his Aubrey-Maturin series) have often made
much of the fact that extremely unlikely events often occur. One can say
that zero probability events occur all virtually all the time since the a priori
probability that the universe will be exactly a particular configuration at
12:01AM Coordinated Universal Time (aka Greenwich Mean Time) is 0,
yet the universe will indeed be in some configuration at that time.

The difficulty inherent in this example leads to a less natural aspect of
the probability space triumvirate — the fact that we must specify an event
space or collection of subsets of our abstract space to which we wish to
assign probabilities. In the example it is clear that taking the individual
points and their countable combinations is not enough (see also problem
2.2). On the other hand, why not just make the event space the class of
all subsets of the abstract space? Why require the specification of which
subsets are to be deemed sufficiently important to be blessed with the name
“event”? In fact, this concern is one of the principal differences between
elementary probability theory and advanced probability theory (and the
point at which the student’s intuition frequently runs into trouble). When
the abstract space is finite or even countably infinite, one can consider all
possible subsets of the space to be events, and one can build a useful theory.
When the abstract space is uncountably infinite, however, as in the case of
the space consisting of the real line or the unit interval, one cannot build
a useful theory without constraining the subsets to which one will assign
a probability. Roughly speaking, this is because probabilities of sets in
uncountable spaces are found by integrating over sets, and some sets are
simply too nasty to be integrated over. Although it is difficult to show,
for such spaces there does not exist a reasonable and consistent means
of assigning probabilities to all subsets without contradiction or without
violating desirable properties. In fact, is is so difficult to show that such
“non-probability-measurable” subsets of the real line exist that we will not
attempt to do so in this book. The reader should at least be aware of the
problem so that the need for specifying an event space is understood. It
also explains why the reader is likely to encounter phrases like “measurable
sets” and “measurable functions” in the literature.

Thus a probability space must make explicit not just the elementary
outcomes or “finest-grain” outcomes that constitute our abstract space; it
must also specify the collections of sets of these points to which we intend
to assign probabilities. Subsets of the abstract space that do not belong to
the event space will simply not have probabilities defined. The algebraic
structure that we have postulated for the event space will ensure that if
we take (countable) unions of events (corresponding to a logical “or”) or
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intersections of events (corresponding to a logical “and”), then the resulting
sets are also events and hence will have probabilities. In fact, this is one of
the main functions of probability theory: given a probabilistic description
of a collection of events, find the probability of some new event formed by
set-theoretic operations on the given events.

Up to this point the notion of signal processing has not been mentioned.
It enters at a fundamental level if one realizes that each individual point
ω ∈ Ω produced in an experiment can be viewed as a signal , it might be a
single voltage conveying the value of a measurement, a vector of values, a
sequence of values, or a waveform, any one of which can be interpreted as a
signal measured in the environment or received from a remote transmitter
or extracted from a physical medium that was previously recorded. Signal
processing in general is the performing of some operation on the signal. In
its simplest yet most general form this consists of applying some function or
mapping or operation g to the signal or input ω to produce an output g(ω),
which might be intended to guess some hidden parameter, extract useful
information from noise, enhance an image, or any simple or complicated
operation intended to produce a useful outcome. If we have a probabilistic
description of the underlying experiment, then we should be able to derive
a probabilistic description of the outcome of the signal processor. This, in
fact, is the core problem of derived distributions, one of the fundamental
tools of both probability theory and signal processing. In fact, this idea of
defining functions on probability spaces is the foundation for the definition
of random variables, random vectors, and random processes, which will in-
herit their basic properties from the underlying probability space, thereby
yielding new probability spaces. Much of the theory of random processes
and signal processing consists of developing the implications of certain oper-
ations on probability spaces: beginning with some probability space we form
new ones by operations called variously mappings, filtering, sampling, cod-
ing, communicating, estimating, detecting, averaging, measuring, enhanc-
ing, predicting, smoothing, interpolating, classifying, analyzing or other
names denoting linear or nonlinear operations. Stochastic systems theory
is the combination of systems theory with probability theory. The essence
of stochastic systems theory is the connection of a system to a probability
space. Thus a precise formulation and a good understanding of probability
spaces are prerequisites to a precise formulation and correct development
of examples of random processes and stochastic systems.

Before proceeding to a careful development, several of the basic ideas
are illustrated informally with simple examples.
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2.2 Spinning Pointers and Flipping Coins

Many of the basic ideas at the core of this text can be introduced and illus-
trated by two very simple examples, the continuous experiment of spinning
a pointer inside a circle and the discrete experiment of flipping a coin.

A Uniform Spinning Pointer

Suppose that Nature (or perhaps Tyche, the Greek Goddess of chance) spins
a pointer in a circle as depicted in Figure 2.1. When the pointer stops it can

✫✪
✬✩

✻
0.0

0.5

0.250.75

Figure 2.1: The Spinning Pointer

point to any number in the unit interval [0, 1)
∆
= {r : 0 ≤ r < 1}. We call

[0, 1) the sample space of our experiment and denote it by a capital Greek
omega, Ω. What can we say about the probabilities or chances of particular
events or outcomes occurring as a result of this experiment? The sorts of
events of interest are things like “the pointer points to a number between 0
and .5” (which one would expect should have probability 0.5 if the wheel is
indeed fair) or “the pointer does not lie between 0.75 and 1” (which should
have a probability of 0.75). Two assumptions are implicit here. The first
is that an “outcome” of the experiment or an “event” to which we can
assign a probability is simply a subset of [0, 1). The second assumption
is that the probability of the pointer landing in any particular interval of
the sample space is proportional to the length of the interval. This should
seem reasonable if we indeed believe the spinning pointer to be “fair” in the
sense of not favoring any outcomes over any others. The bigger a region of
the circle, the more likely the pointer is to end up in that region. We can
formalize this by stating that for any interval [a, b] = {r : a ≤ r ≤ b} with
0 ≤ a ≤ b < 1 we have that the probability of the event “the pointer lands
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in the interval [a, b]” is

P ([a, b]) = b− a. (2.1)

We do not have to restrict interest to intervals in order to define probabil-
ities consistent with (2.1). The notion of the length of an interval can be
made precise using calculus and simultaneously extended to any subset of
[0, 1) by defining the probability P (F ) of a set F ⊂ [0, 1) as

P (F )
∆
=

∫

F

f(r) dr =

∫
1F (r)f(r) dr, (2.2)

where f(r) = 1 for all r ∈ [0, 1). With this definition it is clear that for any
0 ≤ a < b ≤ 1 that

P ([a, b]) =

∫ b

a

f(r) dr = b− a. (2.3)

We could also arrive at effectively the same model by considering the sample

space to be the entire real line, Ω = ℜ ∆
= (−∞,∞) and defining the pdf to

be

f(r) =

{
1 if r ∈ [0, 1)

0 otherwise
. (2.4)

The integral can also be expressed without specifying limits of integration
by using the indicator function of a set

1F (r) =

{
1 if r ∈ F

0 if r 
∈ F
(2.5)

as

P (F )
∆
=

∫
1F (r)f(r) dr. (2.6)

Other implicit assumptions have been made here. The first is that
probabilities must satisfy some consistency properties, we cannot arbitrar-
ily define probabilities of distinct subsets of [0, 1) (or, more generally, ℜ)
without regards to the implications of probabilities for other sets; the prob-
abilities must be consistent with each other in the sense that they do not
contradict each other. For example, if we have two formulas for comput-
ing probabilities of a common event, as we have with (2.1) and (2.2) for
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computing the probability of an interval, then both formulas must give the
same numerical result — as they do in this example.

The second implicit assumption is that the integral exists in a well de-
fined sense, that it can be evaluated using calculus. As surprising as it
may seem to readers familiar only with typical engineering-oriented devel-
opments of Riemann integration, the integral of (2.2) is in fact not well
defined for all subsets of [0, 1). But we leave this detail for later and as-
sume for the moment that we only encounter sets for which the integral
(and hence the probability) is well defined.

The function f(r) is called a probability density function or pdf since it is
a nonnegative point function that is integrated to compute total probability
of a set, just as a mass density function is integrated over a region to
compute the mass of a region in physics. Since in this example f(r) is
constant over a region, it is called a uniform pdf..

The formula (2.2) for computing probability has many implications,
three of which merit comment at this point.
• Probabilities are nonnegative:

P (F ) ≥ 0 for any F. (2.7)

This follows since integrating a nonnegative argument yields a nonnegative
result.
• The probability of the entire sample space is 1:

P (Ω) = 1. (2.8)

This follows since integrating 1 over the unit interval yields 1, but it has
the intuitive interpretation that the probability that “something happens”
is 1.
• The probability of the union of disjoint regions is the sum of the proba-
bilities of the individual events:

If F ∩G = ∅ , then P (F ∪G) = P (F ) + P (G). (2.9)

This follows immediately from the properties of integration:

P (F ∪G) =

∫

F∪G
f(r) dr

=

∫

F

f(r) dr +

∫

G

f(r) dr

= P (F ) + P (G).

An alternative proof follows by observing that since F and G are disjoint,
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1F∪G(r) = 1F (r) + 1G(r) and hence linearity of integration implies that

P (F ∪G) =

∫
1F∪G(r)f(r) dr

=

∫
(1F (r) + 1G(r))f(r) dr

=

∫
1F (r)f(r) dr +

∫
1G(r)f(r) dr

= P (F ) + P (G).

This property is often called the additivity property of probability. The
second proof makes it clear that additivity of probability is an immediate
result of the linearity of integration, i.e., that the integral of the sum of two
functions is the sum of the two integrals.

Repeated application of additivity for two events shows that for any
finite collection {Fk; k = 1, 2, . . . ,K} of disjoint or mutually exclusive
events, i.e., events with the property that Fk

⋂
Fj = ∅ for all k 
= j, we

have that

P (

K⋃

k=1

Fk) =

K∑

k=1

P (Fk), (2.10)

showing that additivity is equivalent to finite additivity , the similar prop-
erty for finite sets instead of just two sets. Since additivity is a special case
of finite additivity, the two notions are equivalent and we can use them
interchangably.

These three properties of nonnegativity, normalization, and additivity
are fundamental to the definition of the general notion of probability and
will form three of the four axioms needed for a precise development. It
is tempting to call an assignment P of numbers to subsets of a sample
space a probability measure if it satisfies these three properties, but we
shall see that a fourth condition, which is crucial for having well behaved
limits and asymptotics, will be needed to complete the definition. Pending
this fourth condition, (2.2) defines a probability measure. A sample space
together with a probability measure provide a mathematical model for an
experiment. This model is often called a probability space, but for the
moment we shall stick to the less intimidating word of experiment.

Simple Properties

Several simple properties of probabilities can be derived from what we have
so far. As particularly simple, but still important, examples, consider the
following. following.
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Assume that P is a set function defined on a sample space Ω that satisfies
properties (2.7 – 2.9). Then

(a) P (F c) = 1− P (F ) .

(b) P (F ) ≤ 1 .

(c) Let ∅ be the null or empty set, then P (∅) = 0 .

(d) If {Fi; i = 1, 2, . . . ,K} is a finite partition of Ω, i.e., if Fi ∩ Fk = ∅
when i 
= k and

⋃
i=1 Fi = Ω, then

P (G) =

K∑

i=1

P (G ∩ Fi) (2.11)

for any event G.

Proof:

(a) F ∪F c = Ω implies P (F ∪F c) = 1 (property 2.8). F ∩F c = ∅ implies
1 = P (F ∪ F c) = P (F ) + P (F c) (property 2.9), which implies (a).

(b) P (F ) = 1− P (F c) ≤ 1 (property 2.7 and (a) above).

(c) By property 2.8 and (a) above, P (Ωc) = P (∅) = 1− P (Ω) = 0.

(d) P (G) = P (G ∩Ω) = P (G ∩ (
⋃

i

Fi)) = P (
⋃

i

(G ∩ Fi)) =
∑

i

P (G ∩ Fi).

Observe that although the null or empty set ∅ has probability 0, the
converse is not true in that a set need not be empty just because it has
zero probability. In the uniform fair wheel example the set F = {1/n : n =
1, 2, 3, . . . } is not empty, but it does have probability zero. This follows
rougly because for any finite N P ({1/n : n = 1, 2, 3, . . . , N}) = 0 and
therefore the limit as N →∞ must also be zero.

A Single Coin Flip

The original example of a spinning wheel is continuous in that the sample
space consists of a continuum of possible outcomes, all points in the unit
interval. Sample spaces can also be discrete, as is the case of modeling
a single flip of a “fair” coin with heads labeled “1” and tails labeled “0”,
i.e., heads and tails are equally likely. The sample space in this example is
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Ω = {0, 1} and the probability for any event or subset of ω can be defined
in a reasonable way by

P (F ) =
∑

r∈F
p(r), (2.12)

or, equivalently,

P (F ) =
∑

1F (r)p(r), (2.13)

where now p(r) = 1/2 for each r ∈ Ω. The function p is called a proba-
bility mass function or pmf because it is summed over points to find total
probability, just as point masses are summed to find total mass in physics.
Be cautioned that P is defined for sets and p is defined only for points in
the sample space. This can be confusing when dealing with one-point or
singleton sets, for example

P ({0}) = p(0)

P ({1}) = p(1).

This may seem too much work for such a little example, but keep in mind
that the goal is a formulation that will work for far more complicated and
interesting examples. This example is different from the spinning wheel
in that the sample space is discrete instead of continuous and that the
probabilities of events are defined by sums instead of integrals, as one should
expect when doing discrete math. It is easy to verify, however, that the
basic properties (2.7)–(2.9) hold in this case as well (since sums behave like
integrals), which in turn implies that the simple properties (a)–(b) also
hold.

A Single Coin Flip as Signal Processing

The coin flip example can also be derived in a very different way that pro-
vides our first example of signal processing. Consider again the spinning
pointer so that the sample space is Ω and the probability measure P is de-
scribed by (2.2) using a uniform pdf as in (2.4). Performing the experiment
by spinning the pointer will yield some real number r ∈ [0, 1). Define a
measurement q made on this outcome by

q(r) =

{
1 if r ∈ [0, 0.5]

0 if r ∈ (0.5, 1)
. (2.14)
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This function can also be defined somewhat more economically as

q(r) = 1[0,0.5](r). (2.15)

This is an example of a quantizer , an operation that maps a continuous
value into a discrete one. Quantization is an example of signal processing
since it is a function or mapping defined on an input space, here Ω = [0, 1)
or Ω = ℜ, producing a value in some output space, here a binary space
Ωg = {0, 1}. The dependence of a function on its input space or domain
of definition Ω and its output space or range Ωg,is often denoted by q :
Ω → Ωg. Although introduced as an example of simple signal processing,
the usual name for a real-valued function defined on the sample space of
a probability space is a random variable. We shall see in the next chapter
that there is an extra technical condition on functions to merit this name,
but that is a detail that can be postponed.

The output space Ωg can be considered as a new sample space, the space
corresponding to the possible values seen by an observer of the output of the
quantizer (an observer who might not have access to the original space). If
we know both the probability measure on the input space and the function,
then in theory we should be able to describe the probability measure that
the output space inherits from the input space. Since the output space is
discrete, it should be described by a pmf, say pq. Since there are only two
points, we need only find the value of pq(1) (or pq(0) since pq(0)+pq(1) = 1).
On output of 1 is seen if and only if the input sample point lies in [0, 0.5],

so it follows easily that pq(0) = P ([0, 0.5]) =
∫ 0.5
0

f(r), dr = 0.5, exactly the
value assumed for the fair coin flip model. The pmf pq implies a probability
measure on the output space Ωg by

Pq(F ) =
∑

ω∈F
pq(ω),

where the subscript q distinguishes the probability measure Pq on the out-
put space from the probability measure P on the input space. Note that
we can define any other binary quantizer corresponding to an “unfair” or
biased coin by changing the 0.5 to some other value.

This simple example makes several fundamental points that will evolve
in depth in the course of this material. First, it provides an example of
signal processing and the first example of a random variable, which is essen-
tially just a mapping of one sample space into another. Second, it provides
an example of a derived distribution: given a probability space described
by Ω and P and a function (random variable) q defined on this space, we
have derived a new probability space describing the outputs of the function
with sample space Ωq and probability measure Pq. Third, it is an example
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of a common phenomenon that quite different models can result in iden-
tical sample spaces and probability measures. Here the coin flip could be
modeled in a directly given fashion by just describing the sample space
and the probability measure, or it can be modeled in an indirect fashion
as a function (signal processing, random variable) on another experiment.
This suggests, for example, that to study coin flips empirically we could
either actually flip a fair coin, or we could spin a fair wheel and quantize
the output. Although the second method seems more complicated, it is in
fact extremely common since most random number generators (or pseudo-
random number generators) strive to produce random numbers with a uni-
form distribution on [0, 1) and all other probability measures are produced
by further signal processing. We have seen how to do this for a simple coin
flip. In fact any pdf or pmf can be generated in this way. (See problem 3.7.)
The generation of uniform random numbers is both a science and an art.
Most function roughly as follows. One begins with floating point number
in (0, 1) called the seed, say a, and uses another postive floating point num-
ber, say b, as a multiplier. A sequence xn is then generated recursively as
x0 = a and xn = b× xn − 1 mod (1) for n = 1, 2, . . . , that is, the fractional
part of b × xn − 1. If the two numbers a and b are suitably chosen then
xn should appear to be uniform. (Try it!) In fact, since there are only
a finite number (albeit large) of possible numbers that can be represented
on a digital computer, this algorithm must eventually repeat and hence xn
must be a periodic sequence. The goal of designing a good pseudo-random
number generater is to make the period as long as possible and to make
the sequences produced look as much as possible like a random sequence in
the sense that statistical tests for independence are fooled.

Abstract vs. Concrete

It may seem strange that the axioms of probability deal with apparently
abstract ideas of measures instead of corresponding physical intuition that
the probability tells you something about the fraction of times specific
events will occur in a sequence of trials, such as the relative frequency of
a pair of dice summing to seven in a sequence of many roles, or a decision
algorithm correctly detecting a single binary symbol in the presence of noise
in a transmitted data file. Such real world behavior can be quantified by
the idea of a relative frequency, that is, suppose the output of the nth of a
sequence of trials is xn and we wish to know the relative frequency that xn
takes on a particular value, say a. Then given an infinite sequence of trials
x = {x0, x1, x2, . . . } we could define the relative frequency of a in x by

ra(x) = lim
n→∞

number of k ∈ {0, 1, . . . , n− 1} for which xk = a

n
. (2.16)
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For example, the relative frequency of heads in an infinite sequence of fair
coin flips should be 0.5, the relative frequency of rolling a pair of fair dice
and having the sum be 7 in an infinite sequence of rolls should be 1/6 since
the pairs (1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3) are equally likely and form
6 of the possible 36 pairs of outcomes. Thus one might suspect that to
make a rigorous theory of probability requires only a rigorous definition
of probabilities as such limits and a reaping of the resulting benefits. In
fact much of the history of theoretical probability consisted of attempts to
accomplish this, but unfortunately it does not work. Such limits might not
exist, or they might exist and not converge to the same thing for different
repetitions of the same experiment. Even when the limits do exist there
is no guarantee they will behave as intuition would suggest when one tries
to do calculus with probabilities, to compute probabilities of complicated
events from those of simple related events. Attempts to get around these
problems uniformly failed and probability was not put on a rigorous basis
until the axiomatic approach was completed by Kolmogorov. The axioms
do, however, capture certain intuitive aspects of relative frequencies. Rel-
ative frequencies are nonnegative, the relative frequency of the entire set
of possible outcomes is one, and relative frequencies are additive in the
sense that the relative frequency of the symbol a or the symbol b occurring,
ra∪b(x), is clearly ra(x) + rb(x). Kolmogorov realized that beginning with
simple axioms could lead to rigorous limiting results of the type needed,
while there was no way to begin with the limiting results as part of the
axioms. In fact it is the fourth axiom, a limiting version of additivity, that
plays the key role in making the asymptotics work.

2.3 Probability Spaces

We now turn to a more thorough development of the ideas introduced in
the previous section.

A sample space Ω is an abstract space, a nonempty collection of points
or members or elements called sample points (or elementary events or ele-
mentary outcomes).

An event space (or sigma-field or sigma-algebra) F of a sample space
Ω is a nonempty collection of subsets of Ω called events with the following
properties:

If F ∈ F , then also F c ∈ F , (2.17)

that is, if a given set is an event, then its complement must also be an
event. Note that any particular subset of Ω may or may not be an event
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(review the quantizer example).

If for some finite n, Fi ∈ F , i = 1, 2, . . . , n, then also

n⋃

i=1

Fi ∈ F , (2.18)

that is, a finite union of events must also be an event.

If Fi ∈ F , i = 1, 2, . . . , then also

∞⋃

i=1

Fi ∈ F , (2.19)

that is, a countable union of events must also be an event.
We shall later see alternative ways of describing (2.19), but this form is

the most common.
Eq. (2.18) can be considered as a special case of (2.19) since, for exam-

ple, given a finite collection Fi; i = 1, . . . , N , we can construct an infinite
sequence of sets with the same union, e.g., given Fk, k = 1, 2, . . . , N , con-
struct an infinite sequence Gn with the same union by choosing Gn = Fn
for n = 1, 2, . . . N and Gn = ∅ otherwise. It is convenient, however, to con-
sider the finite case separately. If a collection of sets satisfies only (2.17)
and (2.18) but not 2.19, then it is called a field or algebra of sets. For this
reason, in elementary probability theory one often refers to “set algebra”
or to the “algebra of events.” (Don’t worry about why 2.19 might not be
satisfied.) Both (2.17) and (2.18) can be considered as “closure” properties;
that is, an event space must be closed under complementation and unions
in the sense that performing a sequence of complementations or unions of
events must yield a set that is also in the collection, i.e., a set that is also
an event. Observe also that (2.17), (2.18), and (A.11) imply that

Ω ∈ F , (2.20)

that is, the whole sample space considered as a set must be in F ; that is,
it must be an event. Intuitively, Ω is the “certain event,” the event that
“something happens.” Similarly, (2.20) and (2.17) imply that

∅ ∈ F , (2.21)

and hence the empty set must be in F , corresponding to the intuitive event
“nothing happens.”



2.3. PROBABILITY SPACES 25

A few words about the different nature of membership in Ω and F is in
order. If the set F is a subset of Ω, then we write F ⊂ Ω. If the subset F
is also in the event space, then we write F ∈ F . Thus we use set inclusion
when considering F as a subset of an abstract space, and element inclusion
when considering F as a member of the event space and hence as an event.
Alternatively, the elements of Ω are points, and a collection of these points
is a subset of Ω; but the elements of F are sets — subsets of Ω, — and not
points. A student should ponder the different natures of abstract spaces of
points and event spaces consisting of sets until the reasons for set inclusion
in the former and element inclusion in the latter space are clear. Consider
especially the difference between an element of Ω and a subset of Ω that
consists of a single point. The latter might or might not be an element of F ,
the former is never an element of F . Although the difference might seem to
be merely semantics, the difference is important and should be thoroughly
understood.

A measurable space (Ω,F) is a pair consisting of a sample space Ω
and an event space or sigma-field F of subsets of Ω. The strange name
“measurable space” reflects the fact that we can assign a measure such as a
probability measure, to such a space and thereby form a probability space
or probability measure space.

A probability measure P on a measurable space (Ω,F) is an assignment
of a real number P (F ) to every member F of the sigma-field (that is, to
every event) such that P obeys the following rules, which we refer to as the
axioms of probability.

Axiom 2.1

P (F ) ≥ 0 for all F ∈ F (2.22)

i.e., no event has negative probability.

Axiom 2.2

P (Ω) = 1 (2.23)

i.e., the probability of “everything” is one.

Axiom 2.3 If Fi, i = 1, 2, . . . , n are disjoint, then

P

(
n⋃

i=1

Fi

)
=

n∑

i=1

P (Fi) . (2.24)
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Axiom 2.4 If Fi, i = 1, 2, . . . are disjoint, then

P

( ∞⋃

i=1

Fi

)
=

∞∑

i=1

P (Fi) . (2.25)

Note that nothing has been said to the effect that probabilities must be
sums or integrals, but the first three axioms should be recognizable from
the three basic properties of nonnegativity, normalization, and additivity
encountered in the simple examples introduced in the introduction to this
chapter where probabilities were defined by an integral over a set of a pdf
or a sum over a set of a pmf. The axioms capture these properties in a gen-
eral form and will be seen to include more general constructions, including
multidimensional integrals and combinations of integrals and sums. The
fourth axiom can be viewed as an extra technical condition that must be
included in order to get various limits to behave. Just as property (2.19) of
an event space will later be seen to have an alternative statement in terms
of limits of sets, the fourth axiom of probability, axiom 2.4, will be shown
to have an alternative form in terms of explicit limits, a form providing an
important continuity property of probability. Also as in the event space
properties, the fourth axiom implies the third.

As with the defining properties of an event space, for the purposes of dis-
cussion we have listed separately the finite special case (2.24) of the general
condition (2.25). The finite special case is all that is required for elemen-
tary discrete probability. The general condition is required to get a useful
theory for continuous probability. A good way to think of these conditions
is that they essentially describe probability measures as set functions de-
fined by either summing or integrating over sets, or by some combination
thereof. Hence much of probability theory is simply calculus, especially the
evaluation of sums and integrals.

To emphasize an important point: a function P which assigns numbers
to elements of an event space of a sample space is a probability measure if
and only if it satisfies all of the four axioms!

A probability space or experiment is a triple (Ω,F , P ) consisting of a
sample space Ω, an event space F of subsets of Ω, and a probability measure
P defined for all members of F .

Before developing each idea in more detail and providing several exam-
ples of each piece of a probability space, we pause to consider two simple
examples of the complete construction. The first example is the simplest
possible probability space and is commonly referred to as the trivial prob-
ability space. Although useless for application, the model does serve a
purpose, however, by showing that a well-defined model need not be inter-
esting. The second example is essentially the simplest nontrivial probability
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space, a slight generalization of the fair coin flip permitting an unfair coin.

[2.0] Let Ω be any abstract space and let F = {Ω, ∅}; that is, F consists
of exactly two sets — the sample space (everything) and the empty
set (nothing). This is called the trivial event space. This is a model
of an experiment where only two events are possible: “Something
happens” or “nothing happens” — not a very interesting description.
There is only one possible probability measure for this measurable
space: P (Ω) = 1 and P (∅) = 0. (Why?) This probability measure
meets the required rules that define a probability measure; they can
be directly verified since there are only two possible events. Equations
(2.22) and (2.23) are obvious. Equations (2.24) and (2.25) follow since
the only possible values for Fi are Ω and ∅. At most one of the Fi is
indeed Ω, then both sides of the equality are 1. Otherwise, both sides
are 0.

[2.1] Let Ω = {0, 1}. Let F = {{0}, {1},Ω = {0, 1}, ∅}. Since F con-
tains all of the subsets of Ω, the properties (2.17) through (2.19) are
trivially satisfied, and hence it is an event space. (There is one other
possible event space that could be defined for Ω in this example. What
is it? ) Define the set function P by

P (F ) =






1− p if F = {0}
p if F = {1}
0 if F = ∅
1 if F = Ω ,

where p ∈ (0, 1) is a fixed parameter. (If p = 0 or p = 1 the space
becomes trivial.) It is easily verified that P satisfies the axioms of
probability and hence is a probability measure. Therefore (Ω,F , P )
is a probability space. Note that we had to give the value of P (F )
for all events F , a construction that would clearly be absurd for large
sample spaces. Note also that the choice of P (F ) is not unique for
the given measurable space (Ω,F); we could have chosen any value
in [0, 1] for P ({1}) and used the axioms to complete the definition.

The preceding example is the simplest nontrivial example of a probabil-
ity space and provides a rigorous mathematical model for applications such
as the binary transmission of a single bit or for the flipping of a single bi-
ased coin once. It therefore provides a complete and rigorous mathematical
model for the single coin flip of the introduction.

We now develop in more detail properties and examples of the three
components of probability spaces: sample spaces, event spaces, and proba-
bility measures.
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2.3.1 Sample Spaces

Intuitively, a sample space is a listing of all conceivable finest-grain, distin-
guishable outcomes of an experiment to be modeled by a probability space.
Mathematically it is just an abstract space.

Examples

[2.2] A finite space Ω = {ak; k = 1, 2, . . . ,K}. Specific examples are the bi-
nary space {0, 1} and the finite space of integers Zk ∆= {0, 1, 2, . . . , k−
1}.

[2.3] A countably infinite space Ω = {ak; k = 0, 1, 2, . . . }, for some se-
quence {ak}. Specific examples are the space of all nonnegative inte-
gers {0, 1, 2, . . . }, which we denote by Z+, and the space of all integers
{. . . ,−2,−1, 0, 1, 2, . . . }, which we denote by Z. Other examples are
the space of all rational numbers, the space of all even integers, and
the space of all periodic sequences of integers.

Both examples [2.2] and [2.3] are called discrete spaces. Spaces with
finite or countably infinite numbers of elements are called discrete spaces.

[2.4] An interval of the real line ℜ, for example, Ω = (a, b). We might con-
sider an open interval (a, b), a closed interval [a, b], a half-open interval
[a, b) or (a, b], or even the entire real line ℜ itself. (See appendix A
for details on these different types of intervals.)

Spaces such as example [2.4] that are not discrete are said to be continu-
ous. In some cases it is more accurate to think of spaces as being a mixture
of discrete and continuous parts, e.g., the space Ω = (1, 2) ∪ {4} consisting
of a continuous interval and an isolated point. Such spaces can usually be
handled by treating the discrete and continuous components separately.

[2.5] A space consisting of k−dimensional vectors with coordinates taking
values in one of the previously described spaces. A useful notation
for such vector spaces is a product space. Let A denote one of the
abstract spaces previously considered. Define the Cartesian product
Ak by

Ak = { all vectors a = (a0, a1, . . . , ak−1) with ai ∈ A} .

Thus, for example, ℜk is k−dimensional Euclidean space. {0, 1}k is the
space of all binary k−tuples, that is, the space of all k−dimensional binary
vectors. As particular examples, {0, 1}2 = {00, 01, 10, 11} and {0, 1}3 =
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{000, 001, 010, 011, 100, 101, 110, 111}. [0, 1]2 is the unit square in the plane.
[0, 1]3 is the unit cube in three-dimensional Euclidean space.

Alternative notations for a Cartesian product space are

∏

i∈Zk

Ai =

k−1∏

i=0

Ai ,

where again the Ai are all replicas or copies of A, that is, where Ai = A,
all i. Other notations for such a finite-dimensional Cartesian product are

×i∈Zk
Ai = ×k−1i=0Ai = Ak .

This and other product spaces will prove to be a useful means of describ-
ing abstract spaces modeling sequences of elements from another abstract
space.

Observe that a finite-dimensional vector space constructed from a dis-
crete space is also discrete since if one can count the number of possible
values one coordinate can assume, then one can count the number of pos-
sible values that a finite number of coordinates can assume.

[2.6] A space consisting of infinite sequences drawn from one of the exam-
ples [2.2] through [2.4]. Points in this space are often called discrete
time signals. This is also a product space. Let A be a sample space
and let Ai be replicas or copies of A. We will consider both one-sided
and two-sided infinite products to model sequences with and without
a finite origin, respectively. Define the two-sided space

∏

i∈Z
Ai = { all sequences {ai; i = . . . ,−1, 0, 1, . . . }; ai ∈ Ai} ,

and the one-sided space

∏

i∈Z+

Ai = { all sequences {ai; i = 0, 1, . . . }; ai ∈ Ai} .

These two spaces are also denoted by
∏∞
i=−∞Ai or×∞

i=−∞Ai and
∏∞
i=0Ai

or ×∞
i=0Ai, respectively.
The two spaces under discussion are often called sequence spaces. Even

if the original space A is discrete, the sequence space constructed from A
will be continuous. For example, suppose that Ai = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
for all integers i. Then ×∞

i=0Ai is the space of all semiinfinite (one-sided)
decimal sequences, which is the same as the space of all real numbers in the
unit interval [0, 1). This follows since if ω ∈ Ω, then ω = (ω0, ω1, ω2, . . . ),
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which can be written as .ω0ω1ω2 . . . , which can represent any real number
in the unit interval by the decimal expansion

∑∞
i=0 ωi10

−i−1. This space
contains the decimal representations of all of the real numbers in the unit
interval, an uncountable infinity of numbers. Similarly, there is an uncount-
able infinity of one-sided binary sequences one one can express all points in
the unit interval in the binary number system as sequences to the right of
the “decimal” point (problem A.11).

[2.7] Let A be one of the sample spaces of examples [2.2] through [2.4].
Form a new abstract space consisting of all waveforms or functions
of time with values in A, for example, all real-valued time functions
or continuous time signals. This space is also modeled as a product
space. For example, the infinite two-sided space for a given A is
∏

t∈ℜ
At = { all waveforms {x(t); t ∈ (−∞,∞)}; x(t) ∈ A, all t},

with a similar definition for one-sided spaces and for time functions
on a finite time interval.

Note that we indexed sequences (discrete time signals) using subscripts,
as in xn, and we indexed waveforms (continuous time signals) using paren-
theses, as in x(t). In fact, the notations are interchangeable; we could
denote waveforms as {x(t); t ∈ ℜ} or as {xt; t ∈ ℜ}. The notation using
subscripts for sequences and parentheses for waveforms is the most com-
mon, and we will usually stick to it. Yet another notation for discrete time
signals is x[n], a common notation in the digital signal processing literature.
It is worth remembering that vectors, sequences, and waveforms are all just
indexed collections of numbers; the only difference is the index set: finite
for vectors, countably infinite for sequences, and continuous for waveforms.

⋆General Product Spaces

All of the product spaces we have described can be viewed as special cases
of the general product space defined next.

Let I be an index set such as a finite set of integers Zk, the set of all
integers Z, the set of all nonnegative integers Z+, the real line ℜ, or the
nonnegative reals [0,∞). Given a family of spaces {At; t ∈ I}, define the
product space

AI =
∏

t∈I
Ai = { all {at; t ∈ I}; at ∈ At, all t} .

The notation ×t∈IAt is also used for the same thing. Thus product spaces
model spaces of vectors, sequences, and waveforms whose coordinate values



2.3. PROBABILITY SPACES 31

are drawn from some fixed space. This leads to two notations for the space
of all k−dimensional vectors with coordinates in A : Ak and AZk . The
shorter and simpler notation is usually more convenient.

2.3.2 Event Spaces

Intuitively, an event space is a collection of subsets of the sample space or
groupings of elementary events which we shall consider as physical events
and to which we wish to assign probabilities. Mathematically, an event
space is a collection of subsets that is closed under certain set-theoretic
operations; that is, performing certain operations on events or members of
the event space must give other events. Thus, for example, if in the example
of a single voltage measurement example we have Ω = ℜ and we are told
that the set of all voltages greater than 5 volts = {ω : ω ≥ 5} is an event,
that is, is a member of a sigma-field F of subsets of ℜ, then necessarily
its complement {ω : ω < 5} must also be an event, that is, a member
of the sigma-field F . If the latter set is not in F then F cannot be an
event space! Observe that no problem arises if the complement physically
cannot happen — events that “cannot occur” can be included in F and
then assigned probability zero when choosing the probability measure P .
For example, even if you know that the voltage does not exceed 5 volts,
if you have chosen the real line ℜ as your sample space, then you must
include the set {r : r > 5} in the event space if the set {r : r ≤ 5} is an
event. The impossibility of a voltage greater than 5 is then expressed by
assigning P ({r : r > 5}) = 0.

While the definition of a sigma-field requires only that the class be closed
under complementation and countable unions, these requirements immedi-
ately yield additional closure properties. The countably infinite version of
DeMorgan’s “laws” of elementary set theory require that if Fi, i = 1, 2, . . .
are all members of a sigma-field, then so is

∞⋂

i=1

Fi =

( ∞⋃

i=1

F ci

)c
.

It follows by similar set-theoretic arguments that any countable se-
quence of any of the set-theoretic operations (union, intersection, com-
plementation, difference, symmetric difference) performed on events must
yield other events. Observe, however, that there is no guarantee that un-
countable operations on events will produce new events; they may or may
not. For example, if we are told that {Fr; r ∈ [0, 1]} is a family of events,
then it is not necessarily true that

⋃
r∈[0,1]Fr, is an event (see problem 2.2

for an example).
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The requirement that a finite sequence of set-theoretic operations on
events yields other events is an intuitive necessity and is easy to verify for
a given collection of subsets of an abstract space: It is intuitively necessary
that logical combinations of (and and or and not) of events corresponding
to physical phenomena should also be events to which a probability can
be assigned. If you know the probability of a voltage being greater than
zero and you know the probability that the voltage is not greater than 5
volts, then you should also be able to determine the probability that the
voltage is greater than zero but not greater than 5 volts. It is easy to verify
that finite sequences of set-theoretic combinations yield events because the
finiteness of elementary set theory usually yields simple proofs.

A natural question arises in regard to (2.17) and (2.18): Why not try
to construct a useful probability theory on the more general notion of a
field rather than a sigma-field? The response is that it unfortunately does
not work. Probability theory requires many results involving limits, and
such asymptotic results require the infinite relations of (2.19) and (2.25) to
work. In some special cases, such as single coin flipping or single die rolling,
the simpler finite results suffice because there are only a finite number of
possible outcomes, and hence limiting results become trivial — any finite
field is automatically a sigma-field. If, however, one flips a coin forever,
then there is an uncountable infinity of possible outcomes, and the asymp-
totic relations become necessary. Let Ω be the space of all one-sided binary
sequences. Suppose that you consider the smallest field formed by all finite
set-theoretic operations on the individual one-sided binary sequences, that
is, on singleton sets in the sequence space. Then many countably infinite
sets of binary sequences (say the set of all periodic sequences) are not events
since they cannot be expressed as finite sequences of set-theoretic opera-
tions on the singleton sets. Obviously, the sigma-field formed by including
countable set-theoretic operations does not have this defect. This is why
sigma-fields must be used rather than fields.

Limits of Sets

The condition (2.19) can be related to a condition on limits by defining
the notion of a limit of a sequence of sets. This notion will prove useful
when interpreting the axioms of probability. Consider a sequence of nested
sets Fn, n = 1, 2, . . . , sets with the property that each set contains its
predecessor, that is, that Fn−1 ⊂ Fn for all n. Such a sequence of sets
is said to be increasing. For example, the sequence Fn = [1, 2 − 1/n) of
subsets of the real line is increasing. The sequence (−n, a) is also increasing.
Intuitively, the first example increases to a limit of [1, 2) in the sense that
every point in the set [1, 2) is eventually included in one of the Fn. Similarly,
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the sequence in the second example increases to (−∞, a). Formally, the limit
of an increasing sequence of sets can be defined as the union of all of the
sets in the sequence since the union contains all of the points in all of the
sets in the sequence and does not contain any points not contained in at
least one set (and hence an infinite number of sets) in the sequence:

lim
n→∞

Fn =

∞⋃

n=1

Fn .

Figure 2.2.(a) illustrates such a sequence in a Venn diagram.

F1 F2 F3 F4 F4 F3 F2 F1

Figure 2.2: (a) Increasing sets, (b) decreasing sets

Thus the limit of the sequence of sets [1, 2−1/n) is indeed the set [1, 2),
as desired, and the limit of (−n, a) is (∞, a). If F is the limit of a sequence
of increasing sets Fn, then we write Fn ↑ F .

Similarly, suppose that Fn; n = 1, 2, . . . is a decreasing sequence of
nested sets in the sense that Fn ⊂ Fn−1 for all n as illustrated by the Venn
diagram in Figure 2.2(b). For example, the sequences of sets [1, 1 + 1/n)
and (1−1/n, 1+1/n) are decreasing. Again we have a natural notion of the
limit of this sequence: Both these sequences of sets collapse to the point of
singleton set {1} — the point in common to all the sets. This suggests a
formal definition based on the countably infinite intersection of the sets.

Given a decreasing sequence of sets Fn; n = 1, 2, . . . , we define the limit
of the sequence by

lim
n→∞

Fn =

∞⋂

n=1

Fn ,
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that is, a point is in the limit of a decreasing sequence of sets if and only if
it is contained in all the sets of the sequence. If F is the limit of a sequence
of decreasing sets Fn, then we write Fn ↓ F .

Thus, given a sequence of increasing or decreasing sets, the limit of the
sequence can be defined in a natural way: the union of the sets of the
sequence or the intersection of the sets of the sequence, respectively.

Say that we have a sigma-field F and an increasing sequence of sets
Fn; n = 1, 2, . . . of sets in the sigma-field. Since the limit of the sequence
is defined as a union and since the union of a countable number of events
must be an event, then the limit must be an event. For example, if we are
told that the sets [1, 2− 1/n) are all events, then the limit [1, 2) must also
be an event. If we are told that all finite intervals of the form (a, b), where
a and b are finite, are events, then the semi-infinite interval (−∞, b) must
also be an event, since it is the limit of the sequence of sets (−n, b) and
n→∞.

By a similar argument, if we are told that each set in a decreasing
sequence Fn is an event, then the limit must be an event, since it is an
intersection of a countable number of events. Thus, for example, if we are
told that all finite intervals of the form (a, b) are events, then the points
of singleton sets must also be events, since a point {a} is the limit of the
decreasing sequence of sets (a− 1/n, a+ 1/n).

If a class of sets is only a field rather than a sigma-field, that is, if it
satisfies only (2.17) and (2.18), then there is no guarantee that the class
will contain all limits of sets. Hence, for example, knowing that a class of
sets contains all half-open intervals of the form (a, b] for a and b finite does
not ensure that it will also contain points or singleton sets! In fact, it is
straightforward to show that the collection of all such half-open intervals
together with the complements of such sets and all finite unions of the
intervals and complements forms a field. The singleton sets, however, are
not in the field! (See problem 2.5.)

Thus if we tried to construct a probability theory based on only a field,
we might have probabilities defined for events such as (a, b) meaning “the
output voltage of a measurement is between a and b” and yet not have
probabilities defined for a singleton set {a} meaning “the output voltage is
exactly a.” By requiring that the event space be a sigma-field instead of
only a field, we are assured that all such limits are indeed events.

It is a straightforward exercise to show that given (2.17) and (2.18),
property (2.19) is equivalent to either of the following:

If Fn ∈ F ; n = 1, 2, . . . , is a decreasing sequence or an increasing se-
quence, then

lim
n→∞

Fn ∈ F . (2.26)
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We have already seen that (2.19) implies (2.26). For example, if (2.26) is
true and Gn is an arbitrary sequence of events, then define the increasing
sequence

Fn =

n⋃

i=1

Gi .

Obviously Fn−1 ⊂ Fn, and then (2.26) implies (2.19), since

∞⋃

i=1

Gi =

∞⋃

n=1

Fn = lim
n→∞

Fn ∈ F .

Examples

As we have noted, for a given sample space the selection of an event space is
not unique; it depends on the events to which it is desired to assign probabil-
ities and also on analytical limitations on the ability to assign probabilities.
We begin with two examples that represent the extremes of event spaces
— one possessing the minimum quantity of sets and the other possessing
the maximum. We then study event spaces useful for the sample space
examples of the preceding section.

[2.8] Given a sample space Ω, then the collection {Ω, ∅} is a sigma-field.
This is just the trivial event space already treated in example [2.0].
Observe again that this is the smallest possible event space for any
given sample space because no other event space can have fewer ele-
ments.

[2.9] Given a sample space Ω, then the collection of all subsets of Ω is a
sigma-field. This is true since any countable sequence of set-theoretic
operations on subsets of Ω must yield another subset of Ω and hence
must be in the collection of all possible subsets. The collection of all
subsets of a space is called the power set of the space. Observe that
this is the largest possible event space for the given sample space,
because it contains every possible subset of the sample space.

This sigma-field is a useful event space for the sample spaces of examples
[2.2] and [2.3], that is, for sample spaces that are discrete. We shall always
take our event space as the power set when dealing with a discrete sample
space (except possibly for a few perverse homework problems). A discrete
sample space with n elements has a power set with 2n elements (problem
2.4). For example, the power set of the binary sample space Ω = {0, 1} is
the collection {{0}, {1},Ω = {0, 1}, ∅}, a list of all possible subsets of the
space.



36 CHAPTER 2. PROBABILITY

Unfortunately, the power set is too large to be useful for continuous
spaces. To treat the reasons for this is beyond the scope of a book at this
level, but we can say that it is not possible in general to construct interesting
probability measures on the power set of a continuous space. There are
special cases where we can construct particular probability measures on
the power set of a continuous space by mimicking the construction for a
discrete space (see, e.g., problems 2.4, 2.6, and 2.9). Truly continuous
experiments cannot, however, be rigorously defined for such a large event
space because integrals cannot be defined over all events in such spaces.

While both of the preceding examples can be used to provide event
spaces for the special case of Ω = ℜ, the real line, neither leads to a useful
probability theory in that case. In the next example we consider another
event space for the real line that is more useful and, in fact, is used almost
always for ℜ and higher dimensional Euclidean spaces. First, however, we
need to treat the idea of generating an event space from a collection of
important events. Intuitively, given a collection of important sets G that
we require to be events, the event space σ(G) generated by G is the smallest
event space F to which all the sets in G belong. That is, σ(G) is an event
space, it contains all the sets in G, and no smaller collection of sets satisfies
these two conditions.

Regardless of the details, it is worth emphasizing the key points of this
discussion.

• The notion of a generated sigma-field allows one to describe an event
space for the real line, the Borel field, that contains all physically im-
portant events and which will lead to a useful calculus of probability.
It is usually not important to understand the detailed structure of
this event space past the facts that it

– is indeed an event space, and

– it contains all the important events such as intervals of all types
and points.

• The notion of a generated sigma-field can be used to extend the event
space of the real line to event spaces of vectors, sequences, and wave-
forms taking on real values. Again the detailed structure is usually
not important past the fact that it

– is indeed an event space, and

– it contains all the important events such as those described by
requiring any finite collection of coordinate values to lie within
intervals.
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⋆Generating Event Spaces

Any useful event space for the real line should include as members all
intervals of the form (a, b) since we certainly wish to consider events of
the form “the output voltage is between 3 and 5 volts.” Furthermore, we
obviously require that the event space satisfy the defining properties for an
event space, that is, that we have a collection of subsets of Ω that satisfy
properties (2.17) through (2.19). A means of accomplishing both of these
goals in a relatively simple fashion is to define our event space as the smallest
sigma-field that contains the desired subsets, to wit, the intervals and all
of their countable set-theoretic combinations (bewildering as it may seem,
this is not the same as all subsets of ℜ). Of course, although a sigma-field
that is based on the intervals is most useful, it is also possible to consider
other starting points. These considerations motivate the following general
definition.

Given a sample space Ω (such as the real line ℜ) and an arbitrary class
G of subsets of Ω — usually the class of all open intervals of the form (a, b)
when Ω = ℜ — define σ(G), the sigma-field generated by the class G, to be
the smallest sigma-field containing all of the sets in G, where by “smallest”
we mean that if F is any sigma-field and it contains G, then it contains
σ(G). (See any book on measure theory, e.g., Ash [1].)

For example, as noted before, we might require that a sigma-field of the
real line contain all intervals; then it would also have to contain at least
all complements of intervals and all countable unions and intersections of
intervals and all countable complements, unions, and intersections of these
results, ad infinitum. This technique will be used several times to specify
useful event spaces in complicated situations such as continuous simple
spaces, sequence spaces, and function spaces. We are now ready to provide
the proper, most useful event space for the real line.

[2.10] Given the real line ℜ, the Borel field (or, more accurately, the Borel
sigma-field) is defined as the sigma-field generated by all the open
intervals of the form (a, b). The members of the Borel field are called
Borel sets. We shall denote the Borel field by B(ℜ), and hence

B(ℜ) = σ ( all open intervals ) .

Since B(ℜ) is a sigma-field and since it contains all of the open intervals,
it must also consider limit sets of the form

(−∞, b) = lim
n→∞

(−n, b) ,

(a,∞) = lim
n→∞

(a, n) ,



38 CHAPTER 2. PROBABILITY

and
{a} = lim

n→∞
(a− 1/n, a+ 1/n) ,

that is, the Borel field must include semi-infinite open intervals and the
singleton sets or individual points. Furthermore, since the Borel field is a
sigma-field it must contain differences. Hence it must contain semi-infinite
half-open sets of the form

(−∞, b] = (−∞,∞)− (b,∞) ,

and since it must contain unions of its members, it must contain half-open
intervals of the form

(a, b] = (a, b) ∪ {b} and [a, b) = (a, b) ∪ {a} .

In addition, it must contain all closed intervals and all finite or countable
unions and complements of intervals of any of the preceding forms. Roughly
speaking, the Borel field contains all subsets of the real line that can be
obtained as an approximation of countable combinations of intervals. It is
a deep and difficult result of measure theory that the Borel field of the real
line is in fact different from the power set of the real line; that is, there
exist subsets of the real line that are not in the Borel field. While we will
not describe such a subset, we can guarantee that these “unmeasurable”
sets have no physical importance, that they are very hard to construct, and
that an engineer will never encounter such a subset in practice. It may,
however, be necessary to demonstrate that some weird subset is in fact an
event in this sigma-field. This is typically accomplished by showing that it
is the limit of simple Borel sets.

In some cases we wish to deal not with a sample space that is the entire
real line, but one that is some subset of the real line. In this case we define
the Borel field as the Borel field of the real line “cut down” to the smaller
space.

Given that the sample space, Ω, is a Borel subset of the real line ℜ, the
Borel field of Ω, denoted B(Ω), is defined as the collection of all sets of the
form F ∩Ω, for F ∈ B(ℜ); that is, the intersection of Ω with all of the Borel
sets of ℜ forms the class of Borel sets of Ω.

It can be shown (problem 2.3) that, given a discrete subset A of the
real line, the Borel field B(A) is identical to the power set of A. Thus, for
the first three examples of sample spaces, the Borel field serves as a useful
event space since it reduces to the intuitively appealing class of all subsets
of the sample space.

The remaining examples of sample spaces are all product spaces. The
construction of event spaces for such product spaces — that is, spaces of
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vectors, sequences, or waveforms — is more complicated and less intuitive
than the constructions for the preceding event spaces. In fact, there are
several possible techniques of construction, which in some cases lead to
different event spaces. We wish to convey an understanding of the structure
of such event spaces, but we do not wish to dwell on the technical difficulties
that can be encountered. Hence we shall study only one of the possible
constructions — the simplest possible definition of a product sigma-field —
by making a direct analogy to a product sample space. This definition will
suffice for most systems studied herein, but it has shortcomings. At this
time we mention one particular weakness: The event space that we shall
define may not be big enough when studying the theory of continuous time
random processes.

[2.11] Given an abstract space A, a sigma-field F of subsets of A, an index
set I, and a product sample space of the form

AI =
∏

t∈I
At ,

where the At are all replicas of A, the product sigma-field

FI =
∏

t∈I
Ft ,

is defined as the sigma-field generated by all “one-dimensional” sets
of the form

{{at; t ∈ I} : at ∈ F for t = s and at ∈ At for t 
= s}

for some s ∈ I and some F ∈ F ; that is, the product sigma-field
is the sigma-field generated by all “one-dimensional” events formed
by collecting all of the vectors or sequences or waveforms with one
coordinate constrained to lie in a one-dimensional event and with the
other coordinates unrestricted. The product sigma-field must contain
all such events; that is, for all possible indices s and all possible events
F.

Thus, for example, given the one-dimensional abstract space ℜ, the real
line along with its Borel field, Figure 2.3 (a)–(c) depicts three examples of
one-dimensional sets in ℜ2, the two-dimensional Euclidean plane. Note, for
example, that the unit circle {(x, y) : x2+y2 ≤ 1} is not a one-dimensional
set since it requires simultaneous constraints on two coordinates.

More generally, for a fixed finite k the product sigma-field B(ℜ)Zk (or
simply B(ℜ)k) of k−dimensional Euclidean space ℜk is the smallest sigma-
field containing all one-dimensional events of the form {x = (x0, x1, . . . , xk−1) :
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Figure 2.3: (a) {(x0, x1) : x0 ∈ (1, 3)}, (b) {(x0, x1) : x1 ∈ (3, 6)},
(c){(x0, x1) : x1 ∈ (4, 5) ∪ (−∞,−2)}, (d) {(x0, x1) : x0 ∈ (1, 3);x1 ∈
(3, 6)}, One- and two-dimensional events in two-dimensional space.

xi ∈ F} for some i = 0, 1, . . . , k − 1 and some Borel set F of ℜ. The two-
dimensional example Figure 2.3(a) has this form with k = 2, i = 0, and
F = (1, 3). This one-dimensional set consists of all values in the infinite
rectangle between 1 and 3 in the x0 direction and between −∞ and ∞ in
the x1 direction.

To summarize, we have defined a space A with event space F , and an
index set I such as Z+,Z,ℜ, or [0,1), and we have formed the product
space AI and the associated product event space FI . We know that this
event space contains all one-dimensional events by construction. We next
consider what other events must be in FI by virtue of its being an event
space.

After the one-dimensional events that pin down the value of a single
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coordinate of the vector or sequence or waveform, the next most general
kinds of events are finite-dimensional sets that separately pin down the
values of a finite number of coordinates. Let K be a finite collection of
members of I and hence K ⊂ I. Say that K has K members, which
we shall denote as {ki; i = 0, 1, . . . ,K − 1}. These K numbers can be
thought of as a collection of sample times such as {1, 4, 8, 156, 1027} for
a sequence or {1.5, 9.07, 40.0, 41.2, 41.3} for a waveform. We assume for
convenience that the sample times are ordered in increasing fashion. Let
{Fki ; i = 0, 1, . . . ,K − 1} be a collection of members of F . Then a set of
the form

{{xt; t ∈ I} : xki ∈ Fki ; i = 0, 1, . . . ,K − 1}

is an example of a finite-dimensional set. Note that it collects all sequences
or waveforms such that a finite number of coordinates are constrained to
lie in one-dimensional events. An example of two-dimensional sets of this
form in two-dimensional space is illustrated in Figure 2.3(d). Observe there
that when the one-dimensional sets constraining the coordinates are inter-
vals, then the two-dimensional sets are rectangles. Analogous to the two-
dimensional example, finite-dimensional events having separate constraints
on each coordinate are called rectangles. Observe, for example, that a circle
or sphere in Euclidean space is not a rectangle because it cannot be defined
using separate constraints on the coordinates; the constraints on each co-
ordinate depend on the values of the others — e.g., in two dimensions we
require that x20 ≤ 1− x21.

Note that Figure 2.3(d) is just the intersection of examples (a) and (b) of
Figure 2.3. In fact, in general we can express finite-dimensional rectangles
as intersections of one-dimensional events as follows:

{{xt; t ∈ I} : xki ∈ Fki ; i = 0, 1, . . . ,K−1} =
K−1⋂

i=0

{{xt; t ∈ I} : xki ∈ Fi} ,

that is, a set constraining a finite number of coordinates to each lie in
one-dimensional events or sets in F is the intersection of a collection of
one-dimensional events. Since FI is a sigma-field and since it contains the
one-dimensional events, it must contain such finite intersections, and hence
it must contain such finite-dimensional events.

By concentrating on events that can be represented as the finite inter-
section of one-dimensional events we do not mean to imply that all events
in the product event space can be represented in this fashion — the event
space will also contain all possible limits of finite unions of such rectangles,
complements of such sets, and so on. For example, the unit circle in two
dimensions is not a rectangle, but it can be considered as a limit of unions
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of rectangles and hence is in the event space generated by the rectangles.
(See problem 2.31.)

The moral of this discussion is that the product sigma-field for spaces
of sequences and waveforms must contain (but not consist exclusively of)
all sets that are described by requiring that the outputs of coordinates for
a finite number of events lie in sets in the one-dimensional event space F .

We shall further explore such product event spaces when considering
random processes, but the key points remain

1. a product event space is a sigma-field, and

2. it contains all “one-dimensional events” consisting of subsets of the
product sample space formed by grouping together all vectors or se-
quences or waveforms having a single fixed coordinate lying in a one-
dimensional event. In addition, it contains all rectangles or finite-
dimensional events consisting of all vectors or sequences or wave-
forms having a finite number of coordinates constrained to lie in one-
dimensional events.

2.3.3 Probability Measures

The defining axioms of a probability measure as given in equations (2.22)
through (2.25) correspond generally to intuitive notions, at least for the
first three properties. The first property requires that a probability be
a nonnegative number. In a purely mathematical sense, this is an arbi-
trary restriction, but it is in accord with the long history of intuitive and
combinatorial developments of probability. Probability measures share this
property with other measures such as area, volume, weight, and mass.

The second defining property corresponds to the notion that the prob-
ability that something will happen or that an experiment will product one
of its possible outcomes is one. This, too, is mathematically arbitrary but
is a convenient and historical assumption. (From childhood we learn about
things that are “100% certain;” obviously we could as easily take 1 or π
(but not infinity — why? ) to represent certainty.)

The third property, “additivity” or “finite additivity,” is the key one.
In English it reads that the probability of occurrence of a finite collection
of events having no points in common must be the sum of the probabilities
of the separate events. More generally, the basic assumption of measure
theory is that any measure — probabilistic or not — such as weight, volume,
mass, and area should be additive: the mass of a group of disjoint regions
of matter should be the sum of the separate masses; the weight of a group
of objects should be the sum of the individual weights. Equation (2.24)
only pins down this property for finite collections of events. The additional
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restriction of (2.25), called countable additivity, is a limiting or asymptotic
or infinite version, analogous to (2.19) for set algebra. This again leads
to the rhetorical questions of why the more complicated, more restrictive,
and less intuitive infinite version is required. In fact, it was the addition of
this limiting property that provided the fundamental idea for Kolmogorov’s
development of modern probability theory in the 1930s.

The response to the rhetorical question is essentially the same as that
for the asymptotic set algebra property: Countably infinite properties are
required to handle asymptotic and limiting results. Such results are crucial
because we often need to evaluate the probabilities of complicated events
that can only be represented as a limit of simple events. (This is analogous
to the way that integrals are obtained as limits of finite sums.)

Note that it is countable additivity that is required. Uncountable ad-
ditivity cannot be defined sensibly. This is easily seen in terms of the fair
wheel mentioned at the beginning of the chapter. If the wheel is spun, any
particular number has probability zero. On the other hand, the probability
of the event made up of all of the uncountable numbers between 0 and 1 is
obviously one. If you consider defining the probability of all the numbers
between 0 and 1 to be the uncountable sum of the individual probabilities,
you see immediately the essential contradiction that results.

Since countable additivity has been added to the axioms proposed in
the introduction, the formula (2.11) used to compute probabilities of events
broken up by a partition immediately extends to partitions with a countable
number of elements; that is, if Fk; k = 1, 2, . . . forms a partition of Ω into
disjoint events (Fn∩Fk = ∅ if n 
= k and

⋃
k Fk = Ω), then for any event G

P (G) =

∞∑

k=1

P (G ∩ Fk). (2.27)

Limits of Probabilities

At times we are interested in finding the probability of the limit of a se-
quence of events. To relate the countable additivity property of (2.25)
to limiting properties, recall the discussion of the limiting properties of
events given earlier in this chapter in terms of increasing and decreas-
ing sequences of events. Say we have an increasing sequence of events
Fn; n = 0, 1, 2, . . . , Fn−1 ⊂ Fn, and let F denote the limit set, that is,
the union of all of the Fn. We have already argued that the limit set F is
itself an event. Intuitively, since the Fn converge to F , the probabilities of
the Fn should converge to the probability of F. Such convergence is called
a continuity property of probability and is very useful for evaluating the
probabilities of complicated events as the limit of a sequence of probabili-
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ties of simpler events. We shall show that countable additivity implies such
continuity. To accomplish this, define the sequence of sets G0 = F0 and
Gn = Fn − Fn−1 for n = 1, 2, . . . . The Gn are disjoint and have the same
union as do the Fn (see Figure 2.2(a) as a visual aid). Thus we have from
countable additivity that

P
(
lim
n→∞

Fn

)
= P

( ∞⋃

k=0

Fk

)

= P

( ∞⋃

k=0

Gk

)

=

∞∑

k=0

P (Gk)

= lim
n→∞

n∑

k=0

P (Gk) ,

where the last step simply uses the definition of an infinite sum. Since
Gn = Fn − Fn−1 and Fn−1 ⊂ Fn, P (Gn) = P (Fn)− P (Fn−1) and hence

n∑

k=0

P (Gk) = P (F0) +

n∑

k=1

(P (Fn)− P (Fn−1))

= P (Fn),

an example of what is called a “telescoping sum” where each term cancels
the previous term and adds a new piece, i.e.,

P (Fn) = P (Fn)− P (Fn−1)

+ P (Fn−1)− P (Fn−2)

+ P (Fn−2)− P (Fn−3)

...

+ P (F1)− P (F0)

+ P (F0)

Combining these results completes the proof of the following statement.

If Fn is a sequence of increasing events, then

P
(
lim
n→∞

Fn

)
= lim
n→∞

P (Fn) , (2.28)

that is, the probability of the limit of a sequence of increasing
events is the limit of the probabilities.



2.4. DISCRETE PROBABILITY SPACES 45

Note that the sequence of probabilities on the right-hand side of (2.28) is in-
creasing with increasing n. Thus, for example, probabilities of semi-infinite
intervals can be found as a limit as P ((−∞, a]) = limn→∞ P ((−n, a]). A
similar argument can be used to show that one can also interchange the
limit with the probability measure given a sequence of decreasing events;
that is,

If Fn is a sequence of decreasing events, then

P
(
lim
n→∞

Fn

)
= lim
n→∞

P (Fn) . (2.29)

that is, the probability of the limit of a sequence of decreasing
events is the limit of the probabilities.

Note that the sequence of probabilities on the right-hand side of (2.29)
is decreasing with increasing n. Thus, for example, the probabilities of
points can be found as a limit of probabilities of intervals, P ({a}) =
limn→∞ P ((a− 1/n, a+ 1/n)).

It can be shown (see problem 2.20) that, given (2.22) through (2.24),
the three conditions (2.25), (2.28), and (2.29) are equivalent; that is, any
of the three could serve as the fourth axiom of probability.

Property (2.28) is called continuity from below, and (2.29) is called conti-
nuity from above. The designations “from below” and “from above” relate
to the direction from which the respective sequences of probabilities ap-
proach their limit. These continuity results are the basis for using integral
calculus to compute probabilities, since integrals can be expressed as limits
of sums.

2.4 Discrete Probability Spaces

We now provide several examples of probability measures on our examples
of sample spaces and sigma-fields and thereby give some complete examples
of probability spaces.

The first example formalizes the description of a probability measures
as a sum of a pmf as introduced in the introductory section.

[2.12] Let Ω be a finite set and let F be the power set of Ω. Suppose that
we have a function p(ω) that assigns a real number to each sample
point ω in such a way that

p(ω) ≥ 0 , all ω ∈ Ω (2.30)
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and

∑

ω∈Ω
p(ω) = 1 . (2.31)

Define the set function P by

P (F ) =
∑

ω∈F
p(ω)

∑

ω∈Ω
1F (ω)p(ω) , all F ∈ F (2.32)

where 1F (ω) is the indicator function of the set F , 1 if ω ∈ F and 0
otherwise.

For simplicity we drop the ω ∈ Ω underneath the sum; that is, when
no range of summation is explicit, it should be assumed the sum is over all
possible values. Thus we can abbreviate (2.32) to

P (F ) =
∑

1F (ω)p(ω) , all F ∈ F (2.33)

P is easily verified to be a probability measure: It obviously satisfies
axioms 2.1 and 2.2. It is finitely and countably additive from the properties
of sums. In particular, given a sequence of disjoint events, only a finite
number can be distinct (since the power set of a finite space has only a
finite number of members). To be disjoint, the balance of the sequence
must equal ∅. The probability of the union of these sets will be the finite
sum of the p(ω) over the points in the union which equals the sum of the
probabilities of the sets in the sequence. Example [2.1] is a special case of
example [2.12], as is the coin flip example of the introductary section.

The summation (2.33) used to define probability measures for a discrete
space is a special case of a more general weighted sum, which we pause
to define and consider. Suppose that g is a real-valued function defined
on Ω, i.e., g : Ω → ℜ assigns a real number g(ω) to every ω ∈ Ω. We
could consider more general complex-valued functions, but for the moment
it is simpler to stick to real valued functions. Also, we could consider
subsets of ℜ, but we leave it more generally at this time. Recall that in
the introductory section we considered such a function to be an example
of signal processing and called it a random variable. Given a pmf p, define
the expectation2 of g (with respect to p) as

E(g) =
∑

g(ω)p(ω). (2.34)

2This is not in fact the fundamental definition of expectation that will be

introduced in chapter 4, but it will be seen to be equivalent
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With this definition (2.33) with g(ω) = 1F (ω) yields

P (F ) = E(1F ), (2.35)

showing that the probability of an event is the expectation of the indicator
function of the event. Mathematically, we can think of expectation as a
generalization of the idea of probability since probability is the special case
of expectation that results when the only functions allowed are indicator
functions.

Expectations are also called probabilistic averages or statistical aver-
ages. For the time being, probabilities are the most important examples
of expectation. We shall see many examples, however, so it is worthwhile
to mention a few of the most important. Suppose that the sample space
is a subset of the real line, e.g., Z or Zn. One of the most commonly
encountered expectations is the mean or first moment

m =
∑

ωp(ω), (2.36)

where g(ω) = ω, the identity function. A more general idea is the kth
moment defined by

m(k) =
∑
|ω|kp(ω), (2.37)

so that m = m(1). After the mean, the most commonly encountered mo-
ment in practice is the second moment,

m(2) =
∑
|ω|2p(ω). (2.38)

Moments can be thought of as parameters describing a pmf, and some
computations involving signal processing will turn out to depend only on
certain moments.

A slight variation on k order moments is the so-called centralized mo-
ments formed by substracting the mean before taking the power:

∑
|ω −m|kp(ω), (2.39)

but the only such moment commonly encountered in practice is the variance

σ2 =
∑

(ω −m)2p(ω). (2.40)
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The variance and the second moment are easily related as

σ2 =
∑

(ω −m)2p(ω)

=
∑

(ω2 − 2ωm+m2)p(ω)

=
∑

ω2p(ω)− 2m
∑

ωp(ω) +m2
∑

p(ω)

= m(2) − 2m2 +m2

= m(2) −m2. (2.41)

Probability Mass Functions

A function p(ω) satisfying (2.30) and (2.31) is called a probability mass func-
tion or pmf. It is important to observe that the probability mass function
is defined only for points in the sample space, while a probability measure
is defined for events, sets which belong to an event space. Intuitively, the
probability of a set is given by the sum of the probabilities of the points
as given by the pmf. Obviously it is much easier to describe the proba-
bility function than the probability measure since it need only be specified
for points. The axioms of probability then guarantee that the probability
function can be used to compute the probability measure. Note that given
one, we can always determine the other. In particular, given the pmf p, we
can construct P using (2.32). Given P , we can find the corresponding pmf
p from the formula

p(ω) = P ({ω}) .

We list below several of the most common examples of pmf’s. The
reader should verify that they are all indeed valid pmf’s, that is, that they
satisfy (2.30) and (2.31).

The binary pmf. Ω = {0, 1}; p(0) = 1 − p, p(1) = p, where p is a
parameter in (0, 1).

A uniform pmf. Ω = Zn = {0, 1, . . . , n− 1} and p(k) = 1/n; k ∈ Zn.

The binomial pmf. Ω = Zn+1 = {0, 1, . . . , n} and

p(k) =

(
n
k

)
pk(1− p)n−k; k ∈ Zn+1 ,

where (
n
k

)
=

n!

k!(n− k)!
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is the binomial coefficient.

The binary pmf is a probability model for coin flipping with a biased
coin or for a single sample of a binary data stream. A uniform pmf on Z6
can model the roll of a fair die. Observe that it would not be a good model
for ASCII data since, for example, the letters t and e and the symbol for
space have a higher probability than other letters. The binomial pmf is a
probability model for the number of heads in n successive independent flips
of a biased coin, as will later be seen.

The same construction provides a probability measure on countably
infinite spaces such as Z and Z+. It is no longer as simple to prove countable
additivity, but it should be fairly obvious that it holds and, at any rate, it
follows from standard results in elementary analysis for convergent series.
Hence we shall only state the following example without proving countable
additivity, but bear in mind that it follows from the properties of infinite
summations.

[2.13] Let Ω be a space with a countably infinite number of elements and
let F be the power set of Ω. Then if p(ω); ω ∈ Ω satisfies (2.30) and
(2.31), the set function P defined by (2.32) is a probability measure.

Two common examples of pmf’s on countably infinite sample spaces
follow. The reader should test their validity.

The geometric pmf. Ω = {1, 2, 3, . . . } and p(k) = (1 − p)k−1p; k =
1, 2, . . . , where p ∈ (0, 1) is a parameter.

The Poisson pmf. Ω = Z+ = {0, 1, 2, . . . } and p(k) = (λke−λ)/k!,

where λ is a parameter in (0,∞). (Keep in mind that 0!
∆
= 1.)

We will later see the origins of several of these pmf’s and their appli-
cations. For example, both the binomial and the geometric pmf will be
derived from the simple binary pmf model for flipping a single coin. For
the moment they should be considered as common important examples.
Various properties of these pmf’s and a variety of calculations involving
them are explored in the problems at the end of the chapter.

Computational Examples

The various named pmf’s provide examples for computing probabilities and
other expectations. Although much of this is prerequisite material, it does
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not hurt to collect several of the more useful tricks that arise in evaluating
sums. The binary pmf is too simple to alone provide much interest, so first
consider the uniform pmf on Zn. This is trivially a valid pmf since it is
nonnegative and sums to 1. The probability of any set is simply

P (F ) =
1

n

∑
1F (ω) =

#(F )

n
,

where #(F ) denotes the number of elements or points in the set F . The
mean is given by

m =

n∑

k=1

k =
n(n+ 1)

2
, (2.42)

a standard formula easily verified by induction, as detailed in appendix B.
The second moment is given by

m(2) =

n∑

k=1

k2 =
k(k + 1)(2k + 1)

6
, (2.43)

as can also be verified by induction. The variance can be found by combin-
ing (2.43), (2.42), and (2.41).

The binomial pmf is more complicated. The first issue is to prove that it
sums to one and hence is a valid pmf (it is obviously nonnegative). This is
accomplished by recalling the binomial theorem from high school algebra:

(a+ b)n =

n∑

k=0

(
n
k

)
anbn−k (2.44)

and setting a = p and b = 1− p to write

n∑

k=0

p(k) =

n∑

k=0

(
n
k

)
pk(1− p)n−k

= (p+ 1− p)n

= 1.

Finding moments is trickier here, and we shall later develop a much
easier way to do this using exponential transforms. Nonetheless, it provides
some useful practice to compute an example sum, if only to demonstrate
later how much work can be avoided! Finding the mean requires evaluation
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of the sum

m =

n∑

k=0

k

(
n
k

)
pk(1− p)n−k

=

n∑

k=0

n!

(n− k)!(k − 1)!
pk(1− p)n−k

=

n∑

k=1

n!

(n− k)!(k − 1)!
pk(1− p)n−k.

The trick here is to recognize that the sum looks very much like the terms
in the binomial theorem, but a change of variables is needed to get the
binomial theorem to simplify things. Changing variables by defining l =
k − 1, the sum becomes

m =
n−1∑

l=0

n!

(n− l − 1)!l!
pl+1(1− p)n−l−1,

which will very much resemble the binomial theorem with n − 1 replacing
n if we factor out a p and an n:

m = np
n−1∑

l=0

(n− 1)!

(n− 1− l)!l!
pl(1− p)n−1−l

= np(p+ 1− p)n−1

= np. (2.45)

The second moment is messier, so its evaluation is postponed until simpler
means are developed.

The geometric pmf is handled using the geometric progression, usually
treated in high school algebra and summarized in appendix B. From (B.4)
in appendix B we have for any real a with |a| < 1

∞∑

k=0

ak =
1

1− a
, (2.46)

which proves that the geometric pmf indeed sums to 1.
Evaluation of the mean of the geometric pmf requires evaluation of the

sum

m =

∞∑

k=1

kp(k) =

∞∑

k=1

kp(1− p)k−1 .
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One may have access to a book of tables including this sum, but a use-
ful trick can be used to evaluate the sum from the well-known result for
summing a geometric series. The trick involves differentiating the usual
geometric progression sum, as detailed in appendix B, where it is shown
for any q ∈ (0, 1) that

∞∑

k=0

kqk−1 =
1

(1− q)2
. (2.47)

Set q = 1− p yields

m =
1

p
. (2.48)

A similar idea works for the second moment. From (B.7) of appendix B
the second moment is given by

m(2) =

∞∑

k=1

k2p(1− p)k−1 = p(
2

p3
+

1

p2
) (2.49)

and hence from (2.41) the variance is

σ2 =
2

p2
. (2.50)

As an example of a probability computation using a geometric pmf,
suppose that (Ω,F , P ) is a discrete probability space with Ω = Z+, F the
power set of Ω, and P the probability measure induced by the geometric
pmf with parameter p. Find the probabilities of the events F = {k : k ≥ 10}
and G = {k : k is odd }. Alternatively note that F = {10, 11, 12, . . . } and
G = {1, 3, 5, 7, . . . } (we consider only odd numbers in the sample space,
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that is, only positive odd numbers). We have that

P (F ) =
∑

k∈F
p(k)

=

∞∑

k=10

p(1− p)k−1

=
p

1− p

∞∑

k=10

(1− p)k

=
p

1− p
(1− p)10

∞∑

k=10

(1− p)k−10

= p(1− p)9
∞∑

k=0

(1− p)k

= (1− p)9,

where the suitable form of the geometric progression has been derived from
the basic form (B.4). While we have concentrated on the calculus, this
problem could be interpreted as a solution to a word problem. For example,
suppose you arrive at the Stanford Post Office and you know that the
probability of k people being in line is a geometric distribution with p = 1/2.
What is the probability that there are at least ten people in line? From the
solution just obtained the answer is (1− .5)9 = 2−9.

To find the probability of an odd outcome, we proceed in the same
general fashion to write

P (G) =
∑

k∈G
p(k)

=
∑

k=1,3,...

p(1− p)k−1

= p
∑

k=0,2,4,...

(1− p)k

= p

∞∑

k=0

[(1− p)2]k

=
p

1− (1− p)2
=

1

2− p
.

Thus in the English example of the post office lines, the probability of
finding an odd number of people in line is 2/3.
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Lastly we consider the Poisson pmf, again beginning with a verification
that it is indeed a pmf. Consider the sum

∞∑

k=0

p(k) =

∞∑

k=0

λke−λ

k!
= e−λ

∞∑

k=0

λk

k!
.

Here the trick is to recognize the sum as the Taylor series expansion for an
exponential, that is,

eλ =

∞∑

k=0

λk

k!
,

whence ∞∑

k=0

p(k) = e−λeλ = 1,

proving the claim.
To evaluate the mean of the Poisson pmf, begin with

∞∑

k=0

kp(k) =

∞∑

k=1

k
λke−λ

k!

= e−λ
∞∑

k=1

λk

(k − 1)!
.

Change variables l = k − 1 and pull a λ out of the sum to write

∞∑

k=0

kp(k) = λe−λ
∞∑

k=0

λl

l!
.

Recognizing the sum as eλ, this yields

m = λ. (2.51)

The second moment is found similarly, but with more bookkeeping. Anal-
ogous to the mean computation,

m(2) =

∞∑

k=1

k2
λke−λ

k!

=

∞∑

k=2

k(k − 1)
λke−λ

k!
+m

=

∞∑

k=1

λke−λ

(k − 2)!
+m.
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Change variables l = k − 1 and pull λ2 out of the sum to obtain

m(2) = λ2
∞∑

l=0

λle−λ

l!
+m

= λ2 + λ (2.52)

so that from (2.41) the variance is

σ2 = λ. (2.53)

Multidimensional pmf’s

While the foregoing ideas were developed for scalar sample spaces such as
Z+, they also apply to vector sample spaces. For example, if A is a discrete
space, then so is the vector space Ak = {all vectors x = (x0, . . . xk−1) with
xi ∈ A, i = 0, 1, . . . , k− 1}. A common example of a pmf on vectors is the
product pmf of the following example.

[2.15] The product pmf.
Let pi; i = 0, 1, . . . , k − 1, be a collection of one-dimensional pmf’s;
that is, for each i = 0, 1, . . . , k − 1 pi(k); r ∈ A satisfies (2.30) and
(2.31). Define the product k−dimensional pmf p on Ak by

p(x) = p(x0, x1, . . . , xk−1) =
k−1∏

i=0

pi(xi) .

As a more specific example, suppose that all of the marginal pmf’s are
the same and are given by a Bernoulli pmf:

p(x) = px(1− p)1−x; x = 0, 1.

Then the corresponding product pmf for a k dimensional vector becomes

p(x0, x1, . . . , xk−1) =

k−1∏

i=0

pxi(1− p)1−xi

= pw(x0,x1,... ,xk−1)(1− p)k−w(x0,x1,... ,xk−1),

where w(x0, x1, . . . , xk−1) is the number of ones occurring in the binary
k-tuple x0, x1, . . . , xk−1, the Hamming weight of the vector.
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2.5 Continuous Probability Spaces

Continuous spaces are handled in a manner analogous to discrete spaces,
but with some fundamental differences. The primary difference is that
usually probabilities are computed by integrating a density function instead
of summing a mass function. The good news is that most formulas look
the same with integrals replacing sums. The bad news is that there are
some underlying theoretical issues that require consideration. The problem
is that integrals are themselves limits, and limits do not always exist in the
sense of converging to a finite number. Because of this, some care will be
needed to clarify when the resulting probabilities are well defined.

[2.14] Let (Ω,F) = (ℜ,B(ℜ)), the real line together with its Borel field.
Suppose that we have a real-valued function f on the real line that
satisfies the following properties

f(r) ≥ 0 , all r ∈ Ω . (2.54)

∫

Ω

f(r)dr = 1 , (2.55)

that is, the function f(r) has a well-defined integral over the real line.
Define the set function P by

P (F ) =

∫

F

f(r) dr ==

∫
1F (r)f(r) dr , F ∈ B(ℜ) . (2.56)

We note that a probability space defined as a probability measure on a
Borel field is an example of a Borel space.

Again as in the discrete case, this integral is a special case of a more
general weighted integral: Suppose that g is a real-valued function defined
on Ω, i.e., g : Ω → ℜ assigns a real number g(r) to every r ∈ Ω. Recall
that such a function is called a random variable. Given a pdf f , define the
expectation of g (with respect to f) as

E(g) =

∫
g(r)f(r) dr. (2.57)

With this definition we can rewrite (2.56) as

P (F ) = E(1F ), (2.58)

which has exactly the same form as in the discrete case. Thus probabilities
can be considered as expectations of indicator functions in both the dis-
crete case where the probability measure is described by a pmf and in the
continuous case if the probability measure is described by a pdf.
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As in the discrete case, there are several particularly important examples
of expectations if the sample space is a subset of the real line, e.g., ℜ or
[0, 1). The definitions are exact integral analogs of those for the discrete
cases: the mean or first moment

m =

∫
rf(r) dr, (2.59)

the kth moment

m(k) =

∫
rkf(r) dr, (2.60)

including the second moment,

m(2) =

∫
r2f(r) dr, (2.61)

the centralized moments formed by substracting the mean before taking the
power:

∫
(r −m)kf(r) dr, (2.62)

including the variance

σ2 =

∫
(r −m)2f(r) dr. (2.63)

Often the kth absolute moment is used instead:

m(k)
a = int|r|kf(r) dr. (2.64)

As in the discrete case, the variance and the second moment are easily
related as

σ2 = m(2) −m2. (2.65)

An important technical detail not yet considered is whether or not the
set function defined as an integral over a pdf is actually a probability mea-
sure. In particular, are the probabilities of all events well defined and do
they satisfy the axioms of probability? Intuitively this should be the case
since (2.54) to (2.56) are the integral analogs of the summations of (2.30)
to (2.32) and we have argued that summing pmf’s provides a well-defined
probability measure. In fact, this is mathematically a delicate issue which
leads to the reasons behind the requirements for sigma-fields and Borel
fields. Before exploring these issues in more depth in the next section, the
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easy portion of the answer should be recalled: We have already argued in
the introduction to this chapter that if we define a set function P (F ) as the
integral of a pdf over the set F , then if the integral exists for the sets in
question, the set function must be nonnegative, normalized, and additive,
that is, it must satisfy the first three axioms of probability. This is well
and good, but it leaves some key points unanswered. First, is the candi-
date probability measure defined for all Borel sets? I.e., are we guaranteed
that the integral will make sense for all sets (events) of interest? Second,
is the candidate probability measure also countably additive or, equiva-
lently, continuous from above or below? The answer to both questions is
unfortunately no if one considers the integral to be a Riemann integral, the
integral most engineers learn as undergraduates. The integral is not certain
to exist for all Borel sets, even if the pdf is a simple uniform pdf. Riemann
integrals in general do not have nice limiting properties, so the necessary
continuity properties do not hold in general for Rieman integrals. These
delicate issues are considered next in an optional subsection and further in
appendix B, but the bottom line can be easily summarized as follows.

• Eq. (2.56) defines a probability measure on the Borel space of the
real line and its Borel sets provided that the integral is interpreted as
a Lebesgue integral. In all practical cases of interest, the Lebesgue
integral is either equal to the Riemann integral, usually more famil-
iar to engineers, or to a limit of Riemann integrals of a converging
sequence of sets.

⋆Probabilities as Integrals

The first issue is fundamental: Does the integral of (2.56) make sense; i.e.,
is it well-defined for all events of interest? Suppose first that we take the
common engineering approach and use Riemann integration — the form
of integration used in elementary calculus. Then the above integrals are
defined at least for events F that are intervals. This implies from the
linearity properties of Riemann integration that the integrals are also well-
defined for events F that are finite unions of intervals. It is not difficult,
however, to construct sets F for which the indicator function 1F is so nasty
that the function f(r)1F (r) does not have a Riemann integral. For example,
suppose that f(r) is 1 for r ∈ [0, 1] and 0 otherwise. Then the Riemann
integral

∫
1F (r)f(r) dr is not defined for the set F of all irrational numbers,

yet intuition should suggest that the set has probability 1. This intuition
reflects the fact that if all points are somehow equally probable, then since
the unit interval contains an uncountable infinity of irrational numbers and
only a countable infinity of rational numbers, then the probability of the
former set should be one and that of the latter 0. This intuition is not
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reflected in the integral definition, which is not defined for either set by the
Riemann approach. Thus the definition of (2.56) has a basic problem: The
integral in the formula giving the probability measure of a set might not
be well-defined.

A natural approach to escaping this dilemma would be to use the Rie-
mann integral when possible, i.e., to define the probabilities of events that
are finite unions of intervals, and then to obtain the probabilities of more
complicated events by expressing them as a limit of finite unions of inter-
vals, if the limit makes sense. This would hopefully give us a reasonable
definition of a probability measure on a class of events much larger than the
class of all finite unions of intervals. Intuitively, it should give us a proba-
bility measure of all sets that can be expressed as increasing or decreasing
limits of finite unions of intervals.

This larger class is, in fact, the Borel field, but the Riemann integral
has the unfortunate property that in general we cannot interchange limits
and integration; that is, the limit of a sequence of integrals of converging
functions may not be itself an integral of a limiting function.

This problem is so important to the development of a rigorous proba-
bility theory that it merits additional emphasis: even though the familiar
Riemann integrals of elementary calculus suffice for most engineering and
computational purposes, they are too weak for building a useful theory,
proving theorems, and evaluating the probabilities of some events which
can be most easily expressed as limits of simple events. The problems are
that the Riemann integral does not exist for sufficiently general functions
and that limits and integration cannot be interchanged in general.

The solution is to use a different definition of integration — the Lebesgue
integral. Here we need only concern ourselves with a few simple properties
of the Lebesgue integral, which are summarized below. The interested
reader is referred to appendix B for a brief summary of basic definitions and
properties of the Lebesgue integral which reinforce the following remarks.

The Riemann integral of a function f(r) “carves up” or partitions the
domain of the argument r and effectively considers weighted sums of the
values of the function f(r) as the partition becomes ever finer. Conversely,
the Lebesgue integral “carves up” the values of the function itself and effec-
tively defines an integral as a limit of simple integrals of quantized versions
of the function. This simple change of definition results in two fundamen-
tally important properties of Lebesgue integrals that are not possessed by
Riemann integrals:

1. The integral is defined for all Borel sets.

2. Subject to suitable technical conditions (such as integrands with bounded
absolute value), one can interchange the order of limits and integra-
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tion; e.g., if Fn ↑ F , then

P (F ) =

∫
1F (r)f(r)dr =

∫
lim
n→∞

1Fn(r)f(r)dr

= lim
n→∞

∫
1Fn(r)f(r)dr = lim

n→∞
P (Fn) ,

that is, (2.28) holds, and hence the set function is continuous from
below.

We have already seen that if the integral exists, then (2.56) ensures that
the first three axioms hold. Thus the existence of the Lebesgue integral on
all Borel sets coupled with continuity and the first three axioms ensures
that a set function defined in this way is indeed a probability measure.
We observe in passing that even if we confined interest to events for which
the Riemann integral made sense, it would not follow that the resulting
probability measure would be countably additive: As with continuity, these
asymptotic properties hold for Lebesgue integration but not for Riemann
integration.

How do we reconcile the use of a Lebesgue integral given the assumed
prerequisite of traditional engineering calculus courses based on the Rie-
mann integral? Here a standard result of real analysis comes to our aid: If
the ordinary Riemann integral exists, then so does the Lebesgue integral,
and the two are the same. If the Riemann integral does not exist, then we
can try to find the probability as a limit of probabilities of simple events
for which the Riemann integrals do exist, e.g., as the limit of probabilities
of finite unions of intervals. In other words, Riemann calculus will usually
suffice for computation (at least if f(r) is Riemann integrable) provided we
realize that we may have to take limits of Riemann integrals for compli-
cated events. Observe, for example, that in the case mentioned where f(r)
is 1 on [0, 1], the probability of a single point 1/2 can now be found easily
as a limit of Riemann integrals:

P

({
1

2

})
= lim
ǫ→0

∫

(1/2−ǫ, 1/2+ǫ)
dr = lim

ǫ→0
2ǫ = 0 ,

as expected.
In summary, our engineering compromise is this: We must realize that

for the theory to be valid and for (2.56) indeed to give a probability measure
on subsets of the real line, the integral must be interpreted as a Lebesgue
integral and Riemann integrals may not exist. For computation, however,
one will almost always be able to find probabilities by either Riemann
integration or by taking limits of Riemann integrals over simple events.
This distinction between Riemann integrals for computation and Lebesgue
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integrals for theory is analogous to the distinction between rational numbers
and real numbers. Computational and engineering tasks use only arithmetic
of finite precision in practice. However, in developing the theory irrational
numbers such as

√
2 and π are essential. Imagine how hard it would be

to develop a theory without using irrational numbers, and how unwise it
would be to do so just because the eventual computations do not use them.
So it is with Lebesgue integrals.

Probability Density Functions

The function f used in (2.54) to (2.56) is called a probability density function
or pdf since it is a nonnegative function that is integrated to find a total
mass of probability, just as a mass density function in physics is integrated
to find a total mass. Like a pmf, a pdf is defined only for points in Ω and
not for sets. Unlike a pmf, a pdf is not in itself the probability of anything;
for example, a pdf can take on values greater than one, while a pmf cannot.
Under a pdf, points frequently have probability zero, even though the pdf
is nonzero. We can, however, interpret a pdf as being proportional to a
probability in the following sense. For a pmf we had

p(x) = P ({x})

Suppose now that the sample space is the real line and that a pdf f is
defined. Let F = [x, x + ∆x), where ∆x is extremely small. Then if f is
sufficiently smooth, the mean value theorem of calculus implies that

P ([x, x+∆x)) =

∫ x+∆x

x

f(α) dα ≈ f(x)∆x, (2.66)

Thus if a pdf f(x) is multiplied by a differential ∆x, it can be interpreted
as (approximately) the probability of being within ∆x of x.

Both probability functions, the pmf and the pdf, can be used to define
and compute a probability measure: The pmf is summed over all points
in the event, and the pdf is integrated over all points in the event. If the
sample space is the subset of the real line, both can be used to compute
expectations such as moments.

Some of the most common pdf’s are listed below. As will be seen, these
are indeed valid pdf’s, that is, they satisfy (2.54) and (2.55). The pdf’s are
assumed to be 0 outside of the specified domain. b, a, λ > 0, m, and σ > 0
are parameters in ℜ.

The uniform pdf. Given b > a, f(r) = 1/(b− a) for r ∈ [a, b].
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The exponential pdf. f(r) = λe−λr; r ≥ 0.

The doubly exponential (or Laplacian) pdf. f(r) =
λ

2
e−λ|r|; r ∈

ℜ.

The Gaussian (or Normal) pdf. f(r) = (2πσ2)−1/2 exp(−(r−m)
2

2σ2 );
r ∈ ℜ. Since the density is completely described by two parameters: the
mean m and variance σ2 > 0, it is common to denote it by N (m,σ2).

Other univariate pdf’s may be found in Appendix C.
Just as we used a pdf to construct a probability measure on the space

(ℜ,B(ℜ)), we can also use it to define a probability measure on any smaller
space (A,B(A)), where A is a subset of ℜ.

As a technical detail we note that to ensure that the integrals all behave
as expected we must also require that A itself be a Borel set of ℜ so that
it is precluded from being too nasty a set. Such probability spaces can be
considered to have a sample space of either ℜ or A, as convenient. In the
former case events outside of A will have zero probability.

Computational Examples

This section is less detailed than its counterpart for discrete probability
because generally engineers are more familiar with common integrals than
with common sums. We confine the discussion to a few observations and
to an example of a multidimensional probability computation.

The uniform pdf is trivially a valid pdf because it is nonnegative and
its integral is simply the length of the the interval on which it is nonzero,
b − a, divided by the length. For simplicity consider the case where a = 0
and b = 1 so that b − a = 1. In this case the probability of any interval
within [0, 1) is simply the length of the interval. The mean is easily found
to be

m =

∫ 1

0

r dr =
r2

2
|10 =

1

2
, (2.67)

the second moment is

m =

∫ 1

0

r2 dr =
r3

3
|10 =

1

3
, (2.68)

and the variance is

σ2 =
1

3
− (

1

2
)2 =

1

12
. (2.69)
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The validation of the pdf and the mean, second moment, and variance
of the exponential pdf can be found from integral tables or by the inte-
gral analog to the corresponding computations for the geometric pmf, as
described in appendix B. In particular, it follows from (eq:expint) that

∫ ∞

0

λe−λr dr = 1, (2.70)

from (B.10) that

m =

∫ ∞

0

rλe−λr dr =
1

λ
(2.71)

and

m(2) =

∫ ∞

0

r2λe−λr dr =
2

λ2
, (2.72)

and hence from (2.65)

σ2 =
2

λ2
−

λ2
=

1

λ2
. (2.73)

The moments can also be found by integration by parts.
The Laplacian pdf is simpy a mixture of an exponential pdf and its

reverse, so its properties follow from those of an exponential pdf. The
details are left as an exercise.

The Gaussian pdf example is more involved. In appendix B, it is shown
(in the development leading up to (B.15) that

∫ ∞

−∞

1√
2σ2

e−
(x−m)2

2σ2 dx = 1. (2.74)

It is reasonably easy to find the mean by inspection. The function g(x) =

(x −m)e−
(x−m)2

2σ2 is an odd function, i.e., it has the form g(−x) = −g(x),
and hence its integral is 0 if the integral exists at all.

This means that
∫ ∞

−∞

1√
2σ2

xe−
(x−m)2

2σ2 dx = m (2.75)

The second moment and variance are most easily handled by the transform
methods to be developed in Chapter 4 and their evaluation will be deferred
until then, but we observe that the parameter σ2 which we have called the
variance is in fact the variance, i.e.,

∫ ∞

−∞

1√
2σ2

(x−m)2e−
(x−m)2

2σ2 dx = σ2. (2.76)
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Computing probabilities with the various pdf’s varies in difficulty. For
simple pdf’s one can easily find the probabilities of simple sets like intervals.
For example, with a uniform pdf on [a, b], then for any a ≤ c < d ≤ b
Pr([c, d]) = (d− c)/(b− a), the probability of an interval is proportional to
the length of the integral. For the exponential pdf, the probability of an
interval [c, d], 0 ≤ c < d, is given by

Pr([c, d]) =

∫ d

c

λe−λx dx = e−λc − e−λd. (2.77)

The Gaussian pdf does not yield nice closed form solutions for the proba-
bilities of simple sets like intervals, but it is well tabulated. Unfortunately
there are several variations of how these tables are constructed. The most
common forms are the Φ function

Φ(α) =
1√
2π

∫ α

−∞
e−

u2

2 du, (2.78)

which is the probability of the simple event (−∞, α] = {x : x ≤ α} for
a zero mean unit variance Gaussian pdf N (0, 1). The Q function is the
complementary function

Q(α) =
1√
2π

∫ ∞

α

e−
u2

2 du = 1− Φ(α). (2.79)

The Q function is used primarily in communications systems analysis where
probabilities of exceeding a threshold describe error events in detection
systems. The error function is defined by

erf(α) =
2√
π

∫ α

0

e−u
2

du (2.80)

and it is related to the Q and Φ functions by

Q(α) =
1

2
(1− erf(

α√
2
) = 1− Φ(α). (2.81)

Thus, for example, the probability of the set (−∞, α) for a N (m,σ2)
pdf is found by changing variables u = (x−m)/σ to be

P ({x : x ≤ α}) =

∫ α

−∞

1√
2πσ2

e−
(x−m)2

2σ2 dx

=

∫ α−m
σ

−∞

1√
2π

e−
u2

2 dx

= Φ(
α−m

σ
) = 1−Q(

α−m

σ
). (2.82)
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The probability of an interval (a, b] is then given by

P ((a, b]) = P ((−∞, b])− P ((−∞, a]) = Φ(
b−m

σ
)− Φ(

a−m

σ
). (2.83)

Observe that the symmetry of a Gaussian density implies that

1− Φ(a) = Φ(−a). (2.84)

As a multidimensional example of probability computation, suppose
that the sample space is ℜ2, the space of all pairs of real numbers. The
probability space consists of this sample space, the corresponding Borel
field, and a probability measure described by a pdf

f(x, y) =

{
λµe−λx−µy; x ∈ [0,∞), y ∈ [0,∞)

0 otherwise
.

What is the probability of the event F = {(x, y) : x < y}? As an inter-
pretation, the sample points (x, y) might correspond to the arrival times of
two distinct types of particle at a sensor following its activation, say type
A and type B for x and y, respectively. Then the event is the event that a
particle of type A arrives at the sensor before one of type B. Computation
of the probability is then accomplished as

P (F ) =

∫ ∫

(x,y):(x,y)∈F
f(x, y) dx dy

=

∫ ∫

(x,y):x≥0,y≥0,x<y
λµe−λx−µy dx dy.

This integral is a two-dimensional integral of its argument over the indicated
region. Correctly describing the limits of integration is often the hardest
part of computing probabilities. Note in particular the inclusion of the facts
that both x and y are nonnegative (since otherwise the pdf is 0). The x < y
region for nonnegative x and y is most easily envisioned as the region of
the first quadrant lying above the line x = y, if x and y correspond to the
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horizontal and vertical axes, respectively. Completing the calculus:

P (F ) = λµ

∫ ∞

0

dy

(∫ y

0

dxe−λxe−µy
)

= λµ

∫ ∞

0

dye−µy
(∫ y

0

dxe−λx
)

= λµ

∫ ∞

0

dye−µy
1

λ
(1− e−λy)

= µ

(∫ ∞

0

dye−µy −
∫ ∞

0

dye−(µ+λ)y
)

= 1− µ

µ+ λ
=

λ

µ+ λ
.

Mass Functions as Densities

As in systems theory, discrete problems can be considered as continuous
problems by with the aid of the Dirac delta or unit impulse δ(t), a gener-
alized function or singularity function (also, unfortunately, called a distri-
bution) with the property that for any smooth function {g(r); r ∈ ℜ} and
any a ∈ ℜ

∫
g(r)δ(r − a) dr = g(a). (2.85)

Given a pmf p defined on a subset of the real line Ω ⊂ ℜ, we can define a
pdf f by

f(r) =
∑

p(ω)δ(r − ω). (2.86)

This is indeed a pdf since
∫

f(r) dr =

∫ (∑
p(ω)δ(r − ω)

)
dr

=
∑

p(ω)

∫
δ(r − ω) dr

=
∑

p(ω) = 1.

In a similar fashion, probabilies are computed as
∫

1F (r)f(r) dr =

∫
1F (r)

(∑
p(ω)δ(r − ω)

)
dr

=
∑

p(ω)

∫
1F (r)δ(r − ω) dr

=
∑

p(ω)1F (ω) = P (F ).
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Given that discrete probability can be handled using the tools of contin-
uous probability in this fashion, it is natural to inquire why not use pdf’s
in both the discrete and continuous case. The main reason is simplicity,
pmf’s and sums are usually simpler to handle and evaluate than pdf’s and
integrals. Questions of existence and limits rarely arise, and the notation is
simpler. In addition, the use of Dirac deltas assumes the theory of gener-
alized functions in order to treat integrals involving Dirac deltas as if they
were ordinary integrals, so additional mathematical machinery is required.
As a result, this approach is rarely used in genuinely discrete problems.
On the other hand, if one is dealing with a hybrid problem that has both
discrete and continuous components, then this approach may make sense
because it allows the use of a single probability function, a pdf, throughout.

Multidimensional pdf’s

By considering multidimensional integrals we can also extend the construc-
tion of probabilities by integrals to finite-dimensional product spaces, e.g.,
ℜk.

Given the measurable space (ℜk,B(ℜ)k), say we have a real-valued func-
tion f on Rk with the properties that

f(x) ≥ 0 ; all x = (x0, x1, . . . , xk−1) ∈ ℜk , (2.87)

∫

ℜk

f(x)dx = 1 . (2.88)

Then define a set function P by

P (F ) =

∫

F

f(x)dx all F ∈ B(ℜ)k , (2.89)

where the vector integral is shorthand for the k−dimensional integral, that
is,

P (F ) =

∫

(x0,x1,... ,xk−1)∈F
f(x0, x1, . . . , xk−1) dx0dx1 . . . dxk−1 .

Note that (2.87) to (2.89) are exact vector equivalents of (2.54) to (2.56).
As with multidimensional pmf’s, a pdf is not itself the probability of any-
thing. As in the scalar case, however, the mean value theorem of calculus
can be used to interpret the pdf as being proportional to the probability of
being in a very small region around a point, i.e., that

P ({(α0, α1, . . . , αk−1) : xi ≤ αi < xi +∆i; i = 0, 1, . . . , n− 1})
≈ f(x0, x1, . . . , xk−1)∆0∆1 · · ·∆n−1. (2.90)
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Is P defined by (2.89) a probability measure? The answer is a qualified
yes with exactly the same qualifications as in the one-dimensional case.

As in the one-dimensional sample space, a function f with the above
properties is called a probability density function or pdf. To be more
concise we will occasionally refer to a pdf on k−dimensional space as a
k−dimensional pdf.

There are two common and important examples of k−dimensional pdf’s.
These are defined next. In both examples the dimension k of the sample
space is fixed and the pdf’s induce a probability measure on (ℜk,B(ℜ)k)
by (2.89).

[2.16] The product pdf.
Let fi; i = 0, 1, . . . , k − 1, be a collection of one-dimensional pdf’s;
that is, fi(r); r ∈ ℜ satisfies (2.54) and (2.55) for each i = 0, 1, . . . , k−
1. Define the product k−dimensional pdf f by

f(x) = f(x0, x1, . . . , xk−1) =
k−1∏

i=0

fi(xi) .

The product pdf in k−dimensional space is simply the product of k
pdf’s on one-dimensional space. The one-dimensional pdf’s are called the
marginal pdf’s, and the multidimensional pdf is sometimes called a joint
pdf. It is easy to verify that the product pdf integrates to 1.

The case of greatest importance is when all of the marginal pdf’s are
identical, that is, when fi(r) = f0(r) for all i. Note that any of the pre-
viously defined pdf’s on ℜ yield a corresponding multidimensional pdf by
this construction. In a similar manner we can construct pmf’s on discrete
product spaces as a product of marginal pmf’s.

[2.17] The multidimensional Gaussian pdf.
Let m = (m0,m1, . . . ,mk−1)t denote a column vector (the super-
script t stands for “transpose”). Let Λ denote a k by k square matrix
with entries {λi,j ; i = 0, 1, . . . , k−1; j = 0, 1, . . . , k−1}. Assume that
Λ is symmetric; that is, that Λt = Λ or, equivalently, that λi,j = λj,i,
all i, j. Assume also that Λ is positive definite; that is, for any nonzero
vector y ∈ ℜk the quadratic form ytΛy is positive, that is,

ytΛy =

k−1∑

i=0

k−1∑

j=0

yiλi,jyj > 0 .

a multidimensional pdf is said to be Gaussian if it has the following
form for some vectorm and matrix Λ satisfying the above conditions:

f(x) = (2π)−k/2(detΛ)−1/2e−1/2(x−m)tΛ−1(x−m) ; x ∈ ℜk .
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where detΛ is the determinant of the matrix Λ.

Since the matrix Λ is positive definite, the inverse of Λ exists and hence
the pdf is well defined. It is also necessary for Λ to be positive definite
if the integral of the pdf is to be finite. The Gaussian pdf may appear
complicated, but it will later be seen to be one of the simplest to deal with.
We shall later develop the significance of the vector m and matrix Λ. Note
that if Λ is a diagonal matrix, example [2.17] reduces to a special case of
example [2.16].

The reader must either accept on faith that the multidimensional Gaus-
sian pdf integrates to 1 or seek out a derivation.

The Gaussian pdf can be extended to complex vectors if the constraints
on Λ are modified to require that Λ∗ = Λ, where the asterix denotes conju-
gate transpose, and where for any vector y not identically 0 it is required
that y∗Λy > 0.

[2.18] Mixtures.
Suppose that Pi, i = 1, 2, . . . ,∞ is a collection of probability mea-
sures on a common measurable space (Ω,F), and let ai, i = 1, 2, . . .
be nonnegative numbers that sum to 1. Then the set function deter-
mined by

P (F ) =
∞∑

i=1

aiPi(F )

is also a probability measure on (Ω,F). This relation is usually ab-
breviated to

P =

∞∑

i=1

aiPi .

The first two axioms are obviously satisfied by P , and countable ad-
ditivity follows from the properties of sums. (Finite additivity is easily
demonstrated for the case of a finite number of nonzero ai.) A probability
measure formed in this way is called a mixture. Observe that this con-
struction can be used to form a probability measure with both discrete and
continuous aspects. For example, let Ω be the real line and F the Borel
field; suppose that f is a pdf and p is a pmf; then for any λ ∈ (0, 1) the
measure P defined by

P (F ) = λ
∑

x∈F
p(x) + (1− λ)

∫

x∈F
f(x)dx

combines a discrete portion described by p and a continuous portion de-
scribed by f. Expectations can be computed in a similar way. Given a
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function g,

E(g) = λ
∑

x∈F
g(x)p(x) + (1− λ)

∫

x∈F
g(x)f(x)dx

Note that this construction works for both scalar and vector spaces.
This combination of discrete and continuous attributes is one of the main
applications of mixtures. Another is in modeling a random process where
there is some uncertainty about the parameters of the experiment. For
example, consider a probability space for the following experiment: First
a fair coin is flipped and a 0 or 1 (tail or head) observed. If the coin toss
results in a 1, then a fair die described by a uniform pmf p1 is rolled, and
the outcome is the result of the experiment. If the coin toss results in a
0, then a biased die described by a nonuniform pmf p2 is rolled, and the
outcome is the result of the experiment. The pmf of the overall experiment
is then the mixture p1/2+p2/2. The mixture model captures our ignorance
of which die we will be rolling.

2.6 Independence

Given a probability space (Ω,F , P ), two events F and G are defined to
be independent if P (F ∩ G) = P (F )P (G). A collection of events {Fi; i =
0, 1, . . . , k− 1} is said to be independent or mutually independent if for any
distinct subcollection {Fli ; i = 0, 1, . . . ,m− 1}, lm ≤ k, we have that

P

(
m−1⋂

i=0

Fli

)
=

m−1∏

i=0

P (Fli) .

In words: the probability of the intersection of any subcollection of the given
events equals the product of the probabilities of the separate events. Unfor-

tunately it is not enough to simply require that P
(⋂k−1

i=0 Fi

)
=
∏k−1
i=0 P (Fi)

as this does not imply a similar result for all possible subcollections of
events, which is what will be needed. For example, consider the following
case where P (F ∩G∩H) = P (F )P (G)P (H) for three events F , G, and H,
yet it is not true that P (F ∩G) = P (F )P (G)

P (F ) = P (G) = P (H) =
1

3

P (F ∩G ∩H) =
1

27
= P (F )P (G)P (H)

P (F ∩G) = P (G ∩H) = P (F ∩H) =
1

27

= P (F )P (G).



2.7. ELEMENTARY CONDITIONAL PROBABILITY 71

The example places zero probability on the overlap F ∩G except where it
also overlaps H, i.e., P (F ∩G∩Hc) = 0. Thus in this case P (F ∩G∩H) =
P (F )P (G)P (H) = 1/27, but P (F ∩G) = 1/27 
= P (F )P (G) = 1/9.

The concept of independence in the probabilistic sense we have defined
relates easily to the intuitive idea of independence of physical events. For
example, if a fair die is rolled twice, one would expect the second roll
to be unrelated to the first roll because there is no physical connection
between the individual outcomes. Independence in the probabilistic sense
is reflected in this experiment. The probability of any given outcome for
either of the individual rolls is 1/6. The probability of any given pair of
outcomes is (1/6)2 = 1/36 — the addition of a second outcome diminishes
the overall probability by exactly the probability of the individual event,
viz., 1/6. Note that the probabilities are not added — the probability of
two successive outcomes cannot reasonably be greater than the probability
of either of the outcomes alone. Do not, however, confuse the concept of
independence with the concept of disjoint or mutually exclusive events. If
you roll the die once, the event the roll is a one is not independent of
the event the roll is a six. Given one event, the other cannot happen —
they are neither physically nor probabilistically independent. These are
mutually exclusive events.

2.7 Elementary Conditional Probability

Intuitively, independence of two events means that the occurrence of one
event should not affect the occurrence of the other. For example, the knowl-
edge of the outcome of the first roll of a die should not change the probabil-
ities for the outcome of the second roll of the die if the die has no memory.
To be more precise, the notion of conditional probability is required. Con-
sider the following motivation. Suppose that (Ω,F , P ) is a probability space
and that an observer is told that an event G has already occurred. The
observer thus has a posteriori knowledge of the experiment. The observer
is then asked to calculate the probability of another event F given this in-
formation. We will denote this probability of F given G by P (F |G). Thus
instead of the a priori or unconditional probability P (F ), the observer
must compute the a posteriori or conditional probability P (F |G), read
as “the probability that event F occurs given that the event G occurred.”
For a fixed G the observer should be able to find P (F |G) for all events
F , thus the observer is in fact being asked to describe a new probability
measure, say PG, on (Ω,F). How should this be defined? Intuition will
lead to a useful definition and this definition will indeed provide a useful
interpretation of independence.



72 CHAPTER 2. PROBABILITY

First, since the observer has been told that G has occurred and hence
ω ∈ G, clearly the new probability measure PG must assign zero probability
to the set of all ω outside of G, that is, we should have

P (Gc|G) = 0 (2.91)

or, equivalently,

P (G|G) = 1. (2.92)

Eq. (2.91) plus the axioms of probability in turn imply that

P (F |G) = P (F ∩ (G ∪Gc)|G) = P (F ∩G|G). (2.93)

Second, there is no reason to suspect that the relative probabilities within
G should change because of the conditioning. For example, if an event
F ⊂ G is twice as probable as an event H ⊂ G with respect to P , then the
same should be true with respect to PG. For arbitrary events F and H,
the events F ∩G and H ∩G are both in G, and hence this preservation of
relative probability implies that

P (F ∩G|G)

P (H ∩G|G)
=

P (F ∩G)

P (H ∩G)
.

But if we take H = Ω in this formula and use (2.92)-(2.93), we have that

P (F |G) = P (F ∩G|G) =
P (F ∩G)

P (G)
, (2.94)

which is in fact the formula we now use to define the conditional probability
of the event F given the event G. The conditional probability can be
interpreted as “cutting down” the original probability space to a probability
space with the smaller sample space G and with probabilities equal to the
renormalized probabilities of the intersection of events with the given event
G on the original space.

This definition meets the intuitive requirements of the derivation, but
does it make sense and does it fulfill the original goal of providing an inter-
pretation for independence? It does make sense provided P (G) > 0, that
is, the conditioning event does not have zero probability. This is in fact the
distinguishing requirement that makes the above definition work for what is
known as elementary conditional probability. Non-elementary conditional
probability will provide a more general definition that will work for condi-
tioning events having zero probability, such as the event that a fair spin of
a pointer results in a reading of exactly 1/π. Further, if P is a probability
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measure, then it is easy to see that PG defined by PG(F ) = P (F |G) for
F ∈ F is also a probability measure on the same space (remember G stays
fixed), i.e., PG is a normalized and countably additive function of events.
As to independence, suppose that F and G are independent events and
that P (G) > 0, then

P (F |G) =
P (F ∩G)

P (G)
= P (F ),

the probability of F is not effected by the knowledge that G has occurred.
This is exactly what one would expect from the intuitive notion of the
independence of two events. Note, however, that it would not be as useful
to define independence of two events by requiring P (F ) = P (F |G) since it
would be less general than the product definition; it requires that one of
the events have a nonzero probability.

Conditional probability provides a means of constructing new probabil-
ity spaces from old ones by using conditional pmf’s and elementary condi-
tional pdf’s.

[2.18] Suppose that (Ω,F , P ) is a probability space described by a pmf p
and that A is an event with nonzero probability. Then the pmf pA
defined by

pA(ω) =

{
p(ω)
P (A) = P ({ω}|A) , ω ∈ A

0 ω 
∈ A

is a pmf and implies a probability space (Ω,F , PA), where

PA(F ) =
∑

ω∈F
pA(ω) (2.95)

= P (F |A). (2.96)

pA is called a conditional pmf . More specifically, it is the conditional
pmf given the event A. In some cases it may be more convenient
to define the conditional pmf on the sample space A and hence the
conditional probability measure on the original event space.

As an example, suppose that p is a geometric pmf and that A = {ω :
ω ≥ K} = {K,K + 1, . . . }. In this case the conditional pmf given
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that the outcome is greater than or equal to K is

pA(k) =
(1− p)k−1p∑∞
l=K(1− p)l−1p

=
(1− p)k−1p

(1− p)K−1

= (1− p)k−Kp; k = K + 1,K + 2, . . . , (2.97)

(2.98)

which can be recognized as a geometric pmf which begins at k = K+1.

[2.19] Suppose that (Ω,F , P ) is a probability space described by a pdf f
and that A is an event with nonzero probability. Then thefA defined
by

fA(ω) =

{
f(ω)
P (A) ω ∈ A

0 ω ∈ A

is a pdf on A and describes a probability measure

PA(F ) =

∫

ω∈F
fA(ω) dω (2.99)

= P (F |A). (2.100)

fA is called an elementary conditional pdf (given the event A). The
word “elementary” reflects the fact that the conditioning event has
nonzero probability. We will later see how conditional probability can
be usefully extended to conditioning on events of zero probability.

As a simple example, consider the continuous analog of the previous
conditional geometric pmf example. Given an exponential pdf and A =
{r : r ≥ c}, define

fA(x) =
λe−λx∫∞

c
λe−λy dy

=
λe−λx

e−λc

= λe−λ(x−c); x ≥ c, (2.101)

(2.102)

which can be recognized as an exponential pdf that starts at c. The ex-
ponential pdf and geometric pmf share this unusual property, conditioning
on the output being larger than some number does not change the basic
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form of the pdf or pmf, only its starting point. This has the discouraging
implication that if, for example, the time for the next arrival of a bus is
described by an exponential pdf, then knowing you have already waited for
an hour does not change your pdf to the next arrival from what it was when
you arrived.

2.8 Problems

1. Suppose that you have a set function P defined for all subsets F ⊂ Ω
of a sample space Ω and suppose that you know that this set function
satisfies (2.7-2.9). Show that for arbitrary (not necessarily disjoint)
events,

P (F ∪G) = P (F ) + P (G)− P (F ∩G) .

2. Describe the sigma-field of subsets of ℜ generated by the points or
singleton sets. Does this sigma-field contain intervals of the form
(a, b) for b > a?

3. Given a finite subset A of the real line ℜ, prove that the power set of
A and B(A) are the same. Repeat for a countably infinite subset of
ℜ.

4. Given that the discrete sample space Ω has n elements, show that the
power set of Ω consists of 2n elements.

5. *Let Ω = ℜ, the real line, and consider the collection F of subsets of
ℜ defined as all sets of the form

k⋃

i=0

(ai, bi] ∪
m⋃

j=0

(cj , dj ]
c

for all possible choices of nonnegative integers k and m and all possible
choices of real numbers ai < bi, ci < di. If k or m is 0, then the
respective unions are defined to be empty so that the empty set itself
has the form given. In other words, F contains all possible finite
unions of half-open intervals of this form and complements of such
half-open intervals. Every set of this form is in F and every set in
F has this form. Prove that F is a field of subsets of Ω. Does F
contain the points? For example, is the singleton set {0} in F? Is F
a sigma-field?

6. Let Ω = [0,∞) be a sample space and let F be the sigma-field of
subsets of Ω generated by all sets of the form (n, n+1) for n = 1, 2, . . .



76 CHAPTER 2. PROBABILITY

(a) Are the following subsets of Ω in F? (i) [0,∞), (ii) Z+ = {0, 1, 2, . . . },
(iii) [0, k] ∪ [k + 1,∞) for any positive integer k, (iv) {k} for
any positive integer k, (v) [0, k] for any positive integer k, (vi)
(1/3, 2).

(b) Define the following set function on subsets of Ω :

P (F ) = c
∑

i∈Z+: i+1/2∈F
3−i

(If there is no i for which i+ 1/2 ∈ F , then the sum is taken as
zero.) Is P a probability measure on (Ω,F) for an appropriate
choice of c? If so, what is c?

(c) Repeat part (b) with B, the Borel field, replacing F as the event
space.

(d) Repeat part (b) with the power set of [0,∞) replacing F as the
event space.

(e) Find P (F ) for the sets F considered in part (a).

7. Show that an equivalent axiom to 2.3 of probability is the following:

If F and G are disjoint, then P (F ∪G) = P (F ) + P (G) ,

that is, we really need only specify finite additivity for the special
case of n = 2.

8. Consider the measurable space ((0, 1],B([0, 1])). Define a set function
P on this space as follows:

P (F ) =






1/2 if 0 ∈ F or 1 ∈ F but not both
1 if 0 ∈ F and 1 ∈ F
0 otherwise .

Is P a probability measure?

9. Let S be a sphere in ℜ3 : S = {(x, y, z) : x2 + y2 + z2 ≤ r2},
where r is a fixed radius. In the sphere are fixed N molecules of gas,
each molecule being considered as an infinitesimal volume (that is,
it occupies only a point in space). Define for any subset F of S the
function

#(F ) = {the number of molecules in F} .

Show that P (F ) = #(F )/N is a probability measure on the measur-
able space consisting of S and its power set.
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10. ⋆Suppose that you are given a probability space (Ω,F , P ) and that a
collection FP of subsets of Ω is defined by

FP = {F ∪N ; all F ∈ F , all N ⊂ G for which G ∈ F and P (G) = 0}.
(2.103)

In words: FP contains every event in F along with every subset N
which is a subset of zero probability event G ∈ F , whether or not N
is itself an event (a member of F). Thus FP is formed by adding any
sets not already in FP which happen to be subsets of zero probability
events. We can define a set function P for the measurable space
(Ω,FP ) by

P (F ∪N) = P (F ) if F ∈ F and N ⊂ G ∈ F , where P (G) = 0.
(2.104)

Show that (Ω,FP , P ) is a probability space, i.e., you must show that
FP is an event space and that P is a probability measure. A prob-
ability space with the property that all subsets of zero probability
events are also events is said to be complete and the probability space
(Ω,FP , P ) is called the completion of the probability space (Ω,F , P ).

In problems 2.11 to 2.17 let (Ω,F , P ) be a probability space and
assume that all given sets are events.

11. If G ⊂ F , prove that P (F −G) = P (F )−P (G). Use this fact to prove
that if G ⊂ F , then P (G) ≤ P (F ).

12. Let {Fi} be a countable partition of a set G. Prove that for any event
H, ∑

i

P (H ∩ Fi) = P (H ∩G) .

13. If {Fi, i = 1, 2, . . . } forms a partition of Ω and {Gi; i = 1, 2, . . . }
forms a partition of Ω, prove that for any H,

P (H) =

∞∑

i=1

∞∑

j=1

P (H ∩ Fi ∩Gj) .

14. Prove that |P (F )− P (G)| ≤ P (F∆G).

15. Prove that P (F ∪G) ≤ P (F ) + P (G). Prove more generally that for
any sequence (i.e., countable collection) of events Fi,

P

( ∞⋃

i=1

Fi

)
≤

∞∑

i=1

P (Fi) .
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This inequality is called the union bound or the Bonferoni inequality.
(Hint: Use problem A.2 or 2.1.)

16. Prove that for any events F,G, and H,

P (F∆G) ≤ P (F∆H) + P (H∆G) .

In words: If the probability of the symmetric difference of two events
is small, then the two events must have approximately the same prob-
ability. The astute observer may recognize this as a form of the tri-
angle inequality; one can consider P (F∆G) as a distance or metric
on events.

17. Prove that if P (F ) ≥ 1− δ and P (G) ≥ 1− δ, then also P (F ∩G) ≥
1−2δ. In other words, if two events have probability nearly one, then
their intersection has probability nearly one.

18. *The Cantor set Consider the probability space (Ω,B(Ω), P ) where
P is described by a uniform pdf on Ω = [0, 1). Let F1 = (1/3, 2/3),
the middle third of the sample space. Form the set G1 = Ω − F1
by removing the middle third of the unit interval. Next define F2
as union of the middle thirds of all of the intervals in G1, i.e., F2 =
(1/9, 2/9)

⋃
(7/9, 8/9). Define G2 as what remains when remove F2

from G1, that is,

G2 = G1 − F2 = [0, 1]− (F1
⋃

F2).

Continue in this manner. At stage n Fn is the union of the middle
thirds of all of the intervals in Gn−1 = [0, 1]−⋃n−1k=1 Fn. The Cantor
set is defined as the limit of the Gn, that is,

C =

∞⋂

n=1

Gn = [0, 1]−
∞⋃

n=1

Fn. (2.105)

(a) Prove that C ∈ B(Ω), i.e., that it is an event.

(b) Prove that

1

3
(
2

3
)n−1; n = 1, 2, . . . . (2.106)

(c) Prove that P (C) = 0, i.e., that the Cantor set has zero proba-
bility.
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One thing that makes this problem interesting is that unlike most
simple examples of nonempty events with zero probability, the Cantor
set has an uncountable infinity of points and not a discrete set. This
can be shown be first showing that a point x ∈ C if and only if the
point can be expressed as a ternary number x =

∑∞
n=1 an3

−n where
all the an are either 0 or 2. Thus the number of points in the Cantor
set is the same as the number of real numbers that can be expressed
in this fashion, which is the same as the number of real numbers that
can be expressed in a binary expansion (since each an can have only
two values), which is the same as the number of points in the unit
interval, which is uncountably infinite.

19. Six people sit at a circular table and pass around and roll a single fair
die (equally probable to have any face 1 through 6 showing) beginning
with person # 1. The game continues until the first 6 is rolled, the
person who rolled it wins the game. What is the probability that
player # 2 wins?

20. Show that given (2.22) through (2.24), (2.28) or (2.29) implies (2.25).
Thus (2.25), (2.28), and (2.29). provide equivalent candidates for the
fourth axiom of probability.

21. Suppose that P is a probability measure on the real line and define the
sets Fn = (0, 1/n) for all positive integer n. Evaluate limn→∞ P (Fn).

22. Answer true or false for each of the following statements. Answers
must be justified.

(a) The following is a valid probability measure on the sample space
Ω = {1, 2, 3, 4, 5, 6} with event space F = all subsets of Ω:

P (F ) =
1

21

∑

i∈F
i; all F ∈ F .

(b) The following is a valid probability measure on the sample space
Ω = {1, 2, 3, 4, 5, 6} with event space F = all subsets of Ω:

P (F ) =

{
1 if 2 ∈ F or 6 ∈ F

0 otherwise

(c) If P (G ∪ F ) = P (F ) + P (G), then F and G are independent.

(d) P (F |G) ≥ P (G) for all events F and G.

(e) Mutually exclusive (disjoint) events with nonzero probability
cannot be independent.
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(f) For any finite collection of events Fi; i = 1, 2, · · · , N

P (∪Ni=1Fi) ≤
N∑

i=1

P (Fi).

23. Prove or provide a counterexample for the relation P (F |G)+P (F |Gc) =
P (F ).

24. Find the mean, second moment, and variance of a uniform pdf on an
interval [a, b).

25. Given a sample space Ω = {0, 1, 2, · · · } define

p(k) =
γ

2k
; k = 0, 1, 2, · · ·

(a) What must γ be in order for p(k) to be a pmf?

(b) Find the probabilities P ({0, 2, 4, 6, · · · }), P ({1, 3, 5, 7, · · · }), and
P ({0, 1, 2, 3, 4, . . . , 20}).

(c) Suppose that K is a fixed integer. Find P ({0,K, 2K, 3K, . . . }).
(d) Find the mean, second moment, and variance of this pmf.

26. Suppose that p(k) is a geometric pmf. Define q(k) = (p(k)+p(−k))/2.
Show that this is a pmf and find its mean and variance. Find the
probability of the sets {k : |k| ≥ K} and {k : k is a multiple of 3}.
Find the probability of the sets {k : k is odd }

27. Define a pmf p(k) = Cλ|k|/|k|! for k ∈ Z. Evaluate the constant C
and find the mean and variance of this pmf.

28. A probability space consists of a sample space Ω = all pairs of positive
integers (that is, Ω = {1, 2, 3, . . . }2) and a probability measure P
described by the pmf p defined by

p(k,m) = p2(1− p)k+m−2 .

(a) Find P ({(k,m) : k ≥ m}).
(b) Find the probability P ({(k,m) : k +m = r}) as a function of r

for r = 2, 3, . . . Show that the result is a pmf.

(c) Find the probability P ({(k,m) : k is an odd number}).
(d) Define the event F = {(k,m) : k ≥ m}. Find the conditional

pmf pF (k,m) = P ({k,m}|F ). Is this a product pmf?



2.8. PROBLEMS 81

29. Define the uniform probability density function on [0, 1) in the usual
way as

f(r) =






1 0 ≤ r < 1

0 otherwise

(a) Define the the set F = {0.25, 0.75}, a set with only two points.
What is the value of ∫

F

f(r) dr?

The Riemann integral is well defined for a finite collection of
points and this should be easy. What is

∫
F c f(r) dr?

(b) Now define the set F as the collection of all rational numbers
in [0, 1), that is, all numbers that can be expressed as k/n for
some integers 0 ≤ k < n. What is the integral

∫
F

f(r) dr? Is
it defined? Thinking intuitively, what should it be? Suppose
instead you consider the set F c, the set of all irrational numbers
in [0, 1). What is

∫
F c f(r) dr?

30. Given the uniform pdf on [0, 1], f(x) = 1; x ∈ [0, 1], find an expression
for P ((a, b)) for all real b > a. Define the cumulative distribution
function or cdf F as the probability of the event {x : x ≤ r} as a
function of r ∈ ℜ:

F (r) = P ((−∞, r]) =

∫ r

−∞
f(x) dx. (2.107)

Find the cdf for the uniform pdf. Find the probability of the event

G =

{
ω : ω ∈

[
1

2k
,
1

2k
+

1

2k+1

)
for some even k

}

=
⋃

k even

[
1

2k
,
1

2k
+

1

2k+1

)
.

31. ⋆ Let Ω be a unit square {(x, y) : (x, y) ∈ ℜ2, −1/2 ≤ x ≤ 1/2,
−1/2 ≤ y ≤ 1/2} and let F be the corresponding product Borel field.
Is the circle {(x, y) : (x2 + y2)1/2 ≤ 1/2} in F? (Give a plausibility
argument.) If so, find the probability of this event if one assumes a
uniform density function on the unit square.

32. Given a pdf f , find the cumulative distribution function or cdf F
defined as in (2.107) for the exponential, Laplacian, and Gaussian
pdf’s. In the Gaussian case, express the cdf in terms of the Φ function.

Prove that if a ≥ b, then F (a) ≥ F (b). What is dF (r)dr ?
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33. Let Ω = ℜ2 and suppose we have a pdf f(x, y) such that

f(x, y) =

{
C if x ≥ 0, y ≥ 0, x+ y ≤ 1
0 otherwise .

Find the probability P ({(x, y) : 2x > y}). Find the probability
P ({(x, y) : x ≤ α}) for all real α. Is f a product pdf?

34. Prove that the product k−dimensional pdf integrates to 1 over ℜ
35. Given the one-dimensional exponential pdf, find P ({x : x > r}) and

the cumulative distribution function P ({x : x ≤ r}) for r ∈ ℜ.

36. Given the k−dimensional product doubly exponential pdf, find the
probabilities of the following events in ℜk: {x : x0 ≥ 0}, {x : xi >
0, all i = 0, 1, . . . , k − 1}, {x : x0 > x1}.

37. Let (Ω,F) = (ℜ,B(ℜ)). Let P1 be the probability measure on this
space induced by a geometric pmf with parameter p and let P2 be
the probability measure induced on this space by an exponential pdf
with parameter λ. Form the mixture measure P = P1/2+P2/2. Find
P ({ω : ω > r}) for all r ∈ [0,∞).

38. Let Ω = ℜ2 and suppose we have a pdf f(x, y) such that

f(x, y) = Ce−(1/2σ
2) x2

e−λy ; x ∈ (−∞,∞) , y ∈ [0,∞) .

Find the constant C. Is f a product pdf? Find the probability
Pr({(x, y) :

√
|x| ≤ α}) for all possible values of a parameter α. Find

the probability Pr({(x, y) : x2 ≤ y}).
39. Define g(x) by

g(x) =

{
λe−λx x ∈ [0,∞)
0 otherwise .

Let Ω = ℜ2 and suppose we have a pdf f(x, y) such that

f(x, y) = Cg(x)g(y − x) .

Find the constant C. Find an expression for the probability P ({(x, y) :
y ≤ α}) as a function of the parameter α. If f a product pdf?

40. Let Ω = ℜ2 and suppose we have a pdf such that

f(x, y) =

{
C|x| −1 ≤ x ≤ 1; −1 ≤ y ≤ x
0 otherwise .

Find the constant C. Is f a product pdf?
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41. Suppose that a probability space has as sample spaceRn, n-dimensional
Euclidean space. (This is a product space.) Suppose that a multidi-
mensional pdf f is defined on this space by

f(x) =

{
C; maxi |xi| ≤ 1/2

0; otherwise;

that is, f(x) = C when −1/2 ≤ xi ≤ 1/2 for i = 0, 1, · · · , n − 1 and
is 0 otherwise.

(a) What is C?

(b) Is f a product pdf?

(c) What is P ({x : mini xi ≥ 0}), that is, the probability that the
smallest coordinate value is nonnegative.

Suppose next that we have a pdf g defined by

g(x) =

{
K; ||x|| ≤ 1

0; otherwise,

where

||x|| =

√√√√
n−1∑

i=0

x2i

is the Euclidean norm of the vector x. Thus g is K inside an
n-dimensional sphere of radius 1 centered at the origin.

(d) What is the constant K? (You may need to go to a book of
integral tables to find this.)

(e) Is this density a product pdf?

42. Let (Ω,F , P ) be a probability space and consider events F,G, and
H for which P (F ) > P (G) > P (H) > 0. Events F and G form a
partition of Ω, and events F and H are independent. Can events G
and H be disjoint?

43. Given a probability space (Ω,F , P ), and let F,G, and H be events
such that P (F ∩ G|H) = 1. Which of the following statements are
true? Why or why not?

(a) P (F ∩G) = 1

(b) P (F ∩G ∩H) = P (H)

(c) P (F c|H) = 0
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(d) H = Ω

44. (Courtesy of Prof. T. Cover) Suppose that the evidence of an event F
increases the likelihood of a criminals guilt; that is, if G is the event
that the criminal is guilty, then P (G|F ) ≥ P (G). The prosecutor
discovers that the event F did not occur. What do you now know
about the criminal’s guilt? Prove your answer.

45. Suppose that X is a binary random variable with outputs {a, b} with a
pmf pX(a) = p and pX(b) = 1−p and Y is a random variable described
by the conditional pdf fY |X(y|x) exp−(y − x)2/2σ2W /

√
2πσ2W . De-

scribe the MAP detector for X given Y and find an expression for
the probability of error in terms of the Q function.

Suppose that p = 0.5, but you are free to choose a and b subject only
to the constraint that (a2 + b2)/2 = Eb. Which is a better choice,
a = −b or a nonzero with b = 0? What can you say about the
minimum achievable Pe?



Chapter 3

Random Variables,
Vectors, and Processes

3.1 Introduction

This chapter provides the theoretical foundations and many examples of
random variables, vectors, and processes. All three concepts are variations
on a single theme and may be included in the general term of random object.
We will deal specifically with random variables first because they are the
simplest conceptually — they can be considered to be special cases of the
other two concepts.

3.1.1 Random Variables

The name random variable suggests a variable that takes on values ran-
domly. In a loose, intuitive way this is the right interpretation — e.g., an
observer who is measuring the amount of noise on a communication link
sees a random variable in this sense. We require, however, a more precise
mathematical definition for analytical purposes. Mathematically a random
variable is neither random nor a variable — it is just a function mapping
one sample space into another space. The first space is the sample space
portion of a probability space, and the second space is a subset of the real
line (some authors would call this a “real-valued” random variable). The
careful mathematical definition will place a constraint on the function to
ensure that the theory makes sense, but for the moment we will adopt the
informal definition that a random variable is just a function.

A random variable is perhaps best thought of as a measurement on a

85
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probability space; that is, for each sample point ω the random variable
produces some value, denoted functionally as f(ω). One can view ω as
the result of some experiment and f(ω) as the result of a measurement
made on the experiment, as in the example of the simple binary quantizer
introduced in the introduction to chapter 2. The experiment outcome ω
is from an abstract space, e.g., real numbers, integers, ASCII characters,
waveforms, sequences, Chinese characters, etc. The resulting value of the
measurement or random variable f(ω), however, must be “concrete” in the
sense of being a real number, e.g., a meter reading. The randomness is all
in the original probability space and not in the random variable; that is,
once the ω is selected in a “random” way, the output value of sample value
of the random variable is determined.

Alternatively, the original point ω can be viewed as an “input signal”
and the random variable f can be viewed as “signal processing,” i.e., the
input signal ω is converted into an “output signal” f(ω) by the random
variable. This viewpoint becomes both precise and relevant when we indeed
choose our original sample space to be a signal space and we generalize
random variables by random vectors and processes.

Before proceeding to the formal definition of random variables, vectors,
and processes, we motivate several of the basic ideas by simple examples,
beginning with random variables constructed on the fair wheel experiment
of the introduction to chapter 2.

A Coin Flip

We have already encountered an example of a random variable in the in-
troduction to chapter 2, where we defined a random variable q on the
spinning wheel experiment which produced an output with the same pmf
as a uniform coin flip. We begin by summarizing the idea with some slight
notational changes and then consider the implications in additional detail.

Begin with a probability space (Ω,F , P ) where Ω = ℜ and the proba-
bility P is defined by (2.2) using the uniform pdf on [0, 1) of (2.4) Define
the function Y : ℜ → {0, 1} by

Y (r) =

{
0 if r ≤ 0.5

1 otherwise .
(3.1)

When Tyche performs the experiment of spinning the pointer, we do not
actually observe the pointer, but only the resulting binary value of Y . Y
can be thought of as signal processing or as a measurement on the original
experiment. Subject to a technical constraint to be introduced later, any
function defined on the sample space of an experiment is called a random
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variable. The “randomness” of a random variable is “inherited” from the
underlying experiment and in theory the probability measure describing
its outputs should be derivable from the initial probability space and the
structure of the function. To avoid confusion with the probability measure
P of the original experiment, refer to the probability measure associated
with outcomes of Y as PY . PY is called the distribution of the random
variable Y . The probability PY (F ) can be defined in a natural way as the
probability computed using P of all the original samples that are mapped
by Y into the subset F :

PY (F ) = P ({r : Y (r) ∈ F}). (3.2)

In this simple discrete example PY is naturally defined for any subset F of
ΩY = {0, 1}, but in preparation for more complicated examples we assume
that PY is to be defined for all suitably defined events, that is, for F ∈ BY ,
where BY is an event space consisting of subsets of ΩY . The probability
measure for the output sample space can be computed from the probability
measure for the input using the formula (3.2), which will shortly be gener-
alized. This idea of deriving new probabilistic descriptions for the outputs
of some operation on an experiment producing inputs to the operation is
fundamental to the theories of probability, random processes, and signal
processing.

For example, in our simple example (3.2) implies that

PY ({0}) = P ({r : Y (r) = 0})
= P ({r : 0 ≤ r ≤ 0.5})
= P ([0, 0.5])

= 0.5

PY ({1}) = P ((0.5, 1.0])

= 0.5

PY (ΩY ) = PY ({0, 1})
= P (ℜ) = 1

PY (∅) = P (∅) = 0,

so that every output event can be assigned a probability by PY by com-
puting the probability of the corresponding input event under the input
probability measure P .

Eq. (3.2) can be written in a convenient compact manner by means of
the definition of the inverse image of a set F under a mapping Y : Ω→ ΩY :

Y −1(F ) = {r : Y (r) ∈ F}. (3.3)
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With this notation (3.2) becomes

PY (F ) = P (Y −1(F )); F ⊂ ΩY ; (3.4)

that is, the inverse image of a given set (output) under a mapping is the
collection of all points in the original space (input points) which map into
the given (output) set. This result is sometimes called the fundamental de-
rived distribution formula or the inverse image formula. It will be seen in a
variety of forms throughout the book. When dealing with random variables
it is common to interpret the probability PY (F ) as “the probability that
the random variable Y takes on a value in F” or “the probability that the
event Y ∈ F occurs.” These English statements are often abbreviated to
the form Pr(Y ∈ F ).

The probability measure PY can be computed by summing a pmf, which
we denote pY . In particular, if we define

pY (y) = PY ({y}); y ∈ ΩY , (3.5)

then additivity implies that

PY (F ) =
∑

y∈F
pY (y); F ∈ BY . (3.6)

Thus the pmf describing a random variable can be computed as a special
case of the inverse image formula (3.5), and then used to compute the
probability of any event.

The indirect method provides a description of the fair coin flip in terms
of a random variable. The idea of a random variable can also be applied to
the direct description of a probability space. Again as in the introduction
to chapter 2, directly describe a single coin flip by choosing Ω = {0, 1} and
assign a probability measure P on this space as in (2.12). Now define a
random variable V : {0, 1} → {0, 1} on this space by

V (r) = r. (3.7)

Here V is trivial, it is just the identity mapping . The measurement just puts
out the outcome of the original experiment and the inverse image formula
trivially yields

PV (F ) = P (F )

pV (v) = p(v).

Note that this construction works on any probability space having the real
line or a Borel subset thereof as a sample space. Thus for each of the named
pmf’s and pdf’s there is a random variable associated with that pmf or pdf.
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If we have two random variables V and Y (which may be defined on
completely separate experiments as in the present case), we say that they
are equivalent or identically distributed if PV (F ) = PY (F ) for all events F ,
that is, the two probability measures agree exactly on all events. It is easy
to show with the inverse image formula that V is equivalent to Y and hence
that

pY (y) = pV (y) = 0.5; y = 0, 1. (3.8)

Thus we have two equivalent random variables, either of which can be used
to model the single coin flip. Note that we do not say the random variables
are equal since they need not be. For example, you could spin a pointer
and find Y and I could flip my own coin to find V . The probabilities are
the same, but the outcomes might or might not differ.

3.1.2 Random Vectors

The issue of the possible equality of two random variables raises an in-
teresting point. If you are told that Y and V are two separate random
variables with pmf’s pY and pV , then the question of whether or not they
are equivalent can be answered from these pmf’s alone. If you wish to
determine whether or not the two random variables are in fact equal, how-
ever, then they must be considered together or jointly. In the case where
we have a random variable Y with outcomes in {0, 1} and a random vari-
able V with outcomes in {0, 1}, we could consider the two together as a
single random vector {Y, V } with outcomes in the Cartesian product space

ΩY V = {0, 1}2 ∆= {(0, 0), (0, 1), (1, 0), (1, 1)} with some pmf pY,V describing
the combined behavior

pY,V (y, v) = Pr(Y = y, V = v) (3.9)

so that
Pr((Y, V ) ∈ F ) =

∑

y,v:(y,v)∈F
pY,V (y, v); F ∈ BY V ,

where in this simple discrete problem we take the event space BY V to be
the power set of ΩY V . Now the question of equality makes sense as we can
evaluate the probability that the two are equal:

Pr(Y = V ) =
∑

y,v:y=v

pY,V (y, v).

If this probability is 1, then we know that the two random variables are in
fact equal with probability 1.
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A random two-dimensional random vector (Y, V ) is simply two random
variables described on a common probability space. Knowledge of the indi-
vidual pmf’s pY and pV alone is not sufficient in general to determine pY,V ,
more information is needed. Either the joint pmf must be given to us or we
must be told the definitions of the two random variables (two components
of the two-dimensional binary vector) so that the joint pmf can be derived.
For example, if we are told that the two random variables Y and V of our
example are in fact equal, then Pr(Y = V ) = 1 and pY,V (y, v) = 0.5 for
y = v, and 0 for y 
= v. This experiment can be thought of as flipping two
coins that are soldered together on the edge so that the result is two heads
or two tails.

To see an example of radically different behavior, consider the random
variable W : [0, 1)→ {0, 1} by

W (r) =

{
0 r ∈ [0.0, 0.25)

⋃
[0.5, 0.75)

1 otherwise.
(3.10)

It is easy to see that W is equivalent to the random variables Y and V of
this section, but W and Y are not equal even though they are equivalent
and defined on a common experiment. We can easily derive the joint pmf for
W and Y since the inverse image formula extends immediately to random
vectors. Now the events involve the outputs of two random variables so
some care is needed to keep the notation from getting out of hand. As in
the random variable case, any probability measure on a discrete space can
be expressed as a sum over a pmf on points, that is,

PY,W (F ) =
∑

y,w:(y,w)∈F
pY,W (y, w), (3.11)

where F ⊂ {0, 1}2, and where

pY,W (y, w) = PY,W ({y, w}) = Pr(Y = y,W = w); y ∈ {0, 1}, w ∈ {0, 1}.
(3.12)

As previously observed, pmf’s describing the joint behavior of several ran-
dom variables are called joint pmf’s and the corresponding distribution is
called a joint distribution. Thus to find the entire distribution only re-
quires finding the pmf, which can be done via the inverse image formula.
For example, if (y, w) = (0, 0), then

pY,W (0, 0) = P ({r : Y (r) = 0,W (r) = 0})
= P ([0, 0.5)

⋂
([0.0, 0.25)

⋃
[0.5, 0.75)))

= P ([0, 0.25))

= 0.25



3.1. INTRODUCTION 91

Similarly it can be shown that

pY,W (0, 1) = pY,W (1, 0) = pY,W (1, 1) = 0.25.

Joint and marginal pmf’s can both be computed from the underlying
distribution, but the marginals can also be found directly from the joints
without reference to the underlying distribution. For example, pY (y0) can
be expressed as PY,W (F ) by choosing F = {(y, w) : y = y0}. Then use the
pmf formula for PY,W to write

pY (y0) = PY,W (F )

=
∑

y,w:(y,w)∈F
pY,W (y, w)

=
∑

w∈ΩW

pY,W (y0, w). (3.13)

Similarly

pW (w0) =
∑

y∈ΩY

pY,W (y, w0). (3.14)

This is an example of the consistency of probability, using different pmf’s
derived from a common experiment to compute the probability of a single
event must produce the same result — the marginals must agree with the
joints. Consistency means that we can find marginals by “summing out”
joints without knowing the underlying experiment on which the random
variables are defined.

This completes the derived distribution of the two random variables Y
and W (or the single random vector (Y,W )) defined on the original uniform
pdf experiment. For this particular example the joint pmf and the marginal
pmf’s have the interesting property

pY,W (y, w) = pY (y)pW (w), (3.15)

that is, the joint distribution is a product distribution. A product distribu-
tion better models our intuitive feeling of experiments such as flipping two
fair coins and letting the outputs be Y and W be 1 or 0 according to the
coins landing heads or tails.

In both of these examples cases the joint pmf had to be consistent
with the individual pmf’s pY and pV (called marginal pmf’s) in the sense
of giving the same probabilities to events where both joint and marginal
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probabilities make sense. In particular,

pY (y) = Pr(Y = y)

= Pr(Y = y, V ∈ {0, 1})

=
1∑

v=0

pY,V (y, v),

an example of a consistency property.
The two examples just considered of a random vector (Y, V ) with the

property Pr(Y = V ) = 1 and the random vector (Y,W ) with the property
pY,W (y, w) = pY (y)pW (w) represent extreme cases of two-dimensional ran-
dom vectors. In the first case Y = V and hence being told, say, that V = v
also tells us that necessarily Y = v. Thus V depends on Y in a particu-
larly strong manner and the two random variables can be considered to be
extremely dependent . The product distribution, on the other hand, can be
interpreted as implying that knowing one of the random variable’s outcome
tells us absolutely nothing about the other, as is the case when flipping two
fair coins. Two discrete random variables Y and W will be defined to be in-
dependent if they have a product pmf, that is, if pY,W (y, w) = pY (y)pW (w).
Independence of random variables will be shortly related to the idea of in-
dependence of events introduced in chapter 2, but for the moment simply
observe that it can be interpreted as meaning that knowing the outcome
of one random variable does not affect the probability distribution of the
other. This is a very special case of general joint pmf’s. It may be sur-
prising that two random variables defined on a common probability space
can be independent of one another, but this was ensured by the specific
construction of the two random variables Y and W .

Note that we have also defined a three dimensional random vector
(Y, V,W ) because we have defined three random variables on a common
experiment. Hence you should be able to find the joint pmf pY UV using
the same ideas.

Note also that in addition to the indirect derivations of a specific exam-
ples of two-dimensional random variable, a direct development is possible.
For example, let {0, 1}2 be a sample space with all of its four points hav-
ing equal probability. Any point r in the sample space can be expressed
as r = (r0, r1), where ri ∈ {0, 1} for i = 0, 1. Define the random vari-
ables V : {0, 1}2 → {0, 1} and U : {0, 1}2 → {0, 1} by V (r0, r1) = r0 and
U(r0, r1) = r1. You should convince yourself that

pY,W (y, w) = pV,U (y, w); y = 0, 1; w = 0, 1

and that pY (y) = pW (y) = pV (y) = pU (y), y = 0, 1. Thus the random
vectors (Y,W ) and (V,U) are equivalent.
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In a similar manner pdf’s can be used to describe continuous random
vectors, but we shall postpone this step until a later section and instead
move to the idea of random processes.

3.1.3 Random Processes

It is straightforward conceptually to go from one random variable to k ran-
dom variables constituting a k-dimensional random vector. It is perhaps
a greater leap to extend the idea to a random process. The idea is at
least easy to state, but it will take more work to provide examples and the
mathematical details will prove more complicated. A random process is
a sequence of random variables {Xn; n = 0, 1, . . . } defined on a common
experiment. It can be thought of as an infinite dimensional random vec-
tor. To be more accurate, this is an example of a discrete-time, one-sided
random process. It is called “discrete-time” because the index n which cor-
responds to time takes on discrete values (here the nonnegative integers)
and it is called “one-sided” because only nonnegative times are allowed. A
discrete-time random process is also called a time series in the statistics
literature and it is often denoted as {X(n) n = 0, 1, . . . } and is sometimes
denoted by {X[n]} in the digital signal processing literature. Two ques-
tions might occur to the reader: how does one construct an infinite family
of random variables on a single experiment? How can one provide a direct
development of a random process as accomplished for random variables
and vectors? The direct development might appear hopeless since infinite
dimensional vectors are involved.

The first problem is reasonably easy to handle by example. Consider
the usual uniform pdf experiment. Rename the random variables Y and W
as X0 and X1, respectively. Consider the following definition of an infinite
family of random variables Xn : [0, 1) → {0, 1} for n = 0, 1, . . . . Every
r ∈ [0, 1) can be expanded as a binary expansion of the form

r =

∞∑

n=0

bn(r)2
−n−1. (3.16)

This simply replaces the usual decimal representation by a binary represen-
tation. For example, 1/4 is .25 in decimal and .01 or .010000 . . . in binary,
1/2 is .5 in decimal and yields the binary sequence .1000 . . . , 1/4 is .25 in
decimal and yields the binary sequence .0100 . . . , 3/4 is .75 in decimal and
.11000 . . . , and 1/3 is .3333 . . . in decimal and .010101 . . . in binary.

Define the random process by Xn(r) = bn(r), that is, the nth term in
the binary expansion of r. When n = 0, 1 this reduces to the specific X0
and X1 already considered.
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The inverse image formula can be used to compute probabilities, al-
though the calculus can get messy. Given the simple two-dimensional ex-
ample, however, it should be reasonable that the pmf’s for random vectors
of the form Xn = (X0, X1, . . . , Xn−1) can be evaluated as

pXn(xn) = Pr(Xn = xn) = 2−n; xn ∈ {0, 1}n, (3.17)

where {0, 1}n is the collection of all 2n binary n-tuples. In other words,
the first n binary digits in a binary expansion for a uniformly distributed
random variable are all equally probable. Note that in this special case the
joint pmf’s are again related to the marginal pmf’s in a product fashion,
that is,

pXn(xn) =

n−1∏

i=0

pXi(xi), (3.18)

in which case the random variables X0, X1, . . . , Xn−1 are said to be mutu-
ally independent or, more simply, independent. If a random process is such
that any finite collection of the random variables produced by the process
are independent and the marginal pmf’s are all the same (as in the case
under consideration), the process is said to be independent identically dis-
tributed or iid for short. An iid process is also called a Bernoulli process,
although the name is sometimes reserved for a binary iid process.

Something fundamentally important has happened here. If we have a
random process, then the probability distribution for any random vectors
formed by collecting outputs of the random process can be found (at least
in theory) from the inverse image formula. The calculus may be a mess, but
at least in some cases such as this one it is doable. Furthermore these pmf’s
are consistent in the sense noted before. In particular, if we use (3.13–3.14)
to compute the already computed pmf’s for X0 and X1 we get the same
thing we did before, they are each equiprobable binary random variables. If
we compute the joint pmf for X0 and X1 using (3.17) we also get the same
joint pmf we got before. This observation likely seems trivial at this point
(and it should be natural that the math does not give any contradictions),
but it emphasizes a property that is critically important when trying to
describe a random process in a more direct fashion.

Suppose now that a more direct model of a random process is desired
without a complicated construction on an original experiment. Here the
problem is not as simple as in the random variable or random vector case
where all that was needed was a consistent assignment of probabilities and
an identity mapping. The solution is known as the Kolmogorov exten-
sion theorem, named after the primary developer of modern probability
theory. The theorem will be stated formally later in this chapter, but its
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complicated proof will be left to other texts. The basic idea, however, can
be stated in a few words. If one can specify a consistent family of pmf’s
pXn(xn) for all n (we have done this for n = 1 and 2), then there exists
a random process described by those pmf’s. Thus, for example, there will
exist a random process described by the family of pmf’s pXn(xn) = 2−n for
xn ∈ {0, 1}n for all positive integers n if and only if the family is consistent.
We have already argued that the family is indeed consistent, which means
that even without the indirect construction previously followed we can ar-
gue that there is a well-defined random process described by these pmf’s.
In particular, one can think of a “grand experiment” where Nature selects
a one-sided binary sequence according to some mysterious probability mea-
sure on sequences that we have difficulty envisioning. Nature then reveals
the chosen sequence to us one coordinate at a time, producing the process
X0, X1, X2, . . . , and the distributions of any finite collection of these ran-
dom variables are known from the given pmf’s pXn . Putting this in yet
another way, describing or specifying the finite-dimensional distributions of
a process is enough to completely describe the process (provided of course
the given family of distributions is consistent).

In this example the abstract probability measure on semiinfinite binary
sequences is not all that mysterious, from our construction the sequence
space can be considered to be essentially the same as the unit interval
(each point in the unit interval corresponding to a binary sequence) and
the probability measure is described by a uniform pdf on this interval.

The second method of describing a random is by far the most common
in practice. One usually describes a process by its finite sample behavior
and not by a construction on an abstract experiment. The Kolmogorov
extension theorem ensures that this works. Consistency is easy to demon-
strate for iid processes, but unfortunately it becomes more difficult to verify
in more general cases (and more difficult to define and demonstrate for con-
tinuous time examples).

Having toured the basic ideas to be explored in this chapter, we now
proceed delve into the details required to make the ideas precise and general.

3.2 Random Variables

We now develop the promised precise definition of a random variable. As
you might guess, a technical condition for random variables is required
because of certain subtle pathological problems that have to do with the
ability to determine probabilities for the random variable. To arrive at
the precise definition, we start with the informal definition of a random
variable that we have already given and then show the inevitable difficulty
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that results without the technical condition. We have informally defined a
random variable as being a function on a sample space. Suppose we have a
probability space (Ω,F , P ). Let f : Ω→ ℜ be a function mapping the same
space into the real line so that f is a candidate for a random variable. Since
the selection of the original sample point ω is random, that is, governed by
a probability measure, so should be the output of our measurement of
random variable f(ω). That is, we should be able to find the probability of
an “output event” such as the event “the outcome of the random variable
f was between a and b,” that is, the event F ⊂ ℜ given by F = (a, b).
Observe that there are two different kinds of events being considered here:

1. output events or members of the event space of the range or range
space of the random variable, that is, events consisting of subsets of
possible output values of the random variable; and

2. input events or Ω events, events in the original sample space of the
original probability space.

Can we find the probability of this output event? That is, can we make
mathematical sense out of the quantity “the probability that f assumes
a value in an event F ⊂ ℜ”? On reflection it seems clear that we can.
The probability that f assumes a value in some set of values must be the
probability of all values in the original sample space that result in a value of
f in the given set. We will make this concept more precise shortly. To save
writing we will abbreviate such English statements to the form Pr(f ∈ F ),
or Pr(F ), that is, when the notation Pr(F ) is encountered it should be
interpreted as shorthand for the English statement for “the probability of
an event F” or “the probability that the event F will occur” and not as a
precise mathematical quantity.

Recall from chapter 2 that for a subset F of the real line ℜ to be an
event, it must be in a sigma field or event space of subsets of ℜ. Recall also
that we adopted the Borel field B(ℜ) as our basic event space for the real
line. Hence it makes sense to require that our output event F be a Borel
set.

Thus we can now state the question as follows: Given a probability
space (Ω,F , P ) and a function f : Ω→ ℜ, is there a reasonable and useful
precise definition for the probability Pr(f ∈ F ) for any F ∈ B(ℜ), the Borel
field or event space of the real line? Since the probability measure P sits
on the original measurable space (Ω,F) and since f assumes a value in F
if and only if ω ∈ Ω is chosen so that f(ω) ∈ F , the desired probability
is obviously Pr(f ∈ F ) = P ({ω : f(ω) ∈ F}) = P (f−1(F )). In other
words, the probability that a random variable f takes on a value in a Borel
set F is the probability (defined in the original probability space) of the
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set of all (original) sample points ω that yield a value f(ω) ∈ F . This, in
turn, is the probability of the inverse image of the Borel set F under the
random variable f . This idea of computing the probability of an output
event of a random variable using the original probability measure of the
corresponding inverse image of the output event under the random variable
is depicted in Figure 3.1.

f−1(F )
f

F

Figure 3.1: The inverse image method: Pr(f ∈ F ) = P ({ω : ω ∈ F}) =
P (f−1(F ))

This natural definition of the probability of an output event of a random
variable indeed makes sense if and only if the probability P (f−1(F )) makes
sense, that is, if the subset f−1(F ) of Ω corresponding to the output event
F is itself an event, in this case an input event or member of the event
space F of the original sample space. This, then, is the required technical
condition: A function f mapping the sample space of a probability space
(Ω,F , P ) into the real line ℜ is a random variable if and only if the inverse
images of all Borel sets in ℜ are members of F , that is, if all of the Ω
sets corresponding to output events (members of B(ℜ)) are input events
(members of F). Unlike some of the other pathological conditions that we
have met, it is easy to display some trivial examples where the technical
condition is not met (as we will see in Example [3.11]). We now formalize
the definition:

Given a probability space (Ω,F , P ) a (real-valued) random variable is
a function f : Ω → ℜ with the property that if F ∈ B(ℜ), then also
f−1(F ) = {ω : f(ω) ∈ F} ∈ F .
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Given a random variable f defined on a probability space (Ω,F , P ), the
set function

Pf (F )
∆
= P (f−1(F ))

= P ({ω : f(ω) ∈ F})
= Pr(f ∈ F ); F ∈ B(ℜ) (3.19)

is well defined since by definition f−1(F ) ∈ F for all F ∈ B(ℜ). In the next
section the properties of distributions will be explored.

In some cases one may wish to consider a random variable with a more
limited range space than the real line, e.g., when the random variable is
binary. (Recall from chapter A that the range space of f is the image of
Ω.) If so, ℜ can be replaced in the definition by the appropriate subset, say
A ⊂ ℜ. This is really just a question of semantics since the two definitions
are equivalent. One or the other view may, however, be simpler to deal
with for a particular problem.

A function meeting the condition in the definition we have given is
said to be measurable. This is because such functions inherit a probabil-
ity measure on their output events (specifically a probability measure in
our context; in other contexts more general measures can be defined on a
measurable space.

If a random variable has a distribution described by a pmf or a pdf with
a specific name, then the name is often applied also to the random variable;
e.g., a continuous random variable with a Gaussian pdf is called a Gaussian
random variable.

Examples

In every case we are given a probability space (Ω,F , P ). For the moment,
however, we will concentrate on the sample space Ω and the random variable
that is defined functionally on that space. Note that the function must be
defined for every value in the sample space if it is to be a valid function.
On the other hand, the function does not have to assume every possible
value in its range.

As you will see, there is nothing particularly special about the names
of the random variables. So far we have used the lower case letter f .
On occasion we will use other lower case letters such as g and h. As we
progress we will follow custom and more often use upper case letters late
in the alphabet, such as X,Y, Z, U, V , and W . Capital Greek letters like Θ
and Ψ are also popular.

The reader should keep the signal processing interpretation in mind
while considering these examples, several very common types of signal pro-
cessing are considered, including quantization, sampling, and filtering.
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[3.1] Let Ω = ℜ, the real line, and define the random variable X : Ω→ Ω
by X(ω) = ω2 for all ω ∈ Ω. Thus the random variable is the square
of the sample point. Note that since the square of a real number
is always nonnegative, we could replace the range Ω by the range
space [0,∞) and consider X as a mapping X : Ω → [0,∞). Other
random variables mapping Ω into itself are Y (ω) = |ω|, Z(Ω) =
sin(ω), U(ω) = 3 × ω + 321.5, and so on. We can also consider
the identity mapping as a random variable; that is, we can define a
random variable W : Ω→ Ω by W (ω) = ω.

[3.2] Let Ω = ℜ as in example [3.1] and define the random variable f :
ω → {−V, V } by

f(r) =

{
+V if r ≥ 0
−V if r < 0 .

This example is a variation of the binary quantizer of a real input con-
sidered in the introduction to chapter 2. With this specific choice of output
levels it is also called a hard limiter.

So far we have used ω exclusively to denote the argument of the random
variable. We can, however, use any letter to denote the dummy variable (or
argument or independent variable) of the function, provided that we specify
its domain; that is, we do not need to use ω all the time to specify elements
of Ω: r, x, or any other dummy variable will do. We will, however, as a
convention, always use only lower case letters to denote dummy variables.

When referring to a function, we will use several methods of specifi-
cation. Sometimes we will only give its name, say f ; sometimes we will
specify its domain and range, as in f : Ω → A; sometimes we will provide
a specific dummy variable, as in f(r); and sometimes we will provide the
dummy variable and its domain, as in f(r); r ∈ Ω. Finally, functions can
be shown with a place for the dummy variable marked by a period to avoid
annointing any particular dummy variable as being somehow special, as in
f(·). These various notations are really just different means of denoting the
same thing while emphasizing certain aspects of the functions. The only
real danger of this notation is the same as that of calculus and trigonom-
etry: if one encounters a function, say sin t, does this mean the sine of a
particular t (and hence a real number) or does it mean the entire waveform
of sin t for all t? The distinction should be clear from the context, but the
ambiguity can be removed, for example, by defining something like sin t0
to mean a particular value and {sin t; t ∈ ℜ} or sin(·) to mean the entire
waveform.

[3.3] Let U be as in example [3.1] and f as in [3.2]. Then the function
g : Ω→ Ω defined by g(ω) = f(U(ω)) is also a random variable. This
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relation is often abbreviated by dropping the explicit dependence on
ω to write g = f(U). More generally, any function of a function is
another function, called a “composite” function. Thus a function of a
random variable is another random variable. Similarly, one can con-
sider a random variable formed by a complicated combination of other
random variables — for example, g(ω) = 1

ω sinh
−1[π × ecos(|ω|

3.4)].

[3.4] Let Ω = ℜk, k-dimensional Euclidean space. Occasionally it is of
interest to focus attention on the random variable which is defined
as a particular coordinate of a vector ω = (x0, x1, . . . , xk−1) ∈ ℜk.
Toward this end we can define for each i = 0, 1, . . . , k − 1 a sam-
pling function (or coordinate function) Πi : ℜk → ℜ as the following
random variable:

Πi(ω) = Πi((x0, . . . , xk−1)) = xi .

The sampling functions are also called “projections” of the higher di-
mensional space onto the lower. (This is the reason for the choice of Π
Greek P — not to be confused with the product symbol

∏
— to denote

the functions.)
Similarly, we can define a sampling function for any product space, e.g.,

for sequence and waveform spaces.

⋆[3.5] Given a space A, an index set T , and the product space AT , define
as a random variable, for any fixed t ∈ T , the sampling function
Πi : AT → A as follows: since any ω ∈ AT is a vector or function of
the form {xs; s ∈ T }, define for each t in T the mapping

Πt(ω) = Πt({xs; s ∈ T }) = xt .

Thus, for example, if Ω is a one-sided binary sequence space
∏

i∈Z+

{0, 1}i = {0, 1}Z+ ,

and hence every point has the form ω = (x0, x1, . . . ), then Π3((0, 1, 1, 0, 0, 0, 1, 0, 1, . . . )) =
0. As another example, if for all t in the index set ℜt is a replica of ℜ and
Ω is the space

ℜℜ =
∏

t∈ℜ
ℜt

of all real-valued waveforms {x(t); t ∈ (−∞,∞)}, then for ω = {sin t; t ∈
ℜ}, the value of the sampling function at the particular time t = 2π is

Π2π({sin t; t ∈ ℜ}) = sin 2π = 0 .
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[3.6] Suppose that we have a one-sided binary sequence space {0, 1}Z+ .
For any n ∈ {1, 2, . . . }, define the random variable Yn by Yn(ω) =
Yn((x0, x1, x2, . . . )) = the index (time) of occurrence of the nth 1 in
ω. For example, Y2((0, 0, 0, 1, 0, 1, 1, 0, 1, . . . )) = 5 because the second
sample to be 1 is x5.

[3.7] Say we have a one-sided sequence space Ω =
∏
i∈Z+

ℜi, where ℜi is
a replica of the real line for each i in the index set. Since every ω in
this space has the form {x0, x1, . . . } = {xi; i ∈ Z+}, we can define
for each positive integer n the random variable, depending on n,

Sn(ω) = Sn({xi; i ∈ Z+}) = n−1
n−1∑

i=0

xi

the arithmetic average or “mean” of the first n coordinates of the
infinite sequence.

For example, if ω = {1, 1, 1, 1, 1, 1, 1, . . . }, then Sn = 1. This average
is also called a Césaro mean or sample average or time average since the
index being summed over often corresponds to time; viz., we are adding the
outputs at times 0 through n−1 in the preceding equation. Such arithmetic
means will later be seen to play a fundamental role in describing the long-
term average behavior of random processes. The arithmetic mean can also
be written using coordinate functions as

Sn(ω) = n−1
n−1∑

i=0

Πi(ω) , (3.20)

which we abbreviate to

Sn = n−1
n−1∑

i=0

Πi (3.21)

by suppressing the dummy variable or argument ω. Equation (3.21) is
shorthand for (3.20) and says the same thing: The arithmetic average of
the first n terms of a sequence is the sum of the first n coordinates or
samples of the sequence.

[3.8] As a generalization of the sample average consider weighted averages
of sequences. Such weighted averages occur in the convolutions of
linear system theory. Let Ω be the space

∏
i∈Zℜi, where ℜi are

all copies of the real line. Suppose that {hk; k = 0, 1, 2, . . . } is a
fixed sequence of real numbers that can be used to form a weighted



102 CHAPTER 3. RANDOM OBJECTS

average of the coordinates of ω ∈ Ω. Each ω in this space has the
form ω = (. . . , x−1, x0, x1, . . . ) = {xi; i ∈ Z} and hence a weighted
average can be defined for each integer n the random variable

Yn(ω) =

∞∑

k=0

hkxn−k .

Thus the random variable Yn is formed as a linear combination of the
coordinates of the sequence constituting the point ω in the double-sided
sequence space. This is a discrete time convolution of an input sequence
with a linear weighting. In linear system theory the weighting is called a
unit pulse response (or Kronecker delta response or δ response), and it is
the discrete time equivalent of an impulse response. Note that we could
also use the sampling function notation to write Yn, as a weighted sum of
the sample random variables.

[3.9] In a similar fashion, complicated random variables can be defined on

waveform spaces. For example, let Ω =
∏

t∈R
ℜt, the space of all real-

valued functions of time such as voltage-time waveforms. For each T ,
define a time average

YT (ω) = YT ({x(t); t ∈ ℜ}) = T−1
∫ T

0

x(t)dt ,

or given the impulse response h(t) of a causal, linear time-invariant
system, we define a weighted average

WT (ω) =

∫ ∞

0

h(t)x(T − t)dt .

Are these also random variables? They are certainly functions defined
on the underlying sample space, but as one might suspect, the sample
space of all real-valued waveforms is quite large and contains some bizarre
waveforms. For example, the waveforms can be sufficiently pathological to
preclude the existence of the integrals cited (see chapter 2 for a discussion
of this point). These examples are sufficiently complicated to force us now
to look a bit closer at a proper definition of a random variable and to
develop a technical condition that constrains the generality of our definition
but ensures that the definition will lead to a useful theory. It should be
pointed out, however, that this difficulty is no accident and is not easily
solved: waveforms are truly more complicated than sequences because of
the wider range of possible waveforms, and hence continuous time random
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processes are more difficult to deal with rigorously than are discrete time
processes. One can write equations such as the integrals and then find
that the integrals do not make sense even in the general Lebesgue sense.
Often fairly advanced mathematics are required to properly patch up the
problems. For purposes of simplicity we usually concentrate on sequences
(and hence on discrete time) rather than waveforms, and we gloss over the
technical problems when we consider continuous time examples.

One must know the event space being considered in order to determine
whether or not a function is a random variable. While we will virtually
always assume the usual event spaces (that is, the power set for discrete
spaces, the Borel field for the real line or subsets of the real line, and the
corresponding product event spaces for product sample spaces), it is useful
to consider some other examples to help clarify the basic definition.

[3.10] First consider (Ω,F , P ) where Ω is itself a discrete subset of the real
line ℜ, e.g., {0, 1} or Z+. If, as usual, we take F to be the power set,
then any function f : Ω→ ℜ is a random variable. This follows since
the inverse image of any Borel set in ℜ must be a subset of Ω and
hence must be in the collection of all subsets of Ω.

Thus with the usual event space for a discrete sample space — the power
set — any function defined on the probability space is a random variable.
This is why all of the structure of event spaces and random variables is
not seen in elementary texts that consider only discrete spaces: There is no
need.

It should be noted that for any Ω, discrete or not, if F is the power set,
then all functions defined on Ω are random variables. This fact is useful,
however, only for discrete sample spaces since the power set is not a useful
event space in the continuous case (since we cannot endow it with useful
probability measures).

If, however, F is not the power set, some functions defined on Ω are not
random variables, as the following simple example shows:

[3.11] Let Ω be arbitrary, but let F be the trivial sigma field {Ω, ∅}.
On this space it is easy to construct functions that are not random
variables (and hence are non-measurable functions). For example,
let Ω = {0, 1} and define f(ω) = ω, the identity function. Then
f−1({0}) = {0} is not in F , and hence this simple function is not a
random variable. In fact, it is obvious that any function that assigns
different values to 0 and 1 is not a random variable. Note, however,
that some functions are random variables.

The problem illustrated by this example is that the input event space
is not big enough or “fine” enough to contain all input sets corresponding
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to output events. This apparently trivial example suggests an important
technique for dealing with advanced random process theory, especially for
continuous time random processes: If the event space is not large enough
to include the inverse image of all Borel sets, then enlarge the event space
to include all such events, viz., by using the power set as in example [3.10].
Alternatively, we might try to force F to contain all sets of the form
f−1(F ), F ∈ B(ℜ); that is, make F the sigma field generated by such
sets. Further treatment of this subject is beyond the scope of the book.
However, it is worth remembering that if a sigma field is not big enough
to make a function a random variable, it can often be enlarged to be big
enough. This is not idle twiddling; such a procedure is required for impor-
tant applications, e.g., to make integrals over time defined on a waveform
space into random variables.

On a more hopeful tack, if the probability space (Ω,F , P ) is chosen with
Ω = ℜ and F = B(ℜ), then all functions f normally encountered in the
real world are in fact random variables. For example, continuous functions,
polynomials, step functions, trigonometric functions, limits of measurable
functions, maxima and minima of measurable functions, and so on are
random variables. It is, in fact, extremely difficult to construct functions on
Borel spaces that are not random variables. The same statement holds for
functions on sequence spaces. The difficulty is comparable to constructing
a set on the real line that is not a Borel set and is beyond the scope of this
book.

So far we have considered abstract philosophical aspects in the defini-
tion of random variables. We are now ready to develop the probabilistic
properties of the defined random variables.

3.3 Distributions of Random Variables

3.3.1 Distributions

Suppose we have a probability space (Ω,F , P ) with a random variable, X,
defined on the space. The random variable X takes values on its range
space which is some subset A of ℜ (possibly A = ℜ). The range space A of
a random variable is often called the alphabet of the random variable. As
we have seen, since X is a random variable, we know that all subsets of Ω
of the form X−1(F ) = {ω : X(ω) ∈ F}, with F ∈ B(A), must be members
of F by definition. Thus the set function PX defined by

PX(F ) = P (X−1(F )) = P ({ω : X(ω) ∈ F}) ; F ∈ B(A) (3.22)

is well defined and assigns probabilities to output events involving the ran-
dom variable in terms of the original probability of input events in the orig-



3.3. DISTRIBUTIONS OF RANDOM VARIABLES 105

inal experiment. The three written forms in equation (3.22) are all read
as Pr(X ∈ F ) or “the probability that the random variable X takes on a
value in F .” Furthermore, since inverse images preserve all set-theoretic
operations (see problem A.12), PX satisfies the axioms of probability as a
probability measure on (A,B(A)) — it is nonnegative, PX(A) = 1, and it
is countably additive. Thus PX is a probability measure on the measurable
space (A,B(A)). Therefore, given a probability space and a random variable
X, we have constructed a new probability space (A,B(A), PX) where the
events describe outcomes of the random variable. The probability measure
PX is called the distribution of X (as opposed to a “cumulative distribution
function” of X to be introduced later).

If two random variables have the same distribution, then they are said to
be equivalent since they have the same probabilistic description, whether
or not they are defined on the same underlying space or have the same
functional form (see problem 3.22).

A substantial part of the application of probability theory to practical
problems is devoted to determining the distributions of random variables,
performing the “calculus of probability.” One begins with a probability
space. A random variable is defined on that space. The distribution of the
random variable is then derived, and this results in a new probability space.
This topic is called variously “derived distributions” or “transformations of
random variables” and is often developed in the literature as a sequence
of apparently unrelated subjects. When the points in the original sample
space can be interpreted as “signals,” then such problems can be viewed
as “signal processing” and derived distribution problems are fundamental
to the analysis of statistical signal processing systems. We shall emphasize
that all such examples are just applications of the basic inverse image for-
mula (3.22) and form a unified whole. In fact, this formula, with its vector
analog, is one of the most important in applications of probability theory.
Its specialization to discrete input spaces using sums and to continuous
input spaces using integrals will be seen and used often throughout this
book.

It is useful to bear in mind both the mathematical and the intuitive
concepts of a random variable when studying them. Mathematically, a
random variable, say X, is a “nice” (= measurable) real-valued function
defined on the sample space of a probability space (Ω,F , P ). Intuitively, a
random variable is something that takes on values at random. The random-
ness is described by a distribution PX , that is, by a probability measure on
an event space of the real line. When doing computations involving ran-
dom variables, it is usually simpler to concentrate on the probability space
(A,B(A), PX), where A is the range space of X, than on the original prob-
ability space (Ω,F , P ). Many experiments can yield equivalent random
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variables, and the space (A,B(A), PX) can be considered as a canonical
description of the random variable that is often more useful for compu-
tation. The original space is important, however, for two reasons. First,
all distribution properties of random variables are inherited from the orig-
inal space. Therefore much of the theory of random variables is just the
theory of probability spaces specialized to the case of real sample spaces.
If we understand probability spaces in general, then we understand ran-
dom variables in particular. Second, and more important, we will often
have many interrelated random variables defined on a common probability
space. Because of the interrelationships, we cannot consider the random
variables independently with separate probability spaces and distributions.
We must refer to the original space in order to study the dependencies
among the various random variables (or consider the the random variables
jointly as a random vector).

Since a distribution is a special case of a probability measure, in many
cases it can be induced or described by a probability function, i.e., a pmf or
a pdf. If a range space of the random variable is discrete or, more generally,
if there is a discrete subset of the range space A such that PX(A) = 1, then
there is a pmf, say pX , corresponding to the distribution PX . The two are
related via the formulas

pX(x) = PX({x}) , all x ∈ A , (3.23)

where A is the range space or alphabet of the random variable, and

PX(F ) =
∑

x∈F
pX(x) ; F ∈ B(A) . (3.24)

In (3.23) both quantities are read as Pr(X = x).
The pmf and the distribution imply each other from (3.23) and (3.24),

and hence either formula specifies the random variable.
If the range space of the random variable is continuous and if a pdf fX

exists, then we can write the integral analog to (3.24):

PX(F ) =

∫

F

fX(x)dx ; F ∈ B(A) . (3.25)

There is no direct analog of (3.23) since a pdf is not a probability. An ap-
proximate analog of (3.23) follows from the mean value theorem of calculus.
Suppose that F = [x, x+∆x), where ∆x is extremely small. Then if fX is
sufficiently smooth, the mean value theorem implies that

PX([x, x+∆x)) =

∫ x+∆x

x

fX(α) dα ≈ fX(x)∆x, (3.26)
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so that if we multiply a pdf fX(x) by a differential ∆x, it can be interpreted
as (approximately) the probability of being within ∆x of x. It is desirable,
however, to have an exact pair of results like (3.23) and (3.24) that show how
to go both ways, that is, to get the probability function from the distribution
as well as vice versa. From considerations of elementary calculus it seems
that we should somehow differentiate both sides of (3.25) to yield the pdf
in terms of the distribution. This is not immediately possible, however,
because F is a set and not a real variable. Instead to find a pdf from a
distribution, we use the intermediary of a cumulative distribution function
or cdf. We pause to give the formal definition.

Given a random variable X with distribution PX , the cumulative dis-
tribution function or cdf FX is defined by

FX(α) = PX((−∞, α]) = PX({x : x ≤ α}) ; α ∈ ℜ .

The cdf is seen to represent the cumulative probability of all values of
the random variable in the infinite interval from minus infinity up to and
including the real number argument of the cdf. The various forms can be
summarized as FX(α) = Pr(X ≤ α). If the random variable X is defined
on the probability space (Ω,F , P ), then by definition

FX(α) = P (X−1((−∞, α])) = P ({ω : X(ω) ≤ α}) .

If a distribution possesses a pdf, then the cdf and pdf are related through
the distribution and (3.25) by

FX(α) = P (X−1((−∞, α])) =

∫ α

−∞
fX(x)dx ; α ∈ ℜ . (3.27)

The motivation for the definition of the cdf in terms of our previous
discussion is now obvious. Since integration and differentiation are mutu-
ally inverse operations, the pdf is determined from the cdf (and hence the
distribution) by

fX(α) =
dFX(α)

dα
; α ∈ ℜ . (3.28)

where, as is customary, the right-hand side is shorthand for

dFX(x)

dx
|x=α ,

the derivative evaluated at α. Alternatively, (3.28) also follows from the
fundamental theorem of calculus and the observation that

PX((a, b]) =

∫ b

a

fX(x) dx = FX(b)− FX(a) . (3.29)
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Thus (3.27) and (3.28) together show how to find a pdf from a distribution
and hence provide the continuous analog of (3.23). Equation (3.23) is useful,
however only if the derivative, and hence the pdf, exists. Observe that the
cdf is always well defined (because the semi-infinite interval is a Borel set
and therefore an event), regardless of whether or not the pdf exists in both
the continuous and the discrete alphabet cases. For example, if X is a
discrete alphabet random variable with alphabet Z and pmf pX , then the
cdf is

FX(x) =

x∑

k=−∞
pX(k) , (3.30)

the analogous sum to the integral of (3.27). Furthermore, for this example,
the pmf can be determined from the cdf (as well as the distribution) as

pX(x) = FX(x)− FX(x− 1) , (3.31)

a difference analogous to the derivative of (3.28).
It is desirable to use a single notation for the discrete and continuous

cases whenever possible. This is accomplished for expressing the distribu-
tion in terms of the probability functions by using a Stieltjes integral, which
is defined as

PX(F ) =

∫

F

dFX(x) =

∫
1F (x) dFX(x)

∆
=






∑

x∈F
pX(x) if X is discrete

∫

F

fX(x) dx if X has a pdf .

(3.32)

Thus (3.32) is a combination of both (3.24) and (3.25).

3.3.2 Mixture Distributions

More generally, we may have a random variable that has both discrete and
continuous aspects and hence is not describable by either a pmf alone or
a pdf alone. For example, we might have a probability space (ℜ,B(ℜ), P ),
where P is described by a Gaussian pdf f(ω); ω ∈ ℜ. The sample point ω ∈
ℜ is input to a soft limiter with output X(ω)— a device with input/output
characteristic X defined by

X(ω) =






−1 ω ≤ −1
ω ω ∈ (−1, 1)
1 1 ≤ ω

(3.33)
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As long as |ω| ≤ 1, X(ω) = ω. But for values outside this range, the output
is set equal to -1 or +1. Thus all of the probability density outside the
limiting range “piles up” on the ends so that Pr(X(ω) = 1) =

∫
ω≥1 f(ω)dω

is not zero. As a result X will have a mixture distribution, described by a
pdf in (−1, 1) and by a pmf at the points ±1.

Random variables of this type can be described by a distribution that is
the weighted sum of two other distributions — a discrete distribution and
a continuous distribution. The weighted sum is an example of a mixture
distribution, that is, a mixture of probability measures as in example [2.18].
Specifically, let P1 be a discrete distribution with corresponding pmf p, and
let P2 be a continuous distribution described by a pdf f . For any positive
weights c1, c2 with c1 + c2 = 1, the following mixture distribution PX is
defined:

PX(F ) = c1P1(F ) + c2P2(F )

= c1
∑

k∈F
p(k) + c2

∫

F

f(x)dx

= c1
∑

1F (k)p(k) + c2

∫
1F (r)f(x) dx (3.34)

F ∈ B(ℜ).

For example, the output of the limiter of (3.33) has a pmf which places
probability one half on ±1, while the pdf is Gaussian-shaped for magnitudes
less than unity (i.e., it is a truncated Gaussian pdf normalized so that the
pdf integrates to one over the range (−1, 1)). The constant c1 is the integral
of the pdf over (−1, 1) and c2 = 1− c1. Observe that the cdf for a random
variable with a mixture distribution is

FX(α) = c1
∑

k:k≤α
p(k) + c2

∫ α

∞
f(x)dx

= c1F1(α) + c2F2(α) ,

(3.35)

where F1 and F2 are the cdf’s corresponding to P1 and P2 respectively.
The combined notation for discrete and continuous alphabets using the

Stieltjes integral notation of (3.32) also can be used as follows. Given a
random variable with a mixture distribution of the form (3.34), then

PX(F ) =

∫

F

dFX(x) =

∫
1F (x) dFX(x) ; F ∈ B(ℜ) . (3.36)

where
∫

1F (x) dFX(x)
∆
= c1

∑
1F (x)p(x) + c2

∫
1F (x)f(x)dx . (3.37)
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Observe that (3.36) and (3.37) includes (3.32) as a special case where either
c1 or c2 is 0. Equations (3.36) and (3.37) provides a general means for
finding the distribution of a random variable X given its cdf, provided the
distribution has the form of (3.35).

All random variables can be described by a cdf. But, more subtly, do
all random variables have a cdf of the form (3.35)? The answer is almost
yes. Certainly all of the random variables encountered in this course and
in engineering practice have this form. It can be shown, however, that the
most general cdf has the form of a mixture of three cdf’s: a continuous and
differentiable piece induced by a pdf, a discrete piece induced by a pmf, and
a third pathological piece. The third piece is an odd beast wherein the cdf
is something called a singular function — the cdf is continuous (it has no
jumps as it does in the discrete case), and the cdf is differentiable almost
everywhere (here “almost everywhere” means that the cdf is differentiable
at all points except some set F for which

∫
F

dx = 0), but this derivative is 0
almost everywhere and hence it cannot be integrated to find a probability!
Thus for this third piece, one cannot use pmf’s or pdf’s to compute proba-
bilities. The construction of such a cdf is beyond the scope of this text, but
we can point out for the curious that the typical example involves placing
probability measures on the Cantor set that was considered in problem 218.
At any rate, as such examples almost never arise in practice, we shall ignore
them and henceforth consider only random variables for which (3.36) and
(3.37) holds.

While the general mixture distribution random variable has both dis-
crete and continuous pieces, for pedagogical purposes it is usually simplest
to treat the two pieces separately – i.e., to consider random variables that
have either a pdf or a pmf. Hence we will rarely consider mixture distri-
bution random variables and will almost always focus on those that are
described either by a pmf or by a pdf and not both.

To summarize our discussion, we will define a random variable to be a
discrete, continuous, or mixture random variable depending on whether
it is described probabilistically by a pmf, pdf, or mixture as in (3.36) and
(3.37) with c1, c2 > 0.

We note in passing that some texts endeavor to use a uniform approach
to mixture distributions by permitting pdf’s to possess Dirac delta or im-
pulse functions. The purpose of this approach is to permit the use of the
continuous ideas in discrete cases, as in our limiter output example. If the
cdf is differentiated, then a legitimate pdf results (without the need for a
pmf) if a delta function is allowed at the two discontinuities of the cdf.
As a general practice we prefer the Stieltjes notation, however, because
of the added notational clumsiness resulting from using pdf’s to handle
inherently discrete problems. For example, compare the notation for the



3.3. DISTRIBUTIONS OF RANDOM VARIABLES 111

geometric pmf with the corresponding pdf that is written using Dirac delta
functions.

3.3.3 Derived Distributions

[3.12] Let (Ω,F , P ) be a discrete probability space with Ω a discrete subset
of the real line and F the power set. Let p be the pmf corresponding
to P , that is,

p(ω) = P ({ω}) , all ω ∈ Ω .

(Note: There is a very subtle possibility for confusion here. p(ω) could
be considered to be a random variable because it satisfies the defini-
tion for a random variable. We do not use it in this sense, however;
we use it as a pmf for evaluating probabilities in the context given. In
addition, no confusion should result because we rarely use lower case
letters for random variables.) Let X be a random variable defined on
this space. Since the domain of X is discrete, its range space, A, is
also discrete (refer to the definition of a function to understand this
point). Thus the probability measure PX must also correspond to a
pmf, say pX ; that is, (3.23) and (3.24) must hold. Thus we can derive
either the distribution PX or the simpler pmf pX in order to complete
a probabilistic description of X. Using (3.22) yields

pX(x) = PX({x}) = P (X−1({x})) =
∑

ω:X(ω)=x

p(ω) . (3.38)

Equation (3.38) provides a formula for computing the pmf and hence
the distribution of any random variable defined on a discrete probability
space. As a specific example, consider a discrete probability space (Ω,F , P )
with Ω = Z+, F the power set of Ω, and P the probability measure induced
by the geometric pmf. Define a random variable Y on this space by

Y (ω) =

{
1 if ω even
0 if ω odd

where we consider 0 (which has probability zero under the geometric pmf)
to be even. Thus we have a random variable Y : Z+ → {0, 1}. Using the
formula (3.38) for the pmf for Y (ω) = 1 results in

pY (1) =
∑

ω:ωeven

(1− p)k−1p =
∑

k=2,4,...

(1− p)k−1p

=
p

(1− p)

∞∑

k=1

((1− p)2)k = p(1− p)

∞∑

k=0

((1− p)2)k

= p
(1− p)

1− (1− p)2
=

1− p

2− p
,
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where we have used the standard geometric series summation formula (in a
thinly disguised variation of an example of section 2.2.4). We can cal-
culate the remaining point in the pmf from the axioms of probability:
pY (0) = 1 − pY (1). Thus we have found a non-obvious derived distri-
bution by computing a pmf via (3.38), a special case of (3.22). Of course,
given the pmf, we could now calculate the distribution from (3.24) for all
four sets in the power set of {0, 1}.

[3.13] Say we have a probability space (ℜ,B(ℜ), P ) where P is described
by a pdf g; that is, g is a nonnegative function of the real line with
total integral 1 and

P (F ) =

∫

r∈F
g(r) dr ; F ∈ B(ℜ) .

Suppose that we have a random variable X : ℜ → ℜ. We can use
(3.22) (3.24) to write a general formula for the distribution of X:

PX(F ) = P (X−1(F )) =

∫

r:X(r)∈F
g(r) dr .

Ideally, however, we would like to have a simpler description of X. In
particular, if X is a “reasonable function” it should have either a discrete
range space (e.g., a quantizer) or a continuous range space (or possibly
both, as in the general mixture case). If the range space is discrete, then X
can be described by a pmf, and the preceding formula (with the requisite
change of dummy variable) becomes

pX(x) = PX({x}) =
∫

r:X(r)=x

g(r) dr .

If, however, the range space is continuous, then there should exist a pdf
for X, say fX , such that (3.25) holds. How do we find this pdf? As
previously discussed, to find a pdf from a distribution, we first find the cdf
FX . Then we differentiate the cdf with respect to its argument to obtain
the pdf. As a nontrivial example, suppose that we have a probability space
(ℜ,B(ℜ), P ) with P the probability measure induced by the Gaussian pdf.
Define a random variable W : ℜ → ℜ by W (r) = r2; r ∈ ℜ. Following the
described procedure, we first attempt to find the cdf FW for W :

FW (w) = Pr(W ≤ w) = P ({ω : W (ω) = ω2 ≤ w})
= P ([−w1/2, w1/2]); if w ≥ 0 .
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The cdf is clearly 0 if w < 0. Since P is described by a pdf, say g (the
specific Gaussian form is not yet important), then

FW (w) =

∫ w1/2

−w1/2

g(r) dr .

If one should now try to plug in the specific form for the Gaussian density,
one would quickly discover that no closed form solution exists. Happily,
however, the integral does not have to be evaluated explicitly — we need
only its derivative. Therefore we can use the following handy formula from
elementary calculus for differentiating the integral:

d

dw

∫ b(w)

a(w)

g(r) dr = g(b(w))
db(w)

dw
− g(a(w))

da(w)

dw
. (3.39)

Application of the formula yields

fW (w) = g(w1/2)

(
w−1/2

2

)
− g(−w1/2)

(−w−1/2

2

)
. (3.40)

The final answer is found by plugging in the Gaussian form of g. For
simplicity we do this only for the special case where m = 0. Then g is
symmetric; that is, g(w) = g(−w), so that

fW (w) = w−1/2g(w1/2) ; w ∈ [0,∞) ,

and finally

fW (w) =
w−1/2
√
2πσ2

e−w/2σ
2

; w ∈ [0,∞)

This pdf is called a chi-squared pdf with one degree of freedom.) Observe
that the functional form of the pdf is valid only for the given domain. By
implication the pdf is zero outside the given domain — in this example,
negative values of W cannot occur. One should always specify the domain
of the dummy variable of a pdf; otherwise the description is incomplete.

In practice one is likely to encounter the following trick for deriving
densities for certain simple one-dimensional problems. The approach can
be used whenever the random variable is a monotonic (increasing or de-
creasing) function of its argument. Suppose first that we have a random
variable Y = g(X), where g is a monotonic increasing function and that
g is differentiable. Since g is monotonic, it is invertible and we can write
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X = g−1(Y ), that is, x = g−1(y) is the value of x for which g(x) = y. Then

FY (y) = Pr(g(X) ≤ y)

= Pr(X ≤ g−1(y))

= FX(g
−1(y))

=

∫ g−1(y)

−∞
fX(x) dx.

From (3.39) the density can be found as

fY (y) =
d

dy
FY (y) = fX(g

−1(y))
dg−1(y)

dy
.

A similar result can be derived for a monotone decreasing g except that a
minus sign results. The final formula is that if Y = g(X) and g is monotone,
then

fY (y) = fX(g
−1(y))|dg

−1(y)

dy
|. (3.41)

This result is a one-dimensional special case of the so-called Jacobian
approach to derived distributions. The result could be used to solve the
previous problem by separately considering negative and nonnegative values
of the input r since r2 is a monotonic increasing function for nonnegative
r and monotonic decreasing for negative r. As in this example, the direct
approach from the inverse image formula is often simpler than using the
Jacobian “shortcut,” unless one is dealing with a monotonic function.

It can be seen that although the details may vary from application
to application, all derived distribution problems are solved by the general
formula (3.22). In some cases the solution will result in a pmf; in others
the solution will result in a pdf.

To review the general philosophy, one uses the inverse image formula
to compute the probability of an output event. This is accomplished by
finding the probability with respect to the original probability measure of
all input events that result in the given output event. In the discrete case
one concentrates on output events of the form X = x and thereby finds a
pmf. In the continuous case, one concentrates on output events of the form
X ≤ x and thereby finds a cdf. The pdf is then found by differentiating.

[3.14] As a final example of derived distributions, suppose that we are
given a probability space (Ω,B(Ω), P ) with Ω ⊂ ℜ. Define the identity
mapping X : Ω→ Ω by X(ω) = ω. The identity mapping on the real
line with the Borel field is always a random variable because the
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measurability requirement is automatically satisfied. Obviously the
distribution PX is identical to the original probability measure P .
Thus all probability spaces with real sample spaces provide examples
of random variables through the identity mapping. A random variable
described in this form instead of as a general function (not the identity
mapping) on an underlying probability space is called a “directly
given” random variable.

3.4 Random Vectors and Random Processes

Thus far we have emphasized random variables, scalar functions on a sam-
ple space that assume real values. In some cases we may wish to model
processes or measurements with complex values. Complex outputs can be
considered as two-dimensional real vectors with the components being the
real and imaginary parts or, equivalently, the magnitude and phase. More
generally, we may have k−dimensional real vector outputs. Given that a
random variable is a real-valued function of a sample space (with a tech-
nical condition), that is, a function mapping a sample space into the real
line ℜ, the obvious random vector definition is a vector-valued function
definition. Under this definition, a random vector is a vector of random
variables, a function mapping the sample space into ℜk instead of ℜ. Yet
even more generally, we may have vectors that are not finite dimensional,
e.g., sequences and waveforms whose values at each time are random vari-
ables. This is essentially the definition of a random process. Fundamentally
speaking, both random vectors and random processes are simply collections
of random variables defined on a common probability space.

Given a probability space (Ω,F , P ), a finite collection of random vari-
ables {Xi; i = 0, 1, . . . , k − 1} is called a random vector.. We will often
denote a random vector in boldface as X. Thus a random vector is a
vector-valued function X : Ω → ℜk defined by X = (X0, X1, . . . , Xk−1)
with each of the components being a random variable. It is also common
to use an ordinary X and let context indicate whether X has dimension 1 or
not. Another common notation for the k-dimensional random vector is Xk.
Each of these forms is convenient in different settings, but we begin with
the boldface notation in order to distinguish the now new idea of random
vectors from the scalar case. As we progress, however, the non-boldface no-
tation will be used with increasing frequency to match current style. The
boldface notation is still found, but it is far less common then it used to be.
When vectors are used in linear algebra manipulations with matrices and
other vectors, we will assume that they are column vectors so that strictly
speaking the vector should be denoted X = (X0, X1, . . . , Xk−1)t, where t
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denotes transpose.

A slightly different notation will ease the generalization to random pro-
cesses. A random vector X = (X0, X1, . . . , Xk−1) can be defined as an
indexed family of random variables {Xi; i ∈ T } where T is the index set
Zk = {0, 1, . . . , k − 1}. The index set in some examples will correspond to
time; e.g., Xi is a measurement on an experiment at time i for k different
times. We get a random process by using the same basic definition with
an infinite index set, which almost always corresponds to time. A ran-
dom process or stochastic process is an indexed family of random variables
{Xi; t ∈ T } or, equivalently, {X(t); t ∈ T }, defined on a common probabil-
ity space (Ω,F , P ). The process is said to be discete time if T is discrete,
e.g., Z+ or Z, and continuous time if the index set is continuous, e.g., ℜ or
[0,∞). A discrete time random process is often called a time series. It is
said to be discrete alphabet or discrete amplitude if all finite-length random
vectors of random variables drawn from the random process are discrete
random vectors. The process is said to be continuous alphabet or continu-
ous amplitude if all finite-length random vectors of random variables drawn
from the random process are continuous random vectors. The process is
said to have a mixed alphabet if all finite-length random vectors of random
variables drawn from the random process are mixture random vectors.

Thus a random process is a collection of random variables indexed by
time, usually into the indefinite future and sometimes into the infinite past
as well. For each value of time t, Xt or X(t) is a random variable. Both
notations are used, butXt orXn is more common for discrete time processes
whereas X(t) is more common for continuous time processes. It is useful to
recall that random variables are functions on an underlying sample space
Ω and hence implicitly depend on ω ∈ Ω. Thus a random process (and a
random vector) is actually a function of two arguments, written explicitly
as X(t, ω); t ∈ T , ω ∈ Ω (or Xt(ω) — we use the first notation of the
moment). Observe that for a fixed value of time, X(t, ω) is a random
variable whose value depends probabilistically on ω. On the other hand, if
we fix ω and allow t to vary deterministically, we have either a sequence (T
discrete) or a waveform (T continuous). If we fix both t and ω, we have a
number. Overall we can consider a random process as a two-space mapping
X : Ω×T → ℜ or as a one-space mapping X : Ω→ ℜT from sample space
into a space of sequences or waveforms.

There is a common notational ambiguity and hence confusion when
dealing with random processes. It is the same problem we encountered
with functions in the context of random variables at the beginning of the
chapter. The notation X(t) or Xt usually means a sample of the random
process at a specified time t, i.e., a random variable, just as sin t means the
sine of a specified value t. Often in the literature, however, the notation is
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used as an abbreviation for {X(t); t ∈ T } of {Xt; t ∈ T }, that is, for the
entire random process or family of random variables. The abbreviation is
the same as the common use of sin t to mean {sin t; t ∈ (−∞,∞)}, that is,
the entire waveform and not just a single value. In summary, the common
(and sometimes unfortunate) ambiguity is in whether or not the dummy
variable t means a specific value or is implicitly allowed to vary over its
entire domain. Of course, as noted at the beginning of the chapter, the
problem could be avoided by reserving a different notation to specify a
fixed time value, say t0, but this is usually not done to avoid a proliferation
of notation. In this book we will attempt to avoid the potential confusion by
using the abbreviations {X(t)} and {Xt} for the random processes when
the index set is clear from context and reserving the notation X(t) and
Xt to mean the tth random variable of the process, that is, the sample of
the random process at time t. The reader should beware in reading other
sources, however, because this sloppiness will undoubtedly be encountered
at some point in the literature; when this happens one can only hope that
the context will make the meaning clear.

There is also an ambiguity regarding the alphabet of the random pro-
cess. If X(t) takes values in At, then strictly speaking the alphabet of
the random process is

∏
t∈T At, the space of all possible waveforms or se-

quences with coordinate taking values in At. If all of the At are the same
say At = A, this process alphabet is AT . In this case, however, the alpha-
bet of the process is commonly said to be simply A, the set of values from
which all of the coordinate random variables are drawn. We will frequently
use this convention.

3.5 Distributions of Random Vectors

Since a random vector takes values in a space ℜk, analogous to random
variables one might expect that the events in this space, that is, the mem-
bers of the event space B(ℜ)k, should inherit a probability measure from
the original probability space. This is in fact true. Also analogous to the
case of a random variable, the probability measure is called a distribution
and is defined as

PX(F ) = P (X−1(F ))

= P ({ω : X(ω) ∈ F})
= P ({ω : (X0(ω), X1(ω), . . . , Xk−1(ω)) ∈ F}), (3.42)

F ∈ B(ℜ)k ,

where the various forms are equivalent and all stand for Pr(X ∈ F ). Equa-
tion (3.42) is the vector generalization of the inverse image equation (3.22)
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for random variables. Hence (3.42) is the fundamental formula for deriving
vector distributions, that is, probability distributions describing random
vector events. Keep in mind that the random vectors might be composed
of a collection of samples from a random process.

By definition the distribution given by (3.22) is valid for each compo-
nent random variable, but this does not immediately imply, however, that
the distribution given by (3.42) for events on all components together is
valid. As in the case of a random variable, the distribution will be valid if
the output events F ∈ B(ℜ)k have inverse images under X that are input
events, that is, if X−1(F ) ∈ F for every F ∈ B(ℜ)k. The following subsec-
tion treats this subtle issue in further detail, but the only crucial point for
our purposes is the following. Given that we consider real-valued vectors
X = (X0, X1, . . . , Xk−1), knowing that each coordinate Xi is a random
variable (i.e., X−1

i (F ) for each real event F ) guarantees that X−1(F ) ∈ F
for every F ∈ B(ℜ)k and hence the basic derived distribution formula is
valid for random vectors.

3.5.1 ⋆Multidimensional Events

From the discussion following example [2.11] we can at least resolve the
issue for certain types of output events, viz., events that are rectangles.
Rectangles are special events in that the values assumed by any component
in the event are not constrained by any of the other components (compare
a two-dimensional rectangle with a circle, as in problem 2.31). Specifically
F ∈ B(ℜ)k is a rectangle if it has the form

F = {x : si ∈ Fi; i = 0, 1, . . . , k − 1} =
k−1⋂

i=0

{x : si ∈ Fi} =
k−1∏

i=0

Fi ,

where all Fi ∈ B(ℜ); i = 0, 1, . . . , k − 1 (refer to Figure 2.3(d) for a two-
dimensional illustration of such a rectangle). Because inverse images pre-
serve set operations A.12, the inverse image of F can be specified as the
intersection of the inverse images of the individual events:

X−1(F ) = {ω : Xi(ω) ∈ Fi; i = 0, 1, . . . , k − 1} =
k−1⋂

i=0

X−1
i (Fi)

Since the Xi are each random variables, the inverse images of the individual
events X−1

i (Fi) must all be in F . Since F is an event space, the intersection
of events must also be an event, and hence X−1(F ) is indeed an event.

Thus we conclude that the distribution is well defined for rectangles.
As to more general output events, we simply observe that a result from



3.5. DISTRIBUTIONS OF RANDOM VECTORS 119

measure theory ensures that if (1) inverse images of rectangles are events
and (2) rectangles are used to generate the output event space then the
inverse images of all output events are events. These two conditions are
satisfied by our definition. Thus the distribution of the random vector X
is well defined. Although a detailed proof of the measure theory result
will not be given, the essential concept can be given: Any event in F can
be approximated arbitrarily closely by finite unions of rectangles (e.g., a
circle can be approximated by lots of very small squares). The union of the
rectangles is an event. Finally, the limit of the events as the approximation
gets better must also be an event.

3.5.2 Multidimensional Probability Functions

Given a probability space (Ω,F , P ) and a random vector X : Ω → ℜk, we
have seen that there is a probability measure PX that the random vector
inherits from the original space. With the new probability measure we
define a new probability space (ℜk,B(ℜ)k, PX). As in the scalar case, the
distribution can be described by probability functions, that is, cdf’s and
either pmf’s or pdf’s (or both). If the random vector has a discrete range
space, then the distribution can be described by a multidimensional pmf
pX(x) = PX({x}) = Pr(X = x) as

pX(F ) =
∑

x∈F
pX(x)

=
∑

(x0,x1,... ,xk−1)∈F
pX0,X1,... ,Xk−1

(x0, x1, . . . , xk−1) ,

where the last form points out the economy of the vector notation of the
previous line. If the random vector X has a continuous range space, then
in a similar fashion its distribution can be described by a multidimensional
pdf fX with

PX(F ) =

∫

F

fX(x) dx .

In order to derive the pdf from the distribution, as in the scalar case, we
use a cdf.

Given a k−dimensional random vector X, define its cumulative distri-
bution function FX by

FX(α) = FX0,X1,... ,Xk−1
(α0, α1, . . . , αk−1)

= PX({x : xi ≤ αi; i = 0, 1, . . . , k − 1}) .

In English, FX(x) = Pr(Xi ≤ xi; i = 0, 1, . . . , k− 1). Note that the cdf for
any value of its argument is the probability of a special kind of rectangle.
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For example, if we have a two-dimensional random vector (X,Y ), then the
cdf FX,Y (α, β) = Pr(X ≤ α, Y ≤ β) is the probability of the semi-infinite
rectangle {(x, y) : x ≤ α, y ≤ β}.

Observe that we can also write this probability in several other ways,
e.g.,

FX(x) = PX

(
k−1∏

i=0

(−∞, xi]

)

= P ({ω : Xi(ω) ≤ xi; i = 0, 1, . . . , k − 1})

= P

(
k−1⋂

i=0

X−1
i ((−∞, xi])

)
.

Since integration and differentiation are inverses of each other, it follows
that

fX0,X1,... ,Xk−1
(x0, x1, . . . , xk−1) =

∂k

∂x0∂x1 . . . ∂xk−1
FX0,X1,... ,Xk−1

(x0, x1, . . . , xk−1) .

As with random variables, random vector can, in general, have dis-
crete and continuous parts with a corresponding mixture distribution. We
will concentrate on random vectors that are described completely by either
pmf’s or pdf’s. Also as with random variables, we can always unify notation
using a multidimensional Stieltjes integral to write

PX(F ) =

∫

F

dFX(x) ; F ∈ B(ℜ)k ,

where the integral is defined as the usual integral if X is described by a
pdf, as a sum if X is described by a pmf, and by a weighted average if
X has both a discrete and a continuous part. Random vectors are said to
be continuous, discrete, or mixture random vectors in accordance with the
above analogy to random variables.

3.5.3 Consistency of Joint and Marginal Distributions

By definition a random vector X = (X0, X1, . . . , Xk−1) is a collection of
random variables defined on a common probability space (Ω,F , P ). Alter-
natively, X can be considered to be a random vector that takes on values
randomly as described by a probability distribution PX, without explicit
reference to the underlying probability space. Either the original proba-
bility measure P or the induced distribution PX can be used to compute
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probabilities of events involving the random vector. PX in turn may be in-
duced by a pmf pX or a pdf fX. From any of these probabilistic descriptions
we can find a probabilistic description for any of the component random
variables or any collection of thereof. For example, given a value of i in
{0, 1, . . . , k − 1}, the distribution of the random variable Xi is found by
evaluating the distribution PX for the random vector on one-dimensional
rectangles where only the component Xi is constrained to lie in some set —
the rest of the components can take on any value. That is, PX is evaluated
on rectangles of the form {x = (x0, . . . , xk−1) : xi ∈ G} for any G ∈ B(ℜ)
as

PXi(G) = PX({x : xi ∈ G}) , G ∈ B(ℜ) . (3.43)

Of course the probability can also be evaluated using the underlying prob-
ability measure P via the usual formula

PXi(G) = P (X−1
i (G)).

Alternatively, we can consider this a derived distribution problem on
the vector probability space (ℜk,B(ℜ)k, PX) using a sampling function Πi :
ℜk → ℜ as in example [3.4]. Specifically, let Πi(X) = Xi. using (3.22) we
write

PΠi(G) = PX(Π
−1
i (G)) = PX({x : xi ∈ G}) . (3.44)

The two formulas (3.43) and (3.44) demonstrate that Πi and Xi are equiv-
alent random variables, and indeed they correspond to the same physical
events — the outputs of the ith coordinate of the random vector X. They
are related through the formula Πi(X(ω)) = Xi(ω). Intuitively, the two
random variables provide different models of the same thing. As usual,
which is “better” depends on which is the simpler model to handle for a
given problem.

Another fundamental observation implicit in these ruminations is that
there are many ways to compute the probability of a given event such
as “the ith coordinate of the random vector X takes on a value in an
event F ,” and all these methods must yield the same answer (assuming no
calculus errors) because they all can be referred back to a common def-
inition in terms of the underlying probability measure P . This is called
consistency ; the various probability measures (P , PXi , and PX) are all
consistent in that they assign the same number to any given physical event
for which they all are defined. In particular, if we have a random pro-
cess {Xt; t ∈ T }, then there is an infinite number of ways we could form
a random vector (Xt0 , Xt1 , . . . , Xtk−1

) by choosing a finite numbers k and
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sample times t0, t1, . . . , tk−1 and each of these would result in a correspond-
ing k-dimensional probability distribution PXt0 ,Xt1 ,... ,Xtk−1

. The calculus

derived from the axioms of probability implies that all of these distributions
must be consistent in the same sense, i.e., all must yield the same answer
when used to compute the probability of a given event.

The distribution PXi of a single component Xi of a random vector X
is referred to as a marginal distribution, while the distribution PX of the
random vector is called a joint distribution.. As we have seen, joint and
marginal distributions are related by consistency with respect to the original
probability measure, i.e.,

PXi(G) = PX({x : xi ∈ G}) = P ({ω : Xi(ω) ∈ G}) = Pr(Xi ∈ G). (3.45)

For the cases where the distributions are induced by pmf’s (marginal
pmf’s and joint pmf’s) or pdf’s (marginal pdf’s or joint pdf’s), the relation
becomes, respectively,

pXi(α) = ∑

x0,x1,... ,xi−1,xi+1,... ,xk−1

pX0,X1,... ,Xk−1
(x0, x1, . . . , xi−1, α, xi+1, . . . , xk−1)

or

fXi(α) =

∫

x0,... ,xi−1,xi+1,... ,xk−1

fX0,... ,Xk−1
(x0, . . . , xi−1, α, xi+1, . . . , xk−1)dx0 . . . dxi−1dxi+1 . . . dxk−1 .

That is, one sums or integrates over all of the dummy variables correspond-
ing to the unwanted random variables in the vector to obtain the pmf or pdf
for the random variable Xi. The two formulas look identical except that
one sums for discrete random variables and the other integrates for contin-
uous ones. We repeat the fact that both formulas are simple consequences
of (3.45).

One can also use (3.43) to derive the cdf of Xi by setting G = (−∞, α].
The cdf is

FXi(α) = FX(∞,∞, . . . ,∞, α,∞, . . . ,∞) ,

where the α appears in the ith position. This equation states that Pr(Xi ≤
α) = Pr(Xi ≤ α and Xj ≤ ∞), all j 
= i. The expressions for pmf’s and
pdf’s also can be derived from the expression for cdf’s.

The details of notation with k random variables can cloud the meaning
of the relations we are discussing. Therefore we rewrite them for the special
case of k = 2 to emphasize the essential form. Suppose that (X,Y ) is a
random vector. Then the marginal distribution of X is obtained from
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the joint distribution of X and Y by leaving Y unconstrained, i.e., as in
equation (3.43):

PX(F ) = PX,Y ({(x, y) : x ∈ F}) ; F ∈ B(ℜ) .

Furthermore, the marginal cdf of X is

FX(α) = FX,Y (α,∞) .

If the range space of the vector (X,Y ) is discrete, the marginal pmf of X
is

pX(x) =
∑

y

pX,Y (x, y) .

If the range space of the vector (X,Y ) is continuous and the cdf is differ-
entiable, the marginal pdf of X is

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy ,

with similar expressions for the distribution and probability functions for
the random variable Y .

In summary, given a probabilistic description of a random vector, we
can always determine a probabilistic description for any of the component
random variables of the random vector. This follows from the consistency
of probability distributions derived from a common underlying probabil-
ity space. It is important to keep in mind that the opposite statement is
not true. As considered in the introduction to this chapter, given all the
marginal distributions of the component random variables, we cannot find
the joint distribution of the random vector formed from the components
unless we further constrain the problem. This is true because the marginal
distributions provide none of the information about the interrelationships
of the components that is contained in the joint distribution.

In a similar manner we can deduce the distributions or probability func-
tions of “sub-vectors” of a random vector, that is, if we have the distribution
forX = (X0, X1, . . . , Xk−1) and if k is big enough, we can find the distribu-
tion for the random vector (X1, X2) or the random vector (X5, X10, X15),
and so on. Writing the general formulas in detail is, however, tedious and
adds little insight. The basic idea, however, is extremely important. One
always starts with a probability space (Ω,F , P ) from which one can pro-
ceed in many ways to compute the probability of an event involving any
combination of random variables defined on the space. No matter how one
proceeds, however, the probability computed for a given event must be the
same. In other words, all joint and marginal probability distributions for
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random variables on a common probability space must be consistent since
they all follow from the common underlying probability measure. For ex-
ample, after finding the distribution of a random vector X. the marginal
distribution for the specific component Xi can be found from the joint
distribution. This marginal distribution must agree with the marginal dis-
tribution obtained for Xi directly from the probability space. As another
possibility, one might first find a distribution for a sub vector containing
Xi, say the vector Y = (Xi−1, Xi, Xi+1). This distribution can be used to
find the marginal distribution for Xi. All answers must be the same since
all can be expressed in the form P (X−1(F )) using the original probability
space must be consistent in the sense that they agree with one another on
events.

Examples: Marginals from Joint

We now give examples of the computation of marginal probability functions
from joint probability functions.

[3.15] Say that we are given a pair of random variables X and Y such that
the random vector (X,Y ) has a pmf of the form (X,Y ) has a pmf of
the form

pX,Y (x, y) = r(x)q(y) ,

where r and q are both valid pmf’s. In other words, pX,Y is a product
pmf. Then it is easily seen that

pX(x) =
∑

y

pX,Y (x, y) =
∑

y

r(x)q(y)

= r(x)
∑

y

q(y) = r(x)

Thus in the special case of a product distribution, knowing the marginal
pmf’s is enough to know the joint distribution.

[3.16] Consider flipping two fair coins connected by a piece of rubber that
is fairly flexible. Unlike the example where the coins were soldered
together, it is not certain that they will show the same face; it is,
however, more probable. To quantify the pmf, say that the probability
of the pair (0,0) is .4, the probability of the pair (1,1) is .4, and the
probabilities of the pairs (0,1) and (1,0) are each .1. As with the
soldered-coins case, this is clearly not a product distribution, but a
simple computation shows that as in example [3.15], pX and pY both
place probability 1/2 on 0, and 1. Thus this distribution, the soldered-
coins distribution, and the product distribution of example [3.15] all
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yield the same marginal pmf’s! The point again is that the marginal
probability functions are not enough to describe a vector experiment,
we need the joint probability function to describe the interrelations
or dependencies among the random variable.

[3.17] A gambler has a pair of very special dice: the sum of the two dice
comes up as seven on every roll. Each die has six faces with values
in A = {1, 2, 3, 4, 5, 6}. All combinations have equal probability; e.g.,
the probability of a one and a six has the same probability as a three
and a four. Although the two dice are identical, we will distinguish
between them by number for the purposes of assigning two random
variables. The outcome of the roll of the first die is denoted X and
the outcome of the roll of the second die is called Y so that (X,Y ) is
a random vector taking values in A2, the space of all pairs of numbers
drawn from A. The joint pmf of X and Y is

pX,Y (x, y) = C, x+ y = 7, (x, y) ∈ A2 ,

where C is a constant to be determined. The pmf of X is determined
by summing the pmf with respect to y. However, for any given X ∈ A,
the value of Y is determined: viz., Y = 7−X. Therefore the pmf of
X is

pX(x) = 1/6, x ∈ A .

Note that this pmf is the same as one would derive for the roll of a
single unbiased die! Note also that the pmf for Y is identical with that for
X. Obviously, then, it is impossible to tell that the gambler is using unfair
dice as a pair from looking at outcomes of the rolls of each die alone. The
joint pmf cannot be deduced from the marginal pmf’s alone.

[3.18] Let (X,Y ) be a random vector with a pdf that is constant on the
unit disk in the XY plane; i.e.,

fX,Y (x, y) = C, x2 + y2 ≤ 1 .

The constant C is determined by the requirement that the pdf inte-
grate to 1; i.e., ∫

x2+y2≤1
C dxdy = 1 .

Since this integral is just the area of a circle multiplied by C, we have
immediately that C = 1/π. For the moment, however, we leave the
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joint pdf in terms of C and determine the pdf of X in terms of C by
integrating with respect to y:

fX(x) =

∫ +(1−x2)1/2

−(1−x2)1/2

C dy = 2C(1− x2)1/2 , x2 ≤ 1 .

Observe that we could now also find C by a second integration:
∫ +1

−1
2C(1− x2)1/2 dx = πC = 1 ,

or C = π−1. Thus the pdf of X is

fX(x) = 2π−1(1− x2)1/2 , x2 ≤ 1 .

By symmetry Y has the same pdf. Note that the marginal pdf is
not constant, even though the joint pdf is. Furthermore, it is obvious
that it would be impossible to determine the joint density from the
marginal pdf’s alone.

[3.19] Consider the two-dimensional Gaussian pdf of example [2.17] with
k = 2, m = (0, 0)t, and Λ = {λ(i, j) : λ(1, 1) = λ(2, 2) = 1, λ(1, 2) =
λ(2, 1) = ρ}. Since the inverse matrix is

[
1 ρ
ρ 1

]−1
=

1

1− ρ2

[
1 −ρ
−ρ 1

]
,

the joint pdf for the random vector (X,Y ) is

fX,Y (x, y) = ((2π)2(1−ρ2))−1/2e−[1/2(1−ρ
2)](x2+y2−2ρxy) , (x, y) ∈ ℜ2 .

ρ is called the “correlation coefficient” between X and Y and must
satisfy ρ2 < 1 for λ to be positive definite. To find the pdf of X we
complete the square in the exponent so that

fX,Y (x, y) = ((2π)2(1− ρ2))−1/2e−[(y−ρx)
2/2(1−ρ2)]−x2/2

= ((2π)(1− ρ2))−1/2e−[(y−ρx)
2/2(1−ρ2)](2π)−1/2e−(1/2)x

2

.

The pdf of X is determined by integrating with respect to y on
(−∞,∞). To perform this integration, refer to the form of the one-
dimensional Gaussian pdf with m = ρx (note that x is fixed while the
integration is with respect to y) and σ2 = 1− ρ2. The first factor in
the preceding equation has this form. Because the one-dimensional
pdf must integrate to one, the pdf of X that results from integrating y
out from the two-dimensional pdf is also a one-dimensional Gaussian
pdf; i.e.,

fX(x) = (2π)−1/2e−x
2/2 .
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As in examples [3.16], [3.17], and [3.18], Y has the same pdf as X. Note
that by varying ρ there is a whole family of joint Gaussian pdf’s with the
same marginal Gaussian pdf’s.

3.6 Independent Random Variables

In chapter 2 it was seen that events are independent if the probability of a
joint event can be written as a product of probabilities of individual events.
The notion of independent events provides a corresponding notion of inde-
pendent random variables and, as will be seen, results in random variables
being independent if their joint distributions are product distributions.

Two random variables X and Y defined on a probability space are in-
dependent if the events X−1(F ) and Y −1(G) are independent for all F and
G in B(ℜ). A collection of random variables {Xi, i = 0, 1, . . . , k − 1} is
said to be independent or mutually independent if all collections of events
of the form {X−1

i (Fi); i = 0, 1, . . . , k − 1} are mutually independent for
any Fi ∈ B(ℜ); i = 0, 1, . . . , k − 1.

Thus two random variables are independent if and only if their output
events correspond to independent input events. Translating this statement
into distributions yields the following:

Random variables X and Y are independent if and only if

PX,Y (F1 × F2) = PX(F1)PY (F2) , all F1, F2 ∈ B(ℜ) .

Recall that F1 × F2 is an alternate notation for
∏2
i=1 Fi — we will

frequently use the alternate notation when the number of product events is
small. Note that a product and not an intersection is used here. The reader
should be certain that this is understood. The intersection is appropriate
if we refer back to the original ω events, that is, using the inverse image
formula to write this statement in terms of the underlying probability space
yields

P (X−1(F1) ∩ Y −1(F2) = P (X−1(F1)) ∩ Y −1(F2)).

Random variables X0, . . . , Xk−1 are independent or mutually indepen-
dent if and only if

PX0,... ,Xk−1

(
k−1∏

i=0

Fi

)
=

k−1∏

i=0

PXi(Fi) ;

for all Fi ∈ B(ℜ); i = 0, 1, . . . , k − 1.
The general form for distributions can be specialized to pmf’s, pdf’s,

and cdf’s as follows.
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Two discrete random variables X and Y are independent if and only if
the joint pmf factors as

pX,Y (x, y) = pX(x)pY (y) all x, y .

A collection of discrete random variables Xi; i = 0, 1, . . . , k− 1 is mutually
independent if and only if the joint pmf factors as

pX0,... ,Xk−1
(x0, . . . , xk−1) =

k−1∏

i=0

pXi(xi) ; all xi .

Similarly, if the random variables are continuous and described by pdf’s,
then two random variables are independent if and only if the joint pdf
factors as

fX,Y (x, y) = fX(x)fY (y) ; all x, y ∈ ℜ .

A collection of continuous random variables is independent if and only if
the joint pdf factors as

fX0,... ,Xk−1
(x0, . . . , xk−1) =

k−1∏

i=0

fXi(xi) .

Two general random variables (discrete, continuous, or mixture) are
independent if and only if the joint cdf factors as

FX,Y (x, y) = FX(x)FY (y) ; all x, y ∈ ℜ .

A collection of general random variables is independent if and only if the
joint cdf factors

FX0,... ,Xk−1
(x0, . . . , xk−1) =

k−1∏

i=0

FXi(xi) ; all (x0, x1, . . . , xk−1) ∈ ℜk .

We have separately stated the two-dimensional case because of its sim-
plicity and common occurrence. The student should be able to prove the
equivalence of the general distribution form and the pmf form. If one does
not consider technical problems regarding the interchange of limits of inte-
gration, then the equivalence of the general form and the pdf form can also
be proved.

3.6.1 IID Random Vectors

A random vector is said to be independent, identically distributed or iid
if the coordinate random variables are independent and identically dis-
tributed; that is, if
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• the distribution is a product distribution, i.e., it has the form

PX0,... ,Xk−1

(
k−1∏

i=0

Fi

)
=

k−1∏

i=0

PXi(Fi)

for all choices of Fi ∈ B(ℜ), i = 0, 1, . . . , k − 1, and

• if all the marginal distributions are the same (the random variables are
all equivalent), i.e., if there is a distribution PX such that PXi(F ) =
PX(F ); all F ∈ B(ℜ) for all i.

For example, a random vector will have a product distribution if it has a
joint pdf or pmf that is a product pdf or pmf as described in example [2.16].
The general property is easy to describe in terms of probability functions.
The random vector will be iid if it has a joint pdf with the form

fX(x) =
∏

i

fX(xi)

for some pdf fX defined on ℜ or if it has a joint pmf with the form

pX(x) =
∏

i

pX(xi)

for some pmf pX defined on some discrete subset of the real line. Both of
these cases are included in the following statement: A random vector will
be iid if and only if its cdf has the form

FX(x) =
∏

i

FX(xi)

for some cdf FX .
Note that, in contrast with earlier examples, the specification “product

distribution,” along with the marginal pdf’s or pmf’s or cdf’s, is sufficient
to specify the joint distribution.

3.7 Conditional Distributions

The idea of conditional probability can be used to provide a general rep-
resentation of a joint distribution as a product, but a more complicated
product than arises with an iid vector. As one would hope, the compli-
cated form reduces to the simpler form when the vector is in fact iid. The
individual terms of the product have useful interpretations.

The use of conditional probabilities allows us to break up many problems
in a convenient form and focus on the relations among random variables.
Examples to be treated include statistical detection, statistical classifica-
tion, and additive noise.
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3.7.1 Discrete Conditional Distributions

We begin with the discrete alphabet case as elementary conditional proba-
bility suffices in this simple case. We can derive results that appear similar
for the continuous case, but nonelementary conditional probability will be
required to interpret the results correctly.

Begin with the simple case of a discrete random vector (X,Y ) with
alphabet AX×AY described by a pmf pX,Y (x, y). Let pX and pY denote the
corresponding marginal pmf’s. Define for each x ∈ AX for which pX(x) >
0 the conditional pmf pY |X(y|x); y ∈ AY as the elementary conditional
probability of Y = y given X = x, that is,

pY |X(y|x) = P (Y = y|X = x)

=
P (Y = y and X = x)

P (X = x)

=
P ({ω : Y (ω) = y} ∩ {ω : X(ω) = x})

P ({ω : X(ω) = x})

=
pX,Y (x, y)

pX(x)
, (3.46)

where we have assumed that pX(x) > 0 for all suitable x to avoid dividing by
0. Thus a conditional pmf is just a special case of an elementary conditional
probability. For each x a conditional pmf is itself a pmf, since it is clearly
nonnegative and sums to 1:

∑

y∈AY

pY |X(y|x) =
∑

y∈AY

pX,Y (x, y)

pX(x)

=
1

pX(x)

∑

y∈AY

pX,Y (x, y)

=
1

pX(x)
pX(x) = 1.

We can compute conditional probabilities by summing conditional pmf’s,
i.e.,

P (Y ∈ F |X = x) =
∑

y∈F
pY |X(y|x). (3.47)

The joint probability can be expressed as a product as

pX,Y (x, y) = pY |X(y|x)pX(x). (3.48)
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Unlike the independent case, the terms of the product do not each de-
pend on only a single independent variable. If X and Y are independent,
then pY |X(y|x) = pY (y) and the joint pmf reduces to the product of two
marginals.

Given the conditional pmf pY |X and the pmf pX , the conditional pmf
with the roles of the two random variables reversed can be computed by
marginal pmf’s by

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
=

pY |X(y|x)pX(x)∑
u pY |X(y|u)pX(u)

, (3.49)

a result often referred to as Bayes’ rule.
The ideas of conditional pmf’s immediately extend to random vec-

tors. Suppose we have a random vector (X0, X1, . . . , Xk−1) with a pmf
pX0,X1,... ,Xk−1

, then (provided none of the denominators are 0) we can de-
fine for each l = 1, 2, . . . , k − 1 the conditional pmf’s

pXl|X0,... ,Xl−1
(xl|x0, . . . , xl−1) =

pX0,... ,Xl
(x0, . . . , xl)

pX0,... ,Xl−1
(x0, . . . , xl−1)

. (3.50)

Then simple algebra leads to the chain rule for pmf’s:

pX0,X1,... ,Xn−1(x0, x1, . . . xn−1)

=

(
pX0,X1,... ,Xn−1(x0, x1, . . . xn−1)

pX0,X1,... ,Xn−2
(x0, x1, . . . xn−2)

)
pX0,X1,... ,Xn−2(x0, x1, . . . xn−2)

...

= pX0(x0)

n−1∏

i=1

pX0,X1,... ,Xi(x0, x1, . . . xi)

pX0,X1,... ,Xi−1(x0, x1, . . . xi−1)

= pX0
(x0)

n−1∏

l=1

pXl|X0,... ,Xl−1
(xl|x0, . . . , xl−1), (3.51)

a product of conditional probabilities. This provides a general form of the
iid product form and reduces to that product form if indeed the random
variables are mutually independent. This formula plays an important role
in characterizing the memory in random vectors and processes. Since it
can be used to construct joint pmf’s, and can be used to specify a random
process.

3.7.2 Continuous Conditional Distributions

The situation with continuous random vectors is more complicated if rigor
is required, but the mechanics are quite similar. Again begin with the
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simple case of two random variables X and Y with a joint distribution,
now taken to be described by a pdf fX,Y . We define the conditional pdf as
an exact analog to that for pmf’s:

fY |X(y|x) ∆=
fX,Y (x, y)

fX(x)
. (3.52)

This looks the same as the pmf, but it is not the same because pmf’s
are probabilities and pdf’s are not. A conditional pmf is an elementary
conditional probability. A conditional pdf is not. It is also not the same as
the conditional pdf of example [2.19] as in that case the conditioning event
had nonzero probability. The conditional pdf fY |X can, however, be related
to a probability in the same way an ordinary pdf (and the conditional pdf
of example [2.19]) can. An ordinary pdf is a density of probability, it is
integrated to compute a probability. In the same way, a conditional pdf
can be interpreted as a density of conditional probability, something you
integrate to get a conditional probability. Now, however, the conditioning
event can have probability zero and this does not really fit into the previous
development of elementary conditional probability. Note that a conditional
pdf is indeed a pdf, a nonnegative function that integrates to one. This
follows from

∫
fY |X(y|x) dy =

∫
fX,Y (x, y)

fX(x)
dy

=
1

fX(x)

∫
fX,Y (x, y) dy

=
1

fX(x)
fX(x) = 1,

provided we require that fX(x) > 0.
To be more specific, given a conditional pdf fY |X , we will make a ten-

tative definition of the (nonelementary) conditional probability that Y ∈ F
given X = x is

P (Y ∈ F |X = x) =

∫

F

fY |X(y|x) dy. (3.53)

Note the close resemblance to the elementary conditional probability for-
mula in terms of conditional pmf’s of (3.47). For all practical purposes
(and hence for virtually all of this book), this constructive definition of
nonelementary conditional probability will suffice. Unfortunately it does
not provide sufficient rigor to lead to a useful advanced theory. Section 3.17
discusses the problems and the correct general definition in some depth, but
it is not required for most applications.
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Via almost identical manipulations to the pmf case in (3.49), conditional
pdf’s satisfy a Bayes’ rule:

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

fY |X(y|x)fX(x)∫
fY |X(y|u)fX(u) du

. (3.54)

As a simple but informative example of a conditional pdf, consider
generalization of Example [3.19] to the case of a two-dimensional vector
U = (X,Y ) with a Gaussian pdf having a mean vector (mX ,mY )

t and a
covariance matrix

Λ =

[
σ2X ρσXσY

ρσXσY σY

]
, (3.55)

where ρ is called the correlation coefficient of X and Y . Straightforward
algebra yields

det(Λ) = σ2Xσ2Y (1− ρ2) (3.56)

Λ−1 =
1

(1− ρ2)

[
σ−2
X − ρ

σXσY

− ρ
σXσY

σ−2
Y

]
(3.57)

so that the two-dimensional pdf becomes

fXY (x, y)

=
1√

2π detΛ
e−

1
2 (x−mX ,y−mY )Λ

−1(x−mX ,y−mY )
t

=
1

2πσXσY
√
1− ρ2

(3.58)

× exp

(
− 1

2(1− ρ2)

[
(
x−mX

σX
)2 − 2ρ

(x−mX)(y −mY )

σXσY
(
y −mY

σY
)2
])

.(3.59)

A little algebra to rearrange the expression yields

fXY (x, y) =
1

σX
√

π
e
− 1

2 (
x−mX

σX
)2 × 1

σY
√
1− ρ2

√
π

e
− 1

2 (
y−mY −ρσY /σX (x−mX )√

1−ρ2σY

)2

(3.60)

from which it follows immediately that the conditional pdf is

fY |X(y|x) =
1

σY
√
1− ρ2

√
π

e
− 1

2 (
y−mY −ρσY /σX (x−mX )

(1−ρ2)σY
)2

, (3.61)

which is itself a Gaussian density with variance σ2Y |X
∆
= σ2Y (1 − ρ2) and

mean mY |X
∆
= y−mY + ρ(σY /σX)(x−mX). Integrating y out of the joint
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pdf then shows that as in Example [3.19] the marginal pdf is also Gaussian:

fX(x) =
1

σX
√

π
e
− 1

2 (
x−mX

σX
)2

. (3.62)

A similar argument shows that also fY (y) and fX|Y (x|y) are also Gaussian
pdf’s. Observe that if X and Y are jointly Gaussian, then they are also
both individually and conditionally Gaussian!

A chain rule for pdf’s follows in exactly the same way as that for pmf’s.
Assuming fX0,X1,... ,Xi(x0, x1, . . . xi) > 0,

fX0,X1,... ,Xn−1(x0, x1, . . . xn−1)

=
fX0,X1,... ,Xn−1

(x0, x1, . . . xn−1)

fX0,X1,... ,Xn−2
(x0, x1, . . . xn−2)

fX0,X1,... ,Xn−2
(x0, x1, . . . xn−2)

...

= fX0(x0)

n−1∏

i=1

fX0,X1,... ,Xi(x0, x1, . . . xi)

fX0,X1,... ,Xi−1(x0, x1, . . . xi−1)

= fX0(x0)

k−1∏

l=1

fXl|X0,... ,Xl−1
(xl|x0, . . . , xl−1), (3.63)

3.8 Statistical Detection and Classification

As a simple, but nonetheless very important, example of the application of
conditional probability mass functions describing discrete random vectors,
suppose that X is a binary random variable described by a pmf pX , with
pX(1) = p, possibly one bit in some data coming through a modem. You
receive a random variable Y , which is the equal to X with probability 1−ǫ.
In terms of a conditional pmf this is

pY |X(y|x) =
{

ǫ x 
= y

1− ǫ x = y.
(3.64)

This can be written in a simple form using the idea of modulo 2 (or mod 2)
arithmetic which will often be useful when dealing with binary variables.
Modulo 2 arithmetic or the “Galois field of 2 elements” arithmetic consists
of an operation ⊕ defined on the binary alphabet {0, 1} as follows: Define
modulo 2 addition ⊕ by

0⊕ 1 = 1⊕ 0 = 1 (3.65)

0⊕ 0 = 1⊕ 1 = 0. (3.66)
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The operation ⊕ corresponds to an “exclusive or” in logic; that is, it pro-
duces a 1 if one or the other but not both of its arguments is 1. Modulo
2 addition can also be thought of as a parity check, producing a 1 if there
is an odd number of 1’s being summed and a 0 otherwise. An equivalent
definition for the conditional pmf is

pY |X(y|x) = ǫx⊕y(1− ǫ)1−x⊕y; (3.67)

For example, the channel over which the bit is being sent is noisy in that it
occasionally makes an error. Suppose that it is known that the probability
of such an error to be ǫ. The error might be very small on a good phone line,
but it might be very large if an evil hacker is trying to corrupt your data.
Given the observed Y , what is the best guess X̂(Y ) of what is actually sent?
In other words, what is the best decision rule or detection rule for guessing
the value of X given the observed value of Y ? A reasonable criterion for
judging how good an arbitrary rule X̂ is the resulting probability of error

Pe(X̂) = Pr(X̂(Y ) 
= X). (3.68)

A decision rule is optimal if it yields the smallest possible probability of er-
ror over all possible decision rules. A little probability manipulation quickly
yields the optimal decision rule. Instead of minimizing the error probability,
we maximize the probability of being correct:

Pr(X̂ = X) = 1− Pe(X̂)

=
∑

(x,y):X̂(y)=x

pX,Y (x, y)

=
∑

(x,y):X̂(y)=x

pX|Y (x|y)pY (y)

=
∑

y

pY (y)




∑

x:X̂(y)=x

pX|Y (x|y)





=
∑

y

pY (y)pX|Y (X̂(y)|y).

To maximize this sum, we want to maximize the terms within the sum
for each y. Clearly the maximum value of the conditional probability
pX|Y (X̂(y)|y), maxu pX|Y (u|y), will be achieved if we define the decision

rule X̂(y) to be the value of u achieving the maximum of pX|Y (u|y) over u,

that is, define X̂ to be argmaxu pX|Y (u|y) (also denoted max−1u pX|Y (u|y)).
In words: the optimal estimate of X given the observation Y in the sense
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of minimizing the probability of error is the most probable value of X given
the observation. This is called the maximum a posteriori or MAP decision
rule. In our binary example it reduces to choosing x̂ = y if ǫ < 1/2 and
x̂ = 1− y if ǫ > 1/2. If ǫ = 1/2 you can give up and flip a coin or make an
arbitrary decision. (Why?) Thus the minimum (optimal) error probability
over all possible rules is min(ǫ, 1− ǫ).

The astute reader will notice that having introduced conditional pmf’s
pY |X , the example considered the alternative pmf pX|Y . The two are easily
related by Bayes’ rule (3.49).

A generalization of the simple binary detection problem provides the
typical form of a statistical classification system. Suppose that Nature se-
lects a “class” H, a random variable described by a pmf pH(h), which is no
longer assumed to be binary. Once the class is selected, Nature then gener-
ates a random “observation” X according to a pmf pX|H . For example, the
class might be a medical condition and the observations the results of blood
pressure, patients age, medical history, and other information regarding the
patients health. Alternatively, the class might be an “input signal” put into
a noisy channel which has the observation X as an “output signal.” The
question is: Given the observation X = x, what is the best guess Ĥ(x) of
the unseen class? If by “best” we adopt the criterion that the best guess is
the one that minimizes the error probability Pe = Pr(Ĥ(X) 
= H), then the
optimal classifer is again the MAP rule argmaxupH|X(u|x). More generally
we might assign a cost Cy,h resulting if the true class is h and we guess y.
Typically it is assumed that Ch,h = 0, that is, the cost is zero if our guess
is correct. (In fact it can be shown that this assumption involves no real

loss of generality.) Given a classifier (classification rule, decision rule) ĥ(x),
the Bayes risk is then defined as

B(ĥ) =
∑

x,h

Cĥ(x),hpH,X(h, x), (3.69)

which reduces to the probability of error if the cost function is given by

Cy,h = 1− δy,h. (3.70)

The optimal classifier in the sense of minimizing the Bayes risk is then
found by observing that the inequality

B(ĥ) =
∑

x

pX(x)
∑

h

Cĥ(x),hpH|X(h|x)

≥
∑

x

pX(x)min
y

(
∑

h

Cy,hpH|X(h|x)
)
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which lower bound is achieved by the classifier

ĥ(x) = argmin
y

(
∑

h

Cy,hpH|X(h|x),
)

(3.71)

the minimum average Bayes risk classifier. This reduces to the MAP de-
tection rule when Cy,h = 1− δy,h.

3.9 Additive Noise

The next examples of the use of conditional distributions treats the distri-
butions arising when one random variable (thought of as a “noise” term) is
added to another, independent random variable (thought of as a “signal”
term). This is an important example of a derived distribution problem that
yields an interesting conditional probability. The problem also suggests a
valuable new tool which will provide a simpler way of solving many similar
derived distributions — the characteristic function of random variables.

Discrete Additive Noise

Consider two independent random variables X and W and form a new
random variable Y = X + W . For example, this could be a description of
how errors are actually caused in a noisy communication channel connecting
a binary information source to a user. In order to apply the detection
and classification signal processing methods, we must first compute the
appropriate conditional probabilities of the outpout Y given the input X.
To do this we begin by computing the joint pmf of X and Y using the
inverse image formula:

pX,Y (x, y) = Pr(X = x, Y = y)

= Pr(X = x,X +W = y)

=
∑

α,β:α=x,α+β=y

pX,W (α, β)

= pX,W (x, y − x)

= pX(x)pW (y − x). (3.72)

Note that this formula only makes sense if y− x is one of the values in the
range space of W . Thus from the definition of conditional pmf’s:

pY |X(y|x) =
pX,Y (x, y)

pX(x)
= pW (y − x), (3.73)



138 CHAPTER 3. RANDOM OBJECTS

an answer that should be intuitive: given the input is x, the output will
equal a certain value y if and only if the noise exactly makes up the differ-
ence, i.e., W = y− x. Note that the marginal pmf for the output Y can be
found by summing the joint probability:

pY (y) =
∑

x

pX,Y (x, y)

=
∑

x

pX(x)pW (y − x), (3.74)

a formula that is known as a discrete convolution or convolution sum.
Anyone familiar with convolutions know that they can be unpleasant to

evaluate, so we postpone further consideration to the next section and turn
to the continuous analog.

The above development assumed ordinary arithmetic, but it is worth
pointing out that for discrete random variables sometimes other types of
arithmetic are appropriate, e.g., modulo 2 arithmetic for binary random
variables. The binary example of section 3.8 can be considered as an addi-
tive noise example if we define a random variable W which is independent
of X and has a pmf pW (w) = ǫw(1−ǫ)1−w; w = 0, 1 and where Y = X+W
is interpreted as modulo 2 arithmetic, that is, as Y = X⊕W . This additive
noise definition is easily seen to yield the conditional pmf of (3.64) and the
output pmf via a convolution. To be precise,

pX,Y (x, y) = Pr(X = x, Y = y)

= Pr(X = x,X ⊕W = y)

=
∑

α,β:α=x,α⊕β=y
pX,W (α, β)

= pX,W (x, y ⊕ x)

= pX(x)pW (y ⊕ x) (3.75)

and hence

pY |X(y|x) =
pX,Y (x, y)

pX(x)
= pW (y ⊕ x) (3.76)

and

pY (y) =
∑

x

pX,Y (x, y)

=
∑

x

pX(x)pW (y ⊕ x), (3.77)

a modulo 2 convolution.
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Continuous Additive Noise

An entirely analogous formula arises in the continous case. Again suppose
that X is a random variable, a signal, with pdf fX , and that W is a random
variable, the noise, with pdf fW . The random variables X and W are
assumed to be independent. Form a new random variable Y , an observed
signal plus noise. The problem is to find the conditional pdf’s fY |X(y|x)
and fX|Y (x|y). The operation of producing an output Y from an input
signal X is called an additive noise channel in communications systems.
The channel is completely described by fY |X . The second pdf, fX|Y will
prove useful later when we try to estimate X given an observed value of Y .

Independence of X and W implies that the joint pdf is fX,W (x,w) =
fX(x)fW (w). To find the needed joint pdf fX,Y , first evaluate the joint
cdf and then take the appropriate derivative. The cdf is a straightforward
derived distribution problem:

FX,Y (x, y) = Pr(X ≤ x, Y ≤ y)

= Pr(X ≤ x,X +W ≤ y)

=

∫ ∫

α,β:α≤x,α+β≤y
fX,W (α, β) dα dβ

=

∫ x

−∞
dα

∫ y−α

−∞
dβfX(α)fW (β)

=

∫ x

−∞
dαfX(α)FW (y − α).

Taking the derivatives yields

fX,Y (x, y) = fX(x)fW (y − x)

and hence

fY |X(y|x) = fW (y − x). (3.78)

The marginal pdf for the sum Y = X +W is then found as

fY (y) =

∫
fX,Y (x, y) dx =

∫
fX(x)fW (y − x) dx, (3.79)

a convolution integral of the pdf’s fX and fW , analogous to the convo-
lution sum found when adding independent independent discrete random
variables. Thus the evaluation of the pdf of the sum of two independent
continuous random variables is the same as the evaluation of the output
of a linear system with an input signal fX and an impulse response fW .
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We will later see an easy way to accomplish this using transforms The pdf
fX|Y follows from Bayes’ rule:

fX|Y (x|y) =
fX(x)fW (y − x)∫
fX(α)fW (y − α) dα

. (3.80)

It is instructive to work through the details of the previous example for
the special case of Gaussian random variables. For simplicity the means
are assumed to be zero and hence it is assumed that fX is N (0, σX), that
fW is N (0, σ2Y ), and that as in the Example X and W are independent and
Y = X +W . From (3.78)

fY |X(y|x) = fW (y − x)

=
e
− 1

2σ2
W

(y−x)2

√
2πσ2W

(3.81)

from which the conditional pdf can be immediately recognized as being
Gaussian with mean x and variance σ2W , that is, as N (x, σ2W ).

To evlauate the pdf fX|Y using Bayes’ rule, we begin with the denomi-
nator fY of (3.54) and write

fY (y) =

∫ ∞

−∞
fY |X(y|α)fX(α) dα

=

∫ ∞

−∞

e
− 1

2σ2
W

(y−α)2

√
2πσ2W

e
− 1

2σ2
X

α2

√
2πσ2X

dα (3.82)

=
1

2πσXσW

∫ ∞

−∞
e
− 1

2 [
y2−2αy+α2

σ2
W

+ α2

σ2
X

]
dα

=
e

−y2

2σ2
W

2πσXσW

[∫ ∞

−∞
e
− 1

2 [α
2( 1

σ2
X

+ 1

σ2
W

)− 2αy

σ2
W

]
dα.

]
(3.83)

This convolution of two Gaussian “signals” can be accomplished using an
old trick called “completing the square.” Call the integral in the square
brackets at the end of the above equation I and note that integrand resem-
bles

e−
1
2 (

α−m

σ2 )2

which we know from (B.15) in appendix B integrates to

∫ ∞

−∞
e−

1
2 (

α−m

σ2 )2 dα =
√
2πσ2 (3.84)
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since a Gaussian pdf integrates to 1. The trick is to modify I to resemble
this integral with an additional factor. Compare the two exponents:

−1
2
[α2(

1

σ2X
+

1

σ2W
)− 2αy

σ2W
]

vs.

−1
2
(
α−m

σ
)2 = −1

2
[
α2

σ2
− 2

αm

σ2
+

m2

σ2
].

The exponent from I will equal the left two terms of the expanded exponent
in the known integral if we choose

1

σ2
=

1

σ2W
+

1

σ2X

or, equivalently,

σ2 =
σ2Xσ2W

σ2X + σ2W
, (3.85)

and if we choose
y

σ2W
=

m

σ2

or, equivalently,

m =
σ2

σ2W
y. (3.86)

Using (3.85) – (3.86) we have that

α2(
1

σ2X
+

1

σ2W
)− 2αy

σ2W
= (

α−m

σ
)2 − m2

σ2
,

where the addition of the leftmost term is called “completing the square.”
With this identification and again using (3.85) – (3.86) we have that

I =

∫ ∞

−∞
e−

1
2 [(

α−m

σ2 )2−m2

σ2 ] dα

=
√
2πσ2e

m2

2σ2 (3.87)

which implies that

fY (y) =
e
− 1

2
y2

σ2
W

2πσXσW

√
2πσ2e

m2

2σ2

=
1√

2π(σ2X + σ2W )
e
− 1

2
y2

σ2
X

+σ2
W . (3.88)
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In other words, fY is N (0, σ2X + σ2W ) and we have shown that the sum of
two zero mean independent Gaussian random variables is another zero mean
Gaussian random variable with variance equal to the sum of the variances
of the two random variables being added.

Finally we turn to the a posteriori probability fX|Y . From Bayes’ rule
and a lot of algebra

fX|Y (x|y) =
fY |X(y|x)fX(x)

fY (y)

=

e
− 1

2σ2
W

(y−x)2

√
2πσ2

W

e
− 1

2σ2
X

x2

√
2πσ2

X

1√
2π(σ2

X+σ
2
W )

e
− 1

2
y2

σ2
X

+σ2
W

=
1√

2π
σ2

Xσ
2
W

σ2
X+σ

2
W

e
− 1

2 [
y2−2yx+x2

σ2
W

+ x2

σ2
X

− y2

σ2
X

+σ2
W

]

=
1√

2π
σ2

Xσ
2
W

σ2
X+σ

2
W

e

− 1

2
σ2

X
σ2

W
σ2

X
+σ2

W

(x− σ2
X

σ2
X

+σ2
W

y)2

. (3.89)

In words: fX|Y (x|y) is a Gaussian pdf

N (
σ2X

σ2X + σ2W
y,

σ2Xσ2W
σ2X + σ2W

).

The mean of a conditional distribution is called a conditional mean and the
variance of a conditional distribution is called a conditional variance.

Continuous Additive Noise with Discrete Input

Additive noise provides a situation in which mixed distributions having
both discrete and continuous parts naturally arise. Suppose that the signal
X is binary, say with pmf pX(x) = px(1 − p)1−x. The noise term W
is assumed to be a continuous random variable described by pdf fW (w),
independent of X, with variance σ2W . The observation is defined by Y =
X + W . In this case the joint distribution is not defined by a joint pmf
or a joint pdf, but by a combination of the two. Some thought may lead
to the reasonable guess that the continuous observation given the discrete
signal should be describable by a conditional pdf fY |X(y|x) = fW (y − x),
where now the conditional pdf is of the elementary variety, the given event
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has nonzero probability. To prove that this is in fact correct, consider the
elementary conditional probability Pr(Y ≤ y|X = x), for x = 0, 1. This is
recognizable as the conditional cdf for Y given X = x, so that the desired
conditional density is given by

fY |X(y|x) =
d

dy
Pr(Y ≤ y|X = x). (3.90)

The required probability is evaluated using the independence of X and W
as

Pr(Y ≤ y|X = x) = Pr(X +W ≤ y|X = x)

= Pr(x+W ≤ y|X = x)

= Pr(W ≤ y − x)

= FW (y − x).

Differentiating gives

fY |X(y|x) = fW (y − x). (3.91)

The joint distribution is described in this case by a combination of a
pmf and a pdf. For example, to compute the joint probability that X ∈ F
and Y ∈ G is accomplished by

Pr(X ∈ F and Y ∈ G) =
∑

F

pX(x)

∫

G

fY |X(y|x) dy

=
∑

F

pX(x)

∫

G

fW (y − x) dy. (3.92)

Choosing F = ℜ yields the output distribution

Pr(Y ∈ G) =
∑

pX(x)

∫

G

fY |X(y|x) dy =
∑

pX(x)

∫

G

fW (y − x) dy.

Choosing G = (−∞, y] provides a formula for the cdf FY (y), which can be
differentiated to yield the output pdf

fY (y) =
∑

pX(x)fY |X(y|x) =
∑

pX(x)fW (y − x), (3.93)

a mixed discrete convolution involving a pmf and a pdf (and exactly the
formula one might expect in this mixed situation given the pure discrete
and continuous examples).

Continuing the parallel with the pure discrete and continuous cases,
one might expect that Bayes’ rule could be used to evaluate the conditional
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distribution in the opposite direction, which since X is discrete should be
a conditional pmf:

pX|Y (x|y) =
fY |X(y|x)pX(x)

fY (y)
=

fY |X(y|x)pX(x)∑
α pX(α)fY |X(y|α)

. (3.94)

Observe that unlike previously treated conditional pmf’s, this one is not
an elementary conditional probability since the conditioning event does not
have nonzero probability. Thus it cannot be defined in the original manner,
but must be justified in the same way as conditional pdf’s, that is, by the
fact that we can rewrite the joint distribution (3.92) as

Pr(X ∈ F and Y ∈ G)

∫

G

dyfY (y) Pr(X ∈ F |Y = y) =

∫

G

dyfY (y)
∑

F

pX|Y (x|y),

(3.95)

so that pX|Y (x|y) indeed plays the role of a mass of conditional probability,
that is,

Pr(X ∈ F |Y = y) =
∑

F

pX|Y (x|y). (3.96)

Applying these results to the specific case of the binary input and Gaus-
sian noise, the conditional pmf of the binary input given the noisy obser-
vation is

pX|Y (x|y) =
fW (y − x)pX(x)

fY (y)
=

fW (y − x)pX(x)∑
α pX(α)fW (y − α)

; y ∈ ℜ, x ∈ {0, 1}.
(3.97)

This formula now permits the analysis of a classical problem in communi-
cations, the detection of a binary signal in Gaussian noise.

3.10 Binary Detection in Gaussian Noise

The derivation of the MAP detector or classifier extends immediately to the
the situation of a binary input random variable and independent Gaussian
noise just treated. As in the purely discrete case, the MAP detector X̂(y)
of X given Y = y is given by

X̂(y) = argmax
x

pX|Y (x|y) = argmax
x

fW (y − x)pX(x)∑
α pX(α)fW (y − α)

. (3.98)
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Since the denominator of the conditional pmf does not depend on x (only
on y), given y the denominator has no effect on the maximization

X̂(y) = argmax
x

pX|Y (x|y) = argmax
x

fW (y − x)pX(x).

Assume for simplicity that X is equally likely to be 0 or 1 so that the rule
becomes

X̂(y) = argmax
x

pX|Y (x|y) == argmax
x

1√
2πσ2W

e
− 1

2
(x−y)2

σ2
W .

The constant in front of the pdf does not effect the maximization. In
addition, the exponential is a mononotically decreasing function of |x−y|, so
that the exponential is maximized by minimizing this magnitude difference,
i.e.,

X̂(y) = argmax
x

pX|Y (x|y) == argmin
x

|x− y|, (3.99)

which yields a final simple rule: see if x = 0 or 1 is closer to y as the best
guess of x. This choice yields the MAP detection and hence the minimum
probability of error. In our example this yields the rule

X̂(y) =

{
0 y < 0.5

1 y > 0.5
. (3.100)

Because the optimal detector chooses the x that minimizes the Euclidean
distance |x−y| to the observation y, it is called aminimum distance detector
or rule. Because the guess can be computed by comparing the observation
to a threshold (the value midway between the two possible values of x), the
detector is also called a threshold detector .

Assumptions have been made to keep things fairly simple. The reader
is invited to work out what happens if the random variable X is biased and
if its alphabet is taken to be {−1, 1} instead of {0, 1}. It is instructive to
sketch the conditional pmf’s for these cases.

Having derived the optimal detector, it is reasonable to look at the
resulting, minimized, probability of error. This can be found using condi-
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tional probability:

Pe = Pr(X̂(Y ) 
= X)

= Pr(X̂(Y ) 
= 0|X = 0)pX(0) + Pr(X̂(Y ) 
= 1|X = 1)pX(1)

= Pr(Y > 0.5|X = 0)pX(0) + Pr(Y < 0.5|X = 1)pX(1)

= Pr(W +X > 0.5|X = 0)pX(0) + Pr(W +X < 0.5|X = 1)pX(1)

= Pr(W > 0.5|X = 0)pX(0) + Pr(W + 1 < 0.5|X = 1)pX(1)

= Pr(W > 0.5)pX(0) + Pr(W < −0.5)pX(1)

where we have used the independence of W and X. These probabilities can
be stated in terms of the Φ function of (2.78) as in (2.82), which combined
with the assumption that X is uniform and (2.84)yields

Pe =
1

2
(1− Φ(

0.5

σW
) + Φ(− 0.5

σW
)) = Φ(

1

2σW
). (3.101)

3.11 Statistical Estimation

Discrete conditional probabilities were seen to provide method for guessing
an unknown class from an observation: if all incorrect choices have equal
costs so that the overall optimality criterion is to minimize the probability of
error, then the optimal classification rule is to guess that the class X = k,
where pX|Y (k|y) = maxz pX|Y (x|y), the maximum a posteriori or MAP
decision rule. There is an analogous problem and solution in the continuous
case, but the result does not have as strong an interpretation as in the
discrete case. A more complete analogy will be derived in the next chapter.

As in the discrete case, suppose that a random variable Y is observed
and the goal is to make a good guess X̂(Y ) of another random variable X
that is jointly distributed with Y . Unfortunately in the continuous case it
does not make sense to measure the quality of such a guess by the proba-
bility of its being correct because now that probability is usually zero. For
example, if Y is formed by adding a Gaussian signal X to an independent
Gaussian noise W to form an observation Y = X + W as in the previous
section, then no rule is going to recover X perfectly from Y . Nonetheless,
intuitively there should be reasonable ways to make such guesses in con-
tinuous situations. Since X is continuous, such guesses are refered to as
“estimation” or “prediction” of X rather than as “classification” or “detec-
tion” as used in the discrete case. In the statistical literature the general
problem is referred to as “regression”.

One approach is to mimic the discrete approach on intuitive grounds. If
the best guess in the classification problem of a random variable X given an
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observation Y is the MAP classifier X̂MAP(y) = argmaxxpX|Y (x|y), then
a natural analog in the continuous case is the so-called MAP estimator
defined by

X̂MAP(y) = argmaxxfX|Y (x|y), (3.102)

the value of x maximizing the conditional pdf given y. The advantage
of this estimator is that it is easy to describe and provides an immediate
application of conditional pdf’s paralleling that of classification for discrete
conditional probability. The disadvantage is that we cannot argue that this
estimate is “optimal” in the sense of optimizing some specified criterion, it
is essentially an ad hoc (but reasonable) rule. As an example of its use,
consider the Gaussian signal plus noise of the previous section. There it was

found that the pdf fX|Y (x|y) is Gaussian with mean
σ2

X

σ2
X+σ

2
W

y. Since the

Gaussian density has its peak at its mean, in this case the MAP estimate

of X given Y = y is given by the conditional mean
σ2

X

σ2
X+σ

2
W

y.

Knowledge of the conditional pdf is all that is needed to define another
estimator: the maximum likelihood or ML estimate of X given Y = y is
defined as the value of x that maximizes the conditional pdf fY |X(y|x),
the pdf with the roles of input and output reversed from that of the MAP
estimator. Thus

X̂ML(y) = argmax
x

fY |X(y|x). (3.103)

Thus in the Gaussian case treated above, X̂ML(Y ) = y.
The main interest in the ML estimator in some applications is that it is

sometimes simpler and that it does not require any assumption on the input
statistics. The MAP estimator depends strongly on fX , the ML estimator
does not depend on it at all. It is easy to see that if the input pdf is uniform,
the MAP estimator and the ML estimator are the same.

3.12 Characteristic Functions

We have seen that summing two random variables produces a new random
variable whose pmf or pdf is found by convolving the two pmf’s or pdf’s
of the original random variables. Anyone with an engineering background
will likely have had experience with convolution and recall they can be
somewhat messy to evaluate. To make matters worse, if one wishes to sum
additional independent random variables to the existing sum, say form
Y =

∑N
k=1Xk from an iid collection {Xk}, then the result will be an N -

fold convolution, a potential nightmare in all but the simplest of cases. As
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in other engineering applications such as circuit design, convolutions can be
avoided by Fourier transform methods and in this subsection we describe
the method as an alternative approach for the examples to come. We begin
with the discrete case.

Historically the transforms used in probability theory have been slightly
different from those in traditionally Fourier analysis. For a discrete random
variable with pmf pX , define the characteristic function MX of the random
variable (or of the pmf) as

MX(ju) =
∑

x

pX(x)e
jux, (3.104)

where u is usually assumed to be real. Recalling the definition (2.34)
of the expectation of a function g defined on a sample space, choosing
g(ω) = ejuX(ω) shows that the characteristic function can be be more sim-
ply defined as

MX(ju) = E[ejuX ]. (3.105)

Thus characteristic functions, like probabilities, can be viewed as special
cases of expectations.

This transform, which is also referred to as an exponential transform or
operational transform, bares a strong resemblance to the discrete-parameter
Fourier transform

Fν(pX) =
∑

x

pX(x)e
−j2πνx (3.106)

and the z-transform

Zz(pX) =
∑

x

pX(x)z
x. (3.107)

In particular, MX(ju) = F−2πu(pX) = Zeju(pX). As a result, all of the
properties of characteristic functions follow immediately from (are equiva-
lent to) similar properties from Fourier or z transforms. As with Fourier
and z transforms, the original pmf pX can be recovered from the transform
MX by suitable inversion. For example, given a pmf pX(k); k ∈ ZN ,

1

2π

∫ π/2

−π/2
MX(ju)e

−iuk du =
1

2π

∫ π/2

−π/2

(
∑

x

pX(x)e
jux

)
e−iuk du

=
∑

x

pX(x)
1

2π

∫ π/2

−π/2
eju(x−k) du

=
∑

x

pX(x)δk−x = pX(k). (3.108)
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Consider again the problem of summing two independent random vari-
ables X and W with pmf’s pX and pW with characteristic functions MX

and MW , respectively. If Y = X + W as before we can evaluate the char-
acteristic function of Y as

MY (ju) =
∑

y

pY (y)e
juy

where from the inverse image formula

pY (y) =
∑

x,w:x+w=y

pX,W (x,w)

so that

MY (ju) =
∑

y

(
∑

x,w:x+w=y

pX,W (x,w)

)
ejuy

=
∑

y

(
∑

x,w:x+w=y

pX,W (x,w)ejuy

)

=
∑

y

(
∑

x,w:x+w=y

pX,W (x,w)eju(x+w)

)

=
∑

x,w

pX,W (x,w)eju(x+w)

where the last equality follows because each of the sums for distinct y
collects together different x and w and together the sums for all y gather
all of the x and w. This last sum factors, however, as

MY (ju) =
∑

x,w

pX(x)pW (w)ejuxejuw

=
∑

x

pX(x)e
jux
∑

w

pW (w)ejuw

= MX(ju)MW (ju), (3.109)

which shows that the transform of the pmf of the sum of independent
random variables is simply the product of the transforms.

Iterating (3.109) several times gives an extremely useful result that we
state formally as a theorem. It can be proved by repeating the above
argument, but we shall later see a shorter proof.
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Theorem 3.1 If {Xi; i = 1, . . . , N} are independent random variables
with characteristic functions MXi

, then the characteristic function of the

random variable Y =
∑N
i=1Xi is

MY (ju) =

N∏

i=1

MXi(ju). (3.110)

If the Xi are independent and identically distributed with common charac-
teristic function MX , then

MY (ju) = MN
X (ju). (3.111)

As a simple example, the characteristic function of a binary random
variable X with parameter p = pX(1) = 1− pX(0) is easily found to be

MX(ju) =

1∑

k=0

ejukpX(k) = (1− p) + peju . (3.112)

If {Xi; i = 1, . . . , n} are independent Bernoulli random variables with iden-
tical distributions and Yn =

∑n
k=1Xi, then MYn

(ju) = [(1 − p) + peju]n

and hence

MYn(ju) =

n∑

k=0

pYn(k)e
juk

= ((1− p) + peju)n

=

n∑

k=0

[(
n
k

)
(1− p)n−kpk

]
ejuk ,

where we have invoked the binomial theorem in the last step. For the
equality to hold, however, we have from the uniqueness of transforms that
pYn(k) must be the bracketed term, that is, the binomial pmf

pYn(k) =

(
n
k

)
(1− p)n−kpk; k ∈ Zn+1. (3.113)

As in the discrete case, convolutions can be avoided by transforming
the densities involved. The derivation is exactly analogous to the discrete
case, with integrals replacing sums in the usual way.

For a continous random variable X with pmf fX , define the character-
istic function MX of the random variable (or of the pmf) as

MX(ju) =

∫
fX(x)e

jux dx. (3.114)



3.12. CHARACTERISTIC FUNCTIONS 151

As in the discrete case, this can be considered as a special case of expecta-
tion for continuous random variables as defined in (2.34) so that

MX(ju) = E[ejuX ]. (3.115)

The characteristic function is related to the the continuous-parameter
Fourier transform

Fν(fX) =
∫

fX(x)e
−j2πνx dx (3.116)

and the Laplace transform

Ls(fX) =
∫

fX(x)e
sx dx (3.117)

by MX(ju) = F−2πu(fX) = Lju(fX). As a result, all of the properties of
characteristic functions of densities follow immediately from (are equivalent
to) similar properties from Fourier or Laplace transforms. For example,
given a well-behaved density fX(x); x ∈ ℜ with characteristic function
MX(ju),

fX(x) =
1

2π

∫ ∞

−∞
MX(ju)e

−jux du. (3.118)

Consider again the problem of summing two independent random vari-
ables X and Y with pdf’s fX and fW with characteristic functions MX and
MW , respectively. As in the discrete case it can be shown that

MY (ju) = MX(ju)MW (ju). (3.119)

Rather than mimic the proof of the discrete case, however, we postpone the
proof to a more general treatment of characteristic functions in chapter 4.

As in the discrete case, iterating (3.119) several times yields the follow-
ing result, which now includes both discrete and continous cases.

Theorem 3.2 If {Xi; i = 1, . . . , N} are independent random variables
with characteristic functions MXi , then the characteristic function of the

random variable Y =
∑N
i=1Xi is

MY (ju) =

N∏

i=1

MXi(ju). (3.120)

If the Xi are independent and identically distributed with common charac-
teristic function MX , then

MY (ju) = MN
X (ju). (3.121)
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As an example of characteristic functions and continuous random vari-
ables, consider the Gaussian random variable. The evaluation requires a
bit of effort, either using the “complete the square” technique of calculus
or by looking up in published tables. Assume that X is a Gaussian random
variable with mean m and variance σ2. Then

MX(ju) = E(ejuX)

=

∫ ∞

−∞

1

(2πσ2)1/2
e−(x−m)

2/2σ2

ejux dx

=

∫ ∞

−∞

1

(2πσ2)1/2
e−(x

2−2mx−2σ2jux+m2)/2σ2

dx

=

{∫ ∞

−∞

1

(2πσ2)1/2
e−(x−(m+juσ

2))2/2σ2

dx

}
ejum−y2σ2/2

= ejum−u2σ2/2 . (3.122)

Thus the characteristic function of a Gaussian random variable with
mean m and variance σ2X is

MX(ju) = ejum−u2σ2/2 . (3.123)

If {Xi; i = 1, . . . , n} are independent Gaussian random variables with
identical densities N (m,σ2) and Yn =

∑n
k=1Xi, then

MYn(ju) = [ejum−u2σ2/2]n = eju(nm)−u
2(nσ2)/2, (3.124)

which is the characteristic function of a Gaussian random variable with
mean nm and variance nσ2.

The following maxim should be kept in mind whenever faced with sums
of independent random variables:

When given a derived distribution problem involving the
sum of independent random variables, first find the characteris-
tic function of the sum by taking the product of the characteris-
tic functions of the individual random variables. Then find the
corresponding probability function by inverting the transform.
This technique is valid if the random variables are independent
— they do not have to be identically distributed.

3.13 Gaussian Random Vectors

A random vector vector is said to beGaussian if its density is Gaussian, that
is, if its distribution is described by the multidimensional pdf explained in
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chapter 2. The component random variables of a Gaussian random vector
are said to be jointly Gaussian random variables. Note that the symmetric
matrix Λ of the k−dimensional vector pdf has k(k + 1)/2 parameters and
that the vector m has k parameters. On the other hand, the k marginal
pdf’s together have only 2k parameters. Again we note the impossibility
of constructing joint pdf’s without more specification than the marginal
pdf’s alone. As previously, the marginals will suffice to describe the entire
vector if we also know that the vector has independent components, e.g.,
the vector is iid. In this case the matrix Λ is diagonal.

Although difficult to describe, Gaussian random vectors have several
nice properties. One of the most important of these properties is that lin-
ear or affine operations on Gaussian random vectors produce Gaussian ran-
dom vectors. This result can be demonstrated with only a modest amount
of work using multidimensional characteristic functions, the extension of
transforms from scalars to vectors.

The multidimensional characteristic function of a distribution is defined
as follows: Given a random vectorX = (X0, . . . , Xn−1) and a vector param-
eter u = (u0, . . . , un−1), the n-dimensional characteristic function MX(ju)
is defined by

MX(ju) = MX0,... ,Xn−1(ju0, . . . , jun−1)

= E
(
eju

t
X

)

= E

(
exp j

n−1∑

k=0

ukXk

)
. (3.125)

It can be shown using multivariable calculus (problem 3.49) that a Gaussian
random vector with mean vector m and covariance matrix Λ has charac-
teristic function

MX(ju) = eju
t
m−1/2utΛu

= exp

[
j

n−1∑

k=0

ukmk − 1/2

n−1∑

k=0

n−1∑

m=0

ukΛ(k,m)um

]
.(3.126)

Observe that the Gaussian characteristic function has the same form as
the Gaussian pdf — an exponential quadratic in its argument. However,
unlike the pdf, the characteristic function depends on the covariance matrix
directly, whereas the pdf contains the inverse of the covariance matrix.
Thus the Gaussian characteristic function is in some sense simpler than
the Gaussian pdf. As a further consequence of the direct dependence on
the covariance matrix, it is interesting to note that, unlike the Gaussian
pdf, the characteristic function is well-defined even if Λ is only nonnegative
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definite and not strictly positive definite. Previously we give a definition of
a Gaussian random vector in terms of its pdf. Now we can give an alternate,
more general (in the sense that a strictly positive definite covariance matrix
is not required) definition of a Gaussian random vector and hence random
process):

A random vector is Gaussian if and only if it has a characteristic function
of the form of (3.126).

3.14 Examples: Simple Random Processes

In this section several examples of random processes defined on simple
probability spaces are given to illustrate the basic definition of an infinite
collection of random variables defined on a single space. In the next section
more complicated examples are considered by defining random variables on
a probability space which is the output space for another random process,
a setup that can be viewed as signal processing.

[3.22] Consider the binary probability space (Ω,F , P ) with Ω = {0, 1},F
the usual event space, and P induced by the pmf p(0) = α and p(1) =
1−α, where α is some constant, 0 ≤ α ≤ 1. Define a random process
on this space as follows:

X(t, ω) = cos(ωt) =

{
cos(t), t ∈ ℜ if ω = 1

1, t ∈ ℜ if ω = 0 .

Thus if a 1 occurs a cosine is sent forever, and if a 0 occurs a constant
1 is sent forever.

This process clearly has continuous time and at first glance it might
appear to also have continuous amplitude, but only two waveforms are
possible, a cosine and a constant. Thus the alphabet at each time contains
at most two values and these possible values change with time. Hence this
process is in fact a discrete amplitude process and random vectors drawn
from this source are described by pmf’s. We can consider the alphabet of
the process to be either ℜT or [−1, 1]T , among other possibilities. Fix time
at t = π/2. Then X(π/2) is a random variable with pmf

pX(π/2)(x) =

{
α, if x = 1

1− α, if x = 0 .

The reader should try other instances of time. What happens at t =
0, 2π, 4π,m . . . ?
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[3.23] Consider a probability space (Ω,F , P ) with Ω = ℜ, F = B(ℜ), the
Borel field, and probability measure P induced by the pdf

f(r) =

{
1 if r ∈ [0, 1]
0 otherwise .

Again define the random process {X(t)} by X(t, ω) = cos(ωt); t ∈ ℜ.

Again the process is continuous time, but now it has mixed alphabet
because an uncountable infinity of waveforms is possible corresponding to
all angular frequencies between 0 and 1 so that X(t, ω) is a continuous
random variable except at t = 0. X(0, ω) = 1 is a discrete random variable.
If you calculate the pdf of the random variable X(t) you see that it varies
as a function of time (problem 3.25).

[3.24] Consider the probability space of example [3.23], but cut it down to
the unit interval; that is, consider the probability space ([0, 1),B([0, 1)), P )
where P is the probability measure induced by the pdf f(r) = 1; r ∈
[0, 1). (So far this is just another model for the same thing.) Define
for n = 1, 2 . . . , Xn(ω) = bn(ω) = the nth digit binary expansion of
ω, that is

ω =

∞∑

n=1

bn2
−n

or equivalently ω = .b1b2b3 . . . in binary.

{Xn;n = 1, 2 . . . } is a one-sided discrete alphabet random process with
alphabet {0, 1}. It is important to understand that nature has selected ω
at the beginning of time, but the observer has no way to determining Ω
completely without waiting until the end of time. Nature only reveals one
bit of ω per unit time, so the observer can only get an improved estimate of
ω as time goes on. This is an excellent example of how a random process
can be modeled by selecting only a single outcome, yet the observer sees a
process that evolves forever.

In this example our change in the sample space to [0, 1] from ℜ was
done for convenience. By restricting the sample space we did not have to
define the random variable outside of the unit interval (as we would have
had to do to provide a complete description).

At times it is necessary to extend the definition of a random process
to include vector-valued functions of time so that the random process is a
function of three arguments instead of two. The most important extension
is to complex-valued random processes, i.e., vectors of length 2. We will
not make such extensions frequently but we will include an example at this
time.
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[3.25] Random Rotations

Given the same probability space as in example [3.24], define a complex-
valued random process {Xn} as follows: Let α be a fixed real param-
eter and define

Xn(ω) = ejnαej2πω = ej(nα+2πω) ; n = 1, 2, 3, . . .

This process, called the random rotations process, is a discrete time
continuous (complex) alphabet one-sided random process. Note that an
alternative description of the same process would be to define to define Ω
as the unit circle in the complex plane together with its Borel field and to
define a process Yn(ω) = cnω for some fixed c ∈ Ω; for some fixed c ∈ Ω
; this representation points that successive values of Yn are obtained by
rotating the previous value through an angle determined by c.

Note that the joint pdf of the complex components of Xn varies with
time, n, as does the pdf in example [3.23] (problem 3.28).

[3.26] Again consider the probability space of example [3.24]. We define a
random process recursively on this space as follows: Define X0 = ω
and

Xn(ω) = 2Xn−1(ω) mod 1 =

{
2Xn−1(ω) if 0 ≤ Xn−1(ω) < 1/2

2Xn−1(ω)− 1 if 1/2 ≤ Xn−1(ω) < 1,

where r mod 1 is the fractional portion of r. In other words, if
Xn−1(ω) = x is in [0,1/2), then Xn(ω) = 2x. If Xn−1(ω) = x is
in [1/2,1), then Xn(ω) = 2x− 1.

[3.27] Given the same probability space as in the example [3.26], define
X(t, ω) = cos(t + 2πω), t ∈ ℜ. The resulting random process {X(t)}
is continuous time and continuous amplitude and is called a random
phase process since all of the possible waveforms are shifts of one
another. Note that the pdf of X(t, ω) does not depend on time (prob-
lem 3.29.

[3.28] Take any one of the foregoing (real) processes and quantize or clip
it; that is, define a binary quantizer q by

q(r) =

{
a if r ≥ 0
b if r < 0

and define the process Y (t, ω) = q(X(t, ω)), all t. (Typically b = −a.)
This is a common form of signal processing, converting a continuous
alphabet random process into a discrete alphabet random process.
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This process is discrete alphabet and is either continuous or discrete
time, depending on the original X process. In any case Y (t) has a binary
pmf that, in general, varies with time.

[3.29] Say we have two random variables U and V defined on a common
probability space (Ω,F , P ). Then

X(t) = U cos(2πf0t+ V )

defines a random process on the same probability space for any fixed
parameter f0.

All the foregoing random processes are well defined. The processes in-
herit probabilistic descriptions from the underlying probability space. The
techniques of derived distributions can be used to compute probabilities
involving the outputs since, for example, any problem involving a single
sample time is simply a derived distribution for a single random variable,
and any problem involving a finite collection of sample times is a single ran-
dom vector derived distribution problem. Several examples are explored in
the problems at the end of the chapter.

3.15 Directly Given Random Processes

3.15.1 The Kolmogorov Extension Theorem

Consistency of distributions of random vectors of various dimensions plays
a far greater role in the theory and practice of random processes than sim-
ply a means of checking the correctness of a computation. We have thus far
argued that a necessary condition for a set of random vector distributions to
describe collections of samples taken from a random process is that the dis-
tributions be consistent, e.g., given marginals and joints we must be able to
compute the marginals from the joints. The Kolmogorov extension theorem
states that consistency is also sufficient for a family of finite-dimensional
vector distributions to describe a random process, that is, for there to exist
a well defined random process that agrees with the given family of finite
dimensional distributions. We state the theorem without proof as the proof
is far beyond the assumed mathematical prerequisites for this course. (The
interested reader is referred to [45, 6, 22].) Happily, however, it is often
straightforward, if somewhat tedious, to demonstrate that the conditions
of the theorem hold and hence that a proposed model is well-defined.

Theorem 3.3 Kolmogorov Extension Theorem
Suppose that one is given a consistent family of finite dimensional distri-
butions PXt0 ,Xt1 ,... ,Xtk−1

for all positive integers k and all possible sample
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times ti ∈ T ; i = 0, 1, . . . , k − 1. Then there exists a random process
{Xt; t ∈ T } that is consistent with this family. In other words, in order to
completely describe a random process, it is sufficient to describe a consistent
family of finite dimensional distributions of its samples.

3.15.2 IID Random Processes

The next example extends the idea of an iid vector to provide one of the
most important random process models. Although such processes are sim-
ple in that they possess no memory among samples, they play a fundamental
role as a building block for more complicated processes as well as being an
important example in their own right. In a sense these are the most ran-
dom of all possible random processes because knowledge of the past does
not help predict future behavior.

A discrete-time random proces {Xn} is said to be iid if all finite-
dimensional random vectors formed by sampling the process are iid; that
is, if for any k and any collection of distinct sample times t0, t1, . . . , tk−1,
the random vector (Xt0 , Xt1 , . . . , Xtk−1

) is iid.
This definition is equivalent to the simpler definition of the Introduction

to this chapter, but the more general form is adopted because it more closely
resembles definitions to be introduced later. iid random processes are often
called Bernoulli processes, especially in the binary case.

It can be shown with cumbersome but straightforward effort that the
random process of [3.24] is in fact iid. In fact, for any given marginal
distribution there exists an iid process with that marginal distribution. Al-
though eminently believable, this fact requires the Kolmogorov extension
theorem, which states that a consistent family of finite-dimensional distri-
butions implies the existence of a random process described or specified by
those distributions. The demonstration of consistency for IID processes is
straightforward and readers are encouraged to convince themselves for the
case of n-dimensional distributions reducing to n− 1 dimensional distribu-
tions.

3.15.3 Gaussian Random Processes

A random process is Gaussian if for all positive integers k and all possible
sample times ti ∈ T ; i = 0, 1, . . . , k−1, the random vectors (Xt0 , Xt1 , . . . , Xtk−1

)
are Gaussian.

In order to describe a Gaussian process and verify the consistency con-
ditions of the Kolmogorov extension theorem, one has to provide the Λ
matrices and m vectors for all of the random vector (Xt0 , Xt1 , . . . , Xtk−1

).
This is accomplished by providing a mean function m(t); t ∈ T and a
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covariance function Λ(t, s); t, s ∈ T , which then yield all of the required
mean vectors and covariance matrices by sampling, that is, the mean vector
for (Xt0 , Xt1 , . . . , Xtk−1

) is (m(t0),m(t1), . . . ,m(tk−1)) and the covariance
matrix is Λ = {Λ(tl, tj); l, j ∈ Zk}.

That this family of density functions are in fact consistent is much
more difficult to verify than was the case for iid processes, but it requires
straightforward brute force in calculus rather than any deep mathematical
ideas to to do so.

The Gaussian random process in both discrete and continuous time is
virtually ubiquitous in the analysis of random systems. This is both because
the model is good for a wide variety of physical phenomena and because it
is extremely tractable for analysis.

3.16 Discrete Time Markov Processes

An iid process is often referred to as a memoryless process because of the
independence among the samples. Such a process is both one of the simplest
random processes and one of the most random. It is simple because the
joint pmf’s are easily found as products of marginals. It is “most random”
because knowing the past (or future) outputs does not help improve the
probabilities describing the current output. It is natural to seek straight-
forward means of describing more complicated processes with memory and
to analyze the properties of processes resulting from operations on iid pro-
cesses. A general approach towards modeling processes with memory is to
filter memoryless processes, to perform an operation (a form of signal pro-
cessing) on an input process which produces an output process that is not
iid. In this section we explore several examples of such a construction, all of
which provide examples of the use of conditional distributions for describing
and investigating random processes. All of the processes considered in this
section will prove to be examples of Markov processes, a class of random
processes possessing a specific form of dependence among current and past
samples.

3.16.1 A Binary Markov Process

Suppose that {Xn; n = 0, 1, . . . } is a Bernoulli process with

pXn(x) =

{
p x = 1

1− p x = 0,
(3.127)

where p ∈ (0, 1) is a fixed parameter. Since the pmf does not depend on n,
the subscript is dropped and the pmf abbreviated to pX . The pmf can also
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be written as

pX(x) = px(1− p)1−x; x = 0, 1. (3.128)

Since the process is assumed to be iid,

pXn(xn) =

n−1∏

i=0

pX(xi) = pw(x
n)(1− p)n−w(x

n), (3.129)

where w(xn) is the number of nonzero xi in xn, the Hamming weight of the
binary vector xn.

We consider using {Xn} as the input to a device which produces an
output binary process {Yn}. The device can be viewed as a signal processor
or as a linear filter. Since the process is binary, the most natural “linear”
operations are those in the binary alphabet using modulo 2 arithmetic
as defined in (3.65-3.66). Consider the new random process {Yn; n =
0, 1, 2, . . . } defined by

Yn =

{
Y0 n = 0

Xn ⊕ Yn−1 n = 1, 2, . . . ,
(3.130)

where Y0 is a binary equiprobable random variable (pY0(0) = pY0(1) = 0.5)
assumed to be independent of all of the Xn. This is an example of a linear
(modulo 2) recursion or difference equation. The process can also be defined
for n = 1, 2, . . . by

Yn =

{
1 if Xn 
= Yn−1
0 if Xn = Yn−1

This process is called a binary autoregressive process.

It should be apparent that Yn has quite different properties from Xn.
In particular, it depends strongly on past values. Since p < 1/2, Yn is
more likely to equal Yn−1 than it is to differ. If p is small, for example,
Yn is likely to have long runs of 0’s and 1’s. {Yn} is indeed a random
process because it has been defined as a sequence of random variables on a
common experiment, the outputs of the {Xn} process and an independent
selection of Y0. Thus all of its joint pmf’s pY n(yn) = Pr(Y n = yn) should
be derivable from the inverse image formula. We proceed to solve this
derived distribution and then to interpret the result.

Using the inverse image formula in the general sense, which involves
finding a probability of an event involving Y n in terms of the probability
of an event involving Xn (and, in this case, the initial valueY0), yields the
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following sequence of steps:

pY n(yn) = Pr(Y n = yn)

= Pr(Y0 = y0, Y1 = y1, Y2 = y2, . . . , Yn−1 = yn−1)

= Pr(Y0 = y0, X1 ⊕ Y0 = y1, X2 ⊕ Y1 = y2, . . . , Xn−1 ⊕ Yn−2 = yn−1)

= Pr(Y0 = y0, X1 ⊕ y0 = y1, X2 ⊕ y1 = y2, . . . , Xn−1 ⊕ yn−2 = yn−1)

= Pr(Y0 = y0, X1 = y1 ⊕ y0, X2 = y2 ⊕ y1, . . . , Xn−1 = yn−1 ⊕ yn−2)

= pY0,X1,X2,X3,... ,Xn−1
(y0, y1 ⊕ y0, y2 ⊕ y1, . . . , yn−1 ⊕ yn−2)

= pY0(y0)

n−1∏

i=1

pX(yi ⊕ yi−1). (3.131)

The derivation used the fact that a ⊕ b = c if and only if a = b ⊕ c and
the independence of Y0, X1, X2, . . . , Xn−1 and the fact that the Xn are
iid. This formula completes the first goal, except possibly plugging in the
specific forms of pY0 and pX to get

pY n(yn) =
1

2

n−1∏

i=1

pyi⊕yi−1(1− p)1−yi⊕yi−1 . (3.132)

The marginal pmf’s for Yn can be evaluated by summing out the joints,
e.g.,

pY1(y1) =
∑

y0

pY0,Y1(y0, y1)

=
1

2

∑

y0

py1⊕y0(1− p)1−y1⊕y0

=
1

2
; y1 = 0, 1.

In a similar fashion it can be shown that the marginals for Yn are all the
same:

pYn(y) =
1

2
; y = 0, 1; n = 0, 1, 2, . . . , (3.133)

and hence as with Xn the pmf can be abbreviated as pY , dropping the
subscript.

Observe in particular that unlike the iid {Xn} process,

pY n(yn) 
=
n−1∏

i=0

pY (yi) (3.134)
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and hence {Yn} is not an iid process and the joint pmf cannot be written
as a product of the marginals. Nonetheless, the joint pmf can be written as
a product of simple terms, as has been done in (3.132). From the definition
of conditional probability and (3.131)

pYl|Y0,Y1,... ,Yl−1
(yl|y0, y1, . . . , yl−1) =

pY l+1(yl+1)

pY l(yl)
= pX(yl ⊕ yl−1)

(3.135)

and (3.131) is then recognizable as the chain rule (3.51) for the joint pmf
pY n(yn).

Note that the conditional probability of the current output Yl given the
values for the entire past Yi; i = 0, 1, . . . , l − 1 depend only on the most
recent past output Yl−1! This property can be summarized nicely by also
deriving the conditional pmf

pYl|Yl−1
(yl|yl−1) =

pYl−1,Yl
(yl, yl−1)

pYl−1
(yl−1)

, (3.136)

which with a little effort resembling the previous derivation can be evaluated
as pyi⊕yi−1(1−p)1−yi⊕yi−1 . Thus for the {Yn} process has the property that

pYi|Y0,Y1,... ,Yi−1
(yi|y0, y1, . . . , yi−1) = pYi|Yi−1

(yi|yi−1). (3.137)

A discrete time random process with this property is called a Markov pro-
cess or Markov chain. Such processes are among the most studied random
processes with memory.

3.16.2 The Binomial Counting Process

We next turn to a filtering of a Bernoulli process that is linear in the
ordinary sense of real numbers. Now the input processess will be binary,
but the output process will have the nonnegative integers as an alphabet.
Simply speaking, the output process will be formed by counting the number
of heads in a sequence of coin flips.

Let {Xn} be iid binary random process with marginal pmf pX(1) = p =
1− pX(0). Define a new one-sided random process {Yn;n = 0, 1, . . . } by

Yn =

{
Y0 = 0 n = 0
∑n
k=1Xk = Yn−1 +Xn n = 1, 2, . . .

(3.138)

For n ≥ 1 this process can be viewed as the output of a discrete time time-
invariant linear filter with Kronecker delta response hk given by hk = 1
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for k ≥ 0 and hk = 0 otherwise. From (3.138), each random variable Yn
provides a count of the number of 1’s appearing in the Xn process through
time n. Because of this counting structure we have that either

Yn = Yn−1 or Yn = Yn−1 + 1 ; n = 2, 3, . . . . (3.139)

In general, a discrete time process that satisfies (3.139) is called a counting
process since it is nondecreasing, and when it jumps, it is always with an
increment of 1. (A continuous alphabet counting process is similarly defined
as a process with a nondecreasing output which increases in steps of 1.)

To completely describe this process it suffices to have a formula for the
joint pmf’s

pY1,... ,Yn(y1, . . . , yn) = pY1(y1)

n∏

l=1

pYl|Y1,... ,Yl−1
(yl|y1, . . . , yl−1), (3.140)

since arbitrary joint distributions can be found from such joint distribu-
tions of contiguous samples by summing out the unwanted dummy vari-
ables. When we have constructed one process {Yn} from an existing process
{Xn}, we need not worry about consistency since we have defined the new
process on an underlying probability space (the output space of the original
process), and hence the joint distributions must be consistent if they are
correctly computed from the underlying probability measure — the process
distribution for the iid process.

Since Yn is formed by summing n Bernoulli random variables, the pmf
for Yn follows immediately from (3.113), it is the binomial pmf and hence
the process is referred to as the binomial counting process.

The joint probabilities could be computed using the vector inverse image
formula as with the binary Markov source, but instead we focus on the
conditional distributions and compute them directly. The same approach
could have been used for the binary Markov example.

To compute the conditional pmf’s involves describing probabilistically
the next output Yn of the process if we are given the previous n−1 outputs
Y1, . . . , Yn−1. For the binomial counting process, the next output is formed
simply by adding a binary random variable to the old sum. Thus all of the
conditional probability mass is concentrated on two values — the last value
and the last value plus 1. The conditional pmf’s can therefore be expressed
as

pYn|Yn−1,... ,Y1
(yn|yn−1, . . . , y1)

= Pr(Yn = yn|Yl = yl; l = 1, . . . , yn−1))

= Pr(Xn = yn − yn−1|Yl = yl; l = 1, . . . , yn−1)) (3.141)

= Pr(Xn = yn − yn−1|X1 = y1, Xi = yi − yi−1; i = 2, 3, . . . , n− 1),
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since from the definition of the Yn process the conditioning event {Yi =
yi; i = 1, 2, . . . , n−1} is identical to the event {X1 = y1, Xi = yi−yi−1; i =
2, 3, . . . , n− 1} and, given this event, the event Yn = yn is identical to the
event Xn = yn − yn−1. In words, the Yn will assume the given values if
and only if the Xn assume the corresponding differences since the Yn are
defined as the sum of the Xn. Now, however, the probability is entirely in
terms of the given Xi variables, in particular,

pYn|Yn−1,... ,Y1
(yn|yn−1, . . . , y1) = (3.142)

pXn|Xn−1,... ,X2,X1
(yn − yn−1|yn−1 − yn−2, . . . , y2 − y1, y1) .

So far the development is valid for any process and has not used the fact
that the {Xn} are iid If the {Xn} are iid, then the conditional pmf’s are
simply the marginal pmf’s since each Xn is independent of past Xk; k < n!
Thus we have that

pYn|Yn−1,... ,Y1
(yn|yn−1, . . . , y1) = pX(yn − yn−1) . (3.143)

and hence from the chain rule the vector pmf is (defining y0 = 0)

pY1,... ,Yn(y1, . . . , yn) =

n∏

i=1

pX(yi − yi−1) , (3.144)

providing the desired specification.
To apply this formula to the special case of the binomial counting pro-

cess, we need only plug in the binary pmf for pXto obtain the desired
specification of the binomial counting process:

pY1,... ,Yn(y1, . . . , yn) =

n∏

i=1

p(yi−yi−1)(1− p)1−(yi−yi−1) ,

where

yi − yi−1 = 0 or 1, i = 1, 2, . . . , n ; y0 = 0 . (3.145)

A similar derivation could be used to evaluate the conditional pmf for
Yn given only its immediate predecessor as:

pYn|Yn−1
(yn|yn−1) = Pr(Yn = yn|Yn−1 = yn−1)

= Pr(Xn = yn − yn−1|Yn−1 = yn−1) .

The conditioning event, however, depends only on values of Xk for k < n,
and Xn is independent of its past; hence

pYn|Yn−1
(yn|yn−1) = pX(yn − yn−1) . (3.146)
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The same conclusion can be reached by the longer route of using the joint
pmf for Y1, . . . , Yn previously computed to find the joint pmf for Yn and
Yn−1, which in turn can be used to find the conditional pmf. Comparison
with (3.143) reveals that processes formed by summing iid processes (such
as the binomial counting process) have the property that

pYn|Yn−1,... ,Y1
(yn|yn−1, . . . , y1) = pYn|Yn−1

(yn|yn−1) (3.147)

or, equivalently,

Pr(Yn = yn|Yi = yi ; i = 1, . . . , n− 1) = Pr(Yn = yn|Yn−1 = yn−1) ,
(3.148)

that is, they are Markov processes. Roughly speaking, given the most recent
past sample (or the current sample), the remainder of the past does not
affect the probability of what happens next. Alternatively stated, given the
present, the future is independent of the past.

3.16.3 ⋆Discrete Random Walk

As a second example of the preceding development, consider the random
walk defined as in (3.138), i.e., by

Yn =

{
0 n = 0
∑n
k=1Xk n = 1, 2, . . . ,

(3.149)

where the iid process used has alphabet {1,−1} and Pr(Xn = −1) = p.
This is another example of an autoregressive process since it can be written
in the form of a regression

Yn = Yn−1 +Xn, n = 1, 2, . . . (3.150)

One can think of Yn as modeling a drunk on a path who flips a coin at each
minute to decide whether to take one step forward or one step backward.
In this case the transform of the iid random variables is

MX(ju) = (1− p)eju + pe−ju ,

and hence using the binomial theorem of algebra we have that

MYn(ju) = ((1− p)eju + pe−ju)n

=

n∑

k=0

[(
n
k

)
(1− p)n−kpk

]
eju(n−2k)

=
∑

k=−n,−n+2,... ,n−2,n

[(
n

n− k

2

)
(1− p)(n+k)/2p(n−k)/2

]
ejuk .
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Comparison of this formula with the definition of the characteristic func-
tion reveals that the pmf for Yn is given by

pYn(k) =

(
n

n− k

2

)
(1−p)(n+k)/2p(n−k)/2 , k = −n,−n+2, . . . , n−2, n .

Note that Yn must be even or odd depending on whether n is even or odd.
This follows from the nature of the increments.

3.16.4 The Discrete Time Wiener Process

Again consider a process formed by summing an iid process as in (3.138).
This time, however, let {Xn} be an iid process with zero-mean Gaussian
marginal pdf’s and variance σ2. Then the process {Yn} defined by (3.138)
is called the discrete time Wiener process. The discrete time continuous
alphabet case of summing iid random variables is handled in virtually the
same manner is the discrete time case, with conditional pdf’s replacing
conditional pmf’s.

The marginal pdf for Yn is given immediately by (3.124) as N(0, nσ2X).

To find the joint pdf’s we evaluate the pdf chain rule of (3.63):

fY1,... ,Yn(y1, . . . , yn) =

k−1∏

l=1

fYl|Y1,... ,Yl−1
(yl|y1, . . . , yl−1). (3.151)

To find the conditional pdf fYn|Y1,... ,Yn−1
(yn|y1, . . . , yn−1) we compute the

conditional cdf P (Yn ≤ yn|Yn−i = yn−i; i = 1, 2, . . . , n − 1). Analogous to
the discrete case, we have from the representation of (3.138) and the fact
that the Xn are iid that

P (Yn ≤ yn|Yn−i = yn−i; i = 1, 2, . . . , n− 1)

= P (Xn ≤ yn − yn−1|Yn−i = yn−i; i = 1, 2, . . . , n− 1)

= P (Xn ≤ yn − yn−1)

= FX(yn − yn−1), (3.152)

and hence differentiating the conditional cdf to obtain the conditional pdf
yields

fYn|Y1,... ,Yn−1
(yn|y1, . . . , yn−1) =

d

dyn
FX(yn − yn−1) = fX(yn − yn−1),

(3.153)
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the continuous analog of (3.143). Application of the pdf chain rule then
yields the continuous analog to (3.144):

fY1,... ,Yn(y1, . . . , yn−1) =
n∏

i=1

fX(yi − yi−1) . (3.154)

Finally suppose that fX is Gaussian with zero mean and variance σ2. Then
this becomes

fY n(yn) =
e−

y2
1

2σ2

√
2πσ2

n∏

i=2

e−
(yi−yi−1)2

2σ2

√
2πσ2

= (2πσ2)−
n
2 e−

1
2σ2 (

∑n
i=2(yi−yi−1)

2+y21). (3.155)

This proves to be a Gaussian pdf with mean vector 0 and a covariance
matrix with entries KX(m,n) = σ2min(m,n), m,n = 1, 2, . . . . (Readers
are invited to test their matrix manipulation skills and verify this claim.)

As in the discrete alphabet case, a similar argument implies that

fYn|Yn−1
(yn|yn−1) = fX(yn − yn−1)

and hence from (3.153) that

fYn|Y1,... ,Yn−1
(yn|y1, . . . , yn−1) = fYn|Yn−1

(yn|yn−1). (3.156)

As in the discrete alphabet case, a process with this property is called a
Markov process. We can combine the discrete alphabet and continuous
alphabet definitions into a common definition: A discrete time random
process {Yn} is said to be a Markov process if the conditional cdf’s satisfy
the relation

Pr(Yn ≤ yn|Yn−i = yn−i; i = 1, 2, . . . ) = Pr(Yn ≤ yn|Yn−1 = yn−1)
(3.157)

for all yn−1, yn−2, . . . . More specifically, {Yn} is frequently called a first-
order Markov process because it depends on only the most recent past
value. An extended definition to nth order Markov processes can be made
in the obvious fashion.

3.16.5 Hidden Markov Models

A popular random process model that has proved extremely important
in the development of modern speech recognition is formed by adding an
iid process to a Markov process, so that the underlying Markov process
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is “hidden.” Suppose for example that {Xn} is a Markov process with
either discrete or continuous alphabet and that {Wn} is an iid process,
for example an iid Gaussian process. Then the resulting process Yn =
Xn + Wn is an example of a hidden Markov model or, in the language
of early information theory, a Markov source. A wide literature exists
for estimating the parameters of the underlying Markov source when only
the sum process Yn is actually observed. A hidden Markov model can
be equivalently considered as viewing a Markov process through a noisy
channel with iid Gaussian noise.

3.17 ⋆Nonelementary Conditional Probabil-
ity

Perhaps the most important form for conditional probabilities is the basic
form of Pr(Y ∈ F |X = x), a probability measure on a random variable Y
given the event that another random variable X takes on a specific value x.
We consider a general event Y ∈ F and not simply Y = y since the latter
is usually useless in the continuous case. In general, either or both Y or X
might be random vectors.

In the elementary discrete case, such conditional probabilities are easily
constructed in terms of conditional pmf’s using (3.47): conditional prob-
ability is found by summing conditional probability mass over the event,
just as is done in the unconditional case. We have proposed an analogous
approach to continuous probability, but this does not lead to a useful gen-
eral theory. For example, it assumes that the various pdf’s all exist and are
well behaved. As a first step towards a better general definition (which will
reduce in practice to the constructive pdf definition when it makes sense),
we derive a variation of (3.47). Multiply both sides of (3.47) by pX(x) and
sum over an X-event G to obtain

∑

x∈G
P (Y ∈ F |X = x)pX(x) =

∑

x∈G

∑

y∈F
pY |X(y|x)pX(x)

=
∑

x∈G

∑

y∈F
pX,Y (x, y)

= P (X ∈ G,Y ∈ F )

= PX,Y (G× F ); all events G.(3.158)

This formula in a sense discribes the essence of the conditional probability
by saying what it does: For any X event G, summing the product of the
conditional probability that Y ∈ F and the marginal probability thatX = x
over all x ∈ G yields the joint probability that X ∈ G and Y ∈ F . If our
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tentative definition of nonelementary conditional probability is to be useful,
in must play a similar role in the continuous case, that is, we should be able
to average over conditional probabilities to find ordinary joint probabilities,
where now averages are integrals instead of sums. This indeed works since

∫

x∈G
dxP (Y ∈ F |X = x)fX(x) =

∫

x∈G
dx

∫

y∈F
dyfY |X(y|x)fX(x)

=

∫

x∈G
dx

∫

y∈F
dyfX,Y (x, y)

= P (X ∈ G,Y ∈ F )

= PX,Y (G× F ); all events G.(3.159)

Thus the tentative definition of nonelementary conditional probability of
(3.53) behaves in the manner that one would like. Using the Stieltjes no-
tation we can combine (3.158) and (3.159) into a single requirement:

∫

G

P (Y ∈ F |X = x) dFX(x) = P (X ∈ G,Y ∈ F )

= PX,Y (G× F ); all events G,(3.160)

which is valid in both the discrete case and in the continuous case when
one has a conditional pdf. In advanced probability, (3.160) is taken as the
definition for the general (nonelementary) conditional probability P (Y ∈
F |X = x); that is, the conditional probability is defined as any function
of x that satisfies (3.160). This is a descriptive definition which defines an
object by its behavior when integrated, much like the rigorous definition of
a Dirac delta function is by its behavior inside an integral. This reduces to
the given constructive definitions of (3.47) in the discrete case and (3.53)
in the continuous case with a well behaved pdf. It also leads to a useful
general theory even when the conditional pdf is not well defined.

Lastly, we observe that elementary and nonelementary conditional prob-
abilities are related in the natural way. Suppose that G is an event with
nonzero probability so that the elementary conditional probability P (Y ∈
F |X ∈ G) is well defined. Then

P (Y ∈ F |X ∈ G) =
PX,Y (G× F )

PX(G)

=
1

PX(G)

∫
P (Y ∈ F |X = x) dFX(x). (3.161)
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3.18 Problems

1. Given the probability space (ℜ,B(ℜ)),m), where m is the probability
measure induced by the uniform pdf f on [0, 1] (that is, f(r) = 1 for
r ∈ [0, 1] and is 0 otherwise), find the pdf’s for the following random
variables defined on this space:

(a) X(r) = |r|2 ,

(b) Y (r) = r1/2 ,

(c) Z(r) = ln |r| ,
(d) V (r) = ar + b , where a and b are fixed constants.

(e) Find the pmf for the random variable W (r) = 3 if r ≥ 2 and
W (r) = 1 otherwise.

2. Do problem 3.1 for an exponential pdf on the original sample space.

3. Do problem 3.1(a)-(d) for a Gaussian pdf on the original sample space.

4. A random variable X has a uniform pdf on [0, 1]. What is the prob-
ability density function for the volume of a cube with sides of length
X?

5. A random variable X has a cumulative distribution function FX(α).
What is the cdf of the random variable Y = aX + b, where a and b
are constants?

6. Use the properties of probability measures to prove the following facts
about cdf’s: If F is the cdf of a random variable, then

(a) F (−∞) = 0 and F (∞) = 1.

(b) F (r) is a monotonically nondecreasing function, that is, if x ≥ y,
then F (x) ≥ F (y).

(c) F is continuous from the right, that is, if ǫn, n = 1, 2, ... is a
sequence of positive numbers decreasing to zero, then

lim
n−∞

F (r + ǫn) = F (r) .

Note that continuity from the right is a result of the fact that we
defined a cdf as the probability of an event of the form (−∞, r].
If instead we had defined it as the probability of an event of the
form (−∞, r) (as is often done in Eastern Europe), then cdf’s
would be continuous from the left instead of from the right.
When is a cdf continuous from the left? When is it discontinu-
ous?
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7. Say we are given an arbitrary cdf F for a random variable and we
would like to simulate an experiment by generating one of these ran-
dom variables as input to the experiment. As is typical of computer
simulations, all we have available is a uniformly distributed random
variable U ; that is, U has the pdf of 3.1. This problem explores a
means of generating the desired random variable from U (this method
is occasionally used in computer simulations). Given the cdf F , de-
fine the inverse cdf F−1(r) as the smallest value of x ∈ ℜ for which
F (x) ≥ r. We specify “smallest” to ensure a unique definition since
F may have the same value for an interval of x. Find the cdf of the
random variable Y defined by Y = F−1(U).

This problem shows how to generate a random variable with an arbi-
trary distribution from a uniformly distributed random variable using
an inverse cdf. Suppose next that X is a random variable with cdf
FX(α). What is the distribution of the random variable Y = FX(X)?
This mapping is used on individual picture elements (pixels) in an
image enhancement technique known as “histogram equalization” to
enhance contrast.

8. You are given a random variable U described by a pdf that is 1 on
[0, 1]. Describe and make a labeled sketch of a function g such that
the random variable Y = g(U) has a pdf λe−λx; x ≥ 0.

9. A probability space (Ω,F , P ) models the outcome of rolling two fair
four-sided dice on a glass table and reading their down faces. Hence
we can take Ω = {1, 2, 3, 4}2, the usual event space (the power set
or, equivalently, the Borel field), and a pmf placing equal probability
on all 16 points in the space. On this space we define the following
random variables: W (ω) = the down face on die #1; that is, if ω =
(ω1, ω2), where ωi denotes the down face on die # i, then W (ω =
ω1. (We could use the sampling function notation here: W =

∏
1.)

Similarly, define V (ω) = ω2, the down face on the second die. Define
also X(ω) = ω1 + ω2, the sum of the down faces, and Y (ω) = ω2ω2,
the product of the down faces. Find the pmf and cdf for the random
variables X,Y,W , and V . Find the pmf’s for the random vectors
(X,Y ) and (W,V ). Write a formula for the distribution of the random
vector (W,V ) in terms of its pmf.

Suppose that a greedy scientist has rigged the dice using magnets to
ensure that the two dice always yield the same value; that is, we now
have a new pmf on Ω that assigns equal values to all points where
the faces are the same and zero to the remaining points. Repeat the
calculations for this case.
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10. Consider the two-dimensional probability space (ℜ2,B(ℜ)2, P ), where
P is the probability measure induced by the pdf g, which is equal to
a constant c in the square {(x, y) : x ∈ [−1/2, 1/2], y ∈ [−1/2, 1/2]}
and zero elsewhere.

(a) Find the constant c.

(b) Find P ({x, y : x < y}).
(c) Define the random variable U : ℜ2 → ℜ by U(x, y) = x + y.

Find an expression for the cdf FU (u) = Pr(U ≤ u).

(d) Define the random variable V : ℜ2 → ℜ by V (x, y) = xy. Find
the cdf FV (ν).

(e) Define the random variableW : ℜ2 → ℜ byW (x, y) = max(x, y),
that is, the larger of the two coordinate values. Thus max(x, y) =
x if x ≥ y. Find the cdf FW (w).

11. Suppose that X and Y are two random variables described by a pdf

fX,Y (x, y) = Ce−x
2−y2+xy.

(a) Find C.

(b) Find the marginal pdf’s fX and fY . Are X and Y independent?
Are they identically distributed?

(c) Define the random variable Z = X − 2Y . Find the joint pdf
fX,Z .

12. Let (X,Y ) be a random vector with distribution PX,Y induced by the
pdf fX,Y (x, y) = fX(x)fY (y), where

fX(x) = fY (x) = λe−λx ; x ≥ 0 ,

that is, (X,Y ) is described by a product pdf with exponential com-
ponents.

(a) Find the pdf for the random variable U = X + Y .

(b) Let the “max” function be defined as in problem 3.10 and de-
fine the “min” function as the smaller of two values; that is,
min(x, y) = x if x ≤ y. Define the random vector (W,V ) by
W = min(X,Y ) and V = max(X,Y ). Find the pdf for the
random vector (W,V ).

13. Let (X,Y ) be a random vector with distribution PX,Y induced by
a product pdf fX,Y (x, y) = fX(x)fY (y) with fX(x) = fY (y) equal



3.18. PROBLEMS 173

to the Gaussian pdf with m = 0. Consider the random vector as
representing the real and imaginary parts of a complex-valued mea-
surement. It is often useful to consider instead a magnitude-phase
representation vector (R, θ), where R is the magnitude (X2 + Y 2)1/2

and θ = tan−1(Y/X) (use the principal value of the inverse tangent).
Find the joint pdf of the random vector (R, θ. Find the marginal
pdf’s of the random variables R and θ. The pdf of R is called the
Rayleigh pdf. Are R and θ independent?

14. A probability space (Ω,F , P ) is defined as follows: Ω consists of all
8-dimensional binary vectors, e.g., every member of Ω has the form
ω = (ω0, . . . , ωk−1), where ωi is 0 or 1. F is the power set, P is
described by a pmf which assigns a probability of 1/28 to each of the
28 elements in Ω (a uniform pmf).

Find the pmfs describing the following random variables:

(a) g(ω) =
∑k−1
i= ωi, i.e., the number of 1’s in the binary vector.

(b) X(ω) = 1 if there are an even number of 1’s in ω and 0 otherwise.

(c) Y (ω) = ωj , i.e., the value of the jth coordinate of ω.

(d) Z(ω) = maxi(ωi).

(e) V (ω) = g(ω)X(ω), where g and X are as above.

15. Suppose that (X0, X1, . . . , XN ) is a random vector with a product
probability density function with marginal pdf’s

fXn(α) =

{
1 0 ≤ α < 1

0 otherwise.

(The components are iid.) Define the following random variables:

• U = X2
0

• V = max(X1, X2, X3, X4)

•
W =

{
1 if X1 ≥ 2X2

0 otherwise

• A random vector Y = (Y1, . . . , YN ) is defined by

Yn = Xn +Xn−1; n = 1, . . . , N.

(a) Find the pdf or pmf as appropriate for U , V , and W .
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(b) Find the cumulative distribution function (cdf) for Yn.

16. Let f be the uniform pdf f on [0, 1], as in 3.1. Let (X,Y ) be a random
vector described by a joint pdf

fX,Y (x, y) = f(y)f(x− y) all x, y .

(a) Find the marginal densities fX and fY independent?

(b) Find P (X ≥ 1/2|Y ≤ 1/2).

17. In example [3.24] of the binary random process formed by taking the
binary expansion of a uniformly distributed number on [0, 1], find the
pmf for the random variable Xn for a fixed n. Find the pmf for the
random vector (Xn, Xk) for fixed n and k. Consider both the cases
where n = k and where n 
= k. Find the probability Pr(X5 = X12).

18. Let X and Y be two random variables with joint pmf

pXY (k, j) = C
k

j + 1
; j = 1, · · · , N ; k = 1, 2, · · · , j.

(a) Find C.

(b) Find pY (j).

(c) Find pX|Y (k|j). Are X and Y independent?

19. In example [3.27] of the random phase process, find Pr(X(t) ≥ 1/2).

20. Evaluate the pmf pY (t)(y) for the quantized process of example [3.28]
for each possible case. (Choose b = 0 if the process is nonnegative
and b = −a otherwise.)

21. Let ([0, 1],B([0, 1]), P ) be a probability space with pdf f(ω) = 1; ω ∈
[0, 1]. Find a random vector {Xt; t ∈ {1, 2, . . . , n}} such that Pr(Xt =
1) = Pr(Xt = 0) = 1/2 and Pr(Xt = 1 and Xt−1 = 1) = 1/8, for
relevant t.

22. Give an example of two equivalent random variables (that is, two
random variables having the same distribution) that

(a) are defined on the same space but are not equal for any ω ∈ Ω,

(b) are defined on different spaces and have different functional forms.

23. Let (ℜ,B(ℜ),m) be the probability space of example 3.1.
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(a) Define the random process {X(t); t ∈ [0,∞)} by

X(t, ω) =

{
1 if 0 < t ≤ ω
0 otherwise .

Find Pr(X(t) = 1) as a function of t.

(b) Define the random process {X(t); t ∈ [0,∞)} by

X(t, ω) =

{
t/ω if 0 < t ≤ ω
0 otherwise .

Find Pr(X(t) > x) as a function of t for x ∈ (0, 1).

24. Two continuous random variables X and Y are described by the pdf

fX,Y (x, y) =

{
c if |x|+ |y| ≤ r
0 otherwise .

where r is a fixed real constant and c is a constant. In other words,
the pdf is uniform on a square whose side has length

√
2 r.

(a) Evaluate c in terms of r.

(b) Find fX(x).

(c) Are X and Y independent random variables? (Prove your an-
swer.)

(d) Define the random variable Z = (|X|+ |Y |). Find the pdf fZ(z).

25. Find the pdf of X(t) in example [3.23] as a function of time. Find
the joint cdf of the vector (X(1), X(2)).

26. Richard III wishes to trade his kingdom for a horse. He knows that
the probability that there are k horses within r feet of him is

CHk r2ke−Hr
2

k!
; k = 0, 1, 2, · · · ,

where H > 0 is a fixed parameter.

(a) Let R denote a random variable giving the distance from Richard
to the nearest horse. What is the probability density function
fR(α) for R? (C should be evaluated as part of this question.)

(b) Rumors of the imminent arrival of Henry Tudor have led Richard
to lower his standards and consider alternative means of trans-
portation. Suppose that the probability density function fS(β)
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for the distance S to the nearest mule is the same as fR except
that the parameter H is replaced by a parameter M . Assume
that R and S are independent random variables. Find an ex-
pression for the cumulative distribution function (cdf) for W ,
the distance to the nearest quadruped (i.e., horse or mule).

Hint: If you did not complete or do not trust your answer to
part (b), then find the answer in terms of the cdf’s for R and S.

27. Suppose that a random vectorX = (X0, . . . , Xk−1) is iid with marginal
pmf

pXi
(l) = pX(l) =

{
p if l = 1

1− p if l = 0

for all i.

(a) Find the pmf of the random variable Y =
∏k−1
i=0 Xi.

(b) Find the pmf of the random variable W = X0 +Xk−1.

(c) Find the pmf of the random vector (Y,W ).

28. Find the joint cdf of the complex components of Xn(ω) in example
[3.25] as a function of time.− 1/2 ≤ x ≤ 1/2, −1/2 ≤ y ≤ 1/2}

29. Find the pdf of X(t) in example [3.27].

30. A certain communication system outputs a discrete time series {Xn}
where Xn has pmf pX(1) = pX(−1) = 1/2. Transmission noise in
the form of a random process {Yn} is added to Xn to form a random
process {Zn = Xn+Yn}. Yn has a Gaussian distribution with m = 0
and σ = 1.

(a) Find the pdf of Zn.

(b) A receiver forms a random process {Rn = sgn(Zn} where sgn is
the sign function sgn(x) = 1, if x ≥ 0, sgn(x) = −1, if x < 0.
Rn is output from the receiver as the receiver’s estimate of what
was transmitted. Find the pmf of Rn and the probability of
detection (i.e., Pr(Rn = Xn)).

(c) Is this detector optimal?

31. If X is a Gaussian random variable, find the marginal pdf fY (t) and
for the random process Y (t) defined by

Y (t) = X cos(2πf0t) ; t ∈ ℜ ,

where f0 is a known constant frequency.
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32. Let X and Z be the random variables of problems 3.1 through 3.3. For
each assumption on the original density find the cdf for the random
vector (X,Z), FX,Z(x, z). Does the appropriate derivative exist? Is
it a valid pdf?

33. Let N be a random variable giving the number of molecules of hy-
drogen in a spherical region of radium r and volumne V = 4πr3/3.
Assume that N is described by a Poisson pmf

pN (n) =
e−ρV (ρV )n

n!
, n = 0, 1, 2, . . .

where ρ can be viewed as a limiting density of molecules in space.
Say we choose an arbitrary point in deep space as the center of our
coordinate system. Define a random variable X as the distance from
the origin of our coordinate center to the nearest molecule. Find the
pdf of the random variable X, fX(x).

34. Let V be a random variable with a uniform pdf on [0, a]. Let W be
a random variable, independent of V , with an exponential pdf with
parameter λ, that is,

fW (w) = λe−λw ; w ∈ [0,∞) .

Let p(t) be the pulse with value 1 when 0 ≤ t ≤ 1 and 0 otherwise.
Define the random process {X(t); t ∈ [0,∞)} by

X(t) = V p(t−W ) ,

(This is a model of a square pulse that occurs randomly in time with
a random amplitude.) Find for a fixed time t > 1 the cdf FX(t)(α) =
Pr(X(t) ≤ α). You must specify the values of the cdf for all possible
real values α. Show that there exists a pmf p with a corresponding cdf
F1, a pdf f with a corresponding cdf F1, a pdf f with a corresponding
cdf F2, and a number βt ∈ (0, 1) such that

FX(t)(α) = βtF1(α) + (1− βt)F2(α) .

Given expressions for p, f , and Bt.

35. Prove the following facts about characteristic functions:

(a)

|MX(ju)| ≤ 1
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(b)
MX(0) = 1

(c)
|MX(ju)| ≤MX(0) = 1

(d) If a random variable X has a characteristic function MX(ju), if
c is a fixed constant, and if a random variable Y is defined by
Y = X + c, then

MY (ju) = ejucMX(ju) .

36. Suppose that X is a random variable described by an exponential pdf

fX(α) = λe−λα; α ≥ 0.

(λ > 0.) Define a function q which maps nonnegative real numbers
into integers by q(x) = the largest integer less than or equal to x. In
other words

q(x) = k if k ≤ x < k + 1, k = 0, 1, · · · .

(This function is often denoted by q(x) = ⌊x⌋.) The function q is a
form of quantizer, it rounds its input downward to the nearest integer
below the input. Define the following two random variables: the
quantizer output

Y = q(X)

and the quantizer error

ǫ = X − q(X).

Note: By construction ǫ can only take on values in [0, 1).

(a) Find the pmf pY (k) for Y .

(b) Derive the probability density function for ǫ. (You may find
the “divide and conquer” formula useful here, e.g., P (G) =∑
i P (G ∩ Fi), where {Fi} are a partition.)

37. Suppose that (X1, . . . , XN ) is a random vector described by a product
pdf with uniform marginal pdf’s

fXn(α) =

{
1 |α| ≤ 1

2

0 otherwise.

Define the following random variables:
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• U = X2
3

• V = min(X1, X2)

• W = n if n is the smallest integer for which Xn ≥ 1/4} and
W = 0 if there is no such n.

(a) Find pdf’s or pmf’s for U , V , and W .

(b) What is the joint pdf fX1,X3,X5(α, β, γ)?

38. The joint probability density function of X and Y is

fX,Y (α, β) = C, |α| ≤ 1, 0 ≤ β ≤ 1.

Define a new random variable

U =
Y

X2

(U is taken to be 0 if X = 0.)

(a) Find the constant C and the marginal probability density func-
tions fX(α) and fY (β).

(b) Find the probability density function fU (γ) for U .

(c) Suppose that U is quantized into q(U) by defining

q(U) = i for di−1 ≤ U < di; i = 1, 2, 3,

where the interval [d0, d3) equals the range of possible values of
U . Find the quantization levels di, i = 0, 1, 2, 3 such that q(U)
has a uniform probability mass function.

39. Let (X,Y ) be a random vector described by a product pdf fXY (x, y) =
fX(x)fY (y). Let FX and FY denote the corresponding marginal cdf’s.

(a) Prove

P (X > Y ) =

∫ ∞

−∞
FY (x)fX(x) dx = 1−

∫ ∞

−∞
fY (x)FX(x) dx

(b) Assume, in addition, that X and Y are identically distributed,
i.e., have the same pdf. Based on the result of (a) calculate the
probability P (X > Y ). (Hint: You should be able to derive or
check your answer based on symmetry.)
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40. You have 2 coins and a spinning pointer U . The coins are fair and
unbiased, and the pointer U has a uniform distribution over [0, 1).
You flip the both coins and spin the pointer. A random variable X is
defined as follows:

If the first coin is “heads”, then:

X =

{
1 if the 2nd coin is “heads”
0 otherwise

If the first coin is “tails”, then X = U + 2.

Define another random variable:

Y =

{
2U if the 1st coin is “heads”
2U + 1 otherwise

(a) Find FX(x).

(b) Find Pr( 12 ≤ X ≤ 2 12 ).

(c) Sketch the pdf of Y and label important values.

(d) Design an optimal detection rule to estimate U if you are given
only Y . What is the probability of error?

(e) State how to, or explain why it is not possible to:

i. Generate a binary random variable Z, pZ(1) = p, given U?

ii. Generate a continuous, uniformly distributed random vari-
able given Z?

41. The random vectorW = (W0,W1,W2) is described by the pdf fW (x, y, z) =
C|z|, for x2 + y2 ≤ 1, |z| ≤ 1.

(a) Find C.

(b) Determine whether the following variables are independent and
justify your position:

i. W0 and W1

ii. W0 and W2

iii. W1 and W2

iv. W0 and W1 and W2

(c) Find Pr(W2 > 1
3 ).

(d) Find FW0,W2(0, 0).

(e) Find the cdf of the vector W .
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(f) Let V = Π2i=0Wi. Find Pr(V ≥ 0).

(g) Find the pdf of M , where M = min(W 2
1 +W 2

2 ,W
2
3 ).

42. Suppose that X and Y are random variables and that the joint pmf
is

pX,Y (k, j) = c2−k2(j−k); k = 0, 1, 2, · · · ; j = k, k + 1, · · · .

(a) Find c.

(b) Find the pmf’s pX(j) and pY (j).

(c) Find the conditional pmf’s pX|Y (k|j) and pY |X(j|k).
(d) Find the probability that Y ≥ 2X.

43. Suppose that X = (X0, X1, . . . , Xk−1) is a random vector (k is some
large number) with joint pdf

fX(x) =

{
1 if 0 ≤ xi ≤ 1; i = 0, . . . , k − 1

0 else

Define the random variables V = X0 +X10 and W = max(X0, X10).

Define the random vector Y:

Yn = 2nXn; n = 0, . . . , k − 1,

(a) Find the joint pdf fV,W (v, w).

(b) Find the probabilities Pr(W ≤ 1/2), Pr(V ≤ 1/2), and Pr(W ≤
1/2 and V ≤ 1/2).

(c) Are W and V independent?

(d) Find the (joint) pdf for Y.

44. The random process described in example [3.26] is an example of
a class of processes that is currently somewhat of a fad in scientific
circles, it is a chaotic. (See, e.g., Chaos by James Gleick (1987).) Sup-
pose as in Example [3.26] X0(ω) = ω is chosen at random according
to a uniform distribution on [0, 1), that is, the pdf is

fX0
(α) =

{
1 if α ∈ [0, 1)

0 else .

As in the example, the remainder of the process is defined recursively
by

Xn(ω) = 2Xn−1(ω) mod 1, n = 1, 2, · · · .
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Note that if the initial value X0 is known, the remainder of the process
is also known.

Find a nonrecursive expression for Xn(ω), that is, write Xn(ω) di-
rectly as a function of ω, e.g., Xn(ω) = g(ω) mod 1.

Find the pdf fX1(α) and fXn(α).

Hint: after you have found fX1 , try induction.

45. Another random process which resembles that of the previous process
but which is not chaotic is to define X0 in the same way, but define
Xn by

Xn(ω) = (Xn−1(ω) +X0(ω)) mod 1.

Here X1 is equivalent to that of the previous problem, but the sub-
sequent Xn are different. As in the previous problem, find a direct
formula for Xn in terms of ω (e.g., Xn(ω) = h(ω) mod 1) and find
the pdf fXn

(α).

46. The Mongol general Subudai is expecting reinforcements from Cheng-
gis Kahn before attacking King Bela of Hungary. The probability
mass function describing the number N of tumens (units of 10,000
men) that he will receive is

pN (k) = cpk; k = 0, 1, · · · .

If he receives N = k tumens, then his probability of losing the battle
will be 2−k. This can be described by defining the random variable
W which will be 1 if the battle is won, 0 if the battle is lost, and
defining the conditional probability mass function

pW |N (m|k) = Pr(W = m|N = k) =

{
2−k m = 0

1− 2−k m = 1.

(a) Find c.

(b) Find the (unconditional) pmf pW (m), that is, what is the prob-
ability that Subudai will win or lose?

(c) Suppose that Subudai is informed that definitely N < 10. What
is the new (conditional) pmf for N? (That is, find Pr(N =
k|N < 10).)

47. Suppose that {Xn; n = 0, 1, 2, · · · } is a binary Bernoulli process, that
is, an iid process with marginal pmf’s

pXn
(k) =

{
p if k = 1

1− p if k = 0
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for all n. Suppose that {Wn; n = 0, 1, · · · } is another binary Bernoulli
process with parameter ǫ, that is,

pWn(k) =

{
ǫ if k = 1

1− ǫ if k = 0
.

We assume that the two random processes are completely independent
of each other (that is, any collection of samples of Xn is independent
from any collection of Wn). We form a new random process {Yn; n =
0, 1, · · · } by defining

Yn = Xn ⊕Wn,

where the ⊕ operation denotes mod 2 addition. This setup can be
thought of as taking an input digital signal Xn and sending it across
a binary channel to a receiver. The binary channel can cause an
error between the input Xn and output Yn with probability ǫ. Such
a communication channel is called an additive noise channel because
the output is the input plus an independent noise process (where
“plus” here means mod 2).

(a) Find the output marginal pmf pYn(k).

(b) Is {Yn} Bernoulli? That is, is it an iid process?

(c) Find the conditional pmf pYn|Xn
(j|k).

(d) Find the conditional pmf pXn|Yn
(k|j).

(e) Find an expression for the probability of error Pr(Yn 
= Xn).

(f) Suppose that the receiver is allowed to think about what the
best guess for Xn is given it receives a value Yn. In other words,
if you are told that Yn = j, you can form an estimate or guess
of the input Xn by some function of j, say X̂(j). Given this
estimate your new probability of error is given by

Pe = Pr(X̂(Yn) 
= Xn).

What decision rule X̂(j) yields the smallest possible Pe? What
is the resulting Pe?

48. Suppose that we have a pair of random variables (X,Y ) with a mixed
discrete and continuous distribution as follows. Y is a binary {0, 1}
random variable described by a pmf pY (1) = 0.5. Conditioned on
Y = y, X is continuous with a Gaussian distribution with mean σ2

and mean y, that is,

fX|Y (x|y)(x|y) =
1√
2πσ2

e−
1

2σ2 (x−y)2 ; x ∈ ℜ; y = 0, 1 .
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This can be thought of as the result of communicating a binary sym-
bol (a “bit”) over a noisy channel, which adds 0 mean variance σ2

Gaussian noise to the bit. In other words, X = Y +W , where W is a
Gaussian random variable, independent of Y . What is the optimum
(minimum error probability) decision for Y given the observation X?
Write an expression for the resulting error probability.

49. Find the multidimensional Gaussian characteristic function of equa-
tion (3.126) by completing the square in the exponent of the defining
multidimensional integral.
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Chapter 4

Expectation and Averages

4.1 Averages

In engineering practice we are often interested in the average behavior of
measurements on random processes. The goal of this chapter is to link the
two distinct types of averages that are used — long-term time averages
taken by calculations on an actual physical realization of a random process
and averages calculated theoretically by probabilistic averages at some given
instant of time, averages that are sometimes called expectations. As we
shall see, both computations often (but by no means always) give the same
answer. Such results are called laws of large numbers or ergodic theorems.

At first glance from a conceptual point of view, it seems unlikely that
long-term time averages and instantaneous probabilistic averages would be
the same. If we take a long-term time average of a particular realization of
the random process, say {X(t, ω0); t ∈ T }, we are averaging for a particular
ω — an ω which we cannot know or choose; we do not use probability in
any way and we are ignoring what happens with other values of ω. Here
the averages are computed by summing the sequence or integrating the
waveform over t while ω0 stays fixed. If, on the other hand, we take an
instantaneous probabilistic average, say at the time t0, we are taking a
probabilistic average and summing or integrating over ω for the random
variable X(t0, ω). Thus we have two averages, one along the time axis with
ω fixed, the other along the ω axis with time fixed. It seems that there
should be no reason for the answers to agree. Taking a more practical
point of view, however, it seems that the time and probabilistic averages
must be the same in many situations. For example, suppose that you
measure the percentage of time that a particular noise voltage exceeds 10
volts. If you make the measurement over a sufficiently long period of time,

187
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the result should be a reasonably good estimate of the probability that the
noise voltage exceeds 10 volts at any given instant of time — a probabilistic
average value.

To proceed further, for simplicity we concentrate on a discrete alphabet
discrete time random process. Other cases are considered by converting
appropriate sums into integrals. Let {Xn} be an arbitrary discrete alpha-
bet discrete time process. Since the process is random, we cannot predict
accurately its instantaneous or short-term behavior — we can only make
probabilistic statements. Based on experience with coins, dice, and roulette
wheels, however, one expects that the long-term average behavior can be
characterized with more accuracy. For example, if one flips a fair coin, short
sequences of flips are unpredictable. However, if one flips long enough, one
would expect to have an average of about 50% of the flips result in heads.
This is a time average of an instantaneous function of a random process —
a type of counting function that we will consider extensively. It is obvious
that there are many functions that we can average, i.e., the average value,
the average power, etc. We will proceed by defining one particular average,
the sample average value of the random process, which is formulated as

Sn = n−1
n−1∑

i=0

Xi ; n = 1, 2, 3, . . .

We will investigate the behavior of Sn for large n, i.e., for a long-term time
average. Thus, for example, if the random process {Xn} is the coin-flipping
model, the binary process with alphabet {0, 1}, then Sn is the number of 1’s
divided by the total number of flips — the fraction of flips that produced a
1. As noted before, Sn should be close to 50% for large n if the coin is fair.

Note that, as in example [3.7], for each n, Sn is a random variable that
is defined on the same probability space as the random process {Xn}. This
is made explicit by writing the ω dependence:

Sn(ω) =
1

n

n−1∑

k=0

Xk(ω) .

In more direct analogy to example [3.7], we can consider the {Xn} as co-
ordinate functions on a sequence space, say (ℜZ ,B(ℜZ),m), where m is
the distribution of the process, in which case Sn is defined directly on the
sequence space. The form of definition is simply a matter of semantics or
convenience. Observe, however, that in any case {Sn; n = 1, 2, . . . } is itself
a random process since it is an indexed family of random variables defined
on a probability space.
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For the discrete alphabet random process that we are considering, we
can rewrite the sum in another form by grouping together all equal terms:

Sn(ω) =
∑

a∈A
ar(n)a (ω) (4.1)

where A is the range space of the discrete alphabet random variable Xn
and r

(n)
a (ω) = n−1 [number of occurrences of the letter a in {Xi(ω), i =

0, 1, 2, . . . , n−1}]. The random variable r
(n)
a is called the nth−order relative

frequency or of the symbol a. Note that for the binary coin flipping example

we have considered, A = {0, 1}, and Sn(ω) = r
(n)
1 (ω), the average number

of heads in the first n flips. In other words, for the binary coin-flipping
example, the sample average and the relative frequency of heads are the

same quantity. More generally, the reader should note that r
(n)
n can always

be written as the sample average of the indicator function for a, 1a(x):

r(n)a = n−1
n−1∑

i=0

1a(Xi) ,

where

1a(x) =

{
1 if x = a

0 otherwise.

Note that 1{a} is a more precise, but more clumsy, notation for the indicator
function of the singleton set {a}. We shall use the shorter form here.

Let us now assume that all of the marginal pmf’s of the given process are
the same, say pX(x), x ∈ A. Based on intuition and gambling experience,
one might suspect that as n goes to infinity, the relative frequency of a
symbol a should go to its probability of occurrence, pX(a). To continue the
example of binary coin flipping, the relative frequency of heads in n tosses
of a fair coin should tend to 1/2 as n → ∞. If these statements are true,
that is, if in some sense,

r(n)a →
n→∞

pX(a) , (4.2)

then it follows that in a similar sense

Sn →
n→∞

∑

a∈A
apX(a) , (4.3)

the same expression as (4.1) with the relative frequency replaced by the
pmf. The formula on the right is an example of an expectation of a random
variable, a weighted average with respect to a probability measure. The
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formula should be recognized as a special case of the definition of expecta-
tion of (2.34), where the pmf is pX and g(x) = x, the identity function. The
previous plausibility argument motivates studying such weighted averages
because they will characterize the limiting behavior of time averages in the
same way that probabilities characterize the limiting behavior of relative
frequencies.

Limiting statements of the form of (4.2) and (4.3) are called laws of
large numbers or ergodic theorems. They relate long-run sample averages
or time average behavior to probabilistic calculations made at any given
instant of time. It is obvious that such laws or theorems do not always
hold. If the coin we are flipping wears in a known fashion with time so that
the probability of a head changes, then one could hardly expect that the
relative frequency of heads would equal the probability of heads at time
zero.

In order to make precise statements and to develop conditions under
which the laws of theorems do hold, we first need to develop the properties
of the quantity on the right-hand side of (4.2) and (4.3). In particular, we
cannot at this point make any sense out of a statement like “limn→∞ Sn =∑

a∈A
apX(a),” since we have no definition for such a limit of random variables

or functions of random variables. It is obvious, however, that the usual
definition of a limit used in calculus will not do, because Sn is a random
variable albeit a random variable whose “randomness” decreases in some
sense with increasing n. Thus the limit must be defined in some fashion
that involves probability. Such limits are deferred to a later section and we
begin by looking at the definitions and calculus of expectations.

4.2 Expectation

Given a discrete alphabet random variable X specified by a pmf pX , define
the expected value, probabilistic average, or mean of X by

E(X) =
∑

x∈A
apX(x) . (4.4)

The expectation is also denoted by EX or E[X] or by an overbar, as
X. The expectation is also sometimes called an ensemble average to denote
averaging across the ensemble of sequences that is generated for different
values of ω at a given instant of time.

The astute reader might note that we have really provided two defi-
nitions of the expectation of X. The definition of (4.4) has already been
noted to be a special case of (2.34) with pmf pX and function g(x) = x.
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Alternatively, we could use (2.34) in a more fundamental form and con-
sider g(ω) = X(ω) is a function defined on an underlying probability space
described by a pmf p or a pdf f , in which case (2.34) or (2.57) provide a dif-
ferent formula for finding the expection in terms of the original probability
function:

E(X) =
∑

X(ω)p(ω) (4.5)

if the original space is discrete, or

E(X) =

∫
X(r)f(r) dr (4.6)

if it is described by a pdf. Are these two versions consistent? The answer
is yes, as will be proved soon by the fundamental theorem of expectation.
The equivalence of these forms is essentially a change of variables formula.

The mean of a random variable is a weighted average of the possible
values of the random variable with the pmf used as a weighting. Before
continuing, observe that we can define an analogous quantity for a continu-
ous random variable possessing a pdf: If the random variable X is described
by a pdf fX , then we define the expectation of X by

EX =

∫
xfX(x) dx , (4.7)

where we have replaced the sum by an integral. Analogous to the discrete
case, this formula is a special case of (2.57) with pdf f = fX and g being
the identity function. We can also use (2.57) to express the expectation in
terms of an underlying pdf, say f , with g = X by the formula

EX =

∫
X(r)f(x) dr . (4.8)

The equivalence of these two formulas will be considered when the funda-
mental theorem of expectation is treated.

While the integral does not have the intuitive motivation involving a
relative frequency converging to a pmf that the earlier sum did, we shall
see that it plays the analogous role in the laws of large numbers. Roughly
speaking, this is because continuous random variables can be approximated
by discrete random variables arbitrarily closely by very fine quantization.
Through this procedure, the integrals with pdfs are approximated by sums
with pmf’s and the discrete alphabet results imply the continuous alphabet
results by taking appropriate limits. Because of the direct analogy, we
shall develop the properties of expectations for continuous random variables
along with those for discrete alphabet random variables. Note in passing
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that, analogous to using the Stieltjes integral as a unified notation for sums
and integrals when computing probabilities, the same thing can be done
for expectations. If FX is the cdf of a random variable X, define

EX =

∫
x dFX(x) =






∑
xpX(x) if X is discrete∫

xfX(x) dx if X has a pdf.

In a similar manner, we can define the expectation of a mixture random
variable having both continuous and discrete parts in a manner analogous
to (3.36).

4.2.1 Examples: Expectation

The following examples provide some typical expectation computations.

[4.1] As a slight generalization of the fair coin flip, consider the more gen-
eral binary pmf with parameter p; that is, pX(1) = p and pX(0) =
1− p. In this case

EX =
1∑

i=0

xpX(x) = 0(1− p) + 1p = p .

It is interesting to note that in this example, as is generally true for
discrete random variables, EX is not necessarily in the alphabet of
the random variable, i.e., EX 
= 0 or 1 unless p = 0 or 1.

[4.2] A more complicated discrete example is a geometric random variable.
In this case

EX =
∞∑

k=1

kpX(k) =

∞∑

k=1

kp(1− p)k−1 ,

a sum evaluated in (2.48) as 1/p.

[4.3] As an example of a continuous random variable, assume that X is a
uniform random variable on [0, 1], that is, that its density is one on
[0, 1]. Here

EX =

∫ 1

0

xfX(x) dx =

∫ 1

0

x dx = 1/2 ,

an integral evaluated in (2.67).
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[4.4] If X is an exponentially distributed random variable with parameter
λ, then from (2.71)

∫ ∞

0

rλe−λr dr =
1

λ
. (4.9)

In some case expectations can be found virtually by inspection. For
example, if X has an even pdf fX — that is, if fX(−x) = fX(x) for all
x ∈ ℜ— then if the integral exists, EX = 0, since xfX(x) is an odd function
and hence has a zero integral. The assumption that the integral exists
is necessary because not all even functions are integrable. For example,
suppose that we have a pdf fX(x) = c/x2 for all |x| ≥ 1, where c is a
normalization constant. Then it is not true that EX is zero, even though
the pdf is even, because the Riemann integral

∫

x: |x|≥1

x

x2
dx

does not exist. (The puzzled reader should review the definition of indefinite
integrals. Their existence requires that the limit

lim
T→∞

lim
S→∞

∫ S

−T
xfX(x) dx

exists regardless of how T and S tend to infinity; in particular, the existence
for the limit with the constraint T = S is not sufficient for the existence of
the integral. These limits do not exist for the given example because 1/x
is not integrable on [1,∞).) Nonetheless, it is convenient to set EX to 0
in this example because of the obvious intuitive interpretation.

Sometimes the pdf is an even function about some nonzero value, that
is, fX(x + m) = fX(x − m), where m is some constant. In this case,
it is easily seen that if if the expectation exists, then EX = m, as the
reader can quickly verify by a change of variable in the integral defining
the expectation. The most important example of this is the Gaussian pdf,
which is even about the constant m.

The same conclusions also obviously hold for an even pmf.
sectionExpectations of Functions of Random Variables In addition to

the expectation of a given random variable, we will often be interested in
the expectations of other random variables formed as functions of the given
one. In the beginning of the chapter we introduced the relative frequency

function, r
(n)
a , which counts the relative number of occurrences of the value

a in a sequence of n terms. We are interested in its expected value and in the
expected value of the indicator function that appears in the expression for
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r
(n)
a . More generally, given a random variable X and a function g : ℜ → ℜ,
we might wish to find the expectation of the random variable Y = g(X).
If X corresponds to a voltage measurement and g is a simple squaring
operation, g(X) = X2, then g(X) provides the instantaneous energy across
a unit resistor. Its expected value, then, represents the probabilistic average
energy. More generally than the square of a random variable, the moments
of a random variable X are defined by E[Xk] for k = 1, 2, . . . . The mean is
the first moment, the square is the second moment, and so on. Moments are
often useful as general parameters of a distribution, providing information
on its shape without requiring the complete pdf or pmf. Some distributions
are completely characterized by a few moments. It is often useful to consider
moments of a “centralized” random variable formed by removing its mean.
The kth centralized moment is defined by E[(X − E(X))k]. Of particular

interest is the second centralized moment or variance σ2
∆
= E[(X−E(X))2].

Other functions that are of interest are indicator functions of a set, 1F (x) =
1 if x ∈ F and 0 otherwise, so that 1F (X) is a binary random variable
indicating whether or not the value of X lies in F , and complex exponentials
ejuX .

Expectations of functions of random variables were defined in this chap-
ter in terms of the derived distribution for the new random variable. In
chapter 2, however, they were defined in terms of the original pmf or pdf in
the underlying probability space, a formula not requiring that the new dis-
tribution be derived. We next show that the two formulas are consistent.
First consider finding the expectation of Y by using derived distribution
techniques to find the probability function for Y and then use the defini-
tion of expectation to evaluate EY . Specifically, if X is discrete, the pmf
for Y is found as before as

pY (y) =
∑

x: g(x)=y

pX(x), y ∈ AY .

EY is then found as
EY =

∑

AY

ypY (y) .

Although it is straightforward to find the probability function for Y , it
can be a nuisance if it is being found only as a step in the evaluation of
the expectation EY = Eg(X). A second and easier method of finding
EY is normally used. Looking at the formula for EX, it seems intuitively
obvious that E(g(X)) should result if x is replaced by g(x). This can be
proved by the following simple procedure. Starting with the pmf for Y ,
then substituting for its expression in terms of the pmf of X and reordering
the summation, the expectation of Y is found directly from the pmf for X
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as claimed:

EY =
∑

AY

ypY (y)

=
∑

AY

y




∑

x: g(x)=y

pX(x)





=
∑

AY




∑

x: g(x)=y

g(x)pX(x)





=
∑

AX

g(x)pX(x) .

This little bit of manipulation is given the fancy name of the fundamen-
tal theorem of expectation. It is a very useful formula in that it allows
the computation of expectations of functions of random variables without
the necessity of performing the (usually more difficult) derived distribution
operations.

A similar proof holds for the case of a discrete random variable defined
on a continuous probability space described by a pdf. The proof is left as
an exercise (problem 4.3).

A similar change of variables argument with integrals in place of sums
yields the analogous pdf result for continuous random variables. As is
customary, however, we have only provided the proof for the simple discrete
case. For the details of the continuous case, we refer the reader to books
on integration or analysis. The reader should be aware that such integral
results will have additional technical assumptions (almost always satisfied)
required to guarantee the existence of the various integrals. We summarize
the results below.

Theorem 4.1 The Fundamental Theorem of Expectation.
Let a random variable X be described by a cdf FX , which is in turn

described by either a pmf pX or a pdf fX . Given any measurable function
g : ℜ → ℜ, the resulting random variable Y = g(X) has expectation

EY = E(g(X)) =

∫
y dFg(X)(y)

=

∫
g(x) dFX =






∑

x

g(x)pX(x)

or∫

x

g(x)fX(x) dx .
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The qualification “measurable” is needed in the theorem to guarantee
the existence of the expectation. Measurability is satisfied by almost any
function that you can think of and, for all practical purposes, can be ne-
glected.

As a simple example of the use of this formula, consider a random
variable X with a uniform pdf on [−1/2, 1/2]. Define the random variable
Y = X2, that is g(r) = r2. We can use the derived distribution formula
(3.40) to write

fY (y) = y−1/2fX(y
1/2) ; y ≥ 0 ,

and hence
fY (y) = y−1/2 ; y ∈ (0, 1/4] ,

where we have used the fact that fX(y
1/2) is 1 only if the nonnegative

argument is less than 1/2 or y ≤ 1/4. We can then find EY as

EY =

∫
yfY (y) dy =

∫ 1/4

0

y1/2 dy =
(1/4)3/2

3/2
=

1

12
.

Alternatively, we can use the theorem to write

EY = E(X2) =

∫ 1/2

−1/2
x2 dx = 2

(1/2)3

3
=

1

12
.

Note that the result is the same for each method. However, the second
calculation is much simpler, especially if one considers the work which has
already been done in chapter 3 in deriving the density formula for the square
of a random variable.

[4.5] A second example generalizes an observation of chapter 2 and shows
that expectations can be used to express probabilities (and hence that
probabilities can be considered as special cases of expectation). Recall
that the indicator function of an event F is defined by

1F (x) =

{
1 if x ∈ F
0 otherwise .

The probability of the event F can be written in the following form
which is convenient in certain computations:

E1F (X) =

∫
1F (x) dFX(x) =

∫

F

dFX(x) = PX(F ) , (4.10)

where we have used the universal Stieltjes integral representation of
(3.32) to save writing out both sums of pmf’s and integrals of pdf’s
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(the reader who is unconvinced by (4.10) should write out the specific
pmf and pdf forms). Observe also that finding probability by taking
expectations of indicator functions is like finding a relative frequency
by taking a sample average of an indicator function.

It is obvious from the fundamental theorem of expectation that the
expected value of any function of a random value can be calculated from
its probability distribution. The preceding example demonstrates that the
converse is also true: The probability distribution can be calculated from
a knowledge of the expectation of a large enough set of functions of the
random variable. The example provides the result for the set of all indicator
functions. The choice is not unique, as shown by the following example:

[4.6] Let g(x) be the complex function ejux where u is an arbitrary con-
stant. For a cdf FX , define

E(g(X)) = E(ejuX) =

∫
ejux dFX(x) .

This expectation is immediately recognizable as the characteristic
function of the random variable (or its distribution), providing a
shorthand definition

MX(ju) = E[ejuX ].

In addition to its use in deriving distributions for sums of independent
random variables, the characteristic function can be used to compute mo-
ments of a random variable (as the Fourier transform can be used to find
moments of a signal). For example, consider the discrete case and take a
derivative of the characteristic function MX(ju) with respect to u:

d

du
MX(ju) =

d

du

∑

x

pX(x)e
jux

=
∑

x

pX(x)(jx)e
jux

and evaluate the derivative at u = 0 to find that

MX
′(0) =

d

du
MX(ju)|u=0 = jEX.

Thus the mean of a random variable can be found by differentiating the
characteristic function and setting the argument to 0 as

EX =
MX

′(0)

j
. (4.11)
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Repeated differentiation can be used to show more generally that the
kth moment can be found as

E[Xk] = j−kM (k)(0) = j−k
dk

duk
MX(ju)|u=0 (4.12)

If one needs several moments of a given random variable, it is usually easier
to do one integration to find the characteristic function and then several
differentiations than it is to do the several integrations necessary to find
the moments directly. Note that if we make the substitution w = ju and
differentiate with respect to w, instead of u,

dk

dwk
MX(w)|w=0 = E(Xk) .

Because of this property, characteristics function with ju = w are called
moment-generating functions. From the defining sum or integral for char-
acteristic functions in example [4.6], the moment-generating function may
not exist for all w = v + ju, even when it exists for all w = ju with u real.
This is a variation on the idea that a Laplace transform might not exist for
all complex frequencies s = σ + jω even when the it exists for all s = jω
with ω real, that is, the Fourier transform exists.

Example [4.6] illustrates an obvious extension of the fundamental the-
orem of expectation. In [4.6] the complex function is actually a vector
function of length 2. Thus it is seen that the theorem is valid for vector
functions, g(x), as well as for scalar functions, g(x). The expectation of a
vector is simply the vector of expected values of the components.

As a simple example, recall from (3.112) that the characteristic function
of a binary random variable X with parameter p = pX(1) = 1− pX(0) is

MX(ju) = (1− p) + peju . (4.13)

It is easily seen that

MX
′(0)

j
= p = E[X] , −MX(2)(0) = p = E[X2].

As another example, consider N (m,σ2) the Gaussian pdf with mean m
and variance σ2. Differentiating easily yields

MX
′(0)

j
= m = E[X] , −MX(2)(0) = σ2X +m2 = E[X2].

The relationship between the characteristic function of a distribution
and the moments of a distribution becomes particularly striking when the
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characteristic function is sufficiently nice near the origin to possess a Taylor
series expansion. The Taylor series of a function f(u) about the point u = 0
has the form

f(u) =

∞∑

k=0

uk
f (k)(0)

k!

= f(0) + uf (1)(0) + u2
f (2)(0)

2
+ terms in uk ; k ≥ 3 , (4.14)

where the derivatives

f (k)(0) =
dk

duk
f(u)|u=0 ;

are assumed to exist, that is, the function is assumed to be analytic at the
origin. Combining the Taylor series expansion with the moment-generating
property (4.12) yields

MX(ju) =

∞∑

k=0

uk
M
(k)
X (0)

k!

=

∞∑

k=0

(ju)k
E(Xk)

k!

= 1 + juE(X)− u2E(X2) + o(u2)/2 .

(4.15)

This result has an interesting implication: knowing all of the moments
of the random variable is equivalent to knowing the behavior of the charac-
teristic function near the origin. If the characteristic function is sufficiently
well behaved for the Taylor series to be valid over the entire range of u
rather than just in the area around 0, then knowing all of the moments of
a random variable is sufficient to know the transform. Since the transform
in turn implies the distribution, this guarantees that knowing all of the
moments of a random variable completely describes the distribution. This
is true, however, only when the distribution is sufficiently “nice,” that is,
when the technical conditions ensuring the existence of all of the required
derivatives and of the convergence of the Taylor series hold.

The approximation of (4.15) plays an important role in the central limit
theorem, so it is worth pointing out that it holds under even more general
conditions than having an analytic function. In particular, ifX has a second
moment so that E[X2] <∞, then

MX(ju) = 1 + juE(X)− u2E(X2)

2
+ o(u2), (4.16)
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where o(u2) contains higher order terms that go to zero as u → 0 faster
than u2. See, for example, Breiman’s treatment of characteristic functions
[6].

The most important application of the characteristic function is its use
in deriving properties of sums of independent random variables, as was be
seen in (3.111).

4.3 Functions of Several Random Variables

Thus far expectations have been considered for functions of a single random
variable, but it will often be necessary to treat functions of multiple random
variables such as sums, products, maxima, and minima. For example, given
random variables U and V defined on a common probability space we might
wish to find the expectation of Y = g(U, V ). The fundamental theorem of
expectation has a natural extension (which is proved in the same way).

Theorem 4.2 Fundamental Theorem of Expectation for Functions of Sev-
eral Random Variables

Given random variables X0, X1, . . . , Xk−1 described by a cdf FX0,X1,... ,Xk−1

and given a measurable function g : ℜk → ℜ,

E[g(X0, . . . , Xk−1)]

=

∫
g(x0, . . . , xk−1) dFX0,... ,Xk−1

(x0, . . . , xk−1)

=






∑

x0,... ,xk−1

g(x0, . . . , xk−1)pX0,... ,Xk−1
(x0, . . . , xk−1)

or∫
g(x0, . . . , xk−1)fX0,... ,Xk−1

(x0, . . . , xk−1)dx0 . . . dxk−1 .

As examples of expectation of several random variables we will consider
correlation, covariance, multidimensional characteristic functions, and dif-
ferential entropy. First, however, we develop some simple and important
properties of expectation that will be needed.

4.4 Properties of Expectation

Expectation possesses several basic properties that will prove useful. We
now present these properties and prove them for the discrete case. The
continuous results follow by using integrals in place of sums.
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Property 1. If X is a random variable such that Pr(X ≥ 0) = 1, then
EX ≥ 0.

Proof. Pr(X ≥ 0) = 1 implies that the pmf pX(x) = 0 for x < 0. If
pX(x) is nonzero only for nonnegative x, then the sum defining the expec-
tation contains only terms xpX(x) ≥ 0, and hence them sum and EX are
nonnegative. Note that property 1 parallels Axiom 2.1 of probability. That
is, the nonnegativity of probability measures implies property 1.

Property 2. If X is a random variable such that for some fixed number
r, Pr(X = r) = 1, then EX = r. Thus the expectation of a constant equals
the constant.

Proof. Pr(X = r) = 1 implies that pX(r) = 1. Thus the result follows
from the definition of expectation. Observe that property 2 parallels Axiom
2.2 of probability. That is, the normalization of the total probability to 1
leaves the constant unscaled in the result. If total probability were different
from 1, the expectation of a constant as defined would be a different, scaled
value of the constant.

Property 3. Expectation is linear; that is, given two random variables
X and Y and two real constants a and b,

E(aX + bY ) = aEX + bEY .

Proof. For simplicity we focus on the discrete case, the proof for pdf’s
is the obvious analog. Let g(x, y) = ax + by, where a and b are constants.
In this case the fundamental theorem of expectation for functions of several
(here two) random variables implies that

E[aX + bY ] =
∑

x,y

(ax+ by)pX,Y (x, y)

= a
∑

x

x
∑

y

pX,Y (x, y) + b
∑

y

y
∑

x

pX,Y (x, y)

Using the consistency of marginal and joint pmf’s of (3.13)–(3.14) this
becomes

E[aX + bY ] = a
∑

x

xpX(x) + b
∑

y

ypY (y)

= aE(X) + bE(Y ). (4.17)
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Keep in mind that this result has nothing to do with whether or not the
random variables are independent.

The linearity of expectation follows from the additivity of probability.
That is, the summing out of joint pmf’s to get marginal pmf’s in the proof
was a direct consequence of Axiom 2.4 . The alert reader will likely have
noticed the method behind the presentation of the properties of expecta-
tion: each follows directly from the corresponding axiom of probability.
Furthermore, using (4.10), the converse is true: That is, instead of starting
with the axioms of probability, suppose we start by using the properties of
expectation as the axioms of expectation. Then the axioms of probability
become the derived properties of probability. Thus the first three axioms of
probability and the first three properties of expectation are dual; one can
start with either and get the other. One might suspect that to get a useful
theory based on expectation, one would require a property analogous to
Axiom 2.4 of probability, that is, a limiting form of expectation property 3.
This is, in fact, the case, and the fourth basic property of expectation is the
countably infinite version of property 3. When dealing with expectations,
however, the fourth property is more often stated as a continuity property,
that is, in a form analogous to Axiom 2.4 of probability given in equation
(2.28). For reference we state the property below without proof:

Property 4. Given an increasing sequence of nonnegative random
variables Xn; n = 0, 1, 2, . . . , that is, Xn ≥ Xn−1 for all n (i.e., Xn(ω) ≥
Xn−1(ω) for all ω ∈ Ω), which converge to a limiting random variable
X = limn→∞ Xn, then

E
(
lim
n→∞

Xn

)
= lim
n→∞

EXn .

Thus as with probabilities, one can in certain cases exchange the order
of limits and expectation. The cases include but are not limited to those
of property 4. Property 4 is called the monotone convergence theorem and
is one of the basic properties of integration as well as expectation. This
theorem is discussed in appendix B along with another important limiting
result, the dominated convergence theorem.

In fact, the four properties of expectation can be taken as a definition
of an integral (viz., the Stieltjes integral) and used to develop the general
Lebesgue theory of integration. That is, the theory of expectation is really
just a specialization of the theory of integration. The duality between
probability and expectation is just a special case of the duality between
measure theory and the theory of integration.
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4.5 Examples: Functions of Several Random
Variables

4.5.1 Correlation

We next introduce the idea of correlation or expection of products of ran-
dom variables that will lead to the development of a property of expectation
that is special to independent random variables. A weak form of this prop-
erty will be seen to provide a weak form of independence that will later be
useful in characterizing certain random processes. Correlations will later
be seen to play a fundamental role in many signal processing applications.
Suppose we have two independent random variables X and Y and we have
two functions or measurements on these random variables, say g(X) and
h(Y ), where g : ℜ → ℜ, h : ℜ → ℜ, and E[g(X)] and E[h(Y )] exist
and are finite. Consider the expected value of the product of these two
functions, called the correlation between g(X) and h(Y ). Applying the
two-dimensional vector case of the fundamental theorem of expectation to
discrete random variables results in

E(g(X)h(Y )) =
∑

x,y

g(x)h(y)pX,Y (x, y)

=
∑

x

∑

y

g(x)h(y)pX(x)pY (y)

=

(
∑

x

g(x)pX(x)

)(
∑

y

h(y)pY (y)

)

= (E(g(X)))(E(h(Y ))) .

A similar manipulation with integrals shows the same to be true for random
variables possessing pdf’s. Thus we have proved the following result, which
we state formally as a lemma.

Lemma 4.1 For any two independent random variables X and Y ,

E(g(X)h(Y )) = (Eg(X))(Eh(Y )) (4.18)

for all functions g and h with finite expectation.

By stating that the functions have finite expectation we implicitly as-
sume them to be measurable, i.e., to have a distribution with respect to
which we can evaluate an expectation. Measurability is satisfied by al-
most all functions so that the qualification can be ignored for all practical
purposes.



204 CHAPTER 4. EXPECTATION AND AVERAGES

To cite the most important example, if g and h are identity functions
(h(r) = g(r) = r), then we have that independence of X and Y implies
that

E(XY ) = (EX)(EY ) , (4.19)

that is, the correlation of X and Y is the product of the means, in which
case the two random variables are said to be uncorrelated. (The term linear
independence is sometimes used as a synonym for uncorrelated.)

We have shown that if two discrete random variables are independent,
then they are also uncorrelated. Note that independence implies not only
that two random variables are uncorrelated but also that all functions of
the random variables are uncorrelated — a much stronger property. In
particular, two uncorrelated random variables need not be independent.
For example, consider two random variables X and Y with the joint pmf

pX,Y (x, y) =

{
1/4 if (x, y) = (1, 1) or (−1, 1)
1/2 if (x, y) = (0, 0) .

A simple calculation shows that

E(XY ) = 1/4(1− 1) + 1/2(0) = 0

and

(EX)(EY ) = (0)(1/2) = 0 ,

and hence the random variables are uncorrelated. They are not, however,
independent. For example, Pr(X = 0|Y = 0) = 1 while Pr(X = 0) = 1/2.
As another example, consider the case where pX(x) = 1/3 for x = −1, 0, 1
and Y = X2. X and Y are correlated but not independent.

Thus uncorrelation does not imply independence. If, however, all pos-
sible functions of the two random variables are uncorrelated — that is, if
(4.18) holds — then they must be independent. To see this in the discrete
case, just consider all possible functions of the form 1a(x), that is, indicator
functions of all of the points. (1a(x) is 1 if x = a and zero otherwise.) Let
g = 1a and h = 1b for a in the range space of X and b in the range space
of Y . It follows from (4.18) and (4.10) that

pX,Y (a, b) = pX(a)pY (b) .

Obviously the result holds for all a and b. Thus the two random variables
are independent. It can now be seen that (4.18) provides a necessary and
sufficient condition for independence, a fact we formally state as a theorem.
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Theorem 4.3 Two random variables X and Y are independent if and only
if g(X) and h(Y ) are uncorrelated for all functions g and h with finite
expectations, that is, if (4.18) holds. More generally, random variables
Xi; i = 1, . . . n are mutually independent if and only if for all functions
gi; i = 1, . . . n the random variables gi(Xi) are uncorrelated.

This theorem is useful as a means of showing that two random vari-
ables are not independent: If we can find any functions g and h such that
E(g(X)h(Y )) 
= (Eg(X))(Eh(Y )), then the random variables are not inde-
pendent. The theorem also provides a simple and general proof of the fact
that the characteristic function of the sum of independent random variables
is the product of the characteristic functions of the random variables being
summed.

Corollary 4.1 Given a sequence of mutually independent random variables
X1, X2, . . . , Xn, define

Yn =

n∑

i=1

Xi .

Then

MYn(ju) =

n∏

i=1

MXi(ju) .

Proof. Successive application of theorem 4.3, which states that functions
of independent random variables are uncorrelated, yields

E
(
ejuYn

)
= E




e

ju

n∑

i=1

Xi




= E

(
n∏

i=1

ejuXi

)

=
n∏

i=1

E
(
ejuXi

)
=

n∏

i=1

MXi(ju) .

4.5.2 Covariance

The idea of uncorrelation can be stated conveniently in terms of another
quantity, which we now define. Given two random variables X and Y ,
define their covariance, COV (X,Y ) by

COV (X,Y )
∆
= E[(X − EX)(Y − EY )] .

As you can see, the covariance of two random variables equals the correla-
tion of the two “centralized” random variables, X − EX and Y − EY ,
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that are formed by subtracting the means from the respective random
variables. Keeping in mind that EX and EY are constants, it is seen
that centralized random variables are zero-mean random variables; i.e.,
E(X − EX) = E(X)− E(EX) = EX − EX = 0. Expanding the product
in the definition, the covariance can be written in terms of the correlation
and means of the random variables. Again remembering that EX and EY
are constants, we get

COV (X,Y ) = E[XY − Y EX −XEY + (EX)(EY )]
= E(XY )− (EY )(EX)− (EX)(EY ) + (EX)(EY )
= E(XY )− (EX)(EY ) .

(4.20)

Thus the covariance is the correlation minus the product of the means.
Using this fact and the definition of uncorrelated, we have the following
statement:

Corollary 4.2 Two random variables X and Y are uncorrelated if and
only if their covariance is zero; that is, if COV (X,Y ) = 0.

If we set Y = X, the correlation of X with itself, E(X2), results; this
is called the second moment of the random variable X. The covariance
COV (X,X) is called the variance of the random variable and is given the
special notation σ2X . σX =

√
σ2X is called the standard deviation of X.

From the definition of covariance and (4.19),

σ2X = E[(X − EX)2] = E(X2)− (EX)2 .

By the first property of expectation, the variance is nonnegative, yielding
the simple but powerful inequality

|EX| ≤ [E(X2)]1/2 , (4.21)

a special case of the Cauchy-Schwarz inequality (see problem 4.17 with the
random variable Y set equal to the constant 1).

4.5.3 Covariance Matrices

The fundamental theorem of expectation of functions of several random
variables can also be extended to vector or even matrix functions g of
random vectors as well. There are two primary examples, the covariance
matrix treated here and the multivariable characteristic functions treated
next.

Suppose that we are given an n-dimensional random vectorX = (X0, X1, . . . , Xn−1).
The mean vector m = (m0,m1, . . . ,mn−1)t is defined as the vector of the
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means, i.e., mk = E(Xk) for all k = 0, 1, . . . , n − 1. This can be written
more conveniently as a single vector expectation

m = E(X) =

∫

ℜn

fX(x)x dx (4.22)

where the random vector X and the dummy integration vector x are both n
dimensional and the integral of a vector is simply the vector of the integrals
of the individual components. Similarly we could define for each k, l =
0, 1, . . . , n− 1 the covariance KX(k, l) = E[(Xk −mk)(Xl −ml)] and then
collect these together to from the covariance matrix

K = {KX(k, l); k = 0, 1, . . . , n− 1; lk = 0, 1, . . . , n− 1}.

Alternatively, we can use the outer product notation of linear algebra and
the fundamental theorem of expectation to write

K = E[(X −m)(X −m)t] =

∫

ℜn

(x−m)(x−m)t dx, (4.23)

where the outer product of a vector a with a vector b, abt, has (k, j) entry
equal to akbj .

In particular, by straightforward but tedious multiple integration, it can
be shown that the mean vector and the covariance matrix of a Gaussian
random vector are indeed the mean and covariance, i.e., using the funda-
mental theorem

m = E(X)

=

∫

ℜn

x
e−1/2(x−m)

tK−1(x−m)

(2π)n/2
√
detK

dx (4.24)

K = E[(X −m)(X −m)t]

=

∫

ℜn

(x−m)(x−m)t
e−1/2(x−m)

tK−1(x−m)

(2π)n/2
√
detK

dx. (4.25)

4.5.4 Multivariable Characteristic Functions

The fundamental theorem of expectation of functions of several random
variables can also be extended to vector functions g of random vectors as
well. In fact we implicitly assumed this to be the case in the evlauation of
the characteristic function of a Gaussian random variable (since ejuX is a
complex function of ω and hence a vector function) and of the multidimen-
sional characteristic function of a Gaussian random vector in (3.126): if a
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Gaussian random vector X has a mean vector m and covariance matrix Λ,
then

MX(ju) = eju
tm−1/2utΛu

= exp

[
j

n−1∑

k=0

ukmk − 1/2

n−1∑

k=0

n−1∑

m=0

ukΛ(k,m)um

]
.

This representation for the characteristic function yields the proof of the
following important result:

Theorem 4.4 Let X be a k-dimensional Gaussian random vector with
mean mX and covariance matrix ΛX . Let Y be the new random vector
formed by a linear operation of X:

Y = HX + b , (4.26)

where H is a n× k matrix and b is an n-dimensional vector. Then Y is a
Gaussian random vector of dimension n with mean

mY = HmX + b (4.27)

and covariance matrix

ΛY = HΛXHt. (4.28)

Proof. The characteristic function of Y is found by direct substitution
of the expression for Y in terms of X into the definition, a little matrix
algebra, and (3.126):

MY (ju) = E
[
eju

tY
]

= E
[
eju

t(HX+b)
]

= eju
tbE
[
ej(H

tu)tX
]

= eju
tbMX(jH

tu)

= eju
t beju

tHm− 1
2 (H

tu)tΛX(H
tu

= eju
t(Hm+b)e−

1
2u

tHΛXH
tu .

It can be seen by reference to (3.126) that the resulting characteristic
function is the transform of a Gaussian random vector pdf with mean vector
Hm+ b and covariance matrix HΛHt. This completes the proof.
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The following observation is trivial, but it emphasizes a useful fact.
Suppose that X is a Gaussian random vector of dimension, say, k, and we
form a new vector Y by subsampling X, that is, by selecting a subset of the
(X0, X1, . . . , Xk−1), say Yi = Xl(i), i = 0, 1, . . . ,m < k. Then we can write
Y = AX, where A is a matrix that has Al(i),l(i) = 1 for i = 0, 1, . . . ,m < k
and 0’s everywhere else. The preceeding result implies immediately that Y
is Gaussian and shows how to compute the mean and covariance. Thus any
subvector of a Gaussian vector is also a Gaussian vector. This could also
have been proved by a derived distribution and messy multidimensional
integrals, but the previous result provides a nice shortcut.

4.5.5 Example: Differential Entropy of a Gaussian Vec-
tor

Suppose that X = (X0, X1, . . . , Xn−1) is a Gaussian random vector de-
scribed by a pdf fX specified by a mean vector m and a covariance matrix
KX . The differential entropy of a continuous vector X is defined by

h(X)

= −
∫

fX(x) log fX(x) dx

= −
∫

fX0,X1,... ,Xn−1(x0, x1, . . . , xn−1)×

log fX0,X1,... ,Xn−1(x0, x1, . . . , xn−1) dx0dx1 · · · dxn−1
(4.29)

where the units are called “bits” if the logarithm is base 2 and “nats” if
the logorithm is base e. The differential entropy plays a fundamental role
in Shannon information theory for continuous alphabet random processes.
See, for example, Cover and Thomas [?]. It will also prove a very useful
aspect of a random vector when considering linear prediction or estimation.
We here use the fundamental theorem of expectation for functions of several
variables to evaluate the differential entropy h(X) of a Gaussian random
vector.

Plugging in the density for the Gaussian pdf and using natural loga-
rithms results in

h(X) = −
∫

fX(x) ln fX(x) dx

=
1

2
ln(
√
2π
n
detK) +

1

2

∫

(

x−m)tK−1(x−m)(2π)−n/2(detK)−1/2e−1/2(x−m)
tK−1(x−m) dx.
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The final term can be easily evaluated by a trick. From linear algebra we
can write for any n-dimensional vector a and n× n matrix K

atAa = Tr(Aaat) (4.30)

Where Tr is the trace or sum of diagonals of the matrix. Thus using the
linearity of expectation we can rewrite the previous equation as

h(X) =
1

2
ln((2π)n detK) +

1

2
E
(
(X −m)tK−1(X −m)

)

=
1

2
ln((2π)n detK) +

1

2
E
(
Tr[K−1(X −m)(X −m)t

)
]

=
1

2
ln((2π)n detK) +

1

2
Tr[K−1E

(
(X −m)(X −m)t

)
]

=
1

2
ln((2π)n detK) +

1

2
Tr[K−1K]

=
1

2
ln((2π)n detK) +

1

2
Tr[I]

=
1

2
ln((2π)n detK) +

n

2

=
1

2
ln((2πe)n detK) nats. (4.31)

4.6 Conditional Expectation

Expectation is essentially a weighted integral or summation with respect
to a probability distribution. If one uses a conditional distribution, then
the expectation is also conditional. For example, suppose that (X,Y ) is a
random vector described by a joint pmf pX,Y . The ordinary expectation of
Y is defined as usual by EY =

∑
ypY (y). Suppose, however, that one is

told that X = x and hence one has the conditional (a posteriori) pmf pY |X .
Then one can define the conditional expectation of Y given X = x by

E(Y |x) =
∑

y∈AY

ypY |X(y|x) (4.32)

that is, the usual expectation, but with respect to the pmf pY |X(·|x). So
far, this is an almost trivial generalization. Perhaps unfortunately, however,
(4.32) is not in fact what is usually defined as conditional expectation.
The actual derivation might appear to be only slightly different, but there
is a fundamental difference and a potential for confusion because of the
notation. As we have defined it so far, the conditional expectation of Y
given X = x is a function of the independent variable x, say g(x). In other
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words,
g(x) = E(Y |x).

If we take any function g(x) of x and replace the independent variable x
by a random variable X, we get a new random variable g(X). If we simply
replace the independent variable x in E(Y |x) by the random variable X,
the resulting quantity is a random variable and is denoted by E(Y |X). It
is this random variable that is defined as the conditional expectation of Y
given X. The previous definition E(Y |x) can be considered as a sample
value of the random variable E(Y |X). Note that we can write the definition
as

E(Y |X) =
∑

y∈AY

ypY |X(y|X), (4.33)

but the reader must beware the dual use of X: in the subscript it denotes
as usual the name of the random variable, in the argument it denotes the
random variable itself, i.e., E(Y |X) is a function of the random variable X
and hence is itself a random variable.

Since E(Y |X) is a random variable, we can evaluate its expectation
using the fundamental theorem of expectation. The resulting formula has
wide application in probability theory. Taking this expectation we have
that

E[E(Y |X)] =
∑

x∈AX

pX(x)E(Y |x)

=
∑

x∈AX

pX(x)
∑

y∈AY

ypY |X(y|x)

=
∑

y∈AY

y
∑

x∈AX

pX,Y (x, y)

=
∑

y∈AY

ypY (y)

= EY,

a result known as iterated expectation or nested expectation. Roughly speak-
ing it states that if we wish to find the expectation of a random variable Y ,
then we can first find its conditional expectation with respect to another
random variable, E(Y |X), and then take the expectation of the resulting
random variable to obtain

EY = E[E(Y |X)]. (4.34)

In the next section we shall see an interpretation of conditional expec-
tation as an estimator of one random variable given another. A simple
example now, however, helps point out how this result can be useful.



212 CHAPTER 4. EXPECTATION AND AVERAGES

Suppose that one has a random process {Xk; k = 0, 1, . . . }, with identi-
cally distributed random variables Xn, and a random variable N that takes
on positive integer values. Suppose also that the random variables Xk are
all independent of N . Suppose that one defines a new random variable

Y =

N−1∑

k=0

Xk,

that is, the sum of a random number of random variables. How does one
evaluate the expectation EY ? Finding the derived distribution is daunting,
but iterated expectation comes to the rescue. Iterated expectation states
that EY = E[E(Y |N)], where E(Y |N) is found by evaluating E(Y |n) and
replacing n by N . But given N = n, the random variable Y is simply
Y =

∑n−1
k=0 Xk since the distribution of the Xk is not affected by the fact

that N = k since the Xk are independent of N . Hence by the linearity of
expectation,

E(Y |n) =
n−1∑

k=0

EXk,

where the identically distributed assumption implies that the EXk are all
equal, say EX. Thus E(Y |n) = nEX and hence E(Y |N) = NEX. Then
iterated expectation implies that

EY = E(NEX) = (EN)(EX), (4.35)

the product of the two means. Try finding this result without using iterated
expectation. As a particular example, if the random variables are Bernoulli
random variables with parameter p and N has a Poisson distribution with
parameter λ, then Pr(Xi = 1) = p for all i and EN = λ and hence then
EY = pλ.

Iterated expectation has a more general form. Just as constants can
be pulled out of ordinary expectations, quantities depending only on the
variable conditioned on can be pulled out of conditional expectations. We
state and prove this formally.

Lemma 4.2 General Iterated Expectation

Suppose the X,Y are discrete random variables and that g(X) and
h(X,Y ) are functions of these random variables. Then

E[g(X)h(X,Y )] = E (g(X)E[h(X,Y )|X]) . (4.36)
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Proof:

E[g(X)h(X,Y )] =
∑

x,y

g(x)h(x, y)pX,Y (x, y)

=
∑

x

pX(x)g(x)
∑

y

h(x, y)pY |X(y|x)

=
∑

x

pX(x)g(x)E[h(X,Y )|x]

= E (g(X)E[h(X,Y )|X]) .

As with ordinary iterated expectation, this is primarily an interpretation
of an algebraic rewriting of the definition of expectation. Note that if we
take g(x) = x and h(x, y) = 1, this general form reduces to the previous
form.

In a similar vein, one can extend the idea of conditional expectation to
continuous random variables by using pdf’s instead of pmf’s. For example,

E(Y |x) =
∫

yfY |X(y|x) dy,

and E(Y |X) is defined by replacing x by X in the above formula. Both
iterated expectation and its general form extend to this case by replacing
sums by integrals.

4.7 ⋆ Jointly Gaussian Vectors

Gaussian vectors provide an interesting example of a situation where con-
ditional expectations can be explicitly computed, and this in turn provides
additional fundamental, if unsurprising, properties of Gaussian vectors. In-
stead of considering a Gaussian random vectory X = (X0, X1, . . . , XN−1)t,
say, consider instead a random vector

U =

(
X
Y

)

formed by concatening two vectors X and Y of dimensions, say, k and m,
respectively. For this section we will drop the boldface notation for vectors.
If U is Gaussian, then we say that X and Y are jointly Gaussian. From
Theorem 4.4 it follows that if X and Y are jointly Gaussian, then they
are individually Gaussian with, say, means mX and mY , respectively, and
covariance matrices KX and KY , respectively. The goal of this section is
to develop the conditional second order moments for Y given X and to
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show in the process that given X, Y has a Gaussian density. Thus not only
is any subcollection of a Gaussian random vector Gaussian, it is also true
that the conditional densities of any subvector of a Gaussian vector given
a disjoint subvector of the Gaussian vector is Gaussian. This generalizes
(3.61) from two jointly Gaussian scalar random variables to two jointly
Gaussian random vectors. The idea behind the proof is the same, but the
algebra is messier in higher dimensions.

Begin by writing

KU = E[UU t]

= E[

(
X −mX

Y −mY

)
((X −mX)

t (Y −mY )
t)]

=

[
E[(X −mX)(X −mX)

t] E[(X −mX)(Y −mY )
t]

E[(Y −mY )(X −mX)
t] E[(Y −mY )(Y −mY )

t]

]

=

[
KX KXY
KY X KY

]
, (4.37)

where KX and KY are ordinary covariance matrices and KXY = Kt
Y X

are called cross-covariance matrices. We shall also denote KU by K(X,Y ),
where the subscript is meant to emphasize that it is the covariance of the
cascade vector of both X and Y in distinction to KXY , the cross covariance
of X and Y .

The key to the recognizing the conditional moments and densities is
the following admittedly unpleasant matrix equation, which can be proved
with a fair amount of brute force linear algebra:

[
KX KXY
KY X KY

]−1
=

[
K−1
X +K−1

X KXYK−1
Y |XKY XK−1

X −K−1
X KXYK−1

Y |X
−K−1

Y |XKY XK−1
X K−1

Y |X

]
,(4.38)

where

KY |X
∆
= KY −KY XK−1

X KXY . (4.39)

The determined reader who wishes to verify the above should do the block
matrix multiplication
[

a b
c d

]
∆
=

[
K−1
X +K−1

X KXYK−1
Y |XKY XK−1

X −K−1
X KXYK−1

Y |X
−K−1

Y |XKY XK−1
X K−1

Y |X

] [
KX KXY
KY X KY

]
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and show that a is a k × k identity matrix, d is an m×m identity matrix,
and that c and d contain all zeros so that the right hand matrix is indeed
an identity matrix.

The conditional pdf for Y given X follows directly from the definitions
as

fY |X(y|x)

=
fXY (x, y)

fY (y)

=

(2π)−(k+m)/2(detKU )−1/2 exp

(
−1/2((x−mX)

t (y −mY )
t)K−1

U (
x−mX

y −mY
)

)

(2π)−k/2(detKX)−1/2 exp
(
−1/2(x−mX)tK

−1
X (x−mX)

)

= (2π)−m/2(
detKU
detKX

)−1/2 ×

exp

(
−1/2((x−mX)

t (y −mY )
t)K−1

U (
x−mX

y −mY
) + (x−mX)

tK−1
X (x−mX)

)

Again using some brute force linear algebra, it can be shown that the
quadratic terms in the exponential can be expressed in the form

((x−mX)
t , (y −mY )

t)K−1
U

(
x−mX

y −mY

)
+ (x−mX)

tK−1
X (x−mX)

= (y −mY −KY XK−1
X (x−mX))

tK−1
Y |X(y −mY −KY XK−1

X (x−mX)).

Defining

mY |x = mY +KY XK−1
X (x−mX) (4.40)

the conditional density simplifies to

fY |X(y|x) = (2π)−m/2(
detKU
detKX

)−1/2 × exp
(
−1/2(y −mY |x)

tK−1
Y |X(y −mY |x)

)
,

(4.41)

which shows that conditioned on X = x, Y has a Gaussian density. This
means that we can immediately recognize the conditional expectation of Y
given X as

E(Y |X = x) = mY |x = mY +KY XK−1
X (x−mX), (4.42)

so that the conditional expectation is an affine function of the vector x. We
can also infer from the form that KY |X is the (conditional) covariance

KY |X = E[(Y − E(Y |X = x))(Y − E(Y |X = x))t|x], (4.43)
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which unlike the conditional mean does not depend on the vector x! Fur-
thermore, since we know how the normalization must relate to the covari-
ance matrix, we have that

det(KY |X) =
det(KU )

det(KX)
. (4.44)

These relations completely describe the conditional densities of one sub-
vector of a Gaussian vector given another subvector. We shall see, however,
that the importance of these results goes beyond the above evaluation and
provides some fundamental results regarding optimal nonlinear estimation
for Gaussian vectors and optimal linear estimation in general.

4.8 Expectation as Estimation

Suppose that one is asked to guess the value that a random variable Y
will take on, knowing the distribution of the random variable. What is the
best guess or estimate, say Ŷ ? Obviously there are many ways to define
a best estimate, but one of the most popular ways to define a cost or
distortion resulting from estimating the “true” value of Y by Ŷ is to look
at the expected value of the square of the error Y − Ŷ , E[(Y − Ŷ )2], the so
called mean squared error or MSE . Many arguments have been advanced in
support of this approach, perhaps the simplest being that if one views the
error as a voltage, then the average squared error is the average energy in the
error. The smaller the energy, the weaker the signal in some sense. Perhaps
a more honest reason for the popularity of the measure is its tractability in
a wide variety of problems, it often leads to nice solutions that indeed work
well in practice. As an example, we show that the optimal estimate of the
value of an unknown random variable is in fact the mean of the random
variable, a result that is highly intuitive. Rather than use calculus to prove
this result — a tedious approach requiring setting derivatives to zero and
then looking at second derivatives to verify that indeed the stationary point
is a minimum — we directly prove the global optimality of the result.
Suppose that that our estimate is Ŷ = a, some constant. We will show that
this estimate can never have mean squared error smaller than that resulting
from using the expected value of Y as an estimate. This is accomplished
by a simple sequence of equalities and inequalities. Begin by adding and
subtracting the mean, expanding the square, and using the second and
third properties of expectation as

E[(Y − a)2] = E[(Y − EY + EY − a)2]

= E[(Y − EY )2] + 2E[(Y − EY )(EY − a)] + (EY − a)2.
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The cross product is evaluated using the linearity of expectation and the
fact that EY is a constant as

E[(Y − EY )(EY − a)] = (EY )2 − aEY − (EY )2 + aEY = 0

and hence from Property 1 of expectation,

E[(Y − a)2] = E[(Y − EY )2] + (EY − a)2 ≥ E[(Y − EY )2], (4.45)

which is the mean squared error resulting from using the mean of Y as
an estimate. Thus the mean of a random variable is the minimum mean
squared error estimate (MMSE) of the value of a random variable in the
absence of any a priori information.

What if one is given a priori information? For example, suppose that
now you are told that X = x. What then is the best estimate of Y , say
Ŷ (X)? This problem is easily solved by modifying the previous derivation
to use conditional expectation, that is, by using the conditional distribution
for Y given X instead of the a priori distribution for Y . Once again we try
to minimize the mean squared error:

E[(Y − Ŷ (X))2] = E
(
E[(Y − Ŷ (X))2|X]

)

=
∑

x

pX(x)E[(Y − Ŷ (X))2|x].

Each of the terms in the sum, however, is just a mean squared error be-
tween a random variable and an estimate of that variable with respect to
a distribution, here the conditional distribution pY |X(·|x). By the same
argument as was used in the unconditional case, the best estimate is the
mean, but now the mean with respect to the conditional distribution, i.e.,
E(Y |x). In other words, for each x the best Ŷ (x) in the sense of minimizing
the mean squared error is E(Y |x). Plugging in the random variable X in
place of the dummy variable x we have the following interpretation

The conditional expectation E(Y |X) of a random variable
Y given a random variable X is the minimum mean squared
estimate of Y given X.

A direct proof of this result without invoking the conditional version
of the result for unconditional expectation follows from general iterated
expectation. Suppose that g(X) is an estimate of Y given X. Then the
resulting mean squared error is

E[(Y − g(X))2] = E[(Y − E(Y |X) + E(Y |X)− g(X))2]

= E[(Y − E(Y |X))2]

−2E[(Y − E(Y |X))(E(Y |X)− g(X))]

+E[(E(Y |X)− g(X))2].
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Expanding the cross term yields

E[(Y − E(Y |X))(E(Y |X)− g(X))] = E[Y E(Y |X)]− E[Y g(X)]

−E[E(Y |X)2] + E[E(Y |X)g(X)]

From the general iterated expectation (4.36), E[Y E(Y |X)] = E[E(Y |X)2]
(setting g(X) of the lemma to E(Y |X) and h(X,Y ) = Y ) and E[Y g(X)] =
E[E(Y |X)g(X)] (setting g(X) of the lemma to the g(X) used here and
h(X,Y ) = Y ).

As with ordinary expectation, the ideas of conditional expectation can
be extended to continuous random variables by substituting conditional
pdf’s for the unconditional pdf’s. As is the case with conditional probabil-
ity, however, this constructive definition has its limitations and only makes
sense when the pdf’s are well defined. The rigorous development of condi-
tional expectation is, like conditional probability, analogous to the rigorous
treatment of the Dirac delta, it is defined by its behavior underneath the in-
tegral sign rather than by a construction. When the constructive definition
makes sense, the two approaches agree.

One of the unfortunately rare examples for which conditional expec-
tations can be explicitly evaluated is the case of jointly Gaussian random
variables. In this case we can immediately identify from (3.61) that

E[Y |X] = mY + ρ(σY /σX)(X −mX). (4.46)

It will prove important that this is in fact an affine function of X.
The same ideas extend from scalars to vectors. Suppose we observe a

real-valued column vector X = (X0, · · · , Xk−1)t and we wish to predict
or estimate a second random vector Y = (Y0, · · · , Ym−1)t. Note that the
dimensions of the two vectors need not be the same.

The prediction Ŷ = Ŷ (X) is to be chosen as a function of X which
yields the smallest possible mean squared error, as in the scalar case. The
mean squared error is defined as

ǫ2(Ŷ ) = E(‖Y − Ŷ ‖2) ∆= E[(Y − Ŷ )t(Y − Ŷ )]

=

m−1∑

i=0

E[(Yi − Ŷi)
2]. (4.47)

An estimator or predictor is said to be optimal within some class of predic-
tors if it minimizes the mean squared error over all predictors in the given
class.

Two specific examples of vector estimation are of particular interest.
In the first case, the vector X consists of k consecutive samples from a
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stationary random process, say X = (Xn−1, Xn−2, . . . , Xn−k) and Y is the
next, or “future”, sample Y = Xn. In this case the goal is to find the
best one-step predictor given the finite past. In the second example, Y is
a rectangular subblock of pixels in a sampled image intensity raster and X
consists of similar subgroups above and to the left of Y . Here the goal is
to use portions of an image already coded or processed to predict a new
portion of the same image. This vector prediction problem is depicted in
Figure 4.1 where subblocks A, B, and C would be used to predict subblock
D.

C

A B

D

Figure 4.1: Vector Prediction of Image Subblocks

The following theorem shows that the best nonlinear predictor of Y
given X is simply the conditional expectation of Y given X. Intuitively, our
best guess of an unknown vector is its expectation or mean given whatever
observations that we have. This extends the interpretation of a conditional
expectation as an optimal estimator to the vector case.

Theorem 4.5 Given two random vectors Y and X, the minimum mean
squared error estimate of Y given X is

Ŷ (X) = E(Y |X). (4.48)

Proof: As in the scalar case, the proof does not require calculus or
Lagrange minimizations. Suppose that Ŷ is the claimed optimal estimate
and that Ỹ is some other estimate. We will show that Ỹ must yield a mean
squared error no smaller than does Ŷ . To see this consider

ǫ2(Ỹ ) = E(‖Y − Ỹ ‖2) = E(‖Y − Ŷ + Ŷ − Ỹ ‖2)
= E(‖Y − Ŷ ‖2) + E(‖Ŷ − Ỹ ‖2) + 2E[(Y − Ŷ )t(Ŷ − Ỹ )]

≥ ǫ2(Ŷ ) + 2E[(Y − Ŷ )t(Ŷ − Ỹ )].

We will prove that the rightmost term is zero and hence that ǫ2(Ỹ ) ≥ ǫ2(Ŷ ),
which will prove the theorem. Recall that Ŷ = E(Y |X) and hence

E[(Y − Ŷ )|X] = 0.
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Since Ŷ − Ỹ is a deterministic function of X,

E[(Y − Ŷ )t(Ŷ − Ỹ )|X] = 0.

Then, by iterated expectation applied to vectors, we have

E(E[(Y − Ŷ )t(Ŷ − Ỹ )|X]) = E[(Y − Ŷ )t(Ŷ − Ỹ )] = 0

as claimed, which proves the theorem.
As in the scalar case, the conditional expectation is in general a difficult

function to evaluate with the notable exception of jointly Gaussian vectors.
Recall that (4.41)–(4.44) the conditional pdf for jointly Gaussian vectors Y
and X with K(X,Y ) = E[((Xt, Y t)−(mt

X−mt
Y ))

t((Xt, Y t)−(mt
X−mt

Y ))],
KY = E[(Y −mY )(Y −mY )

t], KX = E[(X −mX)(X −mX)
t], KXY =

E[(X −mX)(Y −mY )
t], KY X = E[(Y −mY )(Y −mY )

t] is

fY |X(y|x) = (2π)−m/2(det(KY |X))
−1/2 ×

exp
(
−1/2(y −mY |x)

tK−1
Y |X(y −mY |x)

)
, (4.49)

where

KY |X
∆
= KY −KY XK−1

X KXY

= E[(Y − E(Y |X))(Y − E(Y |X))t|X], (4.50)

det(KY |X) =
det(K(Y,X))

det(KX)
, (4.51)

and

E(Y |X = x) = mY |x = mY +KY XK−1
X (x−mX), (4.52)

and hence the minimum mean square estimate of Y given X is

E(Y |X) = mY +KY XK−1
X (X −mX) , (4.53)

which is an affine (linear plus constant) function of X! The resulting mean
squared error is (using iterated expectation)

E[(Y − E(Y |X))t(Y − E(Y |X))] (4.54)

= E
(
E[(Y − E(Y |X))t(Y − E(Y |X))|X]

)

= E
(
E[Tr[(Y − E(Y |X))(Y − E(Y |X))t]|X]

)

= Tr(KY |X). (4.55)
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In the special case where X = Xn = (X0, X1, . . . , Xn−1) and Y =
Xn, the so called one-step linear prediction problem, the solution takes an
interesting form. For this case define the nth order covariance matrix as
the n× n matrix

K
(n)
X = E[(Xn − E(Xn))(Xn − E(Xn))t], (4.56)

i.e., the (k, j) entry of K
(n)
X is E[(Xk − E(Xk))(Xj − E(Xj))], k, j =

0, 1, . . . , n − 1. Then if Xn+1 is Gaussian, the optimal one-step predic-
tor for Xn given Xn is

X̂n(X
n) = E(Xn)+

E[(Xn − E(Xn))(X
n − E(Xn))t](K

(n)
X )−1(Xn − E(Xn)) (4.57)

which has an affine form

X̂n(X
n) = AXn + b (4.58)

where

A = rt(K
(n)
X )−1, (4.59)

r =





KX(n, 0)
KX(n, 1)

...
KX(n, n− 1)




, (4.60)

and

b = E(Xn)−AE(Xn). (4.61)

The resulting mean squared error is

MMSE = E[(Xn − X̂n(X
n))2]

= Tr(KY −KY XK−1
X KXY )

= σ2Xn
− rt(K

(n)
X )−1r

or

MMSE = E[(Xn − X̂n(X
n))2] = σ2Xn|Xn , (4.62)

which from (4.51) can be expressed as

MMSE =
det(K

(n)
X )

det(K
(n−1)
X )

, (4.63)



222 CHAPTER 4. EXPECTATION AND AVERAGES

a classical result from minimum mean squared error estimation theory.
If the Xn are samples of a weakly stationary random process with zero

mean, then this simplifies to

X̂n(X
n) = rt(K

(n)
X )−1Xn, (4.64)

where r is the n-dimensional vector

r =





KX(n)
KX(n− 1)

...
KX(1)




(4.65)

4.9 ⋆ Implications for Linear Estimation

The development of optimal mean squared estimation for the Gaussian
case provides a prevue and an approach to the problem of optimal mean
squared estimation for the situation of completely general random vectors
(not necessarily Gaussian) where only linear or affine estimators are allowed
(to avoid the problem of possibly intractable conditional expectations in the
nonGaussian case). This topic will be developed in some detail in a later
section, but the key results will here be shown to follow directly from the
Gaussian case by reinterpreting the results.

The key fact is that the optimal estimator for a vector Y given a vector
X when the two are jointly Gaussian was found to be an affine estimator,
that is, to have the form

Ŷ (X) = AX + b.

Since it was found the lowest possible MMSE over all possible estimators
was achieved by an estimator of this form with A = KY XK−1

X and b =
E(Y )+AE(X) with a resulting MSE of MMSE = Tr(KY −KY XK−1

X KXY ),
then it is obviously true that this MMSE must be the minimum achievable
MSE over all affine estimators, i.e., that for all k × m matrices A and
m-dimensional vectors b it is true that

MMSE(A, b) = Tr
(
(Y −AX − b)(Y −AX − b)t

)

≥ Tr(KY −KY XK−1
X KXY ) (4.66)

and that equality holds if and only if A = KY XK−1
X and b = E(Y ) +

AE(X). We shall now see that this version of the result has nothing to
do with Gaussianity and that the inequality and solution are true for any
distribution (providing of course that KX is invertible).
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Expanding the MSE and using some linear algebra results in

MMSE(A, b)

= Tr
(
(Y −AX − b)(Y −AX − b)t

)

= Tr ((Y −mY +A(X −mX)− b+mY +AmX)

× (Y −mY +A(X −mX)− b+mY +AmX)
t
)

= Tr
(
KY −AKXY −KY XAt +AKXAt

)

+(b−mY −AmX)
t(b−mY −AmX)

where all the remaining cross terms are zero. Regardless of A the final term
is nonnegative and hence it is bound below by 0, a minimum achieved by
the choice

b = mY +AmX . (4.67)

Thus the inequality we wish to prove becomes

Tr
(
KY −AKXY −KY XAt +AKXAt

)
≥ Tr(KY −KY XK−1

X KXY )
(4.68)

or

Tr
(
KY XK−1

X KXY +AKXAt −AKXY −KY XAt
)
≥ 0. (4.69)

Since KX is a covariance matrix it is Hermitian and since it has an inverse,

it must be positive definite. Hence it has a well defined squareroot K
1/2
X

(see Section A.4) and hence

Tr
(
(AK

1/2
X −KY XK

−1/2
X )(AK

1/2
X −KY XK

−1/2
X )t

)
(4.70)

(just expand this expression to verify it is the same as the previous ex-
pression). But this has the form Tr(BBt) which is just

∑
i b
2
i,i, which is

nonnegative, proving the inequality. Plugging in A = KY XK−1
X achieves

the lower bound with equality.
We summarize the result in the following theorem.

Theorem 4.6 Given random vectors X and Y with K(X,Y ) = E[((Xt, Y t)−
(mt

X − mt
Y ))

t((Xt, Y t) − (mt
X − mt

Y ))], KY = E[(Y − mY )(Y − mY )
t],

KX = E[(X −mX)(X −mX)
t], KXY = E[(X −mX)(Y −mY )

t], KY X =
E[(Y −mY )(Y −mY )

t], assume that KX is invertible (e.g., it is positive
definite). Then

min
A,b

MMSE(A, b) = min
A,b

Tr
(
(Y −AX − b)(Y −AX − b)t

)

= Tr(KY −KY XK−1
X KXY ) (4.71)

and the minimimum is achieved by A = KY XK−1
X and b = E(Y )+AE(X).
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In particular, this result does not require that the vectors be jointly
Gaussian.

As in the Gaussian case, the results can be specialized to the situation
where Y = Xn and X = Xn and {Xn} is a weakly stationary process to
obtain that the optimal linear estimator of Xn given (X0, . . . , Xn−1) in the
sense of minimizing the mean squared error is

X̂n(X
n) = rt(K

(n)
X )−1Xn, (4.72)

where r is the n-dimensional vector

r =





KX(n)
KX(n− 1)

...
KX(1)




. (4.73)

The resulting minimum mean squared error (called the “linear least squares
error”) is

LLSE = σ2X − rt(K
(n)
X )−1r (4.74)

=
det(K

(n)
X )

det(K
(n−1)
X )

. (4.75)

a classical result of linear estimation theory. Note that the equation with the
determinant form does not require a Gaussian density, although a Gaussian
density was used to identify the first form with the deternminant form (both
being σ2Xn|Xn in the Gaussian case).

4.10 Correlation and Linear Estimation

As an example of the application of correlations, we consider a constrained
form of the minimum mean squared error estimation problem that provided
an application and interpretation for conditional expectation. A problem
with the earlier result is that in some applications the conditional expecta-
tion will be complicated or unknown, but the simpler correlation might be
known or at least one can approximate it based on observed data. While
the conditional expectation provides the optimal estimator over all possible
estimators, the correlation turns out to provide an optimal estimator over
a restricted class of estimators.

Suppose again that the value of X is observed and that a good estimate
of Y , say Ŷ (X) is desired. Once again the quality of an estimator will be
measured by the resulting mean squared error, but this time we do not
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allow the estimator to be an arbitrary function of the observation, it must
be a linear function of the form

Ŷ (x) = ax+ b, (4.76)

where a and b are fixed constants which are chosen to minimize the mean
squared error. Strictly speaking, this is an affine function rather than a
linear function, it is linear if b = 0. The terminology is common, however,
and we will use it.

The goal now is to find a and b which minimizes

E[(Y − Ŷ (X))2] = E[(Y − aX − b)2]. (4.77)

Rewriting the formula for the error in terms of the mean-removed random
variables yields for any a, b:

E
(
[Y − (aX + b)]2

)

= E
(
[(Y − EY )− a(X − EX)− (b− EY + aEX)]2

)

= σ2Y + a2σ2X + (b− EY + aEX)2 − 2aCOV (X,Y )

since the remaining cross products are all zero (why?). Since the first term
does not depend on a or b, minimizing the mean squared error is equivalent
to minimizing

a2σ2X + (b− EY + aEX)2 − 2aCOV (X,Y ).

First note that the middle term is nonnegative. Once a is chosen, this term
will be minimized by choosing b = EY − aEX, which makes this term 0.
Thus the best a must minimize a2σ2X − 2aCOV (X,Y ). A little calculus
shows that the minimizing a is

a =
COV (X,Y )

σ2X
(4.78)

and hence the best b is

b = EY − COV (X,Y )

σ2X
EX. (4.79)

The connection of second order moments and linear estimation also
plays a fundamental role in the vector analog to the problem of the previous
section, that is, in the estimation of a vector Y given an observed vector
X. The details are more complicated, but the basic ideas are essentially
the same.



226 CHAPTER 4. EXPECTATION AND AVERAGES

Unfortunately the conditional expectation is mathematically tractable
only in a few very special cases, e.g., the case of jointly Gaussian vectors.
In the Gaussian case the conditional expectation given X is formed by a
simple matrix multiplication on X with possibly a constant vector being
added; that is, the optimal estimate has a linear form. (As in the scalar case,
technically this is an affine form and not a linear form if a constant vector is
added.) Even when the random vectors are not Gaussian, linear predictors
or estimates are important because of their simplicity. Although they are
not in general optimal, they play an important role in signal processing.
Hence we next turn to the problem of finding the optimal linear estimate
of one vector given another.

Suppose as before that we are given an k-dimensional vector X and
wish to predict an m-dimensional vector Y . We now restrict ourselves to
estimates of the form

Ŷ = AX,

where the m × k-dimensional matrix A can be considered as a matrix of
k-dimensional row vectors atk; k = 0, · · · ,m− 1:

A = [a0, a2, · · · , am−1]
t

so that if Ŷ = (Ŷ0, · · · , Ŷm−1)t, then

Ŷi = atiX

and hence

ǫ2(Ŷ ) =

k∑

i=1

E[(Yi − atiX)2]. (4.80)

The goal is to find the matrix A that minimizes ǫ2, which can be con-
sidered as a function of the estimate Ŷ or of the matrix A defining the
estimate. We shall provide two separate solutions which are almost, but
not quite, equivalent. The first is constructive in nature: a specific A will
be given and shown to be optimal. The second development is descriptive:
without actually giving the matrix A, we will show that a certain property
is necessary and sufficient for the matrix to be optimal. That property is
called the orthogonality principle, and it states that the optimal matrix is
the one that causes the error vector Y − Ŷ to be orthogonal to (have zero
correlation with) the observed vector X. The first development is easier to
use because it provides a formula for A that can be immediately computed
in many cases. The second development is less direct and less immediately
applicable, but it turns out to be more general: the descriptive property can



4.10. CORRELATION AND LINEAR ESTIMATION 227

be used to derive A even when the first development is not applicable. The
orthogonality principal plays a fundamental role in all of linear estimation
theory.

The error ǫ2(A) is minimized if each term E[(Yi − atiX)2] is minimized
over ai since there is no interaction among the terms in the sum. We can do
no better when minimizing a sum of such positive terms than to minimize
each term separately. Thus the fundamental problem is the following sim-
pler one: Given a random vector X and a random variable (one-dimensional
or scalar vector) Y , we seek a vector a that minimizes

ǫ2(a) = E[(Y − atX)2]. (4.81)

One way to find the optimal a is to use calculus, setting derivatives of
ǫ2(a) to zero and verifying that the stationary point so obtained is a global
minimum. As previously discussed, variational techniques can be avoided
via elementary inequalities if the answer is known. We shall show that the
optimal a is a solution of

atRX = E(Y Xt), (4.82)

so that if the autocorrelation matrix defined by

RX = E[XXt] = {RX(k, i) = E(XkXi); k, i = 0, · · · , k − 1}

is invertible, then the optimal a is given by

at = E(Y Xt)R−1
X . (4.83)

To prove this we assume that a satisfies (4.83) and show that for any other
vector b

ǫ2(b) ≥ ǫ2(a). (4.84)

To do this we write

ǫ2(b) = E[(Y − btX)2] = E[(Y − atX + atX − btX)2]

= E[(Y − atX)2] + 2E[(Y − atX)(atX − btX)]

+ E[(atX − btX)2].

Of the final terms, the first term is just ǫ2(a) and the rightmost term is
obviously nonnegative. Thus we have the bound

ǫ2(b) ≥ ǫ2(a) + 2E[(Y − atX)(at − bt)X]. (4.85)
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The crossproduct term can be written as

2E[(Y − atX)(at − bt)X] = 2E[(Y − atX)Xt(a− b)]

= 2E[(Y − atX)Xt](a− b)

= 2
(
E[Y Xt]− atE[XXt]

)
(a− b)

= 2
(
E[Y Xt]− atRX

)
(a− b)

= 0 (4.86)

invoking (4.82). Combining this with (4.85) proves (4.84) and hence opti-
mality. Note that because of the symmetry of autocorrelation matrices and
their inverses, we can rewrite (4.83) as

a = R−1
X E[Y X]. (4.87)

Using the above result to perform a termwise minimization of (4.80) now
yields the following theorem describing the optimal linear vector predictor.

Theorem 4.7 The minimum mean squared error linear predictor of the
form Ŷ = AX is given by any solution A of the equation:

ARX = E(Y Xt).

If the matrix RX is invertible, then A is uniquely given by

At = R−1
X E[XY t],

that is, the matrix A has rows ati; i = 0, 1, . . . ,m, with

ai = R−1
X E[YiX].

Alternatively,

A = E[Y Xt]R−1
X . (4.88)

Having found the best linear estimate, it is easy to modify the develop-
ment to find the best estimate of the form

Ŷ (X) = AX + b, (4.89)

where now we allow an additional constant term. This is also often called
a linear estimate, although as previously noted it is more correctly called
an affine estimate because of the extra constant vector term. As the end
result and proof strongly resemble the linear estimate result, we proceed
directly to the theorem.
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Theorem 4.8 The minimum mean squared estimate of the form Ŷ =
AX + b is given by any solution A of the equation:

AKX = E[(Y − E(Y ))(X − E(X))t] (4.90)

where the covariance matrix KX is defined by

KX = E[(X − E(X))(X − E(X))t] = RX−E(X),

and
b = E(Y )−AE(X).

If KX is invertible, then

A = E[(Y − E(Y ))(X − E(X))t]K−1
X . (4.91)

Note that if X and Y have zero means, then the result reduces to the
previous result; that is, affine predictors offer no advantage over linear
predictors for zero mean random vectors. To prove the theorem, let C be
any matrix and d any vector (both of suitable dimensions) and note that

E(‖Y − (CX + d)‖2)
= E(‖(Y − E(Y ))− C(X − E(X)) + E(Y )− CE(X)− d‖2)
= E(‖(Y − E(Y ))− C(X − E(X))‖2)

+ E(‖E(Y )− CE(X)− d‖2)
+ 2E[Y − E(Y )− C(X − E(X))]t[E(Y )− CE(X)− d].

From Theorem 4.7, the first term is minimized by choosing C = A,
where A is a solution of (4.90); also, the second term is the expectation of
the squared norm of a vector that is identically zero if C = A and d = b,
and similarly for this choice of C and d the third term is zero. Thus

E(‖Y − (CX + d)‖2) ≥ E(‖Y − (AX + b)‖2).
✷

We often restrict interest to linear estimates by assuming that the var-
ious vectors have zero mean. This is not always possible, however. For
example, groups of pixels in a sampled image intensity raster can be used
to predict other pixel groups, but pixel values are always nonnegative and
hence always have nonzero means. Hence in some problems affine predictors
may be preferable. Nonetheless, we will often follow the common practice
of focusing on the linear case and extending when necessary. In most stud-
ies of linear prediction it is assumed that the mean is zero, i.e., that any
dc value of the process has been removed. If this assumption is not made,
linear estimation theory is still applicable but will generally give inferior
performance to the use of affine prediction.
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The Orthogonality Principle

Although we have proved the form of the optimal linear predictor of one
vector given another, there is another way to describe the result that is
often useful for deriving optimal linear predictors in somewhat different
situations. To develop this alternative viewpoint we focus on the error
vector

e = Y − Ŷ . (4.92)

Rewriting (4.92) as Y = Ŷ + e points out that the vector Y can be consid-
ered as its estimate plus an error or “noise” term. The goal of an optimal
predictor is then to minimize the error energy ete =

∑k−1
n=0 e2n. If the esti-

mate is linear, then
e = Y −AX.

As with the basic development for the linear predictor, we simplify
things for the moment and look at the scalar prediction problem of pre-
dicting a random variable Y by Ŷ = atX yielding a scalar error of e =
Y − Ŷ = Y − atX. Since we have seen that the overall mean squared error
E[ete] in the vector case is minimized by separately minimizing each com-
ponent E[e2k], we can later easily extend our results for the scalar case to
the vector case.

Suppose that a is chosen optimally and consider the crosscorrelation
between an arbitrary error term and the observable vector:

E[(Y − Ŷ )X] = E[(Y − atX)X]

= E[Y X]− E[X(Xta)]

= E[Y X]−RXa = 0

using (4.82).
Thus for the optimal predictor, the error satisfies

E[eX] = 0,

or, equivalently,

E[eXn] = 0; n = 0, · · · , k. (4.93)

When two random variables e and X are such that their expected prod-
uct E(eX) is 0, they are said to be orthogonal and we write

e ⊥ X.

We have therefore shown that the optimal linear estimate of a scalar random
variable given a vector of observations causes the error to be orthogonal to
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all of the observables and hence orthogonality of error and observations is
a necessary condition for optimality of a linear estimate.

Conversely, suppose that we know a linear estimate a is such that it
renders the prediction error orthogonal to all of the observations. Arguing
as we have before, suppose that b is any other linear predictor vector and
observe that

ǫ2(b) = E[(Y − btX)2]

= E[(Y − atX + atX − btX)2]

≥ ǫ2(a) + 2E[(Y − atX)(atX − btX)],

where the equality holds if b = a. Letting e = Y − atX denote the error
resulting from an a that makes the error orthogonal with the observations,
the rightmost term can be rewritten as

2E[e(atX − btX)] = 2(at − bt)E[eX] = 0.

Thus we have shown that ǫ2(b) ≥ ǫ2(a) and hence no linear estimate can
outperform one yielding an error orthogonal to the observations and hence
such orthogonality is sufficient as well as necessary for optimality.

Since the optimal estimate of a vector Y given X is given by the com-
ponentwise optimal predictions given X, we have thus proved the following
alternative to Theorem 4.7.

Theorem 4.9 The Orthogonality Principle:
A linear estimate Ŷ = AX is optimal (in the in the mean squared

error sense) sense) if and only if the resulting errors are orthogonal to the
observations, that is, if e = Y −AX, then

E[ekXn] = 0; k = 1, · · · ,K; n = 1, · · · , N.

4.11 Correlation and Covariance Functions

We turn now to correlation in the framework of random processes. The
notion of an iid random process can be generalized by specifying the com-
ponent random variables to be merely uncorrelated rather than indepen-
dent. Although requiring the random process to be uncorrelated is a much
weaker requirement, the specification is sufficient for many applications, as
will be seen in several ways. In particular, in this chapter, the basic laws
of large numbers require only the weaker assumption and hence are more
general than they would be if independence were required. To define the
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class of uncorrelated processes, it is convenient to introduce the notions of
autocorrelation functions and covariance functions of random processes.

Given a random process {Xt; t ∈ T }, the autocorrelation function
RX(t, s); t, s ∈ T is defined by

RX(t, s) = E(XtXs) ; all t, s ∈ T .

The autocovariance function or simply the covariance function KX(t, s);
t, s,∈ T is defined by

KX(t, s) = COV (Xt, Xs) .

Observe that (4.19) relates the two functions by

KX(t, s) = RX(t, s)− (EXt)(EXs) . (4.94)

Thus the autocorrelation and covariance functions are equal if the process
has zero mean, that is, if EXt = 0 for all t. The covariance function of a
process {Xt} can be viewed as the autocorrelation function of the process
{Xt −EXt} formed by removing the mean from the given process to form
a new process having zero mean.

The autocorrelation function of a random process is given by the cor-
relation of all possible pairs of samples; the covariance function is the co-
variance of all possible pairs of samples. Both functions provide a measure
of how dependent the samples are and will be seen to play a crucial role
in laws of large numbers. Note that both definitions are valid for random
processes in either discrete time or continuous time and having either a
discrete alphabet or a continuous alphabet.

In terms of the correlation function, a random process {Xt; t ∈ T } is
said to be uncorrelated if

RX(t, s) =

{
E(X2

t ) if t = s

EXtEXs if t 
= s

or, equivalently, if

KX(t, s) =

{
σ2Xt

if t = s

0 if t 
= s

The reader should not overlook the obvious fact that if a process is iid
or uncorrelated, the random variables are independent or uncorrelated only
if taken at different times. That is, Xt and Xs will not be independent
or uncorrelated when t = s, only when t 
= s (except, of course, in such
trivial cases as that where {Xt} = {at}, a sequence of constants where
E(XtXt) = atat = EXtEXt and hence Xt is uncorrelated with itself).



4.11. CORRELATION AND COVARIANCE FUNCTIONS 233

Gaussian Processes Revisited

Recall from chapter 3 that a Gaussian random process {Xt; t ∈ T } is
completely described by a mean function {mt; t ∈ T } and a covariance
function {Λ(t, s); t, s ∈ T }. As one might suspect, the names of these
functions come from the fact that they are indeed the mean and covariance
functions as defined in terms of expectations, i.e.,

mt = EXt (4.95)

Λ(t, s) = KX(t, s). (4.96)

The result for the mean follows immediately from our computation of the
mean of a Gaussian N(m,σ2) random variable. The result for the covari-
ance can be derived by brute force integration (not too bad if the integrator
is well versed in matrix transformations of multidimensional integrals) or
looked up in tables somewhere. The computation is tedious and we will
simply state the result without proof. The multidimensional characteristic
functions to be introduced later can be used to a relatively simple proof,
but again it is not worth the effort to fill in the details.

A more important issue is the properties that were required for a co-
variance function when the Gaussian process was defined. Recall that it
was required that the covariance function of the process be symmetric, i.e.,
KX(t, s) = KX(s, t), and positive definite, i.e., given any positive integer
k, any collection of sample times {t0, . . . , tk−1}, and any k real numbers
ai; i = 0, . . . , k − 1 (not all 0), then

n−1∑

i=0

n−1∑

l=0

aialKX(ti, tl) ≥ 0. (4.97)

We now return to these conditions to see if they are indeed necessary con-
ditions for all covariance functions, Gaussian or not.

Symmetry is easy. It immediately follows from the definitions that

KX(t, s) = E[(Xt − EXt)(Xs − EXs)]

= E[(Xs − EXs)(Xt − EXt)]

= KX(s, t) (4.98)

and hence clearly all covariance functions are symmetric, and so are co-
variance matrices formed by sampling covariance functions. To see that
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positive definiteness is indeed almost a requirement, consider the fact that

n−1∑

i=0

n−1∑

l=0

aialKX(ti, tl) =

n−1∑

i=0

n−1∑

l=0

aialE[(Xti − EXti)(Xtl − EXtl)]

= E

(
n−1∑

i=0

n−1∑

l=0

aial(Xti − EXti)(Xtl − EXtl)

)

= E

(
|
n−1∑

i=0

ai(Xti − EXti)|2
)

≥ 0. (4.99)

Thus any covariance function KX must at least be nonnegative definite,
which implies that any covariance matrix matrix formed by sampling the
covariance function must also be nonnegative definite. Thus nonnegative
definiteness is necessary for a covariance function and our requirement for a
Gaussian process was only slightly stronger that what was needed. We will
later see how to define a Gaussian process when the covariance function is
only nonnegative definite and not necessarily positive definite.

A slight variation on the above argument shows that ifX = (X0, . . . , Xk−1)t

is any random vector, then the covariance matrix Λ = {λi,l; i, l ∈ Zk} de-
fined by λi,l = E[(Xi − EXi)(Xl − EXl)] must also be symmetric and
nonnegative definite. This was the reason for assuming that the covariance
matrix for a Gaussian random vector had at least these properties.

We make two important observations before proceeding. First, remem-
ber that the four basic properties of expectation have nothing to do with
independence. In particular, whether or not the random variables involved
are independent or uncorrelated, one can always interchange the expecta-
tion operation and the summation operation (property 3), because expec-
tation is linear. On the other hand, one cannot interchange the expectation
operation with the product operation (this is not a property of expectation)
unless the random variables involved are uncorrelated, e.g., when they are
independent. Second, an iid process is also a discrete time uncorrelated
random process with identical marginal distributions. The converse state-
ment is not true in general; that is, the notion of an uncorrelated process is
more general than that of an iid process. Correlation measures only a weak
pairwise degree of independence. A random process could even be pairwise
independent (and hence uncorrelated) but still not be iid (problem 4.28).
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4.12 ⋆The Central Limit Theorem

The characteristic function of a sum of iid Gaussian random variables has
been shown to also be Gaussian and linear combinations of jointly Gaussian
variables have also be shown to be Gaussian. Far more surprising is that the
characteristic function of the sum of many non-Gaussian random variables
turns out to be approximately Gaussian if the variables are suitably scaled
and shifted. This result is called the central limit theorem and is the one of
the primary reasons for the importance of Gaussian distributions. When a
large number of effects are added up with suitable scaling and shifting, the
resulting random variable looks Gaussian even if the underlying individual
effects are not at all Gaussian. This result is developed in this subsection.

Just as with laws of large numbers, there is no single central limit the-
orem — there are many versions of central limit theorems. The various
central limit theorems differ in the conditions of applicability. However,
they have a common conclusion: the distribution or characteristic function
of the sum of a collection of random variables converges to that of a Gaus-
sian random variable. We will present only the simplest form of central
limit theorem, a central limit theorem for iid random variables.

Suppose that {Xn} is an iid random process with a common distribution
FX described by a pmf or pdf except that it has a finite mean EXn = m
and finite variance σ2Xn

= σ2. It will also be assumed that the characteristic
function MX(ju) is well behaved for small u in a manner to be made precise.
Consider the “standardized” or “normalized” sum

Rn =
1

n1/2

n−1∑

k=0

Xi −m

σ
. (4.100)

By subtracting the means and dividing by the square root of the variance
(the standard deviation), the resulting random variable is easily seen to have
zero mean and unit variance; that is,

ERn = 0 , σ2Rn
= 1 ,

hence the description “standardized,” or “normalized.” Note that unlike
the sample average that appears in the law of large numbers, the sum here
is normalized by n−1/2 and not n−1.

Using characteristic functions, we have from the independence of the
{Xi} and lemma 4.1 that

MRn(ju) = M(X−m)/σ

(
ju

n1/2

)n
. (4.101)
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We wish to investigate the asymptotic behavior of the characteristic
function of (4.101) as n → ∞. This is accomplished by assuming that σ2

is finite and applying the approximation of of (4.16) to M(X−m)/σ
(
ju

n−1/2

)n

and then finding the limiting behavior of the expression. Let Y = (X −
m)/σ. Y has zero mean and a second moment of 1, and hence from (4.16)

M(X−m)/σ(jun1/2) = 1− u2

2n
+ o(u2/n) , (4.102)

where the rightmost term goes to zero faster than u2/n. Combining this
result with (4.101) produces

lim
n→∞

MRn
(ju) = lim

n→∞

[
1− u2

2n
+ o

(
u2

n

)]n
.

From elementary real analysis, however, this limit is

lim
n→∞

MRn
(ju) = e−(u

2/2) ,

the characteristic function of a Gaussian random variable with zero mean
and unit variance! Thus, provided that (4.102) holds, a standardized sum
of a family of iid random variables has a transform that converges to the
transform of a Gaussian random variable regardless of the actual marginal
distribution of the iid sequence.

By taking inverse transforms, the convergence of transforms implies that
the cdf’s will also converge to a Gaussian cdf (provided some technical con-
ditions are satisfied to ensure that the operations of limits and integration
can be exchanged). This does not imply convergence to a Gaussian pdf ,
however, because, for example, a finite sum of discrete random variables
will not have a pdf (unless one resorts to Dirac delta functions). Given
a sequence of random variables Rn with cdf Fn and a random variable R
with distribution F , then if limn→∞ Fn(r) = F (r) for all real r, we say
that Rn converges to R in distribution. Thus the central limit theorem
states that under certain conditions, sums of iid random variables adjusted
to have zero mean and unit variance converge in distribution to a Gaussian
random variable with the same mean and variance.

A slight modification of the above development shows that if {Xn} is
an iid sequence with mean m and variance σ2, then

n−1/2
n−1∑

k=0

(Xi −m)

will have a transform and a cdf converging to those of a Gaussian random
variable with mean 0 and variance σ2. We summarize the central limit
theorem that we have established as follows.



4.13. SAMPLE AVERAGES 237

Theorem 4.10 (A Central Limit Theorem). Let {Xn} be an iid ran-
dom process with a finite mean m and variance σ2. Then

n1/2
n−1∑

k=0

(Xi −m)

converges in distribution to a Gaussian random variable with mean m and
variance σ2.

Intuitively the theorem states that if we sum up a large number of in-
dependent random variables and normalize by n−1/2 so that the variance
of the normalized sum stays constant, then the resulting sum will be ap-
proximately Gaussian. For example, a current meter across a resistor will
measure the effects of the sum of millions of electrons randomly moving
and colliding with each other. Regardless of the probabilistic description of
these micro-events, the global current will appear to be Gaussian. Making
this precise yields a model of thermal noise in resistors. Similarly, if dust
particles are suspended on a dish of water and subjected to the random
collisions of millions of molecules, then the motion of any individual par-
ticle in two dimensions will appear to be Gaussian. Making this rigorous
yields the classic model for what is called “Brownian motion.” A similar
development in one dimension yields the Wiener process.

Note that in (4.101), if the Gaussian characteristic function is substi-
tuted on the right-hand side, a Gaussian characteristic function appears on
the left. Thus the central limit theorem says that if you sum up random
variables, you approach a Gaussian distribution. Once you have a Gaussian
distribution, you “get stuck” there — adding more random variables of the
same type (or Gaussian random variables) to the sum does not change the
Gaussian characteristic. The Gaussian distribution is an example of an in-
finitely divisible distribution. The nth root of its characteristic function is
a distribution of the same type as seen in (4.101). Equivalently stated, the
distribution class is invariant under summations.

4.13 Sample Averages

In many applications, engineers analyze the accuracy of estimates, the prob-
ability of detector error, etc., as a function of the amount of data available.
This and the next sections are a prelude to such analyses. They also pro-
vide some very good practice manipulating expectations and a few results
of interest in their own right.

In this section we study the behavior of the arithmetic average of the
first n values of a discrete time random process with either a discrete or a
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continuous alphabet. Specifically, the variance of the average is considered
as a function of n.

Suppose we are given a process {Xn}. The sample average of the first

n values of {Xn} is Sn = n−1
n−1∑

i=0

Xi. The mean of Sn is found easily using

the linearity of expectation (expectation property 3) as

ESn = E

[
n−1

n−1∑

i=0

Xi

]
= n−1

n−1∑

i=0

EXi . (4.103)

Hence the mean of the sample average is the same as the average of the
mean of the random variables produced by the process. Suppose now that
we assume that the mean of the random variables is a constant, EXi = X
independent of i. Then ESn = X. In terms of estimation theory, if one
estimates an unknown random process mean, X, by Sn, then the estimate
is said to be unbiased because the expected value of the estimate is equal to
the value being estimated. Obviously an unbiased estimate is not unique, so
being unbiased is only one desirable characteristic of an estimate (problem
4.25).

Next consider the variance of the sample average:

σ2Sn

∆
= E[(Sn − E(Sn))

2]

= E




(

n−1
n−1∑

i=0

Xi − n−1
n−1∑

i=0

EXi

)2



= E




(

n−1
n−1∑

i=0

(Xi − EXi)

)2



= n−2
n−1∑

i=0

n−1∑

j=0

E[(Xi − EXi)(Xj − EXj)] .

The reader should be certain that the preceding operations are well under-
stood, as they are frequently encountered in analyses. Note that expanding
the square requires the use of separate dummy indices in order to get all
of the cross products. Once expanded, linearity of expectation permits the
interchange of expectation and summation.

Recognizing the expectation in the sum as the covariance function, the
variance of the sample average becomes

σ2Sn
= n−2

n−1∑

i=0

n−1∑

j=0

KX(i, j) . (4.104)
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Note that so far we have used none of the specific knowledge of the pro-
cess, i.e., the above formula holds for general discrete time processes and
does not require such assumptions as time-constant mean, time-constant
variance, identical marginal distributions, independence, uncorrelated pro-
cesses, etc. If we now use the assumption that the process is uncorrelated,
the covariance becomes zero except when i = j, and expression (4.104)
becomes

σ2Sn
= n−2

n−1∑

i=0

σ2Xi
. (4.105)

If we now also assume that the variances σ2Xi
are equal to some constant

value σ2X for all times i, e.g., the process has identical marginal distributions
as for an iid process, then the equations become

σ2Sn
= n−1σ2X . (4.106)

Thus, for uncorrelated discrete time random processes with mean and
variance not depending on time, the sample average has expectation equal
to the (time-constant) mean of the process, and the variance of the sample
average tends to zero as n→∞. Of course we have only specified sufficient
conditions. Expression (4.104) goes to zero with n under more general
circumstances, as we shall see later.

For now, however, we stick with uncorrelated process with mean and
variance independent of time and require only a definition to obtain our
first law of large numbers, a result implicit in equation (4.106).

4.14 Convergence of Random Variables

The preceding section demonstrated a form of convergence for the sequence
of random variables, {Sn}, the sequence of sample averages, that is different
from convergence as it is seen for a nonrandom sequence. To review, a
nonrandom sequence {xn} is said to converge to the limit x if for every ǫ > 0
there exists an N such that |xn − x| < ǫ for every n > N . The preceding
section did not see Sn converge in this sense. Nothing was said about the
individual realizations Sn(ω) as a function of ω. Only the variance of the
sequence σ2Sn

was shown to converge to zero in the usual ǫ, N sense. The
variance calculation probabilistically averages across ω. For any particular
ω, the realization Sn may, in fact, not converge to zero.

Thus, in order to make precise the notion of convergence of sample
averages to a limit, we need to make precise the notion of convergence of a
sequence of random variables. In this section we will describe four notions
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of convergence of random variables. These are perhaps the most commonly
encountered, but they are by no means an exhaustive list. The common
goal is to quantify a useful definition for saying that a sequence of random
variables, say Yn, n = 1, 2, . . . , converges to a random variable Y , which
will be considered the limit of the sequence. Our main application will
be the case where Yn = Sn, a sample average of n samples of a random
process, and Y is the expectation of the samples, that is, the limit is a
trivial random variable, a constant.

The most straightforward generalization of the usual idea of a limit to
random variables is easy to define, but virtually useless. If for every sample
point ω we had limn→∞ Yn(ω) = Y (ω) in the usual sense of convergence of
numbers, then we could say that Yn converges pointwise to Y , that is, for
every sample point in the sample space. Unfortunately it is rarely possible
to prove so strong a result, nor is it necessary.

A slight variation of this yields a far more important important notion
of convergence. A sequence of random variables Yn, n = 1, 2, . . . , is said
to converge to a random variable Y with probability one or convergence
w.p. 1 if the set of samples points ω such that limn→∞ Yn(ω) = Y (ω) is
an event with probability one. Thus a sequence converges with probability
one if it converges pointwise on a set of probability one, it can do anything
outside of that set, e.g., converge to something else or not converge at
all. Since the total probability of all such bad sequences is 0, this has no
practical significance. Although the easiest useful concept of convergence
to define, it is the most difficult to work with and most proofs involving
convergence with probability are far beyond the mathematical prerequisites
and capabilities of this course. Hence we will focus on two other notions
of convergence that are perhaps less intuitive to understand, but are far
easier to use when proving results. First note, however, that there are
many equivalent names for convergence with probability one. It is often
called convergence almost surely and abbreviated a.s. or convergence almost
everywhere and abbreviated a.e. Convergence with probability one will not
be considered in any depth here, but some toy examples will be considered
in the problems to help get the concept across.

Henceforth two definitions of convergence of random variables will be
emphasized, both well suited to the type of results developed here (and
one that is used in the first such results, Bernoulli’s weak law of large
numbers for iid random processes). The first is convergence in mean square,
convergence of the type seen in the last section, which leads to a result called
a mean ergodic theorem. The second is called convergence in probability,
which is implied by the first and leads to a result called the weak law of
large numbers. The second result will follow from the first via a simple but
powerful inequality relating probabilities and expectations.
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A sequence of random variables Yn; n = 1, 2, . . . is said to converge in
mean square or converge in quadratic mean to a random variable Y if

lim
n→∞

E[(Yn − Y )2] = 0 .

This is also written Yn → Y in mean square or Yn → Y in quadratic mean.
If Yn converges to Y in mean square, we state this convergence mathe-

matically by writing
l.i.m.
n→∞

Yn = Y ,

where lim is an acronym for “limit in the mean.” Although it is likely not
obvious to the novice, it is important to understand that convergence in
mean square does not imply convergence with probability one. Examples
converging in one sense and not the other may be found in problem 32

Thus a sequence of random variables converges in mean square to an-
other random variable if the second moment of the difference converges to
zero in the ordinary sense of convergence of a sequence of real numbers. Al-
though the definition encompasses convergence to a random variable with
any degree of “randomness,” in most applications that we shall encounter
the limiting random variable is a degenerate random variable, i.e., a con-
stant. In particular, the sequence of sample averages, {Sn}, of the preceding
section is next seen to converge in this sense.

The final notion of convergence bares a strong resemblance to the notion
of convergence with probability one, but the resemblance is a faux ami, the
two notions are fundamentally different. A sequence of random variables
Yn; n = 1, 2, . . . is said to converge in probability to a random variable Y
if for every ǫ > 0,

lim
n→∞

Pr(|Yn − Y | > ǫ) = 0 .

Thus a sequence of random variables converges in probability if the proba-
bility that the nth member of the sequence differs from the limit by more
than an arbitrarily small ǫ goes to zero as n → ∞. Note that just as
with convergence in mean square, convergence in probability is silent on
the question of convergence of individual realizations Yn(ω). You could,
in fact, have no realizations converge individually and yet have conver-
gence in probability. All convergence in probability states is that at each
n, Pr(ω : |Yn(ω) − Y (ω)| > ǫ) tends to zero with n. Suppose at time n
a given subset of Ω satisfies the inequality, at time n + 2 still a different
subset satisfies the inequality, etc. As long as the subsets have diminishing
probability, convergence in probability can occur without convergence of
the individual sequences.

Also, as in convergence in the mean square sense, convergence in prob-
ability is to a random variable in general, but this includes the most inter-
esting case of a degenerate random variable — i.e., a constant.
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The two notions of convergence — convergence in mean square and
convergence in probability — can be related to each other via simple, but
important, inequalities. It will be seen that convergence in mean square
is the stronger of the two notions; that is, if it converges in mean square,
then it also converges in probability, but not necessarily vice versa. The
two inequalities are slight variations on each other, but they are stated
separately for clarity and both an elementary and a more elegant proof are
presented.
The Tchebychev Inequality
Suppose that X is a random variable with mean mX , and variance σ2X .

Then

Pr(|X −mX | > ǫ) ≤ σ2X
ǫ2

. (4.107)

We prove the result here for the discrete case. The continuous case is
similar (and can be inferred from the more general proof of the Markov
inequality to follow.)

The result follows from a sequence of inequalities.

σ2X = E[(X −mX)
2]

=
∑

x

(x−mX)
2pX(x)

=
∑

x:|x−mX |≤ǫ
(x−mX)

2pX(x) +
∑

x:|x−mX |>ǫ
(x−mX)

2pX(x)

≥
∑

x:|x−mX |>ǫ
(x−mX)

2pX(x)

> ǫ2
∑

x:|x−mX|>ǫ
pX(x)

= ǫ2 Pr(|X −mX | > ǫ).

Note that the Tchebychev inequality implies that

Pr(|V − V | ≥ γσV ) ≤
1

γ2
,

that is, the probability that V is farther from its mean by more than γ
times its standard deviation (the square root of its variance) is no greater
than γ−2.

The Markov Inequality. Given a nonnegative random variable U
with finite expectation EU , for any a > 0 we have

Pr(U ≥ a) = PU ([a,∞)) ≤ EU

a
.
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Proof: The result can be approved in the same manner as the Tcheby-
chev inequality by separate consideration of the discrete and continuous
cases. Here we give a more general proof. Fix a > 0 and set F = {u :
u ≥ a}. Let 1F (u) be the indicator of the function F , 1 if u ≥ a and 0
otherwise. Then since F ∩F c = and F ∪F c = Ω, we have using the linearity
of expectation and the fact that U ≥ 0 with probability one that

E[U ] = E[U(1F (U) + 1F c(U))]

= E[U(1F (U))] + E[U1F c(U))]

≥ E[U(1F (U))] ≥ aE[1F (U)]

= aP (F ).

completing the proof.

Observe that if a random variable U is nonnegative and has small ex-
pectation, say EU ≤ ǫ, then the Markov inequality with a =

√
ǫ implies

that

Pr(U ≥ √ǫ ) ≤ √ǫ .

This can be interpreted as saying that the random variable can take on
values greater that

√
ǫ no more than

√
ǫ of the time.

Before applying this result, we pause to present a second proof of the
Markov inequality that has a side result of some interest in its own right.
As before assume that ≥ 0. Assume for the moment that U is continuous
so that

E[U ] =

∫ ∞

0

xfX(x) dx.

Consider the admittedly strange looking equality

x =

∫ ∞

0

1[α,∞)(x) dα,

which follows since the integrand is 1 if and only if α ≤ x and hence
integrating 1 as α ranges from 0 to x yields x. Plug this equality into
the previous integral expression for expectation and changing the order of
integration yields

E[U ] =

∫ ∞

0

(∫ ∞

0

1[α,∞)(x) dα

)
fX(x) dx

=

∫ ∞

0

(∫ ∞

0

1[α,∞)(x)fX(x) dx

)
dα,



244 CHAPTER 4. EXPECTATION AND AVERAGES

which can be expressed as

E[U ] =

∫ ∞

0

Pr(U > α) dα =

∫ ∞

0

(1− FU (α)) dα. (4.108)

This result immediately gives the Markov inequality since for any fixed
a > 0,

E[U ] =

∫ ∞

0

Pr(U > α) dα ≥ aPr(U > a).

To see this, Pr(U > α) is monotonically nonincreasing with α, so for all
α ≤ a we must have Pr(U > α) ≥ Pr(U > a) (and for other α Pr(U > α) ≥
0). Plugging the bound into the integral yields the claimed inequality.

Lemma 4.3 If Yn converges to Y in mean square, then it also converges
in probability.

Proof. From the Markov inequality applied to |Yn − Y |2, we have for
any ǫ > 0

Pr(|Yn − Y | > ǫ) = Pr(|Yn − Y |2 > ǫ2) ≤ E(|Yn − Y |2)
ǫ2

.

The right-hand term goes to zero as n→∞ by definition of convergence in
mean square.

Although convergence in mean square implies convergence in probabil-
ity, the reverse statement cannot be made; i.e., they are not equivalent.
This is shown by a simple counterexample. Let Yn be a discrete random
variable with pmf.

pYn =

{
1− 1/n if y = 0

1/n if y = n .

Convergence in probability to zero without convergence in mean square is
easily verified. In particular, the sequence converges in probability since
Pr[|Yn − 0| > ǫ] = Pr[Yn > 0] = 1/n, which goes to 0 as n → ∞. On the
other hand, E[|Yn − 0|2] would have to go to 0 for Yn to converge to 0 in
mean square, but it is E[Y 2n ] = 0(1 − 1/n) + n2/n = n, which does not
converge to 0 as n→∞.

4.15 Weak Law of Large Numbers

We now have the definitions and preliminaries to prove laws of large num-
bers showing that sample averages converge to the expectation of the in-
dividual samples. The basic (and classical) results hold for uncorrelated
random processes with constant variance.
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A Mean Ergodic Theorem

Theorem 4.11 Let {Xn} be a discrete time uncorrelated random process
such that EXn = X is finite and σ2Xn

= σ2X < ∞ for all n; that is, the
mean and variance are the same for all sample times. Then

l.i.m.
n→∞

1

n

n−1∑

i=0

Xi = X ,

that is,
1

n

n−1∑

i=0

Xi → X in mean square.

Proof. The proof follows directly from the last section with Sn =

1

n

n−1∑

i=0

Xi, ESn = EXi = X. To summarize from (4.106),

lim
n→∞

E[(Sn −X)2] = lim
n→∞

E[(Sn − ESn)
2]

= lim
n→∞

σ2Sn

= lim
n→∞

σ2X
n

= 0 .

This theorem is called a mean ergodic theorem because it is a special case
of the more general mean ergodic theorem — it is a special case since it
holds only for uncorrelated random processes. We shall later consider more
general results along this line, but this simple result and the one to follow
provide the basic ideas.

Combining lemma 4.3 with the mean ergodic theorem 4.11 yields the
following famous result, one of the original limit theorems of probability
theory:

Theorem 4.12 The Weak Law of Large Numbers.
Let {Xn} be a discrete time process with finite mean EXn = X and

variance σ2Xn
= σ2X < ∞ for all n. If the process is uncorrelated, then the

sample average n−1
n−1∑

i=0

Xi converges to X in probability.

An alternative means of describing a law of large numbers is to define the
limiting time-average or sample average of a sequence of random variables
{Xn} by

< Xn >= lim
n→∞

1

n
n−1

n−1∑

i=0

Xi, (4.109)
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if the limit exists in any of the manners considered, e.g., in mean square,
in probability, or with probability 1. Note that ordinarily the limiting time
average must be considered as a random variable since it is function of
random variables. Laws of large numbers then provide conditions under
which

< Xn >= E(Xk), (4.110)

which requires that < Xn > not be a random variable, i.e., that it be a
constant and not vary with the underlying sample point ω, and that E(Xk)
not depend on time, i.e., that it be a constant and not vary with time k.

The best-known (and earliest) application of the weak law of large num-
bers is to iid processes such as the Bernoulli process. Note that the iid
specification is not needed, however. All that is used for the weak law of
large numbers is constant means, constant variances, and uncorrelation.
The actual distributions could be time varying and dependent within these
constraints. The weak law is called weak because convergence in probabil-
ity is one of the weaker forms of convergence. Convergence of individual
realizations of the random process is not assured. This could be very an-
noying because in many practical engineering applications, we have only
one realization to work with (i.e., only one ω), and we need to calculate
averages that converge as determined by actual calculations, e.g., with a
computer.

The strong law of large numbers considers convergence with probability
one. Such strong theorems are much harder to prove, but fortunately are
satisfied in most engineering situations.

The astute reader may have noticed the remarkable difference in be-
havior caused by the apparently slight change of division by

√
n instead

of n when normalizing sums of iid random variables. In particular, if
{Xn} is a zero mean process with unit variance, then the weighted sum

n−1/2∑n−1
k=0 Xk converges to a Gaussian random variable in some sense be-

cause of the central limit theorem, while the weighted sum n−1∑n−1
k=0 Xk

converges to a constant, the mean 0 of the individual random variables!

4.16 ⋆Strong Law of Large Numbers

The strong law of large numbers replaces the convergence in probability
of the weak law with convergence with probability one. It will shortly
be shown that convergence with probability one implies convergence in
probability, so the “strong” law is indeed stronger than the “weak” law.
Although the two terms sound the same, they are really quite different.
Convergence with probability one applies to individual realizations of the
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random process, while convergence in probability does not. Convergence
with probability one is closer to the usual definition of convergence of a
sequence of numbers since it says that for each sample point ω, the limiting
sample average limn→∞ n−1∑∞

n=1Xn exists in the usual sense for all ω
in a set of probability one. Although a more satisfying notion of conver-
gence, it is notably harder to prove than the weaker result and hence we
consider only the special case of iid sequences, where the added difficulty
is moderate. In this section convergence with probability one is consid-
ered and a strong law of large numbers is proved. The key new tools are
the Borel-Cantelli lemma, which provides a condition ensuring convergence
with probability one, and the Chernoff inequality, an improvement on the
Tchebychev inequality which is a simple result of the Markov inequality.

Lemma 4.4 If Yn converges to Y with probability one, then it also con-
verges in probability.

Proof: Given an ǫ > 0, define the sequence of sets

Fn(ǫ) = {ω : |Ym(ω)− Y (ω)| > ǫ for some m ≥ n}.

The Fn(ǫ) form a decreasing sequence of sets as n grows, that is, Fn ⊂ Fn−1
for all n. Thus Pr(Fn) is nonincreasing in n and hence it must converge to
some limit. From the definition of convergence with probability one, this
limit must be 0 since if Yn(ω) converges to Y (ω), given ǫ there must be an
n such that for all m ≥ n |Yn(ω)− Y (ω)| < ǫ. Thus

lim
n→∞

Pr(|Yn − Y | > ǫ) ≤ lim
n→∞

Pr(Fn(ǫ)) = 0,

which establishes convergence in probability.
Convergence in probability does not imply convergence with probability

one; i.e., they are not equivalent. This can be shown by counterexample
(problem 32). There is, however, a test that can be applied to determine
convergence with probability one. The result is one form of a result known
as the first Borel-Cantelli lemma..

Lemma 4.5 Yn converges to Y with probability one if for any ǫ > 0

∞∑

n=1

Pr(|Yn − Y | > ǫ) <∞. (4.111)

Proof: Consider two collections of bad sequences. Let F (ǫ) be the set of
all ω such that the corresponding sequence sequence Yn(ω) does not satisfy
the convergence criterion, i.e.,

F (ǫ) = {ω : |Yn − Y | > ǫ, for some n ≥ N, for any N <∞}.
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F (ǫ) is the set of points for which the sequence does not converge. Consider
also the simpler sets where things look bad at a particular time:

Fn(ǫ) = {ω : |Yn − Y | > ǫ}.

The complicated collection of points with nonconvergent sequences can be
written as a subset of the union of all of the simpler sets:

F (ǫ) ⊂
∞⋃

n≥N
Fn(ǫ) ≡ GN (ǫ))

for any finite N . This in turn implies that

Pr(F (ǫ)) ≤ Pr(

∞⋃

n≥N
Fn(ǫ)).

From the union bound this implies that

Pr(F (ǫ)) ≤
∞∑

n=N

Pr(Fn(ǫ)).

By assumption
∞∑

n=0

Pr(Fn(ǫ)) <∞,

which implies that

lim
N→∞

∞∑

n=N

Pr(Fn(ǫ)) = 0

and hence Pr(F (ǫ)) = 0, proving the result.

Convergence with probability one does not imply — nor is it implied
by — convergence in mean square. This can be shown by counterexamples
(problem 32).

We now apply this result to sample averages to obtain a strong law of
large numbers for an iid random process {Xn}. For simplicity we focus on
a zero mean Gaussian iid process and prove that with probability one

lim
n→∞

Sn = 0

where

Sn =
1

n

n−1∑

k=0

Xk.
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Assuming zero mean does not lose any generality since if this result is true,
the result for nonzero mean m follows immediately by applying the zero
mean result to the process to the zero-mean process {Xn −m}.

The approach is to use the Borel-Cantelli lemma with that Yn = Sn and
Y = 0 = E[Xn] and hence the immediate problem is to bound Pr(|Sn| > ǫ)
in a way so that that the sum over n will be finite. The Tchebychev
inequality does not work here as it would give a sum

σ2X

∞∑

n=1

1

n
,

which is not finite. A better upper bound than Tchebychev is needed, and
this is provided by a different application of the Markov inequality. Given
a random variable Y , fix a λ > 0 and observe that Y > y if and only if
eλY > eλy. Application of the Markov inequality then yields

Pr(Y > y) = Pr(eλY > eλy)

= Pr(eλ(Y−y) > 1)

≤ E[eλ(Y−y)] (4.112)

This inequality is called the Chernoff inequality and it provides the needed
bound.

Applying the Chernoff inequality yields for any λ > 0

Pr(|Sn| > ǫ) = Pr(Sn > ǫ) + Pr(Sn < −ǫ)

= Pr(Sn > ǫ) + Pr(−Sn > ǫ)

≤ E[eλ(Sn−ǫ)] + E[eλ(−Sn−ǫ)]

= e−λǫ
(
E[λSn ] + E[−λSn ]

)

= e−λǫ (MSn(λ) +MSn(−λ)) .

These moment generating functions are easily found from lemma 4.1 to be

E[eγSn ] = Mn
X(

γ

n
), (4.113)

Where MX(ju) = E[ejuX ] is the common characteristic function of the iid
Xi and MX(w) is the corresponding moment generating function. Com-
bining these steps yields the bound

Pr(|Sn| > ǫ) ≤ e−λǫ
(

Mn
X(

λ

n
) +Mn

X(−
λ

n
)

)
. (4.114)
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So far λ > 0 is completely arbitrary and we can choose a different λ for
each n. Choosing λ = nǫ/σ2X yields

Pr(|Sn| > ǫ) ≤ e
−n ǫ2

σ2
X

(
Mn
X(

ǫ

σ2X
) +Mn

X(−
ǫ

σ2X
)

)
. (4.115)

Plugging in the form for the Gaussian moment generating functionMX(w) =

ew
2σ2

X/2 yields

Pr(|Sn| > ǫ) ≤ 2e
−n ǫ2

σ2
X

(
e
( ǫ

σ2
X

)2
σ2

X
2

)n

= 2

(
e
− ǫ2

2σ2
X

)n
(4.116)

which has the form Pr(|Sn| > ǫ) ≤ βn for β < 1. Hence summing a
geometric progression yields

∞∑

n=1

Pr(|Sn| > ǫ) ≤ 2

∞∑

n=1

βn

= 2
β

1− β
<∞, (4.117)

which completes the proof for the iid Gaussian case.

The nonGaussian case can be handled by combining the above approach
with the approximation of (4.16). The bound for the Borel-Cantelli limit
need only be demonstrated for small ǫ since if it is true for small ǫ it must
also be true for large ǫ. For small ǫ, however, (4.16) implies that MX(± ǫ

σ2
X
)

in (4.115) can be written as 1 + ǫ2/2σ2X + o(ǫ2/2σ2X) which is arbitrarily

close to eǫ
2/2σ2

X for sufficiently small ǫ, and the proof is completed as above.

The following theorem summarizes the results of this section.

Theorem 4.13 Strong Law of Large Numbers

Given an iid process {Xn} with finite mean E[X] and variance, then

lim
n→∞

1

n

n−1∑

k=0

Xk = E[X] with probability 1. (4.118)
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4.17 Stationarity

Stationarity Properties

In the development of the weak law of large numbers we made two as-
sumptions on a random process {Xt; n ∈ Z}: that the mean EXt of the
process did not depend on time and that the covariance function had the
form KX(t, s) = σ2Xδt−s.

The assumption of a constant mean, independent of time, is an example
of a stationarity property in the sense that it assumes that some property
describing a random process does not vary with time (or is time-invariant).
The process itself is not usually “stationary” in the usual literal sense of
remaining still, but attributes of the process, such as the first moment in
this case, can remain still in the sense of not changing with time. In the
mean example we can also express this as

EXt = EXt+τ ; all t, τ, (4.119)

which can interpret as saying that the mean of a random variable at time t is
not affected by a shift of any amount of time τ . Conditions on moments can
be thought of as weak stationarity properties since they constrain only an
expectation and not the distribution itself. Instead of simply constraining
a moment, we could make the stronger assumption of constraining the
marginal distribution. The assumption of a constant mean would follow,
for example, if the marginal distribution of the process, the distribution
of a single random variable Xt, did not depend on the sample time t.
Thus a sufficient (but not necessary) condition for ensuring that a random
process has a constant mean is that its marginal distribution PXt satisfies
the condition

PXt = PXt+τ ; all t, τ. (4.120)

This will be true, for example, if the same relation holds with the distribu-
tion replaced by cdf’s, pdf’s, or pmf’s. If a process meets this condition, it
is said to be first order stationary. For example, an iid process is clearly
first order stationary. The word stationary refers to the fact that the first
order distribution (in this case) does not change with time, i.e., it is not
affected by shifting the sample time by an amount τ .

Next consider the covariance used to prove the weak law of large num-
bers. It has a very special form in that it is the variance if the two sample
times are the same, and zero otherwise. This class of constant mean, con-
stant variance, and uncorrelated processes is admittedly a very special case.
A more general class of processes which will share many important proper-
ties with this very special case is formed by requiring a mean and variance
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that do not change with time, but easing the restriction on the covariance.
We say that a random process is weakly stationary or stationary in the weak
sense if EXt does not depend on t, σ2Xt

does not depend on t, and if the
covariance KX(t, s) depends on t and s only through the difference t − s,
that is, if

KX(t, s) = KX(t+ τ, s+ τ) (4.121)

for all t, s, τ for which s, s + τ, t, t + τ ∈ T . When this is true, it is often
expressed by writing

KX(t, t+ τ) = KX(τ). (4.122)

for all t, τ such that t, t + τ ∈ T . A function of two variables of this type
is said to be Toeplitz [26, 21] and much of the theory of weakly stationary
processes follows from the theory of Toeplitz forms.

If we form a covariance matrix by sampling such a covariance function,
then the matrix (called a Toeplitz matrix ) while have the property that all
elements on any fixed diagonal of the matrix will be equal. For example, the
(3,5) element will be the same as the (7,9) element since 5-3=9-7. Thus, for
example, if the sample times are 0, 1, . . . , n−1, then the covariance matrix
is {KX(k, j) = KX(j − k); k = 0, 1, . . . , n− 1, j = 0, 1, . . . , n− 1 or





KX(0) KX(1) KX(2) · · · KX(n− 1)
KX(−1) KX(0) KX(1)

KX(−2) KX(−1) KX(0)
...

...
. . .

KX(−(n− 1)) · · · KX(0)





As in the case of the constant mean, the adjective weakly refers to the
fact that the constraint is placed on the moments and not on the distri-
butions. Mimicking the earlier discussion, we could make a stronger as-
sumption that is sufficient to ensure weak stationarity. A process is said to
be second order stationary if the pairwise distributions are not affected by
shifting, that is, if analogous to the moment condition (4.121) we make the
stronger assumption that

PXt,Xs = PXt+τ ,Xs+τ ; all t, s, τ. (4.123)

Observe that second order stationarity implies first order since the marginals
can be computed from the joints. The class of iid processes is second order
stationary since the joint probabilities are products of the marginals, which
do not depend on time.
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There are a variety of such stationarity properties that can be defined,
but weakly stationary is one of the two most important for two reasons.
The first reason will be seen shortly — combining weak stationarity with
an asymptotic version of uncorrelated gives a more general law of large
numbers than the ones derived previously. The second reason will be seen
in the next chapter: if a covariance depends only on a single argument
(the difference of the sample times), then it will have an ordinary Fourier
transform. Transforms of correlation and covariance functions provide a
useful analysis tool for stochastic systems.

It is useful before proceeding to consider the other most important sta-
tionarity property: strict stationarity (sometimes the adjective “strict” is
omitted). As the notion of weak stationary can be considered as a gener-
alization of uncorrelated, the notion of strict stationary can be considered
as a generalization of iid: if a process is iid, the probability distribution
of a k-dimensional random vector Xn, Xn+1, . . . , Xn+k−1 does not depend
on the starting time of the collection of samples, i.e., for an iid process we
have that

PXn,Xn+1,... ,Xn+k−1
= PXn+m,Xn+m+1,... ,Xn+m+k−1

(x), all n, k,m. (4.124)

This property can be interpreted as saying that the probability of any
event involving a finite collection of samples of the random process does not
depend on the starting time n of the samples and hence on the definition of
time 0. Alternatively, these joint distributions are not affected by shifting
the samples by a common amount m. In the simple Bernoulli process case
this means things like

pXn(0) = pX0(0) = 1− p, all n

pXn,Xk
(0, 1) = pX0,Xk−n

(0, 1) = p(1− p), all n, k

pXn,Xk,Xl
(0, 1, 0) = pX0,Xk−n,Xl−n

(0, 1, 0) = (1− p)2p, all n, k,m,

and so on. Note that the relative sample times stay the same, that is, the
differences between the sample times are preserved, but all of the samples
together are shifted without changing the probabilities. A process need not
be iid to possess this property of joint probabilities being unaffected by
shifts, so we formalize this idea with a definition.

A discrete time random process {Xn} is said to be stationary or strictly
stationary or stationary in the strict sense if (4.124) holds. We have ar-
gued that a discrete alphabet iid process is an example of a stationary
random process. This definition extends immediately to continuous alpha-
bet discrete time processes by replacing the pmf’s by pdf’s. Both cases
can be combined by using cdf’s or the distributions. Hence we can make a
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more general definition for discrete time processes: A discrete time random
process {Xn} is said to be stationary if

PXn,Xn+1,... ,Xn+k−1
= PXn+m,Xn+m+1,... ,Xn+m+k−1

, all k, n,m. (4.125)

This will hold if the corresponding formula holds for pmf’s, pdf’s, or cdf’s.
For example, any iid random process is stationary.

Generalizing the definition to include continuous time random processes
requires only a little more work, much like that used to describe the Kol-
mogorov extension theorem. We would like all joint distributions involving
a finite collection of samples to not depend on the starting time or, equiv-
alently, to not be effected by shifts. The following general definition does
this and it reduces to the previous definition when the process is a discrete
time process.

A random process {Xt; t ∈ T } is stationary if

PXt0 ,Xt1 ,... ,Xtk−1
= PXt0−τ ,Xt1−τ ,... ,Xtk−1−τ , all k, t0, t1, . . . , tk−1, τ.

(4.126)

The word “all” above must be interpreted with care, it means all choices of
dimension k, sample times t0, . . . , tk−1, and shift τ for which the equation
makes sense, e.g., k must be a positive integer and ti ∈ T and ti − τ ∈ T
for i = 0, . . . , k − 1.

It should be obvious that strict stationarity implies weak stationarity
since it implies that PXt does not depend on t, and hence the mean com-
puted from this distribution does not depend on t, and PXt,Xs = PXt−s,X0

and hence KX(t, s) = KX(t − s, 0). The converse is generally not true
— knowing that two moments are unaffected by shifts does not in gen-
eral imply that all finite dimensional distributions will be unaffected by
shifts. This is why weak stationarity is indeed a “weaker” definition of
stationarity. There is, however, one extremely important case where weak
stationarity is sufficient to ensure strict stationarity – the case of Gaussian
random processes. We shall not construct a careful proof of this fact be-
cause it is a notational mess that obscures the basic idea, which is actually
rather easy to describe. A Gaussian process {Xt; t ∈ T } is completely
characterized by knowledge of its mean function {mt; t ∈ T } and its co-
variance function {KX(t, s); t, s ∈ T }. All joint pdf’s for all possible finite
collections of sample times are expressed in terms of these two functions.
If the process is known to be weakly stationary, then mt = m for all t, and
KX(t, s) = KX(t−s) for all t, s. This implies that all of the joint pdf’s will
be unaffected by a time shift, since the mean vector stays the same and the
covariance matrix depends only on the relative differences of the sample
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times, not on where they begin. Thus in this special case, knowing a pro-
cess is weakly stationary is sufficient to conclude it is stationary. In general,
stationarity can be quite difficult to prove, even for simple processes.

⋆Strict Stationarity

In fact the above is not the definition of stationarity used in the mathe-
matical and statistical literature, but it is equivalent to it. We pause for a
moment to describe the more fundamental (but abstract) definition and its
relation to the above definition, but the reader should keep in mind that
it is the above definition that is the important one for practice: it is the
definition that is almost always used to verify that a process is stationary
or not.

To state the alternative definition, recall that a random process {Xt; t ∈
T } can be considered to be a mapping from a probability space (Ω,F , P )
into a space of sequences or waveforms {xt; t ∈ T } and that the inverse
image formula implies a probability measure called a process distribution,
say PX , on this complicated space, i.e., PX(F ) = PX({{xt; t ∈ T } :
{xt; t ∈ T } ∈ F}) = P ({ω : {Xt(ω); t ∈ T } ∈ F}). The abstract
definition of stationarity places a condition on the process distribution: a
random process {Xt; t ∈ T } is stationary if the process distribution PX is
unchanged by shifting, that is, if

PX({{xt; t ∈ T } : {xt; t ∈ T } ∈ F}) =

PX({{xt; t ∈ T } : {xt+τ ; t ∈ T } ∈ F}); all F, τ. (4.127)

The only difference between the left and right hand side is that the right
hand side takes every sample waveform and shifts it by a common amount
τ . If the abstract definition is applied to finite-dimensional events, that
is, events which actually depend only on a finite number of sample times,
then this definition reduces to that of (4.126). Conversely, it turns out that
having this property hold only on all finite-dimensional events is enough to
imply that the property holds for all possible events, even those depending
on an infinite number of samples (such as the event one gets an infinite
binary sequence with exactly p limiting relative frequency of heads). Thus
the two definitions of strict stationarity are equivalent.

Why is stationary important? Are processes that are not stationary in-
teresting? The answer to the first question is that this property leads to the
most famous of the law of large numbers, which will be quoted without proof
later. The answer to the second question is yes, nonstationary processes
play an important role in theory and practice, as will be seen by exam-
ple. In particular, some nonstationary processes will have a form of law of
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large numbers, and others will have no such property, yet be quite useful in
modeling real phenomena. Keep in mind that strict stationarity is stronger
than weak stationarity. Thus if a process is not even weakly stationary then
the process is also not strictly stationary. Two examples of nonstationary
processes already encountered are the Binomial counting process and the
discrete time Wiener process. These processes have marginal distributions
which change with time and hence the processes cannot be stationary. We
shall see in chapter 5 that these processes are also not weakly stationary.

4.18 Asymptotically Uncorrelated Processes

We close this chapter with a generalization of the mean ergodic theorem
and the weak law of large numbers that demonstrates that weak stationarity
plus an asymptotic form of uncorrelation is sufficient to yield a weak law of
large numbers by a fairly modest variation of the earlier proof. The class
of asymptotically uncorrelated processes is often encountered in practice.
Only the result itself is important, the proof is a straightforward but tedious
extension of the proof for the uncorrelated case.

An advantage of this more general result over the result for uncorre-
lated discrete time random processes is that it extends in a sensible way to
continuous time processes.

A discrete time weakly stationary process {Xn; n ∈ Z} is said to be
asymptotically uncorrelated if its covariance function is absolutely summable,
that is, if

∞∑

k=−∞
|KX(k)| <∞. (4.128)

This condition implies that also

lim
k→∞

KX(k) = 0, (4.129)

and hence this property can be considered as a weak form of uncorrelation,
a generalization of the fact that a weakly stationary process is uncorrelated
if KX(k) = 0 when k 
= 0. If a process is process is uncorrelated, then
Xn and Xn+k are uncorrelated random variables for all nonzero k, if it
is asymptotically uncorrelated, the correlation between the two random
variables decreases to zero as k grows. We use (4.128) rather than (4.129)
as the definition as it also ensures the existence of a Fourier transform of
KX , which will be useful later, and simplifies the proof of the resulting law
of large numbers.
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Theorem 4.14 (A mean ergodic theorem): Let {Xn} be a weakly sta-
tionary asymptotically uncorrelated discrete time random process such that
EXn = X is finite and σ2Xn

= σ2X <∞ for all n. Then .

l.i.m.
n→∞

1

n

n−1∑

i=0

Xi = X ,

that is,
1

n

n−1∑

i=0

Xi → X in mean square.

Note that the theorem is indeed a generalization of the previous mean
ergodic theorem since a weakly stationary uncorrelated process is trivially
an asymptotically uncorrelated process. Note also that the Tchebychev
inequality and this theorem immediately imply convergence in probability
and hence a weak law of large numbers for weakly stationary asymptotically
uncorrelated processes. A common example of asymptotically uncorrelated
processes are processes with exponentially decreasing covariance, i.e., of the
form KX(k) = σ2Xρ|k| for ρ < 1.

⋆Proof:

Exactly as in the proof of Theorem 4.11 we have with with Sn = n−1∑n−1
i=0 Xi

that

E[(Sn −X)2] = E[(Sn − ESn)
2]

= σ2Sn
.

From (4.104) we have that

σ2Sn
= n−2

n−1∑

i=0

n−1∑

j=0

KX(i− j) . (4.130)

This sum can be rearranged as in Lemma B.1 of appendix B as

σ2Sn
=

1

n

n−1∑

k=−n+1
(1− |k|

n
)KX(k). (4.131)

From Lemma B.2

lim
n→∞

n−1∑

k=−n+1
(1− |k|

n
)KX(k) =

∞∑

k=−∞
KX(k),
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which is finite by assumption, hence dividing by n yields

lim
n→∞

1

n

n−1∑

k=−n+1
(1− |k|

n
)KX(k) = 0.

In a similar manner, a continuous time weakly stationary process {X(t); t ∈
ℜ} is said to be asymptotically uncorrelated if its covariance function is ab-
solutely integrable,

∫ ∞

−∞
|KX(τ)| <∞, (4.132)

which implies that

lim
τ→∞

KX(τ) = 0. (4.133)

No sensible continuous time random process can be uncorrelated (why
not? ), but many are asymptotically uncorrelated. For a continuous time
process a sample or time average can be defined by replacing the sum op-
eration by an integral, that is, by

ST =
1

T

∫ T

0

X(t) dt. (4.134)

(We will ignore the technical difficulties that must be considered to assure
that the integral exists in a suitable fashion. Suffice it to say that an integral
can be considered as a limit of sums, and we have seen ways to make such
limits of random variables precise.) The definition of weakly stationary
extends immediately to continuous time processes. The following result
can be proved by extending the discrete time result to continuous time and
integrals.

Theorem 4.15 (A mean ergodic theorem): Let {X(t)} be a weakly sta-
tionary asymptotically uncorrelated continuous time random process such
that EX(t) = X is finite and σ2X(t) = σ2X <∞ for all t. Then .

l.i.m.
T→∞

1

T

∫ T

0

X(t) dt = X ,

that is,
1

T

∫ T

0

X(t) dt→ X in mean square.

As in the discrete time case, convergence in mean square immediately
implies converges in probability, but much additional work is required to
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prove convergence with probability one. Also as in the discrete case, we
can define a limiting time average

< X(t) >= lim
T→∞

1

T

∫ T

0

X(t) dt (4.135)

and interpret the law of large numbers as stating that the time average
< X(t) > exists in some sense and equals the expectation.

4.19 Problems

1. The Cauchy pdf is defined by

fX(x) =
1

π

1

1 + x2
; x ∈ ℜ .

Find EX. Hint: This is a trick question. Check the definition of
Riemann integration over (−∞,∞) before deciding on a final answer.

2. Suppose that Z is a discrete random variable with probability mass
function

pZ(k) = C
ak

(1 + a)k+1
, k = 0, 1, · · · .

(This is sometimes called “Pascal’s distribution.”) Find the constant
C and the mean, characteristic function, and variance of Z.

3. State and prove the fundamental theorem of expectation for the case
where a discrete random variable X is defined on a probability space
where the probability measures is described by a pdf f .

4. Suppose that X is a random variable with pdf fX(α) and character-
istic function MX(ju) = E[ejuX ]. Define the new random variable
Y = aX + b, where both a and b are positive constants. Find the
pdf fY and characteristic function MY (ju) in terms of fX and MX ,
respectively.

5. X, Y and Z are iid Gaussian random variables with N (1, 1) distribu-
tions.

Define the random variables:

V = 2X + Y
W = 3X − 2Z + 5.

(a) Find E[V W ].
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(b) Find the 2 parameters that completely specify the random vari-
able V +W.

(c) Find the characteristic function of the random vector [V W ]t,
where t denotes “transpose.”

(d) Find the linear estimator V̂ (W ) of V, given W .

(e) Is this an optimal estimator? Why?

(f) The zero-mean random variables X − X̄, Y − Ȳ and Z − Z̄
are the inputs to a black box. There are 2 outputs, A and B.
It is determined that the covariance matrix of the vector of its
outputs [A B]t should be

ΛAB =

[
3 2
2 5

]

Find expressions for A and B in terms of the black box inputs so
that this is in fact the case (design the black box). Your answer
does not necessarily have to be unique.

(g) You are told that a different black box results in an output vector
[C D]t with the following covariance matrix:

ΛCD =

[
2 0
0 7

]

How much information about output C does output D give you?
Briefly but fully justify your answer.

6. Assume that {Xn} is an iid process with Poisson marginal pmf

pX(l) =
λle−λ

l!
; l = 0, 1, 2, . . . .

and define the process {Nk; k = 0, 1, 2, . . . }

Nk =

{
0 k = 0
∑k
l=1Xl k = 1, 2, . . .

Define the process {Yk} by Yk = (−1)Nk for k = 0, 1, 2, . . . .

(a) Find the meanE[Nk], characteristic functionMNk
(ju) = E[ejuNk ],

and pmf pNk
(m).

(b) Find the mean E[Yk] and variance σ2Yk
.
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(c) Find the conditional pmfs pNk|N1,N2,... ,Nk−1
(nk|n1, n2, . . . , nk−1)

and pNk|Nk−1
(nk|nk−1). Is {Nk} a Markov process?

7. Let {Xn} be an iid binary random process with equal probability of
+1 or −1 occurring at any time n. Show that if Yn is the standardized
sum

Yn = n−1/2
n−1∑

k=0

Xk ,

then
MYn(ju) = en log cos (u/

√
n) .

Find the limit of this expression as n→∞.

8. Suppose that a fair coin is flipped 1,000,000 times. Write an exact
expression for the probability that between 400,000 and 500,000 heads
occur. Next use the central limit theorem to find an approximation
to this probability. Use tables to evaluate the resulting integral.

9. Using an expansion of the form of equation (4.102), show directly
that the central limit theorem is satisfied for a sequence of iid random
variables with pdf

p(x) =
2

π(1 + x2)2
, x ∈ ℜ .

Try to use the same expansion for

p(x) =
1

π(1 + x2)
, x ∈ ℜ .

Explain your result.

10. Suppose that {Xn} is a weakly stationary random process with a
marginal pdf fX(α) = 1 for 0 < α < 1 and a covariance function

KX(k) =
1

12
ρ|k|

for all integer k (ρ < 1). What is

l.i.m.
n→∞

1

n

n∑

k=1

Xk ?

What is

l.i.m.
n→∞

1

n2

n∑

k=1

Xk ?



262 CHAPTER 4. EXPECTATION AND AVERAGES

11. If {Xn} is an uncorrelated process with constant first and second
moments, does it follow for an arbitrary function g that

n−1
n−1∑

i=0

g(Xi)
→

n→∞ E[g(X)]

in mean square? (E[g(X)] denotes the unchanging value of E[g(Xn)].)
Show that it does follow if the process is iid

12. Apply problem 4.11 to indicator functions to prove that relative rel-
ative frequencies of order n converge to pmf’s in mean square and in

probability for iid random processes. That is, if r
(n)
a is defined as in

the chapter, then r
(n)
a → pX(a) ad n → ∞ in both senses for any a

in the range space of X.

13. Define the subsets of the real line

Fn =

{
r : |r| > 1

n

}
, n = 1, 2, . . .

and

F + {0} .

Show that

F c =

∞⋃

n=1

Fn .

Use this fact, the Tchebychev inequality, and the continuity of prob-
ability to show that if a random variable X has variance 0, then
Pr(|X−EX| ≥ ǫ|) ≤ 0 independent of ∈ and hence Pr(|X = EX) = 1.

14. True or False? Given a nonnegative random variable X, for any ǫ > 0
and a > 0.

Pr(X ≥ ǫ) ≤ E[eaX ]

eaǫ
.

15. Show that for a discrete random variable X,

|E(X)| ≤ E(|X|) .

Repeat for a continuous random variable.

16. This problem considers some useful properties of autocorrelation or
covariance function.
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(a) Use the fact that E[(Xt−Xs)
2] ≥ 0 to prove that if EXt = EX0

for all t and E(X2
t = RX(t, t) = RX(0, 0) for all t — that is, if

the mean and variance do not depend on time — then

|RX(t, s)| ≤ RX(0, 0)

and
|KX(t, s)| ≤ KX(0, 0) .

Thus both functions take on their maximum value when t = x.
This can be interpreted as saying that no random variable can
be more correlated with a given random variable than it is with
itself.

(b) Show that autocorrelations and covariance functions are sym-
metric functions, e.g., RX(t, s) = RX(s, t).

17. The Cauchy-Schwarz Inequality: Given random variables X and Y ,
define a = E(X2)1/2 and b = E(Y 2)1/2. By considering the quantity
E[(X/a± Y/b)2] prove the following inequality:

|E(XY )| ≤ E(X2)1/2E(Y 2)1/2 .

18. Given two random processes {Xt; t ∈ T } and {Xt; t ∈ T } defined on
the same probability space, the cross correlation function RXY (t, s); t, s ∈
T is defined as

RXY (t, s) = E(XtYs) .

since RX(t, s) = RXX(t, s). Show that RXY is not, in general, a
symmetric function of its arguments. Use the Cauchy-Schwarz in-
equality of 4.17 to find an upper bound to |RXY (t, s)| in terms of the
autocorrelation functions RX and RY .

19. Let Θ be a random variable described by a uniform pdf on [−π, π] and
let Y be a random variable with mean m and variance σ2; assume that
Θ and Y are independent. Define the random process {X(t); t ∈ ℜ}
by X(t) = Y cos(2πf0t + Θ), where f0 is a fixed frequency in hertz.
Find the mean and autocorrelation function of this process. Find the
limiting time average

lim
T→∞

1

T

∫ T

0

X(t)dt .

(Only in trivial processes such as this can one find exactly such a
limiting time average.)
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20. Suppose that {Xn} is an iid process with a uniform pdf on [0,1).
Does Yn = X1X2 · · ·Xn converge in mean square as n → ∞? If so,
to what?

21. Let r(n)(a) denote the relative frequency of the letter a in a sequence
x0, . . . , xn−1. Show that if we define q(a) = r(n)(a), then q(a) is a
valid pmf. (This pmf is called the “sample distribution,” or “empirical
distribution.”)

One measure of the distance or difference between two pmf’s p and q
is

||p− q||1 ≡
∑

a

|p(a)− q(a)|.

Show that if the underlying process is iid with marginal pmf p, then
the empirical pmf will converge to the true pmf in the sense that

lim
n→∞

||p− r(n)||1 = 0.

22. Given two sequences of random variables {Xn; n = 1, 2, . . . } and
{Yn; n = 1, 2, . . . } and a random variable X, suppose that with prob-
ability one |Xn − X| ≤ Yn and n and that EYn → 0 as n → ∞.
Prove that EXn → EX and that Xn converges to X in probability
as n→∞.

23. This problem provides another example of the use of covariance func-
tions. Say that we have a discrete time random process {Xn} with
a covariance function KX(t, s) and a mean function mn = EXn. Say
that we are told the value of the past sample, say Xn−1 = α, and we
are asked to make a good guess of the next sample on the basis of the
old sample. furthermore, we are required to make a linear guess or
estimate, called a prediction, of the form

X̂n(α) = aα+ b ,

for some constants a and b. Use ordinary calculus techniques to find
the values of a and b that are “best” in the sense of minimizing the
mean squared error

E[(Xn − X̂n(Xn−1))
2] .

Give your answer in term of the mean and covariance function. Gen-
eralize to a linear prediction of the form

X̂n(Xn−1, Xn−m) = a1Xn−1 + amXn−m + b ,

where m is an arbitrary integer, m ≥ 2. When is am = 0?
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24. We developed the mean and variance of the sample average Sn for
the special case of uncorrelated random variables. Evaluate the mean
and variance of Sn for the opposite extreme, where the Xi are highly
correlated in the sense that E[XiXk] = E[X2

i ] for all i, k.

25. Given n independent random variables Xi, i = 1, 2, . . . , n with vari-
ances σ2i and means mi. Define the random variable

Y =

n∑

i=1

aiXi .

where the ai are fixed real constants. Find the mean, variance, and
characteristic function of Y .

Now let the mean be constant; i.e., mi = m. Find the minimum
variance of Y over the choice of the {ai} subject to the constraint
that EY = m. The result is called the minimum variance unbiased
estimate of m.

Now suppose that {Xi; i = 0, 1, . . . } is an iid random process and
that N is a Poisson random variable with parameter λ and that N is
independent of the {Xi}. Define the random variable

Y =

N∑

i=1

Xi
σ2X

.

Use iterated expectation to find the mean, variance, and characteristic
function of Y .

26. Let the random process of example [3.27] can be expressed as follows:
Let Θ be a continuous random variable with a pdf

fΘ(θ) =
1

2π
; θ ∈ [−π,+π]

and define the process {X(t); t ∈ ℜ} by

X(t) = cos(t+Θ) .

(a) Find the cdf FX(0)(x).

(b) Find EX(t).

(c) Find the covariance function KX(t, s).

27. Let {Xn} be a random process with mean m and autocorrelation func-
tion RX(n, k), and let {Wn} be an iid random process with zero mean
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and variance σ2W . Assume that the two processes are independent of
each another; that is, any collection of the Xi is independent of any
collection of the Wi. Form a new random process Yn = Xn + Wn.
Note: This is a common model for a communication system or mea-
surement system with {Xn} a “signal” process or “source,” {Wn} a
“noise” process, and {Yn} the “received” process; see problem 3.30
for example.

(a) Find the mean EYn and covariance KY (t, s) in terms of the given
parameters.

(b) Find the cross-correlation function defined by

RXY (k, j) = E[XkYj ] .

(c) As in exercise 4.23, find the minimum mean squared error esti-
mate of Xn of the form

X̂(Yn) = aYn + b .

The resulting estimate is called a filtered value of Xn.

(d) Extend to a linear filtered estimate that uses Yn and Yn−1.

28. Suppose that there are two independent data sources {Wi(n), i =
1, 2}. Each data source is modeled as a Bernoulli random process
with parameter 1/2. The two sources are encoded for transmission as
follows: First, three random processes {Yi(n); i = 1, 2, 3} are formed,
where Y1 = W1, Y2 = W2, Y3 = W1 + W2, and where the last sum is
taken modulo 2 and is formed to provide redundancy for noise protec-
tion in transmission. These are time-multiplexed to form a random
process {X(3n + i) = Yi(n)}. Show that {X(n)} has identically dis-
tributed components and is pairwise independent but is not iid.

29. Let {Un; n = 0, 1, . . . , } be an iid random process with marginal pdf
fUn = fU , the uniform pdf of Problem A.1. In other words, the joint
pdf’s can be written as

fUn(un) = fU0,U1,... ,Un−1(u0, u1, . . . , un−1) =
n−1∏

i=0

fU (ui).

Find the mean mn = E[Un] and covariance function KU (k, j) =
E[(Uk −mk)(Uj −mj)] for the process and verify that the weak law
of large numbers holds for this process.
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30. Let {Un} be an iid process with a uniform marginal pdf on [0, 1)
Define a new process {Wn; n = 0, 1, . . . , } by W0 = 2U0 and Wn =
Un + Un−1 for n = 1, 2, . . . . Find the mean E[Wn] and covariance
function KW (k, j). Does the weak law of large numbers hold for this
process? Since elementary probability is a prerequisite for this course,
you should be able to find the pdf fWn . Do so.

31. Show that the convergence of the average of the means in (4.103) to a
constant and convergence of equation (4.104) to zero are sufficient for
a mean ergodic theorem of the form of theorem 4.11. In what sense
if any does {Sn} converge?

32. The purpose of this problem is to demonstrate the relationships among
the four forms of convergence that we have presented. In each case.
([0, 1],B([0, 1]), P ) is the underlying probability space, with probabil-
ity measure described by the uniform pdf. For each of the following
sequences of random variables, determine the pmf of {Yn}, the senses
in which the sequences converges, and the random variable and pmf
to which the sequence converges.

(a)

Yn(ω) =

{
1 if n is odd and ω < 1/2 or n is even and ω > 1/2
0 otherwise .

(b)

Yn(ω) =

{
1 if ω < 1/n
0 otherwise .

(c)

Yn(ω) =

{
n if ω < 1/n
0 otherwise .

(d) Divide [0, 1] into a sequence of intervals {Fn} = {[0, 1], [0, 1/2),
[1/2, 1], [0, 1/3), [1/3, 2/3), [2/3, 1], [0, 1/4), . . . }. Let

Yn(ω) =

{
1 if ω ∈ Fn
0 otherwise .

(e)

Yn(ω) =

{
1 if ω < 1/2 + 1/n
0 otherwise .
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33. Suppose that X is a random variable with mean m and variance
σ2. Let gk be a deterministic periodic pulse train such that Gk is 1
whenever k is a multiple of a fixed positive integer N and gk is 0 for
all other k. Let U be a random variable that is independent of X
such that pU (u) = 1/N for u = 0, 1, . . . , N − 1. Define the random
process Yn by

Yn = XgU+n

that is, Yn looks like a periodic pulse train with a randomly selected
amplitude and a randomly selected phase. Find the mean and co-
variance functions of the Y process. Find a random variable Ŷ such
that

lim
n→∞

1

n

n−1∑

i=0

Yi = Ŷ

in the sense of convergence with probability one. (This is an exam-
ple of a process that is simple enough for the limit to be evaluated
explicitly.) Under what conditions on the distribution of X does the
limit equal EY0 (and hence the conclusion of the weak law of large
numbers holds for this process with memory)?

34. Let {Xn} be an iid zero-mean Gaussian random process with auto-
correlation function RX(0) = σ2. Let {Un} be an iid random process
with Pr(Un = 1) = Pr(Un = −1) = 1/2. Assume that the two pro-
cesses are mutually independent of each other. Define a new random
process {Yn} by

Yn = UnXn .

(a) Find the autocorrelation function RY (k, j).

(b) Find the characteristic function MYn(ju).

(c) Is {Yn} an iid process?

(d) Does the sample average

Sn = n−1
n−1∑

i=0

Yi

converge in mean square. If so, to what?

35. Assume that {Xn} is an iid zero-mean Gaussian random process with
RX(0) = σ2, that {Un} is an iid binary random process with Pr(Un =
1) = 1− ∈ and Pr(Un = 0) =∈ (in other words, {Un} is a Bernoulli
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process with parameter 1− ∈), and the processes {Xn} and {Un} are
mutually independent of each another. Define a new random process

Vn = XnUn .

(This is a model for the output of a communication channel that has
the X process as an input but has “dropouts — that is, occasionally
sets an input symbol to zero.)

(a) Find the mean EVn and characteristic function MVn)ki=EejuVn .

(b) Find the mean squared error E[(Xn − Vn)
2].

(c) Find Pr(Xn 
= Vn).

(d) Find the covariance of Vn.

(e) Is the following true?

(
lim
n→∞

1

n

n−1∑

i=0

Xi

) (
lim
n→∞

1

n

n−1∑

i=0

Ui

)
= lim
n→∞

1

n

n−1∑

i=0

Vi

36. Show that convergence in distribution is implied by the other three
forms of convergence.

37. Let {Xn} be a finite-alphabet iid random process with marginal pmf
px. The entropy of an iid random process is defined as

H(X) = −
∑

x

px(x) log pX(x) = E(− log pX(X)) ,

where care must be taken to distinguish the use of the symbol X to
mean the name of the random variable in H(X) and pX and its use as
the random variable itself in the argument of the left-hand expression.
If the logarithm is base two then the units of entropy are called bits.
Use the weak law of large numbers to show that

− 1

n

n−1∑

i=0

log pX(Xi)
→

n→∞

in the sense of convergence in probability. Show that this implies that

lim
n→∞

Pr(|pX0,... ,Xn−1(X0, . . . , Xn−1)− 2nH(X)| > ǫ) = 0

for any ǫ > 0. This result was first developed by Claude Shannon and
is sometimes called the asymptotic equipartition property of informa-
tion theory. It forms one of the fundamental results of the mathemat-
ical theory of communication. Roughly stated, with high probability
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an iid process with produce for large n and n−dimensional sample
vector Xn = (x0, x1, . . . , xn−1) such that the nth order probability
mass function evaluated at xn is approximately 2−nH(X) ; that is, the
process produces long vectors that appear to have an approximately
uniform distribution over some collection of possible vectors.

38. Suppose that {Xn} is a discrete time iid random process with uniform
marginal pdf’s

fXn
(α) =

{
1 0 ≤ α < 1

0 otherwise.

Does the sequence of random variables

Zn =

n∏

i=1

Xi

converge in probability? If so, to what?

39. The conditional differential entropy ofXn−1 givenXn−1 = (X0, X1, . . . , Xn−2)
is defined by

h(Xn−1|Xn−1)=

−
∫

fX0,X1,... ,Xn−1(x0, x1, . . . , xn−1)×

log fXn−1|X1,... ,Xn−2
(xn−1|x1, . . . , xn−2) dx0 dx1 · · · dxn−1

(4.136)

Show that

h(Xn) = h(Xn|Xn−1) + h(Xn−1). (4.137)

Now suppose that {Xn} is a stationary Gaussian random process with
zero mean and covariance function K. Evaluate h(Xn|Xn−1).

40. Let X ≥ 0 be an integer valued random variable with E(X) <∞.

(a) Prove that

E(X) =

∞∑

k=1

P (X ≥ k)

(b) Based on (a) argue that

lim
N→∞

P (X ≥ N) = 0
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(c) Prove the stronger statement

P (X ≥ N) ≤ E(X)

N

Hint: Write an expression for the expectation E(X) and break
up the sum into two parts, a portion where the summation
dummy variable is larger than N and a portion where it is
smaller. A simple lower bound for each part gives the desired
result.

(d) Let X be a geometric random variable with parameter p, p 
= 0.
Calculate the quantity P (X ≥ N) and use this result to show
that actually limN→∞ P (X ≥ N) = 0.

(e) Based on the previous parts show that

(1− p)N−1 ≤ 1

pN

for any 0 < p ≤ 1 and for any integer N .

41. Suppose that {Xn} is an iid random process with mean E(Xn) = X̄
and variance E[(Xn − X̄)2] = σ2X . A new process {Yn} is defined by
the relation

Yn =

∞∑

k=0

rkXn−k

where |r| < 1. Find E(Yn) and the autocorrelation RY (k, j) and the
covariance KY (k, j).

Define the sample average

Sn =
1

n

n−1∑

i=0

Yi.

Find the mean E(Sn) and variance σ2Sn
. Does Sn → 0 in probability?

42. Let {Un} be an iid Gaussian random process with mean 0 and variance
σ2. Suppose that Z is a random variable having a uniform distribution
on [0, 1]. Suppose Z represents the value of a measurement taken by
a remote sensor and that we wish to guess the value of Z based on
a noise sequence of measurements Yn = Z + Un, n = 0, 1, 2, . . . , that
is, we observe only Yn and wish to estimate the underlying value of
Z. To do this we form a sample average and define the estimate

ẐN =
1

N

n−1∑

i=0

Yi .
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(a) Find a simple upper bound to the probability

Pr(|Ẑn − Z| > ǫ)

that goes to zero as n→∞. (This means that our estimator is
asymptotically good.)

Suppose next that we have a two-dimensional random process
{Un,Wn} (i.e., the output at each time is a random pair or
a two-dimensional random variable) with the following prop-
erties: Each pair (Un,Wn) is independent of all past and fu-
ture pairs (Uk,Wk) k 
= n. Each pair (Un,Wn) has an iden-
tical joint cdf FU,W (u,w). For each n EUn = EWn = 0,
E(u2n) = E(W 2

n) = σ2, and E(UnWn) = ρσ2. (The quantity
ρ is called the correlation coefficient.) Instead of just observing
a noisy sequence Yn = Z + Un, we also observe a separate noisy
measurement sequence Xn = Z+Wn (the same Z, but different
noises). Suppose further that we try to improve our estimate of
Z by using both of these measurements to form an estimate

Z̃ = a
1

n

n−1∑

i=0

Yi + (1− a)
1

n

n−1∑

i=0

Xi .

for some a in [0, 1].

(b) Show that |ρ| ≤ 1. Find a simple upper bound to the probability

Pr(|Z̃n − Z| > ǫ)

that goes to zero as n→∞. What value of a gives the smallest
upper bound in part (b) and what is the resulting bound? (Note
as a check that the bound should be no worse than part (a) since
the estimator of part (a) is a special case of that of part (b).) In
the special case where ρ = −1, what is the best a and what is
the resulting bound?

43. Suppose that {Xn} are iid random variables described by a common
marginal distribution F . Suppose that the random variables

Sn =
1

n

n−1∑

i=0

Xi

also have the distribution F for all positive integers n. Find the form
of the distribution F . (This is an example of what is called a stable



4.19. PROBLEMS 273

distribution. Suppose that the 1/2 in the definition of Sn is replaced
by 1/

√
n. What must F then be?

44. Consider the following nonlinear modulation scheme: Define

W (t) = ej(2πf0t+cX(t)+Θ),

{X(t)} is a weakly stationary Gaussian random process with auto-
correlation function RX(τ), f0 is a fixed frequency, Θ is a uniform
random variable on [0, 2π], Θ is independent of all of the X(t), and
c is a modulation constant. (This is a mathematical model for phase
modulation.)

Define the expectation of a complex random variable in the natural
way, that is, if Z = ℜ(Z)+jℑ(Z), then E(Z) = E[ℜ(Z)]+jE[ℑ(Z)].)
Define the autocorrelation of a complex valued random process W (t)
by

RW (t, s) = E(W (t)W (s)∗),

where W (s)∗ denotes the complex conjugate of W (s).

Find the mean E(W (t)) and the autocorrelation function RW (t, s) =
E[W (t)W (s)∗].

Hint: The autocorrelation is admittedly a trick question (but a very
useful trick). Keep characteristic functions in mind when pondering
the evaluation of the autocorrelation function.

45. Suppose that {Xn; n = 0, 1, · · · } is a discrete time iid random process
with pmf

pXn(k) = 1/2; k = 0, 1.

Two other random processes are defined in terms of the X process:

Yn =

n∑

i=0

Xi; n = 0, · · ·

Wn = (−1)Yn n = 0, 1, · · · .
and

Vn = Xn −Xn−1; n = 1, . . . .

(a) Find the covariance functions for the X and Y processes.

(b) Find the mean and variance of the random variable Wn. Find
the covariance function of the process Wn.

(c) Find the characteristic function of the random variable Vn.
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(d) Which of the above four processes are weakly stationary? Which
are not?

(e) Evaluate the following limits:

i. l.i.m.n→∞
Yn

n+1 .

ii. l.i.m.n→∞
Yn

n2 .

iii. l.i.m.n→∞
1
n

∑n
l=1 Vl.

iv. For the showoffs: Does the last limit above converge with
probability one? (Only elementary arguments are needed.)

46. Suppose that {Xn} is a discrete time iid random process with uniform
marginal pdf’s

fXn
(α) =

{
1 0 ≤ α < 1

0 otherwise.

Define the following random variables:

• U = X2
0

• V = max(X1, X2, X3, X4)

•

W =

{
1 if X1 ≥ 2X2

0 otherwise

• For each integer n

Yn = Xn +Xn−1.

Note that this defines a new random process {Yn}.

(a) Find the expected values of the random variables U , V , and W .

(b) What are the mean E(Xn) and covariance function KX(k, j) of
{Xn}?

(c) What are the mean E(Yn) and covariance function KY (k, j) of
{Yn}?

(d) Define the sample average

Sn =
1

n

n∑

k=1

Yk.

Find the mean E(Sn) and variance σ2Sn
of Sn. Using only these

results (and no results not yet covered in class), find l.i.m.n→∞Sn.
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(e) Does the sequence of random variables

Zn =

n∏

i=1

Xi

converge in probability to 0?

47. A discrete time martingalemartingale {Yn n = 0.1.2. . . . } is a process
with the property that

E[Yn|Y0, Y1, . . . , Yn−1] = Yn.

In words, the conditional expectation of the expectation of the current
value is the previous value. Suppose that {Xn} is iid. Is

Yn =

n−1∑

n=0

Xn

a martingale?

48. Let {Yn} be the one-dimensional random walk of chapter 3.

(a) Find the pmf pYn for n = 0, 1, 2.

(b) Find the mean E[Yn] and variance σ2Yn
.

(c) Does Yn/n converge as n gets large?

(d) Find the conditional pmf’s pYn|Y0,Y1,... ,Yn−1
(yn|y0, y1, . . . , yn−1)

and pYn|Yn−1
(yn|yn−1). Is this process Markov?

(e) What is the minimum MSE estimate of Yn given Yn−1? What is
the probability that Yn which actually equal its minimum MSE
estimate?

49. Let {Xn} be a binary iid process with pX(±1) = 0.5. Define a new
process {Wn; n = 0, 1, . . . } by

Wn = Xn +Xn−1.

This is an example of a moving average process, so-called because it
computes a short term average of the input process. Find the mean,
variance, and covariance function of {Wn}. Prove a weak law of large
numbers for Wn.
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50. How does one generate a random process? It is often of interest to
do so in order to simulate a physical system in order to test an al-
gorithm before it is applied to genuine data. Using genuine physical
data may be too expensive, dangerous, or politically risky. One might
connect a sensor to a resistor and heat it up to produce thermal noise,
or flip a coin a few million times. One solution requires uncommon
hardware and the other physical effort. The usual solution is to use
a computer to generate a sequence that is not actually random, but
pseudo random in that it can produce a long sequence of numbers
that appear to be random and which will satisfy several tests for ran-
domness, provided that the tests are not too stringent. An example is
the rand command used in MatlabTM. It uses the linear congruential
method which starts with a “seed” X0 and then recursively defines
the sequence

Xn = (77Xn−1) mod (2
31 − 1). (4.138)

This produces a sequence of integers in the range from 0 to 231 −
1. Dividing by 231 (which is just a question of shifting in binary
arithmetic) produces a number in the range [0, 1). Find a computer
with Matlab or program this algorithm yourself and try it out with
different starting sequences. Find the sample average Sn of a sequence
of 100, 1000, and 10000 samples and compare them to the expected
value of the uniform pdf random variable considered in this chapter.
How might you determine whether or not the sequence being viewed
was indeed random or not if you did not know how it was generated?

51. Suppose that U is a random variable with pdf fU (u) = 1 for u ∈ [0, 1).
Describe a function q : [0, 1) → A, where A = {0, a1, . . . ,K − 1, so
that the random variable X = q(U) is discrete with pmf

pX(k) =
1

K
; k = 0, 1, . . . ,K − 1.

You have produced a uniform discrete random variable from a uniform
continuous random variable.

(a) What is the minimum mean squared error estimator of U given
X = k? Call this estimator Û(k). Write an expression for the
resulting MSE

E[(U − Û(q(U))]2.

(b) Show that the estimator Û found in the previous part minimizes
the MSE E[(U − Û(q(U))2] between the original input and the
final output (assuming that q is fixed). You have just demon-
strated one of the key properties of a Lloyd-Max quantizer.
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(c) Find the pmf for the random variable Û = Û(q(U)). Find E[Û ]
and σ2

Û
. How do the mean and variance of the Û compare with

those of U? (I.e., equal, bigger, smaller?)

52. Modify the development in the text for the minimum mean squared
error estimator to work for discrete random variables. What is the
minimum MSE estimator for Yn given Yn−1 for the binary Markov
process developed in the chapter? Which do you think makes more
sense for guessing the next outcome for a binary Markov process, the
minimum probability of error classifier or the minimum MSE estima-
tor? Explain.

53. Let {Yn; n = 0, 1, . . . } be the binary Markov process developed in
the chapter. Find a new process {Wn; n = 1, 2, . . . } defined by
Wn = Yn ⊕ Yn−1. Describe the process Wn.

54. (Problem courtesy of the ECE Department of the Technion.) Let X
be a Gaussian random variable with zero mean and variance σ2.

(a) Find E[cos(nX)], n = 1, 2, . . . .

(b) Find E[Xn], n = 1, 2, . . . .

(c) Let N be a Poisson random variable with parameter λ and as-
sume that X and N are independent. Find E[Xn].

Hint: Use characteristic functions and iterated expecttation.

55. (Problem courtesy of the ECE Department of the Technion.) Let
X be a random variable with uniform pdf on [−1, 1]. Define a new
random variable Y by

Y =

{
X X ≤ 0

1 X > 0

(a) Find the cdf FY (y) and plot it.

(b) Find the pdf fY (y).

(c) Find E(Y ) and σ2Y .

(d) Find E(X|Y ).

(e) Find E[(X − E(X|Y ))2].

56. (Problem courtesy of the ECE Department of the Technion.) Let
X1, X2, . . . , Xn be zero mean statistically independent random vari-
ables. Define

Yn =

n∑

i=1

Xi.
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Find E(Y7|Y1, Y2, Y3).

57. (Problem courtesy of the ECE Department of the Technion.) Let U
denote a binary random variable with pmf pU (u) = .5 for u = ±1. Let
Y = U+X, where X is N (0, σ2) and where U and X are independent.
Find E(U |Y ).

58. (Problem courtesy of the ECE Department of the Technion.) Let
{Xn; n = 1, 2, . . . } be an iid sequence with mean 0 and unit variance.
Let K be a discrete random variable, independent of the Xn, which
has a uniform pmf on {1, 2, . . . , 16}. Define

Yn =

n∑

i=1

Xi.

(a) Find E(Y ) and σ2Y .

(b) Find the optimal linear estimator in the MSE sense of X1 given
Y and calculate the resulting MSE.

(c) Find the optimal linear estimator in the MSE sense of K given
Y and calculate the resulting MSE.

59. (Problem courtesy of the ECE Department of the Technion.) Let
Y,N1, N2 be zero mean, unit variance, mutually independent random
variables. Define

X1 = Y +N1 +
√

αN1

X2 = Y + 3N1 +
√

αN1.

(a) Find the linear MMSE estimator of Y given X1 and X2.

(b) Find the resulting MSE.

(c) For what value of α ∈ [0,∞) does the mean squared error become
zero? Provide an intuitive explanation.

60. (Problem courtesy of the ECE Department of the Technion.) Let
{Xn; n = 1, 2, . . . } be an iid sequence of N (m,σ2) random variables.
Define for any positive integer N

SN =

N∑

n=1

Xn.

(a) For K < N find the pdf fSN .SK
(α, β).
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(b) Find the MMSE estimator of SK given SN , E(SK |SN ). Define
VK =

∑K
n=1X2

n. Find the MMSE of VK given VN .

61. (Problem courtesy of the ECE Department of the Technion.) Let
Xi = S+Wi, i = 1, 2, . . . , N , where S and the Wi are mutually inde-
pendent with zero mean. The variance of S is σS and the variances
of all the Wi are all σ2W .

(a) Find the linear MMSE of S given the observations Xi, i =
1, 2, . . . , N .

(b) Find the resulting MSE.
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Chapter 5

Second-Order Moments

In chapter 4 we have seen that the second-order moments of a random
process — the mean and covariance or, equivalently, the autocorrelation
— play a fundamental role in describing the relation of limiting sample
averages and expectations. We have also seen, e.g., in Section 4.5.1 and
problem 4.23, and we shall see again that these moments also play a key role
in signal processing applications of random processes, linear least squares
estimation in particular. Because of the fundamental importance of these
particular moments, this chapter considers their properties in greater depth
and their evaluation for several important examples. A primary focus is on
a second-order moment analog of a derived distribution problem: suppose
that we are given the second-order moments of one random process and
that this process is then used as an input to a linear system; what are
the resulting second-order moments of the output random process? These
results are collectively known as second-order moment input/output or I/O
relations for linear systems.

Linear systems may seem to be a very special case. As we will see,
their most obvious attribute is that they are easier to handle analytically,
which leads to more complete, useful, and stronger results than can be
obtained for the class of all systems. This special case, however, plays a
central role and is by far the most important class of systems. The design of
engineering systems frequently involves the determination of an optimum
system — perhaps the optimum signal detector for a signal in noise, the
filter that provides the highest signal-to-noise ratio, the optimum receiver,
etc. Surprisingly enough, the optimum is frequently a linear system. Even
when the optimum is not linear, often a linear system is a good enough
approximation to the optimal system so that a linear system is used for
the sake of economical design. For these reasons it is of interest to study

281
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the properties of the output random process from a linear system that is
driven by a specified input random process. In this chapter we consider only
second-order moments; in the next chapter we consider examples in which
one can develop a more complete probabilistic description of the output
process. As one might suspect the less complete second-order descriptions
are possible under far more general conditions.

With the knowledge of the second-order properties of the output process
when a linear system is driven by a given random process, one will have the
fundamental tools for the analysis and optimization of such linear systems.
As an example of such analysis, the chapter closes with an application of
second-order moment theory to the design of systems for linear least squares
estimation.

Because the primary engineering application of these systems is to noise
discrimination, we will group them together under the name “linear filters.”
This designation denotes the suppression or “filtering out” of noise from the
combination of signal and noise. The methods of analysis are not limited
to this application, of course.

As usual, we emphasize discrete time in the development, with the ob-
vious extensions to continuous time provided by integrals. Furthermore, we
restrict attention in the basic development to linear time-invariant filters.
The extension to time-varying systems is obvious but cluttered with ob-
fuscating notation. Time-varying systems will be encountered briefly when
considering recursive estimation.

5.1 Linear Filtering of Random Processes

Suppose that a random process {X(t); t ∈ T }, (or {Xt; t ∈ T }) is used
as an input to a linear time-invariant system described by a δ response h.
Hence the output process, say {Y (t)} or {Yt} is described by the convolution
integral of (A.22) in the continuous time case of the convolution sum of
(A.29) in the discrete time case. To be precise, we have to be careful about
how the integral or sum is defined; that is, integrals and infinite sums of
random processes are really limits of random variables, and those limits can
converge in a variety of ways, such as quadratic mean or with probability
one. For the moment we will assume that the convergence is pointwise
(that is, with probability one), i.e., that each realization or sample function
of the output is related to the corresponding realization of the input via
(A.22) or (A.29). That is, we take

Y (t) =

∫

s: t−s∈T
X(t− s)h(s) ds (5.1)
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or

Yn =
∑

k:n−k∈T
Xn−khk (5.2)

to mean actual equality for all elementary events ω on the underlying prob-
ability space Ω. More precisely,

Y (t, ω) =

∫

s: t−s∈T
X(t− s, ω)h(s) ds

or

Yn(ω) =
∑

k:n−k∈T
Xn−k(ω)hk ,

respectively. Rigorous consideration of conditions under which the various
limits exist is straightforward for the discrete time case. It is obvious that
the limits exist for the so-called finite impulse response (FIR) discrete time
filters where only a finite number of the hk are nonzero and hence the
sum has only a finite number of terms. It is also possible to show mean
square convergence for the general discrete time convolution if the input
process has finite mean and variance and if the filter is stable in the sense
of (A.30). In particular, for a two-sided input process, (5.2) converges in
quadratic mean; i.e.,

l.i.m.
N→∞

n−1∑

k=0

Xn−khk

exists for all n. Convergence with probability 1 can be established using
more advanced methods provided sufficient technical conditions are satis-
fied. The theory is far more complicated in the continuous time case. As
usual, we will by and large ignore these problems and just assume that the
convolutions are well defined.

Unfortunately, (A.24) and (A.30) are not satisfied in general for sample
functions of interesting random processes and hence in general one cannot
take Fourier transforms of both sides of (5.1) and (5.2) and obtain a useful
spectral relation. Even if one could, the Fourier transform of a random
process would be a random variable for each value of frequency! Because
of this, the frequency domain theory for random processes is quite different
from that for deterministic processes. Relations such as (A.26) may on
occasion be useful for intuition, but they must be used with extreme care.

With the foregoing notation and preliminary considerations, we now
turn to the analysis of discrete time linear filters with random process
inputs.
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5.2 Second-Order Linear Systems I/O Rela-
tions

Discrete Time Systems

Ideally one would like to have a complete specification of the output of a
linear system as a function of the specification of the input random pro-
cess. Usually this is a difficult proposition because of the complexity of
the computations required. However, it is a relatively easy task to deter-
mine the mean and covariance function at the output. As we will show,
the output mean and covariance function depend only on the input mean
and covariance function and on no other properties of the input random
process. Furthermore, in many, if not most, applications, the mean and
covariance functions of the output are all that are needed to solve the prob-
lem at hand. As an important example: if the random process is Gaussian,
then the mean and covariance functions provide a complete description of
the process.

Linear filter input/output (I/O) relations are most easily developed us-
ing the convolution representation of a linear system. Let {Xn} be a dis-
crete time random process with mean function mn = EXn and covariance
function KX(n, k) = E[(Xn −mn)(Xk −mk)]. Let {hk} be the Kronecker
δ response of a discrete time linear filter. For notational convenience we
assume that the δ response is causal. The non-causal case simply involves a
change of the limits of summation. Next we will find the mean and covari-
ance functions for the output process {Yn} that is given in the convolution
equation of (5.2).

From (5.2) the mean of the output process is found using the linearity
of expectation as

EYn =
∑

k

hkEXn−k =
∑

k

hkmn−k , (5.3)

assuming, of course, that the sum exists. The sum does exist if the filter
is stable and the input mean is bounded. That is, if there is a constant
m <∞, such that |mn| ≤ |m| for all n and if the filter is stable in the sense
of equation (A.30), then

|EYn| = |
∑

k

hkmm−k| ≤ maxk |mn−k|
∑

k

|hk|

≤ |m|
∑

k

|hk| <∞ .

If the input process {Xn} is weakly stationary, then the input mean function
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equals the constant, m, and

EYn = m
∑

k

hk , (5.4)

which is the dc response of the filter times the mean. For reference we
specify the precise limits for the two-sided random process where T = Z
and for the one-sided input random process where T = Z+:

EYn = m

∞∑

k=0

hk , T = Z (5.5)

EYn = m

n∑

k=0

hk , T = Z+ . (5.6)

Thus, for weakly stationary input random processes, the output mean
exists if the input mean is finite and the filter is stable. In addition, it
can be seen that for two-sided weakly stationary random processes, the
expected value of the output process does not depend on the time index
n since then the limits of the summation do not depend on n. For one-
sided weakly stationary random processes, however, the output mean is
not constant with time but approaches a constant value as n → ∞ if the
filter is stable. Note that this means that if a one-sided stationary process
is put into a linear filter, the output is in general not stationary!

If the filter is not stable, the magnitude of the output mean is unbounded
with time. For example, if we set hk = 1 for all k in (5.6) then EYn =
(n + 1)m, which very strongly depends on the time index n and which is
unbounded.

Turning to the calculation of the output covariance function, we use
equations (5.2) and (5.3) to evaluate the covariance with some bookkeeping
as

KY (k, j) = E[(Yk − EYk)(Yj − EYj)]

= E

[(
∑

n

hn(Xk−n −mk−n)

)(
∑

m

hm(Xj−m −mj−m)

)]

=
∑

n

∑

m

hnhmE[(Xk−n −mk−n)(Xj−m −mj−m)]

=
∑

n

∑

m

hnhmKX(k − n, j −m) .

(5.7)
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A careful reader might note the similarity between (5.7) and the corre-
sponding matrix equation (4.28) derived during the consideration of Gaus-
sian vectors (but true generally for covariance matrices of linear functions
of random vectors).

As before, the range of the sums depends on the index set used. Since
we have specified causal filters, the sums run from 0 to ∞ for two-sided
processes and from 0 to k and 0 to j for one-sided random processes.

It can be shown that the sum of (5.7) converges if the filter is stable
in the sense of (A.30) and if the input process has bounded variance; i.e.,
there is a constant σ2 < ∞ such that |KX(n, n)| < σ2 for all n (problem
5.19).

If the input process is weakly stationary, then KX depends only on the
difference of its arguments. This is made explicit by replacing KX(m,n)
by KX(m− n). Then (5.7) becomes

KY (k, j) =
∑

n

∑

m

hnhmKX((k − j)− (n−m)) . (5.8)

Specifying the limits of the summation for the one-sided and two-sided
cases, we have that

KY (k, j) =

∞∑

n=0

∞∑

m=0

hnhmKX((k − j)− (n−m)) ; T = Z . (5.9)

and

KY (k, j) =

k∑

n=0

j∑

m=0

hnhmKX((k − j)− (n−m)) ; T = Z+ . (5.10)

If the sum of (5.9) converges (e.g., if the filter is stable and KX(n, n) =
KX(0) < ∞), then two interesting facts follow: First, if the input random
process is weakly stationary and if the processes are two-sided, then the
covariance of the output process depends only on the time lag; i.e., KY (k, j)
can be replaced by KY (k−j). Note that this is not the case for a one-sided
process, even if the input process is stationary and the filter stable! This
fact, together with our earlier result regarding the mean, can be summarized
as follows:

Given a two-sided random process as input to a linear filter, if the input
process is weakly stationary and the filter is stable, the output random pro-
cess is also weakly stationary. The output mean and covariance functions
are given by

EYn = m

∞∑

k=0

hk (5.11)
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KY (k) =

∞∑

n=0

∞∑

m=0

hnhmKX(k − (n−m)) . (5.12)

The second observation is that (5.8), (5.9), (5.10) or (5.12) is a double
discrete convolution! The direct evaluation of (5.8), (5.9), and (5.10) while
straightforward in concept, can be an exceedingly involved computation in
practice. As in other linear systems applications, the evaluations of convo-
lutions can often be greatly simplified by resort to transform techniques, as
shall be considered shortly.

Continuous Time Systems

For each of the discrete time filter results there is an analogous continuous
time result. For simplicity, however, we consider only the simpler case
of two-sided processes. Let {X(t)} be a two-sided continuous time input
random process to a linear time-invariant filter with impulse response h(t).

We can evaluate the mean and covariance functions of the output pro-
cess in terms of the mean and covariance functions of the input random
process by using the same development as was used for discrete random
processes. This time we will have integrals instead of sums. Let m(t)
and KX(t, s) be the respective mean and covariance functions of the input
process. Then the mean function of the output process is

EY (t) =

∫
E[X(t− s)]h(s) ds =

∫
m(t− s)h(s) ds . (5.13)

The covariance function of the output random process is obtained by com-
putations analogous to (5.7) as

KY (t, s) =

∫
dα

∫
dβKX(t− α, s− β)h(α)h(β) . (5.14)

Thus if {X(t)} is weakly stationary with mean m = m(t) and covariance
function KX(τ), then

EY (t) = m

∫
h(t) dt (5.15)

and

KY (t, s) =

∫
dα

∫
dβKX((t− s)− (α− β))h(α)h(β) . (5.16)

In analogy to the discrete time result, the output mean is constant for a
two-sided random process, and the covariance function depends on only the
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time difference. Thus a weakly stationary two-sided process into a stable
linear time-invariant filter yields a weakly stationary output process in both
discrete and continuous time. We leave it to the reader to develop conclu-
sions that are parallel to the discrete time results for one-sided processes.

Transform I/O Relations

In both discrete and continuous time, the covariance function of the output
can be found by first convolving the input autocorrelation with the pulse
response hk or h(t) and then convolving the result with the reflected pulse
response h−k or h(−t). A way of avoiding the double convolution is found
in Fourier transforms. Taking the Fourier transform (continuous or dis-
crete time) of the double convolution yields the transform of the covariance
function, which can be used to arrive at the output covariance function —
essentially the same result with (in many cases) less overall work.

We shall show the development for discrete time, a similar sequence
of steps provides the proof for continuous time by replacing the sums by
integrals. Using (5.12),

Ff (KY )

=
∑

k

(
∑

n

∑

m

hnhmKX(k − (n−m))

)
e−j2πfk

=
∑

n

∑

m

hnhm

(
∑

k

KX(k − (n−m))e−j2πf(k−(n−m))
)

e−j2πf(n−m)

=

(
∑

n

hne
−j2πfn

)(
∑

m

hme+j2πfm

)
F(KX)

= Ff (KX)Ff (h)Ff (h∗) , (5.17)

where the asterix denotes complex conjugate. If we define H(f) = Ff (h),
the transfer function of the filter, then the result can be abbreviated for
both continuous and discrete time as

Ff (KY ) = |H(f)|2Ff (KX). (5.18)

We can also conveniently describe the mean and autocorrelation functions
in the frequency domain. From (5.5) and (5.15) the mean mY of the output
is related to the mean mY of the input simply as

mY = H(0)mX . (5.19)
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Since KX(k) = RX(k)−|mX |2 and KY (k) = RY (k)−|mY |2, (5.18) implies
that

Ff (RY − |mY |2) = |H(f)|2Ff (RX − |mX |2)
or

Ff (RY )− |mY |2δ(0) = |H(f)|2
(
Ff (RX)− |mX |2δ(0)

)

= |H(f)|2Ff (RX)− |H(f)|2|mX |2δ(0)
= |H(f)|2Ff (RX)− |H(0)|2|mX |2δ(0),

where we have used the property of Dirac deltas that g(f)δ(f) = g(0)δ(f)
(provided g(f) has no jumps at f = 0). Thus the autocorrelation func-
tion satisfies the same transform relation as the covariance function. This
result is abbreviated by giving a special notation to the transform of an
autocorrelation function: Given a weakly stationary process {X(t)} with
autocorrelation function RX , the power spectral density of the process is
defined by

SX(f) = Ff (RX) =






∑
RX(k)e

−j2πfk , discrete time∫
RX(τ)e

−j2πfτ dτ , continuous time .

(5.20)

the Fourier transform of the autocorrelation function. The reason for the
name will be given in the next section and discussed at further length later
in the chapter. Given the definition we have now proved the following
result.

If a weakly stationary process {X(t)} with power spectral density SX(f)
is the input to a linear time invariant filter with transfer function H, then
the output process {Y (t)} is also weakly stationary and has mean

mY = H(0)mX (5.21)

and power spectral density

SY (f) = |H(f)|2SX(f). (5.22)

This result is true for both discrete and continuous time.

5.3 Power Spectral Densities

Under suitable technical conditions the Fourier transform can be inverted to
obtain the autocorrelation function from the power spectral density. Thus
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the reader can verify from the definitions (5.20) that

RX(τ) =






∫ 1/2

−1/2
SX(f)e

j2πfτ df , discrete time, integer τ
∫ ∞

−∞
SX(f)e

j2πfτ dτ , continuous time, continuous τ .

(5.23)

The limits of −1/2 to +1/2 for the discrete time integral correspond to the
fact that time is measured in units; e.g., adjacent outputs are one second
or one minute or one year apart. Sometimes, however, the discrete time
process is formed by sampling a continuous time process at every, say, T
seconds, and it is desired to retain seconds as the unit of measurement.
Then it is more convenient to incorporate the scale factor T into the time
units and scale (5.20) and the limits of (5.23) accordingly — i.e., kT replaces
k in (5.20), and the limits become −1/2T to 1/2T .

Power spectral densities inherit the property of symmetry from autocor-
relation functions. As seen from the definition in chapter 4, covariance and
autocorrelation functions are symmetric (RX(t, s) = RX(s, t)). Therefore
RX(τ) is an even function. From (5.20) it can be seen with a little juggling
that SX(f) is also even; that is, SX(−f) = SX(f) for all f .

The reason for the name “power spectral density” comes from observing
how the average power of a random process is distributed in the frequency
domain. The autocorrelation function evaluated at 0 lag, PX = RX(0) =
E(|X(t)|2) can be interpreted as the average power dissipated in a unit
resistor by a voltage X(t). Since the autocorrelation is the inverse Fourier
transform of the power spectral density, this means that

PX =

∫
SX(f) df, (5.24)

that is, the total average power in the process can be found by integrating
SX(f). Thus if SX were nonnegative, it could be considered as a density of
power analogous to integrating a probability or mass density to find total
probability or mass. For the probability and mass analogues, however, we
know that integrating over any reasonable set will give the probability or
mass of that set, i.e., we do not wish to confine interest to integrating over all
possible frequencies. The analogous consideration for power is to look at the
total average power within an arbitrary frequency band, which we do next.
The fact that power spectral densities are nonnegative can be derived from
the fact that the autocorrelation function is nonnegative definite (which
can be shown in the same way it was shown for covariance functions) —
a result known as Bochner’s theorem. We shall prove nonnegativity of the
power spectral density as part of the development.
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Suppose that we wish to find the power of a process, say {Xt} in some
frequency band f ∈ F . Then a physically natural way to accomplish this
would be to pass the given process through a bandpass filter with transfer
function H(f) equal to 1 for f ∈ F and 0 otherwise and then to measure
the output power. This is depicted in Figure 5.1 for the special case of
a frequency interval F = {f : f0 ≤ |f | < f0 + ∆f}. Calling the output

Xt ✲ H(f) ✲ Yt

✲ f

✻
H(f)

1

−f0 −∆ −f0 f0 f0 +∆

E[Y 2t ] =

∫

f :f0≤|f |<f0+∆
SX(f) df.

Figure 5.1: Power spectral density

process {Yt}, we have from (5.24) that the output power is

RY (0) =

∫
SY (f) df =

∫
|H(f)|2SX(f) df =

∫

F

SX(f) df . (5.25)

Thus to find the average power contained in any frequency band we in-
tegrate the power spectral density over the frequency band. Because the
average power must be nonnegative for any choice of f0 and ∆f , it follows
that any power spectral density must be nonnegative,i.e.,

SX(f) ≥ 0, all f. (5.26)

To elaborate further, suppose that this is not true; i.e., suppose that SX(f)
is negative for some range of frequencies. If we put {Xt} through a filter
that passes only those frequencies, the filter output power would have to
be negative — clearly an impossibility.

From the foregoing considerations it can be deduced that the name
power spectral density derives from the fact that SX(f) is a nonnegative
function that is integrated to get power; that is, a “spectral” (meaning fre-
quency content) density of power. Keep in mind the analogy to evaluating
probability by integrating a probability density.
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5.4 Linearly Filtered Uncorrelated Processes

If the input process {Xn} to a discrete time linear filter with δ response
{hk} is a weakly stationary uncorrelated process with mean m and variance
σ2 (for example, if it is iid), then KX(k) = σ2δk and RX(k) = σ2δk +m2.
In this case the power spectral density is easily found to be

SX(f) =
∑

k

σ2δke
−j2πfk +m2δ(f) = σ2 +m2δ(f) ; all f ,

since the only nonzero term in the sum is the k = 0 term. The presence of
the Dirac delta is due to the nonzero mean. When the mean is zero, this
simplifies to

SX(f) = σ2, all f. (5.27)

Because the power spectral density is flat in this case, in analogy to the flat
electromagnetic spectrum of white light, such a process (a discrete time,
weakly stationary, zero mean, uncorrelated process) is said to be white
or white noise. The inverse Fourier transform of the white noise spectral
density is found from (5.23) (or simply by uniqueness) to be RX(k) = σ2δk.
Thus a discrete time random process is white if and only if it is weakly
stationary, zero mean, and uncorrelated.

For the two-sided case we have from (5.12) that the output covariance
is

KY (k) = σ2
∞∑

n=0

hnhn−k = σ2
∞∑

n=k

hnhn−k ; T = Z , (5.28)

where the lower limit of the sum follows from the causality of the filter.
If we assume for simplicity that m = 0, the power spectral density in this
case reduces to

SY (f) = σ2|H(f)|2. (5.29)

For a one-sided process, (5.10) yields

KY (k, j) = σ2
k∑

n=0

hnhn−(k−j) ; T = Z+ . (5.30)

Note that if k > j, then the sum can be taken over the limits n = k − j
to k since causality of the filter implies that the first few terms are 0. If
k < j, then all of the terms in the sum may be needed. The covariance for
the one-sided case appears to be asymmetric, but recalling that hl is 0 for
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negative l, we can write the terms of the sum of (5.30) in descending order
to obtain

σ2(hkhj + hk−1hj−1 + . . .+ h0hj−k)

if j ≥ k and

σ2(hkhj + hk−1hj−1 + . . .+ hk−jh0)

if j ≤ k. By defining the function min(k, j) to be the smaller of k and j,
we can rewrite (5.30) in two symmetric forms:

KY (k, j) = σ2
min(k,j)∑

n=0

hk−nhj−n ; T = Z+ (5.31)

and

KY (k, j) = σ2
min(k,j)∑

n=0

hnhn+|k−j| . (5.32)

The one-sided process is not weakly stationary because of the distinct pres-
ence of k and j in the sum, so the power spectral density is not defined.

In the two-sided case, the expression (5.28) for the output covariance
function is the convolution of the unit pulse response with its reflection h−k.
Such a convolution between a waveform or sequence and its own reflection
is also called a sample autocorrelation.

We next consider specific examples of this computation. These examples
point out how two processes — one one-sided and the other two sided —
can be apparently similar and yet have quite different properties.

[5.1] Suppose that an uncorrelated discrete time two-sided random process
{Xn} with mean m and variance σ2 is put into a linear filter with
causal pulse response hk = rk, k ≥ 0, with |r| < 1. Let {Yn} denote
the output process, i.e.,

Yn =

∞∑

k=0

rkXn−k. (5.33)

Find the output mean and covariance.

From the geometric series summation formula,

∞∑

k=0

|r|k = 1

1− |r| ,
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and hence the filter is stable. From (5.4), (5.5), and (5.6)

EYn = m

∞∑

k=0

rk =
m

1− r
; n ∈ Z .

From (5.28), the output covariance for nonnegative k is

KY (k) = σ2
∞∑

n=k

rnrn−k

= σ2r−k
∞∑

n=k

(r2)n = σ2
rk

1− r2

using the geometric series formula. Repeating the development for
negative k (or appealing to symmetry) we find in general the covari-
ance function is

KY (k) = σ2
r|k|

1− r2
; k ∈ Z .

Observe in particular that the output variance is

σ2Y = Ky(0) =
σ2

1− r2
.

As |r| → 1 the output variance grows without bound. However, as
long as |r| < 1, the variance is defined and the process is clearly
weakly stationary.

The previous example has an alternative construction that demon-
strates how two models that appear quite different can lead to the
same thing. From (5.33) we have

Yn − rYn−1 =

∞∑

k=0

rkXn−k − r

∞∑

k=0

rkXn−1−k

= Xn +

∞∑

k=1

rkXn−k − r

∞∑

k=0

rkXn−1−k

= Xn,

since the two sums are equal. This yields a difference equation relating
the two processes, expressing the output process Yn in a recursive
form:

Yn = Xn + rYn−1. (5.34)
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Thus the new Yn is formed by adding the new Xn to the previous Yn.
This representation shows that in a sense the Xn process represents
the “new information” in the Yn process. We will see in the next
chapter that if Xn is actually iid and not just uncorrelated, this rep-
resentation leads to a complete probabilistic description of the output
process. The representation (5.34) is called a first-order autoregressive
model for the process, in contrast to the ordinary convolution repre-
sentation of (5.33), which is often called a moving average model.

The output spectral density can be found directly by taking the
Fourier transform of the output covariance as

SY (f) =

∞∑

k=−∞

σ2r|r|

1− r2
e−j2πfk ,

a summation that can be evaluated using the geometric series formula
— first from 1 to ∞ and then from 0 to −∞ — and then summing
the two complex terms. The reader should perform this calculation
as an problem. It is easier, however, to find the output spectral
density through the linear system I/O relation. The transfer function
of the filter is evaluated by a single application of the geometric series
formula as

H(f) =
∞∑

k=0

rke−j2πfk =
1

1− re−j2πf
.

Therefore the output spectral density from (5.22) is

SY (f) =
σ2

|1− re−2πf |2 =
σ2

1 + r2 − 2r cos(2πf)
.

By a quick table lookup the reader can verify that the inverse trans-
form of the output spectral density agrees with the covariance func-
tion previously found.

[5.2] Suppose that a one-sided uncorrelated process {Xn} with mean m
and variance σ2 is put into a one-sided filter with pulse response as
in example [5.1]. Let {Yn} be the resulting one-sided output process.
Find the output mean and covariance.

This time (5.6) yields

EYn = m

n∑

k=0

rk = m
1− rn+1

1− r



296 CHAPTER 5. SECOND-ORDER MOMENTS

from the geometric series formula. From (5.32) the covariance is

kY (k, j) = σ2
min(k,j)∑

n=0

r2n+|k−j| = σ2
1− r2(min(k,j)+1)

1− r2
.

Observe that since |r| < 1, if we let n → ∞, then the mean of this
example goes to the mean of the preceding example in the limit. Sim-
ilarly, if one fixes the lag |k−j| and lets k (and hence j) go to∞, then
in the limit the one-sided covariance looks like the two-sided example.
This simple example points out a typical form of non-stationarity: A
linearly filtered uncorrelated process is not stationary by any defini-
tion, but as one gets farther and farther from the origin, the param-
eters look more and more stationary. This can be considered as a
form of asymptotic stationarity. In fact, a process is defined as being
asymptotically weakly stationary if the mean and covariance converge
in the sense just given. One can view such processes as having tran-
sients that die out with time. It is not difficult to show that if a
process is asymptotically weakly stationary and if the limiting mean
and covariance meet the conditions of the ergodic theorem, then the
process itself will satisfy the ergodic theorem. Intuitively stated, tran-
sients do not affect the long-term sample averages.

[5.3] Next consider the one-sided process of example [5.2], but now choose
the pulse response with r = 1; that is, hk = 1 for all k ≥ 0. Find
the output mean and covariance. (Note that this filter is not stable.)
Applying (5.4–5.6) and (5.28), (5.30), and (5.31) yields

EYn = m

n∑

k=0

hk = m(n+ 1)

and

KY (k, j) = σ2(min(k, j) + 1) = σ2min(k + 1, j + 1) .

Observe that like example [5.2], the process of example [5.3] is not
weakly stationary. Unlike [5.2], however, it does not behave asymptoti-
cally like a weakly stationary process — even for large time, the moments
very much depend on the time origin. Thus the non-stationarities of this
process are not only transients — they last forever! In a sense, this process
is much more non-stationary than the previous one and, in fact, does not
have a mean ergodic theorem. If the input process is Gaussian with zero



5.4. LINEARLY FILTERED UNCORRELATED PROCESSES 297

mean, then we shall see in chapter 6 that the output process {Yn} is also
Gaussian. Such a Gaussian process with zero mean and with the covariance
function of this example is called the discrete time Wiener process.

[5.4 ] A Binary Markov Process

The linear filtering ideas can be applied when other forms of arith-
metic than real arithmetic or used. Rather than try to be general
we illustrate the approach by an example, a process formed by linear
filtering using binary (modulo 2) arithmetic an iid sequence of coin
flips.

Given a known input process and a filter (a modulo 2 linear recursion
in the present case), find the covariance function of the output. Gen-
eral formulas will be derived later in the book, here a direct approach
to the problem at hand is taken.

First observe that KY (k, j) = E[(Yk − E(Yk))(Yj − E(Yj))] is easily
evaluated for the case k = j because the marginal for Yk is equiprob-
able:

E[Yk] =
∑

y

ypY (y)

=
1

2
(0 + 1) =

1

2

KY (k, k) = σ2Y = E[(Yk −
1

2
)2]

=
∑

y

(y − 1

2
)2pY (y)

=
1

2
(
1

4
+

1

4
) =

1

4

Next observe that a covariance function is symmetric in the sense
that

KY (k, j) = E[(Yk − E(Yk))(Yj − E(Yj))]

= E[(Yj − E(Yj))(Yk − E(Yk))]

= KY (j, k)

so that we will be done if we evaluate KY (k, j) for the special case
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where k = j + l for l ≥ 1. Consider therefore

KY (j + l, j) = E[(Yj+l −
1

2
)(Yj −

1

2
)]

= E[(Xj+l ⊕ Yj+l−1 −
1

2
)(Yj −

1

2
)]

=
∑

x,y,z

(x⊕ y − 1

2
)(z − 1

2
)pXj+l,Yj+l−1,Yj (x, y, z)

=
∑

x,y,z

(x⊕ y − 1

2
)(z − 1

2
)pXj+l

(x)pYj+l−1,Yj (y, z)

=
∑

y,z

(
(0⊕ y − 1

2
)(z − 1

2
)(1− p)pYj+l−1,Yj (y, z)

+(1⊕ y − 1

2
)(z − 1

2
)ppYj+l−1,Yj (y, z)

)
.

Since 0⊕ y = y and 1⊕ y = 1− y, this becomes

KY (j + l, j) = (1− p)
∑

y,z

(y − 1

2
)(z − 1

2
)pYj+l−1,Yj (y, z)

+p
∑

y,z

(1− y − 1

2
)(z − 1

2
)pYj+l−1,Yj (y, z)

= (1− 2p)KY (j + l − 1, j); l = 1, 2, . . .

This is a simple linear difference equation with initial conditionKY (j, j)
and hence the solution is

KY (j + l, j) = (1− 2p)lKY (j, j) =
1

4
(1− 2p)l; l = 1, 2, . . . . (5.35)

(Just plug it into the difference equation to verify that it is indeed a
solution.) Invoking the symmetry property the covariance function is
given by

KY (k, j) =
1

4
(1− 2p)|k−j| = KY (k − j). (5.36)

Note that KY (k) is absolutely summable (use the geometric progres-
sion) so that the weak law of large numbers holds for the process.

5.5 Linear Modulation

In this section we consider a different form of linear system: a linear mod-
ulator. Unlike the filters considered thus far, these systems are generally



5.5. LINEAR MODULATION 299

time-varying and contain random parameters. They are simpler than the
general linear filters, however, in that the output depends on the input in
an instantaneous fashion; that is, the output at time t depends only on the
input at time t and not on previous inputs.

In general, the word modulation means the methodical altering of one
waveform by another. The waveform being altered is often called a carrier,
and the waveform or sequence doing the altering, which we will model as a
random process is called the signal. Physically, such modulation is usually
done to transform an information-bearing signal into a process suitable for
communication over a particular medium; e.g., simple amplitude modula-
tion of a carrier sinusoid by a signal in order to take advantage of the fact
that the resulting high-frequency signals will better propagate through the
atmosphere than will audio frequencies.

The emphasis will be on continuous time random processes since most
communication systems involve at some point such a continuous time link.
Several of the techniques, however, work virtually without change in a
discrete environment.

The prime example of linear modulation is the ubiquitous amplitude
modulation or AM used for much of commercial broadcasting. If {X(t)} is
a continuous time weakly stationary random process with zero mean and
covariance function KX(τ), then the output process

Y (t) = (a0 + a1X(t)) cos(2πft+ θ) (5.37)

is called amplitude modulation of the cosine by the original process. The
parameters a0 and a1 are called modulation constants. Observe that linear
modulation is not a linear operation in the normal linear systems sense
unless the constant a0 is 0. (It is, however, an affine operation — linear in
the sense that straight lines in the two-dimensional x− y space are said to
be linear. Nonetheless, as is commonly done, we will refer to this operation
as linear modulation.

The phase term θ may be a fixed constant or a random variable, say
Θ. (We point out a subtle source of confusion here: If Θ is a random
variable, then the system is affine or linear for the input process only when
the actual sample value, say θ, of Θ is known.) We usually assume for
convenience that Θ is a random variable, independent of the X process
and uniformly distributed on [0, 2π] — one complete rotation of the carrier
phaser in the complex plane. This is a mathematical convenience, that,
as we will see, makes Y (t) weakly stationary. Physically it corresponds to
the simple notion that we are modeling the modulated waveform as seen
by a receiver. Such a receiver will not know a priori the phase of the
transmitter oscillator producing the sinusoid. Furthermore, although the
transmitted phase could be monitored and related to the signal as part of
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the transmission process, this is never done with AM. Hence, so far as the
receiver is concerned, the phase is equally likely to be anything; that is, it
has a uniform distribution independent of the signal.

If a0 = 0, the modulated process is called double sideband suppressed
carrier (DSB or DSB-SC). The a0 term clearly wastes power, but it makes
the easier and cheaper recovery or demodulation of the original process, as
explained in any text on elementary communication theory. Our goal here
is only to look at the second-order properties of the AM process.

Observe that for any fixed phase angle, say Θ = 0 for convenience, a
system taking a waveform and producing the DSB modulated waveform is
indeed linear in the usual linear systems sense. It is actually simpler than
the output of a general linear filter since the output at a given time depends
only on the input at that time.

Since Θ and the X process are independent, we have that the mean of
the output is

EY (t) = (a0 + a1EX(t))E cos(2πft+Θ) .

But Θ is uniformly distributed. Thus for any fixed time and frequency,

E cos(2πft+Θ) =

∫ 2π

0

cos(2πft+ θ)
dθ

2π

=
1

2π

∫ 2π

0

cos(2πft+ θ) dθ = 0 (5.38)

since the integral of a sinusoid over a period is zero; hence EY (t) = 0
whether or not the original signal has zero mean.

The covariance function of the output is given by the following expansion
of the product Y (t)Y (s) using (5.37):

KY (t, s) = a20E[cos(2πft+Θ) cos(2πfs+Θ)]
+a0a1(EX(t)E[cos(2πft+Θ) cos(2πfs+Θ)]
+a0a1EX(s)E[cos(2πft+Θ) cos(2πfs+Θ)])
+a21KX(t, s)E[(cos 2πft+Θ)(cos 2πfs+Θ)] .

Using the fact that the original process has zero mean eliminates the middle
lines in the preceding. Combining the remaining two terms and using the
cosine identity

cosx cos y =
1

2
cos(x+ y) +

1

2
cos(x− y) (5.39)
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yields

KY (t, s)

= (a20 + a21KX(t, s))×
(
1

2
E cos(2πf(t+ s) + 2Θ) +

1

2
E cos(2πf(t− s))

)
.

Exactly as in the mean computation of (5.38), the expectation of the term
with the Θ in it is zero, leaving

KY (τ) =
1

2
(a20 + a21KX(τ)) cos(2πfτ) .

Thus we have demonstrated that amplitude modulation of a carrier by
a weakly stationary random process results in an output that is weakly
stationary.

The power spectral density of the AM process that we considered in
the section on linear modulation can be found directly by transforming the
covariance function or by using standard Fourier techniques: The transform
of a covariance function times a cosine is the convolution of the original
power spectral density with the generalized Fourier transform of the cosine
— that is, a pair of impulses. This yields a pair of replicas of the original
power spectral densities, centered at plus and minus the carrier frequency
f0 and symmetric about f0, as depicted in Figure 5.2.

If further filtering is desired, e.g., to remove one of the symmetric halves
of the power spectral density to form single sideband modulation, then the
usual linear techniques can be applied, as indicated by (5.22).

5.6 White Noise

Let {Xn} be an uncorrelated weakly stationary discrete time random pro-
cess with zero mean. We have seen that for such a process the covariance
function is a pulse at the origin; that is,

KX(τ) = σ2Xδτ ,

where δτ is a Kronecker delta function. As noted earlier, taking the Fourier
transform results in the spectral density

SX(f) = σ2X ; all f ,

that is, the power spectral density of such a process is flat over the entire
frequency range. We remarked that a process with such a flat spectrum is
said to be white. We now make this definition formally for both discrete
and continuous time processes:
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Figure 5.2: AM power spectral density

A random process {Xt} is said to be white if its power spectral density
is a constant for all f . (A white process is also almost always assumed to
have a zero mean, an assumption that we will make.)

The concept of white noise is clearly well defined and free of analytical
difficulties in the discrete time case. In the continuous time case, however,
there is a problem if white noise is defined as a process with constant power
spectral density for all frequency. Recall from (5.24) that the average power
in a process is the integral of the power spectral density. In the discrete
time case, integrating a constant over a finite range causes no problem. In
the continuous time case, we find from (5.24) that a white noise process has
infinite average power. In other words, if such a process existed, it would
blow up the universe! A quick perusal of the stochastic systems literature
shows, however, that this problem has not prevented continuous time white
noise process models from being popular and useful. The resolution of
the apparent paradox is fairly simple: Indeed, white noise is a physically
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impossible process. But there do exist noise sources that have a flat power
spectral density over a range of frequencies that is much larger than the
bandwidths of subsequent filters of measurement devices. In fact, this is
exactly the case with the thermal noise process caused by heat in resistors in
amplifier circuits. A derivation based on the physics of such a process (see
chapter 6) yields covariance function of the form KX(τ) = kTRαe−α|τ |,
where k is Boltzman’s constant, T is the absolute temperature, and R and
α are parameters of the physical medium. The application of (5.20) results
in the power spectral density

SX(f) = kTR
2α2

α2 + (2πf)2
.

As α→∞, the power spectral density tends toward the value 2kTR for all
f ; that is, the process looks like white noise over a large bandwidth. Thus,
for example, the total noise power in a bandwidth (−B,B) is approximately
2kTR× 2B, a fact that has been verified closely by experiment.

If such a process is put into a filter having a transfer function whose
magnitude become negligible long before the power spectral density of the
input process decreases much, then the output process power spectral den-
sity SY (f) = |H(f)|2SX(f) will be approximately the same at the output
as it would have been if SX(f) were flat forever since SX(f) is flat for all
values of f where |H(f)| is non negligible. Thus, so far as the output pro-
cess is concerned the input process can be either the physically impossible
white noise model or a more realistic model with finite power. However,
since the input white noise model is much simpler to work with analytically,
it is usually adopted.

In summary, continuous time white noise is often a useful model for the
input to a filter when we are trying to study the output. Commonly the in-
put random process is represented as being white with flat spectral density
equal to N0/2. The factor of 2 is included because of the “two-sided” na-
ture of filter transfer functions; viz. a low pass filter with cutoff frequency
B applied to the white noise input will have output power equal to N0B
in accordance with (5.25). Such a white noise process makes mathematical
sense, however, only if seen through a filter. The process itself is not rigor-
ously defined. Its covariance function, however, can be represented in terms
of a Dirac delta function for the purposes of analytical manipulations. Note
that in (5.23) the generalized Fourier transform of the flat spectrum results
in a Dirac delta function of unit impulse. In particular, if the continuous
time white noise random process has power spectral density

SX(f) =
N0
2

,



304 CHAPTER 5. SECOND-ORDER MOMENTS

then it will have a covariance or autocorrelation function

KX(τ) =
N0
2

δ(τ) .

Thus adjacent samples of the random process are uncorrelated (and hence
also independent if the process is Gaussian) no matter how close together
in time the samples are! At the same time, the variance of a single sample
is infinite. Clearly such behavior is physically impossible. It is reasonable,
however, to state qualitatively that adjacent samples are uncorrelated at
all times greater than the shortest time delays in subsequent filtering.

Perhaps the nicest attribute of white noise processes is the simple form
of the output power spectral density of a linear filter driven by white noise.
If a discrete or continuous time random process has power spectral density
SX(f) = N0/2 for all f and it is put into a linear filter with transfer function
H(f), then from (5.22) the output process {Yt} has power spectral density

SY (f) = |H(f)|2N0
2

. (5.40)

The result given in (5.40) is of more importance than first appearances
indicate. A basic result of the theory of weakly stationary random pro-
cesses, called the spectral factorization theorem, states that if a random
process {Yt} has a spectral density SY (f) such that

∫
ln SY (f) df > −∞ (discrete time) (5.41)

or
∫

ln SY (f)

1 + f2
df > −∞ (continuous time) , (5.42)

then the power spectral density has the form of (5.40) for some causal linear
stable time-invariant filter. That is, the second-order properties of any
random process satisfying these conditions can be modeled as the output
of a causal linear filter driven by white noise. Such random processes are
said to be physically realizable and comprise most random processes seen
in practice. The conditions (5.41-5.42) are referred to as the Paley-Wiener
criteria[57]. This result is of extreme importance in estimation, detection,
prediction, and system identification. We note in passing that in such
models the white noise driving process is called the innovations process of
the output process if the filter has a causal and stable inverse.

As a word of caution, there do exist processes which are not “physically
realizable” in the above sense of violating the Paley-Wiener criterion (5.41
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- 5.42), yet which are still “physically realizable” in the sense that simple
models describe the processes. Consider the following example suggested
to the authors by A.B. Balakrishnan: Let X be a zero mean Gaussian
random variable with variance 1 and let Θ be a random variable with a
uniform distribution on [−π, π) which is independent of X. Define the
random process Y = cos(Xt − Θ). Then analogous to the development of
the autocorrelation function for linear modulation, we have that

E[Y (t)] = E[cos(Xt−Θ)]

= 0

RY (τ) = E[cos(Xt−Θ) cos(X(t− τ)−Θ)]

=
1

2
E[cos(Xτ)]

=
1

4
E[ejτX + ejτX ]

=
1

4
(MX(jτ) +MX(−jτ)

=
1

2
e−τ

2

so that the power spectral density is

SY (f) =
1

2
e−f

2

, (5.43)

which fails to meet the Paley-Wiener criterion.

5.7 ⋆Time-Averages

Recall the definitions of mean, autocorrelation, and covariance as expecta-
tions of samples of a weakly stationary random process {Xn; n ∈ Z}:

m = E[Xn]

RX(k) = E[XnX
∗
n−k]

KX(k) = E[(Xn −m)(Xn−k −m)∗]

= RX(k)− |m|2.

These are collectively considered as the second-order moments of the pro-
cess. The corresponding time-average moments can be described if the
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limits are assumed to exist in some suitable sense:

M = < Xn >= lim
N→∞

1

N

N−1∑

n=0

Xn

RX(k) = < XnX
∗
n−k > lim

N→∞

1

N

N−1∑

k=0

XnX
∗
n−k

KX(k) = < (Xn −m)(Xn−k −m)∗ >= lim
N→∞

1

N

N−1∑

n=0

(Xn −m)(Xn−k −m)∗.

Keep in mind that these quantities, if they exist at all, are random variables.
For example, if we actually view a sample function {Xn(ω); n ∈ Z}, then
the sample autocorrelation is

RX(k) = lim
N→∞

1

N

N−1∑

k=0

Xn(ω)X
∗
n−k(ω),

also a function of the sample point ω and hence a random variable. Of
particular interest is the autocorrelation for 0 lag:

PX = RX(0) = lim
N→∞

1

N

N−1∑

k=0

|Xn|2,

which can be considered as the sample or time average power of the sam-
ple function in the sense that it is the average power dissipated in a unit
resistance if Xn corresponds to a voltage.

Analogous to the expectations, the time-average autocorrelation func-
tion and the time-average covariance function are related by

KX(k) = RX(k)− |M|2. (5.44)

In fact, subject to suitable technical conditions as described in the laws of
large numbers, the time averages should be the same as the expectations,
that is, under suitable conditions a weakly stationary random process {Xn}
should have the properties that

m = M
RX(k) = RX(k)
KX(k) = KX(k),

which provides a suggestion of how the expectations can be estimated in
practice. Typically the actual moments are not known a priori, but the
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random process is observed over a finite time N and the results used to
estimate the moments, e.g., the sample mean

MN =
1

N

N−1∑

n=0

Xn

and the sample autocorrelation function

RN (k) =
1

N

N−1∑

n=0

XnX
∗
n−k

provide intuitive estimates of the actual moments which should converge
to the true moments as N →∞.

There are in fact many ways to estimate second-order moments and their
is a wide literature on the subject. For example, the observed samples may
be weighted or “windowed” so as to diminish the impact of samples in the
distant past or near the borders of separate blocks of data which are handled
separately. The literature on estimating correlations and covariances is
particularly rich in the speech processing area.

If the process meets the conditions of the law of large numbers, then its
sample average power PX will be RX(0), which is typically some nonzero

positive number. But if the limit limN→∞
1
N

N−1∑

k=0

|Xn|2 is not zero, then

observe that necessarily the limit

lim
N→∞

N−1∑

k=0

|Xn|2 =
∞∑

k=0

|Xn|2

must blow up since it lacks the normalizing N in the denominator. In
other words, a sample function with nonzero average power will have infi-
nite energy. The point of this observation is that a sample function from
a perfectly reasonable random process will not meet the conditions for the
existence of a Fourier transform, which suggests we might not be able to
apply the considerable theory of Fourier analysis when considering the be-
havior of random processes in linear systems. Happily this is not the case,
but Fourier analysis of random processes will be somewhat different (as well
as similar) to the Fourier analysis of deterministic finite energy signals and
of deterministic periodic signals.

To motivate a possible remedy, first “window” the sample signal {Xn; n ∈
Z} to form a new signal {X(N)

n ; n ∈ Z} defined by

X(N)
n =

{
Xn if n ≤ N − 1

0 otherwise
. (5.45)
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The new random process {X(N)
n clearly has finite energy (and is absolutely

summable) so it has a Fourier transform in the usual sense, which can be
defined as

XN (f) =
∞∑

n=0

X(N)
n e−j2πfn =

N−1∑

n=0

Xne
−j2πfn,

which is the Fourier transform or spectrum of the truncated sample signal.
Keep in mind that this is a random variable, it depends on the underlying
sample point ω through the sample waveform selected. From Parceval’s (or
Plancherel’s) theorem, the energy in the truncated signal can be evaluated
from the spectrum as

EN =

N−1∑

n=0

|Xn|2 =
∫ 1/2

−1/2
|XN (f)|2 df. (5.46)

The average power is obtained by normalizing the average energy by the
time duration N :

PN =
1

N

N−1∑

n=0

|Xn|2 =
1

N

∫ 1/2

−1/2
|XN (f)|2 df. (5.47)

Because of this formula |XN (f)|2/N can be considered as the power spectral
density of the truncated waveform because, analogous to a probability den-
sity or a mass density, it is a nonnegative function which when integrated
gives the power. Unfortunately it gives only the power spectral density for
a particular truncated sample function when what is really desired is a no-
tion of power spectral density for the entire random process. An alternative
definition of power spectral density resolves these two issues by taking the
expectation to get rid of the randomness, and the limit to look at the entire
signal, that is, to define the average power spectral density as the limit (if
it exists)

lim
N→∞

E(|XN (f)|2)
N

.
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To evaluate this limit consider

lim
N→∞

E(|XN (f)|2)
N

= lim
N→∞

1

N
E

(
|
N−1∑

k=0

Xke
−i2πfk|2

)

= lim
N→∞

1

N
E

(
N−1∑

k=0

N−1∑

l=0

Xke
−i2πfkX∗

l e
+i2πfl

)

= lim
N→∞

1

N

N−1∑

k=0

N−1∑

l=0

E[XkX
∗
l ]e

−i2πf(k−l)

= lim
N→∞

1

N

N−1∑

k=0

N−1∑

l=0

RX(k − l)e−i2πf(k−l)

= lim
N→∞

1

N

N−1∑

k=−(N−1)
(1− |k|

N
)RX(k)e

−i2πfk,

where the last term involves reordering terms using Lemma B.1 (analogous
to what was done to prove the law of large numbers for asymptotically
uncorrelated weakly stationary processes). If the autocorrelation function
is absolutely summable, i.e., if

∞∑

k=−∞
|RX(k)| <∞, (5.48)

then Lemma B.2 implies that

lim
N→∞

E(|XN (f)|2)
N

=

∞∑

k=−∞
RX(k)e

−i2πfk = SX(f), (5.49)

the power spectral density as earlier defined.

5.8 ⋆Differentiating Random Processes

We have said that linear systems can often be described by means other
than convolution integrals, e.g., difference equations for discrete time and
differential equations in continuous time. In this section we explore the I/O
relations for a simple continuous time differentiator in order to demonstrate
some of the techniques involved for handling such systems. In addition, the
results developed will provide another interpretation of white noise.
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Suppose now that we have a continuous time random process {X(t)}
and we form a new random process {Y (t)} by differentiating; that is,

Y (t) =
d

dt
X(t) .

In this section we will take {X(t)} to be a zero-mean random process for
simplicity. Results for nonzero-mean processes are found by noting that
X(t) can be written as the sum of a zero-mean random process plus the
mean function m(t). That is, we can write X(t) = X0(t) + m(t) where
X0(t) = X(t) − m(t). Then, the derivative of X(t) is the derivative of a
zero-mean random process plus the derivative of the mean function. The
derivative of the mean function is a derivative in the usual sense and hence
provides no special problems.

To be strictly correct, there is a problem in interpreting what the deriva-
tive means when the thing being differentiated is a random process. A
derivative is defined as a limit, and as we found in chapter 4, there are
several notions of limits of sequences of random variables. Care is required
because the limit may exist in one sense but not necessarily in another. In
particular, two natural definitions for the derivative of a random process
correspond to convergence with probability one and convergence in mean
square. As a first possibility we could assume that each sample function
of Y (t) is obtained by differentiating each sample function of X(t); that is,
we could use ordinary differentiation on the sample functions. This gives
us a definition of the form

Y (t, ω) =
d

dt
X(t, ω)

= lim
∆t→0

X(t+∆t, ω)−X(t, ω)

∆t
.

If P ({ω : the limit exists}) = 1, then the definition of differentiation corre-
sponds to convergence with probability one. Alternatively, we could define

Y (t) as a limit in quadratic mean of the random variables
X(t+∆t)−X(t)

∆t
as ∆t goes to zero (which does not require that the derivative exist with
probability one on sample functions). With this definition we obtain

Y (t) = l.i.m.
∆t→0

X(t+∆t)−X(t)

∆t
.

Clearly a choice of definition of derivative must be made in order to develop
a theory for this simple problem and, more generally, for linear systems
described by differential equations. We will completely avoid the issue here
by sketching a development with the assumption that all of the derivatives
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exist as required. We will blithely ignore careful specification of conditions
under which the formulas make sense. (Mathematicians sometimes refer to
such derivations as formal developments: Techniques are used as if they are
applicable and to see what happens. This often provides the answer to a
problem, which, once known, can then be proved rigorously to be correct.)

Although we make no attempt to prove it, the result we will obtain
can be shown to hold under sufficient regularity conditions on the process.
In engineering applications these regularity conditions are almost always
either satisfied, or if they are not satisfied, the answers that we obtain can
be applied anyway, with care.

Formally define a process {Y∆t(t)} for a fixed ∆t as the following dif-
ference, which approximates the derivative of X(t):

Y∆t(t) =
X(t+∆t)−X(t)

∆t
.

This difference process is perfectly well defined for any fixed ∆t > 0 and
in some sense it should converge to the desired Y (t) as ∆t → 0. We can
easily find the following correlation:

E[Y∆t(t)Y∆s(s)]

= E

[
X(t+∆t)−X(t)

∆t

X(s+∆s)−X(s)

∆s

]

=
RX(t+∆t, s+∆s)−RX(t+∆t, s)−RX(t, s+∆s) +RX(t, s)

∆t∆s
.

If we now (formally) let ∆t and ∆s go to zero, then, if the various limits
exist, this formula becomes

RY (t, s) =
∂

∂t∂s
RX(t, s) . (5.50)

As previously remarked, we will not try to specify complete conditions
under which this sleight of hand can be made rigorous. Suffice it to say
that if the conditions on the X process are sufficiently strong, the formula
is valid. Intuitively, since differentiation and expectation are linear opera-
tions, the formula follows from the assumption that the linear operations
commute, as they usually do. There are, however, serious issues of existence
involved in making the proof precise.

One obvious regularity condition to apply is that the double derivative
of (5.50) exists. If it does and the processes are weakly stationary, then
we can transform (5.50) by using the property of Fourier transforms that
differentiation in the time domain corresponds to multiplication by f in the
frequency domain. Then for the double derivative to exist we obtain the
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requirement that the spectral density of {Y (t)} have finite second moment,
i.e., if SY (f) = f2SX(f), then

∫ ∞

−∞
SY (f) df <∞ . (5.51)

As a rather paradoxical application of (5.50), suppose that we have a
one-sided continuous time Gaussian random process {X(t); t ≥ 0} that has
zero mean and a covariance function that is the continuous time analog of
example [5.3]; that is, KX(t, s) = σ2min(t, s). (The Kolmogorov construc-
tion guarantees that there is such a random process; that is, that it is well
defined.) This process is known as the continuous time Wiener process, a
process that we will encounter again in the next chapter. Strictly speaking,
the double derivative of this function does not exist because of the discon-
tinuity of the function at t = s. From engineering intuition, however, the
derivative of such a step discontinuity is an impulse, suggesting that

RY (t, s) = σ2δ(t− s) ,

the covariance function for Gaussian white noise! Because of this formal re-
lation, Gaussian white noise is sometimes described as the formal derivative
of a Wiener process. We have to play loose with mathematics to find this
result, and the sloppiness cannot be removed in a straightforward manner.
In fact, it is known from the theory of Wiener processes that they have the
strange attribute of producing with probability one sample waveforms that
are continuous but nowhere differentiable! Thus we are considering white
noise as the derivative of a process that is not differentiable. In a sense,
however, this is a useful intuition that is consistent with the extremely
pathological behavior of sample waveforms of white noise — an idealized
concept of a process that cannot really exist anyway.

5.9 ⋆Linear Estimation and Filtering

In this section we give another application of second-order moments in lin-
ear systems by showing how they arise in one of the basic problems of
communication; estimating the outcomes of one random process based on
observations of another process using a linear filter. The initial results can
be viewed as process variations on the vector results of Section 4.10, but
we develop them independently here in the process and linear filtering con-
text for completeness. We will obtain the classical orthogonality principle
and the Wiener-Hopf equation and consider solutions for various simple
cases. This section provides additional practice in manipulating second-
order moments of random processes and provides more evidence for their
importance.
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We will focus on discrete time for the usual reasons, but the continuous
time analogs are found, also as usual, by replacing the sums by integrals.

Suppose that we are given a record of observations of values of one
random process; e.g., we are told the values of {Yi; N < i < M}, and
we are asked to form the best estimate of a particular sample say Xn of
another, related random process {Xk; k ∈ T }. We refer to the collection of
indices of observed samples by K = (N,M). We permit N and M to take
on infinite values. For convenience we assume throughout this section that
both processes have zero means for all time. We place the strong constraint
on the estimate that it must be linear; that is, the estimate X̂n of Xn must
have the form

X̂n =
∑

k:n−k∈K
hkYn−k =

∑

k∈K
hn−kYk

for some pulse response h. We wish to find the “best” possible filter h,
perhaps under additional constraints such as causality. One possible notion
of best is to define the error

ǫn = Xn − X̂n

and define that filter to be best within some class if it minimizes the mean
squared error E(ǫ2n); that is, a filter satisfying some constraints will be
considered optimum if no other filter yields a smaller expected squared
error. The filter accomplishing this goal is often called a linear least squared
error (LLSE) filter.

Many constraints on the filter or observation times are possible. Typical
constraints on the filter and on the observations are the following:

1. We have a non-causal filter that can “see” into the infinite future
and a two-sided infinite observation {Yk; k ∈ Z}. Here we consider
N = −∞ and M = ∞. This is clearly not completely possible, but
it may be a reasonable approximation for a system using a very long
observation record to estimate a sample of a related process in the
middle of the records.

2. The filter is causal (hk = 0 for k < 0), a constraint that can be
incorporated by assuming that n ≥M ; that is, that samples occurring
after the one we wish to estimate are not observed. When n > M the
estimator is sometimes called a predictor since it estimates the value
of the desired process at a time later than the last observation. Here
we assume that we observe the entire past of the Y process; that is,
we take N = −∞ and observe {Yk; k < M}. If, for example, the X
process and the Y process are the same and M = n, then this case is
called the one-step predictor (based on the semi-infinite past).
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3. The filter is causal, and we have a finite record of T seconds; that is,
we observe {Yk; M − T ≤ K < M}.

As one might suspect, the fewer the constraints, the easier the solution
but the less practical the resulting filter. We will develop a general charac-
terization for the optimum filters, but we will provide specific solutions only
for certain special cases. We formally state the basic result as a theorem
and then prove it.

Theorem 5.1 Suppose that we are given a set of observations {Yk; k ∈
K} of a zero-mean random process {Yk} and that we wish to find a linear
estimate X̂n of a sample Xn of a zero-mean random process {Xn} of the
form

X̂n =
∑

k:n−k∈K
hkYn−k . (5.52)

If the estimation error is defined as

ǫn = Xn − X̂n ,

then for a fixed n no linear filter can yield a smaller expected squared error
E(ǫ2n) than a filter h (if it exists) that satisfies the relation

E(ǫnYk) = 0 ; all k ∈ K , (5.53)

or, equivalently,

E(XnYk) =
∑

i:n−i∈K
hiE(Yn−iYk) ; all k ∈ K . (5.54)

If RY (k, j) = E(YkYj) is the autocorrelation function of the Y process and
RX,Y (k, j) = E(XkYj) is the cross correlation function of the two processes,
then (5.54) can be written as

RX,Y (n, k) =
∑

i:n−i∈K
hiRY (n− i, k) ; all k ∈ K . (5.55)

If the processes are jointly weakly stationary in the sense that both are
individually weakly stationary with a cross-correlation function that depends
only on the difference between the arguments, then, with the replacement of
k by n− k, the condition becomes

RX,Y (k) =
∑

i:n−i∈K
hiRY (k − i) ; all k : n− k ∈ K . (5.56)
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Comments. Two random variables U and V are said to be orthogonal
if E(UV ) = 0. Therefore equation (5.53) is known as the orthogonality
principle because it states that the optimal filter causes the estimation
error to be orthogonal to the observations. Note that (5.53) implies not
only that the estimation error is orthogonal to the observations, but that it
is also orthogonal to all linear combinations of the observations. Relation
(5.56) with K = (−∞, n) is known as the Wiener-Hopf equation. To be
useful in practice, we must be able to find a pulse response that solves one
of these equations. We shall later find solutions for some simple cases. A
more general treatment is beyond the intended scope of this book. Our
emphasis here is to demonstrate an example in which determination of an
optimal filter for a reasonably general problem requires the solution of an
equation given in terms of second-order moments.

Proof. Suppose that we have a filter h that satisfies the given conditions.
Let g be any other linear filter with the same input observations and let
X̃n be the resulting estimate. We will show that the given conditions imply
that g can yield an expected squared error no better than that of h. Let
ǫ̃n = Xn − X̃n be the estimation error using g so that

E(ǫ̃2n) = E((Xn −
∑

i:n−i∈K
giYn−i)

2) .

Add and subtract the estimate using h satisfying the conditions of the
theorem and expand the square to obtain

E(ǫ̃2n) = E((Xn −
∑

i:n−i∈K
hiYn−i +

∑

i:n−i∈K
hiYn−i −

∑

i:n−i∈K
giYn−i)

2) =

E((Xn−
∑

i:n−i∈K
hiYn−i)

2)+2E((Xn−
∑

i:n−i∈K
hiYn−i)(

∑

i:n−i∈K
(hi−gi)Yn−i))

+E((
∑

i:n−i∈K
(hi − gi)Yn−i)

2) .

The first term on the right is the expected squared error using the filter
h, say E(ǫ2n). The last term on the right is the expectation of something
squared and is hence nonnegative. Thus we have the lower bound

E(ǫ̃2n) ≥

E(ǫ2n) +
∑

i:n−i∈K
(hi − gi)




E(XnYn−i)−
∑

j:n−j∈K
hjE(Yn−jYn−i




 ,

where we have brought one of the sums out, used different dummy variables
for the two sums, and interchanged some expectations and sums. From
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(5.54), however, the bracketed term is zero for each i in the index set being
summed over, and hence the entire sum is zero, proving that

E(ǫ̃2n) ≥ E(ǫ2n) ,

which completes the proof of the theorem.

Note that from (5.52) through (5.56) we can write the mean square error
for the optimum linear filter as

E(ǫ2n) = E

(
ǫn

(
Xn −

∑

k:n−k∈K
hkYn−k

))
= E(ǫnXn)

= RX(n, n)−
∑

k:n−k∈K
hkRX,Y (n, n− k)

in general and

E(ǫ2n) = RX(0)−
∑

k:n−k∈K
hkRX,Y (k)

for weakly stationary processes.

Older proofs of the result just given use the calculus of variations, that
is, calculus minimization techniques. The method we have used, however,
is simple and intuitive and shows that a filter satisfying the given equations
actually yields a global minimum to the mean squared error and not only
a local minimum as usually obtained by obtained by calculus methods. A
popular proof of the basic orthogonality principle is based on Hilbert space
methods and the projection theorem, the generalization of the standard
geometric result that the shortest line from a point to a plane is the projec-
tion of the point on the plane — the line passing through the point which
meets the plane at a right angle (is orthogonal to the plane). The projection
method also proves that the filter of (5.53) yields a global minimum.

We consider four examples in which the theorem can be applied to
construct an estimate. The first two are fairly simple and suffice for a brief
reading.

[5.4] Suppose that the processes are jointly weakly stationary, that we are
given the entire two-sided realization of the random process {Yn}, and
that there are no restrictions on the linear filter h. Equation (5.56)
then becomes

RX,Y (k) =
∑

i∈Z
hiRY (k − i) ; all k ∈ Z .
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This equation is a simple convolution and can be solved by standard
Fourier techniques. Take the Fourier transform of both sides and define the
transform of the cross-correlation function RX,Y to be the cross-spectral
density SX,Y (f). We obtain SX,Y (f) = H(f)SY (f) or

H(f) =
SX,Y (f)

SY (f)
,

which can be inverted to find the optimal pulse response h:

h(k) =

∫ 1/2

−1/2

SX,Y (f)

SY (f)
ei2πkf df ,

which yields an optimum estimate

X̂n =

∞∑

i=−∞
hiYn−i .

Thus we have an explicit solution for the optimal linear estimator for this
case in terms of the second-order properties of the given processes. Note,
however, that the resulting filter is not causal in general. Another impor-
tant observation is that the filter itself does not depend on the sample time
n at which we wish to estimate the X process; e.g., if we want to estimate
Xn+1, we apply the same filter to the shifted observations; that is,

X̂n+1 =

∞∑

i=−∞
hiYn+1−i .

Thus in this example not only have we found a means of estimating Xn for
a fixed n, but the same filter also works for any n. When one filter works
for all estimate sample times by simply shifting the observations, we say
that it is a time-invariant or stationary estimator. As one might guess, such
time invariance is a consequence of the weak stationarity of the processes.

The most important application of example [5.4] is to “infinite smooth-
ing,” where Yn = Xn + Vn. {Vn} is a noise process that is uncorrelated
with the signal process {Xn}, i.e., RX,V (k) = 0 for all k. Then RX,Y = RX
and hence RY = RX +RV , so that

H(f) =
SX(f)

SX(f) + SV (f)
. (5.57)

[5.5] Again assume that the processes are jointly weakly stationary. As-
sume that we require a causal linear filter h but that we observe
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the infinite past of the observation process. Assume further that the

observation process is white noise; that is, RY (k) =
N0
2

δk. Then

K = {n, n − 1, n − 2, . . . }, and equation (5.56) becomes the Wiener-
Hopf equation

RX,Y (k) =
∑

i:n−i∈K
hi

N0
2

δk−i = hk
N0
2

; k ∈ Z+ .

This equation easily reduces because of the delta function to

hk =
2

N0
RX,Y (k) , k ∈ Z+ .

Thus we have for this example the optimal estimator

X̂n =

∞∑

k=0

2

N0
RX,Y (k)Yn−k .

As with the previous example, the filter does not depend on n, and hence
the estimator is time-invariant.

The case of a white observation process is indeed special, but it suggests
a general approach to solving the Wiener-Hopf equation, which we sketch
next.

[5.6] Assume joint weak stationarity and a causal filter on a semi-infinite
observation sequence as in example [5.5], but do not assume that the
observation process is white. In addition, assume that the observation
process is physically realizable so that a spectral factorization of the
form of (5.40) exists; that is,

SY (f) = |G(f)|2

for some causal stable filter with transfer functionG(f). As previously
discussed, for practical purposes, all random processes have spectral
densities of this form. We also assume that the inverse filter, the
filter with transfer function 1/G(f), is causal and stable. Again, this
holds under quite general conditions. Observe in particular that you
can’t run into trouble with G(f) being zero on a frequency interval
of nonzero length because the condition in the spectral factorization
theorem would be violated.

Unlike the earlier examples, this example does not have a trivial solu-
tion. We sketch a solution as a modification to the solution of example
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[5.5]. The given observation process may not be white, but suppose that
we pass it through a linear filter r with transfer function R(f) = 1/G(f) to
obtain a new random process, say {Wn}. Since the inverse filter 1/G(f)is
assumed stable, then the W process has power spectral density SW (f) =
SY (f)|R(f)|2 = 1 for all f ; that is, {Wn} is white. One says that the W
process is a whitened version of the Y process, sometimes called the in-
novations process of {Yn}. Intuitively, the W process contains the same
information as the Y process from it by passing it through the filter G(f)
(at least in principle). Thus we can get an estimate of Xn, from the W
process that is just as good as (and no better than) that obtainable from
the Y process. Furthermore, if we now filter the W process to estimate Xn,
then the overall operation of the whitening filter followed by the estimating
linear filter is also a linear filter, producing the estimate from the original
observations. Since the inverse filter is causal, a causal estimate based on
the W process is also a causal estimate based on the Y process.

Because W is white, the estimate of Xn from {Wn} is given immediately
by the solution to example [5.5]; that is, the filter h with the W process
as input is given by hk = RX,W (k) for k ≥ 0. The cross-correlation of the
X and W processes can be calculated using the standard linear filter I/O
techniques. It turns out that the required cross-correlation is the inverse
Fourier transform of a cross-spectral density given by

SX,W (f) =
SX,Y (f)

G(f∗)
= H(f) , (5.58)

where the asterisk denotes the complex conjugate. (See problem 5.21.)
Thus the optimal causal linear estimator given the whitened process is

hk =






∫ 1/2

−1/2

SX,Y (f)

G(f)∗
e2πjkf ; k ≥ 0 ,

0 ; otherwise ,

and the overall optimal linear estimate has the form shown in Figure 5.3.
Although more complicated, we again have a filter that does not depend

on n.
This approach to solving theWiener-Hopf equation is called the “prewhiten-

ing” (or “innovations” or “shaping filter”) approach and it can be made
rigorous under quite general conditions. That is, for all practical purposes,
the optimal filter can be written in this cascade form as a whitening filter
followed by a LLSE filter given the whitened observations as long as the
processes are jointly weakly stationary and the observation process’s power
spectral density.

When the observation interval is finite or when the processes are not
jointly weakly stationary, the spectral factorization approach becomes quite
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Yn ✲ 1
G

✲
Wn

hk ✲ X̂n

Whitening filter Estimator for X given W

Figure 5.3: Prewhitening method

complicated and cumbersome, and alternative methods, usually in the time
domain, are required. The final example considers such an estimator.

[5.7] Suppose that the random process we wish to estimate satisfies a dif-
ference equation of the form

Xn+1 = ΦnXn + Un , n ≥ 0 , (5.59)

where the process {Un} is a zero-mean process that is uncorrelated
with a possibly time-varying second moment E(U2n) = Γn and X0 is
an initial random variable, independent of the {Un}. {Φn} is a known
sequence of constants. In other words, we know that the random
process is defined by a time-varying linear system driven by noise
that is uncorrelated but not necessarily stationary. Assume that the
observation process has the form

Yn = HnXn + Vn , (5.60)

a scaled version of the X process plus observation noise, where Hn is
a known sequence of constants. We also assume that the observation
noise has zero mean and is uncorrelated but not necessarily station-
ary, say E(V 2n ) = Ψn. We further assume that the U and V processes
are uncorrelated: E(UnVk) = 0 for all n and k. Intuitively, the ran-
dom processes are such that new values are obtained by scaling old
values and adding some perturbations. Additional noise influences
our observations. Suppose that we observe Y0, Y1, . . . , Yn−1, what is
the best linear estimate of Xn?

In a sense this problem is more restrictive than the Wiener-Hopf formu-
lation of example [5.6] because we have assumed a particular structure for
the process to be estimated and for the observations. On the other hand,
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it is not a special case of the previous model because the time-varying pa-
rameters make it nonstationary and because we restrict the observations to
a finite time window (not including the current observation), often a better
approximation to reality. Because of these differences the spectral tech-
niques of the standard Wiener-Hopf solution of example [5.6] do not apply
without significant generalization and modification. Hence we consider an-
other approach, called recursive estimation of Kalman-Bucy filtering, whose
history may be traced to Gauss’s formula for plotting the trajectory of heav-
enly bodies. The basic idea is the following: Instead of considering how to
operate on a complete observation record in order to estimate something at
one time, suppose that we already have a good estimate X̂n for Xn and that
we make a single new observation Yn. How can we use this new information
to update our old estimate in a linear fashion to form a new estimate X̂n+1
of Xn+1? For example, can we find sequences of numbers an and bn so that

X̂n+1 = anX̂n + bnYn

is a good estimate? One way to view this is that instead of constructing a
filter h described by a convolution that operates on the past to produce an
estimate for each time, we wish a possibly time-varying filter with feedback
that observes its own past outputs or estimates and operates on this and
a new observation to produce a new estimate. This is the basic idea of
recursive filtering, which is applicable to more general models that that
considered here. In particular, the standard developments in the literature
consider vector generalizations of the above difference equations. We sketch
a derivation for the simpler scalar case.

We begin by trying to apply directly the orthogonality principle of (5.53)
through (5.55). If we fix a time n and try to estimate Xn by a linear filter
as

X̂n =

n∑

i=1

hiYn−i , (5.61)

then the LLSE filter is described by the time-dependent pulse response, say
h(n−1), which, from (5.55), solves the equations

RX,Y (n, l) =

n∑

i=1

h
(n−1)
i RY (n− i, l) ; l = 0, 1, . . . , n− 1 , (5.62)

where the superscript reflects the fact that the estimate is based on obser-
vations through time n − 1 and the fact that for this very nonstationary
problem, the filter will likely depend very much on n. To demonstrate this,
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consider the estimate for Xn+1. In this case we will have a filter of the form

X̂n+1 =

n+1∑

i=1

h
(n)
i Yn+1−i , (5.63)

where the LLSE filter satisfies

RX,Y (n+ 1, l) =

n+1∑

i=1

h
(n)
i RY (n+ 1− i, l) ; l = 0, 1, . . . , n . (5.64)

Note that (5.64) is different from (5.62), and hence the pulse responses sat-
isfying the respective equations will also differ. In principle these equations
can be solved to obtain the desired filters. Since they will in general de-
pend on n, however, we are faced with the alarming possibility of having to
apply for each time n a completely different filter h(n) to the entire record
of observations Y0, . . . , Yn up to the current time, clearly an impractical
system design. We shall see, however, that a more efficient means of recur-
sively computing the estimate can be found. It will still be based on linear
operations, but now they will be time-varying.

We begin by comparing (5.62) and (5.64) more carefully to find a rela-
tion between the two filters h(n) and h(n− 1). If we consider l < n, then
(5.59) implies that

RX,Y (n+ 1, l) = E(Xn+1Yl) = E((ΦnXn + Un)Yl)

= ΦnE(XnYl) + E(UnYl) = ΦnE(XnYl) = ΦnRX,Y (n, l) .

Re-indexing the sum of (5.64) using this relation and restricting ourselves
to l < n then yields

ΦnRX,Y (n, l) =

n∑

i=0

h
(n)
i+1RY (n− i, l)

= h
(n)
1 RY (n, l) +

n∑

i=1

h
(n)
i+1RY (n− i, l) ; l = 0, 1, . . . , n− 1 .

But for l < n we also have that

RX,Y (n, l) = E(Xn, Yl) = E

(
Yn − Vn

Hn
Yl

)

=
1

Hn
E(YnYl) =

1

Hn
RY (n, l)
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or
RY (n, l) = HnRX,Y (n, l) .

Substituting this result, we have with some algebra that

RX,Y (n, l) =

n∑

i=1

hni+1

Φn − h
(n)
1 Hn

RY (n− i, l) ; l = 0, 1, . . . , n− 1 ,

which is the same as (5.62) if one identifies

h
(n−1)
i =

hni+1

Φn − h
(n)
1 Hn

; l = 1, . . . , n .

From (5.63) the estimate for Xn is

X̂n =

n∑

i=1

h
(n−1)
i Yn−i =

1

Φn − h
(n)
1 Hn

n+1∑

i=2

h
(n)
i Yn+1−i .

Comparing this with (5.63) yields

X̂n+1 = h
(n)
1 Yn + (Φn − h

(n)
1 Hn)X̂n ,

which has the desired form. It remains, however, to find a means of com-

puting the numbers h
(n)
1 . Since this really depends on only one argument

n, we now change notation for brevity and henceforth denote this term by
xn; that is,

xn = h
(n)
1 .

To describe the estimator completely we need to find a means of computing
xn and an initial estimate. The initial estimate does not depend on any
observations. The LLSE estimate of a random variable without observa-
tions is the mean of the random variable (see, e.g., problem 4.23). Since by

assumption the processes all have zero mean, X̂0 = 0 is the initial estimate.
Before computing xn, we make several remarks on the estimator and its

properties. First, we can rewrite the estimator as

X̂n+1 = xn(Yn −HnX̂n) + ΦnX̂n .

It is easily seen from the orthogonality principle that if X̂n is a LLSE

estimate of Xn given Y0, Y1, . . . , Yn−1, then Ŷn−HnX̂n = Yn− Ŷn
∆
= νn can

be interpreted as the “new” information in the observation Yn in the sense
that our best prediction of Yn based on previously known samples has been
removed from Yn. We can now write

X̂n+1 = κnνn +ΦnX̂n .
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This can be interpreted as saying that the new estimate is formed from
the old estimate by using the same transformation Φn used on the actual
samples and then by adding a term depending only on the new information.

It also follows from the orthogonality principle that the sequence νn is
uncorrelated: SinceHnX̂n is the LLSE estimate for Yn based on Y0, . . . , Yn−1,
the error νn must be orthogonal to past Yl from the orthogonality princi-
ple. Hence νn must also be orthogonal to linear combinations of past Yl
and hence also to past νl. It is straightforward to show that Eνn = 0 for all
n and hence orthogonality of the sequence implies that it is also uncorre-
lated (problem 5.24). Because of the various properties, the sequence {νn}
is called the innovations sequence of the observations process. Note the
analog with example [5.6], where the observations were first whitened to
form innovations and then the estimate was formed based on the whitened
version.

Observe next that the innovations and the estimation error are simply
related by the formula

νn = Yn −HnX̂n = HnXn + Vn −HnX̂n = Hn(Xn − X̂n) + Vn

or

νn = Hnǫn + Vn ,

a useful formula for deriving some of the properties of the filter. For exam-
ple, we can use this formula to find a recursion for the estimate error:

ǫ0 = X0

ǫn+1 = Xn+1 − X̂n+1
= ΦnXn + Un − κnνn − ΦnX̂n
= (Φn − κnHn)ǫn + Un − κnVn ; n = 0, 1.

(5.65)

This formula implies that

E(ǫn) = 0 ; n = 0, 1, . . . ,

and hence the estimate is unbiased (i.e., an estimate having an error which
has zero mean is defined to be unbiased). It also provides a recursion for
finding the expected squared estimation error:

E(ǫ2n+1) = (Φn − κnHn)
2E(ǫ2n) + E(U2n) + κ2nE(V 2n ) ,

where we have made use of the assumptions of the problem statement, viz.,
the uncorrelation of Un and Vn sequences with each other, with Y0, . . . , Yn−1,
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X0, . . . , Xn, and hence also with ǫn. Rearranging terms for later use, we
have that

E(ǫ2n+1) = Φ2nE(ǫ2n)− 2κnHnΦnE(ǫ2n)−+κ2n(H
2
nE(ǫ2n) + Ψn) + Γn ,

(5.66)

where Γn
∆
=E(U2n) and Ψn

∆
=E(V 2n ).

Since we know that E(ǫ20) = E(X2
0 ), if we knew the κn we could recur-

sively evaluate the expected squared errors from the formula and the given
problem parameters. We now complete the system design by developing
a formula for the κn. This is most easily done by using the orthogonality
relation and (5.65):

0 = E(ǫn+1Yn) = (Φn − κnHn)E(ǫnYn) + E(UnYn)− κnE(VnYn) .

Consider the terms on the right. Proceeding from left to right, the first
term involves

E(ǫnYn) = E(ǫn(HnXn + Vn)) = HnE(ǫn(ǫn + X̂n)) = HnE(ǫ2n) ,

where we have used the fact that ǫn is orthogonal to Vn, to Y0, . . . , Yn−1 and
hence to X̂n. The second term is zero by the assumptions of the problem.
The third term requires the evaluation

E(VnYn) = E(Vn(HnXn + Vn)) = E(V 2n ) .

Thus we have that

0 = (Φn − κnHn)HnE(ǫ2n)− κnE(V 2n )

or

κn =
ΦnHnE(ǫ2n)

E(V 2n ) +H2
nE(ǫ2n)

.

Thus for each n we can solve the recursion for E(ǫ2n) and for the required
κn to form the next estimate.

We can now combine all of the foregoing mess to produce the final
answer. A recursive estimator for the given model is

X̂0 = 0 ; E(ǫ20) = E(X2
0 ) , (5.67)

and for n = 0, 1, 2, . . . ,

X̂n+1 = κn(Yn −HnX̂n) + ΦnX̂n ; n = 0, 1, . . . , (5.68)
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where

κn =
ΦnHnE(ǫ2n)

Ψn +H2
nE(ǫ2n)

(5.69)

and where, from (5.66) and (5.69),

E(ǫ2n+1) = ΦnE(ǫ2n) + Γn −
(ΦnHnE(ǫ2n))

2

Ψn +H2
nE(ǫ2n)

. (5.70)

Although these equations seem messy, they can be implemented nu-
merically or in hardware in a straightforward manner. Variations of their
matrix generalizations are also well suited to fast implementation. Such al-
gorithms in greater generality are a prime focus of the areas of estimation,
detection, signal identification, and signal processing.

5.10 Problems

1. Suppose that Xn is an iid Gaussian process with mean m and variance
σ2. Let h be the pulse response h0 = 1, h1 = r, and hk = 0 for all
other k. Let {Wn} be the output process when the X process is put
into the filter described by h; that is,

Wn = Xn + rXn−1 .

Assuming that the processes are two-sided — that is, that they are
defined for n ∈ Z — find EWn and RW (k, j). Is {Wn} strictly
stationary? Next assume that the processes are one-sided; that is,
defined for n ∈ Z+. Find EWn and RW (k, j). For the one-sided case,
evaluate the limits of EWn and RW (n, n+ k) as n→∞.

2. We define the following two-sided random processes. Let {Xn} be an
iid random process with marginal pdf fX(x) = e−x, x ≥ 0. Let {Yn}
be another iid random process, independent of the X process, having
marginal pdf fY (y) = 2e−2y, y ≥ 0. Define a random process {Un}
by the difference equation

Un = Xn +Xn−1 + Yn .

The process Un can be thought of as the result of passing Xn through
a first order moving average filter and then adding noise. Find EU0
and RU (k).
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3. Let {X(t)} be a stationary continuous time random process with zero
mean and autocorrelation function RX(τ). The process X(t) is put
into a linear time-invariant stable filter with impulse response h(t) to
form a random process Y (t). A random process U(t) is then defined
as U(t) = Y (t)X(t − T ), where T is a fixed delay. Find EU(t) in
terms of RX , h, and T . Simplify your answer for the case where
SX(f) = N0/2, all f .

4. Find the output power spectral densities in problems 5.1 and 5.2.

A discrete-time random process {Xn; n ∈ Z} is iid and Gaussian,
with mean 0 and variance 1. It is the input process for a linear time
invariant (LTI) causal filter with Kronecker delta responses h defined
by

hk =

{
1
K k = 0, 1, . . . ,K − 1

0 otherwise
,

so that the output process {Yn} is defined by

Yn =

K−1∑

k=0

1

K
Xn−k.

This filter (an FIR filter) is often referred to as a comb filter.

A third process {Wn} is defined by

Wn = Yn − Yn−1 .

(a) What are the mean and the power spectral density of the process
{Yn}?

(b) Find the characteristic function MYn
(ju) and the marginal pdf

fYn(y).

(c) Find the Kronecker delta response g of an LTI filter for which

Wn =
∑

k

gkXn−k.

(d) Find the covariance function of {Wn}.
(e) Do n−1∑n−1

k=0 Yk and n−1∑n−1
k=0 Wk converge in probability as

n→∞? If so, to what?

5. Let {Xn} be a random process, where Xi is independent of Xj for i 
=
j. Each random variable Xn in the process is uniform on the region
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[−1/2n,+1/2n]. That is, fXn(xn) = n, when xn ∈ [−1/2n,+1/2n],
and 0 otherwise.

Define {Yn} by

Yn =

{
0 n = 0, 1
nXn − Yn−2 n = 2, 3, 4, . . .

(a) What is the expected value of Xn?

(b) What is the variance of Xn?

(c) What is the covariance function, KX(i, j)?

(d) Let Sn = n−1∑n
j=1Xj . What is the expected value of Sn?

(e) Does {Xn} have aWLLN, i.e., does the sample mean n−1∑n−1
k=0 Xn

converge in probability to the mean E[Xn]? If so, to what value
does the sample mean converge? If it has no WLLN, explain why
not. Make sure to justify your answer based on the definitions
of WLLN and convergence in probability.

(f) Find EYn.

(g) Find RY (i, j).

(h) Find the cdf of Y4 + Y6.

6. Let {X(t); t ∈ ℜ} be a stationary continuous time Gaussian random
process with zero mean and power spectral density function

SX(f) =

{
γ
2 0 ≤ |f | ≤W

0 W < |f | <∞ .

Let {Z(t); t ∈ ℜ} be a stationary continuous time Gaussian random
process with zero mean and power spectral density function

SZ(f) =

{
N0

2 0 ≤ |f | ≤ B

0 B < |f | <∞

where we assume that B >> W , γ > N0, and that the two processes
are mutually independent. We consider X(t) to be the “signal” and
Z(t) to be the “noise.” The receiver observes the process {Y (t)},
where

Y (t) = X(t) + Z(t).

(a) Find and sketch the power spectral density of {Y (t)}.
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(b) Find the conditional pdf fY (t)|X(t)(y|x), the marginal pdf fY (t)(y),
and the conditional pdf fX(t)|Y (t)(x|y).

(c) (4 points) Find the minimum mean squared estimate X̂(t) given
the single observation Y (t) and compute the resulting mean
squared error

ǫ2 = E[(X̂(t)−X(t))2]..

(d) Suppose that you are allowed to use the entire observed signal
{Y (t)} to estimate X(t) at a specific time and you can do this
by linearly filtering the observed process. Suppose in particular
that you pass the observed process {Y (t)} through a linear filter
with with a transfer function

H(f) =

{
1 0 ≤ |f | ≤W

0 W < |f | <∞

with output X̃(t), an estimate of X(t). (This filter is not causal,
but all the results we derived for second order input/output re-
lations hold for noncausal filters as well and can be used here.)

Find the resulting mean squared error E[(X̃(t)−X(t))2].

Which scheme yields smaller average mean squared error?

Hint: Convince yourself that linearity implies that X̃(t) can be
expressed as X(t) plus the output of the filter H when the input
is Z(t).

7. Let {Xn} be an iid Gaussian random process with zero mean and
variance RX(0) = σ2. Let {Un} be an iid binary random process, in-
dependent of the X process, with Pr(Un = 1) = Pr(Un = −1) = 1/2.
(All processes are assumed to be two-sided in this problem.) Define
the random process Zn = XnUn, , Yn = Un+Xn, , and Wn = U0+Xn,
all n. Find the mean, covariance, and power spectral density of each
of these processes. Find the cross-covariance functions between the
processes.

8. Let {Un}, {Xn}, and {Yn} be the same as in problem 5.7. The process
{Yn} can be viewed as a binary signal corrupted by additive Gaussian
noise. One possible method of trying to remove the noise at a receiver
is to quantize the received Yn to form an estimate Ûn = q(Yn) of the
original binary sample, where

q(r) =

{
+1 if r ≥ 0
−1 if r < 0 .
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Write an integral expression for the error probability Pe = Pr(Ûn 
=
Un)¿ Find the mean, covariance, and power spectral density of the Ûn
process. Are the processes {Un} and {Ûn} equivalent — that is, do
they have the same process distributions? Define an error process ǫn
by ǫn = 0 if Ûn = Un and ǫn = 1 if Ûn 
= Un. Find the marginal pmf,
mean, covariance, and power spectral density of the error process.

9. Cascade filters. Let {gk} and {ak} be the pulse responses of two
discrete time causal linear filters (gk = ak =) for k < 0) and let G(f)
and A(f) be the corresponding transfer functions, e.g.,

G(f) =

∞∑

k=0

gke
−j2πkf .

Assume that g0 = a0 = 1. Let {Zn} be a weakly stationary uncor-
related random process with variance σ2 and zero mean. Consider
the cascade of two filters formed by first putting an input Zn into the
filter g to form the process Xn, which is in turn put into the filter a
to form the output process Yn.

(a) Let {dk} denote the pulse response of the overall cascade filter,
that is,

Yn =

∞∑

k=0

dkZn−1 .

Find an expression for dk in terms of {gk} and {ak}. As a check
on your answer you should have d0 = g0a0 = 1.)

(b) Let D(f) be the transfer function of the cascade filter. Find
D(f) in terms of G(f) and A(f).

(c) Find the power spectral density SY (f) in terms of σ2, G, and A.

(d) Prove that

E
(
Y 2n
)
=

∫ 1/2

−1/2
SY (f)df ≥ σ2 .

Hint: Show that if d0 = 1 (from part (a)), then

∫ 1/2

−1/2
|D(f)|2 df = 1 +

∫ 1/2

−1/2
|1−D(f)|2 df ≥ 1 .

10. One-step prediction. This problem develops a basic result of esti-
mation theory. No prior knowledge of estimation theory is required.
Results from problem 5.9 may be quoted without proof (even if you
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did not complete it). Let be as in problem 5.9; that is, {Xn} is a
discrete time zero-mean random process with power spectral density
σ2|G(f)|2, where G(f) is the transfer function of a causal filter with

pulse response {gk} with g0 = 1. Form the process {X̂n} by putting
Xn into a causal linear time-invariant filter with pulse response hk

X̂n =

∞∑

k=1

hkXn−k .

Suppose that the linear filter tries to estimate the value of Xn based
on the values of Xi for all i < n by choosing the pulse response {hk}
optimally. That is, the filter estimates the next sample based on the
present value and the entire past. Such a filter is called a one-step
predictor. Define the error process {ǫn} by

ǫn = Xn − X̂n .

(a) Find expressions for the power spectral density Sǫ(f) in terms
of SX(f) and H(f). Use this result to evaluate Eǫ2n.

(b) Evaluate Sǫ(f) and E(ǫ2n) for the case where 1−H(f) = 1/G(f).

(c) Use part (d) of problem 5.9 to show that the prediction filter
H(f) of (b) in this problem yields the smallest possible value
of E(ǫ2n) for any prediction filter. You have just developed the
optimal one-step prediction filter for the case of a process that
can be modeled as a weakly stationary uncorrelated sequence
passed through a linear filter. As discussed in the text, most
discrete time random processes can be modeled in such a fashion,
at least through second-order properties.

(d) Spectral factorization. Suppose that {Xn} has a power spectral
density SX(f) that satisfies

∫ 1/2

−1/2
lnSX(f) df <∞ .

Expand lnSX(f) in a Fourier series and write the expression for
exp (lnSX(f)) in terms of the series to find G(f). Find the pulse
response of the optimum prediction filter in terms of your result.
Find the mean square error. (Hint: You will need to know what
evenness of SX(f) implies for the coefficients in the requested
series and what the Taylor series of an exponential is.)

11. Binary filters. All of the linear filters considered so far were linear in
the sense of real arithmetic. It is sometimes useful to consider filters
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that are linear in other algebraic systems, e.g., in binary or modulo 2
arithmetic as defined in (3.65-3.66). Such systems are more appropri-
ate, for example, when considering communications systems involving
only binary arithmetic, such as binary codes for noise immunity on
digital communication links. A binary first-order autoregressive filter
with input process {Xn} and output process {Yn} is defined by the
difference equation

Yn = Yn−1 ⊕Xn , all n .

Assume that the {Xn} is a Bernoulli process with parameter p. In
this case the process {Yn} is called a binary first-order autoregressive
source.

(a) Show that for nonnegative integers k, the autocorrelation func-
tion of the process {Yn} satisfies

RY (k) = E(YjYj+k) =
1

2
Pr

(
1∑

i=1

Xi = an even number

)
.

(b) Use the result of (a) to evaluate RY and KY . Hint: This is most
easily done using a trick. Define the random variable

Wk =

k∑

i=1

Xi .

Wk is a binomial random variable. Use this fact and the binomial
theorem to show that

Pr(Wk is odd)− Pr(Wk is even) = −(1− 2p)k .

Alternatively, find a linear recursion relation for pk = Pr(Wk is
odd) using conditional probability (i.e., find a formula giving pk
in terms of pk−1) and then solve for pk.

(c) Find the power spectral density of the process {Yn}.
12. Let {Xn} be a Bernoulli random process with parameter p and let ⊕

denote mod 2 addition as defined in problem 5.11. Define the first-
order binary moving average process {Wn} by the difference equation

Wn = Xn ⊕Xn−1

This is a mod 2 convolution and an example of what is called a convo-
lutional code in communication and information theory. Find pWn

(w)
and RW (k, j). Find the power spectral density of the process {Wn}.
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13. Let {X(t)} be a continuous time zero-mean Gaussian random process
with spectral density SX(f) = N0/2, all f . Let H(f) and G(f) be
the transfer functions of two linear time-invariant filters with impulse
responses h(t) and g(t), respectively. The process {X(t)} is passed
through the filter h(t) to obtain a process {Y (t)} and is also passed
through the filter g(t) to obtain a process {V (t)}; that is,

Y (t) =

∫ ∞

0

h(τ)X(t− τ)dτ,

V (t) =

∫ ∞

0

g(τ)X(t− τ)dτ .

(a) Find the cross-correlation function RY,V (t, s) = E(YtVs).

(b) Under what assumptions on H and G are Yt and Vt independent
random variables?

14. Let {X(t)} and {Y (t)} be two continuous time zero-mean stationary
Gaussian processes with a common autocorrelation function R(τ) and
common power spectral densities S(f). Assume that X(t) and Y (t)
are independent for all t, s. Assume also that E[X(t)Y (s)] = 0 all
t, s and that σ2 = R(0). For a fixed frequency f0, define the random
process

W (t) = X(t) cos(2πf0t) + Y (t) sin(2πf0t) .

Find the mean E(W (t)) and autocorrelation RW (t, s). Is {W (t)}
weakly stationary?

15. Say that we are given an iid binary random process {Xn} with al-
phabet ±1, each having probability 1/2. We form a continuous time
random process {X(t)} by assigning

X(t) = Xn ; t ∈ [(n− 1), nT ) ,

for a fixed time T . This process can also be described as follows: Let
p(t) be a pulse that is 1 for t ∈ [0, T ) and 0 elsewhere. Define

X(t) =
∑

k

Xkp(t− kT ) .

This is an example of pulse amplitude modulation (PAM). If the
process X(t) is then used to phase-modulate a carrier, the resulting
process is called a phase-shift-keyed modulation of the carrier by the
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process {X(t)} PSK. PSK is a popular technique for digital commu-
nications. Define the PSK process

U(t) = a0 cos(2πf0t+ δX(t)) .

Observe that neither of these processes is stationary, but we can force
them to be at least weakly stationary by the trick of inserting uni-
form random variables in appropriate places. Let Z be a random
variable, uniformly distributed [0, T ] and independent of the original
iid process. Define the random process

Y (t) = X(t+ Z) .

Let Θ be a random variable uniformly distributed on [0, 1/f0] and
independent of Z and of the original iid random process. Define the
process

V (t) = U(t+Θ) .

Find the mean and autocorrelation functions of the processes Y(t)
and V (t).

16. Let {X(t)} be a Gaussian random process with zero mean and auto-
correlation function

RX(τ) =
N0
2

e−|τ | .

Find the power spectral density of the process. Let Y (t) be the pro-
cess formed by DSB-SC modulation of X(t). Letting Θ be uniformly
distributed in equation (5.37), sketch the lower spectral density of the
modulated process.

17. A continuous time two-sided weakly stationary Gaussian random pro-
cess {S(t)} with zero mean and power spectral density SS(f) is put
into a noisy communication channel. First, white Gaussian noise
{W (t)} with power spectral density N0/2 is added, where the two
random processes are assumed to be independent of one another, and
then the sum S(t)+W (t) is passed through a linear filter with impulse
response h(t) and transfer function H(f) to form a received process
{Y (t)}. Find an expression for the power spectral density SY (f).
Find an expression for the expected square error E[(S(t) − Y (t))2]
and the so-called signal-to-noise (SNR)

E(S(t)2)

E[(S(t)− Y (t))2]
.
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Suppose that you know that SY (f) can be factored into the form
|G(f)|2, where G(f) is a stable causal filter with a stable causal in-
verse. What is the best choice of H(f) in the sense of maximizing the
signal to noise ratio? What is the best causal H(f)?

18. Show that equation (5.2) converges in mean square if the filter is stable
and the input process has finitely bounded mean and variance. Show
that convergence with probability one is achieved if the convergence
of equation (A.30) is fast enough for the pulse response.

19. Show that the sum of equation (5.7) converges for the two-weakly
stationary case if the filter is stable and the input process has finitely
bounded variance.

20. Provide a formal argument for the integration counterpart of equation
(5.51); that is, if {X(t)} is a stationary two-sided construction time

random process and Y (t) =

∫ t

−∞
X(s) dx, then, subject to suitable

technical conditions, SY (f) = SX(f)/f
2.

21. Prove that equation (5.58) holds under the conditions given.

22. Suppose that {YN} is as in example [5.1] and that Wn = Yn + Un,
where Un is a zero-mean white noise process with second moment
E(U2) = N0/2. Solve the Wiener-Hopf equation to obtain a LLSE
of Yn+m given {Wi; i ≤ n} for m > n. Evaluate the resulting mean
squared error.

23. Prove the claim that if {Xn} and {Yn} are described by equations

(5.59) and (5.60) and if X̂n is a LLSE estimate ofXn given Y0, Y1, . . . , Yn−1,

then Ŷn = HnX̂n is a LLSE estimate of Yn given the same observa-
tions.

24. Prove the claim that the innovations sequence {νn} of example [5.7] is
uncorrelated and has zero mean. (Fill in the details of the arguments
used in the text.)

25. Let {YN} be as in example [5.2]. Find the LLSE for Yn+m given
{Y0, Y1, . . . , Yn} for an arbitrary positive integer m. Evaluate the
mean square error. Repeat for the process of example [5.3] (the same
process with r = 1).

26. Specialize the recursive estimator formulas of equations (5.67) through
(5.70) to the case where {Xn} is the {Yn} process of example [5.2],
where Hn is a constant, say a, and where Ψn−N0/2, all n. Describe
the behavior of the estimator as n→∞.
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27. Find an expression for the mean square error in example [5.4]. Spe-
cialize to infinite smoothing.

28. In the section on linear estimation we assumed that all processes had
zero-mean functions. In this problem we remove this assumption. Let
{Xn} and {Yn} be random processes with mean functions {mX(n)}
and {mY (n)}, respectively. We estimate Xn by adding a constant to
equation (5.52); i.e.,

X̂n = an +
∑

k:n−k∈K
hkYn−k .

(a) Show that the minimum mean square estimate of Xn is X̂n =
mX(n) if no observations are used.

(b) Modify and prove theorem 5.1 to allow for the nonzero means.

29. Suppose that {Xn} and {Zn} are zero mean, mutually independent,
iid, two-sided Gaussian random processes with correlations

RX(k) = σ2xδk ; RZ(k) = σ2zδk ;

These processes are used to construct new processes as follows:

Yn = Zn + rYn−1
Un = Xn + Zn
Wn = Un + rUn−1

Find the covariance and power spectral densities of {Un} and {Wn}.
Find E[(Xn −Wn)

2].

30. Suppose that {Zn} and {Wn} are two mutually independent two-
sided zero mean iid Gaussian processes with variances σ2Z and σ2W ,
respectively. Zn is put into a linear time-invariant filter to form an
output process {Xn} defined by

Xn = Zn − rZn−1,

where 0 < r < 1. (Such a filter is sometimes called a preemphasis
filter in speech processing.) This process is then used to form a new
process

Yn = Xn +Wn,

which can be viewed as a noisy version of the preemphasized Zn
process. Lastly, the Yn process is put through a “deemphasis filter”
to form an output process Un defined by

Un = rUn−1 + Yn.
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(a) Find the autocorrelation RZ and the power spectral density SZ .
Recall that for a weakly stationary discrete time process with
zero mean RZ(k) = E(ZnZn+k) and

SZ(f) =

∞∑

k=−∞
RZ(k)e

−j2πfk,

the discrete time Fourier transform of RZ .

(b) Find the autocorrelation RX and the power spectral density SX .

(c) Find the autocorrelation RY and the power spectral density SY .

(d) Find the overall mean squared error E[(Un − Zn)
2].

31. Suppose that {Xn; n ∈ Z} is a discrete time iid Gaussian random
processes with 0 mean and variance σ2X = E[X2

0 ]. We consider this
an input signal to a signal processing system. Suppose also that
{Wn; n ∈ Z} is a discrete time iid Gaussian random processes with
0 mean and variance σ2W and that the two processes are mutually
independent. Wn is considered to be noise. Suppose that Xn is put
into a linear filter with unit pulse response h, where

hk =






1 k = 0

−1 k = −1
0 otherwise

to form an output U = X ∗h, the convolution of the input signal and
the unit pulse response. The final output signal is then formed by
adding the noise to the filtered input signal, Yn = Un +Wn.

(a) Find the mean, power spectral density, and marginal pdf for Un.

(b) Find the mean, covariance, and power spectral density for Yn.

(c) Find E[YnXn].

(d) Does the mean ergodic theorem hold for {Yn}?

32. Suppose that {X(t); t ∈ R} is a weakly stationary continuous time
Gaussian random processes with 0 mean and autocorrelation function

RX(τ) = E[X(t)X(t+ τ)] = σ2Xe−|τ |.

(a) Define the random process {Y (t); t ∈ R} by

Y (t) =

∫ t

t−T
X(α) dα,

where T > 0 is a fixed parameter. (This is a short term integra-
tor.) Find the mean and power spectral density of {Y (t)}.
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(b) For fixed t > s, find the characteristic function and the pdf for
the random variable X(t)−X(s).

(c) Consider the following nonlinear modulation scheme: Define

W (t) = ej(2πf0t+cX(t)+Θ),

where f0 is a fixed frequency, Θ is a uniform random variable on
[0, 2π], Θ is independent of all of the X(t), and c is a modulation
constant. (This is a mathematical model for phase modulation.)

Define the expectation of a complex random variable in the nat-
ural way, that is, if Z = ℜ(Z) + jℑ(Z), then E(Z) = E[ℜ(Z)] +
jE[ℑ(Z)].) Define the autocorrelation of a complex valued ran-
dom process W (t) by

RW (t, s) = E(W (t)W (s)∗),

where W (s)∗ denotes the complex conjugate of W (s).

Find the meanE(W (t)) and the autocorrelation functionRW (t, s) =
E[W (t)W (s)∗].

Hint: The autocorrelation is admittedly a trick question (but
a very useful trick). Keep part (b) in mind and think about
characteristic functions.

33. A random variable X is described by a pmf

pX(k) =

{
cak k = 0, 1, . . .

0 else
(5.71)

where 0 < a < 1. A random variable Z is described by a pmf

pZ(k) =
1

2
, k = ±1. (5.72)

(a) Find the mean, variance and characteristic function of Z.

(b) Evaluate c and find the mean, variance, and characteristic func-
tion of X.

(c) Now suppose that {Xn} and {Zn} are two mutually independent
iid random processes with marginal pmf’s pX of (5.71) and pZ
of (5.72), respectively. Form a new random process Yn defined
by

Yn = XnZn all n. (5.73)

Find the mean and covariance function for Yn. Is Yn weakly
stationary? If so, find its power spectral density.
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(d) Find the marginal pmf pYn .

(e) Find the probability Pr(Xn ≥ 2Xn−1) .

(f) Find the conditional expectations E[Yn|Zn] and E[Xn|Yn].
(g) Find the probability Pr(Yn ≥ 2Yn−1) .

34. Suppose that {Xn} is an iid random process with marginal pdf

fX(x) =

{
λe−λx x ≥ 0

0 otherwise

Let N be a fixed positive integer.

(a) What is the probability that at least one of the samplesX0, . . . , XN−1
exceeds a fixed positive value γ?

(b) What is the probability that all of the samples X0, . . . , XN−1
exceed a fixed positive value γ?

(c) Define a new process Un = ZXn, where Z is a binary random
variable with the marginal pmf of equation (5.72) and and the Z
is independent of all the Xn. Find the mean Un and covariance
KU of Un.

Is Un weakly stationary? Is it iid?

(d) Does the sample average

Sn =
1

n

n−1∑

k=0

Uk

converge in probability? If yes, to what?

(e) Find a simple nontrivial numerical upper bound to the proba-
bility

Pr(|Un − U | > 10σU ),

where σ2U is the variance of U0.

35. Suppose that {Xn} is a weakly stationary random process with zero
mean and autocorrelation RX(k) = σ2α|k| for all integer k, here |α| <
1. A new random process {Yn} is defined by the relation Yn = Xn +
βXn−1.

(a) Find the autocorrelation function RY (k) and the average power
E[Y 2k ].
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(b) For what value of β is {Yn} a white noise process? I.e., the
value of β for which SY (f) is a constant? This is an example of
a whitening filter.

(c) Suppose that β is chosen as in the previous part so that Yn is
white. (You do not need the actual value of β for this part, you
can leave things in terms of β if you did not do the previous
part.) Assume also that {Xn} is a Gaussian random process.
Find the variance and the pdf of the random variable

SN =
1

N

N−1∑

i=0

Yi,

where N is a fixed positive integer.

36. Suppose that {Xn; n ∈ Z} is a Bernoulli random process with pa-
rameter p, i.e., it is an iid binary process with pX(1) = 1−pX(0) = p.
Suppose that Z is a binary random variable with the pmf of equation
(5.72) and that Z and the Xn are independent of each other. Define
for integers n > k ≥ 0 the random variables

Wk,n =

n∑

i=k+1

Xi.

Define a one-sided random process {Yn; n = 0, 1, . . . } as follows:

Yn =

{
Z n=0

Yn−1(−1)Xn n = 1, 2, . . .

Note that for any n > k ≥ 0,

Yn = Yk(−1)Wk,n . (5.74)

(a) Find the mean mY = E[Yn]. Show that pYn
(1) can be expressed

as a very simple function of mY and use this fact to evaluate
pYn(y) for any nonnegative integer n.

(b) Find the mean, variance, and characteristic function of Wk,n.

(c) If you fix a positive integer k, do the random variables

Wk,n

n− k

converge in mean square as n→∞? If so, to what?



5.10. PROBLEMS 341

(d) Write an expression for the conditional pmf pYn|Yk
(l|m) for n >

k ≥ 0 in terms of the the random variable Wk,n. Evaluate this
probability.

Hint: Half credit for this part will be given if you get the general
expression, i.e., a sum with correct limits and summand, correct.
The actual evaluation is a bit tricky, so do not waste time on it
if you do not see the trick.

(e) Find the covariance function KY (k, n) of {Yn}.
Hint: One way (not the only way) to do this part is to consider
the case n > k ≥ 0, use equation (5.74) and and the fact

−1 = ejπ, (5.75)

and try to make your formula look like the characteristic function
for Wk,n.

37. (Problem courtesy of the ECE Department of the Technion.) Con-
sider a process {Yt; t ∈ ℜ} that can take on only the values {−1,+1}
and suppose that

pYt(+1) = pYt(−1) = 0.5

for all t. Suppose also that for τ > 0

pYt+τ |Yt
(1| − 1) = pYt+τ |Yt

(−1|+ 1) =

{
τ
2T τ ≤ T
1
2 τ > T

(a) Find the autocorrelation function RY of the process {Yt; t ∈ ℜ}.
(b) Find the power spectral density SY (f).

38. (Problem courtesy of the ECE Department of the Technion.) A
known deterministic signal {s(t); t ∈ ℜ} is transmitted over a noisy
channel and the received signal is {X(t); t ∈ ℜ}, where X(t) =
As(t) + W (t), where {W (t); t ∈ ℜ} is a Gaussian white noise pro-
cess with power spectral density SW (f) = N0/2; f ∈ ℜ and A is a
random variable independent of W (t) for all t. The receiver, which
is assumed to know the transmitted signal, computes the statistic

YT =
∫ T
0

X(t) dt.

(a) Find the conditional pdf fYT |A(y|a).
(b) Assuming that A is N (0, σ2A), find the MMSE estimate of A

given yT .

(c) Find the MMSE resulting in the previous part.
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39. (Problem courtesy of the ECE Department of the Technion.) Suppose
that {Y (t); t ∈ ℜ} is a weakly stationary random process with 0 mean
and autocorrelation function RY (τ) and that A is a random variable
that is independent of Y (t) for all t. Define the random process
{X(t); t ∈ ℜ} by X(t) = A + Y (t). Consider the estimator for A
defined by

Â =
1

τ

∫ T

0

X(t) dt. (5.76)

(a) Show that E(Â) = E(A).

(b) Show that the mean squared error is given by

E[(Â−A)2] = (
1

τ
)2
∫ T

0

2

∫ T

0

RY (t− s) dt ds

2

τ

∫ T

0

(1− τ

T
)RY (τ) dτ.

40. (Problem courtesy of the ECE Department of the Technion.) Let
X(t) = S(t) + N(t) where S(t) is a deterministic signal that is 0
outside the interval [−T, 0] and N(t) is white noise with zero mean
and power spectral density N0/2. The random process X(t) is passed
through a linear filter with impulse response h(t) = S(−t), a time-
reversed version of the signal. Let Y (t) denote the filter output pro-
cess.

(a) Find E[Y (t)].

(b) Find the covariance KY (t, t+ τ).

(c) Express the covariance function in terms of the mean function.



Chapter 6

A Menagerie of Processes

The basic tools for describing and analyzing random processes have all
been developed in the proceeding chapters along with a variety of examples
of random processes with and without memory. The goal of this chapter
is to use these tools to describe a menagerie of useful random processes,
usually by taking a simple random process and applying some form of signal
processing such as linear filtering in order to produce a more complicated
random process. In chapter 5 the effect of linear filtering on second order
moments was considered, but in this chapter we look in more detail at the
resulting output process and we consider other forms of signal processing
as well. In the course of the development a few new tools and several
variations on old tools for deriving distributions are introduced. Much of
this chapter can be considered as practice of the methods developed in the
previous chapters, with names often being given to the specific examples
developed. In fact several processes with memory have been encountered
previously: the Binomial counting process and the discrete time Wiener
process, in particular. The goal now is to extend the techniques used in
these special cases to more general situations and to introduce a wider
variety of processes.

The development of examples begins with a continuation of the study
of the output processes of linear systems with random process inputs. The
goal is to develop the detailed structure of such processes and of other pro-
cesses with similar behavior that cannot be described by a liner system
model. In chapter 5, we confined interest to second-order properties of the
output random process, properties that can be found under quite general
assumptions on the input process and filter. In order to get more detailed
probabilistic descriptions of the output process, we next further restrict the
input process for the discrete time case to be an iid random process and
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study the resulting output process and the continuous time analog to such
a process. By restricting the structure of the output process in this man-
ner, we shall see that in some cases we can find complete descriptions of
the process and not just the first and second moments. The random pro-
cesses obtained in this way provide many important and useful models that
are frequently encountered in the signal processing literature, including
moving-average, autoregressive, autoregressive moving-average (ARMA),
independent increment, counting, random walk, Markov, Wiener, Poisson,
and Gaussian processes. Similar techniques are used for the development
of a variety of random processes with markedly different behavior, the key
tools being characteristic functions and conditional probability distribu-
tions. This chapter contains extensive practice in derived distributions and
in specifying random processes.

6.1 Discrete Time Linear Models

Many complicated random processes are well modeled as a linear operation
on a simple process. For example, a complicated process with memory
might be constructed by passing a simple iid process through a linear filter.
In this section we define some general linear models that will be explored
in some detail in the rest of the chapter.

Recall that if we have a random process {Xn; n ∈ T } as input to a
linear system described by a convolution, then as in equation (5.2) there is
a pulse response hk such that the output process {Yn} is given by

Yn =
∑

k:n−k∈T
Xn−khk . (6.1)

A linear filter with such a description — that is, one that can be defined
as a convolution — is sometimes called a moving-average filter since the
output is a weighted running average of the inputs. If only a finite number
of the hk are not zero, then the filter is called a finite-order moving-average
filter (or an FIR filter, for “finite impulse response,” in contrast to an IIR
or “infinite impulse response” filter). The order of the filter is equal to the
maximum minus the minimum value of k for which the hk are nonzero.
For example, if Yn = Xn + Xn−1, we have a first-order moving-average
filter. Although some authors reserve the term moving-average filter for a
finite-order filter, we will use the broader definition we have given. A block
diagram for such a filter is given in Figure 6.1.

Several other names are used to describe finite-order moving-average
filters. Since the output is determined by the inputs without any feedback
from past or future outputs, the filter is sometimes called a feedforward or
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Xn ✲ ♠×❄
h0

✲ + ✲ Yn =
∑
k hkXn−k

❄
∆ ✲ ♠×❄

h1 ✻

❄
∆ ✲ ♠×❄

h2

✻

❄
...

...

· · ·

Figure 6.1: Moving average filter

tapped delay line or transversal filter. If the filter has a well-defined transfer
function H(f) (e.g., it is stable) and if the transfer function is analytically
continued to the complex plane by making the substitution z = ej2πf , then
the resulting complex function contains only zeroes and no poles on the unit
circle in the complex plane. For this reason such a filter is sometimes called
an “all-zeroes” filter. This nomenclature really only applies to the Fourier
transform or the z-transform confined to the unit circle. If one considers
arbitrary z, then the filter can have zeroes at z = 0.

In chapter 5 we considered only linear systems involving moving-average
filters, that is, systems that could be represented as a convolution. This was
because the convolution representation is well suited to second-order I/O
relations. In this chapter, however, we will find that other representations
are often more useful. Recall that a convolution is simply one example of a
difference equation. Another form of difference equation describing a linear
system is obtained by convolving the outputs to get the inputs instead
of vice versa. For example, the output process may satisfy a difference
equation of the form

Xn =
∑

k

akYn−k . (6.2)

For convenience it is usually assumed that a0 = 1 and ak = 0 for negative



346 CHAPTER 6. A MENAGERIE OF PROCESSES

k and hence that the equation can be expressed as

Yn = Xn −
∑

k=1,2,...

akYn−k. (6.3)

As in the moving-average case, the limits of the sum depend on the index
set; e.g., the sum could be from k = −∞ to ∞ in the two-sided case with
T = Z or from k = −∞ to n in the one-sided case with T = Z+.

The numbers {ak} are called regression coefficients, and the correspond-
ing filter is called an autoregressive filter. If ak 
= 0 for only a finite number
of k, the filter is said to be finite-order autoregressive. The order is equal
to the maximum minus the minimum value of k for which ak is nonzero.
For example, if Xn = Yn + Yn−1, we have a first-order regressive filter. As
with the moving-average filters, for some authors the “finite” is implicit,
but we will use the more general definition. A block diagram for such a
filter is given in Figure 6.2.

Xn ✲ + ✲ Yn = Xn −
∑
k=1,2,... akYn−k

❄
∆✛♠×❄

−a1✻

❄
∆✛♠×❄

−a2

✻

❄
...

...

· · ·

Figure 6.2: Autoregressive filter

Note that, in contrast with a finite-order moving-average filter, a finite-
order autoregressive filter contains only feedback terms and no feedforward
terms — the new output can be found solely from the current input and
past of future outputs. Hence it is sometimes called a feedback filter. If we
consider a deterministic input and transform both sides of (6.2), then we
find that the transfer function of an autoregressive filter has the form

H(f) =
1∑

k

ake−j2πkf
,

where we continue to assume that a0 = 1. Note that the analytic continu-
ation of the transfer function into the complex plane with the substitution
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z = ej2πf for a finite-order autoregressive filter has poles but no zeroes on
the unit circle in the complex plane. Hence a finite-order autoregressive
filter is sometimes called an all-poles filter. An autoregressive filter may or
may not be stable, depending on the location of the poles.

More generally, one can describe a linear system by a general difference
equation combining the two forms — moving-average and autoregressive —
as in (A.34): ∑

k

akyn−k =
∑

i

bixn−i .

Filters with this description are called ARMA (for “autoregressive moving-
average”) filters. ARMA filters are said to be finite-order if only a finite
number of the ak’s and bk’s are not zero. A finite-order ARMA filter is
depicted in figure 6.3.

Xn ✲ ♠×❄
b0

✲ +

❄
∆ ✲ ♠×❄

b1 ✻

❄
∆ ✲ ♠×❄

b2

✻

❄
...

...

· · ·
+ ✲ Yn

❄
∆✛♠×❄

−a1✻

❄
∆✛♠×❄

−a2

✻

❄
...

...

Figure 6.3: Moving average filter

Once again, it should be noted that some authors use finite-order im-
plicitly, a convention that we will not adopt. Applying a deterministic input
and using (A.32), we find that the transfer function of an ARMA filter has
the form

H(f) =

∑

i

bie
−j2πif

∑

k

ake−j2πkf
, (6.4)

where we continue to assume that a0 = 1.
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As we shall see by example, one can often describe a linear system by
any of these filters, and hence one often chooses the simplest model for
the desired application. For example, an ARMA filter representation with
only three nonzero ak and two nonzero bk would be simpler than either a
pure autoregressive or pure moving-average representation, which would in
general require an infinite number of parameters. The general development
of representations of one type of filter or process from another is an area of
complex analysis that is outside the scope of this book. We shall, however,
see some simple examples where different representations are easily found.

We are now ready to introduce three classes of random processes that
are collectively called linear models since they are formed by putting an iid
process into a linear system.

A discrete time random process {Yn} is called an autoregressive random
process if it is formed by putting an iid random process into an autoregres-
sive filter. Similarly, the process is said to be a moving-average random
process or ARMA random process if it is formed by putting an iid process
into a moving-average or ARMA filter, respectively. If a finite-order filter
is used, the order of the process is the same as the order of the filter.

Since iid processes are uncorrelated, the techniques of chapter 5 imme-
diately yield the power spectral densities of these processes in the two-sided
weakly stationary case and yield in general the second-order moments of
moving-average processes. In fact, some books and papers which deal only
with second order moment properties define an autoregressive (moving av-
erage, ARMA) process more generally as the output of an autoregressive
(moving average, ARMA) filter with a weakly stationary uncorrelated in-
put. We use the stricter definition in order to derive actual distributions
in addition to second order moments. We shall see that we can easily
find marginal probability distributions for moving-average processes. Per-
haps surprisingly, however, the autoregressive models will prove much more
useful for finding more complete specifications, that is, joint probability dis-
tributions for the output process. The basic ideas are most easily demon-
strated in the simple, and familiar, example of example [5.3], summing
successive outputs of an iid process.

6.2 Sums of IID Random Variables

We begin by recalling a simple but important example from chapters 3
and 5: examples [3.35], [3.37], and [5.3]. These examples can be used to
exemplify both autoregressive and moving average filters. Let {Xn; n =
1, 2, . . . } be an iid process with mean m and variance σ2 (with discrete or
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continuous alphabet). Consider a linear filter with Kronecker delta response

hk =

{
1 k = 0, 1, 2 . . .

0 otherwise.
(6.5)

This is the discrete time integrator and it is not stable. The output process
is then given as the sum of iid random variables:

Yn =

{
0 n = 0
∑n
i=1Xi n = 1, 2, . . .

. (6.6)

The two best known members of this class are the Binomial counting process
and the Wiener process (or discrete-time diffusion process), which were
encountered in chapter 2

We have changed notation slightly from example [5.3] since here we
force Y0 = 0. Observe that if we further let X0 = 0, then by definition
{Yn; n ∈ Z+} is a moving-average random process by construction with
the moving-average filter hk = 1 for all nonnegative k.

Since an iid input process is also uncorrelated, we can apply example
[5.3] (with a slight change due to the different indexing) and evaluate the
first and second moments of the Y process as

EYn = mn ; n = 1, 2, . . .

and
KY (k, j) = σ2min(k, j) ; k, j = 1, 2, . . . .

For later use we state these results in a slightly different notation: Since
EY1 = m, since KY (1, 1) = σ2Y1

= σ2, and since the formulas also hold for
n = 0 and for k = j = 0, we have that

EYt = tEY1 ; t ≥ 0 (6.7)

and

KY (t, s) = σ2Y1
min(t, s) ; t, s ≥ 0 . (6.8)

We explicitly consider only those values of t and s that are in the appropri-
ate index set, here the nonnegative integers. An alternative representation
to the linear system representation defined by (3.138) is obtained by rewrit-
ing the sum as a linear difference equation with initial conditions:

Yn =

{
0 n = 0

Yn−1 +Xn n = 1, 2, 3, . . . .
(6.9)
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Observe that in this guise, {Yn} is a first-order autoregressive process (see
(6.2)) since it is obtained by passing the iid X process through a first-order
autoregressive filter with a0 = 1 and a1 = −1. Observe again that this filter
is not stable, but it does have a transfer function, H(f) = 1/(1 − e−j2πf )
(which, with the substitution z = ej2πf , has a pole on the unit circle).

We have seen from section 3.12 how to find the marginal distributions
for such sums of iid processes and we have seen from sections 3.7-3.7.2 how
to find the conditional distributions and hence a complete specification.
The natural question at this point is how general the methods and re-
sults referred to are. Toward this end we consider generalizations in several
directions. First we consider a direct generalization to continuous time pro-
cesses, the class of processes with independent and stationary increments.
We next consider partial generalizations to discrete time moving average
and autoregressive processes.

6.3 Independent Stationary Increments

We now generalize the class of processes formed by summing iid random
variables in a way that works for both continuous and discrete time. The
generalization is accomplished by focusing on the changes in a process
rather than on the values of the process. The general class, that of processes
with independent and stationary increments, reduces in the discrete time
case to the class considered in the previous sections: processes formed by
summing outputs of an iid process.

The change in value of a random process in moving forward in any
given time interval is called a jump or increment of the process. The spe-
cific class of processes that we now consider consists of random processes
whose jumps or increments in nonoverlapping time intervals are indepen-
dent random variables whose probability distributions depend only on the
time differences over which the jumps occur. In the discrete time case,
the nth output of such processes can be regarded as the sum of the first n
random variables produced by an iid random process. Because the jumps
in nonoverlapping time intervals then consist of sums of different iid ran-
dom variables, the jumps are obviously independent. This general class
of processes is of interest for three reasons: First, the class contains two
of the most important examples of random processes: the Wiener pro-
cess and the Poisson counting process. Second, members of the class form
building blocks for many other random process models. For example, in
chapter 5 we presented an intuitive derivation of the properties of continu-
ous time Gaussian white noise. A rigorous development would be based on
the Wiener process, which we can treat rigorously with elementary tools.
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Third, these processes provide a useful vehicle for practice with several
important and useful tools of probability theory: characteristic functions,
conditional pmf’s, conditional pdf’s, and nonelementary conditional prob-
ability. In addition, independent increment processes provide specific ex-
amples of several general classes of processes: Markov processes, counting
processes, and random walks.

Independent and stationary increment processes are generally not them-
selves weakly stationary since, as has already been seen in the discrete time
case, their probabilistic description changes with time. They possess, how-
ever, some stationarity properties. In particular the distributions of the
jumps or increments taken over fixed-length time intervals are stationary
even through the distributions of the process are not.

The increments or jumps or differences of a random process are obtained
by picking a collection of ordered sample times and forming the pairwise
differences of the samples of the process taken at theses times. For example,
given a discrete time or continuous time random process {Yt; t ∈ T }, one
can choose a collection of sample times t0, t1, . . . , tk, ti ∈ T all i, where we
assume that the sample times are ordered in the sense that

t0 < t1 < t2 < . . . < tk .

Given this collection of sample times, the corresponding increments of the
process {Yt} are the differences

Yti − Yti−1 ; i = 1, 2, . . . , k .

Note that the increments very much depend on the choice of the sample
times; one would expect quite different behavior when the samples are
widely separated than when they are nearby. We can now define the general
class of processes with independent increments for both the discrete and
continuous time cases.

A random process {Yt}; t ∈ T is said to have independent increments
or to be an independent increment random process if for all choices of k and
sample times {ti; i = 1,′ dots, k}, the increments Yti−Yti−1 ; i = 1, 2, . . . , k
are independent random variables. An independent increment process is
said to have stationary increments if the distribution of the increment
Yt+δ − Ys+δ does not depend on δ for all allowed values of t > s and δ.
(Observe that this is really only a first-order stationarity requirement on
the increments, not by definition a strict stationarity requirement, but the
language is standard. In any case, if the increments are independent and
stationary in this sense, then they are also strictly stationary.)

We shall call a random process an independent stationary increment or
isi process if it has independent and stationary increments.
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We shall always make the additional assumption that 0 is the smallest
possible time index; that is, that t ≥ 0 for all t ∈ T , and that Y0 = 0 as in
the discrete time case. We shall see that such processes are not stationary
and that they must “start” somewhere or, equivalently, be one-sided ran-
dom process. We simply define the starting time as 0 for convenience and
fix the starting value of the random process as 0, again for convenience.
If these initial conditions are changed, the following development changes
only in notational details.

A discrete time random process is an isi process if and only if it can
be represented as a sum of iid random variables, i.e., if it has the form
considered in the proceeding sections. To see this, observe that if {Yn}
has independent and stationary increments, then by choosing sample times
ti = i and defining Xn = Yn − Yn−1 for n = 1, 2, . . . , then the Xn must be
independent from the independent increment assumption, and they must
be identically distributed from the stationary increment assumption. Thus
we have that

Yn =

n∑

k=1

(Yk − Yk−1) =
n∑

k=1

Xk ,

and hence Yn has the form of (6.6). Conversely, if Yn is the sum of iid
random variables, then increments will always have the form

Yt − Ys =

t∑

i=s+1

Xi ; t > s ,

that is, the form of sums of disjoint collections of iid random variables, and
hence they will be independent. Furthermore, the increments will clearly
be stationary since they are sums of iid random variables; in particular,
the distribution of the increment will depend only on the number of sam-
ples added and not on the starting time. Thus all of the development for
sums of iid processes could have been entitled “discrete time processes with
independent and stationary increments.”

Unfortunately, there is no such nice construction of continuous time in-
dependent increment processes. The natural continuous time analog would
be to integrate a memoryless process, but as with white noise, such memory-
less processes are not well-defined. One can do formal derivations analogous
to the discrete time case and sometimes (but not always) arrive at correct
answers. We will use alternative and more rigorous tools when dealing with
the continuous time processes. We do note, however, that while we cannot
express a continuous time process with independent increments as the out-
put of a linear system driven by a continuous time memoryless process, for
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any collection of sample times t0 = 0, t1, t2, . . . , tk we can write

Ytn =

n∑

i=1

(Yti − Yti−1) . (6.10)

and that the increments in the parentheses are independent — that is, we
can write Ytn as a sum of independent increments (in many ways, in fact)
— and the increments are identically distributed if the time interval widths
are identical for all increments.

Since discrete time isi processes can always be expressed as the sum of
iid random variables, their first and second moments always have the form
of (6.7) and (6.8). In section 6.4 it was shown that (6.7) and (6.8) also holds
for continuous time processes with stationary and independent increments!

We again emphasize that an independent increment process may have
stationary increments, but we already know from the moment calculations
of (6.7) (6.8) that the process itself cannot be weakly stationary. Since
the mean and covariance grow with time, independent increment processes
clearly only make sense as one-sided processes.

6.4 ⋆Second-Order Moments of ISI Processes

In this section we show that several important properties of the discrete
time independent increment processes hold for the continuous time case.
In the next section we generalize the specification techniques and give two
examples of such processes – the continuous time Wiener process and the
Poisson counting process. This section is devoted to the proof that (6.7) and
(6.8) hold for continuous time processes with independent and stationary
increments. The proof is primarily algebraic and can easily be skipped.

We now consider a continuous time random process {Yt; t ∈ T } where
T = [0,∞), having independent stationary increments and initial condi-
tion Y0 = 0. The techniques used in this section can also be used for an
alternative derivation of the discrete time results.

First observe that given any time t and any positive delay or lag τ > 0,
we have that

Yt+τ = (Yt+τ − Yt) + Yt , (6.11)

and hence, by the linearity of expectation,

EYt+τ = E[Yt+τ − Yt] + EYt .

Since the increments are stationary, however, the increment Yt+τ − Yt has
the same distribution, and hence the same expectation as the increment
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Yτ − Y0 = Yτ , and hence

EYt+τ = EYτ + EYt .

This equation has the general form

g(t+ τ) = g(τ) + g(t) . (6.12)

An equation of this form is called a linear functional equation and has
a unique solution of the form g(t) = ct, where c is a constant that is
determined by some boundary condition. Thus, in particular, the solution
to (6.12) is

g(t) = g(1)t . (6.13)

Thus we have that the mean of a continuous time independent increment
process with stationary increments is given by

EYt = tm , t ∈ T , (6.14)

where the constant m is determined by the boundary condition

m = EY1

Thus (6.7) extends to the continuous time case.
Since Y0 = 0, we can rewrite (6.11) as

Yt+τ = (Yt+τ − Yt) + (Yt − Y0) , (6.15)

that is, we can express Yt+τ as the sum of two independent increments. The
variance of the sum of two independent random variables, however, is just
the sum of the two variances. In addition, the variance of the increment
Yt+τ − Yt is the same as the variance of Yτ − Y0 = Yτ since the increments
are stationary. Thus (6.15) implies that

σ2Yt+τ
= σ2Yτ

+ σ2Yt
,

which is again a linear functional equation and hence has the solution

σ2Yt
= tσ2 (6.16)

where the appropriate boundary condition is

σ2 = σ2Yt
.

Knowing the variance immediately yields the second moment:

E(Y 2t ) = σ2Yt
+ (EYt)

2 = tσ2 + (tm)2 . (6.17)
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Consider next the autocorrelation function RY (t, s). Choose t > s and
write Yt as the sum of two increments as

Yt = (Yt − Ys) + Ys ,

and hence
RY (t, s) = E[YtYs] = E[(Yt − Ys)Ys] + E[Y 2s ]

using the linearity of expectation. The left term on the right is, however, the
expectation of the product of two independent random variables since the
increments Yt−Ys and Ys−Y0 are independent. Thus from theorem 4.3 the
expectation of the product is the product of the expectations. Furthermore,
the expectation of the increment Yt − Ys is the same as the expectation of
the increment Yt−s − Y0 = Yt−s since the increments are stationary. Thus
we have from this, (6.14), and (6.17) that

RY (t, s) = (t− s)msm+ sσ2 + (sm)2 = sσ2 + (tm)(sm) .

Repeating the development for the case t ≤ s then yields

RY (t, s) = σ2min(t, s) + (tm)(sm) , (6.18)

which yields the covariance

KY (t, s) = σ2min(t, s) ; t, s ∈ T , (6.19)

which extends (6.8) to the continuous time case.

6.5 Specification of Continuous Time ISI Pro-
cesses

The specification of processes with independent and stationary increments
is almost the same in continuous time as it is in discrete time, the only real
difference being that in continuous time we must consider more general col-
lections of sample times. In discrete time the specification was constructed
using the marginal probability function of the underlying iid process, which
implies the pmf of the increments. In continuous time we have no under-
lying iid process so we instead assume that we are given a formula for the
cdf (pdf or pmf) of the increments; that is, for any t > s we have a cdf

FYt−Ys(y) = FY|t−s|−Y0(y) = FY|t−s|
(y) (6.20)

or, equivalently, the corresponding pmf pYt−Ys(y) for a continuous ampli-
tude process.
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To specify a continuous time process we need a formula for the joint
probability functions for all n and all ordered sample times t1, t2, . . . , tn
(that is, ti < tj if i < j). As in the discrete time case, we consider con-
ditional probability functions. To allow both discrete and continuous al-
phabet, we first focus on conditional cdf’s and find the conditional cdf
P (Ytn ≤ yn|Ytn−1 = yn−1, Ytn−2 = yn−2, . . . ). Then, using (6.10) we can
apply the techniques used in discrete time by simply replacing the sample
times i by ti for i = 0, 1, . . . , n. That is, we define the random variables
{Xn} by

Xn = Ytn − Ytn−1 . (6.21)

Then the {Xn} are independent (but not identically distributed unless the
times between adjacent samples are all equal), and

Ytn =

n∑

1=1

Xi (6.22)

and

P (Ytn ≤ yn|Ytn−1 = yn−1, Ytn−2 = yn−2, . . . ) = FXn(yn − yn−1)

= FYtn−Ytn−1
(yn − yn−1) . (6.23)

This conditional cdf can then be used to evaluate the conditional pmf or
pdf as

pYtn |Ytn−1
,... ,Yt1

(yn|yn−1, . . . , y1) = pXn(yn − yn−1)

= pYtn−Ytn−1
(yn − yn−1)

(6.24)

or

fYtn |Ytn−1
,... ,Yt1

(yn|yn−1, . . . , y1) = fXn(yn − yn−1)

= fYtn−Ytn−1
(yn − yn−1)

, (6.25)

respectively. These can then be used to find the joint pmf’s or pdf’s as
before as

fYt1 ,... ,Ytn
(y1, . . . , yn) =

n∏

i=1

fYti
−Yti−1

(yi − yi−1)

or

pYt1 ,... ,Ytn
=

n∏

i=1

pYti
−Yti−1

(yi − yi−1) ,
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respectively. Since we can thus write the joint probability functions for any
finite collection of sample times in terms of the given probability function
for the increments, the process is completely specified.

The most important point of these relations is that if we are told that
a process has independent and stationary increments and we are given a
cdf or pmf or pdf for Yt = Yt − Y0, then the process is completely defined
via the specification just given! Knowing the probabilistic description of
the jumps and that the jumps are independent and stationary completely
describes the process.

As in discrete time, a continuous time random process {Yt} is called
a Markov process if and only if for all n and all ordered sample times
t1 < t2 < . . . < tn we have for all yn, yn−1, . . . that

P (Ytn ≤ yn|Ytn−1
= yn−1, Ytn−2

= yn−2, . . . ) =

P (Ytn ≤ yn|Ytn−1
= yn−1) (6.26)

or equivalently,

fYtn |Ytn−1
,... ,Yt1

(yn|yn−1, . . . , y1) = fYtn |Ytn−1
(yn|yn−1)

for continuous alphabet processes and

pYtn |Ytn−1
,... ,Yt1

(yn|yn−1, . . . , y1) = pYtn |Ytn−1
(yn|yn−1)

for discrete alphabet processes. Analogous to the discrete time case, con-
tinuous time independent increment processes are Markov processes.

We close this section with the two most famous examples of continuous
time independent increment processes.

[6.1 ] The Continuous Time Wiener process
The Wiener process is a continuous time independent increment pro-
cess with stationary increments such that the increment densities are
Gaussian with zero mean; that is, for t > 0,

fYt(y) =
e−

y2

2tσ2

√
2πtσ2

; y ∈ R .

The form of the variance follows necessarily from the previously derived
form for all independent increment processes with stationary increments.
The specification for this process and the Gaussian form of the increment
pdf’s imply that the Wiener process is a Gaussian process.
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[6.2] The Poisson counting process is a continuous time discrete alphabet
independent increment process with stationary increments such that
the increments have a Poisson distribution; that is, for t > 0,

pYt(k) =
(λt)k

k!
e−λt ; k = 0, 1, 2, . . . .

6.6 Moving-Average and Autoregressive Pro-
cesses

We have seen in the preceding sections that for discrete time random pro-
cesses the moving-average representation can be used to yield the second-
order moments and also can be used to find the marginal probability func-
tion of independent increment processes. The general specification for inde-
pendent increment processes, however, was found using the autoregressive
representation. In this section we consider results for more general processes
using virtually the same methods.

First assume that we have a moving-average process representation de-
scribed by (6.1). We can use characteristic function techniques to find a
simple form for the marginal characteristic function of the output process.
In particular, assuming convergence conditions are satisfied where needed
and observing that Yn is a weighted sum of independent random variables,
the characteristic function of the output random process marginal distri-
bution is calculated as the product of the transforms

MYn(ju) =
∏

k

MhkXn−k
(ju) .

The individual transforms are easily shown to be

MhkXn−k
(ju) = E

[
ejuhkXn−k

]
= MXn−k

(juhk) = MX(juhk) .

Thus

MYn(ju) =
∏

k

MX(juhk) , (6.27)

where the product is, as usual, dependent on the index sets on which {Xn}
and {hk} are defined.

Equation (6.27) can be inverted in some cases to yield the output cdf
and pdf or pmf. Unfortunately, however, in general this is about as far as
one can go in this direction, even for an iid input process. Attempts to find
joint or conditional distributions of the output process by distributions this
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or other techniques will generally be frustrated by the complexity of the
calculations required.

Part of the difficulty in finding conditional distributions lies in the
moving-average representation. The techniques used successfully for the
independent increment processes relied on an autoregressive representation
of the output process. We will now show that the methods used work
for more general autoregressive process representations. We will consider
specifically causal autoregressive processes represented as in (6.3) so that

Yn = Xn −
∑

k>0

akYn−k .

By the independence and causality conditions, the {Yn−k} in the sum are
independent of Xn. Hence we have a representation for Yn as the sum of two
independent random variables, Xn and the weighted sum of the Y ’s. The
latter quantity is treated as if it were a constant in calculating conditional
probabilities for Yn. Thus the conditional probability of an event for Yn can
be specified in terms of the marginal probability of an easily determined
event for Xn. Specifically, the conditional cdf for Yn is

Pr[Yn ≤ yn|yn−1, yn−2, . . . ] = Pr



Xn ≤
∑

k≥0
akyn−k





= FX




∑

k≥0
akyn−k



 ,

(6.28)

where a0 = 1. The conditional pmf or pdf can now be found. For example,
if the input random process is continuous alphabet, the conditional output
pdf is found by differentiation to be

fYn|Yn−1,Yn2 ,...
(yn|yn−1, yn2, . . . ) = fX

(
∑

k

akyn−k

)
. (6.29)

Finally, the complete specification can be obtained by a product of pmf’s or
pdf’s by the chain rule as in (3.144) or (3.154). The discrete time indepen-
dent increment result is obviously a special case of this equation. For more
general processes, we need only require that the sum converge in (6.29) and
that the corresponding conditional pdf’s be appropriately defined (using the
general conditional probability approach). We next consider an important
example of the ideas of this section.
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6.7 The Discrete Time Gauss-Markov Pro-
cess

As an example of the development of the preceding section, consider the
filter given in example [5.1]. Let {Xn} be an iid Gaussian process with
mean m and variance σ2. The moving-average representation is

Yn =

∞∑

k=0

Xn−kr
k , (6.30)

from which (6.27) can be applied to find that

MYn(ju) =
∏

k

ej(ur
k)m−1/2(urk)2σ2

X

= e

jum




∑

k

rk



−1/2u2σ2
X




∑

k

r2k





,

that is, a Gaussian random variable with mean mY = m
∑

k

rk = m/(1− r)

and variance σ2Y = σ2X
∑

k

r2k = σ2X/(1 − r2), the moments found by the

second-order theory in example [5.1].
To find a complete specification for this process, we now turn to an

autoregressive model. From (6.30) it follows that Yn must satisfy the dif-
ference equation

Yn = Xn + rYn−1 . (6.31)

Hence {Yn} is a first-order autoregressive source with a0 = 1 and a1 = −r.
Note that as with the Wiener process, this process can be represented as
a first-order autoregressive process or as an infinite-order, moving average
process. In fact, the Wiener process is the one-sided version of this process
with r = 1.

Application of (6.29) yields

fY n(yn) = fYn(yn|yn−1, yn−2, . . . )fYn−1(yn−1|yn−2, yn−3, . . . ) . . . fY1(y1)

= fY1(y1)

n∏

i=2

fX(yi − ryi−1)

=
e−(y

2
1)/(2σ

2
Y )

√
2πσ2Y

n∏

i=2

e−(yi−ryi−1)
2/2σ2

√
2πσ2

=
e−(y

2
1)/(2σ

2
Y )

√
2πσ2Y

e−
∑n

i=2(yi−ryi−1)
2/2σ2

2πσ2
n−1

2

(6.32)
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6.8 Gaussian Random Processes

We have seen how to calculate the mean, covariance function, or spectral
density of the output process of a linear filter driven by an input random
process whose mean, covariance function, or spectral density is known. In
general, however, it is not possible to derive a complete specification of the
output process. We have seen one exception: The output random process
of an autoregressive filter driven by an iid input random process can be
specified through the conditional pmf’s or pdf’s, as in equation (6.29). In
this section we develop another important exception by showing that the
output process of a linear filter driven by a Gaussian random process — not
necessarily iid — is also Gaussian. Thus simply knowing the output mean
and autocorrelation or covariance functions — the only parameters of a
Gaussian distribution — provides a complete specification. The underlying
idea is that of theorem 4.4: a linear operation on a Gaussian vector yields
another Gaussian random vector. The output vector mean and matrix
covariance of the theorem are in fact just the vector and matrix versions of
the linear system second-moment I/O relations (5.3) and (5.7)). The output
of a discrete time FIR linear filter can be expressed as a linear operation on
the input as in (4.26), that is, a finite dimensional matrix times an input
vector plus a constant. Therefore we can immediately extend theorem 4.4
to FIR filtering and argue that all finite dimensional distributions of the
output process are Gaussian and hence the process itself must be Gaussian.
It is also possible to extend theorem 4.4 to include more general impulse
responses and to continuous time by using appropriate limiting arguments.
We will not prove such extensions. Instead we will merely state the result
as a corollary:

Corollary 6.1 If a Gaussian random process {Xt} is passed through a
linear filter, then the output is also a Gaussian random process with mean
and covariance given by (5.3) and (5.7).

6.9 ⋆The Poisson Counting Process

An engineer encounters two types of random processes in practice. The
first is the random process whose probability distribution depends largely
on design parameters: the type of modulation used, the method of data
coding used, etc. The second type of random processes have probability
distributions that depend on naturally occurring phenomena over which the
engineer has little if any control: noise in physical devices, speech wave-
forms, the number of messages in a telephone system as a function of time,
etc. Central limit theorems provide one example of such processes. This
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chapter is devoted towards another example: the Poisson process. Here the
basic Poisson counting process is derived from physical assumptions and a
variety of properties are developed. Gaussian and Poisson processes pro-
vide classes of random processes that characterize (at least approximately)
the majority of naturally occurring random processes. The development
of Poisson processes provides further examples of many of the techniques
developed so far.

Our intent here is to remove some of the mystery of the functional forms
of two important distributions by showing how these apparently compli-
cated distributional forms arise from nature. Therefore, the development
presented is somewhat brief, without consideration of all the mathematical
details.

The Poisson counting process was introduced as an example of specifi-
cation of an independent and stationary increment process. In this section
the same process is derived from a more physical argument.

Consider modeling a continuous time counting process {Nt; t ≥ 0} with
the following properties:

1. N0 = 0 (the initial condition).

2. The process has independent and stationary increments. Hence the
changes, called jumps, during nonoverlapping time intervals are in-
dependent random variables. The jumps in a given time interval are
memoryless, and their amplitude does not depend on what happened
before that interval.

3. In the limit of very small time intervals, the probability of an incre-
ment of 1, that is, of increasing the total count by 1, is proportional
to the length of the time interval. The probability of an increment
greater than 1 is negligible in comparison, e.g., is proportional to
powers greater than 1 of the length of the time interval.

These properties well describe many physical phenomena such as the
emission of electrons and other subatomic particles from irradiated objects
(remember vacuum tubes?), the arrival of customers at a store or phone
calls at an exchange, and other phenomena where events such as arrivals
or discharges occur randomly in time. The properties naturally capture
the intuition that such events do not depend on the past and that for a
very tiny interval, the probability of such an event is proportional to the
length of the interval. For example, if you are waiting for a phone call, the
probability of its happening during a period of τ seconds is proportional to
τ . The probability of more than two phone calls in a very small period τ
is, however, negligible in comparison.



6.9. ⋆THE POISSON COUNTING PROCESS 363

The third property can be quantified as follows: Let λ be the propor-
tionality constant. Then for a small enough time interval ∆t,

Pr(Nt+∆t −Nt = 1) ∼= λ∆t

Pr(Nt+∆t −Nt = 0) ∼= 1− λ∆t

Pr(Nt+∆t −Nt > 1) ∼= 0 . (6.33)

The relations of (6.33) can be stated rigorously by limit statements, but
we shall use them in the more intuitive form given.

We now use the properties 1 to 3 to derive the probability mass function
pNt−N0(k) = pNt(k) for an increment Nt − N0, from the starting time at
time 0 up to time t > 0 with N0 = 0. For convenience we temporarily
change notation and define

p(k, t) = pNt−N0(k) ; t > 0 .

Let ∆t be a differentially small interval as in (6.33), and we have that

p(k, t+∆t) =

k∑

n=0

Pr(Nt = n) Pr(Nt+∆t −Nt = k − n|Nt = n) .

Since the increments are independent, the conditioning can be dropped so
that, using (6.33),

p(k, t+∆t) =

k∑

n=0

Pr(Nt = n) Pr(Nt+∆t −Nt = k − n)

∼= p(k, t)(1− λ∆t) + p(k − 1, t)λ∆t ,

which with some algebra yields

p(k, t+∆t)− p(k, t)

∆t
= p(k − 1, t)λ− p(k, t)λ .

In the limit as ∆t→ 0 this becomes the differential equation

d

dt
p(k, t) + λp(k, t) = λp(k − 1, t) , t > 0 .

The initial condition for this differential equation follows from the initial
condition for the process, N0 = 0; i.e.,

p(k, 0) =

{
0 , k 
= 0
1 , k = 0 ,
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since this corresponds to Pr(N0 = 0) = 1. The solution to the differential
equation with the given initial condition is

pNt(k) = p(k, t) =
(λt)ke−λt

k!
; k = 0, 1, 2, . . . ; t ≥ 0 . (6.34)

(This is easily verified by direct substitution.)
The pmf of (6.34) is the Poisson pmf, and hence the given properties

produce the Poisson counting process. Note that (6.34) can be generalized
using the stationarity of the increments to yield the pmf for k jumps in an
arbitrary interval (s, t), t ≥ s as

pNt−Ns(k) =
(λ(t− s))ke−λ(t−s)

k!
; k = 0, 1, . . . ; t ≥ s . (6.35)

As developed in chapter 6, these pmf’s and the given properties yield a
complete specification of the Poisson counting process.

Note that sums of Poisson random variables are Poisson. This follows
from the development of this section. That is, for any t > s > r, all three
of the indicated quantities in (Nt−Ns)+(Ns−Nr) = Nt−Nr are Poisson.
Thus the Poisson distribution is infinitely divisible in the sense defined
at the end of the preceding section. Of course the infinite divisibility of
Poisson random variables can also be verified by characteristic functions
as in (4.101). Poisson random variables satisfy the requirements of the
central limit theorem and hence it can be concluded that with appropriate
normalization, the Poisson cdf approaches the Gaussian cdf asymptotically.

6.10 Compound Processes

So far the various processes with memory have been constructed by passing
iid processes through linear filters. In this section a more complicated
construction of a new process is presented which is not a simple linear
operation. A compound process is a random process constructed from two
other random processes rather than from a single input process. It is formed
by summing consecutive outputs of an iid discrete time random process,
but the number of terms included in the sum is determined by a counting
random process, which can be discrete or continuous time. As an example
where such processes arise, suppose that on a particular telephone line the
number of calls arriving in t minutes is a random variable Nt. The resulting
Nt calls have duration X1, X2, . . . , XNt . What is the total amount of time
occupied by the calls? It is the random variable

Yt =

Nt∑

k=1

Xk.
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Since this random variable is defined for all positive t, {Yt} is a random
process, depending on two separate processes: a counting process {Nt}
and an iid process {Xn}. In this section we explore the properties of such
processes. The main tool used to investigate such processes is conditional
expectation.

Suppose that {Nt; t ≥ 0} is a discrete or continuous time counting
process. Thus t is assumed to take on either nonnegative real values or
nonnegative integer values. Suppose that {Xk} is an iid process and that
the Xn are mutually independent of the Nt. Define the compound process
{Yt; t ≥ 0} by

Yt =

{
0 t = 0
∑Nt

k=1Xk t > 0.
(6.36)

What can be said about the process Yt? From iterated expectation we have
that the mean of the compound process is given by

EYt = E[E(Yt|Nt)]

= E[E(

Nt∑

k=1

Xk|Nt)]

= E[NtE(X)]

= E(Nt)E(X). (6.37)

Thus, for example, if Nt is a binomial counting process with parameter p,
and {Xn} is a Bernoulli process with parameter ǫ, then E(Yk|Nk) = Nkǫ
and hence EYk = ǫE(Nk) = ǫkp. If Nt is a Poisson counting process with
parameter λ, then E(Yt) = E(Nt)E(X) = λtE(X).

Other moments follow in a similar fashion. For example, the character-
istic function of Yt can be evaluated using iterated expectation as

MYt(ju) = E(ejuYt)

= E[E(ejuYt |Nt)]
= E[MX(ju)

Nt ], (6.38)

where we have used the fact that condtioned on Nt, Yt is the sum of Nt
iid random variables with characteristic function MX . To further evaluate
this, we again need to assume a distribution for Nt. Suppose first that Nt
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is a Binomial counting process. Then

E[MX(ju)
Nk ] =

k∑

n=0

pNk
(n)MX(ju)

n

=

k∑

n=0

(
n
k

)
pk(1− p)n−kMX(ju)

n

= (pMX(ju) + (1− p))k. (6.39)

Suppose instead that Nt is a continuous time Poisson counting process.
Then

E[MX(ju)
Nt ] =

∞∑

n=0

pNt(n)MX(ju)
n

=

∞∑

n=0

(λt)ne−λt

n!
MX(ju)

n

= e−λt
∞∑

n=0

(λtMX(ju))
n

n!

= e−λt(1−MX(ju)), (6.40)

where we have invoked the Taylor series expansion for an exponential.
Both of these computations involve very complicated processes, yet they

result in closed form solutions of modest complication. Since the charac-
teristic functions are known, the marginal distributions of such processes
follow. Further properties of compound processes are explored in the prob-
lems.

6.11 ⋆Exponential Modulation

Lest the reader erroneously assume that all random process derived dis-
tribution techniques apply only to linear operations on processes, we next
consider an example of a class of processes generated by a nonlinear opera-
tion on another process. While linear techniques rarely work for nonlinear
systems, the systems that we shall consider form an important exception
where one can find second-order moments and sometimes even complete
specifications. The primary examples of processes generated in this way
are phase-modulated (PM) and frequency (FM) Gaussian random processes
and the Poisson random telegraph wave.

Let {X(t)} be a random process and define a new random process

Y (t) = a0e
j(a1t+a2X(t)+Θ) , (6.41)



6.11. ⋆EXPONENTIAL MODULATION 367

where a0, a1, and a2 are fixed real constants and where Θ is a uniformly
distributed random phase angle on [0, 2π]. The process {Y (t)} is called an
exponential modulation of {X(t)}. Observe that it is a nonlinear function
of the input process. Note further that, as defined, the process is a complex-
valued random process, and hence we must modify some of our techniques.
In some, but not all, of the interesting examples of exponentially modulated
random processes we will wish to focus on the real part of the modulated
process, which we will call

U(t) = Re(Y (t)) = 1/2Y (t) + 1/2Y (t)∗

= a0 cos(a1t+ a2X(t) + Θ) . (6.42)

In this form, exponential modulation is called phase modulation (PM) of a
carrier of angular frequency a1 by the input process {X(t)}. If the input
process is itself formed by integrating another random process, say {W (t)},
then the U process is called the frequency modulation (FM) of the carrier by
the W process. Phase and frequency modulation are extremely important
examples of complex exponential modulation.

A classic example of a random process arising in communications that
can be put in the same form is obtained by setting Θ = 0 (with probability
1), choosing a1 = 0, a2 = π, and letting the input process be the Poisson
counting process {N(t)}, that is, to consider the random process

V (t) = a0(−1)N(t) . (6.43)

This is a real-valued random process that changes value with every jump
in the Poisson counting process. Because of the properties of the Poisson
counting process, this process is such that jumps in nonoverlapping time
windows are independent, the probability of a change of value in a differ-
entially small interval is proportional to the length of the interval, and the
probability of more than one change is negligible in comparison. It is usu-
ally convenient to consider a slight change in this process, which makes it
somewhat better behaved. Let Z be a binary random variable, indepen-
dent of N(t) and taking values of +1 or −1 with equal probability. Then
the random process Y (t) = ZV (t) is called the random telegraph wave and
has long served as a fundamental example in the teaching of second-order
random process theory. The purpose of the random variable Z is to remove
an obvious nonstationarity at the origin and make the resulting process
equally likely to have either of its two values at time zero. This has the
obvious effect of making the process zero-mean. In the form given, it can
be treated as simply a special case of exponential modulation.
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We develop the second-order moments of exponentially modulated ran-
dom processes and then apply the results to the preceding examples. We
modify our definitions slightly to apply to the complex-valued random vari-
able is defined as the vector consisting of the expectations of the real and
imaginary parts; that is, if X = Re(X)+ jIm(X), with Re(X) and Im(X)
the real and imaginary parts of X, respectively, then

EX = (ERe(X), EIm(X)) .

In other words, the expectation of a vector is defined to be the vector
of ordinary scalar expectations of the components. The autocorrelation
function of a complex random process is defined somewhat differently as

RY (t, s) = E[Y (t)Y (s)∗] ,

which reduces to the usual definition if the process is real valued. The
autocorrelation in this more general situation is not in general symmetric,
but it is Hermitian in the sense that

RY (s, t) = RY (t, s)
∗ .

Being Hermitian is, in fact, the appropriate generalization of symmetry
for developing a useful transform theory, and it is for this reason that the
autocorrelation function includes the complex conjugate of the second term.

It is an easy exercise to show that for the general exponentially modu-
lated random process of (6.41) we have that

EY (t) = 0 .

This can be accomplished by separately considering the real and imaginary
parts and using (3.126), exactly as was done in the AM case of chapter 5.
The use of the auxiliary random variable Z in the random telegraph wave
definition means that both examples have zero mean. Note that it is not
true that Eej(a1t+a2X(t)+Θ) equals ej(a1t+a2EX(t)+EΘ); that is, expectation
does not in general commute with nonlinear operations.

To find the autocorrelation of the exponentially modulated process, ob-
serve that

E[Y (t)Y (s)∗] = a20E[ej(a1(t−s)+a2(X(t)−X(s)))]
= a20e

ja1(t−s)E[eja2(X(t)−X(s))] ,

and hence

RY (t, s) = a20e
ja1(t−s)MX(t)−X(s)(ja2) . (6.44)
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Thus the autocorrelation of the nonlinearly modulated process is given
simply in terms of the characteristic function of the increment between
the two sample times! This is often a computable quantity, and when
it is, we can find the second-order properties of such processes without
approximation or linearization. This is a simple result of the fact that
the autocorrelation of an exponentially modulated process is given by an
expectation of the exponential of the difference of two samples and hence
by the characteristic function of the difference.

There are two examples in which the computation of the characteristic
function of the difference of two samples of a random process is particu-
larly easy: a Gaussian input process and an independent increment input
processes.

If the input process {X(t)} is Gaussian with zero mean (for convenience)
and autocorrelation function RX(t, s), then the random variable X(t) −
X(s) is also Gaussian (being a linear combination of Gaussian random
variables)with mean zero and variance

σ2X(t)−X(s) = E[(X(t)−X(s))2] = RX(t, t) +RX(s, s)− 2RX(t, s) .

Thus we have shown that if {X(t)} is a zero-mean Gaussian random process
with autocorrelation function RX and if {Y (t)} is obtained by exponentially
modulating {X(t)} as in (6.41), then

RY (t, s) = a20e
ja1(t−s)MX(t)−X(s)(ja2) =

a20e
ja1(t−s)e−1/2a

2
2(RX(t,t)+RX(s,s)−2RX(t,s)) . (6.45)

Observe that this autocorrelation is not symmetric, but it is Hermitian.
Thus, for example, if the input process is stationary, then so is the

modulated process, and

RY (τ) = a20e
ja1τe−a

2
2(RX(0)−RX(τ)) . (6.46)

We emphatically note that the modulated process is not Gaussian.
We can use this result to obtain the second-order properties for phase

modulation as follows:

RU (t, s) = E[U(t)U(s)∗] = E

[
Y (t) + Y (t)∗

2

(
Y (s) + Y (s)∗

2

)∗]
=

1

4
(E[Y (t)Y (s)∗] + E[Y (t)Y (s)] + E[Y (t)∗Y (s)∗] + E[Y (t)∗Y (s)]) .

Note that both of the middle terms on the right have the form

a20e
±ja1(t+s)E[e±j(a2(X(t0+X(s))+2Θ)] ,
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which evaluates to 0 because of the uniform phase angle. The remaining
terms are RY (t, s) and RY (t, s)

∗ from the previous development, and hence

RU (t, s) = 1/2a20 cos(a1(t− s))e1/2a
2
2(RX(t,t)+RX(s,s)−2RX(t,s)) , (6.47)

and hence, in the stationary case,

RU (τ) = 1/2a20 cos(a1τ)e
−a2(RX(0)−RX(τ)) . (6.48)

As expected, this autocorrelation is symmetric.
Returning to the exponential modulation case, we consider the second

example of exponential modulation of independent increment processes.
Observe that this overlaps the preceding example in the case of the Wiener
process. We also note that phase modulation by independent increment
processes is of additional interest because in some examples independent
increment processes can be modeled as the integral of another process. For
example, the Poisson counting process is the integral of a random telegraph
wave with alphabet 0 and 1 instead of −1 and +1. (This is accomplished
by forming the process (X(t) + 1)/2 with X(t) the ±1 random telegraph
wave.) In this case the real part of the output process is the FM modulation
of the process being integrated.

If {X(t)} is a random process with independent and stationary incre-
ments, then the characteristic function of X(t) −X(s) with t > s is equal
to that of X(t− s). Thus we have from (6.44) that for t > s and τ = t− s,

RY (τ) = a20e
ja1τMX(τ)(ja2) .

We can repeat this development for the case of negative lag to obtain

RY (τ) = a20e
ja1τMX(|τ |)(ja2) . (6.49)

Observe that this autocorrelation is not symmetric; that is, it is not true
that RY (−τ) = RY (τ) (unless a1 = 0). It is, however, Hermitian.

Equation (6.49) provides an interesting oddity: Even though the original
input process is not weakly stationary (since it is an independent increment
process), the exponentially modulated output is weakly stationary! For
example, if {X(t)} is a Poisson counting process with parameter λ, then
the characteristic function is

MX(τ)(ju) =

∞∑

k=0

(λτ)ke−λτ

k!
ejuk =

e−λτ
∞∑

k=0

(λτeju)k

k!
= eλτ(e

ju−1) ; τ ≥ 0 .



6.12. ⋆THERMAL NOISE 371

Thus if we choose a1 = 0 and a2 = π, then the modulated output process is
the random telegraph wave with alphabet ±a0 and hence is a real process.
Equation (6.49) becomes

RY (τ)a
2
0e

−2λ|τ | (6.50)

Note that the autocorrelation (and hence also the covariance) decays expo-
nentially with the delay.

A complete specification of the random telegraph wave is possible and
is left as an exercise.

6.12 ⋆Thermal Noise

Thermal noise is one of the most important sources of noise in communi-
cations systems. It is the “front-end” noise in receivers that is caused by
the random motion of electrons in a resistance. The resulting noise is then
greatly amplified by the amplifiers that magnify the noise along with the
possibly tiny signals. Thus the noise is really in the receiver itself and not
in the atmosphere, as some might think, and can be comparable in ampli-
tude to the desired signal. In this section we sketch the development of a
model of thermal noise. The development provides an interesting example
of a process with both Poisson and Gaussian characteristics.

Say we have a uniform conducting cylindrical rod at temperature T .
Across this rod we connect an ammeter. The random motion of electrons
in the rod will cause a current I(t) to flow through the meter. We wish to
develop a random process model for the current based on the underlying
physics. The following are the relevant physical parameters:

A = cross-sectional area of the rod
L = length of the rod
q = electron charge
n = number of electrons per cubic centimeter
α = average number of electron collisions with

heavier particles per second (about 103)
m = mass of an electron

ρ = resistivity of the rod =
mα

nq2

R = resistance of the rod =
ρL

A
κ = Boltzmann’s constant

The current measured will be due to electrons moving in the longitudinal
direction of the rod, which we denote x. Let Vx,k(t) denote the component
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of velocity in the x direction of the kth electron at time t. The total current
I(t) is then given by the sums of the individual electron currents as

I(t) =

nAL∑

k=1

ik(t) =

nAL∑

k=1

q

L/Vx,k(t)

=

nAL∑

k=1

q

L
Vx,k(t)

We assume that (1) the average velocity, EVx,k(t) = 0, all k, t; (2)
Vx,k(t) and Vx,j(s) are independent random variables for all k 
= j; and (3)
the Vx,k(t) have the same distribution for all k.

The autocorrelation function of I(t) is found as

RI(τ) = E[I(t)I(t+ τ)] =

nAL∑

k=1

q2

L2
E[Vx,k(t)Vx,k(t+ τ)]

=
nAq2

L
E[Vx(t)Vx(t+ τ)] , (6.51)

where we have dropped the subscript k since by assumption the distribution,
and hence the autocorrelation function of the velocity, does not depend on
it.

Next assume that, since collisions are almost always with heavier parti-
cles, the electron velocities before and after collisions are independent — the
velocity after impact depends only on the momentum of the heavy particle
that the electron hits. We further assume that the numbers of collisions in
disjoint time intervals are independent and satisfy (6.33) with a change of
parameter:

Pr(no collisions in ∆t) ∼= (1− α∆t)
Pr(one collision in ∆t) ∼= α∆t

This implies that the number of collisions is Poisson and that from (6.35)

Pr(a particle has k collisions in [t, t+ τ)) = e−ατ
(ατ)k

k!
; k = 0, 1, 2, . . .

Thus if τ ≥ 0 and Nt,τ is the number of collisions in [t, t + τ), then, us-
ing iterated expectation and the independence with mean zero of electron
velocities when one or more collisions have occurred,

E[Vx(t)Vx(t+ τ)] = E(E[Vx(t)Vx(t+ τ)|Nt,τ ])
= E(Vx(t)

2) Pr(Nt,τ = 0) + (EVx(t))
2 Pr(Nt,τ 
= 0)

= E(Vx(t)
2)e−ατ .

(6.52)
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It follows from the equipartition theorem for electrons in thermal equi-
librium at temperature T that the electron velocity variance is

E(Vx(t)
2) =

κT

m
. (6.53)

Therefore, after some algebra, we have from (6.51) through (6.53) that

RI(τ) =
κT

R
αe−α|τ | .

Thevinin’s theorem can the be applied to model the conductor as a
voltage source with voltage E(t) = RI(t). The autocorrelation function of
E(t) is

RE(τ = κTRαe−α|τ | ,

an autocorrelation function that decreases exponentially with the delay τ .
Observe that as α → ∞, RE(τ) becomes a taller and narrower pulse with
constant area 2κTR; that is, it looks more and more like a Dirac delta
function with area 2κTR. Since the mean is zero, this implies that the
process E(t) is such that samples separated by very small amounts are
approximately uncorrelated. Thus thermal noise is approximately white
noise. The central limit theorem can be used to show that the finite dimen-
sional distributions of the process are approximately Gaussian. Thus we
can conclude that an approximate model for thermal noise is a Gaussian
white noise process!

6.13 Ergodicity and Strong Laws of Large Num-
bers

We close this chapter on general random processes with memory with a
statement of a general form of the strong law of large numbers. In order
to state the theorem, another idea is needed — ergodicity. The notion
of ergodicity is often described incorrectly in engineering-oriented texts on
random processes. There is, however, some justification for doing so, the
definition is extremely abstract and not very intuitive. The intuition comes
with the consequences of assuming both ergodicity and stationarity, and it
is these consequences that are often used as a definition. For completeness
we provide the rigorous definition. We later consider briefly examples of
processes that violate the definition. Before possibly obscuring the key
issues with abstraction, it is worth pointing out a few basic facts:

• The concept of ergodicity does not require stationarity, that is, a
nonstationary process can be ergodic.
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• Many perfectly good models of physical processes are not ergodic, yet
they have a form of law of large numbers. In other words, nonergodic
processes can be perfectly good and useful models.

• The definition is in terms of the process distribution of the random
process. There is no finite-dimensional equivalent definition of ergod-
icity as there is for stationarity. This fact makes it more difficult to
describe and interpret ergodicity.

• iid processes are ergodic, i.e., ergodicity can be thought of as a gen-
eralization of iid.

Ergodicity is defined in terms of a property of events: an event F is said
to be τ -invariant if {xt; t ∈ T } ∈ F implies that also {xt+τ ; t ∈ T } ∈ F ,
i.e., if a sequence or waveform is in F , then so is the sequence or waveform
formed by shifting by τ . As an example, consider the discrete time random
process event F consisting of all binary sequences having a limiting relative
frequency of 1’s of exactly p. Then this event is τ -invariant for all integer
τ since changing the starting time of the sequence by a finite amount does
not effect limiting relative frequencies.

A random process {Xt; t ∈ T } is ergodic if for any τ all τ -invariant
events F have probability 1 or 0. In the discrete time case it suffices to
consider only τ = 1.

In the authors’ view, the concept of ergodicity is the most abstract idea
of this book, but its importance in practice makes it imperative that the
idea at least be introduced and discussed. The reader interested in delving
more deeply into the concept is referred to Billingsley’s classic book Ergodic
Theory and Information[3] for a deep look at ergodicity and its implications
for discrete time discrete alphabet random processes. Rather than try to
provide further insight into the abstract definition, we instead turn to its
implications, and then interpret from the implications what it means for a
process to be ergodic or not.

The importance of stationarity and ergodicity is largely due to the fol-
lowing classic result of Birkhoff and Khinchine.

Theorem 6.1 The Strong Law of Large Numbers (The Pointwise Ergodic
Theorem)

Given a discrete time stationary random process {Xn; n ∈ Z} with
finite expectation E(Xn) = mX , then there is a random variable X̂ with
the property that

lim
n→∞

1

n

∞∑

n=0

Xn = X̂ with probability 1, (6.54)
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that is, the limit exists. If the process is also ergodic, then X̂ = mX and
hence

lim
n→∞

1

n

∞∑

n=0

Xn = mX with probability 1. (6.55)

The conditions also imply convergence in mean square (an L2 or mean
ergodic theorem); that is,

l.i.m.
n→∞

1

n

∞∑

n=0

Xn = X̂, (6.56)

but we shall focus on the convergence with probability 1 form. There are
also continuous time versions of the theorem to the effect that under suitable
conditions

lim
T→∞

1

T

∫ ∞

0

X(t) dt = X̂ with probability 1, (6.57)

but these are much more complicated to describe because special conditions
are needed to ensure the existence of the time average integrals.

The strong law of large numbers shows that for stationary and ergodic
processes, time averages converge with probability one to the corresponding
expectation. Suppose that a process is stationary but not ergodic. Then
the theorem is that time averages still converge, but possibly not to the
expectation. Consider the following example of a random process which
exhibits this behavior. Suppose that nature at the beginning of time flips a
fair coin. If the coin ends up heads, she sends thereafter a Bernoulli process
with parameter p1, that is, an iid sequence of coin flips with a probability p1
of getting a head. If the original coin comes up tails, however, nature sends
thereafter a Bernoulli process with parameter p0 
= p1. In other words, you
the observer are looking at the output of one of two iid processes, but you do
not know which one. This is an example of a mixture random process, also
sometimes called a doubly stochastic random process because of the random
selection of a parameter followed by the random generation of a sequence
using that parameter. Another way to view the process is as follows: Let
{Un} denote the Bernoulli process with parameter p1 and {Wn} denote the
Bernoulli process with parameter p0. Then the mixture process {Xn} is
formed by connecting a switch at the beginning of time to either the {Un}
process or the {Wn} process, and soldering the switch shut. The point is
you either see {Un} forever with probability 1/2, or you see {Wn} forever.
A little elementary conditional probability shows that for any dimension k,

pX0,... ,Xk−1
(x) =

pU0,... ,Uk−1
(x) + pW0,... ,Wk−1

(x)

2
. (6.58)
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Thus, for example, the probability of getting a head in the mixture process
is pX0

(1) = (p0 + p1)/2. Similarly, the probability of getting two heads
in a row is pX0,X1(1, 1) = (p20 + p21)/2. Since the joint pmf’s for the two
Bernoulli processes are not changed by shifting, neither is the joint pmf
for the mixture process. Hence the mixture process is stationary and from
the strong law of large numbers its relative frequencies will converge to
something. Is the mixture process ergodic? It is certainly not iid For
example, the probability of getting two heads in a row was found to be
pX0,X1(1, 1) = (p20 + p21)/2, which is not the same as pX0(1)pX1(1) = [(p0 +
p1)/2]

2 (unless p0 = p1), so that X0 and X1 are not independent! It could
conceivably be ergodic, but is it? Suppose that {Xn} were indeed ergodic,
than the strong law would say that the relative frequency of heads would
have to converge to the probability of a head, i.e., to (p0 + p1)/2. But
this is clearly not true since if you observe the outputs of Xn you are
observing a Bernoulli process of bias either p0 or p1 and hence you should
expect to compute a limiting relative frequency of heads that is either p0
or p1, depending on which of the Bernoulli processes you are looking at. In
other words, your limiting relative frequency is a random variable, which
depends on Nature’s original choice of which process to let you observe.
This explains one possible behavior leading to the general strong law: you
observe a mixture of stationary and ergodic processes, that is, you observe
a randomly selected stationary and ergodic process, but you do not a priori
know which process it is. Since conditioned on this selection the strong law
holds, relative frequencies will converge, but they do not converge to an
overall expectation. They converge to a random variable, which is in fact
just the conditional expectation given knowledge of which stationary and
ergodic random process is actually being observed! Thus the strong law of
large numbers can be quite useful in such a stationary but nonergodic case
since one can estimate which stationary ergodic process is actually being
observed by measuring the relative frequencies.

A perhaps surprising fundamental result of random processes is that this
special example is in a sense typical of all stationary nonergodic processes.
The result is called the ergodic decomposition theorem and it states that
under quite general assumptions, any nonergodic stationary process is in
fact a mixture of stationary and ergodic processes and hence you are always
observing a stationary and ergodic process, you just do not know in advance
which one. In our coin example, you know you are observing one of two
Bernoulli processes, but we could equally consider an infinite mixture by
selecting p from a uniform distribution on (0, 1). You do not know p in
advance, but you can estimate it from relative frequencies. The interested
reader can find a development of the ergodic decomposition theorem and
its history in chapter 7 of [22].
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The previous discussion implies that ergodicity is not required for the
strong law of large numbers to be useful. The next question is whether or
not stationarity is required. Again the answer is no. Given that the main
concern is the convergence of sample averages and relative frequencies, it
should be reasonable to expect that random processes could exhibit tran-
sient or short term behavior that violated the stationarity definition, yet
eventually dies out so that if one waited long enough the process would
look increasingly stationarity. In fact one can make precise the notion of
asymptotically stationary (in several possible ways) and the strong law ex-
tends to this case. Again the interested reader is referred to chapter 7 of
[22]. The point is that the notions of stationarity and ergodicity should
not be taken too seriously since ergodicity can easily be dispensed with and
stationarity can be significantly weakened and still have processes for which
laws of large numbers hold so that time averages and relative frequencies
have well defined limits.

6.14 Problems

1. Let {Xn} be an iid process with a Poisson marginal pmf with param-
eter λ. Let {Yn} denote the induced sum process as in equation (6.6).
Find the pmf for Yn and find σ2Yn

, EYn, and KY (t, s).

2. Let {Xn} be an iid process. Define a new process {Un} by

Un = Xn −Xn−1 ; n = 1, 2, . . . .

Find the characteristic function and the pmf for Un. Find RU (t, s).
Is {Un} an independent increment process?

3. Let {Xn} be a ternary iid process with pXn(+1) = pXn(−1) = ǫ/2
and pXn(0) = 1−ǫ. Fix an integer N and define the “sliding average”

Yn =
1

N

N−1∑

i=0

Xn−i .

(a) Find EXn, σ
2
Xn

,MXn(ju), and KX(t, s).

(b) Find EYn, σ
2
Yn

,MYn(ju).

(c) Find the cross-correlation RX,Y (t, s) ≡ E[XtYs].

(d) Given δ > 0 find a simple upper bound to Pr(|Yn| > δ) in terms
of N and ǫ.

4. Find the characteristic function MUn
(ju) for the {Un} process of ex-

ercise 5.2.
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5. Find a complete specification of the binary autoregressive process of
exercise 5.11. Prove that the process is Markov. (One name for this
process is the binary symmetric Markov source.)

6. A stationary continuous time random process {X(t)} switches ran-
domly between the values of 0 and 1. We have that

Pr(X(t) = 1) = Pr(X(t) = 0) =
1

2
,

and if Nt is the number of changes of output during (0, t], then

pNt(k) =
1

1 + αt

(
αt

1 + αt

)k
; k = 0, 1, 2, . . . ,

where α > 0 is a fixed parameter. (This is called the Bose-Einstein
distribution.)

(a) Find MNt(ju), ENt, and σ2Nt
.

(b) Find EX(t) and RX(t, s).

7. Given two random processes {Xt}, called the signal process, and
{Nt}, called the noise process, define the process {Yt} by

Yt = Xt +Nt .

The {Yt} process can be considered as the output of a channel with
additive noise where the {Xt} process is the input. This is a common
model for dealing with noisy linear communication systems; e.g., the
noise may be due to atmospheric effects or to front-end noise in a
receiver. Assume that the signal and noise processes are independent;
that is, any vector of samples of the N process. Find the characteristic
function, mean, and variance of Yt in terms of those for Xt and Nt.
Find the covariance of the output process in terms of the covariances
of the input and noise process.

8. Find the inverse of the covariance matrix of the discrete time Wiener
process, that is, the inverse of the matrix {min(k, j); k = 1, 2, . . . , n, j =
1, 2, . . . , n}.

9. Let {X(t)} be a Gaussian random process with zero mean and auto-
correlation function

RX(τ) =
N0
2

e−|τ | .

Is the process Markov? Find its power spectral density. Let Y (t) be
the process formed by DSB-SC modulation of X(t) as in (5.37) with
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a0 = 0. If the phase angle Θ is assumed to be 0, is the resulting
modulated process Gaussian? Letting Θ be uniformly distributed,
sketch the power spectral density of the modulated process. Find
MY (0)(ju).

10. Let {X(t)} and {Y (t)} be the two continuous time random processes
of exercise 5.14 and let

W (t) = X(t) cos(2πf0t) + Y (t) sin(2πf0t) ,

as in that exercise. Find the marginal probability density function
fW (t) and the joint pdf fW (t),W (s)(u, ν). Is {W (t)} a Gaussian pro-
cess? Is it strictly stationary?

11. Let {Nk} be the binomial counting process and define the discrete
time random process {Yn} by

Yn = (−1)Nn .

(This is the discrete time analog to the random telegraph wave.) Find
the autocorrelation, mean, and power spectral density of the given
process. Is the process Markov?

12. Find the power spectral density of the random telegraph wave. Is
this process a Markov process? Sketch the spectrum of an amplitude
modulated random telegraph wave.

13. Suppose that (U,W ) is a Gaussian random vector with EU = EW =
0 , E(U2) = E(W 2) = σ2, and E(UW ) = ρσ2. (The parameter ρ
has magnitude less than or equal to 1 and is called the correlation
coefficient.) Define the new random variables

S = U +W

D = U −W

(a) Find the marginal pdf’s for S and D.

(b) Find the joint pdf fS,D(α, β) or the joint characteristic function
MS,D(ju, jν). Are S and D independent?

14. Suppose that K is a random variable with a Poisson distribution, that
is, for a fixed parameter λ

Pr(K = k) = pk(k) =
λke−λ

k!
; k = 0, 1, 1, . . .



380 CHAPTER 6. A MENAGERIE OF PROCESSES

(a) Define a new random variable N by N = K + 1. Find the char-
acteristic function MN (ju), the expectation EN , and the pmf
pN (n) for the random variable N .

We define a one-sided discrete time random process {Yn; n =
1, 2, . . . } as follows: Yn has a binary alphabet {−1, 1}. Y0 is
equally likely to be −1 or +1. Given Y0 has some value, it will
stay at that value for a total of T1 has the same distributions
N , and then it will change sign. It will stay at the new sign for
a total of T2 time units, where T2 has the same distribution as
N and is independent of T1, and then change sign again. It will
continue in this way, that is, it will change sign for the kth time
at time

Sk =

k∑

i=1

Ti ,

where the Ti from an iid sequence with the marginal distribution
found in part (a).

(b) Find the characteristic function MSk
(ju) and the pmf pSk

(m)
for the random variable Sk. Is {Sk} an independent increment
process?

15. Suppose that {Zn} is a two-sided Bernoulli process, that is, an iid se-
quence of binary {0, 1} random variables with Pr(Zn = 1) = Pr(Zn =
0). Define the new processes

Xn = (−1)Zn ,

Yn =

n∑

i=0

2−iXi ; n = 0, 1, 2, . . . ,

and

Vn =

∞∑

i=0

2−iXn−i ; n ∈ Z .

(a) Find the means and autocorrelation functions of the {Xn} pro-
cess and the {Vn}process. If possible, find the power spectral
densities.

(b) Find the characteristic functions for both Yn and Vn.
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(c) Is {Yn} an autoregressive process? a moving average process? Is
it weakly stationary? Is Vn an autoregressive process? a moving
average process? Is it weakly stationary? (Note: answers to
parts (a) and (b) are sufficient to answer the stationarity ques-
tions, no further computations are necessary.)

(d) Find the conditional pmf

pVn|Vn−1,Vn−2,... ,V0
(νn|νn−1, . . . , ν0)

Is {Vn} a Markov process?

16. Suppose that {Zn} and {Wn} are two mutually independent two-
sided zero mean iid Gaussian processes with variances σ2Z and σ2W ,
respectively. Zn is put into a linear time-invariant filter to form an
output process {Xn} defined by

Xn = Zn − rZn−1,

where 0 < r < 1. (Such a filter is sometimes called a preemphasis
filter in speech processing.) This process is then used to form a new
process

Yn = Xn +Wn,

which can be viewed as a noisy version of the preemphasized Zn
process. Lastly, the Yn process is put through a “deemphasis filter”
to form an output process Un defined by

Un = rUn−1 + Yn.

(a) Find the autocorrelation RZ and the power spectral density SZ .
Recall that for a weakly stationary discrete time process with
zero mean RZ(k) = E(ZnZn+k) and

SZ(f) =

∞∑

k=−∞
RZ(k)e

−j2πfk,

the discrete time Fourier transform of RZ .

(b) Find the autocorrelation RX and the power spectral density SX .

(c) Find the autocorrelation RY and the power spectral density SY .

(d) Find the conditional pdf fYn|Xn
(y|x).

(e) Find the pdf fUn,Wn
(or the corresponding characteristic func-

tion MUn,Wn(ju, jv)).
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(f) Find the overall mean squared error E[(Un − Zn)
2].

17. Suppose that {Nt} is a binomial counting process and that {Xn} is
an iid process that is mutually independent of {Nt}. Assume that the
Xn have zero mean and variance σ2. Let Yk denote the compound
process

Yk =

Nk∑

i=1

Xi.

Use iterated expectation to evaluate the autocorrelation functionRY (t, s).

18. Suppose that {Wn} is a discrete time Wiener process. What is
the minimum mean squared estimate of Wn given Wn−1,Wn−2, . . . ?
What is the linear least squares estimator?

19. Let {Xn} be an iid binary random process with Pr(Xn = ±1) =
1/2 and let {Nt} be a Poisson counting process. A continuous time
random walk Y (t) can be defined by

Yt =

Nt∑

i=1

Xi; t > 0.

Find the expectation, covariance, and characteristic function of Yt.

20. Are compound processes independent increment processes?

21. Suppose that {Nt; t ≥ 0} is a process with independent and station-
ary increments and that

pNt(k) =
(λt)ke−λt

k!
; k = 0, 1, 2, · · · .

Suppose also that {Lt; t ≥ 0} is a process with independent and
stationary increments and that

pLt(k) =
(νt)ke−νt

k!
; k = 0, 1, 2, · · · .

Assume that the two processes Nt and Lt are mutually independent
of each other and define for each t the random variable It = Nt +
Lt. It might model, for example, the number of requests for cpu
cycles arriving from two independent sources, each of which produces
requests according to a Poisson process.

(a) What is the characteristic function for It? What is the corre-
sponding pmf?



6.14. PROBLEMS 383

(b) Find the mean and covariance function of {It}.
(c) Is {It; t ≥ 0} an independent increment process?

(d) Suppose that Z is a discrete random variable, independent of
Nt, with probability mass function

pZ(k) =
ak

(1 + a)k+1
, k = 0, 1, · · ·

as in the first problem. Find the probability P (Z = Nt).

(e) Suppose that {Zn} is an iid process with marginal pmf pZ(k) as
in the previous part. Define the compound process

Yt =

Nt∑

k=0

Zk.

Find the mean E(Yt) and variance σ2Yt
.

22. Suppose that {Xn; n ∈ Z} is a discrete time iid Gaussian random
processes with 0 mean and variance σ2X = E[X2

0 ]. We consider this
an input signal to a signal processing system. Suppose also that
{Wn; n ∈ Z} is a discrete time iid Gaussian random processes with
0 mean and variance σ2W and that the two processes are mutually
independent. Wn is considered to be noise. Suppose that Xn is put
into a linear filter with unit pulse response h, where

hk =






1 k = 0

−1 k = −1
0 otherwise

to form an output U = X ∗h, the convolution of the input signal and
the unit pulse response. The final output signal is then formed by
adding the noise to the filtered input signal, Yn = Un +Wn.

(a) Find the mean, power spectral density, and marginal pdf for Un.

(b) Find the joint pdf fU1,U2(α, β). You can leave your answer in
terms of an inverse matrix Λ−1, but you must accurately describe
Λ.

(c) Find the mean, covariance, and power spectral density for Yn.

(d) Find E[YnXn].

(e) Does the mean ergodic theorem hold for {Yn}?
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23. Suppose that {X(t); t ∈ R} is a weakly stationary continuous time
Gaussian random processes with 0 mean and autocorrelation function

RX(τ) = E[X(t)X(t+ τ)] = σ2Xe−|τ |.

(a) Define the random process {Y (t); t ∈ R} by

Y (t) =

∫ t

t−T
X(α) dα,

where T > 0 is a fixed parameter. (This is a short term integra-
tor.) Find the mean and power spectral density of {Y (t)}.

(b) For fixed t > s, find the characteristic function and the pdf for
the random variable X(t)−X(s).

24. Consider the process {Xk; k = 0, 1, · · · } defined by X0 = 0 and

Xk+1 = aXk +Wk , k ≥ 0 (6.59)

where a is a constant, {Wk; k = 0, 1, · · · } is a sequence of iid Gaussian
random variables with E(Wk) = 0 and E(W 2

k ) = σ2.

(a) Calculate E(Xk) for k ≥ 0.

(b) Show that Xk and Wk are uncorrelated for k ≥ 0.

(c) By squaring both sides of (6.59) and taking expectation, obtain
a recursive equation for KX(k, k).

(d) Solve for KX(k, k) in term of a and σ. Hint: distinguish between
a = 1 and a 
= 1.

(e) Is the process {Xk; k = 1, 2, · · · } weakly stationary?

(f) Is the process {Xk; k = 1, 2, · · · } Gaussian?
(g) For −1 < a < 1, show that

P (|Xn| > 1) ≤ σ2

1− a2
.

25. A distributed system consists of N sensors which view a common ran-
dom variable corrupted by different observation noises. In particular,
suppose that the ith sensor measures a random variable

Wi = X + Yi, i = 0, 1, 2, · · · , N − 1,

Where the random variables X, Y1, · · · , YN are all mutually indepen-
dent Gaussian random variables with 0 mean. The variance of X is
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1 and the variance of Yi is ri for a fixed parameter |r| < 1. The
observed data are gathered at a central processing unit to form an
estimate of the unknown random variable X as

X̂N =
1

N

N−1∑

i=0

Wi.

(a) Find the mean, variance, and probability density function of the
estimate X̂N .

(b) Find the probability density function fǫN (α) of the error

ǫN = X − X̂N .

(c) Does X̂N converge in probability to the true value X?

26. Suppose that {Nt; t ≥ 0} is a process with independent and station-
ary increments and that

pNt
(k) =

(λt)ke−λt

k!
; k = 0, 1, 2, · · · .

(a) What is the characteristic function for Nt?

(b) What is the characteristic function for the increment Nt − Ns
for t > s?

(c) Suppose that Y is a discrete random variable, independent of
Nt, with probability mass function

pY (k) = (1− p)pk, k = 0, 1, · · · .

Find the probability P (Y = Nt).

(d) Suppose that we form the discrete time process {Xn n = 1, 2, · · · }
by

Xn = N2n −N2(n−1).

What is the covariance of Xn?

(e) Find the conditional probability mass function

pXn|N2(n−1)
(k|m).

(f) Find the expectation

E(
1

Nt + 1
).
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27. Does the weak law of large numbers hold for a random process consist-
ing of Nature selecting a bias uniformly on [0, 1] and then a coin with
that bias is flipped forever? In any case, is it true that Sn converges?
If so, to what?

28. Suppose that {X(t)} is a continuous time weakly stationary Gaus-
sian random process with zero mean and autocorrelation function
RX(τ) = e−2α|τ |, where α > 0. The signal is passed through an RC
filter with transfer function

H(f) =
β

β + j2πf
,

where β = 1/RC, to form an output process {Y )t)}.

(a) Find the power spectral densities SX(f) and SY (f)?

(b) Evaluate the average powers E[X2(t)] and E[Y 2(t)].

(c) What is the marginal pdf fY (t)?

(d) Now form a discrete time random process {Wn} byWn = X(nT ),
for all integer n. This is called sampling with a sampling period
of T . Find the mean, autocorrelation function, and, if it exists,
the power spectral density of {Wn}.

(e) Is {Y (t)} a Gaussian random process? Is {Wn} a Gaussian ran-
dom process? Are they stationary in the strict sense?

(f) Let {Nt} be a Poisson counting process. Let i(t) be the deter-
ministic waveform defined by

i(t) =

{
1 if t ∈ [0, δ]
0 otherwise

— that is, a flat pulse of duration δ. For k = 1, 2, . . . , let tk
denote the time of the kth jump in the counting process (that
is, tk is the smallest value of t for which Nt = k). Define the
random process {Y (t)} by

Y (t) =

Nt∑

k=1

i(t− tk) .

This process is a special case of a class of processes known as
filtered Poisson processes. This particular example is a model
for shot noise in vacuum tubes. Draw some sample waveforms
of this process. Find MY (t)(ju) and pY (t)(n).
Hint: You need not consider any properties of the random vari-
ables {tk} to solve this problem.
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29. In the physically motivated development of the Poisson counting pro-
cess, we fixed time values and looked at the random variables giving
the counts and the increments of counts at the fixed times. In this
problem we explore the reverse description: What if we fix the counts
and look at the times at which the process achieves these counts? For
example, for each strictly positive integer k, let rk denote the time
that the kth count occurs; that is, rk = α if and only if

Nα = k ; N < k ; all t < α .

Define r0 = 0. For each strictly positive integer k, define the interar-
rival times τk by

τk = rk − rk−1 ,

and hence

rk =

k∑

i=1

τi .

(a) Find the pdf for rk for k = 1, 2, . . . .
Hint: First find the cdf by showing that

Frk
(α) = Pr(kth count occurs before or at time α)

= Pr(Nα ≥ k) ,

and then using the Poisson pmf to write an expression for this
sum, differentiate to find the pdf. You may have to do some
algebra to reduce the answer to a simple form not involving any
sums. This is most easily done by writing a difference of two
sums in which all terms but one cancel. The final answer is
called the Erlang family of pdf’s. You should find that the pdf
or r1 is an exponential density.

(b) Use the basic properties of the Poisson counting process to prove
that the, interarrival times are iid
Hint: Prove that

Fτn|τ1,... ,τn−1
(α|β1, . . . , βn−1) =

Fτn
(α) = 1− e−λα ; n = 1, 2, . . . ; α ≥ 0 .
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Appendix A

Preliminaries: Set Theory,
Mappings, Linear
Algebra, and Linear
Systems

The theory of random processes is constructed on a large number of abstrac-
tions. These abstractions are necessary to achieve generality with precision
while keeping the notation used manageably brief. Students will probably
find learning facilitated if, with each abstraction, they keep in mind (or on
paper) a concrete picture or example of a special case of the abstraction.
From this the general situation should rapidly become clear. Concrete ex-
amples and exercises are introduced throughout the book to help with this
process.

A.1 Set Theory

In this section the basic set theoretic ideas that are used throughout the
book are introduced. The starting point is an abstract space, or simply a
space, consisting of elements or points, the smallest quantities with which
we shall deal. This space, often denoted by Ω, is sometimes referred to as
the universal set. To describe a space we may use braces notation with
either a list or a description contained within the braces { }. Examples
are:

[A.0] The abstract space consisting of no points at all, that is, an empty

389
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(or trivial) space. This possibility is usually excluded by assuming
explicitly or implicitly that the abstract space is nonempty, that is,
to contain at least one point.

[A.1] The abstract space with only the two elements zero and one to de-
note the possible receptions of a radio receiver of binary data at one
particular signaling time instant. Equivalently, we could give different
names to the elements and have a space {0, 1}, the binary numbers,
or a space with the elements heads and tails. Clearly the structure
of all of these spaces is the same; only the names have been changed.
They are different, however, in that one is numeric, and hence we
can perform arithmetic operations on the outcomes, while the other
is not. Spaces which do not have numeric points (or points labeled by
numeric vectors, sequences, or waveforms) are sometimes referred to
as categorical. Notationally we describe these spaces as {zero, one},
{0, 1}, and {heads, tails}, respectively.

[A.2] Given a fixed positive integer k, the abstract space consisting of all
possible binary k−tuples, that is, all 2k k−dimensional binary vectors.
This space could model the possible sequences of k flips of the same
coin or a single flip of k coins. Note the example [A.1] is a special
case of example [A.2].

[A.3] The abstract space with elements consisting of all infinite sequences
of ones and zeros or 1′s and 0′s denoting the sequence of possible
receptions of a radio receiver of binary data over all signaling times.
The sequences could be one-sided in the sense of beginning at time
zero and continuing forever, or they could be two-sided in the sense
of beginning in the infinitely remote past (time −∞) and continuing
into the infinitely remote future.

[A.4] The abstract space consisting of all ASCII (American Standard Code
for Information Interchange) codes for characters (letters, numerals,
and control characters such as line feed, rub out, etc.). These might
be in decimal, hexadecimal, or binary form. In general, we can con-
sider this space as just a space {ai, i = 1, . . . , N} containing a finite
number of elements (which here might well be called symbols, letters,
or characters).

[A.5] Given a fixed positive integer k, the space of all k−dimensional vec-
tors with coordinates in the space of example [A.4]. This could model
all possible contents of an ASCII buffer used to drive a serial printer.

[A.6] The abstract space of all infinite (single-sided or double-sided) se-
quences of ASCII character codes.
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[A.7] The abstract space with elements consisting of all possible voltages
measured at the output of a radio receiver at one instant of time.
Since all physical equipment has limits to the values of voltage (called
“dynamic range”) that it can support, one model for this space is a
subset of the real line such as the closed interval [−V, V ] = {r : −V ≤
r ≤ V }, i.e., the set of all real numbers r such that −V ≤ r ≤ +V. If,
however, the dynamic range is not precisely known or if we wish to
use a single space as a model for several measurements with different
dynamic ranges, then we might wish to use the entire real line ℜ =
(−∞,∞) = {r : −∞ < r < ∞}. The fact that the space includes
“impossible” as well as “possible” values is acceptable in a model.

[A.8] Given a positive integer k, the abstract space of all k−dimensional
vectors with coordinates in the space of example [A.7]. If the real
line is chosen as the coordinate space, then this is k−dimensional
Euclidean space.

[A.9] The abstract space with elements being all infinite sequences of mem-
bers of the space of example [A.7], e.g., all single-sided real-valued
sequences of the form {xn, n = 0, 1, 2, . . . }, where xn ∈ ℜ for all
n = 1, 2, . . .

[A.10] Instead of constructing a new space as sequences of elements from
another space, we might wish to consider a new space consisting of
all waveforms whose instantaneous values are elements in another
space, e.g., the space of all waveforms {x(t); t ∈ (−∞,∞)}, where
x(t) ∈ ℜ, all t. This would model, for instance, the space of all possible
voltage-time waveforms at the output of a radio receiver. Examples
of members of this space are x(t) = cosωt, z(t) = est, x(t) = 1,
x(t) = t, and so on. As with sequences, the waveforms may begin in
the remote past or they might be defined for t running from 0 to ∞.

The preceding examples focus on three related themes that will be con-
sidered throughout the book: Examples [A.1], [A.4], and [A.7] present mod-
els for the possible values of a single measurement. The mathematical model
for such a measurement with an unknown outcome is called a random vari-
able. Such simple spaces describe the possible values that a random variable
can assume. Examples [A.2], [A.5], and [A.8] treat vectors (finite collections
or finite sequences) of individual measurements. The mathematical model
for such a vector-valued measurement is called a random vector. Since a
vector is made up of a finite collection of scalars, we can also view this
random object as a collection (or family) of random variables. These two
viewpoints — a single random vector-valued measurement and a collection
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of random scalar-valued measurements — will both prove useful. Exam-
ples [A.3], [A.6], and [A.9] consider infinite sequences of values drawn from
a common alphabet and hence the possible values of an infinite sequence
of individual measurements. The mathematical model for this is called a
random process (or a random sequence or a random time series). Example
[A.10] considers a waveform taking values in a given coordinate space. The
mathematical model for this is also called a random process. When it is
desired to distinguish between random sequences and random waveforms,
the first is called a discrete time random process and the second is called a
continuous time random process.

In chapter 3 we shall define precisely what is meant by a random vari-
able, a random vector, and a random process. For now, random variables,
random vectors, and random processes can be viewed simply as abstract
spaces such as in the preceding examples for scalars, vectors, and sequences
or waveforms together with a probabilistic description of the possible out-
comes, that is, a means of quantifying how likely certain outcomes are. It
is a crucial observation at this point that the three notions are intimately
connected: random vectors and processes can be viewed as collections or
families of random variables. Conversely, we can obtain the scalar ran-
dom variables by observing the coordinates of a random vector or random
process. That is, if we “sample” a random process once, we get a ran-
dom variable. Thus we shall often be interested in several different, but
related, abstract spaces. For example, the individual scalar outputs may
be drawn from one space, say A, which could be any of the spaces in ex-
amples [A.1], [A.4], or [A.7]. We then may also wish to look at all possible
k−dimensional vectors with coordinates in A, a space that is often denoted
by Ak, or at spaces of infinite sequences of waveforms of A. These latter
spaces are called product spaces and will play an important role in modeling
random phenomena.

Usually one will have the option of choosing any of a number of spaces
as a model for the outputs of a given random variable. For example, in
flipping a coin one could use the binary space {head, tail}, the binary space
{0, 1} (obtained by assigning 0 to head and 1 to tail), or the entire real line
ℜ. Obviously the last space is much larger than needed, but it still captures
all of the possible outcomes (along with many “impossible” ones). Which
view and which abstract space is the “best” will depend on the problem at
hand, and the choice will usually be made for reasons of convenience.

Given an abstract space, we shall consider groupings or collections of
the elements that may be (but are not necessarily) smaller than the whole
space and larger than single points. Such groupings are called sets. If every
point in one set is also a point in a second set, then the first set is said
to be a subset of the second. Examples (corresponding respectively to the
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previous abstract space examples) are:

[A.11] The empty set ∅ consisting of no points at all. Thus we could
rewrite example [A.0] as Ω = ∅. By convention, the empty set is
considered to be a subset of all other sets.

[A.12] The set consisting of the single element one. This is an example of
a one-point set or singleton set.

[A.13] The set of all k−dimensional binary vectors with exactly one zero
coordinate.

[A.14] The set of all infinite sequences of ones and zeros with exactly 50%
of the symbols being one (as defined by an appropriate mathematical
limit).

[A.15] The set of all ASCII characters for capital letters.

[A.16] The set of all four-letter English words.

[A.17] The set of all infinite sequences of ASCII characters excluding those
representing control characters.

[A.18] Intervals such as the set of all voltages lying between 1 volt and 20
volts are useful subsets of the real line. These come in several forms,
depending on whether or not the end points are included. Given
b > a, define the “open” interval (a, b) = {r : a < r < b}, and given
b ≥ a, define the “closed” interval [a, b] = {r : a ≤ r ≤ b}. That is,
we use a bracket if the end point is included and a parenthesis if it
is not. We will also consider “half-open” or “half-closed” intervals of
the form (a, b] = {r : a < r ≤ b} and [a, b) = {r : a ≤ r < b}. (We
use quotation marks around terms like open and closed because we
are not rigorously defining them, we are implicitly defining them by
their most important examples, intervals of the real line).

[A.19] The set of all vectors of k voltages such that the largest value is
less than 1 volt.

[A.20] The set of all sequences of voltages which are all nonnegative.

[A.21] The set of all voltage-time waveforms that lie between 1 and 20
volts for all time.

Given a set F of points in an abstract space Ω, we shall write ω ∈ F
for “the point ω is contained in the set F” and ω 
∈ F for “the point ω
is not contained in the set F.” The symbol ∈ is referred to as the element
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inclusion symbol. We shall often describe a set using this notation in the
form F = {ω : ω has some property. Thus F = {ω : ω ∈ F}. For example,
a set in the abstract space Ω = {ω : −∞ < ω < ∞} (the real line ℜ) is
{ω : −2 ≤ ω < 4.6}. The abstract space itself is a grouping of elements and
hence is also called a set. Thus Ω = {ω : ω ∈ Ω}.

If a set F is a subset of another set G; that is, if ω ∈ F implies that
also ω ∈ G, then we write F ⊂ G. The symbol ⊂ is called the set inclusion
symbol. Since a set is included within itself, every set is a subset of itself.

An individual element or point ω0 in F can be considered both as a
point or element in the space and as a one-point set or singleton set {ω0} =
{ω : ω = ω0}. Note, however, that the braces notation is more precise when
we are considering the one-point set and that ω0 ∈ Ω while {ω0} ⊂ Ω.

The three basic operations on sets are complementation, intersection,
and union. The definitions are given next. Refer also to Figure A.1 as an
aid in visualizing the definitions. In Figure A.1 Ω is pictured as the outside
box and the sets F and G are pictured as arbitrary blobs within the box.
Such diagrams are called Venn diagrams.

Given a set F, the complement of F is denoted by F c, which is defined
by

F c = {ω : ω 
∈ F} ,

that is, the complement of F contains all of the points of Ω that are not in
F.

Given two sets F and G, the intersection of F and G is denoted by
F ∩G, which is defined by

F ∩G = {ω : ω ∈ F and ω ∈ G} ,

that is, the intersection of two sets F and G contains the points which are
in both sets.

If F and G have no points in common, then F ∩ G = ∅, the null set,
and F and G are said to be disjoint or mutually exclusive.

Given two sets F and G, the union of F and G is denoted by F ∪ G,
which is defined by

F ∪G = {ω : ω ∈ F or ω ∈ G} ,

that is, the union of two sets F and G contains the points that are either
in one set of the other, or both.

Observe that the intersection of two sets is always a subset of each of
them, e.g., F ∩ G ⊂ F. The union of two sets, however, is not a subset of
either of them (unless one set is a subset of the other). Both of the original
sets are subsets of their union, e.g., F ⊂ F ∪G.
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(e) F ∩G (f) F ∪G

(c) F (d) F c

(a) Ω (b) G

Figure A.1: Basic Set Operations
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In addition to the three basic set operations, there are two others that
will come in handy. Both can be defined in terms of the three basic opera-
tions. Refer to Figure A.2 as a visual aid in understanding the definitions.

(a) F −G (b) F∆G

Figure A.2: Set Difference Operations

Given two sets F and G, the set difference of F and G is denoted by
F −G, which is defined as

F −G = {ω : ω ∈ F and ω 
∈ G} = F ∩Gc;

that is, the difference of F and G contains all of the points in F that are
not also in G. Note that this operation is not completely analogous to the
“minus” of ordinary arithmetic because there is no such thing as a “negative
set.”

Given two sets F and G, their symmetric difference is denoted by F∆G,
which is defined as

F∆G = {ω : ω ∈ F or ω ∈ G but not both}
= (F −G) ∪ (G− F ) = (F ∩Gc) ∪ (F c ∩G)

= (F ∪G)− (F ∩G);

that is, the symmetric difference between two sets is the set of points that
are in one of the two sets but are not common to both sets. If both sets
are the same, the symmetric difference consists of no points, that is, it is
the empty set. If F ⊂ G, then obviously F∆G = G− F.

Observe that two sets F and G will be equal if and only if F ⊂ G and
G ⊂ F. This observation is often useful as a means of proving that two



A.2. EXAMPLES OF PROOFS 397

sets are identical: first prove that each point in one set is in the other and
hence the first set is subset of the second. Then prove the opposite inclusion.
Surprisingly, this technique is frequently much easier than a direct proof
that two sets are identical by a pointwise argument of commonality.

We will often wish to combine sets in a series of operations and to reduce
the expression for the resulting set to its simplest and most compact form.
Although the most compact form frequently can be seen quickly with the
aid of a Venn diagram, as in Figures A.1 and A.2, to be completely rigor-
ous, the use of set theory or set algebra to manipulate the basic operations
is required. Table A.1 collects the most important such identities. The
first seven relations can be taken as axioms in an algebra of sets and used
to derive all other relations, including the remaining relations in the table.
Some examples of such derivations follow the table. Readers who are famil-
iar with Boolean algebra will find a one-to-one analogy between the algebra
of sets and Boolean algebra.

DeMorgan’s “laws” (A.6) and (A.10) are useful when complementing
unions of intersections. Relation (A.16) is useful for writing the union of
overlapping sets as a union of disjoint sets. A set and its complement are
always disjoint by relation (A.5).

A.2 Examples of Proofs

Relation (A.8). From the definition of intersection and Figure A.1 we verify
the truth of (A.8). Algebraically, we show the same thing from the basic
seven axioms: From (A.4) and (A.6) we have that

A ∩B = ((A ∩B)c)c = (Ac ∪Bc)c ,

and using (A.1), (A.4), and (A.6), this becomes

(Bc ∪Ac)c = (Bc)c ∩ (Ac)c

as desired.

Relation (A.18). Set F = Ω in (A.5) to obtain Ω ∩ Ωc = ∅, which with
(A.7) and (A.8) yields (A.19).

Relation (A.11). Complement (A.5), (F c ∩ F )c = ∅c, and hence, using
(A.6), (F c ∪ F ) = ∅c, and finally, using (A.4) and (A.18), F c ∪ F = Ω.

Relation (A.12). Using F c in (A.7): F c ∩ Ω = F c. Complementing the
result: (F c ∩ Ω)c = (F c)c = F (by (A.4)). Using (A.6): (F c ∩ Ω)c =
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F ∪G = G ∪ F commutative law (A.1)

F ∪ (G ∪H) = (F ∪G) ∪H associative law (A.2)

F ∩ (G ∪H) = (F ∩G) ∪ (F ∩H)

distributive law (A.3)

(F c)c = F (A.4)

F ∩ F c = ∅ (A.5)

(F ∩G)c = F c ∪Gc DeMorgan’s “law” (A.6)

F ∩ Ω = F (A.7)

F ∩G = G ∩ F commutative law (A.8)

F ∩ (G ∩H) = (F ∩G) ∩H associative law (A.9)

(F ∪G)c = F c ∩Gc DeMorgan’s other “law” (A.10)

F ∪ F c = Ω (A.11)

F ∪ ∅ = F (A.12)

F ∪ (F ∩G) = F = F ∩ (F ∪G) (A.13)

F ∪ Ω = Ω (A.14)

F ∩ ∅ = ∅ (A.15)

F ∪G = F ∪ (F c ∩G) = F ∪ (G− F ) (A.16)

F ∪ (G ∩H) = (F ∪G) ∩ (F ∪H) distributive law (A.17)

Ωc = ∅ (A.18)

F ∪ F = F (A.19)

F ∩ F = F (A.20)

Table A.1: Set Algebra
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F ∪ Ωc = F. From (A.18) Ωc = ∅, yielding (A.12).

Relation (A.20). Set G = F and H = F c in (A.3) to obtain F ∩ (F ∪
F c) = (F ∩F )∪ (F ∩F c) = F ∩F using (A.5) and (A.12). Applying (A.11)
and (A.7) to the left-hand side of this relation yields F ∩ Ω = F = F ∩ F.

Relation (A.19). Complement (A.20) using (A.6) and replace F c by F .

The proofs for the examples were algebraic in nature, manipulating the
operations based on the axioms. Proofs can also be constructed based
on the definitions of the basic operations. For example, DeMorgan’s law
can be proved directly by considering individual points. To prove that
(F ∩G)c = F c ∪Gc it suffices to show separately that (F ∩G)c ⊂ F c ∪Gc

and F c ∪Gc ⊂ (F ∩G)c. Suppose that ω ∈ (F ∩G)c, then ω 
∈ F ∩G from
the definition of complement and hence ω 
∈ F or ω 
∈ G from the definition
of intersection (if ω were in both, it would be in the intersection). Thus
either ω ∈ F c or ω ∈ Gc and hence ω ∈ F c∪Gc. Conversely, if ω ∈ F c∪Gc,
then ω ∈ F c or ω ∈ Gc, and hence either ω 
= F or ω 
= G, which implies
that ω 
= F ∩ G, which in turn implies that ω ∈ (F ∩ G)c, completing the
proof.

We will have occasion to deal with more general unions and intersec-
tions, that is, unions or intersections of more than two or three sets. As
long as the number of unions and intersections is finite, the generalizations
are obvious. The various set theoretic relations extend to unions and inter-
sections of finite collections of sets. For example, DeMorgan’s law for finite
collections of sets is

(
n⋂

i=1

Fi

)c
=

n⋃

i=1

F ci . (A.21)

For example, consider the finite set version of DeMorgan’s law

This result can be proved using the axioms or by induction. Point
arguments are often more direct. Define the set on the left hand side of the
equation as G and that on the right hand side as H and to prove G = H
by considering individual points. This is done by separately showing that
G ⊂ H and H ⊂ G, which implies the two sets are the same. To show that
G ⊂ H, let ω ∈ G = (

⋂n
i=1 Fi)

c
, which means that ω 
∈ ⋂ni=1 Fi, which

means that ω 
∈ Fi for some i or, equivalently, that ω ∈ F ci for some i. This
means that ω ∈ ⋃ni=1 F ci and hence that ω ∈ H. Thus G ⊂ H since we
have shown that every point in G is also in H. The converse containment
follows in a similar manner. If ω ∈ H =

⋃n
i=1 F ci , the ω ∈ F ci for some i
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and hence ω 
∈ Fi for some i. This implies that ω 
∈ ⋂ni=1 Fi and hence that
ω ∈ G, completing the proof.

The operations can also be defined for quite general infinite collections
of sets as well. Say that we have an indexed collection of sets {Ai; i ∈ I},
sometimes denoted {Ai}i∈I , for some index set I. In other words, this
collection is a set whose elements are sets — one set Ai for each possible
value of an index i drawn from I. We call such a collection a family or
class of sets. (To avoid confusion we never say a “set of sets.”) The index
set I can be thought of as numbering the sets. Typical index sets are
the set Z+ of all nonnegative integers, Z = {. . . ,−1, 0, 1, . . . }, or the real
line ℜ. The index set may be finite in that it has only a finite number of
entries, say I = Zk = {0, 1, . . . , k−1}. The index set is said to be countably
infinite if its elements can be counted, that is, can be put into a one-to-one
correspondence with a subset of the nonnegative integers Z+; e.g., Z+ or Z
itself. If an index set has an infinity of elements, but the elements cannot
be counted, then it is said to be uncountably infinite, for example ℜ or the
unit interval [0, 1] (see problem 11).

The family of sets is said to be finite, countable, or uncountable if the
respective index set is finite, countable, or uncountable. As an example,
the family of sets {[0, 1/r); r ∈ I} is countable if I = Z and uncountable
if I = ℜ. Another way of describing countably infinite sets is that they can
be put into one-to-one correspondence with the integers. For example, the
set of rational numbers is countable because it can be enumerated, the set
of irrational numbers is not.

The obvious extensions of the pairwise definitions of union and intersec-
tion will now be given. Given an indexed family of sets {Ai; i ∈ I}, define
the union by

⋃

i∈I
Ai = {ω : ω ∈ Ai for at least one i ∈ I}

and define the intersection by
⋂

i∈I
Ai = {ω : ω ∈ Ai for all i ∈ I} .

In certain special cases we shall make the notation more specific for
particular index sets. For example, if I = {0, . . . , n−1}, then we write the
union and intersection as

n−1⋃

i=0

Ai and

n−1⋂

i=0

Ai

respectively.



A.3. MAPPINGS AND FUNCTIONS 401

A collection of sets {Fi; i ∈ I} is said to be disjoint or pairwise disjoint
or mutually exclusive if

Fi ∩ Fj = ∅; all i, j ∈ I, i 
= j ,

that is, if no sets in the collection contain points contained by other sets in
the collection.

The class of sets is said to be collectively exhaustive or to exhaust the
space if ⋃

i∈I
Fi = Ω ,

that is, together the Fi contain all the points of the space.
A collection of sets {Fj ; i ∈ I} is called a partition of the space Ω if the

collection is both disjoint and collectively exhaustive. A collection of sets
{Fi; i ∈ I} is said to partition a set G if the collection is disjoint and the
union of all of its members is identical to G.

A.3 Mappings and Functions

We shall make much use of mappings of functions from one space to another.
This is of importance in a number of applications. For example, the wave-
forms and sequences that we considered as members of an abstract space
describing the outputs of a random process are just functions of time, e.g.,
for each value of time t in some continuous discrete collection of possible
times we assigned some output value to the function. As a more compli-
cated example, consider a binary digit that is transmitted to a receiver at
some destination by sending either plus or minus V volts through a noisy
environment called a “channel.” At the receiver a decision is made whether
+V or −V was sent. The receiver puts out a 1 or a 0, depending on the
decision. In this example three mappings are involved: The transmitter
maps a binary symbol in {0, 1} into either +V or −V. During transmission,
the channel has an input either +V or −V and produces a real number, not
usually equal to 0, 1, +V, or −V. At the receiver, a real number is viewed
and a binary number produced.

We will encounter a variety of functions or mappings, from simple arith-
metic operations to general filtering operations. We now introduce some
common terminology and notation for handling such functions. Given two
abstract spaces Ω and A, an A-valued function or mapping F or, in more
detail, f : ω → A, is an assignment of a unique point in A to each point in
Ω; that is, given any point ω ∈ Ω, f(ω) is some value in A. Ω is called the
domain or domain of definition of the function f , and A is called the range
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of f . Given any sets F ⊂ Ω and G ⊂ A, define the image of F (under f)
as the set

f(F ) = {a : a = f(ω) for some ω ∈ F}
and the inverse image (also called the preimage) of G (under f) as the set

f−1(G) = {ω : f(ω) ∈ G} .

Thus f(F ) is the set of all points in A obtained by mapping points in F,
and f−1(G) is the set of all points in Ω that map into G.

For example, let Ω = [−1, 1] and A = [−10, 10]. Given the function
f(ω) = ω2 with domain Ω and range A, define the sets F = (−1/2, 1/2) ⊂ Ω
and G = (−1/4, 1) ⊂ A. Then f(F ) = [0, 1/4) and f−1(G) = [−1, 1]. As
you can see from this example, not all points in G have to correspond to
points in F . In fact, the inverse image can be empty; e.g., continuing the
same example, f−1((−1/4, 0)) = ∅.

The image of the entire space Ω is called the range space of f , and it
need not equal the range; e.g., the function f could map the whole input
space into a single point in A. For example, f : ℜ → ℜ defined by f(r) = 1,
all r, has a range space of a single point. If the range space equals the
range, the mapping is said to be onto. (Is the mapping f of the preceding
example onto? What is the range space? Is the range unique?)

A mapping f is called one-to-one if x 
= y implies that f(x) 
= f(y).

A.4 Linear Algebra

We collect a few definitions and results for vectors, matrices, and determi-
nants.

There is a variety of notational variation for vectors. Historically a
common form was to use boldface, as in x = (x0, x0, . . . , xk−1), denote
a k-dimensional vector with k components xi, i = 0, 1, . . . , k − 1. When
dealing with linear algebra, however, it is most commonly the convention
to assume that vectors are column vectors, e.g.,

x =





x0
x1
...

xk−1




,

or, as an in-line equation, x = (x0, x0, . . . , xk−1)t, where t denots “trans-
pose.” We will often be lazy and write vectors inline without explicitly
denoting the transpose unless it is needed, e.g., in vector/matrix equations.
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Although boldface makes it clear which symbols are vectors and which are
scalars, in modern practice it is more common to drop the distinction and
not use boldface, i.e., to write a vector as simply x = (x0, x1, . . . , xk−1) or,
if it is desired to make clear it is a column vector, as x = (x0, x1, . . . , xk−1)t.
Both boldface and non-boldface notations are used in this book. Generally,
early on the boldface notation is used to clarify when vectors or scalars are
being used while later in the book boldface is often dropped.

The inner product (or dot product) of two real-valued n-dimensional
vectors y and n id defined by the scalar value

xty =

n−1∑

i=0

xiyi. (A.22)

If the vectors are more generally complex valued, then the transpose is
replaced by a conjugate transpose

x∗y =

n−1∑

i=0

x∗
i yi. (A.23)

A matrix is a rectangular array of numbers

A =





a0,0 a0,1 a0,2 · · · a0,n−1
a1,0 a1,1 a1,2 · · · a1,n−1
· · · · ·
· · · · ·
· · · · ·
· · · ·

am−1,0 am−1,1 am−1,2 · · · am−1,n−1





with m rows and n columns. Boldface notation is also used for matrices. If
m = n the matrix is said to be square. A matrix is symmetric if At = A,
where At is the transpose of the matrix A, that is, the n×m matrix whose
k, jth element is (At)k,j = aj,k. If the matrix has complex elements and
A∗ = A, where ∗ denotes conjugate transpose so that (A∗)k,j = a∗

j,k, then
A is said to be Hermitian.

The product of an m × n matrix and an n-dimensional vector y = Ax
is an m dimensional vector with components

yi =

n−1∑

k=0

ai,kxi,

that is, the inner product of x and the ith row of A.
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The outer product of two n-dimensional vectors y and n id defined as
thte n by n matrix

xyn =





x0y0 x0y1 x0y2 · · · x0yn−1
x1y0 x1y1 x1y2 · · · x1yn−1
· · · · ·
· · · · ·
· · · · ·
· · · ·

xn−1y0 xn−1y1 xn−1y2 · · · xn−1yn−1





(A.24)

Given a square matrix A, a scalar λ is called an eigenvalue and a vector
u is called an eigenvector if

Au = λu. (A.25)

A n by n matrix has n eigenvalues and eigenvectors, but they need not
be distinct. Eigenvalues provide interesting formulas for two attributes of
matrices, the trace defined by

Tr(A) =
n−1∑

i=0

ai,i

and the determinant of the matrix det(A):

Tr(A) =

n−1∑

i=0

λi (A.26)

det(A) =

n−1∏

i=0

λi (A.27)

The arithmetic mean/geometric mean inequality says that the arithmetic
mean is bound below by the geometric mean:

1

n

n−1∑

i=0

λi ≥
(
n−1∏

i=0

λi

) 1
n

(A.28)

with equality if and only if the λ are all the same. Application of the
inequality to the eigenvalue representation of the determinant and trace
provides the inequality

Tr(A) ≥ (det(A))
1/n

(A.29)
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with equality if and only if the eigenvalues are all constant.
A square Hermitian matrix A can be diagonalized into the form

A = UΛU∗, (A.30)

where Λ is the diagonal matrix with diagonal entries Λ(k, k) = λk, the
kth eigenvalue of the matrix, and where U is a unitary matrix, that is,
U∗ = U−1.

The inner product and outer product of two vectors can be related as

xty = Tr(xyt). (A.31)

Given an n-dimensional vector x and an n by n matrix A, the product

xtAx =

n−1∑

k=0

n−1∑

j=0

xkxjak,j

is called a quadratic form. If the matrix A is such that xtAx ≥ 0, the matrix
is said to be nonnegative definite. If the matrix is such that xtAx > 0, then
the matrix is said to be positive definite. These are the definitions for
real-valued vectors and matrices. For complex vectors and matrices use the
conjugate transpose instead of the transpose. If a matrix is positive definite,
then its eigenvalues are all strictly positive and hence so is its determinant.

A quadratic form can also be written as

xtAx = Tr(Axxt). (A.32)

If a matrix is A positive definite and Hermitian (e.g., real and symmet-
ric), then its square root A1/2 is well-defined as UΛ1/2U∗. In particular,
A1/2A1/2 = A and (A1/2)−1 = (A−1)1/2.

A.5 Linear System Fundamentals

In general, a system L is a mapping of an input time function or input
signal , x = {x(t); t ∈ T } into an output time function or output signal,
L(x) = y = {y(t); t ∈ T }. We now use T to denote the index set or
domain of definition instead of I to emphasize that the members of the set
correspond to “time.” Usually the functions take on real or complex values
of each value of time t in T . The system is called a discrete time system if
T is discrete; e.g., Z or Z+, and it is called a continuous time system if T
is continuous; e.g., ℜ or [0,∞). If only nonnegative times are allowed, e.g.,
T is Z+ or [0,∞), the system is called a one-sided or single-sided system. If
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time can go on infinitely in both directions, then it is said to be a two-sided
system.

A system L is said to be linear if the mapping is linear, that is, for all
complex (or real) constants a and b and all input functions x1 and x2

L(ax1 + bx2) = aL(x1) + bL(x2) . (A.21)

There are many ways to define or describe a particular linear system:
one can provide a constructive rule for determining the output from the
input; e.g., the output may be a weighted sum or integral of values of the
input. Alternatively, one may provide a set of equations whose solution
determines the output from the input, e.g., differential or difference equa-
tions involving the input and output at various times. Our emphasis will
be on the former constructive technique, but we shall occasionally consider
examples of other techniques.

The most common and the most useful class of linear systems comprises
systems that can be represented by a convolution, that is, where the output
is described by a weighted integral or sum of input values. We first consider
continuous time systems and then turn to discrete time systems.

For t ∈ T ⊂ ℜ, let x(t) be a continuous time input to a system with
output y(t) defined by the superposition integral

y(t) =

∫

s:t−s∈T
x(t− s)ht(s) ds . (A.22)

The function ht(t) is called the impulse response of the system since it can
be considered the output of the system at time t which results from an input
of a unit impulse of Dirac delta function x(t) = δ(t) at time 0. The index
set is usually either (−∞,∞) or [0,∞) for continuous time systems. The
linearity of integration implies that the system defined by (A.22) is a linear
system. A system of this type is called a linear filter. If the impulse response
does not depend on time t, then the filter is said to be time-invariant and
the superposition integral becomes a convolution integral:

y(t) =

∫

s:t−s∈T
x(t− s)h(s) ds =

∫

s∈T
x(s)h(t− s) ds . (A.23)

We shall deal almost exclusively with time-invariant filters. Such a linear
time-invariant system is often depicted using a block diagram as in Figure
A.3.

If x(t) and h(t) are absolutely integrable, i.e.,

∫

T
|x(t)|dt ,

∫

T
|h(t)|dt <∞ , (A.24)
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x(t) ✲ h ✲ y(t) =
∫
s∈T x(s)h(t− s) ds

Figure A.3: Linear Filter

x(t) ✲ h1 ✲
y(t)

h2 ✲ z(t)

H(f)

X(f) H1(f) Y (f) H2(f) Z(f)

Figure A.4: Cascade Filter

then their Fourier transforms exist:

X(f) =

∫

T
x(t)e−j2πftdt , H(f) =

∫

T
h(t)e−j2πftdt . (A.25)

Continuous time filters satisfying (A.24) are said to be stable. H(f) is
called the filter transfer function or the system function. We point out
that (A.24) is a sufficient but not necessary condition for the existence of
the transform. We shall not usually be concerned with the fine points of
the existence of such transforms and their inverses. The inverse transforms
that we require will be accomplished either by inspection or by reference
to a table.

A basic property of Fourier transforms is that convolution in the time
domain corresponds to multiplication in the frequency domain, and hence
the output transform is given by

Y (f) = H(f)X(f) . (A.26)

Even if a particular system has an input that does not have a Fourier
transform, (A.26) can be used to find the transfer function of the system
by using some other input that does have a Fourier transform.

As an example, consider Figure A.4, where two linear filters are con-
catenated or cascaded: x(t) is input to the first filter, and the output y(t)
is input to the second filter, with final output z(t). If both filters are stable
and x(t) is absolutely integrable, the Fourier transforms satisfy

Y (f) = H1(f)X(f) , Z(f) = H2(f)Y (f) , (A.27)
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or
Z(f) = H2(f)H1(f)X(f) .

Obviously the overall filter transfer function is H(f) = H2(f)H1(f).
The overall impulse response is then the inverse transform of H(f).

Frequently (but not necessarily) the output of a linear filter can also be
represented by a finite order differential equation in terms of the differential
operator, D = d/dt :

n∑

k=0

akD
ky(t) =

m∑

i=0

biD
ix(t) . (A.28)

The output is completely specified by the input, the differential equation,
and appropriate initial conditions. Under suitable conditions on the dif-
ferential equation, the linear filter is stable, and the transfer function can
be obtained by transforming both sides of (A.28). However, we shall not
pursue this approach further.

Turn now to Figure A.5. Here we show an idealized sampled data sys-
tem to demonstrate the relationship between discrete and continuous time
filters. The input function x(t) is input to a mixer, which forms the product
of x(t) with a pulse train, p(t) =

∑
k∈T δ(t − k), of Dirac delta functions

spaced one second apart in time. T is a suitable subset of Z. If we denote
the sampled values x(k) by xk, the product is

x(t)p(t) =
∑

k

xkδ(t− k),

which is the input to a linear filter with impulse response h(t). Applying
the convolution integral of equation (A.23) and sampling the output with
a switch at one-second intervals, we have as an output function at time n

yn = y(n)

=

∫
x(t)p(t)h(t− n) dt

=

∫ ∑

k

xkδ(t− k)h(t− n) dt

=
∑

k:k∈T
xkhn−k

=
∑

k:n−k∈T
xn−khk . (A.29)

Thus, macroscopically the filter is a discrete time linear filter with a
discrete convolution sum in place of an integral. {hk} is called the Kro-
necker δ response of the discrete time filter. Its name is derived from the
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x(t) ✲ ♠× ✲
x(t)p(t)

h ✲ y(t)

✻

p(t) =
∑
k∈T δ(t− k)

Figure A.5: Sampled Data System

fact that hk is the output of the linear filter at time k when a Kronecker
delta function is input at time zero. It is also sometimes referred to as the
“discrete time impulse response” or the “unit pulse response.” If only a
finite number of the hk are nonzero, then the filter is sometimes referred
to as an FIR (finite impulse response) filter. If a filter is not an FIR filter,
then it is an IIR (infinite impulse response) filter.

If {hk} and {xk} are both absolutely summable,
∑

k

|hk| <∞ ,
∑

k

|xk| <∞ , (A.30)

then their discrete Fourier transforms exist:

H(f) =
∑

k

hke
−j2πkf , X(f) =

∑

k

xke
−j2πkf . (A.31)

Discrete time filters satisfying (A.30) are said to be stable. H(f) is called
the filter transfer function. The output transform is given by

Y (f) = H(f)X(f) . (A.32)

The example of Figure A.4 applies for discrete time as well as continuous
time.

For convenience and brevity, we shall occasionally use a general notation
F to denote both the discrete and continuous Fourier transforms; that is,

F(x) =






∫

T
x(t)e−j2πftdt , T continuous,

∑

k∈T
xke

−j2πfk , T discrete,
(A.33)

A more general discrete time linear system is described by a difference
equation of the form

∑

k

akyn−k =
∑

i

bixn−k . (A.34)
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Observe that the convolution of (A.29) is a special case of the above where
only one of the ak is not zero. Observe also that the difference equation
(A.34) is a discrete time analog of the differential equation (A.28). As
in that case, to describe an output completely one has to specify initial
conditions.

A continuous time or discrete time filter is said to be causal if the pulse
response or impulse response is zero for negative time; that is, if a discrete
time pulse response hk satisfies hk = 0 for k < 0 or a continuous time
impulse response h(t) satisfies h(t) = 0 for t < 0.

A.6 Problems

1. Use the first seven relations to prove relations (A.10), (A.13), and
(A.16).

2. Use relation (A.16) to obtain a partition {Gi; i = 1, 2, . . . , k} of Ω
from an arbitrary finite class of collectively exhaustive sets {Fi; i =
1, 2, . . . , k} with the property that Gi ⊂ Fi for all i and

i⋃

j=1

Gj =

i⋃

j=1

Fj all i .

Repeat for a countable collection of sets {Fi}. (You must prove that
the given collection of sets is indeed a partition.)

3. If {Fi} partitions Ω, show that {G ∩ Fi} partitions G.

4. Show that F ⊂ G implies that F ∩G = F, F ∪G = G, and Gc ⊂ F c.

5. Show that if F and G are disjoint, then F ⊂ Gc.

6. Show that F ∩G = (F ∪G)− (F∆G).

7. Let Fr = [0, 1/r), r ∈ (0, 1]. Find
⋃

r∈(0,1]
Fr and

⋂

r∈(0,1]
Fr.

8. Prove the countably infinite version of DeMorgan’s “laws.” For ex-
ample, given a sequence of sets Fi; i = 1, 2, . . . , then

∞⋂

i=1

Fi =

( ∞⋃

i=1

F ci

)c
.
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9. Define the subsets of the real line

Fn =

{
r : |r| > 1

n

}
,

and
F = {0} .

Show that

F c =

∞⋃

n=1

Fn .

10. Let Fi, i = 1, 2, . . . be a countable sequence of “nested” closed in-
tervals whose length is not zero, but tends to zero; i.e., for every i,
Fi = [ai, bi] ⊂ Fi−1 ⊂ Fi−2 . . . and bi − ai → 0 and i→∞. What are

the points in

∞⋂

i=1

Fi?

11. Prove that the interval [0, 1] cannot be put into one-to-one correspon-
dence with the set of integers as follows: Suppose that there is such
a correspondence so that x1, x2, x3, · · · is a listing of all numbers in
[0, 1]. Use Problem 10 to construct a set that consists of a point not
in this listing. This contradiction proves the statement.

12. Show that inverse images preserve set theoretic operations, that is,
given f : Ω→ A and sets F and G in A, then

f−1(F c) = (f−1(F ))c .

f−1(F ∪G) = f−1(F ) ∪ f−1(G) ,

and
f−1(F ∩G) = f−1(F ) ∩ f−1(G) .

If {Fi, i ∈ I} is an indexed family of subsets of A that partitions A,
show that {f−1(Fi); i ∈ I} is a partition of Ω. Do images preserve
set theoretic operations in general? (Prove that they do or provide a
counterexample.)

13. An experiment consists of rolling two four-sided dice (each having
faces labeled 1, 2, 3, 4) on a glass table. Depict the space Ω of
possible outcomes. Define two functions on Ω: X1(ω) = the sum
of the two down faces and X2(ω) = the product of the two down
faces. Let A1 denote the range space of X1, A2 the range space of X2,
and A12 the range space of the vector-valued function X = (X1, X2),
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that is, X (ω) = (X1(ω), X2(ω)). Draw in both Ω and A12 the set

{ω : X1(ω) < X2(ω)}. The cartesian product

2∏

i=1

Ai of two sets is

defined as the collection of all pairs of elements, one from each set,
that is

2∏

i=1

Ai = {all a, b : a ∈ A1, b ∈ A2} .

Is it true above that A12 =

2∏

i=1

Ai?

14. Let Ω = [0, 1] and A be the set of all infinite binary vectors. Find
a one-to-one mapping from Ω to A, being careful to note that some
rational numbers have two infinite binary representations (e.g., 1/2 =
.1000 . . . = .0111 . . . in binary).

15. Can you find a one-to-one mapping from:

(a) [0, 1] to [0, 2)?

(b) [0, 1] to the unit square in two-dimensional Euclidean space.

(c) Z to Z+? When is it possible to find a one-to-one mapping from
one space to another?

16. Suppose that a voltage is measured that takes values in Ω = [0, 15].
The voltage is mapped into the finite space A = {0, 1, · · · , 15} for
transmission over a digital channel. A mapping of this type is called
a quantizer. What is the best mapping in the sense that the maximum
error is minimized?

17. Let A be as in Problem 16, i.e., the space of 16 messages which is
mapped into the space of 16 waveforms, B = {cosnt, n = 0, 1, · · · , 15; t ∈
[0, 2π]}. The selected waveform from B is transmitted on a waveform
channel, which adds noise; i.e., B is mapped into C = {set of all
possible waveforms {y(t) = cosnt + noise(t); t ∈ [0, 2π]}}. (This is a
random mapping in a sense that will be described in subsequent chap-
ters.) Find a good mapping from C into D = A. D is the decision
space and the mapping is called a decision rule. (In other words, how
would you perform this mapping knowing little of probability theory.
Your mapping should at least give the correct decision if the noise is
absent or small.)

18. Given a continuous time linear filter with impulse response h(t) given
by e−at for ≥ 0 and 0 for t < 0, where a is a positive constant, find
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the transfer function H(f) of the filter. Is the filter stable? What
happens if a = 0?

19. Given a discrete time linear filter with pulse response hk given by
rk for k ≥ 0 and 0 for k < 0, where r has magnitude strictly less
than 1, find the transfer function H(f). (Hint: Use the geometric
series formula.) Is the filter stable? What happens if r = 1? Assume
that |r| < 1. Suppose that the input xk = 1 for all nonnegative k
and xk = 0 for all negative k is put into the filter. Find a simple
expression for the output as a function of time. Does the transform
of the output exist?

20. A continuous time system is described by the following relation: Given
an input x = {x(t); t ∈ ℜ} is defined for each t by

y(t) = (a0 + a1x(t)) cos(2πf0t+ θ) ,

where a0, a1, f0, and θ are fixed parameters. (This system is called
an amplitude modulation (AM) system.) Under what conditions on
the parameters is this system linear? Is it time-invariant?

21. Suppose that x = {x(t); t ∈ R}, where R = (−∞,∞) is the real line,
is a continuous time signal defined by

x(t) =

{
1 |t| ≤ T

0 otherwise,

where T > 0 is a fixed parameter, is put into a linear, time-invariant
(LTI) filter described by an impulse response h = {h(t); t ∈ R},
where

h(t) =

{
e−t t ≥ 0

0 otherwise.

(a) Find the Fourier transform X of x, i.e.,

X(f) =

∫ ∞

−∞
x(t)e−j2πft dt; f ∈ R,

where j =
√
−1. Find the Fourier transform H of h.

(b) Find y, the output signal of the LTI filter, and its Fourier trans-
form Y .
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22. Suppose that x = {xn; n ∈ Z}, where Z is the set of all integers
{. . . ,−2,−1, 0, 1, 2, . . . }, is a discrete time signal defined by

xn =

{
rn n ≥ 0

0 otherwise,

where r is a fixed parameter satisfying |r| < 1, is put into a linear,
time-invariant (LTI) filter described by a Kronecker delta response
h = {hn; n ∈ Z}, where

hn =

{
1 n = 0, 1, . . . , N − 1

0 otherwise,

where N > 0 is a fixed integer. This filter is sometimes called a “comb
filter.” Note that the Kroncker delta response is the response to the
filter when the input is δn, the Kroncker delta (defined as 1 for n = 0
and zero otherwise).

(a) Find the (discrete-time) Fourier transform X of x, i.e.,

X(f) =

∞∑

n=−∞
xne

−j2πfn ; f ∈ (−1/2, 1/2).

Find the Fourier transform H of h.

(b) Find y, the output signal of the LTI filter, and its Fourier trans-
form Y .

23. Look up or derive the formula for the sum of a geometric progression

n∑

k=0

rk.

Prove that the formula is true. Repeat for the sum

∞∑

k=0

rk

under the assumption that |r| < 1.

24. Evaluate the following integrals:

(a) ∫ ∫

x,y:0≤x,y≤2;
√
(x−2)2+(y−2)2≤1

dx dy
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(b) ∫ ∞

0

dx

∫ x

0

dye−3y

25. Evaluate the following integrals:

(a) ∫ ∫

x,y:|x|+|y|≤r
dx dy

(b) ∫ ∞

0

dx

∫ ∞

x

dye−y

(c) ∫ ∫

x,y:0≤x2≤y≤1
dx dy
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Appendix B

Sums and Integrals

In this appendix a few useful definitions and results are gathered for refer-
ence.

B.1 Summation

The sum of consecutive integers.

n∑

k=1

k =
n(n+ 1)

2
, (B.1)

Proof: The result is easily proved by induction, which requires demonstrat-
ing the truth of the formula for n = 1 (which is obvious) and showing
that if the formula is true for any positive integer n, then it must also be
true for n + 1. This follows since if Sn =

∑n
k=1 k and we assume that

Sn = n(n+ 1)/2, then necessarily

Sn+1 = Sn + (n+ 1)

= (n+ 1)(
n

2
+ 1)

=
(n+ 1)(n+ 2)

2
,

proving the claim.

The sum of consecutive squares of integers.

n∑

k=1

k2 =
1

3
n3 +

1

2
n2 +

1

6
n, (B.2)

417
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The sum can also be expressed as

n∑

k=1

k2 =
(2n+ 1)(n+ 1)n

6
.

Proof: This can also be proved by induction, but for practice we note
another approach. Just as in solving differential or difference equations,
one can guess a general form of solution and solve for unknowns. Since
summing k up to n had a second order solution in n, one might suspect
that solving for a sum up to n of squares of k would have a third order
solution in n, that is, a solution of the form f(n) = an3 + bn2 + cn+ d for
some real numbers a, b, c, d. Assume for the moment that this is the case,
then if f(n) =

∑n
k=1 k2, clearly n2 = f(n) − f(n − 1) and hence with a

little algebra

n2 = an3 + bn2 + cn+ d− a(n− 1)3 + b(n− 1)2 + c(n− 1) + d

= 3an2 + (2b− 3a)n+ (a− b+ c).

This can only be true for all n hover if 3a = 1 so that a = 1/3, if 2b−3a = 0
so that b = 3a/2 = 1/2, and if a− b+ c = 0 so that c = b− a = 1/6. This
leaves d, but the initial condition that f(1) = 1 implies d = 0.

The geometric progression
Given a complex constant a,

n−1∑

k=0

ak =
1− an

1− a
, (B.3)

and if |a| < 1 this sum is convergent and

∞∑

k=0

ak =
1

1− a
. (B.4)

Proof: There are, in fact, many ways to prove this result. Perhaps the
simplest is to define the sum with n terms Sn =

∑n−1
k=0 ak and observe that

(1− a)Sn =

n−1∑

k=0

ak − a

n−1∑

k=0

ak

=

n−1∑

k=0

ak −
n∑

k=1

ak

= 1− an,
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proving (B.3). Other methods of proof include induction and solving the
difference equation Sn = Sn−1+ an−1. Proving the finite n result gives the
infinite sum since if |a| < 1,

∞∑

k=0

ak = lim
n→∞

Sn =
1

1− a
. (B.5)

For the reader who might be rusty with limiting arguments, this follows
since

|Sn −
1

1− a
| = | an

1− a
| = |a|n

|1− a| → 0

as n→∞ since by assumption |a| < 1.
First moment of the geometric progression
Given q ∈ (0, 1),

∞∑

k=0

kqk−1 =
1

(1− q)2
. (B.6)

Proof: Since kqk−1 =
d

dq
qk and since we can interchange differentiation

and summation,

∞∑

k=0

kqk−1 =
d

dq

∞∑

k=0

qk =
d

dq
(1− q)−1 ,

where we have used the geometric series sum formula.
Second moment of the geometric progression

Given q ∈ (0, 1),

∞∑

k=0

k2qk−1 =
2

(1− q)3
+

1

(1− q)2
. (B.7)

Take a second derivative of a geometric progression to find

d2

dq2

∞∑

k=0

qk =

∞∑

k=0

k(k − 1)qk−2

=
1

q

∞∑

k=0

k(k − 1)qk−1

=
1

q

∞∑

k=0

k2qk−1 − 1

q

∞∑

k=0

kqk−1

=
1

q

∞∑

k=0

k2qk−1 − 1

(1− q)2
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and
d2

dq2

∞∑

k=0

qk =
2

(1− q)3

so that
∞∑

k=0

k2qk−1 =
2

(1− q)3
+

1

(1− q)2
,

proving the claim.

B.2 ⋆Double Sums

The following lemma provides a useful simplification of a double summation
that crops up when considering sample averages and laws of large numbers.

Lemma B.1 Given a sequence {an},

N−1∑

k=0

N−1∑

l=0

ak−l =
N−1∑

n=−N+1
(N − |n|)an.

Proof: This result can be thought in terms of summing the entries of
a matrix A = {Ak,l; k, l ∈ ZN} which has the property that all elements
along any diagonal are equal, i.e., Ak,l = ak−l for some sequence a. (As
mentioned in the text, a matrix of this type is called a Toeplitz matrix. To
sum up all of the elements in the matrix note that the main diagonal has
N equal values of a0, the next diagonal up has N − 1 values of a1, and so
on with the nth diagonal having N − n equal values of an. Note there is
only one element aN−1 in the top diagonal.

The next result is a limiting result for sums of the type considered in
the previous lemma.

Lemma B.2 Suppose that {an; n ∈ Z} is an absolutely summable se-
quence, i.e., that

∞∑

n=−∞
|an| <∞.

Then

lim
N→∞

N−1∑

n=−N+1
(1− |n|

N
)an =

∞∑

n=−∞
an.

Comment: The limit should be believable since the multiplier in the
summand tends to 1 for each fixed n as N →∞.
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Proof: Absolute summability implies that the infinite sum exists and

∞∑

n=−∞
an = lim

N→∞

N−1∑

n=−N+1
an

so the result will follow if we show that

lim
N→∞

N−1∑

n=−N+1

|n|
N

an = 0.

Since the sequence is absolutely summable, given an arbitrarily small ǫ > 0
we can choose an N0 large enough to ensure that for any N ≥ N0 we have

∑

n:|n|≥N
|an| < ǫ.

For any N ≥ N0 we can then write

|
N−1∑

n=−N+1

|n|
N

an| ≤
N−1∑

n=−N+1

|n|
N
|an|

=
∑

n:|n|≤N0−1

|n|
N
|an|+

∑

n:N0≤|n|≤N−1

|n|
N
|an|

≤
∑

n:|n|≤N0−1

|n|
N
|an|+

∑

n:|n|≥N0

|an|

≤
∑

n:|n|≤N0−1

|n|
N
|an|+ ǫ.

Letting N →∞ the remaining term can be made arbitrarily small, proving
the result.

B.3 Integration

A basic integral in calculus and engineering is the simple integral of an
exponential, which corresponds to the sum of a “discrete time exponential,”
a geometric progression. This integral is most easily stated as

∫ ∞

0

e−r dr = 1. (B.8)
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If α > 0, then making a linear change of variables as r = αx or x = r/α
implies that dr = αdx and hence

∫ ∞

0

e−αx dx =
1

α
. (B.9)

Integrals of the form ∫ ∞

0

xke−αx dx

can be evaluated by parts, or by using the same trick that worked for the
geometric progression. Take the kth derivative of both sides of B.9 with
respect to α:

dk

dαk

∫ ∞

0

e−αx dx =
dk

dαk
α−1

∫ ∞

0

(−x)ke−αx dx = (−1)kk!α−k−1

∫ ∞

0

xke−αx dx = k!α−k−1. (B.10)

Computations using a Gaussian pdf follow from the basic integral

I =

∫ ∞

−∞
e−x

2

dx.

This integral is a bit trickier than the others considered. It can of course
be found in a book of tables, but again a proof is provided to make it seem
a bit less mysterious. The proof is not difficult, but the initial step may
appear devious. Simplify things by considering the integral

I

2
=

∫ ∞

0

e−x
2

dx

and note that this one dimensional integral can also be written as a two
dimensional integral:

I

2
=

√

(

∫ ∞

0

e−x2 dx)2

=

√

(

∫ ∞

0

e−x2 dx)(

∫ ∞

0

e−y2 dy)

=

√∫ ∞

0

∫ ∞

0

e−(x2+y2 dx dy.
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This subterfuge may appear to actually complicate matters, but it allows
us to change to polar coordinates using r =

√
x2 + y2 x = r cos(θ), y =

r sin(θ), and dx dy = rdr dθ to obtain

(
I

2
)2 =

∫ π/2

0

∫ ∞

0

re−r
2

dr dθ

=
π

2

∫ ∞

0

re−r
2

dr.

Again this might appear to have complicated matters by introducing the
extra factor of r, but now a change of variables of u = r2 or r =

√
u implies

that dr = du/2
√

u so that

(
I

2
)2 =

π

2

∫ ∞

0

1

2
e−u du =

π

4
,

using (B.8). Thus

∫ ∞

−∞
e−x

2

dx =
√

π. (B.11)

This is commonly expressed by changing variables to r/
√
2 = x so that

dx = dr/sqrt2 and the result becomes

∫ ∞

−∞
e−

r2

2 dr =
√
2π, (B.12)

from which it follows that a 0 mean unit variance Gaussin pdf has unit
integral. The general case is handled by a change of variables. In the
following integral change variables by defining r = (x−m)/σ so that dx =
σdr

∫ ∞

−∞

1√
2σ2

e−
(x−m)2

2σ2 dx =
1√
2σ2

∫ ∞

−∞
e−r2 σdr (B.13)

=

√
2π√
2π

(B.14)

= 1. (B.15)

B.4 ⋆The Lebesgue Integral

This section provides a brief introduction to the Lebesgue integral, the cal-
culus that underlies rigorous probability theory. In the authors view the
Lebesgue integral is not nearly as mysterious as it is sometimes suggested in
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the engineering literature and that, in fact, it has a very intuitive engineer-
ing interpretation and avoids the rather clumsy limits required to study the
Riemann integral. We here present a few basic definitions and properties
without proof. Details can be found in most any book on measure theory
or integration and in many books on advanced probability, including the
first author’s Probability, Random Processes, and Ergodic Properties[22].

Suppose that (Ω,F , P ) is a probability space as defined in chapter 2.
For simplicity we focus on real-valued random variables, the extensions to
complex random variables and more general random vectors are straight-
forward. The integral or expectation of a random variable f defined on this
probability space is defined in a sequence of steps treating random variables
of increasing generality.

First suppose that f takes on only a finite number of values, for example

f(x) =
N∑

i=1

ai1Fi(x); x ∈ ℜ, (B.16)

where it is assumed that Fi ∈ F for all i. A discrete random variable of
this form is sometimes called a simple function. The (Lebesgue) integral of
f or expectation of f is then defined by

∫
f dP =

N∑

i=1

aiP (Fi). (B.17)

The integral is also written as
∫

f(x) dP (x) and is also denoted by E(f).
It is easy to see that this definition reduces to the Riemann integral.

The definition is next generalized to all nonnegative random variables
by means of a sequences of quantizers which map the random variable into
an ever better approximation with only a finite possible number of outputs.
Define for each real r and each positive integer n the quantizer

qn(r) =






n r ≥ n

(k − 1)2−n (k − 1)2−n ≤ r < k2−n, k = 1, 2, . . . , n2n

−(k − 1)2−n −(k − 1)2−n > r ≥ k2−n, k = 1, 2, . . . , n2n

−n r < −n

(B.18)

The sequence of quantizers is asymptotically accurate in the sense that

f(x) = lim
n→∞

qn(f(x)) (B.19)
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It can be shown without much effort that thanks to the specific construc-
tion the sequence qn(x) is monotone increasing up to x. Given a general
nonnegative random variable f , the integral is defined by

∫
f dP = lim

n→∞

∫
qn(f) dP, (B.20)

that is, as the limit of the simple integrals of the asymptotically accurate
sequence of quantized versions of the random variable. The monotonicity
of the quantizer sequence is enough to prove that the limit is well defined.
Thus the expectation or integral of any nonnegative random variable exists,
but it might be infinite.

For an arbitrary random variable f , the integral is defined by breaking f
up into its positive and negative parts, defined by f+(x) = max(f(x), 0) ≥ 0
and f−(x) = −min(f(x), 0) so that f(x) = f+(x) − f−(x) ≥ 0, and then
defining

∫
f dP =

∫
f+ dP −

∫
f0 − dP, (B.21)

provided that this does not have the indeterminate form ∞−∞, in which
case the integral does not exist.

This is one of several equivalent ways to define the Lebesgue integral. A
random variable f is said to be integrable or P -integrable if E(f) =

∫
f dP

exists and is finite. It can be shown that if f is integrable, then
∫

f dP = lim
n→∞

∫
qn(f) dP, (B.22)

that is, the form used to define the integral for nonnegative f gives the
integral for integrable f .

A highly desirable property of integrals and one often taken for granted
in engineering applications is that limits and integrations can be inter-
changed, e.g., if we are told we have a sequence of random variables fn; n =
1, 2, 3, . . . which converge to a random variable f with probability 1, that
is, F = {ω : limn→∞ fn(ω) = f(ω)} is an event with P (F ) = 1, then

lim
n→∞

∫
fn dP

(?)
=

∫
f dP. (B.23)

Unfortunately this is not true in general and the Riemann integral in par-
ticular is poor when it comes to results along this line. There are two very
useful such convergence theorems, however, for the Lebesgue integral, which
we state next without proof. The first shows that this desirable property
holds when the random variables are monotone, the second when the are
dominated by an integrable random variable.
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Theorem B.1 If fn; n = 1, 2, . . . is a sequence of nonnegative random
variables that is monotone increasing up to f (with probability 1) and fn ≥ 0
(with probability 1) for all n, then

lim
n→∞

∫
fn dP =

∫
f dP. (B.24)

Theorem B.2 If fn; n = 1, 2, . . . is a sequence of random variables that
converges to f (with probability 1) and if there is an integrable function g
which dominates the sequence in the sense that and |fn| ≤ g (with proba-
bility 1) for all n, then

lim
n→∞

∫
fn dP =

∫
f dP. (B.25)



Appendix C

Common Univariate
Distributions

Binary pmf. Ω = {0, 1}; p(0) = 1 − p, p(1) = p, where p is a parameter
in (0, 1).
mean: p
variance: p(1− p)

Uniform pmf. Ω = Zn = {0, 1, . . . , n− 1} and p(k) = 1/n; k ∈ Zn.
mean: n+ 1/over2

variance: (2n+1)(n+1)n6 − (n+ 1/over2)
2
.

Binomial pmf. Ω = Zn+1 = {0, 1, . . . , n} and

p(k) =

(
n
k

)
pk(1− p)n−k; k ∈ Zn+1 ,

where (
n
k

)
=

n!

k!(n− k)!

is the binomial coefficient.
mean: np
variance: np(1− p)

Geometric pmf. Ω = {1, 2, 3, . . . } and p(k) = (1 − p)k−1p; k =
1, 2, . . . , where p ∈ (0, 1) is a parameter.
mean: 1p

427
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variance: 2
p2

Poisson pmf. Ω = Z+ = {0, 1, 2, . . . } and p(k) = (λke−λ)/k!, where λ

is a parameter in (0,∞). (Keep in mind that 0!
∆
= 1.)

mean: λ
variance: λ

Uniform pdf. Given b > a, f(r) = 1/(b− a) for r ∈ [a, b].
mean: b−a2
variance: (b−a)

2

12

Exponential pdf. f(r) = λe−λr; r ≥ 0.
mean: λ
variance: λ2

Doubly exponential (or Laplacian) pdf. f(r) =
λ

2
e−λ|r|; r ∈ ℜ.

mean: 0
variance: 2λ2

Gaussian (or Normal) pdf. f(r) = (2πσ2)−1/2 exp(−(r−m)
2

2σ2 ); r ∈ ℜ.
Since the density is completely described by two parameters: the mean m
and variance σ2 > 0, it is common to denote it by N (m,σ2).
mean: m
variance: σ2

Gamma pdf f(r) = 1
abΓ(b)

rb−1e−
r
a ; r > 0, where a > 0 and b > 0,

where

Γ(b) =

∫ ∞

0

e−rrb−1 dr.

mean: ab
variance: ab

Logistic pdf. f(r) = er/λ

λ(1+er/λ)2
; r ∈ ℜ, where λ > 0.

mean: 0
variance: λ2π2/3

Weibull pdf f(r) = b
ab r

b−1e−(
r
a )

b

; r > 0, where a > 0 and b > 0. If
b = 2, this is called a Rayleigh distribution.
mean: aΓ(1 + 1

b )
variance: a2(Γ(1 + 2

b )− Γ2(1 + 1
b ))



Appendix D

Supplementary Reading

In this appendix we provide some suggestions for supplementary reading.
Our goal is to provide some leads for the reader interested in pursuing the
topics treated in more depth. Admittedly we only scratch the surface of the
large literature on probability and random processes. The books referred
to are selected based on our own tastes — they are books from which we
have learned and from which we have drawn useful results, techniques, and
ideas for our own research.

A good history of the theory of probability may be found in Maistrov [39],
who details the development of probability theory from its gambling origins
through its combinatorial and relative frequency theories to the develop-
ment by Kolmogorov of its rigorous axiomatic foundations. A somewhat
less serious historical development of elementary probability is given by Huff
and Geis [30]. Several early papers on the application of probability are
given in Newman [42]. Of particular interest are the papers by Bernoulli on
the law of large numbers and the paper by George Bernard Shaw comparing
the vice of gambling and the virtue of insurance.

An excellent general treatment of the theory of probability and random
processes may be found in Ash [1], along with treatments of real analysis,
functional analysis, and measure and integration theory. Ash is a former
engineer turned mathematician, and his book is one of the best available
for someone with an engineering background who wishes to pursue the
mathematics beyond the level treated in this book. The only subject of
this book completely absent in Ash is the second-order theory and linear
systems material of Appendix 5 and the related examples of chapter 6.

Other good general texts on probability and random processes are those
of Breiman [6] and Chung [9]. These books are mathematical treatments
that are relatively accessible to engineers. All three books are a useful addi-

429
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tion to any library, and most of the mathematical details avoided here can
be found in these texts. Wong’s book [58] provides a mathematical treat-
ment for engineers with a philosophy similar to ours but with an emphasis
on continuous time rather than discrete time random processes.

Another general text of interest is the inexpensive paperback book by
Sveshnikov [53], which contains a wealth of problems in most of the topics
covered here as well as many others. While the notation and viewpoint often
differ, this book is a useful source of applications, formulas, and general
tidbits.

The set theory preliminaries of chapter A can be found in most any book
on probability elementary or otherwise or in most any book on elementary
real analysis. In addition to the general books mentioned, more detailed
treatments can be found in books on mathematical analysis such as those
by Rudin [50], Royden [48], and Simmons [51]. These references also con-
tain discussions of functions or mappings. A less mathematical text that
treats set theory and provides an excellent introduction to basic applied
probability is Drake [12].

The linear systems fundamentals are typical of most electrical engineer-
ing linear systems courses. Good developments may be found in Chen [7],
Kailath [31], Bose and Stevens [4], and Papoulis [44], among others. A
treatment emphasizing discrete time may be found in Stieglitz [52]. A min-
imal treatment of the linear systems aspects used in this book may also be
found in Gray and Goodman [23].

Detailed treatments of Fourier techniques may be found in Bracewell [5],
Papoulis [43], Gray and Goodman [23], and the early classic Wiener [55].
This background is useful both for the system theory applications and for
the manipulation of characteristic functions of moment-generating func-
tions of probability distributions.

Although the development of probability theory is self-contained, ele-
mentary probability is best viewed as a prerequisite. An introductory text
on the subject for review (or for the brave attempting the course with-
out such experience) can be a useful source of intuition, applications, and
practice of some of the basic ideas. Two books that admirably fill this func-
tion are Drake [12] and the classic introductory text by two of the primary
contributors to the early development of probability theory, Gnedenko and
Khinchin [20]. The more complete text by Gnedenko [19] also provides a
useful backup text. A virtual encyclopedia of basic probability, including
a wealth of examples, distributions, and computations, may be found in
Feller [15].

The axiomatic foundations of probability theory presented in chapter
2 were developed by Kolmogorov and first published in 1933. (See the
English translation [34].) Although not the only theory of probability (see,
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e.g., Fine [16] for a survey of other approaches), it has become the standard
approach to the analysis of random systems. The general references cited
previously provide good additional material for the basic development of
probability spaces, measures, Lebesgue integration, and expectation. The
reader interested in probing more deeply into the mathematics is referred
to the classics by Halmos [27] and Loeve [37].

As observed in chapter 4, instead of beginning with axioms of probabil-
ity and deriving the properties of expectation, one can go the other way and
begin with axioms of expectation or integration and derive the properties of
probability. Some texts treat measure and integration theory in this order,
e.g., Asplund and Bungart [2]. A nice paperback book treating probabil-
ity and random processes from this viewpoint in a manner accessible for
engineers is that by Whittle [54].

A detailed and quite general development of the Kolmogorov extension
theorem of chapter 3 may be found in Parthasarathy [45], who treats prob-
ability theory for general metric spaces instead of just Euclidean spaces.
The mathematical level of this book is high, though, and the going can be
rough. It is useful, however, as a reference for very general results of this
variety and for detailed statements of the theorem. A treatment may also
be found in Gray [22].

Good background reading for chapters 4 and 6 are the book on conver-
gence of random variables by Lukacs [38] and the book on ergodic theory
by Billingsley [3]. The Billingsley book is a real gem for engineers inter-
ested in learning more about the varieties and proofs of ergodic theorems
for discrete time processes. The book also provides nice tutorial reviews
on advanced conditional probability and a variety of other topics. Several
proofs are given for the mean and pointwise ergodic theorems. Most are
accessible given a knowledge of the material of this book plus a knowledge
of the projection theorem of Hilbert space theory. The book also provides
insight into applications of the general formulation of ergodic theory to
areas other than random process theory. Another nice survey of ergodic
theory is that of Halmos [28].

As discussed in chapter 6, stationarity and ergodicity are sufficient but
not necessary conditions for the ergodic theorem to hold, that is, for sample
averages to converge. A natural question, then, is what conditions are both
necessary and sufficient. The answer is know for discrete time processes in
the following sense: A process is said to be asymptotically mean stationary
or a.m.s. if is process distribution, say m, is such that the limits

lim
n→∞

1

n

n−1∑

i=0

m(T−iF )

exist for all process events F , where T is the left-shift operation. The limits
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trivially exist if the process is stationary. They also exist when they die
out with time and in a variety of other cases. It is known that a process
will have an ergodic theorem in the sense of having all sample averages of
bounded measurements converge if any only if the process is a.m.s. [24, 22].
The sample averages of an a.m.s. process will converge to constants with
probability one if and only the process is also ergodic.

Second-order theory of random processes and its application to filtering
and estimation form a bread-and-butter topic for engineering applications
and are the subject of numerous good books such as Grenander and Rosen-
blatt [25], Cramér and Leadbetter [10], Rozanov [49], Yaglom [59], and
Lipster and Shiryayev [36]. It was pointed out that the theory of weakly
stationary processes is intimately related to the theory of Toeplitz forms
and Toeplitz matrices. An excellent treatment of the topic and its applica-
tions to random processes is given by Grenander and Szego [26]. A more
informal engineering-oriented treatment of Toeplitz matrices can be found
in Gray [21]

It is emphasized in our book that the focus is on discrete time random
processes because of their simplicity. While many of the basic ideas gen-
eralize, the details can become far more complicated, and much additional
mathematical power becomes required. For example, the simple product
sigma fields used here to generate process events are not sufficiently large
to be useful. A simple integral of the process over a finite time window
will not be measurable with respect to the resulting event spaces. Most
of the added difficulties are technical — that is, the natural analogs to
the discrete time results may hold, but the technical details of their proof
can be far more complicated. Many excellent texts emphasizing continuous
time random processes are available, but most require a solid foundation
in functional analysis and in measure and integration theory. Perhaps the
most famous and complete treatment is that of Doob [11]. Several of the
references for second-order theory focus on continuous time random pro-
cesses, as do Gikhman and Skorokhod [18], Hida [29], and McKean [40].
Lamperti [35] presents a clear summary of many facets of continuous time
and discrete time random processes, including second-order theory, ergodic
theorems, and prediction theory.

In chapter 5 we briefly sketched some basic ideas of Wiener and Kalman
filters as an application of second-order theory. A detailed general devel-
opment of the fundamentals and recent results in this area may be found
in Kailath [32] and the references listed therein. In particular, the classic
development of Wiener [56] is an excellent treatment of the fundamentals
of Wiener filtering.

Of the menagerie of processes considered in the book, most may be
found in the various references already mentioned. The communication
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modulation examples may also be found in Gagliardi [17], among others.
Compound Poisson processes are treated in detail in Parzen [46]. There
is an extensive literature on Markov processes and their applications, as
examples we cite Kemeny and Snell [33], Chung [8], Rosenblatt [47], and
Dynkin [14].

Perhaps the most notable beast absent from our menagerie of processes
is the class of Martingales. Had the book and the target class length been
longer, Martingales would have been the next topic to be added. They
were not included simply because we felt the current content already filled
a semester, and we did not want to expand the book past that goal. An
excellent mathematical treatment for the discrete time case may be found
in Neveu [41], and a readable description of the applications of Martingale
theory to gambling may be found in the classic by Dubins and Savage [13].
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