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Preface

The origins of this book lie in our earlier book Random Processes: A Math-
ematical Approach for Engineers, Prentice Hall, 1986. This book began as
a second edition to the earlier book and the basic goal remains unchanged
— to introduce the fundamental ideas and mechanics of random processes
to engineers in a way that accurately reflects the underlying mathematics,
but does not require an extensive mathematical background and does not
belabor detailed general proofs when simple cases suffice to get the basic
ideas across. In the thirteen years since the original book was published,
however, numerous improvements in the presentation of the material have
been suggested by colleagues, students, teaching assistants, and by our own
teaching experience. The emphasis of the class shifted increasingly towards
examples and a viewpoint that better reflected the course title: An Intro-
duction to Statistical Signal Processing. Much of the basic content of this
course and of the fundamentals of random processes can be viewed as the
analysis of statistical signal processing systems: typically one is given a
probabilistic description for one random object, which can be considered
as an input signal. An operation or mapping or filtering is applied to the
input signal (signal processing) to produce a new random object, the out-
put signal. Fundamental issues include the nature of the basic probabilistic
description and the derivation of the probabilistic description of the output
signal given that of the input signal and a description of the particular oper-
ation performed. A perusal of the literature in statistical signal processing,
communications, control, image and video processing, speech and audio
processing, medical signal processing, geophysical signal processing, and
classical statistical areas of time series analysis, classification and regres-
sion, and pattern recognition show a wide variety of probabilistic models for
input processes and for operations on those processes, where the operations
might be deterministic or random, natural or artificial, linear or nonlinear,
digital or analog, or beneficial or harmful. An introductory course focuses
on the fundamentals underlying the analysis of such systems: the theories
of probability, random processes, systems, and signal processing.

xi



xii PREFACE

When the original book went out of print, the time seemed ripe to
convert the manuscript from the prehistoric troff to WTEX and to undertake
a serious revision of the book in the process. As the revision became more
extensive, the title changed to match the course name and content. We
reprint the original preface to provide some of the original motivation for
the book, and then close this preface with a description of the goals sought
during the revisions.

Preface to Random Processes: An Introduction for
Engineers

Nothing in nature is random ... A thing appears random
only through the incompleteness of our knowledge. — Spinoza,
Ethics I

I do not believe that God rolls dice. — attributed to Einstein

Laplace argued to the effect that given complete knowledge of the physics
of an experiment, the outcome must always be predictable. This metaphys-
ical argument must be tempered with several facts. The relevant param-
eters may not be measurable with sufficient precision due to mechanical
or theoretical limits. For example, the uncertainty principle prevents the
simultaneous accurate knowledge of both position and momentum. The
deterministic functions may be too complex to compute in finite time. The
computer itself may make errors due to power failures, lightning, or the
general perfidy of inanimate objects. The experiment could take place in
a remote location with the parameters unknown to the observer; for ex-
ample, in a communication link, the transmitted message is unknown a
priori, for if it were not, there would be no need for communication. The
results of the experiment could be reported by an unreliable witness —
either incompetent or dishonest. For these and other reasons, it is useful
to have a theory for the analysis and synthesis of processes that behave in
a random or unpredictable manner. The goal is to construct mathematical
models that lead to reasonably accurate prediction of the long-term average
behavior of random processes. The theory should produce good estimates
of the average behavior of real processes and thereby correct theoretical
derivations with measurable results.

In this book we attempt a development of the basic theory and ap-
plications of random processes that uses the language and viewpoint of
rigorous mathematical treatments of the subject but which requires only a
typical bachelor’s degree level of electrical engineering education including
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elementary discrete and continuous time linear systems theory, elementary
probability, and transform theory and applications. Detailed proofs are
presented only when within the scope of this background. These simple
proofs, however, often provide the groundwork for “handwaving” justifi-
cations of more general and complicated results that are semi-rigorous in
that they can be made rigorous by the appropriate delta-epsilontics of real
analysis or measure theory. A primary goal of this approach is thus to use
intuitive arguments that accurately reflect the underlying mathematics and
which will hold up under scrutiny if the student continues to more advanced
courses. Another goal is to enable the student who might not continue to
more advanced courses to be able to read and generally follow the modern
literature on applications of random processes to information and commu-
nication theory, estimation and detection, control, signal processing, and
stochastic systems theory.

Revision

The most recent (summer 1999) revision fixed numerous typos reported
during the previous year and added quite a bit of material on jointly Gaus-
sian vectors in Chapters 3 and 4 and on minimum mean squared error
estimation of vectors in Chapter 4.

This revision is a work in progress. Revised versions will be made avail-
able through the World Wide Web page

http://www-isl.stanford.edu/ gray/sp.html .

The material is copyrighted by the authors, but is freely available to any
who wish to use it provided only that the contents of the entire text remain
intact and together. A copyright release form is available for printing the
book at the Web page. Comments, corrections, and suggestions should be
sent to rmgray@stanford.edu. Every effort will be made to fix typos and
take suggestions into an account on at least an annual basis.

I hope to put together a revised solutions manual when time permits,
but time has not permitted during the past year.



xiv PREFACE

Acknowledgements

We repeat our acknowledgements of the original book: to Stanford Univer-
sity and the University of Maryland for the environments in which the book
was written, to the John Simon Guggenheim Memorial Foundation for its
support of the first author, to the Stanford University Information Systems
Laboratory Industrial Affiliates Program which supported the computer
facilities used to compose this book, and to the generations of students
who suffered through the ever changing versions and provided a stream of
comments and corrections. Thanks are also due to Richard Blahut and
anonymous referees for their careful reading and commenting on the orig-
inal book, and to the many who have provided corrections and helpful
suggestions through the Internet since the revisions began being posted.
Particular thanks are due to Yariv Ephraim for his continuing thorough
and helpful editorial commentary.

Robert M. Gray
La Honda, California, summer 1999
Lee D. Davisson
Bonair, Lesser Antilles summer 1999



Glossary

{ } a collection of points satisfying some property, e.g., {r : r < a} is the
collection of all real numbers less than or equal to a value a

[ ] an interval of real points including the end points, e.g., for a < b
[a,b] = {r:a <r <b}. Called a closed interval.

) an interval of real points excluding the end points, e.g., for a < b

= {r :a < r < b}.Called an open interval. . Note this is empty if
(], [ ) denote intervals of real points including one endpoint and exclud-

ing the other, e.g., fora < b (a,b] = {r:a <r <b}, [a,b) = {r:a <r < b}.
() The empty set, the set that contains no points.

Q) The sample space or universal set, the set that contains all of the
points.

F Sigma-field or event space

P probability measure

Px distribution of a random variable or vector X

px probability mass function (pmf) of a random variable X
fx probability density function (pdf) of a random variable X

Fx cumulative distribution function (cdf) of a random variable X

XV
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E(X) expectation of a random variable X

Mx (ju) characteristic function of a random variable X
1p(z) indicator function of a set F

® Phi function (Eq. (2.78))

@ Complementary Phi function (Eq. (2.79))
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Chapter 1

Introduction

A random or stochastic process is a mathematical model for a phenomenon
that evolves in time in an unpredictable manner from the viewpoint of the
observer. The phenomenon may be a sequence of real-valued measurements
of voltage or temperature, a binary data stream from a computer, a mod-
ulated binary data stream from a modem, a sequence of coin tosses, the
daily Dow-Jones average, radiometer data or photographs from deep space
probes, a sequence of images from a cable television, or any of an infinite
number of possible sequences, waveforms, or signals of any imaginable type.
It may be unpredictable due to such effects as interference or noise in a com-
munication link or storage medium, or it may be an information-bearing
signal-deterministic from the viewpoint of an observer at the transmitter
but random to an observer at the receiver.

The theory of random processes quantifies the above notions so that
one can construct mathematical models of real phenomena that are both
tractable and meaningful in the sense of yielding useful predictions of fu-
ture behavior. Tractability is required in order for the engineer (or anyone
else) to be able to perform analyses and syntheses of random processes,
perhaps with the aid of computers. The “meaningful” requirement is that
the models provide a reasonably good approximation of the actual phe-
nomena. An oversimplified model may provide results and conclusions that
do not apply to the real phenomenon being modeled. An overcomplicated
one may constrain potential applications, render theory too difficult to be
useful, and strain available computational resources. Perhaps the most dis-
tinguishing characteristic between an average engineer and an outstanding
engineer is the ability to derive effective models providing a good balance
between complexity and accuracy.

Random processes usually occur in applications in the context of envi-
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ronments or systems which change the processes to produce other processes.
The intentional operation on a signal produced by one process, an “input
signal,” to produce a new signal, an “output signal,” is generally referred
to as signal processing, a topic easily illustrated by examples.

e A time varying voltage waveform is produced by a human speaking
into a microphone or telephone. This signal can be modeled by a
random process. This signal might be modulated for transmission,
it might be digitized and coded for transmission on a digital link,
noise in the digital link can cause errors in reconstructed bits, the
bits can then be used to reconstruct the original signal within some
fidelity. All of these operations on signals can be considered as signal
processing, although the name is most commonly used for the man-
made operations such as modulation, digitization, and coding, rather
than the natural possibly unavoidable changes such as the addition
of thermal noise or other changes out of our control.

e For very low bit rate digital speech communication applications, the
speech is sometimes converted into a model consisting of a simple
linear filter (called an autoregressive filter) and an input process. The
idea is that the parameters describing the model can be communicated
with fewer bits than can the original signal, but the receiver can
synthesize the human voice at the other end using the model so that
it sounds very much like the original signal.

e Signals including image data transmitted from remote spacecraft are
virtually buried in noise added to them on route and in the front
end amplifiers of the powerful receivers used to retrieve the signals.
By suitably preparing the signals prior to transmission, by suitable
filtering of the received signal plus noise, and by suitable decision or
estimation rules, high quality images have been transmitted through
this very poor channel.

e Signals produced by biomedical measuring devices can display spe-
cific behavior when a patient suddenly changes for the worse. Signal
processing systems can look for these changes and warn medical per-
sonnel when suspicious behavior occurs.

How are these signals characterized? If the signals are random, how
does one find stable behavior or structure to describe the processes? How
do operations on these signals change them? How can one use observations
based on random signals to make intelligent decisions regarding future be-
havior? All of these questions lead to aspects of the theory and application
of random processes.



Courses and texts on random processes usually fall into either of two
general and distinct categories. One category is the common engineering
approach, which involves fairly elementary probability theory, standard un-
dergraduate Riemann calculus, and a large dose of “cookbook” formulas —
often with insufficient attention paid to conditions under which the formu-
las are valid. The results are often justified by nonrigorous and occasionally
mathematically inaccurate handwaving or intuitive plausibility arguments
that may not reflect the actual underlying mathematical structure and may
not be supportable by a precise proof. While intuitive arguments can be
extremely valuable in providing insight into deep theoretical results, they
can be a handicap if they do not capture the essence of a rigorous proof.

A development of random processes that is insufficiently mathematical
leaves the student ill prepared to generalize the techniques and results when
faced with a real-world example not covered in the text. For example, if
one is faced with the problem of designing signal processing equipment for
predicting or communicating measurements being made for the first time
by a space probe, how does one construct a mathematical model for the
physical process that will be useful for analysis? If one encounters a process
that is neither stationary nor ergodic, what techniques still apply? Can the
law of large numbers still be used to construct a useful model?

An additional problem with an insufficiently mathematical development
is that it does not leave the student adequately prepared to read modern
literature such as the many Transactions of the IEEFE. The more advanced
mathematical language of recent work is increasingly used even in simple
cases because it is precise and universal and focuses on the structure com-
mon to all random processes. Even if an engineer is not directly involved
in research, knowledge of the current literature can often provide useful
ideas and techniques for tackling specific problems. Engineers unfamiliar
with basic concepts such as sigma-field and conditional expectation will find
many potentially valuable references shrouded in mystery.

The other category of courses and texts on random processes is the
typical mathematical approach, which requires an advanced mathemati-
cal background of real analysis, measure theory, and integration theory;
it involves precise and careful theorem statements and proofs, and it is
far more careful to specify precisely the conditions required for a result
to hold. Most engineers do not, however, have the required mathematical
background, and the extra care required in a completely rigorous develop-
ment severely limits the number of topics that can be covered in a typical
course — in particular, the applications that are so important to engineers
tend to be neglected. In addition, too much time can be spent with the
formal details, obscuring the often simple and elegant ideas behind a proof.
Often little, if any, physical motivation for the topics is given.
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This book attempts a compromise between the two approaches by giving
the basic, elementary theory and a profusion of examples in the language
and notation of the more advanced mathematical approaches. The intent
is to make the crucial concepts clear in the traditional elementary cases,
such as coin flipping, and thereby to emphasize the mathematical structure
of all random processes in the simplest possible context. The structure is
then further developed by numerous increasingly complex examples of ran-
dom processes that have proved useful in stochastic systems analysis. The
complicated examples are constructed from the simple examples by signal
processing, that is, by using a simple process as an input to a system whose
output is the more complicated process. This has the double advantage
of describing the action of the system, the actual signal processing, and
the interesting random process which is thereby produced. As one might
suspect, signal processing can be used to produce simple processes from
complicated ones.

Careful proofs are constructed only in elementary cases. For example,
the fundamental theorem of expectation is proved only for discrete random
variables, where it is proved simply by a change of variables in a sum.
The continuous analog is subsequently given without a careful proof, but
with the explanation that it is simply the integral analog of the summation
formula and hence can be viewed as a limiting form of the discrete result.
As another example, only weak laws of large numbers are proved in detail
in the mainstream of the text, but the stronger laws are at least stated and
they are discussed in some detail in starred sections.

By these means we strive to capture the spirit of important proofs with-
out undue tedium and to make plausible the required assumptions and con-
straints. This, in turn, should aid the student in determining when certain
tools do or do not apply and what additional tools might be necessary when
new generalizations are required.

A distinct aspect of the mathematical viewpoint is the “grand exper-
iment” view of random processes as being a probability measure on se-
quences (for discrete time) or waveforms (for continuous time) rather than
being an infinity of smaller experiments representing individual outcomes
(called random variables) that are somehow glued together. From this point
of view random variables are merely special cases of random processes. In
fact, the grand experiment viewpoint was popular in the early days of ap-
plications of random processes to systems and was called the “ensemble”
viewpoint in the work of Norbert Wiener and his students. By viewing the
random process as a whole instead of as a collection of pieces, many basic
ideas, such as stationarity and ergodicity, that characterize the dependence
on time of probabilistic descriptions and the relation between time averages
and probabilistic averages are much easier to define and study. This also



permits a more complete discussion of processes that violate such proba-
bilistic regularity requirements yet still have useful relations between time
and probabilistic averages.

Even though a student completing this book will not be able to fol-
low the details in the literature of many proofs of results involving random
processes, the basic results and their development and implications should
be accessible, and the most common examples of random processes and
classes of random processes should be familiar. In particular, the student
should be well equipped to follow the gist of most arguments in the vari-
ous Transactions of the IEFE dealing with random processes, including the
IEEFE Transactions on Signal Processing, IEEE Transactions on Image Pro-
cessing, IEEE Transactions on Speech and Audio Processing, IEEE Trans-
actions on Communications, IEEE Transactions on Control, and IFEEE
Transactions on Information Theory.

It also should be mentioned that the authors are electrical engineers
and, as such, have written this text with an electrical engineering flavor.
However, the required knowledge of classical electrical engineering is slight,
and engineers in other fields should be able to follow the material presented.

This book is intended to provide a one-quarter or one-semester course
that develops the basic ideas and language of the theory of random pro-
cesses and provides a rich collection of examples of commonly encountered
processes, properties, and calculations. Although in some cases these ex-
amples may seem somewhat artificial, they are chosen to illustrate the way
engineers should think about random processes and for simplicity and con-
ceptual content rather than to present the method of solution to some
particular application. Sections that can be skimmed or omitted for the
shorter one-quarter curriculum are marked with a star (x). Discrete time
processes are given more emphasis than in many texts because they are
simpler to handle and because they are of increasing practical importance
in and digital systems. For example, linear filter input/output relations are
carefully developed for discrete time and then the continuous time analogs
are obtained by replacing sums with integrals.

Most examples are developed by beginning with simple processes and
then filtering or modulating them to obtain more complicated processes.
This provides many examples of typical probabilistic computations and
output of operations on simple processes. Extra tools are introduced as
needed to develop properties of the examples.

The prerequisites for this book are elementary set theory, elementary
probability, and some familiarity with linear systems theory (Fourier anal-
ysis, convolution, discrete and continuous time linear filters, and transfer
functions). The elementary set theory and probability may be found, for ex-
ample, in the classic text by Al Drake [12]. The Fourier and linear systems
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material can by found, for example, in Gray and Goodman [23]. Although
some of these basic topics are reviewed in this book in appendix A, they are
considered prerequisite as the pace and density of material would likely be
overwhelming to someone not already familiar with the fundamental ideas
of probability such as probability mass and density functions (including the
more common named distributions), computing probabilities, derived dis-
tributions, random variables, and expectation. It has long been the authors’
experience that the students having the most difficulty with this material
are those with little or no experience with elementary probability.

Organization of the Book

Chapter 2 provides a careful development of the fundamental concept of
probability theory — a probability space or experiment. The notions of
sample space, event space, and probability measure are introduced, and
several examples are toured. Independence and elementary conditional
probability are developed in some detail. The ideas of signal processing
and of random variables are introduced briefly as functions or operations
on the output of an experiment. This in turn allows mention of the idea
of expectation at an early stage as a generalization of the description of
probabilities by sums or integrals.

Chapter 3 treats the theory of measurements made on experiments:
random variables, which are scalar-valued measurements; random vectors,
which are a vector or finite collection of measurements; and random pro-
cesses, which can be viewed as sequences or waveforms of measurements.
Random variables, vectors, and processes can all be viewed as forms of sig-
nal processing: each operates on “inputs,” which are the sample points of
a probability space, and produces an “output,” which is the resulting sam-
ple value of the random variable, vector, or process. These output points
together constitute an output sample space, which inherits its own proba-
bility measure from the structure of the measurement and the underlying
experiment. As a result, many of the basic properties of random variables,
vectors, and processes follow from those of probability spaces. Probability
distributions are introduced along with probability mass functions, proba-
bility density functions, and cumulative distribution functions. The basic
derived distribution method is described and demonstrated by example. A
wide variety of examples of random variables, vectors, and processes are
treated.

Chapter 4 develops in depth the ideas of expectation, averages of ran-
dom objects with respect to probability distributions. Also called proba-
bilistic averages, statistical averages, and ensemble averages, expectations



can be thought of as providing simple but important parameters describ-
ing probability distributions. A variety of specific averages are considered,
including mean, variance, characteristic functions, correlation, and covari-
ance. Several examples of unconditional and conditional expectations and
their properties and applications are provided. Perhaps the most impor-
tant application is to the statement and proof of laws of large numbers or
ergodic theorems, which relate long term sample average behavior of ran-
dom processes to expectations. In this chapter laws of large numbers are
proved for simple, but important, classes of random processes. Other im-
portant applications of expectation arise in performing and analyzing signal
processing applications such as detecting, classifying, and estimating data.
Minimum mean squared nonlinear and linear estimation of scalars and vec-
tors is treated in some detail, showing the fundamental connections among
conditional expectation, optimal estimation, and second order moments of
random variables and vectors.

Chapter 5 concentrates on the computation of second-order moments —
the mean and covariance — of a variety of random processes. The primary
example is a form of derived distribution problem: if a given random process
with known second-order moments is put into a linear system what are the
second-order moments of the resulting output random process? This prob-
lem is treated for linear systems represented by convolutions and for linear
modulation systems. Transform techniques are shown to provide a simpli-
fication in the computations, much like their ordinary role in elementary
linear systems theory. The chapter closes with a development of several
results from the theory of linear least-squares estimation. This provides
an example of both the computation and the application of second-order
moments.

Chapter 6 develops a variety of useful models of sometimes complicated
random processes. A powerful approach to modeling complicated random
processes is to consider linear systems driven by simple random processes.
Chapter 5 used this approach to compute second order moments, this chap-
ter goes beyond moments to develop a complete description of the output
processes. To accomplish this, however, one must make additional assump-
tions on the input process and on the form of the linear filters. The general
model of a linear filter driven by a memoryless process is used to develop
several popular models of discrete time random processes. Analogous con-
tinuous time random process models are then developed by direct descrip-
tion of their behavior. The basic class of random processes considered is
the class of independent increment processes, but other processes with sim-
ilar definitions but quite different properties are also introduced. Among
the models considered are autoregressive processes, moving-average pro-
cesses, ARMA (autoregressive-moving average) processes, random walks,
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independent increment processes, Markov processes, Poisson and Gaussian
processes, and the random telegraph wave. We also briefly consider an ex-
ample of a nonlinear system where the output random processes can at least
be partially described — the exponential function of a Gaussian or Poisson
process which models phase or frequency modulation. We close with ex-
amples of a type of “doubly stochastic” process, compound processes made
up by adding a random number of other random effects.

Appendix A sketches several prerequisite definitions and concepts from
elementary set theory and linear systems theory using examples to be en-
countered later in the book. The first subject is crucial at an early stage
and should be reviewed before proceeding to chapter 2. The second subject
is not required until chapter 5, but it serves as a reminder of material with
which the student should already be familiar. Elementary probability is not
reviewed, as our basic development includes elementary probability. The
review of prerequisite material in the appendix serves to collect together
some notation and many definitions that will be used throughout the book.
It is, however, only a brief review and cannot serve as a substitute for
a complete course on the material. This chapter can be given as a first
reading assignment and either skipped or skimmed briefly in class; lectures
can proceed from an introduction, perhaps incorporating some preliminary
material, directly to chapter 2.

Appendix B provides some scattered definitions and results needed in
the book that detract from the main development, but may be of interest
for background or detail. These fall primarily in the realm of calculus and
range from the evaluation of common sums and integrals to a consideration
of different definitions of integration. Many of the sums and integrals should
be prerequisite material, but it has been the authors’ experience that many
students have either forgotten or not seen many of the standard tricks
and hence several of the most important techniques for probability and
signal processing applications are included. Also in this appendix some
background information on limits of double sums and the Lebesgue integral
is provided.

Appendix C collects the common univariate pmf’s and pdf’s along with
their second order moments for reference.

The book concludes with an appendix suggesting supplementary read-
ing, providing occasional historical notes, and delving deeper into some of
the technical issues raised in the book. We assemble in that section refer-
ences on additional background material as well as on books that pursue
the various topics in more depth or on a more advanced level. We feel that
these comments and references are supplementary to the development and
that less clutter results by putting them in a single appendix rather than
strewing them throughout the text. The section is intended as a guide for



further study, not as an exhaustive description of the relevant literature,
the latter goal being beyond the authors’ interests and stamina.

Each chapter is accompanied by a collection of problems, many of which
have been contributed by collegues, readers, students, and former students.
It is important when doing the problems to justify any “yes/no” answers.
If an answer is “yes,” prove it is so. If the answer is “no,” provide a
counterexample.
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Chapter 2

Probability

2.1 Introduction

The theory of random processes is a branch of probability theory and prob-
ability theory is a special case of the branch of mathematics known as
measure theory. Probability theory and measure theory both concentrate
on functions that assign real numbers to certain sets in an abstract space
according to certain rules. These set functions can be viewed as measures
of the size or weight of the sets. For example, the precise notion of area
in two-dimensional Euclidean space and volume in three-dimensional space
are both examples of measures on sets. Other measures on sets in three
dimensions are mass and weight. Observe that from elementary calculus
we can find volume by integrating a constant over the set. From physics
we can find mass by integrating a mass density or summing point masses
over a set. In both cases the set is a region of three-dimensional space. In
a similar manner, probabilities will be computed by integrals of densities
of probability or sums of “point masses” of probability.

Both probability theory and measure theory consider only nonnegative
real-valued set functions. The value assigned by the function to a set is
called the probability or the measure of the set, respectively. The basic
difference between probability theory and measure theory is that the former
considers only set functions that are normalized in the sense of assigning
the value of 1 to the entire abstract space, corresponding to the intuition
that the abstract space contains every possible outcome of an experiment
and hence should happen with certainty or probability 1. Subsets of the
space have some uncertainty and hence have probability less than 1.

Probability theory begins with the concept of a probability space, which
is a collection of three items:

11
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1. An abstract space €2, such as encountered in appendix A, called a
sample space, which contains all distinguishable elementary outcomes
or results of an experiment. These points might be names, numbers,
or complicated signals.

2. An event space or sigma-field F consisting of a collection of subsets
of the abstract space which we wish to consider as possible events and
to which we wish to assign a probability. We require that the event
space have an algebraic structure in the following sense: any finite
or infinite sequence of set-theoretic operations (union, intersection,
complementation, difference, symmetric difference) on events must
produce other events, even countably infinite sequences of operations.

3. A probability measure P — an assignment of a number between 0 and
1 to every event, that is, to every set in the event space. A probability
measure must obey certain rules or axioms and will be computed by
integrating or summing, analogous to area, volume, and mass.

This chapter is devoted to developing the ideas underlying the triple
(Q, F, P), which is collectively called a probability space or an experiment.
Before making these ideas precise, however, several comments are in order.

First of all, it should be emphasized that a probability space is composed
of three parts; an abstract space is only one part. Do not let the terminology
confuse you: “space” has more than one usage. Having an abstract space
model all possible distinguishable outcomes of an experiment should be
an intuitive idea since it is simply giving a precise mathematical name
to an imprecise English description. Since subsets of the abstract space
correspond to collections of elementary outcomes, it should also be possible
to assign probabilities to such sets. It is a little harder to see, but we can
also argue that we should focus on the sets and not on the individual points
when assigning probabilities since in many cases a probability assignment
known only for points will not be very useful. For example, if we spin a fair
pointer and the outcome is known to be equally likely to be any number
between 0 an 1, then the probability that any particular point such as
.3781984637 or exactly 1/m occurs is 0 because there are an uncountable
infinity of possible points, none more likely than the others'. Hence knowing
only that the probability of each and every point is zero, we would be hard

LA set is countably infinite if it can be put into one-to-one correspondence
with the nonnegative integers and hence can be counted. For example, the set of
positive integers is countable and the set of all rational numbers is countable. The
set of all irrational numbers and the set of all real numbers are both uncountable.
See appendix A for a discussion of countably infinite vs. uncountably infinite
spaces.
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pressed to make any meaningful inferences about the probabilities of other
events such as the outcome being between 1/2 and 3/4. Writers of fiction
(including Patrick O’Brian in his Aubrey-Maturin series) have often made
much of the fact that extremely unlikely events often occur. One can say
that zero probability events occur all virtually all the time since the a priori
probability that the universe will be exactly a particular configuration at
12:01AM Coordinated Universal Time (aka Greenwich Mean Time) is 0,
yet the universe will indeed be in some configuration at that time.

The difficulty inherent in this example leads to a less natural aspect of
the probability space triumvirate — the fact that we must specify an event
space or collection of subsets of our abstract space to which we wish to
assign probabilities. In the example it is clear that taking the individual
points and their countable combinations is not enough (see also problem
2.2). On the other hand, why not just make the event space the class of
all subsets of the abstract space? Why require the specification of which
subsets are to be deemed sufficiently important to be blessed with the name
“event”? In fact, this concern is one of the principal differences between
elementary probability theory and advanced probability theory (and the
point at which the student’s intuition frequently runs into trouble). When
the abstract space is finite or even countably infinite, one can consider all
possible subsets of the space to be events, and one can build a useful theory.
When the abstract space is uncountably infinite, however, as in the case of
the space consisting of the real line or the unit interval, one cannot build
a useful theory without constraining the subsets to which one will assign
a probability. Roughly speaking, this is because probabilities of sets in
uncountable spaces are found by integrating over sets, and some sets are
simply too nasty to be integrated over. Although it is difficult to show,
for such spaces there does not exist a reasonable and consistent means
of assigning probabilities to all subsets without contradiction or without
violating desirable properties. In fact, is is so difficult to show that such
“non-probability-measurable” subsets of the real line exist that we will not
attempt to do so in this book. The reader should at least be aware of the
problem so that the need for specifying an event space is understood. It
also explains why the reader is likely to encounter phrases like “measurable
sets” and “measurable functions” in the literature.

Thus a probability space must make explicit not just the elementary
outcomes or “finest-grain” outcomes that constitute our abstract space; it
must also specify the collections of sets of these points to which we intend
to assign probabilities. Subsets of the abstract space that do not belong to
the event space will simply not have probabilities defined. The algebraic
structure that we have postulated for the event space will ensure that if
we take (countable) unions of events (corresponding to a logical “or”) or
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intersections of events (corresponding to a logical “and”), then the resulting
sets are also events and hence will have probabilities. In fact, this is one of
the main functions of probability theory: given a probabilistic description
of a collection of events, find the probability of some new event formed by
set-theoretic operations on the given events.

Up to this point the notion of signal processing has not been mentioned.
It enters at a fundamental level if one realizes that each individual point
w € ) produced in an experiment can be viewed as a signal, it might be a
single voltage conveying the value of a measurement, a vector of values, a
sequence of values, or a waveform, any one of which can be interpreted as a
signal measured in the environment or received from a remote transmitter
or extracted from a physical medium that was previously recorded. Signal
processing in general is the performing of some operation on the signal. In
its simplest yet most general form this consists of applying some function or
mapping or operation g to the signal or input w to produce an output g(w),
which might be intended to guess some hidden parameter, extract useful
information from noise, enhance an image, or any simple or complicated
operation intended to produce a useful outcome. If we have a probabilistic
description of the underlying experiment, then we should be able to derive
a probabilistic description of the outcome of the signal processor. This, in
fact, is the core problem of derived distributions, one of the fundamental
tools of both probability theory and signal processing. In fact, this idea of
defining functions on probability spaces is the foundation for the definition
of random variables, random vectors, and random processes, which will in-
herit their basic properties from the underlying probability space, thereby
yielding new probability spaces. Much of the theory of random processes
and signal processing consists of developing the implications of certain oper-
ations on probability spaces: beginning with some probability space we form
new ones by operations called variously mappings, filtering, sampling, cod-
ing, communicating, estimating, detecting, averaging, measuring, enhanc-
ing, predicting, smoothing, interpolating, classifying, analyzing or other
names denoting linear or nonlinear operations. Stochastic systems theory
is the combination of systems theory with probability theory. The essence
of stochastic systems theory is the connection of a system to a probability
space. Thus a precise formulation and a good understanding of probability
spaces are prerequisites to a precise formulation and correct development
of examples of random processes and stochastic systems.

Before proceeding to a careful development, several of the basic ideas
are illustrated informally with simple examples.
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2.2 Spinning Pointers and Flipping Coins

Many of the basic ideas at the core of this text can be introduced and illus-
trated by two very simple examples, the continuous experiment of spinning
a pointer inside a circle and the discrete experiment of flipping a coin.

A Uniform Spinning Pointer

Suppose that Nature (or perhaps Tyche, the Greek Goddess of chance) spins
a pointer in a circle as depicted in Figure 2.1. When the pointer stops it can

0,0
0.75 0.25

0.5

Figure 2.1: The Spinning Pointer

point to any number in the unit interval [0, 1) 2 {r:0<r <1} We call
[0,1) the sample space of our experiment and denote it by a capital Greek
omega, 2. What can we say about the probabilities or chances of particular
events or outcomes occurring as a result of this experiment? The sorts of
events of interest are things like “the pointer points to a number between 0
and .57 (which one would expect should have probability 0.5 if the wheel is
indeed fair) or “the pointer does not lie between 0.75 and 1” (which should
have a probability of 0.75). Two assumptions are implicit here. The first
is that an “outcome” of the experiment or an “event” to which we can
assign a probability is simply a subset of [0,1). The second assumption
is that the probability of the pointer landing in any particular interval of
the sample space is proportional to the length of the interval. This should
seem reasonable if we indeed believe the spinning pointer to be “fair” in the
sense of not favoring any outcomes over any others. The bigger a region of
the circle, the more likely the pointer is to end up in that region. We can
formalize this by stating that for any interval [a,b] = {r : @« < r < b} with
0 < a < b < 1 we have that the probability of the event “the pointer lands
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in the interval [a,b]” is
P([a,b]) =b—a. (2.1)

We do not have to restrict interest to intervals in order to define probabil-
ities consistent with (2.1). The notion of the length of an interval can be
made precise using calculus and simultaneously extended to any subset of
[0,1) by defining the probability P(F') of a set F' C [0,1) as

P(F)2 /F F(rydr = / Lp(r)f(r)dr, (2.2)

where f(r) =1 for all » € [0,1). With this definition it is clear that for any
0<a<b<1that

b
P([a, b)) = / f(r)dr =b—a. (2.3)

We could also arrive at effectively the same model by considering the sample

space to be the entire real line, Q2 = R = (—00,00) and defining the pdf to
be

£r) = {1 ifref0,1) (24)

0 otherwise

The integral can also be expressed without specifying limits of integration
by using the indicator function of a set

if F
1e(r) = {é i (2.

P(F) 2 / 1p(r) £ (r) dr. (2.6)

Other implicit assumptions have been made here. The first is that
probabilities must satisfy some consistency properties, we cannot arbitrar-
ily define probabilities of distinct subsets of [0,1) (or, more generally, )
without regards to the implications of probabilities for other sets; the prob-
abilities must be consistent with each other in the sense that they do not
contradict each other. For example, if we have two formulas for comput-
ing probabilities of a common event, as we have with (2.1) and (2.2) for
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computing the probability of an interval, then both formulas must give the
same numerical result — as they do in this example.

The second implicit assumption is that the integral exists in a well de-
fined sense, that it can be evaluated using calculus. As surprising as it
may seem to readers familiar only with typical engineering-oriented devel-
opments of Riemann integration, the integral of (2.2) is in fact not well
defined for all subsets of [0,1). But we leave this detail for later and as-
sume for the moment that we only encounter sets for which the integral
(and hence the probability) is well defined.

The function f(r) is called a probability density function or pdf since it is
a nonnegative point function that is integrated to compute total probability
of a set, just as a mass density function is integrated over a region to
compute the mass of a region in physics. Since in this example f(r) is
constant over a region, it is called a wuniform pdf..

The formula (2.2) for computing probability has many implications,
three of which merit comment at this point.

e Probabilities are nonnegative:

P(F) > 0 for any F. (2.7)

This follows since integrating a nonnegative argument yields a nonnegative
result.
e The probability of the entire sample space is 1:

P(Q) = 1. (2.8)

This follows since integrating 1 over the unit interval yields 1, but it has
the intuitive interpretation that the probability that “something happens”
is 1.

e The probability of the union of disjoint regions is the sum of the proba-
bilities of the individual events:

If FNG =0, then P(FUG) = P(F) + P(G). (2.9)

This follows immediately from the properties of integration:

P(FUG) = e f(r)dr

= [ [ swar
P(F) + P(G)

An alternative proof follows by observing that since F' and G are disjoint,
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1ruc(r) = 1p(r) + 1g(r) and hence linearity of integration implies that
P(FUG) = /lFug(T)f(’l") dr
= [1e) + 160D f0) dr

— /lp(r)f(r) dr+/lc(7‘)f(7‘) dr
= P(F)+P(G).

This property is often called the additivity property of probability. The
second proof makes it clear that additivity of probability is an immediate
result of the linearity of integration, i.e., that the integral of the sum of two
functions is the sum of the two integrals.

Repeated application of additivity for two events shows that for any
finite collection {Fy; k = 1,2,...,K} of disjoint or mutually exclusive
events, i.e., events with the property that Fj, (F; = 0 for all k # j, we
have that

K
P(|J Fr) =) P(Fy), (2.10)

1 k=1

C=

k

showing that additivity is equivalent to finite additivity, the similar prop-
erty for finite sets instead of just two sets. Since additivity is a special case
of finite additivity, the two notions are equivalent and we can use them
interchangably.

These three properties of nonnegativity, normalization, and additivity
are fundamental to the definition of the general notion of probability and
will form three of the four axioms needed for a precise development. It
is tempting to call an assignment P of numbers to subsets of a sample
space a probability measure if it satisfies these three properties, but we
shall see that a fourth condition, which is crucial for having well behaved
limits and asymptotics, will be needed to complete the definition. Pending
this fourth condition, (2.2) defines a probability measure. A sample space
together with a probability measure provide a mathematical model for an
experiment. This model is often called a probability space, but for the
moment we shall stick to the less intimidating word of experiment.

Simple Properties

Several simple properties of probabilities can be derived from what we have
so far. As particularly simple, but still important, examples, consider the
following. following.
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Assume that P is a set function defined on a sample space () that satisfies
properties (2.7 — 2.9). Then

(a) P(F°)=1—P(F).
(b) P(F) <1
(c) Let 0 be the null or empty set, then P(#) =0 .

(d) If {F;; i =1,2,...,K} is a finite partition of Q, i.e., if F; N Fy = 0
when i # k and J,_, F; = €, then

P(G)

K
> P(GNF) (2.11)
i=1

for any event G.

Proof:

(a) FUF°=Q implies P(F UF¢) =1 (property 2.8). F'N F° = () implies
1=P(FUF°) = P(F)+ P(F°) (property 2.9), which implies (a).

(b) P(F)=1— P(F°) <1 (property 2.7 and (a) above).
(c) By property 2.8 and (a) above, P(Q¢) = P() =1— P(Q2) = 0.

(d) P(G)=P(GNQ) = GmUF UGmF ZPGmF

Observe that although the null or empty set () has probability 0, the
converse is not true in that a set need not be empty just because it has
zero probability. In the uniform fair wheel example the set F = {1/n:n =
1,2,3,...} is not empty, but it does have probability zero. This follows
rougly because for any finite N P({1/n : n = 1,2,3,... ,N}) = 0 and
therefore the limit as N — oo must also be zero.

A Single Coin Flip

The original example of a spinning wheel is continuous in that the sample
space consists of a continuum of possible outcomes, all points in the unit
interval. Sample spaces can also be discrete, as is the case of modeling
a single flip of a “fair” coin with heads labeled “1” and tails labeled “0”,
i.e., heads and tails are equally likely. The sample space in this example is
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Q= {0,1} and the probability for any event or subset of w can be defined
in a reasonable way by

P(F) =Y p(r), (2.12)

reF

or, equivalently,

P(F) = 1p(r)p(r), (2.13)

where now p(r) = 1/2 for each r € . The function p is called a proba-
bility mass function or pmf because it is summed over points to find total
probability, just as point masses are summed to find total mass in physics.
Be cautioned that P is defined for sets and p is defined only for points in
the sample space. This can be confusing when dealing with one-point or
singleton sets, for example

This may seem too much work for such a little example, but keep in mind
that the goal is a formulation that will work for far more complicated and
interesting examples. This example is different from the spinning wheel
in that the sample space is discrete instead of continuous and that the
probabilities of events are defined by sums instead of integrals, as one should
expect when doing discrete math. It is easy to verify, however, that the
basic properties (2.7)—(2.9) hold in this case as well (since sums behave like
integrals), which in turn implies that the simple properties (a)—(b) also
hold.

A Single Coin Flip as Signal Processing

The coin flip example can also be derived in a very different way that pro-
vides our first example of signal processing. Consider again the spinning
pointer so that the sample space is 2 and the probability measure P is de-
scribed by (2.2) using a uniform pdf as in (2.4). Performing the experiment
by spinning the pointer will yield some real number r € [0,1). Define a
measurement ¢ made on this outcome by

1 ifref0,0.5)
ar) = {0 if r € (0.5,1) (2.14)
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This function can also be defined somewhat more economically as

q(r) = 1j0,0.5) (7). (2.15)

This is an example of a quantizer, an operation that maps a continuous
value into a discrete one. Quantization is an example of signal processing
since it is a function or mapping defined on an input space, here Q = [0,1)
or 2 = R, producing a value in some output space, here a binary space
Q, = {0,1}. The dependence of a function on its input space or domain
of definition €2 and its output space or range {14,is often denoted by ¢ :
2 — 4. Although introduced as an example of simple signal processing,
the usual name for a real-valued function defined on the sample space of
a probability space is a random variable. We shall see in the next chapter
that there is an extra technical condition on functions to merit this name,
but that is a detail that can be postponed.

The output space {24 can be considered as a new sample space, the space
corresponding to the possible values seen by an observer of the output of the
quantizer (an observer who might not have access to the original space). If
we know both the probability measure on the input space and the function,
then in theory we should be able to describe the probability measure that
the output space inherits from the input space. Since the output space is
discrete, it should be described by a pmf, say p,. Since there are only two
points, we need only find the value of p,(1) (or py(0) since p,(0)+p,(1) = 1).
On output of 1 is seen if and only if the input sample point lies in [0, 0.5],
so it follows easily that p,(0) = P([0,0.5]) = 00'5 f(r),dr = 0.5, exactly the
value assumed for the fair coin flip model. The pmf p, implies a probability
measure on the output space €, by

Py(F) = py(w),

weF

where the subscript ¢ distinguishes the probability measure P, on the out-
put space from the probability measure P on the input space. Note that
we can define any other binary quantizer corresponding to an “unfair” or
biased coin by changing the 0.5 to some other value.

This simple example makes several fundamental points that will evolve
in depth in the course of this material. First, it provides an example of
signal processing and the first example of a random variable, which is essen-
tially just a mapping of one sample space into another. Second, it provides
an example of a derived distribution: given a probability space described
by ©Q and P and a function (random variable) ¢ defined on this space, we
have derived a new probability space describing the outputs of the function
with sample space {2, and probability measure F,. Third, it is an example
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of a common phenomenon that quite different models can result in iden-
tical sample spaces and probability measures. Here the coin flip could be
modeled in a directly given fashion by just describing the sample space
and the probability measure, or it can be modeled in an indirect fashion
as a function (signal processing, random variable) on another experiment.
This suggests, for example, that to study coin flips empirically we could
either actually flip a fair coin, or we could spin a fair wheel and quantize
the output. Although the second method seems more complicated, it is in
fact extremely common since most random number generators (or pseudo-
random number generators) strive to produce random numbers with a uni-
form distribution on [0, 1) and all other probability measures are produced
by further signal processing. We have seen how to do this for a simple coin
flip. In fact any pdf or pmf can be generated in this way. (See problem 3.7.)
The generation of uniform random numbers is both a science and an art.
Most function roughly as follows. One begins with floating point number
in (0, 1) called the seed, say a, and uses another postive floating point num-
ber, say b, as a multiplier. A sequence x, is then generated recursively as
2o =a and x, =b X x, — 1 mod (1) for n = 1,2,..., that is, the fractional
part of b X xz,, — 1. If the two numbers a and b are suitably chosen then
Z, should appear to be uniform. (Try it!) In fact, since there are only
a finite number (albeit large) of possible numbers that can be represented
on a digital computer, this algorithm must eventually repeat and hence x,,
must be a periodic sequence. The goal of designing a good pseudo-random
number generater is to make the period as long as possible and to make
the sequences produced look as much as possible like a random sequence in
the sense that statistical tests for independence are fooled.

Abstract vs. Concrete

It may seem strange that the axioms of probability deal with apparently
abstract ideas of measures instead of corresponding physical intuition that
the probability tells you something about the fraction of times specific
events will occur in a sequence of trials, such as the relative frequency of
a pair of dice summing to seven in a sequence of many roles, or a decision
algorithm correctly detecting a single binary symbol in the presence of noise
in a transmitted data file. Such real world behavior can be quantified by
the idea of a relative frequency, that is, suppose the output of the nth of a
sequence of trials is x,, and we wish to know the relative frequency that x,,
takes on a particular value, say a. Then given an infinite sequence of trials
x = {xg, 1,22, ...} we could define the relative frequency of a in z by

. number of k € {0,1,... ,n — 1} for which z; = a
ro(z) = lim )

n— 00 n

(2.16)
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For example, the relative frequency of heads in an infinite sequence of fair
coin flips should be 0.5, the relative frequency of rolling a pair of fair dice
and having the sum be 7 in an infinite sequence of rolls should be 1/6 since
the pairs (1,6),(6,1),(2,5),(5,2),(3,4), (4,3) are equally likely and form
6 of the possible 36 pairs of outcomes. Thus one might suspect that to
make a rigorous theory of probability requires only a rigorous definition
of probabilities as such limits and a reaping of the resulting benefits. In
fact much of the history of theoretical probability consisted of attempts to
accomplish this, but unfortunately it does not work. Such limits might not
exist, or they might exist and not converge to the same thing for different
repetitions of the same experiment. Even when the limits do exist there
is no guarantee they will behave as intuition would suggest when one tries
to do calculus with probabilities, to compute probabilities of complicated
events from those of simple related events. Attempts to get around these
problems uniformly failed and probability was not put on a rigorous basis
until the axiomatic approach was completed by Kolmogorov. The axioms
do, however, capture certain intuitive aspects of relative frequencies. Rel-
ative frequencies are nonnegative, the relative frequency of the entire set
of possible outcomes is one, and relative frequencies are additive in the
sense that the relative frequency of the symbol a or the symbol b occurring,
raub(x), is clearly rq(x) 4+ rp(x). Kolmogorov realized that beginning with
simple axioms could lead to rigorous limiting results of the type needed,
while there was no way to begin with the limiting results as part of the
axioms. In fact it is the fourth axiom, a limiting version of additivity, that
plays the key role in making the asymptotics work.

2.3 Probability Spaces

We now turn to a more thorough development of the ideas introduced in
the previous section.

A sample space ) is an abstract space, a nonempty collection of points
or members or elements called sample points (or elementary events or ele-
mentary outcomes).

An event space (or sigma-field or sigma-algebra) F of a sample space
Q) is a nonempty collection of subsets of €2 called events with the following
properties:

If FeF ,thenalso F°e F, (2.17)

that is, if a given set is an event, then its complement must also be an
event. Note that any particular subset of {2 may or may not be an event
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(review the quantizer example).

If for some finite n, F; € F ;i =1,2,... ,n, then also
UFrer, (2.18)
i=1

that is, a finite union of events must also be an event.

If F;€¢ F,i=1,2,..., then also

Urer, (2.19)
1=1

that is, a countable union of events must also be an event.

We shall later see alternative ways of describing (2.19), but this form is
the most common.

Eq. (2.18) can be considered as a special case of (2.19) since, for exam-
ple, given a finite collection F;; i = 1,... , N, we can construct an infinite
sequence of sets with the same union, e.g., given Fj, k=1,2,... , N, con-
struct an infinite sequence G, with the same union by choosing G,, = F,,
forn=1,2,...N and G,, = () otherwise. It is convenient, however, to con-
sider the finite case separately. If a collection of sets satisfies only (2.17)
and (2.18) but not 2.19, then it is called a field or algebra of sets. For this
reason, in elementary probability theory one often refers to “set algebra”
or to the “algebra of events.” (Don’t worry about why 2.19 might not be
satisfied.) Both (2.17) and (2.18) can be considered as “closure” properties;
that is, an event space must be closed under complementation and unions
in the sense that performing a sequence of complementations or unions of
events must yield a set that is also in the collection, i.e., a set that is also
an event. Observe also that (2.17), (2.18), and (A.11) imply that

QerF, (2.20)

that is, the whole sample space considered as a set must be in F; that is,
it must be an event. Intuitively,  is the “certain event,” the event that
“something happens.” Similarly, (2.20) and (2.17) imply that

her, (2.21)

and hence the empty set must be in F, corresponding to the intuitive event
“nothing happens.”
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A few words about the different nature of membership in €2 and F is in
order. If the set F' is a subset of €2, then we write F' C Q. If the subset F
is also in the event space, then we write F' € F. Thus we use set inclusion
when considering F' as a subset of an abstract space, and element inclusion
when considering F' as a member of the event space and hence as an event.
Alternatively, the elements of €) are points, and a collection of these points
is a subset of 2; but the elements of F are sets — subsets of {2, — and not
points. A student should ponder the different natures of abstract spaces of
points and event spaces consisting of sets until the reasons for set inclusion
in the former and element inclusion in the latter space are clear. Consider
especially the difference between an element of 2 and a subset of €2 that
consists of a single point. The latter might or might not be an element of F,
the former is never an element of F. Although the difference might seem to
be merely semantics, the difference is important and should be thoroughly
understood.

A measurable space (2, F) is a pair consisting of a sample space (2
and an event space or sigma-field F of subsets of Q. The strange name
“measurable space” reflects the fact that we can assign a measure such as a
probability measure, to such a space and thereby form a probability space
or probability measure space.

A probability measure P on a measurable space (€2, F) is an assignment
of a real number P(F) to every member F' of the sigma-field (that is, to
every event) such that P obeys the following rules, which we refer to as the
axioms of probability.

Axiom 2.1
P(F)>0 forall FeF (2.22)

i.e., no event has negative probability.

Axiom 2.2
PQ)=1 (2.23)
i.e., the probability of “everything” is one.

Axiom 2.3 If F;,1=1,2,...,n are disjoint, then

P (O F) 3 P(F)) . (2.24)
=1 =1
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Axiom 2.4 If F;,i=1,2,... are disjoint, then

P (G Fi> = i P(F) . (2.25)

i=1

Note that nothing has been said to the effect that probabilities must be
sums or integrals, but the first three axioms should be recognizable from
the three basic properties of nonnegativity, normalization, and additivity
encountered in the simple examples introduced in the introduction to this
chapter where probabilities were defined by an integral over a set of a pdf
or a sum over a set of a pmf. The axioms capture these properties in a gen-
eral form and will be seen to include more general constructions, including
multidimensional integrals and combinations of integrals and sums. The
fourth axiom can be viewed as an extra technical condition that must be
included in order to get various limits to behave. Just as property (2.19) of
an event space will later be seen to have an alternative statement in terms
of limits of sets, the fourth axiom of probability, axiom 2.4, will be shown
to have an alternative form in terms of explicit limits, a form providing an
important continuity property of probability. Also as in the event space
properties, the fourth axiom implies the third.

As with the defining properties of an event space, for the purposes of dis-
cussion we have listed separately the finite special case (2.24) of the general
condition (2.25). The finite special case is all that is required for elemen-
tary discrete probability. The general condition is required to get a useful
theory for continuous probability. A good way to think of these conditions
is that they essentially describe probability measures as set functions de-
fined by either summing or integrating over sets, or by some combination
thereof. Hence much of probability theory is simply calculus, especially the
evaluation of sums and integrals.

To emphasize an important point: a function P which assigns numbers
to elements of an event space of a sample space is a probability measure if
and only if it satisfies all of the four axioms!

A probability space or experiment is a triple (Q, F, P) consisting of a
sample space €2, an event space F of subsets of {2, and a probability measure
P defined for all members of F.

Before developing each idea in more detail and providing several exam-
ples of each piece of a probability space, we pause to consider two simple
examples of the complete construction. The first example is the simplest
possible probability space and is commonly referred to as the trivial prob-
ability space. Although useless for application, the model does serve a
purpose, however, by showing that a well-defined model need not be inter-
esting. The second example is essentially the simplest nontrivial probability
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space, a slight generalization of the fair coin flip permitting an unfair coin.

[2.0]

[2.1]

Let Q be any abstract space and let F = {Q, 0}; that is, F consists
of exactly two sets — the sample space (everything) and the empty
set (nothing). This is called the trivial event space. This is a model
of an experiment where only two events are possible: “Something
happens” or “nothing happens” — not a very interesting description.
There is only one possible probability measure for this measurable
space: P(Q) = 1 and P(0) = 0. (Why?) This probability measure
meets the required rules that define a probability measure; they can
be directly verified since there are only two possible events. Equations
(2.22) and (2.23) are obvious. Equations (2.24) and (2.25) follow since
the only possible values for F; are 2 and (). At most one of the F; is
indeed €2, then both sides of the equality are 1. Otherwise, both sides
are 0.

Let @ = {0,1}. Let F = {{0},{1},Q = {0,1},0}. Since F con-
tains all of the subsets of €, the properties (2.17) through (2.19) are
trivially satisfied, and hence it is an event space. (There is one other
possible event space that could be defined for € in this example. What
is it?) Define the set function P by

1—p if F={0}
_)p if F={1}
PEY=00 i F=0
1 if F=Q,

where p € (0,1) is a fixed parameter. (If p = 0 or p = 1 the space
becomes trivial.) It is easily verified that P satisfies the axioms of
probability and hence is a probability measure. Therefore (2, F, P)
is a probability space. Note that we had to give the value of P(F)
for all events F', a construction that would clearly be absurd for large
sample spaces. Note also that the choice of P(F') is not unique for
the given measurable space (2, F); we could have chosen any value
in [0, 1] for P({1}) and used the axioms to complete the definition.

The preceding example is the simplest nontrivial example of a probabil-
ity space and provides a rigorous mathematical model for applications such
as the binary transmission of a single bit or for the flipping of a single bi-
ased coin once. It therefore provides a complete and rigorous mathematical
model for the single coin flip of the introduction.

We now develop in more detail properties and examples of the three
components of probability spaces: sample spaces, event spaces, and proba-
bility measures.
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2.3.1 Sample Spaces

Intuitively, a sample space is a listing of all conceivable finest-grain, distin-
guishable outcomes of an experiment to be modeled by a probability space.
Mathematically it is just an abstract space.

Examples

[2.2] A finite space Q = {ax; k = 1,2,..., K}. Specific examples are the bi-
nary space {0, 1} and the finite space of integers Z 2 {0,1,2,...  k—

1.

[2.3] A countably infinite space Q = {ar; k = 0,1,2,...}, for some se-
quence {a}. Specific examples are the space of all nonnegative inte-
gers {0,1,2,...}, which we denote by Z,, and the space of all integers
{...,=2,-1,0,1,2,...}, which we denote by Z. Other examples are
the space of all rational numbers, the space of all even integers, and
the space of all periodic sequences of integers.

Both examples [2.2] and [2.3] are called discrete spaces. Spaces with
finite or countably infinite numbers of elements are called discrete spaces.

[2.4] An interval of the real line R, for example, Q = (a,b). We might con-
sider an open interval (a, ), a closed interval [a, b], a half-open interval
[a,b) or (a,b], or even the entire real line R itself. (See appendix A
for details on these different types of intervals.)

Spaces such as example [2.4] that are not discrete are said to be continu-
ous. In some cases it is more accurate to think of spaces as being a mixture
of discrete and continuous parts, e.g., the space Q = (1,2) U {4} consisting
of a continuous interval and an isolated point. Such spaces can usually be
handled by treating the discrete and continuous components separately.

[2.5] A space consisting of k—dimensional vectors with coordinates taking
values in one of the previously described spaces. A useful notation
for such vector spaces is a product space. Let A denote one of the
abstract spaces previously considered. Define the Cartesian product
Ak by

AR = {all vectors a = (ag, ay,... ,ax_1) with a; € A} .
Thus, for example, R* is k—dimensional Euclidean space. {0, 1}* is the

space of all binary k—tuples, that is, the space of all k—dimensional binary
vectors. As particular examples, {0,1}2 = {00,01,10,11} and {0,1}3 =
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{000, 001,010,011, 100,101,110,111}. [0,1]? is the unit square in the plane.
[0,1]3 is the unit cube in three-dimensional Euclidean space.
Alternative notations for a Cartesian product space are

k—1
I A-T4.
=0

1EZy

where again the A; are all replicas or copies of A, that is, where A; = A,
all 7. Other notations for such a finite-dimensional Cartesian product are

k—1 k
XiGZkAi = Xi:OA’i =A%,

This and other product spaces will prove to be a useful means of describ-
ing abstract spaces modeling sequences of elements from another abstract
space.

Observe that a finite-dimensional vector space constructed from a dis-
crete space is also discrete since if one can count the number of possible
values one coordinate can assume, then one can count the number of pos-
sible values that a finite number of coordinates can assume.

[2.6] A space consisting of infinite sequences drawn from one of the exam-
ples [2.2] through [2.4]. Points in this space are often called discrete
time signals. This is also a product space. Let A be a sample space
and let A; be replicas or copies of A. We will consider both one-sided
and two-sided infinite products to model sequences with and without
a finite origin, respectively. Define the two-sided space

HAi = {all sequences {a;;i=...,-1,0,1,...}; a; € 4;},
€2

and the one-sided space

H A; = {all sequences {a;;i=0,1,...}; a; € A;} .
1€EZ

These two spaces are also denoted by [[;2 __A; or x2_ A, and [[;2,A;
or x2,A;, respectively.

The two spaces under discussion are often called sequence spaces. Even
if the original space A is discrete, the sequence space constructed from A
will be continuous. For example, suppose that 4; = {0, 1,2, 3,4,5,6,7,8,9}
for all integers . Then x52,A; is the space of all semiinfinite (one-sided)
decimal sequences, which is the same as the space of all real numbers in the
unit interval [0,1). This follows since if w € Q, then w = (wp,w,wa,...),
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which can be written as .wowiws . .., which can represent any real number
in the unit interval by the decimal expansion ;- w;107**. This space
contains the decimal representations of all of the real numbers in the unit
interval, an uncountable infinity of numbers. Similarly, there is an uncount-
able infinity of one-sided binary sequences one one can express all points in
the unit interval in the binary number system as sequences to the right of

the “decimal” point (problem A.11).

[2.7] Let A be one of the sample spaces of examples [2.2] through [2.4].
Form a new abstract space consisting of all waveforms or functions
of time with values in A, for example, all real-valued time functions
or continuous time signals. This space is also modeled as a product
space. For example, the infinite two-sided space for a given A is

H A; = {all waveforms {z(t); t € (—00,00)}; x(t) € A, allt},
teR

with a similar definition for one-sided spaces and for time functions
on a finite time interval.

Note that we indexed sequences (discrete time signals) using subscripts,
as in x,, and we indexed waveforms (continuous time signals) using paren-
theses, as in x(¢). In fact, the notations are interchangeable; we could
denote waveforms as {z(t); t € R} or as {z;; ¢ € R}. The notation using
subscripts for sequences and parentheses for waveforms is the most com-
mon, and we will usually stick to it. Yet another notation for discrete time
signals is z[n], a common notation in the digital signal processing literature.
It is worth remembering that vectors, sequences, and waveforms are all just
indexed collections of numbers; the only difference is the index set: finite
for vectors, countably infinite for sequences, and continuous for waveforms.

+xGeneral Product Spaces

All of the product spaces we have described can be viewed as special cases
of the general product space defined next.

Let 7 be an index set such as a finite set of integers Zj, the set of all
integers Z, the set of all nonnegative integers Z,, the real line R, or the
nonnegative reals [0,00). Given a family of spaces {A;; t € T}, define the
product space

AT =T Ai ={all {a;;t €T};ar € Ay, all t} .
tel

The notation x;c7A; is also used for the same thing. Thus product spaces
model spaces of vectors, sequences, and waveforms whose coordinate values
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are drawn from some fixed space. This leads to two notations for the space
of all k—dimensional vectors with coordinates in A : A* and A®*. The
shorter and simpler notation is usually more convenient.

2.3.2 Event Spaces

Intuitively, an event space is a collection of subsets of the sample space or
groupings of elementary events which we shall consider as physical events
and to which we wish to assign probabilities. Mathematically, an event
space is a collection of subsets that is closed under certain set-theoretic
operations; that is, performing certain operations on events or members of
the event space must give other events. Thus, for example, if in the example
of a single voltage measurement example we have {3 = R and we are told
that the set of all voltages greater than 5 volts = {w : w > 5} is an event,
that is, is a member of a sigma-field F of subsets of R, then necessarily
its complement {w : w < 5} must also be an event, that is, a member
of the sigma-field F. If the latter set is not in F then F cannot be an
event space! Observe that no problem arises if the complement physically
cannot happen — events that “cannot occur” can be included in F and
then assigned probability zero when choosing the probability measure P.
For example, even if you know that the voltage does not exceed 5 volts,
if you have chosen the real line & as your sample space, then you must
include the set {r : r > 5} in the event space if the set {r : r < 5} is an
event. The impossibility of a voltage greater than 5 is then expressed by
assigning P({r : r > 5}) = 0.

While the definition of a sigma-field requires only that the class be closed
under complementation and countable unions, these requirements immedi-
ately yield additional closure properties. The countably infinite version of
DeMorgan’s “laws” of elementary set theory require that if F;, i =1,2,...
are all members of a sigma-field, then so is

(i)

i=1

It follows by similar set-theoretic arguments that any countable se-
quence of any of the set-theoretic operations (union, intersection, com-
plementation, difference, symmetric difference) performed on events must
yield other events. Observe, however, that there is no guarantee that un-
countable operations on events will produce new events; they may or may
not. For example, if we are told that {F,; r € [0,1]} is a family of events,
then it is not necessarily true that Ure[o,l] F,, is an event (see problem 2.2
for an example).
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The requirement that a finite sequence of set-theoretic operations on
events yields other events is an intuitive necessity and is easy to verify for
a given collection of subsets of an abstract space: It is intuitively necessary
that logical combinations of (and and or and not) of events corresponding
to physical phenomena should also be events to which a probability can
be assigned. If you know the probability of a voltage being greater than
zero and you know the probability that the voltage is not greater than 5
volts, then you should also be able to determine the probability that the
voltage is greater than zero but not greater than 5 volts. It is easy to verify
that finite sequences of set-theoretic combinations yield events because the
finiteness of elementary set theory usually yields simple proofs.

A natural question arises in regard to (2.17) and (2.18): Why not try
to construct a useful probability theory on the more general notion of a
field rather than a sigma-field? The response is that it unfortunately does
not work. Probability theory requires many results involving limits, and
such asymptotic results require the infinite relations of (2.19) and (2.25) to
work. In some special cases, such as single coin flipping or single die rolling,
the simpler finite results suffice because there are only a finite number of
possible outcomes, and hence limiting results become trivial — any finite
field is automatically a sigma-field. If, however, one flips a coin forever,
then there is an uncountable infinity of possible outcomes, and the asymp-
totic relations become necessary. Let €2 be the space of all one-sided binary
sequences. Suppose that you consider the smallest field formed by all finite
set-theoretic operations on the individual one-sided binary sequences, that
is, on singleton sets in the sequence space. Then many countably infinite
sets of binary sequences (say the set of all periodic sequences) are not events
since they cannot be expressed as finite sequences of set-theoretic opera-
tions on the singleton sets. Obviously, the sigma-field formed by including
countable set-theoretic operations does not have this defect. This is why
sigma-fields must be used rather than fields.

Limits of Sets

The condition (2.19) can be related to a condition on limits by defining
the notion of a limit of a sequence of sets. This notion will prove useful
when interpreting the axioms of probability. Consider a sequence of nested

sets F,,,n = 1,2,..., sets with the property that each set contains its
predecessor, that is, that F,_; C F, for all n. Such a sequence of sets
is said to be increasing. For example, the sequence F, = [1,2 — 1/n) of

subsets of the real line is increasing. The sequence (—n, a) is also increasing.
Intuitively, the first example increases to a limit of [1,2) in the sense that
every point in the set [1,2) is eventually included in one of the F,. Similarly,
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the sequence in the second example increases to (—oo, a). Formally, the limit
of an increasing sequence of sets can be defined as the union of all of the
sets in the sequence since the union contains all of the points in all of the
sets in the sequence and does not contain any points not contained in at
least one set (and hence an infinite number of sets) in the sequence:

nh_)rr;o F, = D F, .
n=1

Figure 2.2.(a) illustrates such a sequence in a Venn diagram.

@F2 F; ) Fy F3 R

Figure 2.2: (a) Increasing sets, (b) decreasing sets

Thus the limit of the sequence of sets [1,2—1/n) is indeed the set [1,2),
as desired, and the limit of (—n,a) is (00, a). If F' is the limit of a sequence
of increasing sets F),, then we write F,, T F.

Similarly, suppose that F,;n = 1,2,... is a decreasing sequence of
nested sets in the sense that F,, C F},_ for all n as illustrated by the Venn
diagram in Figure 2.2(b). For example, the sequences of sets [1,1 + 1/n)
and (1—1/n,1+1/n) are decreasing. Again we have a natural notion of the
limit of this sequence: Both these sequences of sets collapse to the point of
singleton set {1} — the point in common to all the sets. This suggests a
formal definition based on the countably infinite intersection of the sets.

Given a decreasing sequence of sets Fy,; n =1,2,... , we define the limit
of the sequence by

nILII;OF7L: ﬁ Fna

n=1
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that is, a point is in the limit of a decreasing sequence of sets if and only if
it is contained in all the sets of the sequence. If F' is the limit of a sequence
of decreasing sets F),, then we write F;, | F'.

Thus, given a sequence of increasing or decreasing sets, the limit of the
sequence can be defined in a natural way: the union of the sets of the
sequence or the intersection of the sets of the sequence, respectively.

Say that we have a sigma-field F and an increasing sequence of sets
F,;n=1,2,... of sets in the sigma-field. Since the limit of the sequence
is defined as a union and since the union of a countable number of events
must be an event, then the limit must be an event. For example, if we are
told that the sets [1,2 — 1/n) are all events, then the limit [1,2) must also
be an event. If we are told that all finite intervals of the form (a,b), where
a and b are finite, are events, then the semi-infinite interval (—oo, b) must
also be an event, since it is the limit of the sequence of sets (—n,b) and
n — oo.

By a similar argument, if we are told that each set in a decreasing
sequence F), is an event, then the limit must be an event, since it is an
intersection of a countable number of events. Thus, for example, if we are
told that all finite intervals of the form (a,b) are events, then the points
of singleton sets must also be events, since a point {a} is the limit of the
decreasing sequence of sets (a — 1/n,a+ 1/n).

If a class of sets is only a field rather than a sigma-field, that is, if it
satisfies only (2.17) and (2.18), then there is no guarantee that the class
will contain all limits of sets. Hence, for example, knowing that a class of
sets contains all half-open intervals of the form (a,d] for a and b finite does
not ensure that it will also contain points or singleton sets! In fact, it is
straightforward to show that the collection of all such half-open intervals
together with the complements of such sets and all finite unions of the
intervals and complements forms a field. The singleton sets, however, are
not in the field! (See problem 2.5.)

Thus if we tried to construct a probability theory based on only a field,
we might have probabilities defined for events such as (a,b) meaning “the
output voltage of a measurement is between a and b’ and yet not have
probabilities defined for a singleton set {a} meaning “the output voltage is
exactly a.” By requiring that the event space be a sigma-field instead of
only a field, we are assured that all such limits are indeed events.

It is a straightforward exercise to show that given (2.17) and (2.18),
property (2.19) is equivalent to either of the following;:

If F,, € F;n=1,2,...,is a decreasing sequence or an increasing se-
quence, then

lim F, € F . (2.26)

n—oo
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We have already seen that (2.19) implies (2.26). For example, if (2.26) is
true and G, is an arbitrary sequence of events, then define the increasing
sequence

F,=]JGi.
i=1
Obviously F,,_1 C F,,, and then (2.26) implies (2.19), since

GGi: DF”:,}LH;OF"G}—'
i=1 n=1

Examples

As we have noted, for a given sample space the selection of an event space is
not unique; it depends on the events to which it is desired to assign probabil-
ities and also on analytical limitations on the ability to assign probabilities.
We begin with two examples that represent the extremes of event spaces
— one possessing the minimum quantity of sets and the other possessing
the maximum. We then study event spaces useful for the sample space
examples of the preceding section.

[2.8] Given a sample space €2, then the collection {Q, 0} is a sigma-field.
This is just the trivial event space already treated in example [2.0].
Observe again that this is the smallest possible event space for any
given sample space because no other event space can have fewer ele-
ments.

[2.9] Given a sample space €, then the collection of all subsets of Q is a
sigma-field. This is true since any countable sequence of set-theoretic
operations on subsets of 2 must yield another subset of {2 and hence
must be in the collection of all possible subsets. The collection of all
subsets of a space is called the power set of the space. Observe that
this is the largest possible event space for the given sample space,
because it contains every possible subset of the sample space.

This sigma-field is a useful event space for the sample spaces of examples
[2.2] and [2.3], that is, for sample spaces that are discrete. We shall always
take our event space as the power set when dealing with a discrete sample
space (except possibly for a few perverse homework problems). A discrete
sample space with n elements has a power set with 2" elements (problem
2.4). For example, the power set of the binary sample space Q@ = {0,1} is
the collection {{0},{1},Q = {0,1},0}, a list of all possible subsets of the
space.
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Unfortunately, the power set is too large to be useful for continuous
spaces. To treat the reasons for this is beyond the scope of a book at this
level, but we can say that it is not possible in general to construct interesting
probability measures on the power set of a continuous space. There are
special cases where we can construct particular probability measures on
the power set of a continuous space by mimicking the construction for a
discrete space (see, e.g., problems 2.4, 2.6, and 2.9). Truly continuous
experiments cannot, however, be rigorously defined for such a large event
space because integrals cannot be defined over all events in such spaces.

While both of the preceding examples can be used to provide event
spaces for the special case of {2 = R, the real line, neither leads to a useful
probability theory in that case. In the next example we consider another
event space for the real line that is more useful and, in fact, is used almost
always for 3 and higher dimensional Euclidean spaces. First, however, we
need to treat the idea of generating an event space from a collection of
important events. Intuitively, given a collection of important sets G that
we require to be events, the event space o(G) generated by G is the smallest
event space F to which all the sets in G belong. That is, o(G) is an event
space, it contains all the sets in G, and no smaller collection of sets satisfies
these two conditions.

Regardless of the details, it is worth emphasizing the key points of this
discussion.

e The notion of a generated sigma-field allows one to describe an event
space for the real line, the Borel field, that contains all physically im-
portant events and which will lead to a useful calculus of probability.
It is usually not important to understand the detailed structure of
this event space past the facts that it

— is indeed an event space, and

— it contains all the important events such as intervals of all types
and points.

e The notion of a generated sigma-field can be used to extend the event
space of the real line to event spaces of vectors, sequences, and wave-
forms taking on real values. Again the detailed structure is usually
not important past the fact that it

— is indeed an event space, and

— it contains all the important events such as those described by
requiring any finite collection of coordinate values to lie within
intervals.
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+*Generating Event Spaces

Any useful event space for the real line should include as members all
intervals of the form (a,b) since we certainly wish to consider events of
the form “the output voltage is between 3 and 5 volts.” Furthermore, we
obviously require that the event space satisfy the defining properties for an
event space, that is, that we have a collection of subsets of € that satisfy
properties (2.17) through (2.19). A means of accomplishing both of these
goals in a relatively simple fashion is to define our event space as the smallest
sigma-field that contains the desired subsets, to wit, the intervals and all
of their countable set-theoretic combinations (bewildering as it may seem,
this is not the same as all subsets of ). Of course, although a sigma-field
that is based on the intervals is most useful, it is also possible to consider
other starting points. These considerations motivate the following general
definition.

Given a sample space  (such as the real line f) and an arbitrary class
G of subsets of 2 — usually the class of all open intervals of the form (a, b)
when Q = R — define 0(G), the sigma-field generated by the class G, to be
the smallest sigma-field containing all of the sets in G, where by “smallest”
we mean that if F is any sigma-field and it contains G, then it contains
o(G). (See any book on measure theory, e.g., Ash [1].)

For example, as noted before, we might require that a sigma-field of the
real line contain all intervals; then it would also have to contain at least
all complements of intervals and all countable unions and intersections of
intervals and all countable complements, unions, and intersections of these
results, ad infinitum. This technique will be used several times to specify
useful event spaces in complicated situations such as continuous simple
spaces, sequence spaces, and function spaces. We are now ready to provide
the proper, most useful event space for the real line.

[2.10] Given the real line R, the Borel field (or, more accurately, the Borel
sigma-field) is defined as the sigma-field generated by all the open
intervals of the form (a,b). The members of the Borel field are called
Borel sets. We shall denote the Borel field by B(R), and hence

B(R) = o ( all open intervals ) .

Since B(R) is a sigma-field and since it contains all of the open intervals,
it must also consider limit sets of the form

(—00,b) = nlLIr;O(—n,b),
(a,00) = lim (a,n) ,

n—oo
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and
{a} = lim (a—1/n,a+1/n),

that is, the Borel field must include semi-infinite open intervals and the
singleton sets or individual points. Furthermore, since the Borel field is a
sigma-field it must contain differences. Hence it must contain semi-infinite
half-open sets of the form

(_Oovb] = (—O0,00) - (b,oo) )

and since it must contain unions of its members, it must contain half-open
intervals of the form

(a,b] = (a,b) U {b} and [a,b) = (a,b) U{a} .

In addition, it must contain all closed intervals and all finite or countable
unions and complements of intervals of any of the preceding forms. Roughly
speaking, the Borel field contains all subsets of the real line that can be
obtained as an approximation of countable combinations of intervals. It is
a deep and difficult result of measure theory that the Borel field of the real
line is in fact different from the power set of the real line; that is, there
exist subsets of the real line that are not in the Borel field. While we will
not describe such a subset, we can guarantee that these “unmeasurable”
sets have no physical importance, that they are very hard to construct, and
that an engineer will never encounter such a subset in practice. It may,
however, be necessary to demonstrate that some weird subset is in fact an
event in this sigma-field. This is typically accomplished by showing that it
is the limit of simple Borel sets.

In some cases we wish to deal not with a sample space that is the entire
real line, but one that is some subset of the real line. In this case we define
the Borel field as the Borel field of the real line “cut down” to the smaller
space.

Given that the sample space, €2, is a Borel subset of the real line R, the
Borel field of 2, denoted B(€), is defined as the collection of all sets of the
form FNQ, for F € B(R); that is, the intersection of  with all of the Borel
sets of R forms the class of Borel sets of .

It can be shown (problem 2.3) that, given a discrete subset A of the
real line, the Borel field B(A) is identical to the power set of A. Thus, for
the first three examples of sample spaces, the Borel field serves as a useful
event space since it reduces to the intuitively appealing class of all subsets
of the sample space.

The remaining examples of sample spaces are all product spaces. The
construction of event spaces for such product spaces — that is, spaces of
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vectors, sequences, or waveforms — is more complicated and less intuitive
than the constructions for the preceding event spaces. In fact, there are
several possible techniques of construction, which in some cases lead to
different event spaces. We wish to convey an understanding of the structure
of such event spaces, but we do not wish to dwell on the technical difficulties
that can be encountered. Hence we shall study only one of the possible
constructions — the simplest possible definition of a product sigma-field —
by making a direct analogy to a product sample space. This definition will
suffice for most systems studied herein, but it has shortcomings. At this
time we mention one particular weakness: The event space that we shall
define may not be big enough when studying the theory of continuous time
random processes.

[2.11] Given an abstract space A, a sigma-field F of subsets of A, an index
set Z, and a product sample space of the form

AI:HAt,

tel

where the A; are all replicas of A, the product sigma-field

Fr=1]#,

tel

is defined as the sigma-field generated by all “one-dimensional” sets
of the form

{{ay; t€Z}: ap € F for t =s and ay € Ay for t # s}

for some s € 7 and some F € F; that is, the product sigma-field
is the sigma-field generated by all “one-dimensional” events formed
by collecting all of the vectors or sequences or waveforms with one
coordinate constrained to lie in a one-dimensional event and with the
other coordinates unrestricted. The product sigma-field must contain
all such events; that is, for all possible indices s and all possible events
F.

Thus, for example, given the one-dimensional abstract space R, the real
line along with its Borel field, Figure 2.3 (a)—(c) depicts three examples of
one-dimensional sets in %2, the two-dimensional Euclidean plane. Note, for
example, that the unit circle {(z,y) : % +y? < 1} is not a one-dimensional
set since it requires simultaneous constraints on two coordinates.

More generally, for a fixed finite k the product sigma-field B(R)Z* (or
simply B(R)*) of k—dimensional Euclidean space R* is the smallest sigma-
field containing all one-dimensional events of the form {x = (xg, z1,... ,Zk—1) :
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Figure 2.3: (a) {(xo,z1) : 20 € (1,3)}, (b) {(zo,z1) : =1 € (3,6)},
() {(zo,x1) : 1 € (4,5) U (—00,-2)}, (d) {(z0,21) : xo € (1,3);21 €
(3,6)}, One- and two-dimensional events in two-dimensional space.

x; € F} for some i =0,1,... ,k — 1 and some Borel set F' of R. The two-
dimensional example Figure 2.3(a) has this form with k¥ = 2,i = 0, and
F = (1,3). This one-dimensional set consists of all values in the infinite
rectangle between 1 and 3 in the zy direction and between —oo and oo in
the z; direction.

To summarize, we have defined a space A with event space F, and an
index set Z such as Z,,Z R, or [0,1), and we have formed the product
space AZ and the associated product event space FZ. We know that this
event space contains all one-dimensional events by construction. We next
consider what other events must be in FZ by virtue of its being an event
space.

After the one-dimensional events that pin down the value of a single
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coordinate of the vector or sequence or waveform, the next most general
kinds of events are finite-dimensional sets that separately pin down the
values of a finite number of coordinates. Let K be a finite collection of
members of Z and hence X C Z. Say that K has K members, which
we shall denote as {k;; i = 0,1,...,K — 1}. These K numbers can be
thought of as a collection of sample times such as {1,4,8,156,1027} for
a sequence or {1.5,9.07,40.0,41.2,41.3} for a waveform. We assume for
convenience that the sample times are ordered in increasing fashion. Let
{Fy,;i=0,1,... , K — 1} be a collection of members of F. Then a set of
the form

{z;t €} my, € Fy;0=0,1,... , K — 1}

is an example of a finite-dimensional set. Note that it collects all sequences
or waveforms such that a finite number of coordinates are constrained to
lie in one-dimensional events. An example of two-dimensional sets of this
form in two-dimensional space is illustrated in Figure 2.3(d). Observe there
that when the one-dimensional sets constraining the coordinates are inter-
vals, then the two-dimensional sets are rectangles. Analogous to the two-
dimensional example, finite-dimensional events having separate constraints
on each coordinate are called rectangles. Observe, for example, that a circle
or sphere in Euclidean space is not a rectangle because it cannot be defined
using separate constraints on the coordinates; the constraints on each co-
ordinate depend on the values of the others — e.g., in two dimensions we
require that #3 <1 — z%.

Note that Figure 2.3(d) is just the intersection of examples (a) and (b) of
Figure 2.3. In fact, in general we can express finite-dimensional rectangles
as intersections of one-dimensional events as follows:

K—1
Haxp; t €T} oy, € Fr,;;i=0,1,... ,K-1} = ﬂ {{z; t €T} : oy, € Fi}
i=0

that is, a set constraining a finite number of coordinates to each lie in
one-dimensional events or sets in F is the intersection of a collection of
one-dimensional events. Since F7 is a sigma-field and since it contains the
one-dimensional events, it must contain such finite intersections, and hence
it must contain such finite-dimensional events.

By concentrating on events that can be represented as the finite inter-
section of one-dimensional events we do not mean to imply that all events
in the product event space can be represented in this fashion — the event
space will also contain all possible limits of finite unions of such rectangles,
complements of such sets, and so on. For example, the unit circle in two
dimensions is not a rectangle, but it can be considered as a limit of unions
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of rectangles and hence is in the event space generated by the rectangles.
(See problem 2.31.)

The moral of this discussion is that the product sigma-field for spaces
of sequences and waveforms must contain (but not consist exclusively of)
all sets that are described by requiring that the outputs of coordinates for
a finite number of events lie in sets in the one-dimensional event space F.

We shall further explore such product event spaces when considering
random processes, but the key points remain

1. a product event space is a sigma-field, and

2. it contains all “one-dimensional events” consisting of subsets of the
product sample space formed by grouping together all vectors or se-
quences or waveforms having a single fixed coordinate lying in a one-
dimensional event. In addition, it contains all rectangles or finite-
dimensional events consisting of all vectors or sequences or wave-
forms having a finite number of coordinates constrained to lie in one-
dimensional events.

2.3.3 Probability Measures

The defining axioms of a probability measure as given in equations (2.22)
through (2.25) correspond generally to intuitive notions, at least for the
first three properties. The first property requires that a probability be
a nonnegative number. In a purely mathematical sense, this is an arbi-
trary restriction, but it is in accord with the long history of intuitive and
combinatorial developments of probability. Probability measures share this
property with other measures such as area, volume, weight, and mass.

The second defining property corresponds to the notion that the prob-
ability that something will happen or that an experiment will product one
of its possible outcomes is one. This, too, is mathematically arbitrary but
is a convenient and historical assumption. (From childhood we learn about
things that are “100% certain;” obviously we could as easily take 1 or =
(but not infinity — why?) to represent certainty.)

The third property, “additivity” or “finite additivity,” is the key one.
In English it reads that the probability of occurrence of a finite collection
of events having no points in common must be the sum of the probabilities
of the separate events. More generally, the basic assumption of measure
theory is that any measure — probabilistic or not — such as weight, volume,
mass, and area should be additive: the mass of a group of disjoint regions
of matter should be the sum of the separate masses; the weight of a group
of objects should be the sum of the individual weights. Equation (2.24)
only pins down this property for finite collections of events. The additional
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restriction of (2.25), called countable additivity, is a limiting or asymptotic
or infinite version, analogous to (2.19) for set algebra. This again leads
to the rhetorical questions of why the more complicated, more restrictive,
and less intuitive infinite version is required. In fact, it was the addition of
this limiting property that provided the fundamental idea for Kolmogorov’s
development of modern probability theory in the 1930s.

The response to the rhetorical question is essentially the same as that
for the asymptotic set algebra property: Countably infinite properties are
required to handle asymptotic and limiting results. Such results are crucial
because we often need to evaluate the probabilities of complicated events
that can only be represented as a limit of simple events. (This is analogous
to the way that integrals are obtained as limits of finite sums.)

Note that it is countable additivity that is required. Uncountable ad-
ditivity cannot be defined sensibly. This is easily seen in terms of the fair
wheel mentioned at the beginning of the chapter. If the wheel is spun, any
particular number has probability zero. On the other hand, the probability
of the event made up of all of the uncountable numbers between 0 and 1 is
obviously one. If you consider defining the probability of all the numbers
between 0 and 1 to be the uncountable sum of the individual probabilities,
you see immediately the essential contradiction that results.

Since countable additivity has been added to the axioms proposed in
the introduction, the formula (2.11) used to compute probabilities of events
broken up by a partition immediately extends to partitions with a countable
number of elements; that is, if Fi; k= 1,2,... forms a partition of {2 into
disjoint events (F,, N Fy, = 0 if n # k and J, Fi, = ), then for any event G

P(G)=>_ P(GNF}). (2.27)
k=1

oo

Limits of Probabilities

At times we are interested in finding the probability of the limit of a se-
quence of events. To relate the countable additivity property of (2.25)
to limiting properties, recall the discussion of the limiting properties of
events given earlier in this chapter in terms of increasing and decreas-
ing sequences of events. Say we have an increasing sequence of events
F,;n=20/12,... ,F,_1 C F,, and let F' denote the limit set, that is,
the union of all of the F,,. We have already argued that the limit set F is
itself an event. Intuitively, since the F;, converge to F', the probabilities of
the F, should converge to the probability of F. Such convergence is called
a continuity property of probability and is very useful for evaluating the
probabilities of complicated events as the limit of a sequence of probabili-
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ties of simpler events. We shall show that countable additivity implies such
continuity. To accomplish this, define the sequence of sets Gy = Fj and
G,=F,—F,_1forn=1,2,.... The G,, are disjoint and have the same
union as do the F,, (see Figure 2.2(a) as a visual aid). Thus we have from
countable additivity that

P (nlln;an) - P (GFk>
k=0

- (i)
k=0
= Y P(Gy)
k=0

n

= lim Y P(Gy),

k=0

where the last step simply uses the definition of an infinite sum. Since
G,=F,—F,_1and F,_; C F,, P(G,) = P(F,) — P(F,_1) and hence

n

> P(Gy)

k=0

k=1

= P(Fn),

an example of what is called a “telescoping sum” where each term cancels
the previous term and adds a new piece, i.e.,

P(F,) = P(F,)— P(Fn_1)
+ P(Fn—l)*P(Fn—2)
+ P(Fus) = P(Fuos)

+ P(F1) — P(Fo)
+  P(Fo)
Combining these results completes the proof of the following statement.

If F,, is a sequence of increasing events, then

P ( lim Fn) = lim P(F,), (2.28)

n—oo n—oo

that is, the probability of the limit of a sequence of increasing
events is the limit of the probabilities.
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Note that the sequence of probabilities on the right-hand side of (2.28) is in-
creasing with increasing n. Thus, for example, probabilities of semi-infinite
intervals can be found as a limit as P((—o00,a]) = lim,—o P((—n,a]). A
similar argument can be used to show that one can also interchange the
limit with the probability measure given a sequence of decreasing events;
that is,

If F,, is a sequence of decreasing events, then

P ( lim Fn) = lim P(F,). (2.29)
that is, the probability of the limit of a sequence of decreasing
events is the limit of the probabilities.

Note that the sequence of probabilities on the right-hand side of (2.29)
is decreasing with increasing n. Thus, for example, the probabilities of
points can be found as a limit of probabilities of intervals, P({a}) =
lim, oo P((a —1/n,a+ 1/n)).

It can be shown (see problem 2.20) that, given (2.22) through (2.24),
the three conditions (2.25), (2.28), and (2.29) are equivalent; that is, any
of the three could serve as the fourth axiom of probability.

Property (2.28) is called continuity from below, and (2.29) is called conti-
nuity from above. The designations “from below” and “from above” relate
to the direction from which the respective sequences of probabilities ap-
proach their limit. These continuity results are the basis for using integral
calculus to compute probabilities, since integrals can be expressed as limits
of sums.

2.4 Discrete Probability Spaces

We now provide several examples of probability measures on our examples
of sample spaces and sigma-fields and thereby give some complete examples
of probability spaces.

The first example formalizes the description of a probability measures
as a sum of a pmf as introduced in the introductory section.

[2.12] Let © be a finite set and let F be the power set of Q. Suppose that
we have a function p(w) that assigns a real number to each sample
point w in such a way that

p(w) >0, all we (2.30)
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and

> pw)=1. (2.31)

wenN

Define the set function P by

P(F)=> pw) Y lrwhpw), al FeF (2.32)

weF w€eN

where 1p(w) is the indicator function of the set F), 1 if w € F and 0
otherwise.

For simplicity we drop the w € Q underneath the sum; that is, when
no range of summation is explicit, it should be assumed the sum is over all
possible values. Thus we can abbreviate (2.32) to

P(F) =) 1p(w)pw) , all F € F (2.33)

P is easily verified to be a probability measure: It obviously satisfies
axioms 2.1 and 2.2. It is finitely and countably additive from the properties
of sums. In particular, given a sequence of disjoint events, only a finite
number can be distinct (since the power set of a finite space has only a
finite number of members). To be disjoint, the balance of the sequence
must equal (). The probability of the union of these sets will be the finite
sum of the p(w) over the points in the union which equals the sum of the
probabilities of the sets in the sequence. Example [2.1] is a special case of
example [2.12], as is the coin flip example of the introductary section.

The summation (2.33) used to define probability measures for a discrete
space is a special case of a more general weighted sum, which we pause
to define and consider. Suppose that g is a real-valued function defined
on Q, ie., g : @ — R assigns a real number g(w) to every w € Q. We
could consider more general complex-valued functions, but for the moment
it is simpler to stick to real valued functions. Also, we could consider
subsets of R, but we leave it more generally at this time. Recall that in
the introductory section we considered such a function to be an example
of signal processing and called it a random variable. Given a pmf p, define
the expectation® of g (with respect to p) as

E(g) = 3 g(w)p(w). (2.34)

2This is not in fact the fundamental definition of expectation that will be
introduced in chapter 4, but it will be seen to be equivalent
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With this definition (2.33) with g(w) = 1p(w) yields
P(F) = B(1p), (2.35)

showing that the probability of an event is the expectation of the indicator
function of the event. Mathematically, we can think of expectation as a
generalization of the idea of probability since probability is the special case
of expectation that results when the only functions allowed are indicator
functions.

Expectations are also called probabilistic averages or statistical aver-
ages. For the time being, probabilities are the most important examples
of expectation. We shall see many examples, however, so it is worthwhile
to mention a few of the most important. Suppose that the sample space
is a subset of the real line, e.g., Z or Z,. One of the most commonly
encountered expectations is the mean or first moment

m= pr(w), (2.36)

where g(w) = w, the identity function. A more general idea is the kth
moment defined by

m®) = 3" wltp(w), (2:37)

so that m = m{). After the mean, the most commonly encountered mo-
ment in practice is the second moment,

m® =" w|*p(w). (2.38)
Moments can be thought of as parameters describing a pmf, and some

computations involving signal processing will turn out to depend only on
certain moments.

A slight variation on k£ order moments is the so-called centralized mo-
ments formed by substracting the mean before taking the power:

D fw —m[Fp(w), (2.39)

but the only such moment commonly encountered in practice is the variance

o? = (w—m)’pw). (2.40)
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The variance and the second moment are easily related as

= Y- m)Pp(w)
= Z(w2 — 2wm + m?)p(w)

— Z w2p(w) —2m Z wp(w) + m? ZP(W)

= m® —2m?+m?
m® —m?2, (2.41)

Probability Mass Functions

A function p(w) satisfying (2.30) and (2.31) is called a probability mass func-
tion or pmf. It is important to observe that the probability mass function
is defined only for points in the sample space, while a probability measure
is defined for events, sets which belong to an event space. Intuitively, the
probability of a set is given by the sum of the probabilities of the points
as given by the pmf. Obviously it is much easier to describe the proba-
bility function than the probability measure since it need only be specified
for points. The axioms of probability then guarantee that the probability
function can be used to compute the probability measure. Note that given
one, we can always determine the other. In particular, given the pmf p, we
can construct P using (2.32). Given P, we can find the corresponding pmf
p from the formula

p(w) = P({w}) -

We list below several of the most common examples of pmf’s. The
reader should verify that they are all indeed valid pmf’s, that is, that they
satisfy (2.30) and (2.31).

The binary pmf. Q = {0,1}; p(0) = 1 — p, p(1) = p, where p is a
parameter in (0, 1).

A uniform pmf. Q =2, ={0,1,... ,n—1} and p(k) = 1/n; k € Z,.
The binomial pmf. Q= Z2,,; ={0,1,... ,n} and

n n
p(k) = ( % )p’“(l—p) Y k€ Zn,

where
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is the binomial coefficient.

The binary pmf is a probability model for coin flipping with a biased
coin or for a single sample of a binary data stream. A uniform pmf on Zg
can model the roll of a fair die. Observe that it would not be a good model
for ASCII data since, for example, the letters ¢ and e and the symbol for
space have a higher probability than other letters. The binomial pmf is a
probability model for the number of heads in n successive independent flips
of a biased coin, as will later be seen.

The same construction provides a probability measure on countably
infinite spaces such as Z and Z,.. It is no longer as simple to prove countable
additivity, but it should be fairly obvious that it holds and, at any rate, it
follows from standard results in elementary analysis for convergent series.
Hence we shall only state the following example without proving countable
additivity, but bear in mind that it follows from the properties of infinite
summations.

[2.13] Let £ be a space with a countably infinite number of elements and
let F be the power set of 2. Then if p(w); w € 2 satisfies (2.30) and
(2.31), the set function P defined by (2.32) is a probability measure.

Two common examples of pmf’s on countably infinite sample spaces
follow. The reader should test their validity.

The geometric pmf. Q = {1,2,3,...} and p(k) = (1 —p)k~1p; k =
1,2,..., where p € (0,1) is a parameter.

The Poisson pmf. Q = Z, = {0,1,2,...} and p(k) = (A\Fe™?)/k!,

where X is a parameter in (0,00). (Keep in mind that 0! 2 1.)

We will later see the origins of several of these pmf’s and their appli-
cations. For example, both the binomial and the geometric pmf will be
derived from the simple binary pmf model for flipping a single coin. For
the moment they should be considered as common important examples.
Various properties of these pmf’s and a variety of calculations involving
them are explored in the problems at the end of the chapter.

Computational Examples

The various named pmf’s provide examples for computing probabilities and
other expectations. Although much of this is prerequisite material, it does
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not hurt to collect several of the more useful tricks that arise in evaluating
sums. The binary pmf is too simple to alone provide much interest, so first
consider the uniform pmf on Z,. This is trivially a valid pmf since it is
nonnegative and sums to 1. The probability of any set is simply

P(F)=— E 1 =17
( ) n F(W) n ’
where #(F) denotes the number of elements or points in the set F. The

mean is given by

B ~n(n+1)
m—Zk—T, (2.42)

a standard formula easily verified by induction, as detailed in appendix B.
The second moment is given by

- k(k+1)(2k+1)
@y T 2.43
m , .
k§:1 6 (2.43)

as can also be verified by induction. The variance can be found by combin-
ing (2.43), (2.42), and (2.41).

The binomial pmf is more complicated. The first issue is to prove that it
sums to one and hence is a valid pmf (it is obviously nonnegative). This is
accomplished by recalling the binomial theorem from high school algebra:

(a+b)" = zn: < . ) a"bk (2.44)

k=0

and setting a = p and b = 1 — p to write

S = S (h)ra-prt
k=0 k=0
(p+1-p)"
= 1.

Finding moments is trickier here, and we shall later develop a much
easier way to do this using exponential transforms. Nonetheless, it provides
some useful practice to compute an example sum, if only to demonstrate
later how much work can be avoided! Finding the mean requires evaluation
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of the sum

The trick here is to recognize that the sum looks very much like the terms
in the binomial theorem, but a change of variables is needed to get the
binomial theorem to simplify things. Changing variables by defining [ =
k — 1, the sum becomes

l+1(1 _ p)n—l—l’

M |

n—l—l m—1—nun?
=0

which will very much resemble the binomial theorem with n — 1 replacing
n if we factor out a p and an n:

(n—1)! ne1—
pz ,l,p(l p) !

= np(p+1 -p)"!
= np. (2.45)

3
Il

The second moment is messier, so its evaluation is postponed until simpler
means are developed.

The geometric pmf is handled using the geometric progression, usually
treated in high school algebra and summarized in appendix B. From (B.4)
in appendix B we have for any real a with |a| < 1

o0
St

k=0

(2.46)

which proves that the geometric pmf indeed sums to 1.
Evaluation of the mean of the geometric pmf requires evaluation of the

=> kp(k) = kp(l—p)*!
k=1
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One may have access to a book of tables including this sum, but a use-
ful trick can be used to evaluate the sum from the well-known result for
summing a geometric series. The trick involves differentiating the usual
geometric progression sum, as detailed in appendix B, where it is shown
for any ¢ € (0, 1) that

=, . 1
kz:%qu 1= T —gF (2.47)

Set g =1 — p yields

(2.48)

bR

A similar idea works for the second moment. From (B.7) of appendix B
the second moment is given by

- _ 2 1
m® =3 "kp(1 - p) ! =p(5 + =) (2.49)
P p p
and hence from (2.41) the variance is
2
o’ = =l (2.50)

As an example of a probability computation using a geometric pmf,
suppose that (2, F, P) is a discrete probability space with Q = Z,, F the
power set of 0, and P the probability measure induced by the geometric
pmf with parameter p. Find the probabilities of the events F' = {k : k > 10}
and G = {k: k is odd }. Alternatively note that F = {10,11,12,...} and
G ={1,3,5,7,...} (we consider only odd numbers in the sample space,
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that is, only positive odd numbers). We have that

P(F) = > p(k)
keF
= > p(1-p*!
k=10
P N~
= 1_%;0(1 P)
= et Y-
k=10
= p(1-p)°> (1-p)*
k=0
= (1-p)°

where the suitable form of the geometric progression has been derived from
the basic form (B.4). While we have concentrated on the calculus, this
problem could be interpreted as a solution to a word problem. For example,
suppose you arrive at the Stanford Post Office and you know that the
probability of k people being in line is a geometric distribution with p = 1/2.
What is the probability that there are at least ten people in line? From the
solution just obtained the answer is (1 —.5)% = 279,

To find the probability of an odd outcome, we proceed in the same
general fashion to write

PG) = > plk)
keG
= p(1—p)*!
k=13,...
= p Y, (1-p*
k=0,2,4,...
= pY [1-pQ
k=0
p 1

1-(1-p? 2-p

Thus in the English example of the post office lines, the probability of
finding an odd number of people in line is 2/3.
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Lastly we consider the Poisson pmf, again beginning with a verification
that it is indeed a pmf. Consider the sum
o (o) o
Aee=2 _a Ak
Dok =) S =ty

k=0 k=0 k=0

Here the trick is to recognize the sum as the Taylor series expansion for an
exponential, that is,
o0
>
k=0

‘ >~

k
K

o

whence -
Zp(k:) =e et =1,
k=0

proving the claim.
To evaluate the mean of the Poisson pmf, begin with

0 e Aee—A
kzzokp(k) = > h

k=1
)

_ AP

Change variables [ = k — 1 and pull a A out of the sum to write

i Ep(k) = Ae™ i ?—:
k=0 k=0

Recognizing the sum as e*, this yields
m=A\. (2.51)

The second moment is found similarly, but with more bookkeeping. Anal-
ogous to the mean computation,

et )\kef)\
(2 _ 2
m® =) K
k=1
> Nee—A
= D k=)= +m

k=2

0 NeemA

= Zm""m

k=1
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Change variables [ = k — 1 and pull A2 out of the sum to obtain

= AleA
2 _ 2
m = A Z I +m
1=0
= A4+ (2.52)
so that from (2.41) the variance is
o =\ (2.53)

Multidimensional pmf’s

While the foregoing ideas were developed for scalar sample spaces such as
Z,, they also apply to vector sample spaces. For example, if A is a discrete
space, then so is the vector space A* = {all vectors x = (zo, . ..7,_1) with
x; €A,i=0,1,... . k—1}. A common example of a pmf on vectors is the
product pmf of the following example.

[2.15] The product pmf.
Let p;; i =0,1,... ,k — 1, be a collection of one-dimensional pmf’s;
that is, for each i = 0,1,... ,k — 1 p;(k); r € A satisfies (2.30) and
(2.31). Define the product k—dimensional pmf p on A* by

k—1
p(x) = p(xo, 1, sak—1) = [ [ pilw:) -
=0

As a more specific example, suppose that all of the marginal pmf’s are
the same and are given by a Bernoulli pmf:

p(z) =p°(1—p)'~% z=0,1.
Then the corresponding product pmf for a k£ dimensional vector becomes

k—1
p(xo, 1, ... ,Th—1) = H p"i(1—p)to
=0
_ pw(ﬂloﬂh,m ;xk—l)(l _ p)k—w(woywl,m ,11%1),

where w(xg,x1,...,25—_1) is the number of ones occurring in the binary
k-tuple xg,z1,... ,2k_1, the Hamming weight of the vector.
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2.5 Continuous Probability Spaces

Continuous spaces are handled in a manner analogous to discrete spaces,
but with some fundamental differences. The primary difference is that
usually probabilities are computed by integrating a density function instead
of summing a mass function. The good news is that most formulas look
the same with integrals replacing sums. The bad news is that there are
some underlying theoretical issues that require consideration. The problem
is that integrals are themselves limits, and limits do not always exist in the
sense of converging to a finite number. Because of this, some care will be
needed to clarify when the resulting probabilities are well defined.

[2.14] Let (Q,F) = (R, B(R)), the real line together with its Borel field.
Suppose that we have a real-valued function f on the real line that
satisfies the following properties

f(r)>=0, all re Q. (2.54)

/ fr)dr=1, (2.55)
Q

that is, the function f(r) has a well-defined integral over the real line.
Define the set function P by

P(F) :/Ff(r) dr ::/1F(r)f(r)dr, F e B(R) . (2.56)

We note that a probability space defined as a probability measure on a
Borel field is an example of a Borel space.

Again as in the discrete case, this integral is a special case of a more
general weighted integral: Suppose that ¢ is a real-valued function defined
on Q, ie., g : Q — R assigns a real number g(r) to every r € . Recall
that such a function is called a random variable. Given a pdf f, define the
expectation of g (with respect to f) as

B(9) = [ otr)f) ar (257)
With this definition we can rewrite (2.56) as
P(F) = E(1p), (2.58)

which has ezactly the same form as in the discrete case. Thus probabilities
can be considered as expectations of indicator functions in both the dis-
crete case where the probability measure is described by a pmf and in the
continuous case if the probability measure is described by a pdf.
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Asin the discrete case, there are several particularly important examples
of expectations if the sample space is a subset of the real line, e.g., R or
[0,1). The definitions are exact integral analogs of those for the discrete
cases: the mean or first moment

m = /rf(r) dr, (2.59)

the kth moment
m*) = /rkf(r) dr, (2.60)

including the second moment,

m® = /rgf(r) dr, (2.61)

the centralized moments formed by substracting the mean before taking the
power:

/(r —m)* f(r)dr, (2.62)

including the variance

o? = /(r —m)2f(r)dr. (2.63)
Often the kth absolute moment is used instead:

m) = int|r|* f(r) dr. (2.64)

a

As in the discrete case, the variance and the second moment are easily
related as

o2 =m® —m? (2.65)

An important technical detail not yet considered is whether or not the
set function defined as an integral over a pdf is actually a probability mea-
sure. In particular, are the probabilities of all events well defined and do
they satisfy the axioms of probability? Intuitively this should be the case
since (2.54) to (2.56) are the integral analogs of the summations of (2.30)
to (2.32) and we have argued that summing pmf’s provides a well-defined
probability measure. In fact, this is mathematically a delicate issue which
leads to the reasons behind the requirements for sigma-fields and Borel
fields. Before exploring these issues in more depth in the next section, the
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easy portion of the answer should be recalled: We have already argued in
the introduction to this chapter that if we define a set function P(F') as the
integral of a pdf over the set F', then if the integral exists for the sets in
question, the set function must be nonnegative, normalized, and additive,
that is, it must satisfy the first three axioms of probability. This is well
and good, but it leaves some key points unanswered. First, is the candi-
date probability measure defined for all Borel sets? I.e., are we guaranteed
that the integral will make sense for all sets (events) of interest? Second,
is the candidate probability measure also countably additive or, equiva-
lently, continuous from above or below? The answer to both questions is
unfortunately no if one considers the integral to be a Riemann integral, the
integral most engineers learn as undergraduates. The integral is not certain
to exist for all Borel sets, even if the pdf is a simple uniform pdf. Riemann
integrals in general do not have nice limiting properties, so the necessary
continuity properties do not hold in general for Rieman integrals. These
delicate issues are considered next in an optional subsection and further in
appendix B, but the bottom line can be easily summarized as follows.

e Eq. (2.56) defines a probability measure on the Borel space of the
real line and its Borel sets provided that the integral is interpreted as
a Lebesgue integral. In all practical cases of interest, the Lebesgue
integral is either equal to the Riemann integral, usually more famil-
iar to engineers, or to a limit of Riemann integrals of a converging
sequence of sets.

*Probabilities as Integrals

The first issue is fundamental: Does the integral of (2.56) make sense; i.e.,
is it well-defined for all events of interest? Suppose first that we take the
common engineering approach and use Riemann integration — the form
of integration used in elementary calculus. Then the above integrals are
defined at least for events F' that are intervals. This implies from the
linearity properties of Riemann integration that the integrals are also well-
defined for events F' that are finite unions of intervals. It is not difficult,
however, to construct sets F' for which the indicator function 1 is so nasty
that the function f(r)1r(r) does not have a Riemann integral. For example,
suppose that f(r) is 1 for r € [0,1] and 0 otherwise. Then the Riemann
integral [ 1(r)f(r)dr is not defined for the set F' of all irrational numbers,
yet intuition should suggest that the set has probability 1. This intuition
reflects the fact that if all points are somehow equally probable, then since
the unit interval contains an uncountable infinity of irrational numbers and
only a countable infinity of rational numbers, then the probability of the
former set should be one and that of the latter 0. This intuition is not
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reflected in the integral definition, which is not defined for either set by the
Riemann approach. Thus the definition of (2.56) has a basic problem: The
integral in the formula giving the probability measure of a set might not
be well-defined.

A natural approach to escaping this dilemma would be to use the Rie-
mann integral when possible, i.e., to define the probabilities of events that
are finite unions of intervals, and then to obtain the probabilities of more
complicated events by expressing them as a limit of finite unions of inter-
vals, if the limit makes sense. This would hopefully give us a reasonable
definition of a probability measure on a class of events much larger than the
class of all finite unions of intervals. Intuitively, it should give us a proba-
bility measure of all sets that can be expressed as increasing or decreasing
limits of finite unions of intervals.

This larger class is, in fact, the Borel field, but the Riemann integral
has the unfortunate property that in general we cannot interchange limits
and integration; that is, the limit of a sequence of integrals of converging
functions may not be itself an integral of a limiting function.

This problem is so important to the development of a rigorous proba-
bility theory that it merits additional emphasis: even though the familiar
Riemann integrals of elementary calculus suffice for most engineering and
computational purposes, they are too weak for building a useful theory,
proving theorems, and evaluating the probabilities of some events which
can be most easily expressed as limits of simple events. The problems are
that the Riemann integral does not exist for sufficiently general functions
and that limits and integration cannot be interchanged in general.

The solution is to use a different definition of integration — the Lebesgue
integral. Here we need only concern ourselves with a few simple properties
of the Lebesgue integral, which are summarized below. The interested
reader is referred to appendix B for a brief summary of basic definitions and
properties of the Lebesgue integral which reinforce the following remarks.

The Riemann integral of a function f(r) “carves up” or partitions the
domain of the argument r and effectively considers weighted sums of the
values of the function f(r) as the partition becomes ever finer. Conversely,
the Lebesgue integral “carves up” the values of the function itself and effec-
tively defines an integral as a limit of simple integrals of quantized versions
of the function. This simple change of definition results in two fundamen-
tally important properties of Lebesgue integrals that are not possessed by
Riemann integrals:

1. The integral is defined for all Borel sets.

2. Subject to suitable technical conditions (such as integrands with bounded
absolute value), one can interchange the order of limits and integra-
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tion; e.g., if F,, T F, then

P(F)

/ Lp(r)f(r)dr = / Jim 1, (r)f(r)dr
= lim [1g, (r)f(r)dr= lim P(F,) ,

n—oo n—oo
that is, (2.28) holds, and hence the set function is continuous from
below.

We have already seen that if the integral exists, then (2.56) ensures that
the first three axioms hold. Thus the existence of the Lebesgue integral on
all Borel sets coupled with continuity and the first three axioms ensures
that a set function defined in this way is indeed a probability measure.
We observe in passing that even if we confined interest to events for which
the Riemann integral made sense, it would not follow that the resulting
probability measure would be countably additive: As with continuity, these
asymptotic properties hold for Lebesgue integration but not for Riemann
integration.

How do we reconcile the use of a Lebesgue integral given the assumed
prerequisite of traditional engineering calculus courses based on the Rie-
mann integral? Here a standard result of real analysis comes to our aid: If
the ordinary Riemann integral exists, then so does the Lebesgue integral,
and the two are the same. If the Riemann integral does not exist, then we
can try to find the probability as a limit of probabilities of simple events
for which the Riemann integrals do exist, e.g., as the limit of probabilities
of finite unions of intervals. In other words, Riemann calculus will usually
suffice for computation (at least if f(r) is Riemann integrable) provided we
realize that we may have to take limits of Riemann integrals for compli-
cated events. Observe, for example, that in the case mentioned where f(r)
is 1 on [0, 1], the probability of a single point 1/2 can now be found easily
as a limit of Riemann integrals:

1
P({—}):lim dr =1im2e =0,
2 e—0 (l/Q—e, 1/2+€) e—0
as expected.

In summary, our engineering compromise is this: We must realize that
for the theory to be valid and for (2.56) indeed to give a probability measure
on subsets of the real line, the integral must be interpreted as a Lebesgue
integral and Riemann integrals may not exist. For computation, however,
one will almost always be able to find probabilities by either Riemann
integration or by taking limits of Riemann integrals over simple events.
This distinction between Riemann integrals for computation and Lebesgue
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integrals for theory is analogous to the distinction between rational numbers
and real numbers. Computational and engineering tasks use only arithmetic
of finite precision in practice. However, in developing the theory irrational
numbers such as v/2 and 7 are essential. Imagine how hard it would be
to develop a theory without using irrational numbers, and how unwise it
would be to do so just because the eventual computations do not use them.
So it is with Lebesgue integrals.

Probability Density Functions

The function f used in (2.54) to (2.56) is called a probability density function
or pdf since it is a nonnegative function that is integrated to find a total
mass of probability, just as a mass density function in physics is integrated
to find a total mass. Like a pmf, a pdf is defined only for points in €2 and
not for sets. Unlike a pmf, a pdf is not in itself the probability of anything;
for example, a pdf can take on values greater than one, while a pmf cannot.
Under a pdf, points frequently have probability zero, even though the pdf
is nonzero. We can, however, interpret a pdf as being proportional to a
probability in the following sense. For a pmf we had

p(z) = P({x})

Suppose now that the sample space is the real line and that a pdf f is
defined. Let F' = [z,2 + Ax), where Ax is extremely small. Then if f is
sufficiently smooth, the mean value theorem of calculus implies that

z+Ax
P(lz,z + Az)) = / fla)da ~ f(z)Az, (2.66)
Thus if a pdf f(z) is multiplied by a differential Az, it can be interpreted
as (approximately) the probability of being within Az of x.

Both probability functions, the pmf and the pdf, can be used to define
and compute a probability measure: The pmf is summed over all points
in the event, and the pdf is integrated over all points in the event. If the
sample space is the subset of the real line, both can be used to compute
expectations such as moments.

Some of the most common pdf’s are listed below. As will be seen, these
are indeed valid pdf’s, that is, they satisfy (2.54) and (2.55). The pdf’s are
assumed to be 0 outside of the specified domain. b,a, A > 0, m, and o > 0
are parameters in R.

The uniform pdf. Given b > a, f(r) =1/(b— a) for r € [a,]].
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The exponential pdf. f(r) = \e™*"; 7 > 0.

The doubly exponential (or Laplacian) pdf. f(r) = %e_w"; re
R.

The Gaussian (or Normal) pdf. f(r) = (2r0?)~ /2 exp(_(g%;”)z);
r € R. Since the density is completely described by two parameters: the
mean m and variance o2 > 0, it is common to denote it by N'(m,c?).

Other univariate pdf’s may be found in Appendix C.

Just as we used a pdf to construct a probability measure on the space
(R, B(R)), we can also use it to define a probability measure on any smaller
space (A,B(A)), where A is a subset of R.

As a technical detail we note that to ensure that the integrals all behave
as expected we must also require that A itself be a Borel set of R so that
it is precluded from being too nasty a set. Such probability spaces can be
considered to have a sample space of either i or A, as convenient. In the
former case events outside of A will have zero probability.

Computational Examples

This section is less detailed than its counterpart for discrete probability
because generally engineers are more familiar with common integrals than
with common sums. We confine the discussion to a few observations and
to an example of a multidimensional probability computation.

The uniform pdf is trivially a valid pdf because it is nonnegative and
its integral is simply the length of the the interval on which it is nonzero,
b — a, divided by the length. For simplicity consider the case where a = 0
and b = 1 so that b — a = 1. In this case the probability of any interval
within [0, 1) is simply the length of the interval. The mean is easily found
to be

1 2
T 1
mz/o rdr:7|é:§7 (2.67)
the second moment is
1 3
r 1
m = ; r2dr:§|é=§, (2.68)

and the variance is

2_1 12_
t=r-G) =15 (2.69)



2.5. CONTINUOUS PROBABILITY SPACES 63

The validation of the pdf and the mean, second moment, and variance
of the exponential pdf can be found from integral tables or by the inte-
gral analog to the corresponding computations for the geometric pmf, as
described in appendix B. In particular, it follows from (eq:expint) that

/ e M dr =1, (2.70)
0
from (B.10) that
e 1
m = / rAe Mdr = < (2.71)
0 A
and
e 2
m® = /0 2 e A dr = 2 (2.72)
and hence from (2.65)
2 1
2 _ _

The moments can also be found by integration by parts.

The Laplacian pdf is simpy a mixture of an exponential pdf and its
reverse, so its properties follow from those of an exponential pdf. The
details are left as an exercise.

The Gaussian pdf example is more involved. In appendix B, it is shown
(in the development leading up to (B.15) that

> 1 (w—m)?
e 22 dr=1. (2.74)
[oo V 20'2

It is reasonably easy to find the mean by inspection. The function g(z) =
(z=m)?

(x —m)e” 207 is an odd function, i.e., it has the form g(—z) = —g(z),
and hence its integral is 0 if the integral exists at all.
This means that

> 1 (z—m)?
ze 22 dr=m (2.75)

The second moment and variance are most easily handled by the transform
methods to be developed in Chapter 4 and their evaluation will be deferred
until then, but we observe that the parameter o which we have called the
variance is in fact the variance, i.e.,

/ / 2( ) - 2)2 ( )
i m)-e 20 de‘ =0 . 2. l (i
oo 20
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Computing probabilities with the various pdf’s varies in difficulty. For
simple pdf’s one can easily find the probabilities of simple sets like intervals.
For example, with a uniform pdf on [a,b], then for any a < ¢ < d < b
Pr([e,d]) = (d—¢)/(b— a), the probability of an interval is proportional to
the length of the integral. For the exponential pdf, the probability of an
interval [e,d], 0 < ¢ < d, is given by

d
Pr([e,d]) = / Ae M dy = e M — e, (2.77)

The Gaussian pdf does not yield nice closed form solutions for the proba-
bilities of simple sets like intervals, but it is well tabulated. Unfortunately
there are several variations of how these tables are constructed. The most
common forms are the ® function

Qm):;%;/ﬂe%dm (2.78)

which is the probability of the simple event (—oo,a] = {z : z < a} for
a zero mean unit variance Gaussian pdf N(0,1). The @ function is the
complementary function

1 w2 N
Q(a):E/a e T du=1-®(a). (2.79)

The @ function is used primarily in communications systems analysis where
probabilities of exceeding a threshold describe error events in detection
systems. The error function is defined by

erf(a) = % /Oa e du (2.80)

and it is related to the ) and ® functions by
i
V2

Thus, for example, the probability of the set (—oo, ) for a N (m,o?)
pdf is found by changing variables u = (z — m)/o to be

«@ 1 2
(@=m)
/ —€ 202 dﬂf
o V2mo?

a—m

Qa) = 1(1 — erf(

5 )=1—®(a). (2.81)

P{z:z<a})

o 1 W2
e 2z dx
oo 2
a—m a—m

)=1-Q(

). (2.82)

o
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The probability of an interval (a,b] is then given by

). (2.83)

Observe that the symmetry of a Gaussian density implies that

1—®(a) = ®(—a). (2.84)

As a multidimensional example of probability computation, suppose
that the sample space is R2, the space of all pairs of real numbers. The
probability space consists of this sample space, the corresponding Borel
field, and a probability measure described by a pdf

) = {)\ue_/\””_“y; x €[0,00), y € [0,00) .

0 otherwise

What is the probability of the event F' = {(x,y) : * < y}? As an inter-
pretation, the sample points (z,y) might correspond to the arrival times of
two distinct types of particle at a sensor following its activation, say type
A and type B for x and y, respectively. Then the event is the event that a
particle of type A arrives at the sensor before one of type B. Computation
of the probability is then accomplished as

P(F) // f(x,y) dxdy
(z,y):(z,y)EF

/ / e~ TR do dy.
(z,9):x20,y>0,2<y

This integral is a two-dimensional integral of its argument over the indicated
region. Correctly describing the limits of integration is often the hardest
part of computing probabilities. Note in particular the inclusion of the facts
that both x and y are nonnegative (since otherwise the pdfis 0). The x < y
region for nonnegative  and y is most easily envisioned as the region of
the first quadrant lying above the line x = y, if  and y correspond to the
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horizontal and vertical axes, respectively. Completing the calculus:

0 Y
P(F) = A,u/o dy (/O dxe”e”y)
0 Y
— )\,u/ dye " </ dsce”)
0 0

1
= )\,u/ dye*“yx(l —e )
0

[ee] o0
= o (/ dye™"Y _/ dye_(”+>‘)y>
0 0

I A

qu/\:qu/\'

Mass Functions as Densities

As in systems theory, discrete problems can be considered as continuous
problems by with the aid of the Dirac delta or unit impulse 6(t), a gener-
alized function or singularity function (also, unfortunately, called a distri-
bution) with the property that for any smooth function {g(r); r € R} and
any a € i

/g(r)5(r —a)dr = g(a). (2.85)

Given a pmf p defined on a subset of the real line Q C R, we can define a
pdf f by

fr) = pw)s(r —w). (2.86)

This is indeed a pdf since

/f(r) dr

/(Zp(w)é(r—w)) dr
Zp(w)/d(r—w)dr
= ) pw) =1

In a similar fashion, probabilies are computed as
[1emswrar = [100) (S p@it ) dr

S 0(w) [ 160030 - w)dr

S p@)ir(w) = P(F)
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Given that discrete probability can be handled using the tools of contin-
uous probability in this fashion, it is natural to inquire why not use pdf’s
in both the discrete and continuous case. The main reason is simplicity,
pmf’s and sums are usually simpler to handle and evaluate than pdf’s and
integrals. Questions of existence and limits rarely arise, and the notation is
simpler. In addition, the use of Dirac deltas assumes the theory of gener-
alized functions in order to treat integrals involving Dirac deltas as if they
were ordinary integrals, so additional mathematical machinery is required.
As a result, this approach is rarely used in genuinely discrete problems.
On the other hand, if one is dealing with a hybrid problem that has both
discrete and continuous components, then this approach may make sense
because it allows the use of a single probability function, a pdf, throughout.

Multidimensional pdf’s

By considering multidimensional integrals we can also extend the construc-
tion of probabilities by integrals to finite-dimensional product spaces, e.g.,
RF.

Given the measurable space (R*, B(R)¥), say we have a real-valued func-
tion f on R* with the properties that

f(x)>0; all x=(z0,21,...,25_1) €R", (2.87)

/ f(x)dx=1. (2.88)
Rk

Then define a set function P by
P(F) = / f(x)dx all F € B®R)", (2.89)
F

where the vector integral is shorthand for the k—dimensional integral, that
is,

P(F) :/ flxo,z1, ... ,2k—1)dzoday ... drg—1 .
(z0,T1,000 ,Zk—1)EF

Note that (2.87) to (2.89) are exact vector equivalents of (2.54) to (2.56).
As with multidimensional pmf’s, a pdf is not itself the probability of any-
thing. As in the scalar case, however, the mean value theorem of calculus
can be used to interpret the pdf as being proportional to the probability of
being in a very small region around a point, i.e., that

P{(ap, a1y yap—1) i@ <oy <a;+A;; i =0,1,... ,n—1})
%f(xo,.ﬁl,... ,l'k—l)AOAl"'An—L (290)
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Is P defined by (2.89) a probability measure? The answer is a qualified
yes with exactly the same qualifications as in the one-dimensional case.

As in the one-dimensional sample space, a function f with the above
properties is called a probability density function or pdf. To be more
concise we will occasionally refer to a pdf on k—dimensional space as a
k—dimensional pdf.

There are two common and important examples of k—dimensional pdf’s.
These are defined next. In both examples the dimension £ of the sample
space is fixed and the pdf’s induce a probability measure on (R¥, B(R)*)
by (2.89).

[2.16] The product pdf.
Let f;;i=0,1,... .k — 1, be a collection of one-dimensional pdf’s;
that is, f;(r); r € R satisfies (2.54) and (2.55) for each i = 0,1,... ,k—
1. Define the product k—dimensional pdf f by

k—1
f(x) = f(zo,21,... ,2p1) = H filxs) .
i=0

The product pdf in k—dimensional space is simply the product of k
pdf’s on one-dimensional space. The one-dimensional pdf’s are called the
marginal pdf’s; and the multidimensional pdf is sometimes called a joint
pdf. It is easy to verify that the product pdf integrates to 1.

The case of greatest importance is when all of the marginal pdf’s are
identical, that is, when f;(r) = fo(r) for all <. Note that any of the pre-
viously defined pdf’s on R yield a corresponding multidimensional pdf by
this construction. In a similar manner we can construct pmf’s on discrete
product spaces as a product of marginal pmf’s.

[2.17] The multidimensional Gaussian pdf.
Let m = (mg,m1,...,mi_1)" denote a column vector (the super-
script ¢ stands for “transpose”). Let A denote a k by k square matrix
with entries {\; ;; ¢ =0,1,... ,k—1; 5 =0,1,... ,k—1}. Assume that
A is symmetric; that is, that A = A or, equivalently, that \; ; = A,
all 7, j. Assume also that A is positive definite; that is, for any nonzero
vector y € R the quadratic form y'Ay is positive, that is,

k—1k—-1

YAy =Y widiju; > 0.

i=0 j=0

a multidimensional pdf is said to be Gaussian if it has the following
form for some vector m and matrix A satisfying the above conditions:

F(x) = (2m) 7F/2(det A) Ve~ 1/2mm) AT Geom) Ly g b



2.5. CONTINUOUS PROBABILITY SPACES 69

where det A is the determinant of the matrix A.

Since the matrix A is positive definite, the inverse of A exists and hence
the pdf is well defined. It is also necessary for A to be positive definite
if the integral of the pdf is to be finite. The Gaussian pdf may appear
complicated, but it will later be seen to be one of the simplest to deal with.
We shall later develop the significance of the vector m and matrix A. Note
that if A is a diagonal matrix, example [2.17] reduces to a special case of
example [2.16].

The reader must either accept on faith that the multidimensional Gaus-
sian pdf integrates to 1 or seek out a derivation.

The Gaussian pdf can be extended to complex vectors if the constraints
on A are modified to require that A* = A, where the asterix denotes conju-
gate transpose, and where for any vector y not identically 0 it is required
that y*Ay > 0.

[2.18] Mixtures.
Suppose that P;, i = 1,2,... ,00 is a collection of probability mea-
sures on a common measurable space (2, F), and let a;, i = 1,2, ...
be nonnegative numbers that sum to 1. Then the set function deter-
mined by

oo

P(F) :Zaipi(F)

is also a probability measure on (€, F). This relation is usually ab-
breviated to -
P=> aP;.
i=1

The first two axioms are obviously satisfied by P, and countable ad-
ditivity follows from the properties of sums. (Finite additivity is easily
demonstrated for the case of a finite number of nonzero a;.) A probability
measure formed in this way is called a mixture. Observe that this con-
struction can be used to form a probability measure with both discrete and
continuous aspects. For example, let 2 be the real line and F the Borel
field; suppose that f is a pdf and p is a pmf; then for any A € (0,1) the
measure P defined by

P(F) =AY plw) + (=) [ flayie

combines a discrete portion described by p and a continuous portion de-
scribed by f. Expectations can be computed in a similar way. Given a
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function g,

E(g) =23 g(@)p(@) + (1 ) / 9(2)f (2)dz

zEF TEF

Note that this construction works for both scalar and vector spaces.
This combination of discrete and continuous attributes is one of the main
applications of mixtures. Another is in modeling a random process where
there is some uncertainty about the parameters of the experiment. For
example, consider a probability space for the following experiment: First
a fair coin is flipped and a 0 or 1 (tail or head) observed. If the coin toss
results in a 1, then a fair die described by a uniform pmf p; is rolled, and
the outcome is the result of the experiment. If the coin toss results in a
0, then a biased die described by a nonuniform pmf ps is rolled, and the
outcome is the result of the experiment. The pmf of the overall experiment
is then the mixture p; /24 p2/2. The mixture model captures our ignorance
of which die we will be rolling.

2.6 Independence

Given a probability space (2, F, P), two events F' and G are defined to
be independent if P(F N G) = P(F)P(G). A collection of events {F;; i =
0,1,...,k—1} is said to be independent or mutually independent if for any
distinct subcollection {Fy,; i =0,1,...,m — 1}, I, < k, we have that

m—1 m—1
P(ﬂ ﬂ) = 11 P& -
i=0 i=0
In words: the probability of the intersection of any subcollection of the given
events equals the product of the probabilities of the separate events. Unfor-
tunately it is not enough to simply require that P (ﬂi:ol FZ> = Hf;ol P(F;)
as this does not imply a similar result for all possible subcollections of
events, which is what will be needed. For example, consider the following
case where P(FNGNH) = P(F)P(G)P(H) for three events F, G, and H,
yet it is not true that P(F N G) = P(F)P(G)

P(F) = P(G)=P(H) =
P(FNGNH) = o= P(F)P(G)P(H)
P(FNG) = P(GNH)=P(FNH)=— #P(F)P(G).

27
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The example places zero probability on the overlap F'N G except where it
also overlaps H, i.e., P(FNGNH®) = 0. Thus in this case P(FNGNH) =
P(F)P(G)P(H)=1/27,but P(FNG)=1/27 # P(F)P(G) =1/9.

The concept of independence in the probabilistic sense we have defined
relates easily to the intuitive idea of independence of physical events. For
example, if a fair die is rolled twice, one would expect the second roll
to be unrelated to the first roll because there is no physical connection
between the individual outcomes. Independence in the probabilistic sense
is reflected in this experiment. The probability of any given outcome for
either of the individual rolls is 1/6. The probability of any given pair of
outcomes is (1/6)? = 1/36 — the addition of a second outcome diminishes
the overall probability by exactly the probability of the individual event,
viz., 1/6. Note that the probabilities are not added — the probability of
two successive outcomes cannot reasonably be greater than the probability
of either of the outcomes alone. Do not, however, confuse the concept of
independence with the concept of disjoint or mutually exclusive events. If
you roll the die once, the event the roll is a one is not independent of
the event the roll is a six. Given one event, the other cannot happen —
they are neither physically nor probabilistically independent. These are
mutually exclusive events.

2.7 Elementary Conditional Probability

Intuitively, independence of two events means that the occurrence of one
event should not affect the occurrence of the other. For example, the knowl-
edge of the outcome of the first roll of a die should not change the probabil-
ities for the outcome of the second roll of the die if the die has no memory.
To be more precise, the notion of conditional probability is required. Con-
sider the following motivation. Suppose that (2, F, P) is a probability space
and that an observer is told that an event G has already occurred. The
observer thus has a posteriori knowledge of the experiment. The observer
is then asked to calculate the probability of another event F' given this in-
formation. We will denote this probability of F' given G by P(F|G). Thus
instead of the a priori or unconditional probability P(F'), the observer
must compute the a posteriori or conditional probability P(F|G), read
as “the probability that event F' occurs given that the event G occurred.”
For a fixed G the observer should be able to find P(F|G) for all events
F, thus the observer is in fact being asked to describe a new probability
measure, say Pg, on (2, F). How should this be defined? Intuition will
lead to a useful definition and this definition will indeed provide a useful
interpretation of independence.
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First, since the observer has been told that G has occurred and hence
w € G, clearly the new probability measure Pz must assign zero probability
to the set of all w outside of G, that is, we should have

P(G°|G) =0 (2.91)
or, equivalently,
P(G|G) = 1. (2.92)
Eq. (2.91) plus the axioms of probability in turn imply that
P(F|G)=P(FN(GUGY|G) = P(FNG|G). (2.93)

Second, there is no reason to suspect that the relative probabilities within
G should change because of the conditioning. For example, if an event
F C G is twice as probable as an event H C G with respect to P, then the
same should be true with respect to Pg. For arbitrary events F' and H,
the events F'N G and H NG are both in G, and hence this preservation of
relative probability implies that

P(FNG|G) P(FNG)

PHNG|G) PHNG)
But if we take H = ) in this formula and use (2.92)-(2.93), we have that

P(FNG)

P(FIG) = PFNGIG) = =5,

(2.94)

which is in fact the formula we now use to define the conditional probability
of the event F' given the event G. The conditional probability can be
interpreted as “cutting down” the original probability space to a probability
space with the smaller sample space G and with probabilities equal to the
renormalized probabilities of the intersection of events with the given event
G on the original space.

This definition meets the intuitive requirements of the derivation, but
does it make sense and does it fulfill the original goal of providing an inter-
pretation for independence? It does make sense provided P(G) > 0, that
is, the conditioning event does not have zero probability. This is in fact the
distinguishing requirement that makes the above definition work for what is
known as elementary conditional probability. Non-elementary conditional
probability will provide a more general definition that will work for condi-
tioning events having zero probability, such as the event that a fair spin of
a pointer results in a reading of exactly 1/mx. Further, if P is a probability
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measure, then it is easy to see that Pg defined by Pg(F) = P(F|Q) for
F € F is also a probability measure on the same space (remember G stays
fized), i.e., Pg is a normalized and countably additive function of events.

As to independence, suppose that F' and G are independent events and
that P(G) > 0, then

P(FNQG)
the probability of F' is not effected by the knowledge that G has occurred.
This is exactly what one would expect from the intuitive notion of the
independence of two events. Note, however, that it would not be as useful
to define independence of two events by requiring P(F') = P(F|G) since it
would be less general than the product definition; it requires that one of
the events have a nonzero probability.

Conditional probability provides a means of constructing new probabil-
ity spaces from old ones by using conditional pmf’s and elementary condi-
tional pdf’s.

[2.18] Suppose that (2, F, P) is a probability space described by a pmf p
and that A is an event with nonzero probability. Then the pmf p4
defined by

plw) _
pa(w) = {g(A) = P({w}l4), z;j

is a pmf and implies a probability space (2, F, Pa), where

Pa(F) = ) pa(w) (2.95)
weF
= P(F|A). (2.96)

pa is called a conditional pmf. More specifically, it is the conditional
pmf given the event A. In some cases it may be more convenient
to define the conditional pmf on the sample space A and hence the
conditional probability measure on the original event space.

As an example, suppose that p is a geometric pmf and that A = {w :
w> K} ={K,K+1,...}. In this case the conditional pmf given
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that the outcome is greater than or equal to K is

(1-p)*'p
S k(l=p)=tp
(1-p)*'p
(1 —p)K-t
= Q-pFEp k=K+1,K+2,..., (297

pa(k)

which can be recognized as a geometric pmf which begins at £k = K+1.
[2.19] Suppose that (2, F, P) is a probability space described by a pdf f
and that A is an event with nonzero probability. Then thef defined

by
W)= PA) Y
faw) {0 weA

is a pdf on A and describes a probability measure

Pa(F)

fa(w)dw (2.99)
weF

= P(F|A). (2.100)

fa is called an elementary conditional pdf (given the event A). The
word “elementary” reflects the fact that the conditioning event has
nonzero probability. We will later see how conditional probability can
be usefully extended to conditioning on events of zero probability.

As a simple example, consider the continuous analog of the previous
conditional geometric pmf example. Given an exponential pdf and A =
{r:r > c}, define

Aefkm
[ Ae v dy

Ae™A®
—Ac

fa(z) =

e
= e M 2> (2.101)

(2.102)

which can be recognized as an exponential pdf that starts at ¢. The ex-

ponential pdf and geometric pmf share this unusual property, conditioning
on the output being larger than some number does not change the basic
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form of the pdf or pmf, only its starting point. This has the discouraging
implication that if, for example, the time for the next arrival of a bus is
described by an exponential pdf, then knowing you have already waited for
an hour does not change your pdf to the next arrival from what it was when
you arrived.

2.8 Problems

1. Suppose that you have a set function P defined for all subsets F' C (2
of a sample space €2 and suppose that you know that this set function
satisfies (2.7-2.9). Show that for arbitrary (not necessarily disjoint)
events,

P(FUG) = P(F)+ P(G) — P(FNG) .

2. Describe the sigma-field of subsets of & generated by the points or
singleton sets. Does this sigma-field contain intervals of the form
(a,b) for b > a?

3. Given a finite subset A of the real line R, prove that the power set of
A and B(A) are the same. Repeat for a countably infinite subset of
R.

4. Given that the discrete sample space (2 has n elements, show that the
power set of ) consists of 2™ elements.

5. *Let = R, the real line, and consider the collection F of subsets of
R defined as all sets of the form

k

Ut b u (J (e, d51°
=0

i=0

for all possible choices of nonnegative integers k and m and all possible
choices of real numbers a; < b;, ¢; < d;. If k£ or m is 0, then the
respective unions are defined to be empty so that the empty set itself
has the form given. In other words, F contains all possible finite
unions of half-open intervals of this form and complements of such
half-open intervals. Every set of this form is in F and every set in
F has this form. Prove that F is a field of subsets of Q. Does F
contain the points? For example, is the singleton set {0} in F? Is F
a sigma-field?

6. Let Q = [0,00) be a sample space and let F be the sigma-field of
subsets of 2 generated by all sets of the form (n,n+1) forn =1,2,...
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(a) Are the following subsets of Q in F7 (i) [0, 00), (ii) 2+ = {0,1,2,...

(iii) [0,k] U [k 4+ 1,00) for any positive integer k, (iv) {k} for
any positive integer k, (v) [0, k] for any positive integer k, (vi)
(1/3,2).

(b) Define the following set function on subsets of 2 :

P(F)y=c > 37"

i€Z4:i+1/2€F

(If there is no ¢ for which ¢ + 1/2 € F, then the sum is taken as
zero.) Is P a probability measure on (2, F) for an appropriate
choice of ¢? If so, what is ¢?

(¢) Repeat part (b) with B, the Borel field, replacing F as the event
space.

(d) Repeat part (b) with the power set of [0, 00) replacing F as the
event space.

(e) Find P(F) for the sets F considered in part (a).

7. Show that an equivalent axiom to 2.3 of probability is the following:
If F' and G are disjoint, then P(FUG) = P(F) + P(G) ,

that is, we really need only specify finite additivity for the special
case of n = 2.

8. Consider the measurable space ((0, 1], B([0, 1])). Define a set function
P on this space as follows:

1/2 if 0 € F or 1 € F but not both
P(F)=< 1 if 0e FandleF
0 otherwise .

Is P a probability measure?

9. Let S be a sphere in R : S = {(z,y,2) : 2% +y? + 22 < r?},
where 7 is a fixed radius. In the sphere are fixed N molecules of gas,
each molecule being considered as an infinitesimal volume (that is,
it occupies only a point in space). Define for any subset F of S the
function

#(F) = {the number of molecules in F'} .

Show that P(F) = #(F)/N is a probability measure on the measur-
able space consisting of S and its power set.
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10.

11.

12.

13.

14.
15.

*Suppose that you are given a probability space (2, F, P) and that a
collection Fp of subsets of ) is defined by

Fp={FUN,; all FeF, all N C G for which G € F and P(G) = 0}.
(2.103)

In words: Fp contains every event in F along with every subset N
which is a subset of zero probability event G € F, whether or not N
is itself an event (a member of F). Thus Fp is formed by adding any
sets not already in Fp which happen to be subsets of zero probability

events. We can define a set function P for the measurable space
(Q,fp) by

P(FUN)=P(F)if F€ Fand N C G € F, where P(G) = 0.
(2.104)

Show that (2, Fp, P) is a probability space, i.e., you must show that
Fp is an event space and that P is a probability measure. A prob-
ability space with the property that all subsets of zero probability
events are also events is said to be complete and the probability space

(Q, Fp, P) is called the completion of the probability space (2, F, P).
In problems 2.11 to 2.17 let (2, F, P) be a probability space and
assume that all given sets are events.

If G C F, prove that P(F —G) = P(F)— P(G). Use this fact to prove
that if G C F, then P(G) < P(F).

Let {F;} be a countable partition of a set G. Prove that for any event
H

)

Y P(HNF)=PHNG) .

If {F;,i =1,2,...} forms a partition of Q and {G;; i = 1,2,...}
forms a partition of €2, prove that for any H,

P(H) = iiP(HﬁFi nG;) .
Prove that |P(F) — P(G)| < P(FAG).

Prove that P(FFUG) < P(F) + P(G). Prove more generally that for
any sequence (i.e., countable collection) of events Fj,

P (G FZ) < 3 P(F) .
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16.

17.

18.
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This inequality is called the union bound or the Bonferoni inequality.
(Hint: Use problem A.2 or 2.1.)

Prove that for any events F, G, and H,
P(FAG) < P(FAH)+ P(HAG) .

In words: If the probability of the symmetric difference of two events
is small, then the two events must have approximately the same prob-
ability. The astute observer may recognize this as a form of the tri-
angle inequality; one can consider P(FAG) as a distance or metric
on events.

Prove that if P(F) >1— ¢ and P(G) > 1 — 4, then also P(FNG) >
1—26. In other words, if two events have probability nearly one, then
their intersection has probability nearly one.

*The Cantor set Consider the probability space (Q,B(Q2), P) where
P is described by a uniform pdf on Q@ = [0,1). Let F} = (1/3,2/3),
the middle third of the sample space. Form the set G; = Q — F}
by removing the middle third of the unit interval. Next define F5
as union of the middle thirds of all of the intervals in Gy, i.e., Fo =
(1/9,2/9)J(7/9,8/9). Define G5 as what remains when remove Fj
from G4, that is,

Gy =G1— F,=[0,1] - (F | Fo).
Continue in this manner. At stage n F), is the union of the middle

thirds of all of the intervals in G,,—1 = [0, 1] — 2;11 F,,. The Cantor
set is defined as the limit of the G,,, that is,

C= ﬁ Gn=1[0,1] - G F,. (2.105)
n=1 n=1

(a) Prove that C' € B(2), i.e., that it is an event.
(b) Prove that

1.2
5(3)”—1; n=12.... (2.106)

(¢) Prove that P(C) = 0, i.e., that the Cantor set has zero proba-
bility.
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One thing that makes this problem interesting is that unlike most
simple examples of nonempty events with zero probability, the Cantor
set has an uncountable infinity of points and not a discrete set. This
can be shown be first showing that a point € C' if and only if the
point can be expressed as a ternary number x = >~ | a,3~" where
all the a,, are either 0 or 2. Thus the number of points in the Cantor
set is the same as the number of real numbers that can be expressed
in this fashion, which is the same as the number of real numbers that
can be expressed in a binary expansion (since each a,, can have only
two values), which is the same as the number of points in the unit
interval, which is uncountably infinite.

Six people sit at a circular table and pass around and roll a single fair
die (equally probable to have any face 1 through 6 showing) beginning
with person # 1. The game continues until the first 6 is rolled, the
person who rolled it wins the game. What is the probability that
player # 2 wins?

Show that given (2.22) through (2.24), (2.28) or (2.29) implies (2.25).
Thus (2.25), (2.28), and (2.29). provide equivalent candidates for the
fourth axiom of probability.

Suppose that P is a probability measure on the real line and define the
sets F,, = (0,1/n) for all positive integer n. Evaluate lim,, o, P(F}).

Answer true or false for each of the following statements. Answers
must be justified.

(a) The following is a valid probability measure on the sample space
Q=1{1,2,3,4,5,6} with event space F = all subsets of :

1
P(F)= 3 Y i all F e F.
i€ F

(b) The following is a valid probability measure on the sample space
0 =1{1,2,3,4,5,6} with event space F = all subsets of :

P(F) = 1 if2eFor6eF
0 otherwise

—
o

) f P(GUF)=P(F)+ P(G), then F and G are independent.
(d) P(F|G) > P(G) for all events F' and G.

Mutually exclusive (disjoint) events with nonzero probability
cannot be independent.

—
@
~
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(f) For any finite collection of events Fj; i =1,2,--- ,N
N
P(UY,F;) <) P(F).
i=1

23. Prove or provide a counterexample for the relation P(F|G)+P(F|G¢) =
P(F).

24. Find the mean, second moment, and variance of a uniform pdf on an
interval [a, ).

25. Given a sample space Q = {0,1,2,---} define

i

(a) What must 7 be in order for p(k) to be a pmf?

(b) Find the probabilities P({0,2,4,6,---}), P({1,3,5,7,---}), and
P({0,1,2,3,4,... ,20}).

(c) Suppose that K is a fixed integer. Find P({0, K,2K,3K,...}).

(d) Find the mean, second moment, and variance of this pmf.

26. Suppose that p(k) is a geometric pmf. Define q(k) = (p(k)+p(—k))/2.
Show that this is a pmf and find its mean and variance. Find the
probability of the sets {k : |k| > K} and {k : k is a multiple of 3}.
Find the probability of the sets {k : k is odd }

27. Define a pmf p(k) = CA¥l/|k|! for k € Z. Evaluate the constant C
and find the mean and variance of this pmf.

28. A probability space consists of a sample space §2 = all pairs of positive
integers (that is, © = {1,2,3,...}?) and a probability measure P
described by the pmf p defined by

p(k,m) = p*(1 —p)ktm=2

(a) Find P({(k,m) : k> m}).

(b) Find the probability P({(k,m): k+m = r}) as a function of r
for r =2,3,... Show that the result is a pmf.

(¢) Find the probability P({(k,m) : k is an odd number}).

(d) Define the event F = {(k,m) : k¥ > m}. Find the conditional
pmf pp(k,m) = P({k,m}|F). Is this a product pmf?



2.8. PROBLEMS 81

29. Define the uniform probability density function on [0,1) in the usual
way as
1 0<r«i1
fr) =

0 otherwise

(a) Define the the set F' = {0.25,0.75}, a set with only two points.
What is the value of

/Ff(r) dr?

The Riemann integral is well defined for a finite collection of
points and this should be easy. What is [, f(r)dr?

(b) Now define the set F' as the collection of all rational numbers
in [0,1), that is, all numbers that can be expressed as k/n for
some integers 0 < k < n. What is the integral [, f(r)dr? Is
it defined? Thinking intuitively, what should it be? Suppose
instead you consider the set F, the set of all irrational numbers
in [0,1). What is [,.. f(r)dr?

30. Given the uniform pdf on [0, 1], f(z) = 1; = € [0, 1], find an expression
for P((a,b)) for all real b > a. Define the cumulative distribution
function or cdf F as the probability of the event {z : © < r} as a
function of r € R:

F(r) = P((—00,1]) = / f(z) da. (2.107)
Find the cdf for the uniform pdf. Find the probability of the event

1 1 1
G:{w: we[ + ) forsomeevenk:}

2k 9k T ok+1
11 1
=U |gwtan)
k even

31. x Let Q be a unit square {(z,y) : (z,y) € R%, —1/2 < z < 1/2,
—1/2 <y < 1/2} and let F be the corresponding product Borel field.
Is the circle {(z,y) : (z? + )12 <1/2} in F? (Give a plausibility
argument.) If so, find the probability of this event if one assumes a
uniform density function on the unit square.

32. Given a pdf f, find the cumulative distribution function or cdf F
defined as in (2.107) for the exponential, Laplacian, and Gaussian
pdf’s. In the Gaussian case, express the cdf in terms of the ® function.
Prove that if a > b, then F(a) > F(b). What is dl;—(r)?

T
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34.
35.

36.

37.

38.

39.

40.
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. Let Q = %2 and suppose we have a pdf f(z,y) such that

_JC ifx>0,y>0,z+y<1
f(x,y)—{ 0 otherwise .

Find the probability P({(x,y) : 2z > y}). Find the probability
P({(z,y) : = < a}) for all real a. Is f a product pdf?

Prove that the product k—dimensional pdf integrates to 1 over &

Given the one-dimensional exponential pdf, find P({z : > r}) and
the cumulative distribution function P({z : = <r}) for r € R.

Given the k—dimensional product doubly exponential pdf, find the
probabilities of the following events in R*: {x : xo > 0}, {x: x; >
0,alli=0,1,... ,k—1}, {x: zo > x1}.

Let (2,F) = (R,B(R)). Let P, be the probability measure on this
space induced by a geometric pmf with parameter p and let P, be
the probability measure induced on this space by an exponential pdf
with parameter A. Form the mixture measure P = P;/2+ P,/2. Find
P{w: w>r}) for all r € [0, 00).

Let © = R? and suppose we have a pdf f(z,y) such that
fla,y) = Ce 12707 5 4 (—00,00) , y € [0,00) .

Find the constant C. Is f a product pdf? Find the probability
Pr({(z,y) : v/|z| < a}) for all possible values of a parameter «. Find
the probability Pr({(z,y) : 22 < y}).

Define g(z) by

() = Ae™ gz €0, 00)
I =3 0 otherwise .

Let = R? and suppose we have a pdf f(z,y) such that
flz,y) = Cy(x)g(y —x) .

Find the constant C. Find an expression for the probability P({(x,y) :
y < a}) as a function of the parameter a.. If f a product pdf?

Let Q = %2 and suppose we have a pdf such that

[ Clz] -1<z<1l;-1<y<z
flz.y) = { 0 otherwise .

Find the constant C. Is f a product pdf?
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41. Suppose that a probability space has as sample space R, n-dimensional
Euclidean space. (This is a product space.) Suppose that a multidi-
mensional pdf f is defined on this space by

f(x) = {C’; max; |z;| <1/2

0; otherwise;
that is, f(x) = C when —1/2 < z; <1/2fori=0,1,--- ,n—1 and
is 0 otherwise.
(a) What is C?
(b) Is f a product pdf?
(¢c) What is P({x : min; z; > 0}), that is, the probability that the

smallest coordinate value is nonnegative.

Suppose next that we have a pdf g defined by

2() = {K; [l <1

0;  otherwise,

where

is the Euclidean norm of the vector x. Thus g is K inside an
n-dimensional sphere of radius 1 centered at the origin.

(d) What is the constant K7 (You may need to go to a book of
integral tables to find this.)

(e) Is this density a product pdf?

42. Let (Q,F, P) be a probability space and consider events F, G, and
H for which P(F) > P(G) > P(H) > 0. Events F' and G form a
partition of 2, and events F' and H are independent. Can events G
and H be disjoint?

43. Given a probability space (2, F, P), and let F,G, and H be events
such that P(F N G|H) = 1. Which of the following statements are
true? Why or why not?

(a) P(FNG)=1
(b) PIFNGNH)=P(H)
(¢) P(F°|H) =0
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44.

45.

CHAPTER 2. PROBABILITY

(d) H=9

(Courtesy of Prof. T. Cover) Suppose that the evidence of an event F
increases the likelihood of a criminals guilt; that is, if G is the event
that the criminal is guilty, then P(G|F) > P(G). The prosecutor
discovers that the event F' did mot occur. What do you now know
about the criminal’s guilt? Prove your answer.

Suppose that X is a binary random variable with outputs {a, b} with a
pmf px(a) = pand px(b) = 1—p and Y is a random variable described
by the conditional pdf fy|x(ylz) exp—(y —x)*/20%,/\/270%,. De-
scribe the MAP detector for X given Y and find an expression for
the probability of error in terms of the @ function.

Suppose that p = 0.5, but you are free to choose a and b subject only
to the constraint that (a? + b%)/2 = Ej,. Which is a better choice,
a = —b or a nonzero with b = 0?7 What can you say about the
minimum achievable P.?



Chapter 3

Random Variables,
Vectors, and Processes

3.1 Introduction

This chapter provides the theoretical foundations and many examples of
random variables, vectors, and processes. All three concepts are variations
on a single theme and may be included in the general term of random object.
We will deal specifically with random variables first because they are the
simplest conceptually — they can be considered to be special cases of the
other two concepts.

3.1.1 Random Variables

The name random wvariable suggests a variable that takes on values ran-
domly. In a loose, intuitive way this is the right interpretation — e.g., an
observer who is measuring the amount of noise on a communication link
sees a random variable in this sense. We require, however, a more precise
mathematical definition for analytical purposes. Mathematically a random
variable is neither random nor a variable — it is just a function mapping
one sample space into another space. The first space is the sample space
portion of a probability space, and the second space is a subset of the real
line (some authors would call this a “real-valued” random variable). The
careful mathematical definition will place a constraint on the function to
ensure that the theory makes sense, but for the moment we will adopt the
informal definition that a random variable is just a function.

A random variable is perhaps best thought of as a measurement on a

85
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probability space; that is, for each sample point w the random variable
produces some value, denoted functionally as f(w). One can view w as
the result of some experiment and f(w) as the result of a measurement
made on the experiment, as in the example of the simple binary quantizer
introduced in the introduction to chapter 2. The experiment outcome w
is from an abstract space, e.g., real numbers, integers, ASCII characters,
waveforms, sequences, Chinese characters, etc. The resulting value of the
measurement or random variable f(w), however, must be “concrete” in the
sense of being a real number, e.g., a meter reading. The randomness is all
in the original probability space and not in the random variable; that is,
once the w is selected in a “random” way, the output value of sample value
of the random variable is determined.

Alternatively, the original point w can be viewed as an “input signal”
and the random variable f can be viewed as “signal processing,” i.e., the
input signal w is converted into an “output signal” f(w) by the random
variable. This viewpoint becomes both precise and relevant when we indeed
choose our original sample space to be a signal space and we generalize
random variables by random vectors and processes.

Before proceeding to the formal definition of random variables, vectors,
and processes, we motivate several of the basic ideas by simple examples,
beginning with random variables constructed on the fair wheel experiment
of the introduction to chapter 2.

A Coin Flip

We have already encountered an example of a random variable in the in-
troduction to chapter 2, where we defined a random variable ¢ on the
spinning wheel experiment which produced an output with the same pmf
as a uniform coin flip. We begin by summarizing the idea with some slight
notational changes and then consider the implications in additional detail.

Begin with a probability space (2, F, P) where @ = R and the proba-
bility P is defined by (2.2) using the uniform pdf on [0,1) of (2.4) Define
the function Y : * — {0,1} by

Y(r) = (3.1)

0 ifr<0.5
1 otherwise .
When Tyche performs the experiment of spinning the pointer, we do not
actually observe the pointer, but only the resulting binary value of Y. Y
can be thought of as signal processing or as a measurement on the original
experiment. Subject to a technical constraint to be introduced later, any
function defined on the sample space of an experiment is called a random
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variable. The “randomness” of a random variable is “inherited” from the
underlying experiment and in theory the probability measure describing
its outputs should be derivable from the initial probability space and the
structure of the function. To avoid confusion with the probability measure
P of the original experiment, refer to the probability measure associated
with outcomes of Y as Py. Py is called the distribution of the random
variable Y. The probability Py (F') can be defined in a natural way as the
probability computed using P of all the original samples that are mapped
by Y into the subset F:

Py(F) = P({r:Y(r) € F}). (3.2)

In this simple discrete example Py is naturally defined for any subset F' of
0y = {0, 1}, but in preparation for more complicated examples we assume
that Py is to be defined for all suitably defined events, that is, for F' € By,
where By is an event space consisting of subsets of (y. The probability
measure for the output sample space can be computed from the probability
measure for the input using the formula (3.2), which will shortly be gener-
alized. This idea of deriving new probabilistic descriptions for the outputs
of some operation on an experiment producing inputs to the operation is
fundamental to the theories of probability, random processes, and signal
processing.
For example, in our simple example (3.2) implies that

Py({0}) = P({r:Y(r)=0})
P({r:0<r<0.5})

= P([0,0.5])
= 0.5
Py({1}) = P((0.5,1.0])
= 0.5
Py(Qy) = Py({0,1})
— PR =1
Py(0) = P =0,

so that every output event can be assigned a probability by Py by com-
puting the probability of the corresponding input event under the input
probability measure P.

Eq. (3.2) can be written in a convenient compact manner by means of
the definition of the inverse image of a set F under a mapping Y : Q — Qy:

Y Y F)={r:Y(r) € F}. (3.3)
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With this notation (3.2) becomes
Py(F) = P(Y~Y(F)); F C Oy; (3.4

that is, the inverse image of a given set (output) under a mapping is the
collection of all points in the original space (input points) which map into
the given (output) set. This result is sometimes called the fundamental de-
rived distribution formula or the inverse image formula. It will be seen in a
variety of forms throughout the book. When dealing with random variables
it is common to interpret the probability Py (F) as “the probability that
the random variable Y takes on a value in F” or “the probability that the
event Y € F occurs.” These English statements are often abbreviated to
the form Pr(Y € F).

The probability measure Py can be computed by summing a pmf, which
we denote py. In particular, if we define

py(y) = Pr({y}); y € Qy, (3.5)
then additivity implies that
Py(F)=> py(y); F €By. (3.6)
yeF

Thus the pmf describing a random variable can be computed as a special
case of the inverse image formula (3.5), and then used to compute the
probability of any event.

The indirect method provides a description of the fair coin flip in terms
of a random variable. The idea of a random variable can also be applied to
the direct description of a probability space. Again as in the introduction
to chapter 2, directly describe a single coin flip by choosing Q = {0,1} and
assign a probability measure P on this space as in (2.12). Now define a
random variable V' : {0,1} — {0, 1} on this space by

Vir)y=r. (3.7)

Here V is trivial, it is just the identity mapping. The measurement just puts
out the outcome of the original experiment and the inverse image formula
trivially yields

Py(F) = P(F)
pv(v) = p(v).

Note that this construction works on any probability space having the real
line or a Borel subset thereof as a sample space. Thus for each of the named
pmf’s and pdf’s there is a random variable associated with that pmf or pdf.
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If we have two random variables V and Y (which may be defined on
completely separate experiments as in the present case), we say that they
are equivalent or identically distributed if Py (F) = Py (F) for all events F,
that is, the two probability measures agree exactly on all events. It is easy
to show with the inverse image formula that V' is equivalent to Y and hence
that

py(y) =pv(y) =05, y=0,1. (3.8)

Thus we have two equivalent random variables, either of which can be used
to model the single coin flip. Note that we do not say the random variables
are equal since they need not be. For example, you could spin a pointer
and find Y and I could flip my own coin to find V. The probabilities are
the same, but the outcomes might or might not differ.

3.1.2 Random Vectors

The issue of the possible equality of two random variables raises an in-
teresting point. If you are told that Y and V are two separate random
variables with pmf’s py and py, then the question of whether or not they
are equivalent can be answered from these pmf’s alone. If you wish to
determine whether or not the two random variables are in fact equal, how-
ever, then they must be considered together or jointly. In the case where
we have a random variable Y with outcomes in {0,1} and a random vari-
able V' with outcomes in {0,1}, we could consider the two together as a
single random wector {Y,V} with outcomes in the Cartesian product space
Qyyv ={0,1}? 2 {(0,0), (0,1),(1,0), (1,1)} with some pmf py 1 describing
the combined behavior

pY,V(yv U) = PI‘(Y =Y, V= U) (39)
so that
PI"((Y, V) € F) = Z pY,V(y,U); F e Byv,
yvi(y,v)EF

where in this simple discrete problem we take the event space Byy to be
the power set of Qyy. Now the question of equality makes sense as we can
evaluate the probability that the two are equal:

Pr(Y =V) = Y pyv(y,v).
Y, 0iy=0

If this probability is 1, then we know that the two random variables are in
fact equal with probability 1.
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A random two-dimensional random vector (Y, V) is simply two random
variables described on a common probability space. Knowledge of the indi-
vidual pmf’s py and py alone is not sufficient in general to determine py v,
more information is needed. Either the joint pmf must be given to us or we
must be told the definitions of the two random variables (two components
of the two-dimensional binary vector) so that the joint pmf can be derived.
For example, if we are told that the two random variables Y and V of our
example are in fact equal, then Pr(Y = V) = 1 and py,v(y,v) = 0.5 for
y = v, and 0 for y # v. This experiment can be thought of as flipping two
coins that are soldered together on the edge so that the result is two heads
or two tails.

To see an example of radically different behavior, consider the random
variable W : [0,1) — {0, 1} by

Wir) {0 r € [0.0,0.25) J[0.5,0.75)

. (3.10)
1 otherwise.

It is easy to see that W is equivalent to the random variables Y and V of
this section, but W and Y are not equal even though they are equivalent
and defined on a common experiment. We can easily derive the joint pmf for
W and Y since the inverse image formula extends immediately to random
vectors. Now the events involve the outputs of two random variables so
some care is needed to keep the notation from getting out of hand. As in
the random variable case, any probability measure on a discrete space can
be expressed as a sum over a pmf on points, that is,

Pyw(F) = Z py,w (y, w), (3.11)
y,w:(y,w)eF

where F C {0,1}?, and where

pyw(y,w) = Pyw({y,w}) =Pr(Y =y, W = w); y € {0,1},w € {0,1}.
(3.12)

As previously observed, pmf’s describing the joint behavior of several ran-
dom variables are called joint pmf’s and the corresponding distribution is
called a joint distribution. Thus to find the entire distribution only re-
quires finding the pmf, which can be done via the inverse image formula.
For example, if (y,w) = (0,0), then

pyw(0,0) = P({r:Y(r)=0,W(r) =0}
= P([0,0.5)(")([0.0,0.25) | J[0.5,0.75)))
= P(]0,0.25))

= 025
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Similarly it can be shown that
py7w(0, 1) = pyyw(]., 0) = py7w(]., 1) = 025

Joint and marginal pmf’s can both be computed from the underlying
distribution, but the marginals can also be found directly from the joints
without reference to the underlying distribution. For example, py (yo) can
be expressed as Py,w (F') by choosing F' = {(y,w) : y = yo}. Then use the
pmf formula for Py y to write

py(yo) = Prw(F)
= Z py.w(y,w)

y,wi(y,w)EF

Z py,w (Yo, w). (3.13)

wWEQW

Similarly

pw(wo) = > py,w(y, wo). (3.14)
yeQy

This is an example of the consistency of probability, using different pmf’s
derived from a common experiment to compute the probability of a single
event must produce the same result — the marginals must agree with the
joints. Consistency means that we can find marginals by “summing out”
joints without knowing the underlying experiment on which the random
variables are defined.

This completes the derived distribution of the two random variables Y’
and W (or the single random vector (Y, W)) defined on the original uniform
pdf experiment. For this particular example the joint pmf and the marginal
pmf’s have the interesting property

py,w (y, w) = py (y)pw (w), (3.15)

that is, the joint distribution is a product distribution. A product distribu-
tion better models our intuitive feeling of experiments such as flipping two
fair coins and letting the outputs be Y and W be 1 or 0 according to the
coins landing heads or tails.

In both of these examples cases the joint pmf had to be consistent
with the individual pmf’s py and py (called marginal pmf’s) in the sense
of giving the same probabilities to events where both joint and marginal



92 CHAPTER 3. RANDOM OBJECTS

probabilities make sense. In particular,

py(y) = Pr(Y =y)
= Pr(Y =y, Ve{0,1})

= > prviyv),

v=0

an example of a consistency property.

The two examples just considered of a random vector (Y, V) with the
property Pr(Y = V) = 1 and the random vector (Y, W) with the property
py,w (Y, w) = py (y)pw (w) represent extreme cases of two-dimensional ran-
dom vectors. In the first case Y = V and hence being told, say, that V = v
also tells us that necessarily ¥ = v. Thus V depends on Y in a particu-
larly strong manner and the two random variables can be considered to be
extremely dependent. The product distribution, on the other hand, can be
interpreted as implying that knowing one of the random variable’s outcome
tells us absolutely nothing about the other, as is the case when flipping two
fair coins. Two discrete random variables Y and W will be defined to be in-
dependent if they have a product pmf, that is, if py w (v, w) = py (¥)pw (w).
Independence of random variables will be shortly related to the idea of in-
dependence of events introduced in chapter 2, but for the moment simply
observe that it can be interpreted as meaning that knowing the outcome
of one random variable does not affect the probability distribution of the
other. This is a very special case of general joint pmf’s. It may be sur-
prising that two random variables defined on a common probability space
can be independent of one another, but this was ensured by the specific
construction of the two random variables Y and W.

Note that we have also defined a three dimensional random vector
(Y, V,W) because we have defined three random variables on a common
experiment. Hence you should be able to find the joint pmf pyyy using
the same ideas.

Note also that in addition to the indirect derivations of a specific exam-
ples of two-dimensional random variable, a direct development is possible.
For example, let {0,1}? be a sample space with all of its four points hav-
ing equal probability. Any point r in the sample space can be expressed
as r = (rg,r1), where r; € {0,1} for ¢ = 0,1. Define the random vari-
ables V : {0,1}? — {0,1} and U : {0,1}* — {0,1} by V(ro,r1) = ro and
U(rg,m1) = 1. You should convince yourself that

py,w(y,w) =pvu(y,w); y=0,1; w=0,1

and that py (y) = pw(y) = pv(y) = pu(y), y = 0,1. Thus the random
vectors (Y, W) and (V,U) are equivalent.
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In a similar manner pdf’s can be used to describe continuous random
vectors, but we shall postpone this step until a later section and instead
move to the idea of random processes.

3.1.3 Random Processes

It is straightforward conceptually to go from one random variable to k ran-
dom variables constituting a k-dimensional random vector. It is perhaps
a greater leap to extend the idea to a random process. The idea is at
least easy to state, but it will take more work to provide examples and the
mathematical details will prove more complicated. A random process is
a sequence of random variables {X,; n = 0,1,...} defined on a common
experiment. It can be thought of as an infinite dimensional random vec-
tor. To be more accurate, this is an example of a discrete-time, one-sided
random process. It is called “discrete-time” because the index n which cor-
responds to time takes on discrete values (here the nonnegative integers)
and it is called “one-sided” because only nonnegative times are allowed. A
discrete-time random process is also called a time series in the statistics
literature and it is often denoted as {X(n) n =0,1,...} and is sometimes
denoted by {X|[n]} in the digital signal processing literature. Two ques-
tions might occur to the reader: how does one construct an infinite family
of random variables on a single experiment? How can one provide a direct
development of a random process as accomplished for random variables
and vectors? The direct development might appear hopeless since infinite
dimensional vectors are involved.

The first problem is reasonably easy to handle by example. Consider
the usual uniform pdf experiment. Rename the random variables Y and W
as Xy and X7, respectively. Consider the following definition of an infinite
family of random variables X, : [0,1) — {0,1} for n = 0,1,.... Every
r € [0,1) can be expanded as a binary expansion of the form

oo

r=> by(r)2"h (3.16)

This simply replaces the usual decimal representation by a binary represen-
tation. For example, 1/4 is .25 in decimal and .01 or .010000 ... in binary,
1/2 is .5 in decimal and yields the binary sequence .1000 ..., 1/4 is .25 in
decimal and yields the binary sequence .0100 ... , 3/4 is .75 in decimal and
11000 ..., and 1/3 is .3333 ... in decimal and .010101 ... in binary.

Define the random process by X,,(r) = b,(r), that is, the nth term in
the binary expansion of 7. When n = 0,1 this reduces to the specific X
and X; already considered.
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The inverse image formula can be used to compute probabilities, al-
though the calculus can get messy. Given the simple two-dimensional ex-
ample, however, it should be reasonable that the pmf’s for random vectors
of the form X" = (Xy, X1,...,X,—1) can be evaluated as

pxn(z") = Pr(X™ = 2") =27, 2™ € {0,1}", (3.17)

where {0,1}" is the collection of all 2" binary n-tuples. In other words,
the first n binary digits in a binary expansion for a uniformly distributed
random variable are all equally probable. Note that in this special case the
joint pmf’s are again related to the marginal pmf’s in a product fashion,
that is,

n—1
pxn(z") = H px; (T4), (3.18)
i=0
in which case the random variables Xg, X1,..., X,,_1 are said to be mutu-

ally independent or, more simply, independent. If a random process is such
that any finite collection of the random variables produced by the process
are independent and the marginal pmf’s are all the same (as in the case
under consideration), the process is said to be independent identically dis-
tributed or did for short. An iid process is also called a Bernoulli process,
although the name is sometimes reserved for a binary iid process.

Something fundamentally important has happened here. If we have a
random process, then the probability distribution for any random vectors
formed by collecting outputs of the random process can be found (at least
in theory) from the inverse image formula. The calculus may be a mess, but
at least in some cases such as this one it is doable. Furthermore these pmf’s
are consistent in the sense noted before. In particular, if we use (3.13-3.14)
to compute the already computed pmf’s for Xy and X; we get the same
thing we did before, they are each equiprobable binary random variables. If
we compute the joint pmf for X and X; using (3.17) we also get the same
joint pmf we got before. This observation likely seems trivial at this point
(and it should be natural that the math does not give any contradictions),
but it emphasizes a property that is critically important when trying to
describe a random process in a more direct fashion.

Suppose now that a more direct model of a random process is desired
without a complicated construction on an original experiment. Here the
problem is not as simple as in the random variable or random vector case
where all that was needed was a consistent assignment of probabilities and
an identity mapping. The solution is known as the Kolmogorov exten-
sion theorem, named after the primary developer of modern probability
theory. The theorem will be stated formally later in this chapter, but its



3.2. RANDOM VARIABLES 95

complicated proof will be left to other texts. The basic idea, however, can
be stated in a few words. If one can specify a consistent family of pmf’s
pxn(z™) for all n (we have done this for n = 1 and 2), then there exists
a random process described by those pmf’s. Thus, for example, there will
exist a random process described by the family of pmf’s px» (z™) = 27" for
a™ € {0,1}" for all positive integers n if and only if the family is consistent.
We have already argued that the family is indeed consistent, which means
that even without the indirect construction previously followed we can ar-
gue that there is a well-defined random process described by these pmf’s.
In particular, one can think of a “grand experiment” where Nature selects
a one-sided binary sequence according to some mysterious probability mea-
sure on sequences that we have difficulty envisioning. Nature then reveals
the chosen sequence to us one coordinate at a time, producing the process
Xo, X1, Xo,..., and the distributions of any finite collection of these ran-
dom variables are known from the given pmf’s px». Putting this in yet
another way, describing or specifying the finite-dimensional distributions of
a process is enough to completely describe the process (provided of course
the given family of distributions is consistent).

In this example the abstract probability measure on semiinfinite binary
sequences is not all that mysterious, from our construction the sequence
space can be considered to be essentially the same as the unit interval
(each point in the unit interval corresponding to a binary sequence) and
the probability measure is described by a uniform pdf on this interval.

The second method of describing a random is by far the most common
in practice. One usually describes a process by its finite sample behavior
and not by a construction on an abstract experiment. The Kolmogorov
extension theorem ensures that this works. Consistency is easy to demon-
strate for iid processes, but unfortunately it becomes more difficult to verify
in more general cases (and more difficult to define and demonstrate for con-
tinuous time examples).

Having toured the basic ideas to be explored in this chapter, we now
proceed delve into the details required to make the ideas precise and general.

3.2 Random Variables

We now develop the promised precise definition of a random variable. As
you might guess, a technical condition for random variables is required
because of certain subtle pathological problems that have to do with the
ability to determine probabilities for the random variable. To arrive at
the precise definition, we start with the informal definition of a random
variable that we have already given and then show the inevitable difficulty
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that results without the technical condition. We have informally defined a
random variable as being a function on a sample space. Suppose we have a
probability space (2, F, P). Let f :  — R be a function mapping the same
space into the real line so that f is a candidate for a random variable. Since
the selection of the original sample point w is random, that is, governed by
a probability measure, so should be the output of our measurement of
random variable f(w). That is, we should be able to find the probability of
an “output event” such as the event “the outcome of the random variable
f was between a and b,” that is, the event ' C R given by F = (a,b).
Observe that there are two different kinds of events being considered here:

1. output events or members of the event space of the range or range
space of the random variable, that is, events consisting of subsets of
possible output values of the random variable; and

2. input events or {2 events, events in the original sample space of the
original probability space.

Can we find the probability of this output event? That is, can we make
mathematical sense out of the quantity “the probability that f assumes
a value in an event F© C R”7 On reflection it seems clear that we can.
The probability that f assumes a value in some set of values must be the
probability of all values in the original sample space that result in a value of
f in the given set. We will make this concept more precise shortly. To save
writing we will abbreviate such English statements to the form Pr(f € F),
or Pr(F), that is, when the notation Pr(F) is encountered it should be
interpreted as shorthand for the English statement for “the probability of
an event [ or “the probability that the event F' will occur” and not as a
precise mathematical quantity.

Recall from chapter 2 that for a subset F' of the real line R to be an
event, it must be in a sigma field or event space of subsets of . Recall also
that we adopted the Borel field B(R) as our basic event space for the real
line. Hence it makes sense to require that our output event F' be a Borel
set.

Thus we can now state the question as follows: Given a probability
space (Q,F, P) and a function f : Q — R, is there a reasonable and useful
precise definition for the probability Pr(f € F') for any F' € B(R), the Borel
field or event space of the real line? Since the probability measure P sits
on the original measurable space (2, F) and since f assumes a value in F’
if and only if w € Q is chosen so that f(w) € F, the desired probability
is obviously Pr(f € F) = P({w : f(w) € F}) = P(f~Y(F)). In other
words, the probability that a random variable f takes on a value in a Borel
set F' is the probability (defined in the original probability space) of the
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set of all (original) sample points w that yield a value f(w) € F. This, in
turn, is the probability of the inverse image of the Borel set F' under the
random variable f. This idea of computing the probability of an output
event of a random variable using the original probability measure of the
corresponding inverse image of the output event under the random variable
is depicted in Figure 3.1.

Figure 3.1: The inverse image method: Pr(f € F) = P{w :w € F}) =
P(f~1(F))

This natural definition of the probability of an output event of a random
variable indeed makes sense if and only if the probability P(f~!(F)) makes
sense, that is, if the subset f~!(F) of £ corresponding to the output event
F is itself an event, in this case an input event or member of the event
space F of the original sample space. This, then, is the required technical
condition: A function f mapping the sample space of a probability space
(Q, F, P) into the real line f is a random variable if and only if the inverse
images of all Borel sets in & are members of F, that is, if all of the €
sets corresponding to output events (members of B(R)) are input events
(members of F). Unlike some of the other pathological conditions that we
have met, it is easy to display some trivial examples where the technical
condition is not met (as we will see in Example [3.11]). We now formalize
the definition:

Given a probability space (92, F, P) a (real-valued) random variable is
a function f : Q@ — R with the property that if I € B(R), then also
fUF)={w: f(w) e F} € F.
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Given a random variable f defined on a probability space (Q, F, P), the
set function

Py(F) 2 P(f7Y(F))

P({w: f(w) e F})
= Pri(feF); FeB®R) (3.19)

is well defined since by definition f~!(F) € F for all F' € B(R). In the next
section the properties of distributions will be explored.

In some cases one may wish to consider a random variable with a more
limited range space than the real line, e.g., when the random variable is
binary. (Recall from chapter A that the range space of f is the image of
Q.) If so, R can be replaced in the definition by the appropriate subset, say
A C R. This is really just a question of semantics since the two definitions
are equivalent. One or the other view may, however, be simpler to deal
with for a particular problem.

A function meeting the condition in the definition we have given is
said to be measurable. This is because such functions inherit a probabil-
ity measure on their output events (specifically a probability measure in
our context; in other contexts more general measures can be defined on a
measurable space.

If a random variable has a distribution described by a pmf or a pdf with
a specific name, then the name is often applied also to the random variable;
e.g., a continuous random variable with a Gaussian pdf is called a Gaussian
random variable.

Examples

In every case we are given a probability space (2, F, P). For the moment,
however, we will concentrate on the sample space €2 and the random variable
that is defined functionally on that space. Note that the function must be
defined for ewvery value in the sample space if it is to be a valid function.
On the other hand, the function does not have to assume every possible
value in its range.

As you will see, there is nothing particularly special about the names
of the random variables. So far we have used the lower case letter f.
On occasion we will use other lower case letters such as g and h. As we
progress we will follow custom and more often use upper case letters late
in the alphabet, such as X,Y, Z, U, V, and W. Capital Greek letters like ©
and ¥ are also popular.

The reader should keep the signal processing interpretation in mind
while considering these examples, several very common types of signal pro-
cessing are considered, including quantization, sampling, and filtering.
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[3.1] Let @ = R, the real line, and define the random variable X : Q — Q
by X (w) = w? for all w € Q. Thus the random variable is the square
of the sample point. Note that since the square of a real number
is always nonnegative, we could replace the range 2 by the range
space [0,00) and consider X as a mapping X : Q — [0,00). Other
random variables mapping Q into itself are Y(w) = |w|, Z(Q) =
sin(w), U(w) = 3 X w + 321.5, and so on. We can also consider
the identity mapping as a random variable; that is, we can define a
random variable W:  — Q by W(w) = w.

[3.2] Let Q = R as in example [3.1] and define the random variable f :
w—{=V,V} by

+V ifr>0
f(’")—{ ~V ifr<o.

This example is a variation of the binary quantizer of a real input con-
sidered in the introduction to chapter 2. With this specific choice of output
levels it is also called a hard limiter.

So far we have used w exclusively to denote the argument of the random
variable. We can, however, use any letter to denote the dummy variable (or
argument or independent variable) of the function, provided that we specify
its domain; that is, we do not need to use w all the time to specify elements
of Q: r, x, or any other dummy variable will do. We will, however, as a
convention, always use only lower case letters to denote dummy variables.

When referring to a function, we will use several methods of specifi-
cation. Sometimes we will only give its name, say f; sometimes we will
specify its domain and range, as in f : 0 — A; sometimes we will provide
a specific dummy variable, as in f(r); and sometimes we will provide the
dummy variable and its domain, as in f(r);r € Q. Finally, functions can
be shown with a place for the dummy variable marked by a period to avoid
annointing any particular dummy variable as being somehow special, as in
f(©). These various notations are really just different means of denoting the
same thing while emphasizing certain aspects of the functions. The only
real danger of this notation is the same as that of calculus and trigonom-
etry: if one encounters a function, say sint, does this mean the sine of a
particular t (and hence a real number) or does it mean the entire waveform
of sint for all t7 The distinction should be clear from the context, but the
ambiguity can be removed, for example, by defining something like sin ¢
to mean a particular value and {sint¢; ¢t € R} or sin(-) to mean the entire
waveform.

[8.3] Let U be as in example [3.1] and f as in [3.2]. Then the function
g : 1 — Q defined by g(w) = f(U(w)) is also a random variable. This
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relation is often abbreviated by dropping the explicit dependence on
w to write ¢ = f(U). More generally, any function of a function is
another function, called a “composite” function. Thus a function of a
random variable is another random variable. Similarly, one can con-
sider a random variable formed by a complicated combination of other
random variables — for example, g(w) = 1 sinh ™' [r x ecos(lwl® ™),

[3.4] Let Q = R*, k-dimensional Euclidean space. Occasionally it is of
interest to focus attention on the random variable which is defined
as a particular coordinate of a vector w = (o, 21,... ,2Tx_1) € RE.
Toward this end we can define for each i = 0,1,... ,k — 1 a sam-
pling function (or coordinate function) II; : R¥ — R as the following
random variable:

Hi(w) = Hi((it(),... ,.77}971)) =Z; .

The sampling functions are also called “projections” of the higher di-
mensional space onto the lower. (This is the reason for the choice of IT
Greek P — not to be confused with the product symbol [ — to denote
the functions.)

Similarly, we can define a sampling function for any product space, e.g.,
for sequence and waveform spaces.

x[3.5] Given a space A, an index set 7, and the product space A7, define
as a random variable, for any fixed ¢ € 7, the sampling function
II; : A7 — A as follows: since any w € A7 is a vector or function of
the form {zs; s € T}, define for each ¢ in 7 the mapping

Ht(UJ) = Ht({mb, s e T}) = Tt .
Thus, for example, if €2 is a one-sided binary sequence space

H {0,1}: = {0, 1}Z+7

i€Zy

and hence every point has the form w = (xg, 21, ... ), then II3((0,1,1,0,0,0,1,0,1, ...

0. As another example, if for all ¢ in the index set R, is a replica of & and

Q is the space
R* =TT =
teR

of all real-valued waveforms {z(t); ¢t € (—o0,00)}, then for w = {sint; t €
R}, the value of the sampling function at the particular time t = 27 is

I, ({sint; t € R}) =sin27 =0 .
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[3.6] Suppose that we have a one-sided binary sequence space {0, 1}%+.
For any n € {1,2,...}, define the random variable Y,, by ¥, (w) =
Y, ((wo,21,22,...)) = the index (time) of occurrence of the nt" 1 in
w. For example, Y5((0,0,0,1,0,1,1,0,1,...)) = 5 because the second
sample to be 1 is x5.

[3.7] Say we have a one-sided sequence space 2 = [[;cz, Ri, where R; is
a replica of the real line for each ¢ in the index set. Since every w in
this space has the form {xg,z1,...} = {z;; ¢ € Z4}, we can define
for each positive integer n the random variable, depending on n,

Sp(w) =S, ({zi;i€ Zy}) =nt z_:xi
=0

the arithmetic average or “mean” of the first n coordinates of the
infinite sequence.

For example, if w = {1,1,1,1,1,1,1,...}, then S, = 1. This average
is also called a Césaro mean or sample average or time average since the
index being summed over often corresponds to time; viz., we are adding the
outputs at times 0 through n—1 in the preceding equation. Such arithmetic
means will later be seen to play a fundamental role in describing the long-
term average behavior of random processes. The arithmetic mean can also
be written using coordinate functions as

n—1
Sp(w) =n""> T(w) , (3.20)
i=0
which we abbreviate to
n—1
Su=n' S (3.21)
i=0

by suppressing the dummy variable or argument w. Equation (3.21) is
shorthand for (3.20) and says the same thing: The arithmetic average of
the first n terms of a sequence is the sum of the first n coordinates or
samples of the sequence.

[3.8] As a generalization of the sample average consider weighted averages
of sequences. Such weighted averages occur in the convolutions of
linear system theory. Let © be the space J[,.zR;, where R; are
all copies of the real line. Suppose that {hg; k = 0,1,2,...} is a
fixed sequence of real numbers that can be used to form a weighted
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average of the coordinates of w € ). Each w in this space has the
formw = (..., z_1,20,21,...) = {2;; 7 € Z} and hence a weighted
average can be defined for each integer n the random variable

Yn(w) = thxn,k .
k=0

Thus the random variable Y;, is formed as a linear combination of the
coordinates of the sequence constituting the point w in the double-sided
sequence space. This is a discrete time convolution of an input sequence
with a linear weighting. In linear system theory the weighting is called a
unit pulse response (or Kronecker delta response or ¢ response), and it is
the discrete time equivalent of an impulse response. Note that we could
also use the sampling function notation to write Y,,, as a weighted sum of
the sample random variables.

[3.9] In a similar fashion, complicated random variables can be defined on

waveform spaces. For example, let Q = Héﬁt, the space of all real-

teR
valued functions of time such as voltage-time waveforms. For each T,

define a time average

Yr(w) = Ye({z(t): t € R)) = T / w(t)dt |

or given the impulse response h(t) of a causal, linear time-invariant
system, we define a weighted average

Wi(w) = /0 " h)(T — tydt .

Are these also random variables? They are certainly functions defined
on the underlying sample space, but as one might suspect, the sample
space of all real-valued waveforms is quite large and contains some bizarre
waveforms. For example, the waveforms can be sufficiently pathological to
preclude the existence of the integrals cited (see chapter 2 for a discussion
of this point). These examples are sufficiently complicated to force us now
to look a bit closer at a proper definition of a random variable and to
develop a technical condition that constrains the generality of our definition
but ensures that the definition will lead to a useful theory. It should be
pointed out, however, that this difficulty is no accident and is not easily
solved: waveforms are truly more complicated than sequences because of
the wider range of possible waveforms, and hence continuous time random
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processes are more difficult to deal with rigorously than are discrete time
processes. One can write equations such as the integrals and then find
that the integrals do not make sense even in the general Lebesgue sense.
Often fairly advanced mathematics are required to properly patch up the
problems. For purposes of simplicity we usually concentrate on sequences
(and hence on discrete time) rather than waveforms, and we gloss over the
technical problems when we consider continuous time examples.

One must know the event space being considered in order to determine
whether or not a function is a random variable. While we will virtually
always assume the usual event spaces (that is, the power set for discrete
spaces, the Borel field for the real line or subsets of the real line, and the
corresponding product event spaces for product sample spaces), it is useful
to consider some other examples to help clarify the basic definition.

[3.10] First consider (2, F, P) where  is itself a discrete subset of the real
line R, e.g., {0,1} or Z;. If; as usual, we take F to be the power set,
then any function f : Q@ — R is a random variable. This follows since
the inverse image of any Borel set in 8 must be a subset of Q and
hence must be in the collection of all subsets of 2.

Thus with the usual event space for a discrete sample space — the power
set — any function defined on the probability space is a random variable.
This is why all of the structure of event spaces and random variables is
not seen in elementary texts that consider only discrete spaces: There is no
need.

It should be noted that for any €2, discrete or not, if F is the power set,
then all functions defined on 2 are random variables. This fact is useful,
however, only for discrete sample spaces since the power set is not a useful
event space in the continuous case (since we cannot endow it with useful
probability measures).

If, however, F is not the power set, some functions defined on €2 are not
random variables, as the following simple example shows:

[3.11] Let © be arbitrary, but let F be the trivial sigma field {,0}.
On this space it is easy to construct functions that are not random
variables (and hence are non-measurable functions). For example,
let = {0,1} and define f(w) = w, the identity function. Then
f71({0}) = {0} is not in F, and hence this simple function is not a
random variable. In fact, it is obvious that any function that assigns
different values to 0 and 1 is not a random variable. Note, however,
that some functions are random variables.

The problem illustrated by this example is that the input event space
is not big enough or “fine” enough to contain all input sets corresponding
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to output events. This apparently trivial example suggests an important
technique for dealing with advanced random process theory, especially for
continuous time random processes: If the event space is not large enough
to include the inverse image of all Borel sets, then enlarge the event space
to include all such events, viz., by using the power set as in example [3.10].
Alternatively, we might try to force F to contain all sets of the form
fUF), F € B(R); that is, make F the sigma field generated by such
sets. Further treatment of this subject is beyond the scope of the book.
However, it is worth remembering that if a sigma field is not big enough
to make a function a random variable, it can often be enlarged to be big
enough. This is not idle twiddling; such a procedure is required for impor-
tant applications, e.g., to make integrals over time defined on a waveform
space into random variables.

On a more hopeful tack, if the probability space (2, F, P) is chosen with
Q = R and F = B(R), then all functions f normally encountered in the
real world are in fact random variables. For example, continuous functions,
polynomials, step functions, trigonometric functions, limits of measurable
functions, maxima and minima of measurable functions, and so on are
random variables. It is, in fact, extremely difficult to construct functions on
Borel spaces that are not random variables. The same statement holds for
functions on sequence spaces. The difficulty is comparable to constructing
a set on the real line that is not a Borel set and is beyond the scope of this
book.

So far we have considered abstract philosophical aspects in the defini-
tion of random variables. We are now ready to develop the probabilistic
properties of the defined random variables.

3.3 Distributions of Random Variables

3.3.1 Distributions

Suppose we have a probability space (2, F, P) with a random variable, X,
defined on the space. The random variable X takes values on its range
space which is some subset A of R (possibly A = R). The range space A of
a random variable is often called the alphabet of the random variable. As
we have seen, since X is a random variable, we know that all subsets of €}
of the form X ~1(F) = {w: X(w) € F}, with F' € B(A), must be members
of F by definition. Thus the set function Px defined by

Px(F) = P(X"Y(F)) = P({w: X(w) € F}); F € B(A) (3.22)

is well defined and assigns probabilities to output events involving the ran-
dom variable in terms of the original probability of input events in the orig-
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inal experiment. The three written forms in equation (3.22) are all read
as Pr(X € F) or “the probability that the random variable X takes on a
value in F.” Furthermore, since inverse images preserve all set-theoretic
operations (see problem A.12), Py satisfies the axioms of probability as a
probability measure on (A, B(A)) — it is nonnegative, Px(A) = 1, and it
is countably additive. Thus Px is a probability measure on the measurable
space (A, B(A)). Therefore, given a probability space and a random variable
X, we have constructed a new probability space (A4, B(A), Px) where the
events describe outcomes of the random variable. The probability measure
Px is called the distribution of X (as opposed to a “cumulative distribution
function” of X to be introduced later).

If two random variables have the same distribution, then they are said to
be equivalent since they have the same probabilistic description, whether
or not they are defined on the same underlying space or have the same
functional form (see problem 3.22).

A substantial part of the application of probability theory to practical
problems is devoted to determining the distributions of random variables,
performing the “calculus of probability.” One begins with a probability
space. A random variable is defined on that space. The distribution of the
random variable is then derived, and this results in a new probability space.
This topic is called variously “derived distributions” or “transformations of
random variables” and is often developed in the literature as a sequence
of apparently unrelated subjects. When the points in the original sample
space can be interpreted as “signals,” then such problems can be viewed
as “signal processing” and derived distribution problems are fundamental
to the analysis of statistical signal processing systems. We shall emphasize
that all such examples are just applications of the basic inverse image for-
mula (3.22) and form a unified whole. In fact, this formula, with its vector
analog, is one of the most important in applications of probability theory.
Its specialization to discrete input spaces using sums and to continuous
input spaces using integrals will be seen and used often throughout this
book.

It is useful to bear in mind both the mathematical and the intuitive
concepts of a random variable when studying them. Mathematically, a
random variable, say X, is a “nice” (= measurable) real-valued function
defined on the sample space of a probability space (2, F, P). Intuitively, a
random variable is something that takes on values at random. The random-
ness is described by a distribution Py, that is, by a probability measure on
an event space of the real line. When doing computations involving ran-
dom variables, it is usually simpler to concentrate on the probability space
(A, B(A), Px), where A is the range space of X, than on the original prob-
ability space (Q,F,P). Many experiments can yield equivalent random
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variables, and the space (A,B(A), Px) can be considered as a canonical
description of the random variable that is often more useful for compu-
tation. The original space is important, however, for two reasons. First,
all distribution properties of random variables are inherited from the orig-
inal space. Therefore much of the theory of random variables is just the
theory of probability spaces specialized to the case of real sample spaces.
If we understand probability spaces in general, then we understand ran-
dom variables in particular. Second, and more important, we will often
have many interrelated random variables defined on a common probability
space. Because of the interrelationships, we cannot consider the random
variables independently with separate probability spaces and distributions.
We must refer to the original space in order to study the dependencies
among the various random variables (or consider the the random variables
jointly as a random vector).

Since a distribution is a special case of a probability measure, in many
cases it can be induced or described by a probability function, i.e., a pmf or
a pdf. If a range space of the random variable is discrete or, more generally,
if there is a discrete subset of the range space A such that Px(A) = 1, then
there is a pmf, say px, corresponding to the distribution Px. The two are
related via the formulas

px(z) =Px({z}), all z€ A, (3.23)

where A is the range space or alphabet of the random variable, and

Px(F)=> px(x); FeBA). (3.24)
zeF

In (3.23) both quantities are read as Pr(X = z).

The pmf and the distribution imply each other from (3.23) and (3.24),
and hence either formula specifies the random variable.

If the range space of the random variable is continuous and if a pdf fx
exists, then we can write the integral analog to (3.24):

Py (F) = /F fe(@)da ; FeB(A). (3.25)

There is no direct analog of (3.23) since a pdf is not a probability. An ap-
proximate analog of (3.23) follows from the mean value theorem of calculus.
Suppose that F' = [z, 2 + Ax), where Az is extremely small. Then if fx is
sufficiently smooth, the mean value theorem implies that

z+Azx
Px([z,z + Ax)) = / fx(a)da =~ fx(z)Ax, (3.26)

x
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so that if we multiply a pdf fx(x) by a differential Az, it can be interpreted
as (approximately) the probability of being within Az of x. It is desirable,
however, to have an exact pair of results like (3.23) and (3.24) that show how
to go both ways, that is, to get the probability function from the distribution
as well as vice versa. From considerations of elementary calculus it seems
that we should somehow differentiate both sides of (3.25) to yield the pdf
in terms of the distribution. This is not immediately possible, however,
because F' is a set and not a real variable. Instead to find a pdf from a
distribution, we use the intermediary of a cumulative distribution function
or cdf. We pause to give the formal definition.

Given a random variable X with distribution Px, the cumulative dis-
tribution function or cdf Fx is defined by

Fx(a)=Px((—0,a]) =Px({{z: 2 <a}); aeR.

The cdf is seen to represent the cumulative probability of all values of
the random variable in the infinite interval from minus infinity up to and
including the real number argument of the cdf. The various forms can be
summarized as F'x(«a) = Pr(X < «). If the random variable X is defined
on the probability space (2, F, P), then by definition

Fx(a) = P(X7'((~00,0])) = P({w: X(w) < a}) .

If a distribution possesses a pdf, then the cdf and pdf are related through
the distribution and (3.25) by

Fx(a)=P(X }((-o0,a])) = f fx(@)dr ; a € R . (3.27)

The motivation for the definition of the cdf in terms of our previous
discussion is now obvious. Since integration and differentiation are mutu-
ally inverse operations, the pdf is determined from the cdf (and hence the
distribution) by
- dFX (a) .
 da
where, as is customary, the right-hand side is shorthand for

dFX ({L‘)
dx |a::a 9

the derivative evaluated at «. Alternatively, (3.28) also follows from the
fundamental theorem of calculus and the observation that

fx(a) aeR. (3.28)

b
Px((a,b]) = / Fx(z)de = Fx(b) — Fx(a) . (3.29)
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Thus (3.27) and (3.28) together show how to find a pdf from a distribution
and hence provide the continuous analog of (3.23). Equation (3.23) is useful,
however only if the derivative, and hence the pdf, exists. Observe that the
cdf is always well defined (because the semi-infinite interval is a Borel set
and therefore an event), regardless of whether or not the pdf exists in both
the continuous and the discrete alphabet cases. For example, if X is a
discrete alphabet random variable with alphabet Z and pmf px, then the
cdf is

x

Fx(x)= Y px(k), (3.30)

k=—o0

the analogous sum to the integral of (3.27). Furthermore, for this example,
the pmf can be determined from the cdf (as well as the distribution) as

px(‘r):Fx(l’)*Fx(l’fl) y (331)

a difference analogous to the derivative of (3.28).

It is desirable to use a single notation for the discrete and continuous
cases whenever possible. This is accomplished for expressing the distribu-
tion in terms of the probability functions by using a Stieltjes integral, which
is defined as

pr(x) if X is discrete

P (F):/ dF (x):/l (z)dF (x)é zeF
X X F b'e

" /fX(:l:) dr if X hasa pdf.

F
(3.32)

Thus (3.32) is a combination of both (3.24) and (3.25).

3.3.2 Mixture Distributions

More generally, we may have a random variable that has both discrete and
continuous aspects and hence is not describable by either a pmf alone or
a pdf alone. For example, we might have a probability space (&, B(R), P),
where P is described by a Gaussian pdf f(w); w € R. The sample point w €
R is input to a soft limiter with output X (w)— a device with input/output
characteristic X defined by

-1 w<<-1
Xw)=qw we(-1,1) (3.33)
1 1<w
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Aslong as |w| <1, X(w) = w. But for values outside this range, the output
is set equal to -1 or +1. Thus all of the probability density outside the
limiting range “piles up” on the ends so that Pr(X(w) =1) = [ ., f(w)dw
is not zero. As a result X will have a mixture distribution, described by a
pdf in (—1,1) and by a pmf at the points 1.

Random variables of this type can be described by a distribution that is
the weighted sum of two other distributions — a discrete distribution and
a continuous distribution. The weighted sum is an example of a mixture
distribution, that is, a mixture of probability measures as in example [2.18].
Specifically, let P; be a discrete distribution with corresponding pmf p, and
let P> be a continuous distribution described by a pdf f. For any positive
weights ¢1,co with ¢; + co = 1, the following mixture distribution Px is
defined:

Px(F) = 01P1(F)+CQP2(F)
= a) pk)+ec f

= ) 1p(k)p(k) +co / 1p(r) f(z) do (3.34)
F € B(R).

For example, the output of the limiter of (3.33) has a pmf which places
probability one half on 41, while the pdf is Gaussian-shaped for magnitudes
less than unity (i.e., it is a truncated Gaussian pdf normalized so that the
pdf integrates to one over the range (—1,1)). The constant ¢; is the integral
of the pdf over (—1,1) and ¢ = 1 — ¢;. Observe that the cdf for a random
variable with a mixture distribution is

Fx(a) = ¢ Z —‘rCz/a f(z)dx

o o (3.35)
= ClFl(Oé) —+ CQFQ(OC) y

where F; and Fy are the cdf’s corresponding to P; and P, respectively.
The combined notation for discrete and continuous alphabets using the

Stieltjes integral notation of (3.32) also can be used as follows. Given a

random variable with a mixture distribution of the form (3.34), then

where

/ P(@) dFx(2) 2 o0 3 1p(2) —l—cz/lp(x)f(a:)dz. (3.37)
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Observe that (3.36) and (3.37) includes (3.32) as a special case where either
¢y or ¢g is 0. Equations (3.36) and (3.37) provides a general means for
finding the distribution of a random variable X given its cdf, provided the
distribution has the form of (3.35).

All random variables can be described by a cdf. But, more subtly, do
all random variables have a cdf of the form (3.35)? The answer is almost
yes. Certainly all of the random variables encountered in this course and
in engineering practice have this form. It can be shown, however, that the
most general cdf has the form of a mixture of three cdf’s: a continuous and
differentiable piece induced by a pdf, a discrete piece induced by a pmf, and
a third pathological piece. The third piece is an odd beast wherein the cdf
is something called a singular function — the cdf is continuous (it has no
jumps as it does in the discrete case), and the cdf is differentiable almost
everywhere (here “almost everywhere” means that the cdf is differentiable
at all points except some set F for which [ # dx = 0), but this derivative is 0
almost everywhere and hence it cannot be integrated to find a probability!
Thus for this third piece, one cannot use pmf’s or pdf’s to compute proba-
bilities. The construction of such a cdf is beyond the scope of this text, but
we can point out for the curious that the typical example involves placing
probability measures on the Cantor set that was considered in problem 218.
At any rate, as such examples almost never arise in practice, we shall ignore
them and henceforth consider only random variables for which (3.36) and
(3.37) holds.

While the general mixture distribution random variable has both dis-
crete and continuous pieces, for pedagogical purposes it is usually simplest
to treat the two pieces separately — i.e., to consider random variables that
have either a pdf or a pmf. Hence we will rarely consider mixture distri-
bution random variables and will almost always focus on those that are
described either by a pmf or by a pdf and not both.

To summarize our discussion, we will define a random variable to be a
discrete, continuous, or mixture random variable depending on whether
it is described probabilistically by a pmf, pdf, or mixture as in (3.36) and
(337) with ¢q,c0 > 0.

We note in passing that some texts endeavor to use a uniform approach
to mixture distributions by permitting pdf’s to possess Dirac delta or im-
pulse functions. The purpose of this approach is to permit the use of the
continuous ideas in discrete cases, as in our limiter output example. If the
cdf is differentiated, then a legitimate pdf results (without the need for a
pmf) if a delta function is allowed at the two discontinuities of the cdf.
As a general practice we prefer the Stieltjes notation, however, because
of the added notational clumsiness resulting from using pdf’s to handle
inherently discrete problems. For example, compare the notation for the
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geometric pmf with the corresponding pdf that is written using Dirac delta
functions.

3.3.3 Derived Distributions

[3.12] Let (2, F, P) be a discrete probability space with € a discrete subset
of the real line and F the power set. Let p be the pmf corresponding
to P, that is,

plw)=P{{w}), all we Q.

(Note: There is a very subtle possibility for confusion here. p(w) could
be considered to be a random variable because it satisfies the defini-
tion for a random variable. We do not use it in this sense, however;
we use it as a pmf for evaluating probabilities in the context given. In
addition, no confusion should result because we rarely use lower case
letters for random variables.) Let X be a random variable defined on
this space. Since the domain of X is discrete, its range space, A, is
also discrete (refer to the definition of a function to understand this
point). Thus the probability measure Px must also correspond to a
pmf, say px; that is, (3.23) and (3.24) must hold. Thus we can derive
either the distribution Px or the simpler pmf px in order to complete
a probabilistic description of X. Using (3.22) yields

px(z) = Px({z}) = P(X'({z}) = Y »w). (3.38)

w: X (w)=z

Equation (3.38) provides a formula for computing the pmf and hence
the distribution of any random variable defined on a discrete probability
space. As a specific example, consider a discrete probability space (€2, F, P)
with Q = Z,, F the power set of 2, and P the probability measure induced
by the geometric pmf. Define a random variable Y on this space by

1 if w even
Y(“’)_{ 0 if w odd

where we consider 0 (which has probability zero under the geometric pmf)
to be even. Thus we have a random variable Y : Z, — {0,1}. Using the
formula (3.38) for the pmf for Y (w) = 1 results in

py(1) = Y (1-pFlp= > (1-prp

w:weven k=24,...

= LN -pr = e -p)Y (- p))
(1=r) 5 =

_ o, U= _1-p
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where we have used the standard geometric series summation formula (in a
thinly disguised variation of an example of section 2.2.4). We can cal-
culate the remaining point in the pmf from the axioms of probability:
py(0) = 1 — py(1). Thus we have found a non-obvious derived distri-
bution by computing a pmf via (3.38), a special case of (3.22). Of course,
given the pmf, we could now calculate the distribution from (3.24) for all
four sets in the power set of {0,1}.

[3.13] Say we have a probability space (R, B(R), P) where P is described
by a pdf g; that is, g is a nonnegative function of the real line with
total integral 1 and

P(F):/EFg(r)dr ; FeB®R) .

Suppose that we have a random variable X : R — . We can use
(3.22) (3.24) to write a general formula for the distribution of X:

Py(F) = P(X"(F)) = / or)dr .

r: X(r)eF

Ideally, however, we would like to have a simpler description of X. In
particular, if X is a “reasonable function” it should have either a discrete
range space (e.g., a quantizer) or a continuous range space (or possibly
both, as in the general mixture case). If the range space is discrete, then X
can be described by a pmf, and the preceding formula (with the requisite
change of dummy variable) becomes

px(z) = Px({z}) = / g(r)dr .

r: X(r)=zx

If, however, the range space is continuous, then there should exist a pdf
for X, say fx, such that (3.25) holds. How do we find this pdf? As
previously discussed, to find a pdf from a distribution, we first find the cdf
Fx. Then we differentiate the cdf with respect to its argument to obtain
the pdf. As a nontrivial example, suppose that we have a probability space
(R, B(R), P) with P the probability measure induced by the Gaussian pdf.
Define a random variable W : ® — R by W (r) = r%; r € R. Following the
described procedure, we first attempt to find the cdf Fyy for W:

Fy(w)=Pr(W <w) = P{w:W(w)=w?<w})
= P([~w? w'?]); if w>0 .
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The cdf is clearly 0 if w < 0. Since P is described by a pdf, say g (the
specific Gaussian form is not yet important), then

1/2

Futw)= [ g,

—wl/2

If one should now try to plug in the specific form for the Gaussian density,
one would quickly discover that no closed form solution exists. Happily,
however, the integral does not have to be evaluated explicitly — we need
only its derivative. Therefore we can use the following handy formula from
elementary calculus for differentiating the integral:

d o db(w)

— g(r) dr = g(b(w)) == — g(a(w))

(3.39)

a(w)

Application of the formula yields

R Y e e e I )

The final answer is found by plugging in the Gaussian form of g. For
simplicity we do this only for the special case where m = 0. Then g is
symmetric; that is, g(w) = g(—w), so that

fw(w) = w_1/2g(w1/2) ; we0,00),

and finally

This pdf is called a chi-squared pdf with one degree of freedom.) Observe
that the functional form of the pdf is valid only for the given domain. By
implication the pdf is zero outside the given domain — in this example,
negative values of W cannot occur. One should always specify the domain
of the dummy variable of a pdf; otherwise the description is incomplete.
In practice one is likely to encounter the following trick for deriving
densities for certain simple one-dimensional problems. The approach can
be used whenever the random variable is a monotonic (increasing or de-
creasing) function of its argument. Suppose first that we have a random
variable Y = ¢(X), where g is a monotonic increasing function and that
g is differentiable. Since g is monotonic, it is invertible and we can write
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X =g }Y), that is, # = g~ !(y) is the value of x for which g(x) = y. Then
Fy(y) = Prg(X)<y)

Pr(X <g7'(y))

= Fx(97'(v)

97 W)
= / fx(z)dx.

—00

From (3.39) the density can be found as

d

fy() = —Fy(y) = fx(g' )

_ dg~'(y)
dy '

dy

A similar result can be derived for a monotone decreasing g except that a
minus sign results. The final formula is that if Y = ¢g(X) and g is monotone,
then

-1
Fr) = Il )1 L) (3.41)
This result is a one-dimensional special case of the so-called Jacobian
approach to derived distributions. The result could be used to solve the
previous problem by separately considering negative and nonnegative values
of the input r since 72 is a monotonic increasing function for nonnegative
r and monotonic decreasing for negative r. As in this example, the direct
approach from the inverse image formula is often simpler than using the
Jacobian “shortcut,” unless one is dealing with a monotonic function.

It can be seen that although the details may vary from application
to application, all derived distribution problems are solved by the general
formula (3.22). In some cases the solution will result in a pmf; in others
the solution will result in a pdf.

To review the general philosophy, one uses the inverse image formula
to compute the probability of an output event. This is accomplished by
finding the probability with respect to the original probability measure of
all input events that result in the given output event. In the discrete case
one concentrates on output events of the form X = x and thereby finds a
pmf. In the continuous case, one concentrates on output events of the form
X < z and thereby finds a cdf. The pdf is then found by differentiating.

[3.14] As a final example of derived distributions, suppose that we are
given a probability space (2, B(Q2), P) with Q C R. Define the identity
mapping X : Q — Q by X(w) = w. The identity mapping on the real
line with the Borel field is always a random variable because the
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measurability requirement is automatically satisfied. Obviously the
distribution Px is identical to the original probability measure P.
Thus all probability spaces with real sample spaces provide examples
of random variables through the identity mapping. A random variable
described in this form instead of as a general function (not the identity
mapping) on an underlying probability space is called a “directly
given” random variable.

3.4 Random Vectors and Random Processes

Thus far we have emphasized random variables, scalar functions on a sam-
ple space that assume real values. In some cases we may wish to model
processes or measurements with complex values. Complex outputs can be
considered as two-dimensional real vectors with the components being the
real and imaginary parts or, equivalently, the magnitude and phase. More
generally, we may have k—dimensional real vector outputs. Given that a
random variable is a real-valued function of a sample space (with a tech-
nical condition), that is, a function mapping a sample space into the real
line R, the obvious random vector definition is a vector-valued function
definition. Under this definition, a random vector is a vector of random
variables, a function mapping the sample space into R* instead of R. Yet
even more generally, we may have vectors that are not finite dimensional,
e.g., sequences and waveforms whose values at each time are random vari-
ables. This is essentially the definition of a random process. Fundamentally
speaking, both random vectors and random processes are simply collections
of random variables defined on a common probability space.

Given a probability space (2, F, P), a finite collection of random vari-
ables {X;;4 = 0,1,... ,k — 1} is called a random wvector.. We will often
denote a random vector in boldface as X. Thus a random vector is a
vector-valued function X : Q — R* defined by X = (Xo, X1,...,Xp_1)
with each of the components being a random variable. It is also common
to use an ordinary X and let context indicate whether X has dimension 1 or
not. Another common notation for the k-dimensional random vector is X*.
Each of these forms is convenient in different settings, but we begin with
the boldface notation in order to distinguish the now new idea of random
vectors from the scalar case. As we progress, however, the non-boldface no-
tation will be used with increasing frequency to match current style. The
boldface notation is still found, but it is far less common then it used to be.
When vectors are used in linear algebra manipulations with matrices and
other vectors, we will assume that they are column vectors so that strictly
speaking the vector should be denoted X = (X, X1,...,Xk_1), where ¢
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denotes transpose.

A slightly different notation will ease the generalization to random pro-
cesses. A random vector X = (X, X3,...,X;_1) can be defined as an
indexed family of random variables {X;; ¢ € 7} where 7 is the index set
Z,={0,1,... ,k —1}. The index set in some examples will correspond to
time; e.g., X; is a measurement on an experiment at time ¢ for & different
times. We get a random process by using the same basic definition with
an infinite index set, which almost always corresponds to time. A ran-
dom process or stochastic process is an indexed family of random variables
{X;; t € T} or, equivalently, { X (¢); t € T}, defined on a common probabil-
ity space (2, F, P). The process is said to be discete time if T is discrete,
e.g., Z, or Z, and continuous time if the index set is continuous, e.g., R or
[0,00). A discrete time random process is often called a time series. It is
said to be discrete alphabet or discrete amplitude if all finite-length random
vectors of random variables drawn from the random process are discrete
random vectors. The process is said to be continuous alphabet or continu-
ous amplitude if all finite-length random vectors of random variables drawn
from the random process are continuous random vectors. The process is
said to have a mized alphabet if all finite-length random vectors of random
variables drawn from the random process are mixture random vectors.

Thus a random process is a collection of random variables indexed by
time, usually into the indefinite future and sometimes into the infinite past
as well. For each value of time ¢, X; or X(t) is a random variable. Both
notations are used, but X; or X,, is more common for discrete time processes
whereas X (t) is more common for continuous time processes. It is useful to
recall that random variables are functions on an underlying sample space
Q and hence implicitly depend on w € Q. Thus a random process (and a
random vector) is actually a function of two arguments, written explicitly
as X(t,w);t € T,w € Q (or X¢(w) — we use the first notation of the
moment). Observe that for a fixed value of time, X (¢,w) is a random
variable whose value depends probabilistically on w. On the other hand, if
we fix w and allow ¢ to vary deterministically, we have either a sequence (7
discrete) or a waveform (7 continuous). If we fix both ¢ and w, we have a
number. Overall we can consider a random process as a two-space mapping
X :QxT — R or as a one-space mapping X : Q — R7 from sample space
into a space of sequences or waveforms.

There is a common notational ambiguity and hence confusion when
dealing with random processes. It is the same problem we encountered
with functions in the context of random variables at the beginning of the
chapter. The notation X (¢) or X; usually means a sample of the random
process at a specified time ¢, i.e., a random variable, just as sint means the
sine of a specified value ¢. Often in the literature, however, the notation is
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used as an abbreviation for {X (¢t); ¢t € T} of {X;; t € T}, that is, for the
entire random process or family of random variables. The abbreviation is
the same as the common use of sint¢ to mean {sint;t € (—oo,00)}, that is,
the entire waveform and not just a single value. In summary, the common
(and sometimes unfortunate) ambiguity is in whether or not the dummy
variable ¢ means a specific value or is implicitly allowed to vary over its
entire domain. Of course, as noted at the beginning of the chapter, the
problem could be avoided by reserving a different notation to specify a
fixed time value, say tg, but this is usually not done to avoid a proliferation
of notation. In this book we will attempt to avoid the potential confusion by
using the abbreviations {X (¢)} and {X;} for the random processes when
the index set is clear from context and reserving the notation X (t) and
X; to mean the t** random variable of the process, that is, the sample of
the random process at time ¢. The reader should beware in reading other
sources, however, because this sloppiness will undoubtedly be encountered
at some point in the literature; when this happens one can only hope that
the context will make the meaning clear.

There is also an ambiguity regarding the alphabet of the random pro-
cess. If X(t) takes values in Ay, then strictly speaking the alphabet of
the random process is [[,o, A¢, the space of all possible waveforms or se-
quences with coordinate taking values in A;. If all of the A; are the same
say Ay = A, this process alphabet is A7. In this case, however, the alpha-
bet of the process is commonly said to be simply A, the set of values from
which all of the coordinate random variables are drawn. We will frequently
use this convention.

3.5 Distributions of Random Vectors

Since a random vector takes values in a space R*, analogous to random
variables one might expect that the events in this space, that is, the mem-
bers of the event space B(R)¥, should inherit a probability measure from
the original probability space. This is in fact true. Also analogous to the
case of a random variable, the probability measure is called a distribution
and is defined as

Pe(F) = P(X(F))

P{w:X(w) € F})

P({w : (Xo(@), X1(@),..  Xer(@)) € F}),  (3.42)
F e B®R)*,

where the various forms are equivalent and all stand for Pr(X € F). Equa-
tion (3.42) is the vector generalization of the inverse image equation (3.22)
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for random variables. Hence (3.42) is the fundamental formula for deriving
vector distributions, that is, probability distributions describing random
vector events. Keep in mind that the random vectors might be composed
of a collection of samples from a random process.

By definition the distribution given by (3.22) is valid for each compo-
nent random variable, but this does not immediately imply, however, that
the distribution given by (3.42) for events on all components together is
valid. As in the case of a random variable, the distribution will be valid if
the output events F' € B(R)* have inverse images under X that are input
events, that is, if X *(F) € F for every F € B(R)*. The following subsec-
tion treats this subtle issue in further detail, but the only crucial point for
our purposes is the following. Given that we consider real-valued vectors
X = (Xo,X1,...,Xk_1), knowing that each coordinate X; is a random
variable (i.e., X; *(F) for each real event F)) guarantees that X '(F) € F
for every F' € B(R)* and hence the basic derived distribution formula is
valid for random vectors.

3.5.1 «Multidimensional Events

From the discussion following example [2.11] we can at least resolve the
issue for certain types of output events, viz., events that are rectangles.
Rectangles are special events in that the values assumed by any component
in the event are not constrained by any of the other components (compare
a two-dimensional rectangle with a circle, as in problem 2.31). Specifically
F € B(R)* is a rectangle if it has the form

k—1 k—1
F={x:s8¢cF;i=01,... ,k—1}= ﬂ{x; sieFi}:HFi,
=0 =0

where all F; € B(R); ¢ = 0,1,... ,k — 1 (refer to Figure 2.3(d) for a two-
dimensional illustration of such a rectangle). Because inverse images pre-
serve set operations A.12, the inverse image of I’ can be specified as the
intersection of the inverse images of the individual events:

k—1
X NF)={w: Xj(w) € F;i=0,1,... .k—1} = (| X, "(F)
=0

Since the X; are each random variables, the inverse images of the individual
events X, ' (F;) must all be in F. Since F is an event space, the intersection
of events must also be an event, and hence X !(F) is indeed an event.
Thus we conclude that the distribution is well defined for rectangles.
As to more general output events, we simply observe that a result from
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measure theory ensures that if (1) inverse images of rectangles are events
and (2) rectangles are used to generate the output event space then the
inverse images of all output events are events. These two conditions are
satisfied by our definition. Thus the distribution of the random vector X
is well defined. Although a detailed proof of the measure theory result
will not be given, the essential concept can be given: Any event in F can
be approximated arbitrarily closely by finite unions of rectangles (e.g., a
circle can be approximated by lots of very small squares). The union of the
rectangles is an event. Finally, the limit of the events as the approximation
gets better must also be an event.

3.5.2 Multidimensional Probability Functions

Given a probability space (2, F, P) and a random vector X : Q — R¥, we
have seen that there is a probability measure Px that the random vector
inherits from the original space. With the new probability measure we
define a new probability space (%%, B(R)*, Px). As in the scalar case, the
distribution can be described by probability functions, that is, cdf’s and
either pmf’s or pdf’s (or both). If the random vector has a discrete range
space, then the distribution can be described by a multidimensional pmf
px(x) = Px({x}) = Pr(X =x) as

px(F) = pr(X)
xeF
- Z pX07X15~-';Xk—1($07$U17"' 7:1;1971) 5
(101T1,~»- ,mk71)€F

where the last form points out the economy of the vector notation of the
previous line. If the random vector X has a continuous range space, then
in a similar fashion its distribution can be described by a multidimensional
pdf fx with

Px(F) :/fo(x)dx.

In order to derive the pdf from the distribution, as in the scalar case, we
use a cdf.

Given a k—dimensional random vector X, define its cumulative distri-
bution function Fx by

Fx(o) = Fxyxy,... X1 (00,01, ,05_1)
= Px({x:2;<oa;i=0,1,... ,k—1}) .

In English, Fx(x) = Pr(X; <z;;9=0,1,... ,k—1). Note that the cdf for
any value of its argument is the probability of a special kind of rectangle.
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For example, if we have a two-dimensional random vector (X,Y"), then the
cdf Fxy(a,) =Pr(X < «a,Y < f3) is the probability of the semi-infinite
rectangle {(z,y) : z < «, y < B}

Observe that we can also write this probability in several other ways,
e.g.,

k—1
Fx(x) = Px <H(oo,xi]>

i=0
= P{w: X;(w)<wz;i=0,1,... ,k—1})

k—1
= P (ﬂ X ((—o0, a:z])>
i=0
Since integration and differentiation are inverses of each other, it follows

that

on,X17---7Xk71(x07$17 i ,-Tk—l) =
8k
a.’ﬁoal'l NN &rk,l

Fxy x1,. xp_1 (o, T1, .00 TR—1) -

As with random variables, random vector can, in general, have dis-
crete and continuous parts with a corresponding mixture distribution. We
will concentrate on random vectors that are described completely by either
pmf’s or pdf’s. Also as with random variables, we can always unify notation
using a multidimensional Stieltjes integral to write

Px(F) :/FdFX(x); F e B®R)*,

where the integral is defined as the usual integral if X is described by a
pdf, as a sum if X is described by a pmf, and by a weighted average if
X has both a discrete and a continuous part. Random vectors are said to
be continuous, discrete, or mixture random vectors in accordance with the
above analogy to random variables.

3.5.3 Consistency of Joint and Marginal Distributions

By definition a random vector X = (X, X1,...,Xk_1) is a collection of
random variables defined on a common probability space (2, F, P). Alter-
natively, X can be considered to be a random vector that takes on values
randomly as described by a probability distribution Px, without explicit
reference to the underlying probability space. Either the original proba-
bility measure P or the induced distribution Px can be used to compute



3.5. DISTRIBUTIONS OF RANDOM VECTORS 121

probabilities of events involving the random vector. Px in turn may be in-
duced by a pmf px or a pdf fx. From any of these probabilistic descriptions
we can find a probabilistic description for any of the component random
variables or any collection of thereof. For example, given a value of ¢ in
{0,1,... ,k — 1}, the distribution of the random variable X; is found by
evaluating the distribution Px for the random vector on one-dimensional
rectangles where only the component X; is constrained to lie in some set —
the rest of the components can take on any value. That is, Px is evaluated
on rectangles of the form {x = (zg,... ,7x_1) : x; € G} for any G € B(R)
as

PXi (G) = Px({X X € G}) s G e B(%) . (343)

Of course the probability can also be evaluated using the underlying prob-
ability measure P via the usual formula

Alternatively, we can consider this a derived distribution problem on
the vector probability space (R¥, B(R)*, Px) using a sampling function II; :
RF — R as in example [3.4]. Specifically, let I1;(X) = X;. using (3.22) we
write

P, (G) = Px(Il; 1(G)) = Px({x: =; € G}) . (3.44)

The two formulas (3.43) and (3.44) demonstrate that II; and X; are equiv-
alent random variables, and indeed they correspond to the same physical
events — the outputs of the i*" coordinate of the random vector X. They
are related through the formula II;(X(w)) = X;(w). Intuitively, the two
random variables provide different models of the same thing. As usual,
which is “better” depends on which is the simpler model to handle for a
given problem.

Another fundamental observation implicit in these ruminations is that
there are many ways to compute the probability of a given event such
as “the ith coordinate of the random vector X takes on a value in an
event F,” and all these methods must yield the same answer (assuming no
calculus errors) because they all can be referred back to a common def-
inition in terms of the underlying probability measure P. This is called
consistency; the various probability measures (P, Px,, and Px) are all
consistent in that they assign the same number to any given physical event
for which they all are defined. In particular, if we have a random pro-
cess {X;; t € T}, then there is an infinite number of ways we could form
a random vector (X, X¢,,...,Xt,_,) by choosing a finite numbers k& and
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sample times g, t1, ... ,tx—1 and each of these would result in a correspond-
ing k-dimensional probability distribution Px, xi ... Xy, The calculus
derived from the axioms of probability implies that all of these distributions
must be consistent in the same sense, i.e., all must yield the same answer
when used to compute the probability of a given event.

The distribution Py, of a single component X; of a random vector X
is referred to as a marginal distribution, while the distribution Px of the
random vector is called a joint distribution.. As we have seen, joint and
marginal distributions are related by consistency with respect to the original
probability measure, i.e.,

Px,(G)=Px({x: z; € G}) = P{w: X;(w) € G}) =Pr(X; € G). (3.45)

For the cases where the distributions are induced by pmf’s (marginal
pmf’s and joint pmf’s) or pdf’s (marginal pdf’s or joint pdf’s), the relation
becomes, respectively,

px; (0&) =
E PXo,X1,... ,Xk,l(x()vxla cee s X1, 0, T4 1, - - ,'kal)
L0y LLyeee s3Ti—1yTi415e0 3 Th—1
or
frla) = [
LQyeer yTi—15Ti41s 3 Th—1
on,... Xeo1 (.2307 e 3 Li—1, 0 Ti4 1y e - ,xk,l)dxo . da:i,ldxiﬂ e diEkfl .

That is, one sums or integrates over all of the dummy variables correspond-
ing to the unwanted random variables in the vector to obtain the pmf or pdf
for the random variable X;. The two formulas look identical except that
one sums for discrete random variables and the other integrates for contin-
uous ones. We repeat the fact that both formulas are simple consequences
of (3.45).

One can also use (3.43) to derive the cdf of X; by setting G = (—o0, .
The cdf is

Fx,(a) = Fx(00,00,...,00,0,00,...,00) ,

where the o appears in the i*" position. This equation states that Pr(X; <
a) = Pr(X; < aand X; < 00), all j # 4. The expressions for pmf’s and
pdf’s also can be derived from the expression for cdf’s.

The details of notation with k£ random variables can cloud the meaning
of the relations we are discussing. Therefore we rewrite them for the special
case of k = 2 to emphasize the essential form. Suppose that (X,Y) is a
random vector. Then the marginal distribution of X is obtained from
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the joint distribution of X and Y by leaving Y unconstrained, i.e., as in
equation (3.43):

Px(F)=Pxy{(z,y): z€ F}); FeB(R).
Furthermore, the marginal cdf of X is
Fx(a) = Fxy(a,00) .

If the range space of the vector (X,Y) is discrete, the marginal pmf of X

px(z) = ZPX,Y(Z‘,?J) :

Y

If the range space of the vector (X,Y) is continuous and the cdf is differ-
entiable, the marginal pdf of X is

fx () :[ Ixy(z,y)dy ,

with similar expressions for the distribution and probability functions for
the random variable Y.

In summary, given a probabilistic description of a random vector, we
can always determine a probabilistic description for any of the component
random variables of the random vector. This follows from the consistency
of probability distributions derived from a common underlying probabil-
ity space. It is important to keep in mind that the opposite statement is
not true. As considered in the introduction to this chapter, given all the
marginal distributions of the component random variables, we cannot find
the joint distribution of the random vector formed from the components
unless we further constrain the problem. This is true because the marginal
distributions provide none of the information about the interrelationships
of the components that is contained in the joint distribution.

In a similar manner we can deduce the distributions or probability func-
tions of “sub-vectors” of a random vector, that is, if we have the distribution
for X = (Xo, X1,...,Xk—1) and if k is big enough, we can find the distribu-
tion for the random vector (X7, X5) or the random vector (X5, X109, X15),
and so on. Writing the general formulas in detail is, however, tedious and
adds little insight. The basic idea, however, is extremely important. One
always starts with a probability space (€2, F, P) from which one can pro-
ceed in many ways to compute the probability of an event involving any
combination of random variables defined on the space. No matter how one
proceeds, however, the probability computed for a given event must be the
same. In other words, all joint and marginal probability distributions for
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random variables on a common probability space must be consistent since
they all follow from the common underlying probability measure. For ex-
ample, after finding the distribution of a random vector X. the marginal
distribution for the specific component X; can be found from the joint
distribution. This marginal distribution must agree with the marginal dis-
tribution obtained for X; directly from the probability space. As another
possibility, one might first find a distribution for a sub vector containing
X, say the vector Y = (X;_1, X;, X;11). This distribution can be used to
find the marginal distribution for X;. All answers must be the same since
all can be expressed in the form P(X ~1(F)) using the original probability
space must be consistent in the sense that they agree with one another on
events.

Examples: Marginals from Joint

We now give examples of the computation of marginal probability functions
from joint probability functions.

[3.15] Say that we are given a pair of random variables X and Y such that
the random vector (X,Y) has a pmf of the form (X,Y") has a pmf of
the form

pxv(z,y) =7r(x)e(y) ,

where r and q are both valid pmf’s. In other words, px y is a product
pmf. Then it is easily seen that

> pxy(@y) = r@)ay)
= @) g) = (@)

px ()

Thus in the special case of a product distribution, knowing the marginal
pmf’s is enough to know the joint distribution.

[3.16] Consider flipping two fair coins connected by a piece of rubber that
is fairly flexible. Unlike the example where the coins were soldered
together, it is not certain that they will show the same face; it is,
however, more probable. To quantify the pmf, say that the probability
of the pair (0,0) is .4, the probability of the pair (1,1) is .4, and the
probabilities of the pairs (0,1) and (1,0) are each .1. As with the
soldered-coins case, this is clearly not a product distribution, but a
simple computation shows that as in example [3.15], px and py both
place probability 1/2 on 0, and 1. Thus this distribution, the soldered-
coins distribution, and the product distribution of example [3.15] all
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yield the same marginal pmf’s! The point again is that the marginal
probability functions are not enough to describe a vector experiment,
we need the joint probability function to describe the interrelations
or dependencies among the random variable.

[3.17] A gambler has a pair of very special dice: the sum of the two dice
comes up as seven on every roll. Each die has six faces with values
in A={1,2,3,4,5,6}. All combinations have equal probability; e.g.,
the probability of a one and a six has the same probability as a three
and a four. Although the two dice are identical, we will distinguish
between them by number for the purposes of assigning two random
variables. The outcome of the roll of the first die is denoted X and
the outcome of the roll of the second die is called Y so that (X,Y) is
a random vector taking values in A2, the space of all pairs of numbers
drawn from A. The joint pmf of X and Y is

pX,Y(xay) = C,Sﬁ'+y = 77 (l’,y) S A2 )

where C' is a constant to be determined. The pmf of X is determined
by summing the pmf with respect to y. However, for any given X € A,
the value of Y is determined: viz., Y =7 — X. Therefore the pmf of
X is

px(x)=1/6, z€ A .

Note that this pmf is the same as one would derive for the roll of a
single unbiased die! Note also that the pmf for Y is identical with that for
X. Obviously, then, it is impossible to tell that the gambler is using unfair
dice as a pair from looking at outcomes of the rolls of each die alone. The
joint pmf cannot be deduced from the marginal pmf’s alone.

[3.18] Let (X,Y) be a random vector with a pdf that is constant on the
unit disk in the XY plane; i.e.,

fX,Y(:L'7y) = Cvxz +y2 S 1.

The constant C' is determined by the requirement that the pdf inte-
grate to 1; i.e.,
/ Cdxdy=1.
z24+y2<1

Since this integral is just the area of a circle multiplied by C', we have
immediately that C' = 1/7. For the moment, however, we leave the
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joint pdf in terms of C' and determine the pdf of X in terms of C' by
integrating with respect to y:

(12?2
fX(x):/ Cdy=2001—-2)Y? | 22<1.
—(1—x2)1/2

Observe that we could now also find C by a second integration:

+1
/ 20(1 —2®)?de =nC =1,

-1
or C = 7~!. Thus the pdf of X is

fx(@)=2n"'(1-2®)? 2* <1.
By symmetry Y has the same pdf. Note that the marginal pdf is
not constant, even though the joint pdf is. Furthermore, it is obvious
that it would be impossible to determine the joint density from the
marginal pdf’s alone.

[3.19] Consider the two-dimensional Gaussian pdf of example [2.17] with

k=2 m= (0,00 and A = {A(3,7) : M(1,1) = \(2,2) = 1, \(1,2) =
A(2,1) = p}. Since the inverse matrix is

1 p -t 1 1 —p
p 1 I ey 2 S
the joint pdf for the random vector (X,Y) is
Py () = (2m)*(1=p%) 726 W 20m () € 2

p is called the “correlation coefficient” between X and Y and must
satisfy p? < 1 for A to be positive definite. To find the pdf of X we
complete the square in the exponent so that

fxy(zy) = ((2@2(1_p2))71/267[@7/390)2/2(17/92)]fz2/2
= ((2m)(1 = p?))~V2e~[w=p2)*/20-p")](27)=1/2e=(1/D)2”

The pdf of X is determined by integrating with respect to y on
(—00,00). To perform this integration, refer to the form of the one-
dimensional Gaussian pdf with m = pz (note that x is fixed while the
integration is with respect to y) and o2 = 1 — p?. The first factor in
the preceding equation has this form. Because the one-dimensional
pdf must integrate to one, the pdf of X that results from integrating y
out from the two-dimensional pdf is also a one-dimensional Gaussian
pdf; i.e.,
fx(x) = (271')_1/26_”2/2 .
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As in examples [3.16], [3.17], and [3.18], Y has the same pdf as X. Note
that by varying p there is a whole family of joint Gaussian pdf’s with the
same marginal Gaussian pdf’s.

3.6 Independent Random Variables

In chapter 2 it was seen that events are independent if the probability of a
joint event can be written as a product of probabilities of individual events.
The notion of independent events provides a corresponding notion of inde-
pendent random variables and, as will be seen, results in random variables
being independent if their joint distributions are product distributions.

Two random variables X and Y defined on a probability space are in-
dependent if the events X ~1(F) and Y ~1(G) are independent for all F' and
G in B(R). A collection of random variables {X;,i = 0,1,... ,k — 1} is
said to be independent or mutually independent if all collections of events
of the form {Xi_l(Fi); i =0,1,... ,k — 1} are mutually independent for
any F; € BR);i=0,1,... ,k— 1.

Thus two random variables are independent if and only if their output
events correspond to independent input events. Translating this statement
into distributions yields the following:

Random variables X and Y are independent if and only if

PX7y(F1 X Fg) = Px(Fl)Py(F2> ,all Fl,FQ c B(éR) .

Recall that F; x Fy is an alternate notation for H?Zl F;, — we will
frequently use the alternate notation when the number of product events is
small. Note that a product and not an intersection is used here. The reader
should be certain that this is understood. The intersection is appropriate
if we refer back to the original w events, that is, using the inverse image
formula to write this statement in terms of the underlying probability space
yields

PX HF)NY N ) = P(X Y F))NY(R)).

Random variables Xy, ..., X;_1 are independent or mutually indepen-
dent if and only if

k—1 k—1
Pxy... Xxu_y (H Fz) = H Px,(F;) ;
=0 i=0

for all F; € B(R);i=0,1,... ,k—1.
The general form for distributions can be specialized to pmf’s, pdf’s,
and cdf’s as follows.
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Two discrete random variables X and Y are independent if and only if
the joint pmf factors as

px,Y(%y) = px(2)py(y) all z,y .

A collection of discrete random variables X;; i = 0,1,... ,k—1 is mutually
independent if and only if the joint pmf factors as

k-1
PXoyo Xpo1 (T0s oo Tpm1) = HPX(%) ; all ;.
i=0

Similarly, if the random variables are continuous and described by pdf’s,
then two random variables are independent if and only if the joint pdf
factors as

Ixy(@,y) = fx@)fy(y) ; all z,yeR.

A collection of continuous random variables is independent if and only if
the joint pdf factors as

k-1
[Xor X1 (Tos ooy Tpm1) = H Ixi (@) .

1=0

Two general random variables (discrete, continuous, or mixture) are
independent if and only if the joint cdf factors as

Fxy(z,y) = Fx(x)Fy(y) ; all z,y e N.

A collection of general random variables is independent if and only if the
joint cdf factors

k—1
FX07...7Xk71(x0, - ,xk_l) = H Fxl(xl) ; all (3}0,.131, - ,$}€_1) S §Rk .
=0

We have separately stated the two-dimensional case because of its sim-
plicity and common occurrence. The student should be able to prove the
equivalence of the general distribution form and the pmf form. If one does
not consider technical problems regarding the interchange of limits of inte-
gration, then the equivalence of the general form and the pdf form can also
be proved.

3.6.1 IID Random Vectors

A random vector is said to be independent, identically distributed or iid
if the coordinate random variables are independent and identically dis-
tributed; that is, if
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e the distribution is a product distribution, i.e., it has the form

k=1 k-1
Pxq,... x4 <]i[fﬁ> =[] Px.(F)
i=0 i=0

for all choices of F; € B(R),i =0,1,... ,k— 1, and

e if all the marginal distributions are the same (the random variables are
all equivalent), i.e., if there is a distribution Py such that Px,(F) =
Px(F); all F € B(R) for all 1.

For example, a random vector will have a product distribution if it has a
joint pdf or pmf that is a product pdf or pmf as described in example [2.16].
The general property is easy to describe in terms of probability functions.
The random vector will be iid if it has a joint pdf with the form

fx(x) =[] fx (@)
for some pdf fx defined on R or if it has a joint pmf with the form

px(x) = pr(zi)

for some pmf px defined on some discrete subset of the real line. Both of
these cases are included in the following statement: A random vector will
be iid if and only if its cdf has the form

Fx(x) = H Fx(z;)

for some cdf Fx.

Note that, in contrast with earlier examples, the specification “product
distribution,” along with the marginal pdf’s or pmf’s or cdf’s, is sufficient
to specify the joint distribution.

3.7 Conditional Distributions

The idea of conditional probability can be used to provide a general rep-
resentation of a joint distribution as a product, but a more complicated
product than arises with an iid vector. As one would hope, the compli-
cated form reduces to the simpler form when the vector is in fact iid. The
individual terms of the product have useful interpretations.

The use of conditional probabilities allows us to break up many problems
in a convenient form and focus on the relations among random variables.
Examples to be treated include statistical detection, statistical classifica-
tion, and additive noise.
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3.7.1 Discrete Conditional Distributions

We begin with the discrete alphabet case as elementary conditional proba-
bility suffices in this simple case. We can derive results that appear similar
for the continuous case, but nonelementary conditional probability will be
required to interpret the results correctly.

Begin with the simple case of a discrete random vector (X,Y") with
alphabet Ax x Ay described by a pmf px vy (x,y). Let px and py denote the
corresponding marginal pmf’s. Define for each z € Ax for which px(z) >
0 the conditional pmf py|x(y|z);y € Ay as the elementary conditional
probability of Y = y given X = x, that is,

pyix(yle) = PY =ylX =z)
_ P(Y=yand X =)
N P(X =x)

P({w: Y (w) =y} N {w: X(w) =)
P({w: X() = o})
pX,Y('r7y)

= T (3.46)

where we have assumed that px () > 0 for all suitable x to avoid dividing by
0. Thus a conditional pmf is just a special case of an elementary conditional
probability. For each = a conditional pmf is itself a pmf, since it is clearly
nonnegative and sums to 1:

Y vl = Y p);;_im)y)

yEAy yEAy
1
= > pxy(@y)
px () ol
1
(@ Px

We can compute conditional probabilities by summing conditional pmf’s,
ie.,

P(YeFIX=2)=> pyx(ylo). (3.47)
yeF

The joint probability can be expressed as a product as

pxy(T,y) = pY|X(y|x)pX (z). (3.48)
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Unlike the independent case, the terms of the product do not each de-
pend on only a single independent variable. If X and Y are independent,
then py|x(y|z) = py(y) and the joint pmf reduces to the product of two
marginals.

Given the conditional pmf py|x and the pmf px, the conditional pmf
with the roles of the two random variables reversed can be computed by
marginal pmf’s by

pxy(7,y) py|x (yz)px (2)

Pxiv ) = T T S vkl @) )

a result often referred to as Bayes’ rule.

The ideas of conditional pmf’s immediately extend to random vec-
tors. Suppose we have a random vector (Xg, X1,...,Xg_1) with a pmf
DXo,X1,....Xn_1, then (provided none of the denominators are 0) we can de-
fine for each I = 1,2,... ,k — 1 the conditional pmf’s

,$1—1): pxo,...,xl(%w--,mz) . (3.50)

D e X Ty LQy -
leXo X 1( | I pXo,.n,Xl—l(mO"“ ,117171)

Then simple algebra leads to the chain rule for pmf’s:

DXo, X1, Xn 1 (T0y T, - Tr—1)
(pX07X17~~ 7Xn71(x0?‘r17 A mn—l)
DPXo X1, X2 (L0 L1, - Tr—2)

) DX, X1, Xn2 (L0, T1, o Tn—2)

n—1

= pX(J('TO) pXO,Xl,...,X,L(-TO,le,...,I:,L')
=1 PXo, X1, . Xia ((ﬁo, Ty xi—1)
n—1
= PXo (x()) H Pxi1Xo0,... . X1-1 ($l|$0, C ,x171)7 (351)

=1

a product of conditional probabilities. This provides a general form of the
iid product form and reduces to that product form if indeed the random
variables are mutually independent. This formula plays an important role
in characterizing the memory in random vectors and processes. Since it
can be used to construct joint pmf’s, and can be used to specify a random
process.

3.7.2 Continuous Conditional Distributions

The situation with continuous random vectors is more complicated if rigor
is required, but the mechanics are quite similar. Again begin with the
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simple case of two random variables X and Y with a joint distribution,
now taken to be described by a pdf fx y. We define the conditional pdf as
an exact analog to that for pmf’s:

Frix () 2 fﬁj{—(@)y’ (3.52)

This looks the same as the pmf, but it is not the same because pmf’s
are probabilities and pdf’s are not. A conditional pmf is an elementary
conditional probability. A conditional pdf is not. It is also not the same as
the conditional pdf of example [2.19] as in that case the conditioning event
had nonzero probability. The conditional pdf fy|x can, however, be related
to a probability in the same way an ordinary pdf (and the conditional pdf
of example [2.19]) can. An ordinary pdf is a density of probability, it is
integrated to compute a probability. In the same way, a conditional pdf
can be interpreted as a density of conditional probability, something you
integrate to get a conditional probability. Now, however, the conditioning
event can have probability zero and this does not really fit into the previous
development of elementary conditional probability. Note that a conditional
pdf is indeed a pdf, a nonnegative function that integrates to one. This
follows from

/leX(y|$) dy = Mdy

1
fx($ Ixy(w,y)d
e fxla) =1
= €Tr) = 5
fx(z)
provided we require that fx(z) > 0.
To be more specific, given a conditional pdf fy|x, we will make a ten-
tative definition of the (nonelementary) conditional probability that Y € F
given X =z is

PV € FIX =) = [ frix(ulo)dy (3.59)

Note the close resemblance to the elementary conditional probability for-
mula in terms of conditional pmf’s of (3.47). For all practical purposes
(and hence for virtually all of this book), this constructive definition of
nonelementary conditional probability will suffice. Unfortunately it does
not provide sufficient rigor to lead to a useful advanced theory. Section 3.17
discusses the problems and the correct general definition in some depth, but
it is not required for most applications.
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Via almost identical manipulations to the pmf case in (3.49), conditional
pdf’s satisfy a Bayes’ rule:

fxy(@y) _ Frixle)fx(z)
fy(y) I fyix (ylu) fx (u) du’

As a simple but informative example of a conditional pdf, consider
generalization of Example [3.19] to the case of a two-dimensional vector

fX|Y(~T|3/) = (3.54)

U = (X,Y) with a Gaussian pdf having a mean vector (mx,my )’ and a
covariance matrix
A=| 9% poxoy (3.55)
pPOXOYy Oy ’

where p is called the correlation coefficient of X and Y. Straightforward
algebra yields

det(A) = o%0%(1—p?) (3.56)
1 o3> ——L

AT = [ X IXgY ] 3.57

(1 —p2?) _UXPUY UY2 ( )

so that the two-dimensional pdf becomes

fXY(way)
1

_ e—%(w—mx,y—mY)Afl(iv—mxw—my)t

B V2mdet A
1

2roxoyy/1 — p?

X exp (_2(1 1 x_mx)z_2p($_mX)(y_mY)(y_mY§§:|5>)

—p?) [( ox 0X0y oy
A little algebra to rearrange the expression yields

1 L(zomx )2 1 _l(y*my*poy/gﬂ'x(z—mx))z
fXY r,Y) = e 2V ox X —— ¢ 2 1-p2oy
( ) O'Xﬁ oy+/1— pzﬁ
(3.60)
from which it follows immediately that the conditional pdf is
! - (3.61)

fyix(ylz) = me

which is itself a Gaussian density with variance U%,l ¥ = 02 (1 — p?) and

mean my|x = y—my +ploy /ox)(x —mx). Integrating y out of the joint
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pdf then shows that as in Example [3.19] the marginal pdf is also Gaussian:
fx(@) = —=e 27 (3.62)

A similar argument shows that also fy (y) and fx|y (x|y) are also Gaussian
pdf’s. Observe that if X and Y are jointly Gaussian, then they are also
both individually and conditionally Gaussian!

A chain rule for pdf’s follows in exactly the same way as that for pmf’s.

Assuming fx, x,,.. x, (%o, 21,...2;) >0,

fX07X17~-- 7Xn71($0’x1a .- -xn—l)

on,Xhm Xn—1 ($0, L1y xn—l)

[Xo X1, Xns (T0s X1, - - Tr—2
fX07X1)---;X7L72(:I;07I17"‘xn—Q) 0 ! 2( ’ ’ " )

Fxo(z0) H fxo.x1,.. . x: (o, @1, ... ;)
f X0,X1,00, X 1(55071'1,-..Ii_1)
k—1
fxo(x0) H IxiXo,... . xo_1 (T]@o, .., xi—1), (3.63)
=1

3.8 Statistical Detection and Classification

As a simple, but nonetheless very important, example of the application of
conditional probability mass functions describing discrete random vectors,
suppose that X is a binary random variable described by a pmf px, with
px (1) = p, possibly one bit in some data coming through a modem. You
receive a random variable Y, which is the equal to X with probability 1 —e.
In terms of a conditional pmf this is

prx(vlz) = { vt (364
1l—€¢ z=uy.

This can be written in a simple form using the idea of modulo 2 (or mod 2)

arithmetic which will often be useful when dealing with binary variables.

Modulo 2 arithmetic or the “Galois field of 2 elements” arithmetic consists

of an operation @ defined on the binary alphabet {0,1} as follows: Define

modulo 2 addition & by

0el = 1@0=1 (3.65)
060 = 1a1=0. (3.66)
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The operation @ corresponds to an “exclusive or” in logic; that is, it pro-
duces a 1 if one or the other but not both of its arguments is 1. Modulo
2 addition can also be thought of as a parity check, producing a 1 if there
is an odd number of 1’s being summed and a 0 otherwise. An equivalent
definition for the conditional pmf is

pyix (yle) = (1 — €)' T, (3.67)

For example, the channel over which the bit is being sent is noisy in that it
occasionally makes an error. Suppose that it is known that the probability
of such an error to be €. The error might be very small on a good phone line,
but it might be very large if an evil hacker is trying to corrupt your data.
Given the observed Y, what is the best guess X (Y) of what is actually sent?
In other words, what is the best decision rule or detection rule for guessing
the value of X given the observed value of Y7 A reasonable criterion for
judging how good an arbitrary rule X is the resulting probability of error

P.(X) =Pr(X(Y) # X). (3.68)

A decision rule is optimal if it yields the smallest possible probability of er-
ror over all possible decision rules. A little probability manipulation quickly
yields the optimal decision rule. Instead of minimizing the error probability,
we maximize the probability of being correct:

Pr(X =X) = 1-P.(X)
= Y pxy(y)
(z,y):X (y)=x
= Z pxpy (zly)py ()
(z,y):X (y)=x
= ZPY(Z/) Z px|v (zly)
Y z: X (y)=z

= ZPY(y)wa(X(y)\y).

To maximize this sum, we want to maximize the terms within the sum
for each y. Clearly the maximum value of the conditional probability

x|y (X(y)ly), max, px|y (uly), will be achieved if we define the decision
rule X (y) to be the value of u achieving the maximum of x|y (uly) over u,

that is, define X to be arg max, px|y (uly) (also denoted max;,* pxy (uly)).
In words: the optimal estimate of X given the observation Y in the sense
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of minimizing the probability of error is the most probable value of X given
the observation. This is called the mazimum a posteriori or MAP decision
rule. In our binary example it reduces to choosing & = y if € < 1/2 and
Z=1—yife>1/2. If e=1/2 you can give up and flip a coin or make an
arbitrary decision. (Why?) Thus the minimum (optimal) error probability
over all possible rules is min(e, 1 — €).

The astute reader will notice that having introduced conditional pmf’s
Py|x, the example considered the alternative pmf px|y. The two are easily
related by Bayes’ rule (3.49).

A generalization of the simple binary detection problem provides the
typical form of a statistical classification system. Suppose that Nature se-
lects a “class” H, a random variable described by a pmf pg(h), which is no
longer assumed to be binary. Once the class is selected, Nature then gener-
ates a random “observation” X according to a pmf px|z. For example, the
class might be a medical condition and the observations the results of blood
pressure, patients age, medical history, and other information regarding the
patients health. Alternatively, the class might be an “input signal” put into
a noisy channel which has the observation X as an “output signal.” The
question is: Given the observation X = z, what is the best guess H(x) of
the unseen class? If by “best” we adopt the criterion that the best guess is
the one that minimizes the error probability P, = Pr(H(X) # H), then the
optimal classifer is again the MAP rule argmax, pg|x (u|z). More generally
we might assign a cost Cy j resulting if the true class is h and we guess y.
Typically it is assumed that C} , = 0, that is, the cost is zero if our guess
is correct. (In fact it can be shown that this assumption involves no real
loss of generality.) Given a classifier (classification rule, decision rule) h(z),
the Bayes risk is then defined as

x,h

which reduces to the probability of error if the cost function is given by
Cyn=1—0yn. (3.70)

The optimal classifier in the sense of minimizing the Bayes risk is then
found by observing that the inequality

> px(2) Y Chay npiix (hl2)
x h

> px(@) min (Z CyhPH| X (hg;)>
T h

B(h)

Y
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which lower bound is achieved by the classifier

h(z) = argmin (Z Cy’thX(h|x),> (3.71)
h

Y

the minimum average Bayes risk classifier. This reduces to the MAP de-
tection rule when Cy j, =1 —dy 4.

3.9 Additive Noise

The next examples of the use of conditional distributions treats the distri-
butions arising when one random variable (thought of as a “noise” term) is
added to another, independent random variable (thought of as a “signal”
term). This is an important example of a derived distribution problem that
yields an interesting conditional probability. The problem also suggests a
valuable new tool which will provide a simpler way of solving many similar
derived distributions — the characteristic function of random variables.

Discrete Additive Noise

Consider two independent random variables X and W and form a new
random variable Y = X + W. For example, this could be a description of
how errors are actually caused in a noisy communication channel connecting
a binary information source to a user. In order to apply the detection
and classification signal processing methods, we must first compute the
appropriate conditional probabilities of the outpout Y given the input X.
To do this we begin by computing the joint pmf of X and Y using the
inverse image formula:

pxy(z,y) = Pr(X=uxzY =y)
= Pr(X=z,X+4+W=y)
= > pxw(ap)
a,B:a=z,a+B=y
= pxw(r,y—2)
= px(@)pw(y — ). (3.72)

Note that this formula only makes sense if y — x is one of the values in the
range space of W. Thus from the definition of conditional pmf’s:

pyix(yle) = p’;j(—((j;)y) — pwly - 2), (3.73)
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an answer that should be intuitive: given the input is x, the output will
equal a certain value y if and only if the noise exactly makes up the differ-
ence, i.e., W =y — x. Note that the marginal pmf for the output Y can be
found by summing the joint probability:

() = > pxy(xy)
= Y px(@pwly—2), (3.74)

a formula that is known as a discrete convolution or convolution sum.

Anyone familiar with convolutions know that they can be unpleasant to
evaluate, so we postpone further consideration to the next section and turn
to the continuous analog.

The above development assumed ordinary arithmetic, but it is worth
pointing out that for discrete random variables sometimes other types of
arithmetic are appropriate, e.g., modulo 2 arithmetic for binary random
variables. The binary example of section 3.8 can be considered as an addi-
tive noise example if we define a random variable W which is independent
of X and has a pmf py (w) = €“(1—€)!7%; w = 0,1 and where Y = X +W
is interpreted as modulo 2 arithmetic, that is, as Y = X @ W. This additive
noise definition is easily seen to yield the conditional pmf of (3.64) and the
output pmf via a convolution. To be precise,

pxy(z,y) = Pr(X =2Y =y)
= Pr(X=z,X0oW=y)
= Z pX,W(aaﬂ)

a,B:a=z,ad b=y

px,w (T, y @ )
= px(x)pw(y @ x) (3.75)
and hence
_ pX,Y('r7 y) _
pyix(ylr) = @) pw(y & ) (3.76)
and

() = > pxy(x,y)
= ZPX(»T)PW(y@x)» (3.77)

a modulo 2 convolution.
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Continuous Additive Noise

An entirely analogous formula arises in the continous case. Again suppose
that X is a random variable, a signal, with pdf fx, and that W is a random
variable, the noise, with pdf fyy. The random variables X and W are
assumed to be independent. Form a new random variable Y, an observed
signal plus noise. The problem is to find the conditional pdf’s fy|x (y|z)
and fxy(z|y). The operation of producing an output ¥ from an input
signal X is called an additive noise channel in communications systems.
The channel is completely described by fy|x. The second pdf, fx|y will
prove useful later when we try to estimate X given an observed value of Y.

Independence of X and W implies that the joint pdf is fx w(z,w) =
fx(x)fw(w). To find the needed joint pdf fx y, first evaluate the joint
cdf and then take the appropriate derivative. The cdf is a straightforward
derived distribution problem:

Fyy(z,y) = Pr(X <Y <y)
= Pr(X <z, X+W<y)

//aqﬁ:a<z,a+g<ny’W(a’ﬁ) dodf3

[ o [ asrtern)

| dars@Pu-a).
Taking the derivatives yields

fxy(z,y) = fx(x)fw(y — )

and hence

fyix(lz) = fw(y — z). (3.78)

The marginal pdf for the sum Y = X + W is then found as

fr(y) = / fxy(@,y)de = / Ix@)fwly —2)de,  (3.79)

a convolution integral of the pdf’s fx and fy -, analogous to the convo-
lution sum found when adding independent independent discrete random
variables. Thus the evaluation of the pdf of the sum of two independent
continuous random variables is the same as the evaluation of the output
of a linear system with an input signal fx and an impulse response fy .
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We will later see an easy way to accomplish this using transforms The pdf
[x|y follows from Bayes’ rule:

fx(z )fW( —x)
[ Ix(@)fw(y —a)da’

It is instructive to work through the details of the previous example for
the special case of Gaussian random variables. For simplicity the means
are assumed to be zero and hence it is assumed that fx is M(0,0x), that
fw is N(0,0%), and that as in the Example X and W are independent and
Y =X +W. From (3.78)

fvixwlz) = fwly—z)
B
e w

= (3.81)

V2mod,

from which the conditional pdf can be immediately recognized as being
Gaussian with mean z and variance o3, that is, as N (z,0%,).

To evlauate the pdf fx|y using Bayes’ rule, we begin with the denomi-
nator fy of (3.54) and write

fxy(zly) = (3.80)

Iy(ly) = / fY|X(y|O‘)fX(O‘)dO‘
(y a)? *2012 o?
— € 1 _da (3.82)
\/27TO’W \/27TO'X
_ y 72ay+a +a d
o 27TJXUW/ @
e w 3o 2( 2C““’]
_ m{ / ¢ do.|  (3.83)

This convolution of two Gaussian “signals” can be accomplished using an
old trick called “completing the square.” Call the integral in the square
brackets at the end of the above equation I and note that integrand resem-
bles

which we know from (B.15) in appendix B integrates to

o0 —m
/ e 253 da = Voro? (3.84)

—00
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since a Gaussian pdf integrates to 1. The trick is to modify I to resemble
this integral with an additional factor. Compare the two exponents:
1 1 1 2ay]

—_ 2 R [— —
2[a (O'g( +‘712/V) cr%v

VS.
1(a—m)27 1[a2 am+m2]
202 o2 o027

2 o
The exponent from I will equal the left two terms of the expanded exponent

in the known integral if we choose
1 1 1
P R e
o o 0%

or, equivalently,

2 2
o2 = oXTW (3.85)
ox T oW
and if we choose
Yy _m
o%, o2
or, equivalently,
2
m=—y. (3.86)
Ow

Using (3.85) — (3.86) we have that
1 1 2ay a—m
0‘2(0—2-#07)—07:( ) - —
X w w
where the addition of the leftmost term is called “completing the square.”
With this identification and again using (3.85) — (3.86) we have that

7 - /°° bl -y

m2
= V2mo2e2.2 (3.87)

which implies that

1y
o .
) = 5———Vamoleis
2roxow
1 1 2y22
e Foxtow (3.88)
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In other words, fy is N'(0,0% + 0%,) and we have shown that the sum of
two zero mean independent Gaussian random variables is another zero mean
Gaussian random variable with variance equal to the sum of the variances
of the two random variables being added.

Finally we turn to the a posteriori probability fx|y. From Bayes’ rule
and a lot of algebra

Friy(zly) = fyix (ylz) fx (2)
| fr(y)
- 2013‘, (y==)? 67 2013( a?
B \/27r0"2,v \/271'0%(
- 1 y?
1 R e

V2m (0% +0%,)

2 _oypta? 2 2
1 _%[y JgJCJrl +: —02102]
= e w X X
ik i
2 2
UX+0'W
2
_ 1 _ X 2
1 Lk Y
S22
= ¢ k7w : (3.89)
2 2
2 Ix%w
a§(+02

In words: fx|y(x|y) is a Gaussian pdf

PR S

2 7Y — 7 )
ox T oW 0x + oy

The mean of a conditional distribution is called a conditional mean and the
variance of a conditional distribution is called a conditional variance.

Continuous Additive Noise with Discrete Input

Additive noise provides a situation in which mixed distributions having
both discrete and continuous parts naturally arise. Suppose that the signal
X is binary, say with pmf px(z) = p*(1 — p)!=®. The noise term W
is assumed to be a continuous random variable described by pdf fu (w),
independent of X, with variance U%/V. The observation is defined by Y =
X 4+ W. In this case the joint distribution is not defined by a joint pmf
or a joint pdf, but by a combination of the two. Some thought may lead
to the reasonable guess that the continuous observation given the discrete
signal should be describable by a conditional pdf fy|x (y|z) = fw(y — z),
where now the conditional pdf is of the elementary variety, the given event
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has nonzero probability. To prove that this is in fact correct, consider the
elementary conditional probability Pr(Y < y|X = x), for x = 0,1. This is
recognizable as the conditional cdf for Y given X = z, so that the desired
conditional density is given by

Frix (yla) = d%m(y < yIX =), (3.90)

The required probability is evaluated using the independence of X and W
as

Pr(Y <y|X =2) = Pr(X+W <y|X =2z)
= Prz+W<y|lX =2x)
= Pr(W<y—ux)

Fw(y — ).

Differentiating gives

fyix(lz) = fw(y — z). (3.91)

The joint distribution is described in this case by a combination of a
pmf and a pdf. For example, to compute the joint probability that X € F
and Y € G is accomplished by

Pr(X e Fand Y € G) ZPX(@/GJCHX(Z/W) dy

Srx@) [ fwly—ads. (392)

Choosing F' = R yields the output distribution

Pr(YGG):pr(w)/gfy\x(y\iﬂ)dy:ZPX(x)/GfW(y*x)dU

Choosing G = (—o0, y] provides a formula for the cdf Fy (y), which can be
differentiated to yield the output pdf

() =Y px(@)fyix(yle) =Y px (@) fwly — ), (3.93)

a mixed discrete convolution involving a pmf and a pdf (and exactly the
formula one might expect in this mixed situation given the pure discrete
and continuous examples).

Continuing the parallel with the pure discrete and continuous cases,
one might expect that Bayes’ rule could be used to evaluate the conditional
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distribution in the opposite direction, which since X is discrete should be
a conditional pmf:

pxty (zly) = fyix (yl@)px (2) _ Frix Wle)px (2)
x|y fr(y) > ox(e) frix (la)”

Observe that unlike previously treated conditional pmf’s, this one is not
an elementary conditional probability since the conditioning event does not
have nonzero probability. Thus it cannot be defined in the original manner,
but must be justified in the same way as conditional pdf’s, that is, by the
fact that we can rewrite the joint distribution (3.92) as

(3.94)

Pr(X € FandY € G)/G dyfy (y)Pr(X € FIY =vy) = /G dyfy(y) Y pxiy (@ly),
F

(3.95)

so that px|y (z|y) indeed plays the role of a mass of conditional probability,
that is,

Pr(X € FIY =y) = _pxjy(aly). (3.96)
F

Applying these results to the specific case of the binary input and Gaus-
sian noise, the conditional pmf of the binary input given the noisy obser-
vation is

oy (aly) = W= Dpx (@) fw(y —a)px(@)
X|Y fr(y) S px (@) fw (y — )

;y e R,z e{0,1}.
(3.97)

This formula now permits the analysis of a classical problem in communi-
cations, the detection of a binary signal in Gaussian noise.

3.10 Binary Detection in Gaussian Noise

The derivation of the MAP detector or classifier extends immediately to the
the situation of a binary input random variable and independent Gaussian
noise just treated. As in the purely discrete case, the MAP detector X (y)
of X given Y =y is given by

X(y) = argmax px|y (z|y) = argmax fw(y — 2)px (@)

x ZapX<a)fW(y_a)'

(3.98)
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Since the denominator of the conditional pmf does not depend on z (only
on y), given y the denominator has no effect on the maximization

X(y) = argmax px|y (zy) = argmax fi (y — 2)px ().

Assume for simplicity that X is equally likely to be 0 or 1 so that the rule
becomes

X(y) = argmaxpxw(x\y) == argmax ———=¢€ (4%
z z 2wod,

The constant in front of the pdf does not effect the maximization. In
addition, the exponential is a mononotically decreasing function of |z—yl|, so
that the exponential is maximized by minimizing this magnitude difference,
ie.,

X (y) = argmaxpy|y (2]y) == argmin|a — y], (3.99)

which yields a final simple rule: see if z = 0 or 1 is closer to y as the best
guess of z. This choice yields the MAP detection and hence the minimum
probability of error. In our example this yields the rule

(3.100)

X()— 0 y<0.5
Y7V y>05°

Because the optimal detector chooses the z that minimizes the Euclidean
distance |z—y| to the observation y, it is called a minimum distance detector
or rule. Because the guess can be computed by comparing the observation
to a threshold (the value midway between the two possible values of x), the
detector is also called a threshold detector.

Assumptions have been made to keep things fairly simple. The reader
is invited to work out what happens if the random variable X is biased and
if its alphabet is taken to be {—1,1} instead of {0,1}. It is instructive to
sketch the conditional pmf’s for these cases.

Having derived the optimal detector, it is reasonable to look at the
resulting, minimized, probability of error. This can be found using condi-
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tional probability:

P, = (A( ) # X)
Pr(X(Y) # 0]X = 0)px(0) + Pr(X(Y) # 1|X = 1)px (1)
= Pr(Y >0. 5|X =0)px(0) +Pr(Y < 0.5|X = 1)px (1)
Pr(W + X > 0.5|X = 0)px(0) + Pr(W + X < 0.5|X = 1)px(1)
(
(

Pr(W > 051X = 0)px(0) + Pr(W + 1 < 051X = 1)px (1)
= Pr(W > 0.5)px(0) + Pr(W < —0.5)px (1)

where we have used the independence of W and X. These probabilities can
be stated in terms of the ® function of (2.78) as in (2.82), which combined
with the assumption that X is uniform and (2.84)yields

1 0.5 0.5 1

Po= (1= + 0(= ) = (5 —). (3.101)
ow ow ow

3.11 Statistical Estimation

Discrete conditional probabilities were seen to provide method for guessing
an unknown class from an observation: if all incorrect choices have equal
costs so that the overall optimality criterion is to minimize the probability of
error, then the optimal classification rule is to guess that the class X =k,
where px|y(kly) = max. px|y(z|y), the maximum a posteriori or MAP
decision rule. There is an analogous problem and solution in the continuous
case, but the result does not have as strong an interpretation as in the
discrete case. A more complete analogy will be derived in the next chapter.

As in the discrete case, suppose that a random variable Y is observed
and the goal is to make a good guess X (Y) of another random variable X
that is jointly distributed with Y. Unfortunately in the continuous case it
does not make sense to measure the quality of such a guess by the proba-
bility of its being correct because now that probability is usually zero. For
example, if Y is formed by adding a Gaussian signal X to an independent
Gaussian noise W to form an observation Y = X + W as in the previous
section, then no rule is going to recover X perfectly from Y. Nonetheless,
intuitively there should be reasonable ways to make such guesses in con-
tinuous situations. Since X is continuous, such guesses are refered to as
“estimation” or “prediction” of X rather than as “classification” or “detec-
tion” as used in the discrete case. In the statistical literature the general
problem is referred to as “regression”.

One approach is to mimic the discrete approach on intuitive grounds. If
the best guess in the classification problem of a random variable X given an
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observation Y is the MAP classifier XMAP (y) = argmax,px|y (z|y), then
a natural analog in the continuous case is the so-called MAP estimator
defined by

XMAPp(v) = argmax, fx|y (2]y), (3.102)

the value of x maximizing the conditional pdf given y. The advantage
of this estimator is that it is easy to describe and provides an immediate
application of conditional pdf’s paralleling that of classification for discrete
conditional probability. The disadvantage is that we cannot argue that this
estimate is “optimal” in the sense of optimizing some specified criterion, it
is essentially an ad hoc (but reasonable) rule. As an example of its use,
consider the Gaussian signal plus noise of the previous section. There it was
found that the pdf fx|y(z|y) is Gaussian with mean %y Since the
Gaussian density has its peak at its mean, in this case the MAP estimate
of X given Y = y is given by the conditional mean %y

Knowledge of the conditional pdf is all that is needed to define another
estimator: the mazimum likelihood or ML estimate of X given Y = y is
defined as the value of z that maximizes the conditional pdf fyx(yl|z),
the pdf with the roles of input and output reversed from that of the MAP
estimator. Thus

XML () = argmax fyx (ylo). (3.103)

Thus in the Gaussian case treated above, )A(ML Y)=y.

The main interest in the ML estimator in some applications is that it is
sometimes simpler and that it does not require any assumption on the input
statistics. The MAP estimator depends strongly on fx, the ML estimator
does not depend on it at all. It is easy to see that if the input pdf is uniform,
the MAP estimator and the ML estimator are the same.

3.12 Characteristic Functions

We have seen that summing two random variables produces a new random
variable whose pmf or pdf is found by convolving the two pmf’s or pdf’s
of the original random variables. Anyone with an engineering background
will likely have had experience with convolution and recall they can be
somewhat messy to evaluate. To make matters worse, if one wishes to sum
additional independent random variables to the existing sum, say form
Y = Zszl X}, from an iid collection {Xy}, then the result will be an N-
fold convolution, a potential nightmare in all but the simplest of cases. As
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in other engineering applications such as circuit design, convolutions can be
avoided by Fourier transform methods and in this subsection we describe
the method as an alternative approach for the examples to come. We begin
with the discrete case.

Historically the transforms used in probability theory have been slightly
different from those in traditionally Fourier analysis. For a discrete random
variable with pmf px, define the characteristic function Mx of the random
variable (or of the pmf) as

Mx (ju) = pr(m)ej“z, (3.104)

where u is usually assumed to be real. Recalling the definition (2.34)
of the expectation of a function g defined on a sample space, choosing
g(w) = e7*X(“) shows that the characteristic function can be be more sim-
ply defined as

My (ju) = E[e?*X]. (3.105)

Thus characteristic functions, like probabilities, can be viewed as special
cases of expectations.

This transform, which is also referred to as an exponential transform or
operational transform, bares a strong resemblance to the discrete-parameter
Fourier transform

Folpx) = px(x)e7>™* (3.106)

and the z-transform

Z.(px) =Y _px(2)2". (3.107)

In particular, Mx (ju) = F_ozu(px) = Zeiu(px). As a result, all of the
properties of characteristic functions follow immediately from (are equiva-
lent to) similar properties from Fourier or z transforms. As with Fourier
and z transforms, the original pmf px can be recovered from the transform
Mx by suitable inversion. For example, given a pmf px (k); k € Zy,

1 /71'/2 ( ) ‘kd 1 w/2 Z ( )j 'kd
— Mx(ju)e "™ du = — px(x)e?” | e du
2w —m/2 2m —m/2 =
1 71'/2 .
= Soxla)ys [ e P
27T _ 2
x w/

> px(2)dk—z = px (k). (3.108)
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Consider again the problem of summing two independent random vari-
ables X and W with pmf’s px and py with characteristic functions My
and My, respectively. If Y = X + W as before we can evaluate the char-
acteristic function of Y as

My (ju) = py (y)e™

where from the inverse image formula

py(y) = Z px,w (T, w)

T, wTt+w=y

so that

My (ju) = Z( ) px,ww,w))

Yy T, w:rtw=y

Z < Z pX’W(m,w)ej“y>

Y T, w:r+w=y

Z < Z px.w(z, w)eju(w+w)>

Yy r,w:rt+w=y

> pxaw (e, w)e "

z,w

where the last equality follows because each of the sums for distinct y
collects together different  and w and together the sums for all y gather
all of the x and w. This last sum factors, however, as

MyGu) = 3 px(@)pw (w)er™einw

S px (@)™ S pw (w)e "

Mx (ju)Mw (ju), (3.109)

which shows that the transform of the pmf of the sum of independent
random variables is simply the product of the transforms.

Tterating (3.109) several times gives an extremely useful result that we
state formally as a theorem. It can be proved by repeating the above
argument, but we shall later see a shorter proof.
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Theorem 3.1 If {X;; i = 1,...,N} are independent random variables
with characteristic functions Mx,, then the characteristic function of the
random variable Y = Zf\;l X s

N
My (ju) = [ ] Mx, (ju). (3.110)
i=1
If the X; are independent and identically distributed with common charac-
teristic function Mx, then
My (ju) = M¥ (ju). (3.111)

As a simple example, the characteristic function of a binary random
variable X with parameter p = px (1) = 1 — px(0) is easily found to be

1

Mx (ju) = e’ px(k) = (1 - p) +pel™ . (3.112)
k=0
If{X;;i=1,...,n} are independent Bernoulli random variables with iden-

tical distributions and Y,, = Y7_, X;, then My, (ju) = [(1 — p) + pel¥]"
and hence

My, (ju) = Y py, (ke
k=0

= ((1=p)+pei™)"

n

e

k=0

where we have invoked the binomial theorem in the last step. For the
equality to hold, however, we have from the uniqueness of transforms that
py, (k) must be the bracketed term, that is, the binomial pmf

py, (k) = < i ) (1=p)" " k€ Znpa. (3.113)

As in the discrete case, convolutions can be avoided by transforming
the densities involved. The derivation is exactly analogous to the discrete
case, with integrals replacing sums in the usual way.

For a continous random variable X with pmf fx, define the character-
istic function Mx of the random variable (or of the pmf) as

MX(ju)z/fX(x)ej“zdx. (3.114)
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As in the discrete case, this can be considered as a special case of expecta-
tion for continuous random variables as defined in (2.34) so that

My (ju) = E[e?*X]. (3.115)

The characteristic function is related to the the continuous-parameter
Fourier transform

Fu(fx) :/fx(a:)e*ﬂm dz (3.116)

and the Laplace transform
Ls(fx) = /fx(x)es” dzx (3.117)

by Mx (ju) = F_oru(fx) = Lju(fx). As a result, all of the properties of
characteristic functions of densities follow immediately from (are equivalent
to) similar properties from Fourier or Laplace transforms. For example,
given a well-behaved density fx(x); « € R with characteristic function

Mx (ju),
fx(z) = % /_oo Mx (ju)e " du. (3.118)

Consider again the problem of summing two independent random vari-
ables X and Y with pdf’s fx and fy with characteristic functions Mx and
My, respectively. As in the discrete case it can be shown that

My (ju) = Mx (ju) Mw (ju). (3.119)

Rather than mimic the proof of the discrete case, however, we postpone the
proof to a more general treatment of characteristic functions in chapter 4.

As in the discrete case, iterating (3.119) several times yields the follow-
ing result, which now includes both discrete and continous cases.

Theorem 3.2 If {X;; i = 1,...,N} are independent random variables
with characteristic functions Mx,, then the characteristic function of the
random variable Y = Zf\il X is

My (ju) = HMX,L (ju). (3.120)

If the X; are independent and identically distributed with common charac-
teristic function Mx, then

My (ju) = MY (ju). (3.121)
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As an example of characteristic functions and continuous random vari-
ables, consider the Gaussian random variable. The evaluation requires a
bit of effort, either using the “complete the square” technique of calculus
or by looking up in published tables. Assume that X is a Gaussian random
variable with mean m and variance o2. Then

Mx(ju) = E(e"Y)

* 1 —(z—m)? /202 jux
= /_OO W@ ( ) / e] dx

> 1 — (22 —2mx—202 ’um+m2 202
= /,OO Pl st da
o0 1 L 2\\2 /5 2 . 2 _2
o —(z—(m+juo 20 um—y“o“/2
= {/wme( (m+jua”))”/ dx}ej y“o?/
_ jum—uo?/2 (3.122)

Thus the characteristic function of a Gaussian random variable with

mean m and variance o3 is

My (ju) = efvm—u’o®/2 (3.123)

If {X;;i=1,...,n} are independent Gaussian random variables with
identical densities N'(m,0?) and Y,, = > 7_, X;, then

My, (ju) = [e7em=wo"/2]n — giu(nm)—u?(no®)/2. (3.124)

which is the characteristic function of a Gaussian random variable with
mean nm and variance no?.
The following maxim should be kept in mind whenever faced with sums

of independent random variables:

When given a derived distribution problem involving the
sum of independent random variables, first find the characteris-
tic function of the sum by taking the product of the characteris-
tic functions of the individual random variables. Then find the
corresponding probability function by inverting the transform.
This technique is valid if the random variables are independent
— they do not have to be identically distributed.

3.13 Gaussian Random Vectors

A random vector vector is said to be Gaussian if its density is Gaussian, that
is, if its distribution is described by the multidimensional pdf explained in
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chapter 2. The component random variables of a Gaussian random vector
are said to be jointly Gaussian random variables. Note that the symmetric
matrix A of the k—dimensional vector pdf has k(k + 1)/2 parameters and
that the vector m has k parameters. On the other hand, the k& marginal
pdf’s together have only 2k parameters. Again we note the impossibility
of constructing joint pdf’s without more specification than the marginal
pdf’s alone. As previously, the marginals will suffice to describe the entire
vector if we also know that the vector has independent components, e.g.,
the vector is iid. In this case the matrix A is diagonal.

Although difficult to describe, Gaussian random vectors have several
nice properties. One of the most important of these properties is that lin-
ear or affine operations on Gaussian random vectors produce Gaussian ran-
dom vectors. This result can be demonstrated with only a modest amount
of work using multidimensional characteristic functions, the extension of
transforms from scalars to vectors.

The multidimensional characteristic function of a distribution is defined
as follows: Given a random vector X = (X, ... , X,,_1) and a vector param-
eter u = (ug, ... ,u,—1), the n-dimensional characteristic function Mx (ju)
is defined by

Mx(ju) = Mx,, . x,_,(Juo, .., jun-1)
= E(ej“tx>

n—1
E (exijuka> . (3.125)

k=0

It can be shown using multivariable calculus (problem 3.49) that a Gaussian
random vector with mean vector m and covariance matrix A has charac-
teristic function

Mx(ju) _ ejutm—1/2utAu
n—1 n—1n—1
= exp lj Z ugmy — 1/2 Z Z upA(k, m)un, | (3.126)
k=0 k=0 m=0

Observe that the Gaussian characteristic function has the same form as
the Gaussian pdf — an exponential quadratic in its argument. However,
unlike the pdf, the characteristic function depends on the covariance matrix
directly, whereas the pdf contains the inverse of the covariance matrix.
Thus the Gaussian characteristic function is in some sense simpler than
the Gaussian pdf. As a further consequence of the direct dependence on
the covariance matrix, it is interesting to note that, unlike the Gaussian
pdf, the characteristic function is well-defined even if A is only nonnegative
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definite and not strictly positive definite. Previously we give a definition of
a Gaussian random vector in terms of its pdf. Now we can give an alternate,
more general (in the sense that a strictly positive definite covariance matrix
is not required) definition of a Gaussian random vector and hence random
process):

A random vector is Gaussian if and only if it has a characteristic function
of the form of (3.126).

3.14 Examples: Simple Random Processes

In this section several examples of random processes defined on simple
probability spaces are given to illustrate the basic definition of an infinite
collection of random variables defined on a single space. In the next section
more complicated examples are considered by defining random variables on
a probability space which is the output space for another random process,
a setup that can be viewed as signal processing.

[3.22] Consider the binary probability space (Q, F, P) with Q = {0,1}, F
the usual event space, and P induced by the pmf p(0) = a and p(1) =
1 — «, where « is some constant, 0 < o < 1. Define a random process
on this space as follows:

_ _focos(t), teRifw=1
X(t’”)cos(“’t){ 1, teRif w=0.
Thus if a 1 occurs a cosine is sent forever, and if a 0 occurs a constant
1 is sent forever.

This process clearly has continuous time and at first glance it might
appear to also have continuous amplitude, but only two waveforms are
possible, a cosine and a constant. Thus the alphabet at each time contains
at most two values and these possible values change with time. Hence this
process is in fact a discrete amplitude process and random vectors drawn
from this source are described by pmf’s. We can consider the alphabet of
the process to be either R7 or [~1,1]7, among other possibilities. Fix time
at t = /2. Then X (7/2) is a random variable with pmf

a, ifz=1
Pxaa@) =1 ) it r=0.

The reader should try other instances of time. What happens at ¢ =
0,2m,4mr,m...7
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[3.23] Consider a probability space (2, F, P) with Q = R, F = B(R), the
Borel field, and probability measure P induced by the pdf

f(r):{ 1 if re0,1]

0 otherwise .
Again define the random process {X (¢)} by X (t,w) = cos(wt);t € R.

Again the process is continuous time, but now it has mixed alphabet
because an uncountable infinity of waveforms is possible corresponding to
all angular frequencies between 0 and 1 so that X (¢,w) is a continuous
random variable except at t = 0. X(0,w) = 1 is a discrete random variable.
If you calculate the pdf of the random variable X (¢) you see that it varies
as a function of time (problem 3.25).

[3.24] Consider the probability space of example [3.23], but cut it down to
the unit interval; that is, consider the probability space ([0, 1), 5([0,1)), P)
where P is the probability measure induced by the pdf f(r) = 1;r €
[0,1). (So far this is just another model for the same thing.) Define
forn =1,2...,X,(w) = b,(w) = the n'" digit binary expansion of

w, that is
o0
o= ha
n=1
or equivalently w = .b1bob3 ... in binary.

{Xn;n=1,2...} is a one-sided discrete alphabet random process with
alphabet {0,1}. It is important to understand that nature has selected w
at the beginning of time, but the observer has no way to determining £
completely without waiting until the end of time. Nature only reveals one
bit of w per unit time, so the observer can only get an improved estimate of
w as time goes on. This is an excellent example of how a random process
can be modeled by selecting only a single outcome, yet the observer sees a
process that evolves forever.

In this example our change in the sample space to [0,1] from R was
done for convenience. By restricting the sample space we did not have to
define the random variable outside of the unit interval (as we would have
had to do to provide a complete description).

At times it is necessary to extend the definition of a random process
to include vector-valued functions of time so that the random process is a
function of three arguments instead of two. The most important extension
is to complex-valued random processes, i.e., vectors of length 2. We will
not make such extensions frequently but we will include an example at this
time.
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[3.25] Random Rotations

Given the same probability space as in example [3.24], define a complex-
valued random process {X,,} as follows: Let a be a fixed real param-
eter and define

X, (w) = ed"ed?me — glnat2mw) .y — 193 ..

This process, called the random rotations process, is a discrete time
continuous (complex) alphabet one-sided random process. Note that an
alternative description of the same process would be to define to define 2
as the unit circle in the complex plane together with its Borel field and to
define a process Y;,(w) = ¢"w for some fixed ¢ € €; for some fixed ¢ € Q
; this representation points that successive values of Y, are obtained by
rotating the previous value through an angle determined by c.

Note that the joint pdf of the complex components of X,, varies with
time, n, as does the pdf in example [3.23] (problem 3.28).

[3.26] Again consider the probability space of example [3.24]. We define a
random process recursively on this space as follows: Define Xy = w
and

2X,— if 0 <X, _ 1/2
Xp(w) = 2Xp_1(w) mod 1 = 1) i0< Xpoqw) <1/

2Xp1(w)—1 if1/2< X, 4 (w) <1,
where r mod 1 is the fractional portion of r. In other words, if
Xn—1(w) = z is in [0,1/2), then X, (w) = 2z. If X,,_1(w) = z is
in [1/2,1), then X, (w) = 22 — 1.

[3.27] Given the same probability space as in the example [3.26], define
X (t,w) = cos(t + 27w), t € R. The resulting random process {X (¢t)}
is continuous time and continuous amplitude and is called a random
phase process since all of the possible waveforms are shifts of one
another. Note that the pdf of X (¢,w) does not depend on time (prob-
lem 3.29.

[3.28] Take any one of the foregoing (real) processes and quantize or clip
it; that is, define a binary quantizer ¢ by

(r) = a ifr>0
W)=Y b ifr<o0

and define the process Y (t,w) = ¢(X (t,w)), all t. (Typically b = —a.)
This is a common form of signal processing, converting a continuous
alphabet random process into a discrete alphabet random process.
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This process is discrete alphabet and is either continuous or discrete
time, depending on the original X process. In any case Y (¢) has a binary
pmf that, in general, varies with time.

[3.29] Say we have two random variables U and V defined on a common
probability space (Q, F, P). Then

X(t)=Ucos2nfot + V)

defines a random process on the same probability space for any fixed
parameter fo.

All the foregoing random processes are well defined. The processes in-
herit probabilistic descriptions from the underlying probability space. The
techniques of derived distributions can be used to compute probabilities
involving the outputs since, for example, any problem involving a single
sample time is simply a derived distribution for a single random variable,
and any problem involving a finite collection of sample times is a single ran-
dom vector derived distribution problem. Several examples are explored in
the problems at the end of the chapter.

3.15 Directly Given Random Processes

3.15.1 The Kolmogorov Extension Theorem

Consistency of distributions of random vectors of various dimensions plays
a far greater role in the theory and practice of random processes than sim-
ply a means of checking the correctness of a computation. We have thus far
argued that a necessary condition for a set of random vector distributions to
describe collections of samples taken from a random process is that the dis-
tributions be consistent, e.g., given marginals and joints we must be able to
compute the marginals from the joints. The Kolmogorov extension theorem
states that consistency is also sufficient for a family of finite-dimensional
vector distributions to describe a random process, that is, for there to exist
a well defined random process that agrees with the given family of finite
dimensional distributions. We state the theorem without proof as the proof
is far beyond the assumed mathematical prerequisites for this course. (The
interested reader is referred to [45, 6, 22].) Happily, however, it is often
straightforward, if somewhat tedious, to demonstrate that the conditions
of the theorem hold and hence that a proposed model is well-defined.

Theorem 3.3 Kolmogorov Extension Theorem
Suppose that one is given a consistent family of finite dimensional distri-
butions PXto,th,m Xip for all positive integers k and all possible sample
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times t; € T; i = 0,1,... ,k — 1. Then there exists a random process
{Xy; t € T} that is consistent with this family. In other words, in order to
completely describe a random process, it is sufficient to describe a consistent
family of finite dimensional distributions of its samples.

3.15.2 IID Random Processes

The next example extends the idea of an iid vector to provide one of the
most important random process models. Although such processes are sim-
ple in that they possess no memory among samples, they play a fundamental
role as a building block for more complicated processes as well as being an
important example in their own right. In a sense these are the most ran-
dom of all possible random processes because knowledge of the past does
not help predict future behavior.

A discrete-time random proces {X,} is said to be #d if all finite-
dimensional random vectors formed by sampling the process are iid; that
is, if for any k and any collection of distinct sample times tg,t1,... ,tk_1,
the random vector (X, Xy, ..., Xy, ,) is iid.

This definition is equivalent to the simpler definition of the Introduction
to this chapter, but the more general form is adopted because it more closely
resembles definitions to be introduced later. iid random processes are often
called Bernoulli processes, especially in the binary case.

It can be shown with cumbersome but straightforward effort that the
random process of [3.24] is in fact iid. In fact, for any given marginal
distribution there exists an iid process with that marginal distribution. Al-
though eminently believable, this fact requires the Kolmogorov extension
theorem, which states that a consistent family of finite-dimensional distri-
butions implies the existence of a random process described or specified by
those distributions. The demonstration of consistency for IID processes is
straightforward and readers are encouraged to convince themselves for the
case of n-dimensional distributions reducing to n — 1 dimensional distribu-
tions.

3.15.3 Gaussian Random Processes

A random process is Gaussian if for all positive integers k and all possible
sample times ¢; € 7; i = 0,1,... ,k—1, the random vectors (Xz,, X¢,,... , X¢t,_,)
are Gaussian.

In order to describe a Gaussian process and verify the consistency con-
ditions of the Kolmogorov extension theorem, one has to provide the A
matrices and m vectors for all of the random vector (X, X¢,,... , Xt ).
This is accomplished by providing a mean function m(t); t € 7 and a
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covariance function A(t,s); t,s € T, which then yield all of the required
mean vectors and covariance matrices by sampling, that is, the mean vector
for (Xeo, Xtyy- o s Xty ) is (m(to), m(t1), ... ,m(tx—1)) and the covariance
matrix is A = {A(t;,t;); 1,7 € Z}.

That this family of density functions are in fact consistent is much
more difficult to verify than was the case for iid processes, but it requires
straightforward brute force in calculus rather than any deep mathematical
ideas to to do so.

The Gaussian random process in both discrete and continuous time is
virtually ubiquitous in the analysis of random systems. This is both because
the model is good for a wide variety of physical phenomena and because it
is extremely tractable for analysis.

3.16 Discrete Time Markov Processes

An iid process is often referred to as a memoryless process because of the
independence among the samples. Such a process is both one of the simplest
random processes and one of the most random. It is simple because the
joint pmf’s are easily found as products of marginals. It is “most random”
because knowing the past (or future) outputs does not help improve the
probabilities describing the current output. It is natural to seek straight-
forward means of describing more complicated processes with memory and
to analyze the properties of processes resulting from operations on iid pro-
cesses. A general approach towards modeling processes with memory is to
filter memoryless processes, to perform an operation (a form of signal pro-
cessing) on an input process which produces an output process that is not
iid. In this section we explore several examples of such a construction, all of
which provide examples of the use of conditional distributions for describing
and investigating random processes. All of the processes considered in this
section will prove to be examples of Markov processes, a class of random
processes possessing a specific form of dependence among current and past
samples.

3.16.1 A Binary Markov Process
Suppose that {X,,; n=0,1,...} is a Bernoulli process with

r=1
px,(z)={F (3.127)
1—-p =0,

where p € (0,1) is a fixed parameter. Since the pmf does not depend on n,
the subscript is dropped and the pmf abbreviated to px. The pmf can also
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be written as
px(2) =p*(1—p)'~* z=0,1. (3.128)

Since the process is assumed to be iid,
n—1
pxn(z") = [ px (i) = p*@ (1 = p)n ), (3.129)
i=0

where w(z™) is the number of nonzero z; in ", the Hamming weight of the
binary vector z”.

We consider using {X,,} as the input to a device which produces an
output binary process {Y,,}. The device can be viewed as a signal processor
or as a linear filter. Since the process is binary, the most natural “linear”
operations are those in the binary alphabet using modulo 2 arithmetic
as defined in (3.65-3.66). Consider the new random process {Y,; n =
0,1,2,...} defined by

Yi =0
Y, =140 " (3.130)
Xn@ynfl ’17,:].,2,...,

where Y} is a binary equiprobable random variable (py,(0) = py, (1) = 0.5)
assumed to be independent of all of the X,,. This is an example of a linear
(modulo 2) recursion or difference equation. The process can also be defined
forn=1,2,... by

1 if X, # Yoy
Y, =
0 if X, =Y, ,

This process is called a binary autoregressive process.

It should be apparent that Y, has quite different properties from X,,.
In particular, it depends strongly on past values. Since p < 1/2, Y, is
more likely to equal Y,,_; than it is to differ. If p is small, for example,
Y, is likely to have long runs of 0’s and 1’s. {Y¥,} is indeed a random
process because it has been defined as a sequence of random variables on a
common experiment, the outputs of the {X,,} process and an independent
selection of Yy. Thus all of its joint pmf’s py«(y™) = Pr(Y™ = y") should
be derivable from the inverse image formula. We proceed to solve this
derived distribution and then to interpret the result.

Using the inverse image formula in the general sense, which involves
finding a probability of an event involving Y™ in terms of the probability
of an event involving X (and, in this case, the initial valueYp), yields the
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following sequence of steps:

py»(y") =Pr(Y" =y")
= Pr(Yo=yo,Yi=v1.Yo=92,... , Y1 =yn_1)
= Pr(Yo=9,X10Yo=y1,Xo00Y1=y2,... , X1 B Y2 =Yn_1)
= Pr(Yo=950, X199 =91, X010 =vy2,- .. , X1 DYn—2 = Yn—1)
= Pr(Yo=90, X1 =110y, X2 =120y, , Xn 1 =Yn-1DYn—2)
= DPYoX1,X2, X5, X1 (Y0, Y1 © Y0, Y2 D Y15+ -+ s Yn—1 D Yn—2)

n—1

= pvo) [[px(wi@vi). (3.131)

i=1

The derivation used the fact that a & b = ¢ if and only if « = b & ¢ and
the independence of Yy, X1, Xo, ..., X,,_1 and the fact that the X,, are
iid. This formula completes the first goal, except possibly plugging in the
specific forms of py, and px to get

15 e B
pye(y) =5 [[ o (1 —p)t 7o, (3.132)
=1

The marginal pmf’s for Y,, can be evaluated by summing out the joints,
e.g.,

Pyy (yl) = Zpymyl (y07 yl)

Yo

— % Zpyleayo(l _p)l—yl@yo
Yo

- L =0,1

- 2 vy 1=V, L
In a similar fashion it can be shown that the marginals for Y,, are all the
same:

1
pyn(y):? y=0,1; n=0,1,2,..., (3.133)
and hence as with X,, the pmf can be abbreviated as py, dropping the
subscript.
Observe in particular that unlike the iid {X,,} process,

n—1
pyn (") # [ ] pv(w) (3.134)
=0
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and hence {Y;,} is not an iid process and the joint pmf cannot be written
as a product of the marginals. Nonetheless, the joint pmf can be written as
a product of simple terms, as has been done in (3.132). From the definition
of conditional probability and (3.131)

Pyi+1 (Z/Hl)

=px (U ® yi—1)
Pyt (?Jl)

(3.135)

Py, |Yo,Ya,... ,Yl,l(yl|y0ayl» cee ayl—l) =

and (3.131) is then recognizable as the chain rule (3.51) for the joint pmf
py=(y").

Note that the conditional probability of the current output Y; given the
values for the entire past Y;; ¢ = 0,1,...,] — 1 depend only on the most
recent past output Y;_1! This property can be summarized nicely by also
deriving the conditional pmf

Py v (W Y1)
Pyiyvi, Wilyi—1) = ———————— 3.136
e i) = ) 190

which with a little effort resembling the previous derivation can be evaluated
as p¥i®¥i-1(1—p)1=¥:®vi-1_ Thus for the {Y,,} process has the property that

DY Yo, Vi, Vi WilY0, Y1y - -+ 5 ¥im1) = Py pvio, (Wilyio1)- (3.137)

A discrete time random process with this property is called a Markov pro-
cess or Markov chain. Such processes are among the most studied random
processes with memory.

3.16.2 The Binomial Counting Process

We next turn to a filtering of a Bernoulli process that is linear in the
ordinary sense of real numbers. Now the input processess will be binary,
but the output process will have the nonnegative integers as an alphabet.
Simply speaking, the output process will be formed by counting the number
of heads in a sequence of coin flips.

Let {X,} be iid binary random process with marginal pmf px (1) = p =
1 — px(0). Define a new one-sided random process {Y,,;n =0,1,...} by

Yo = {qon K (3.138)
Y1 X =Y, 1+ X, n=12...

For n > 1 this process can be viewed as the output of a discrete time time-
invariant linear filter with Kronecker delta response hy given by hy = 1
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for k > 0 and hy = 0 otherwise. From (3.138), each random variable Y,
provides a count of the number of 1’s appearing in the X, process through
time n. Because of this counting structure we have that either

Y, =Y, o0 Y, =Y, 14+1; n=23,.... (3.139)

In general, a discrete time process that satisfies (3.139) is called a counting
process since it is nondecreasing, and when it jumps, it is always with an
increment of 1. (A continuous alphabet counting process is similarly defined
as a process with a nondecreasing output which increases in steps of 1.)

To completely describe this process it suffices to have a formula for the
joint pmf’s

n
Py v W tn) = oy, () [ [ vy v (il - swien), (3.140)
=1

since arbitrary joint distributions can be found from such joint distribu-
tions of contiguous samples by summing out the unwanted dummy vari-
ables. When we have constructed one process {Y,,} from an existing process
{X,}, we need not worry about consistency since we have defined the new
process on an underlying probability space (the output space of the original
process), and hence the joint distributions must be consistent if they are
correctly computed from the underlying probability measure — the process
distribution for the iid process.

Since Y,, is formed by summing n Bernoulli random variables, the pmf
for Y,, follows immediately from (3.113), it is the binomial pmf and hence
the process is referred to as the binomial counting process.

The joint probabilities could be computed using the vector inverse image
formula as with the binary Markov source, but instead we focus on the
conditional distributions and compute them directly. The same approach
could have been used for the binary Markov example.

To compute the conditional pmf’s involves describing probabilistically
the next output Y,, of the process if we are given the previous n — 1 outputs
Y1,...,Y,_1. For the binomial counting process, the next output is formed
simply by adding a binary random variable to the old sum. Thus all of the
conditional probability mass is concentrated on two values — the last value
and the last value plus 1. The conditional pmf’s can therefore be expressed
as

PYuYo 1, Vi UnlYn—1,- - Y1)
= Pr(Yo=wlYi=ysl=1,... ,yn-1))
= Pr(Xo=yn —vualVi=usl=1,... ,yn_1)) (3.141)

= Pr(Xn = UYn 7yn—1|X1 = yl,Xi =Yi — Yi-1; 1= 2733"' y— 1)7
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since from the definition of the Y,, process the conditioning event {Y; =
yi; 1 =1,2,... ,n—1} is identical to the event {X1 = y1, X; = yi—vi—1; 1 =
2,3,...,n— 1} and, given this event, the event Y,, = y,, is identical to the
event X,, = Yn — Yn—_1. In words, the Y,, will assume the given values if
and only if the X,, assume the corresponding differences since the Y,, are
defined as the sum of the X,,. Now, however, the probability is entirely in
terms of the given X; variables, in particular,

PY,|Yn_1,...,Y1 (yn\yn—l, s 7311) = (3-142)
PXp|Xn_1,,X2,X1 (yn - yn—1|yn—1 —Yn—2,--.,Y2 — y17y1) .

So far the development is valid for any process and has not used the fact
that the {X,} are iid If the {X,,} are iid, then the conditional pmf’s are
simply the marginal pmf’s since each X, is independent of past Xj; k < n!
Thus we have that

PY,|Yn_1,...,Y1 (yn|yn—17 cee ,lll) =DPx (yn - yn—l) . (3143)

and hence from the chain rule the vector pmf is (defining yo = 0)

PYi, Yo (Y15 s Un) = HPX(yi —Yi-1) (3.144)
i=1

providing the desired specification.

To apply this formula to the special case of the binomial counting pro-
cess, we need only plug in the binary pmf for pxto obtain the desired
specification of the binomial counting process:

Pyi,....Y, (Y1, Yn) = Hp(yi*yi—l)(l _p)lf(yi*yifl) 7
=1

where
¥yi—Yi—1=0o0r 1,i=1,2,... ,n; y=0. (3.145)

A similar derivation could be used to evaluate the conditional pmf for
Y, given only its immediate predecessor as:

Py Voo Unlyn—1) = Pr(Yo =yn|Yn-1 =Yn-1)
= Pr(Xn =Yn — yn—1|Yn—1 = yn—l) .

The conditioning event, however, depends only on values of X, for k < n,
and X, is independent of its past; hence

DYoo Wnlyn—1) = Dx (Yn — Yn—-1) - (3.146)



3.16. DISCRETE TIME MARKOV PROCESSES 165

The same conclusion can be reached by the longer route of using the joint
pmf for Y7,...,Y, previously computed to find the joint pmf for Y,, and
Y, —1, which in turn can be used to find the conditional pmf. Comparison
with (3.143) reveals that processes formed by summing iid processes (such
as the binomial counting process) have the property that

DY Yoot Vi UnlYn—1s - 5y1) = Py vio, WnlYn—1) (3.147)
or, equivalently,

Pr(Yn = yn‘YYz =UYi; 1= ]-7~ e, n = 1) = Pr(Yn = yn|Yn71 = ynfl) P
(3.148)

that is, they are Markov processes. Roughly speaking, given the most recent
past sample (or the current sample), the remainder of the past does not
affect the probability of what happens next. Alternatively stated, given the
present, the future is independent of the past.

3.16.3 «Discrete Random Walk

As a second example of the preceding development, consider the random
walk defined as in (3.138), i.e., by

0 n=>0
Y, = 3.149
" {Z;‘_lxk n=1,2,..., ( )

where the iid process used has alphabet {1,—1} and Pr(X, = —1) = p.
This is another example of an autoregressive process since it can be written
in the form of a regression

Yo=Yy 1+ Xp,n=12... (3.150)

One can think of Y, as modeling a drunk on a path who flips a coin at each
minute to decide whether to take one step forward or one step backward.
In this case the transform of the iid random variables is

Mx (ju) = (1 = p)e’* +pe ",
and hence using the binomial theorem of algebra we have that
My, (ju) = ((1—p)e/" +pe /)"
T
= Z [( n ﬁ k > (1 — p)(ntk)/2pn=k)/2| gjuk
n—2.n

k=—n,—n+2,... 2
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Comparison of this formula with the definition of the characteristic func-
tion reveals that the pmf for Y, is given by

n
pYn (k) - < 1 k > (l—p)(n+k)/2p(nik)/2 9 k = —-n, —’/l—|—2, ... ,n—2,n .
2

Note that Y,, must be even or odd depending on whether n is even or odd.
This follows from the nature of the increments.

3.16.4 The Discrete Time Wiener Process

Again consider a process formed by summing an iid process as in (3.138).
This time, however, let {X,,} be an iid process with zero-mean Gaussian
marginal pdf’s and variance o2. Then the process {Y,,} defined by (3.138)
is called the discrete time Wiener process. The discrete time continuous
alphabet case of summing iid random variables is handled in virtually the
same manner is the discrete time case, with conditional pdf’s replacing
conditional pmf’s.

The marginal pdf for Y,, is given immediately by (3.124) as N(0,no%).

To find the joint pdf’s we evaluate the pdf chain rule of (3.63):

k-1
i v, yn) = H Ivive,. v ilyas - s yi-1)- (3.151)
=1

To find the conditional pdf fy, |v,... v, (Un|y1,- .. ,Yn—1) we compute the
conditional cdf P(Y,, < yn|Yn—i = yn—i;i =1,2,... ,n —1). Analogous to
the discrete case, we have from the representation of (3.138) and the fact
that the X, are iid that

PY, <ynlYonoi=vn_i;i=1,2,... ,n—1)
= PXn<yn—Yn-1lYn-i=yn—i3i=1,2,... ,n—1)
= P(Xn <¥Yn—Yn-1)
= Fx(yn = yn-1); (3.152)

and hence differentiating the conditional cdf to obtain the conditional pdf
yields

d
fYn|Y1,M,Yn,1(yn|y1a e 7yn—1) = EFX(yn — Yn—1) = fX(yn - yn—l)a
(3.153)
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the continuous analog of (3.143). Application of the pdf chain rule then
yields the continuous analog to (3.144):

n

v va s ynn) = [ fx(wi —wica) - (3.154)

i=1
Finally suppose that fx is Gaussian with zero mean and variance o2. Then

this becomes

2
_wi n _wizvio1)

f ( n) e 202 H e 202
vy Y =
V2mo? -5 V2mo?

— (27TU2)_%672%2(2?:2(%7%’1)2%%). (3'155)

This proves to be a Gaussian pdf with mean vector 0 and a covariance

matrix with entries Kx(m,n) = o?min(m,n), m,n = 1,2,.... (Readers

are invited to test their matrix manipulation skills and verify this claim.)
As in the discrete alphabet case, a similar argument implies that

fYn\Yn,l(yn|yn71) = fX(yn - ynfl)
and hence from (3.153) that

fYn|Y1,..4 Y1 (yn|yla cee 7yn—1) = fYnlYnfl (yn|yn—1)~ (3156)

As in the discrete alphabet case, a process with this property is called a
Markov process. We can combine the discrete alphabet and continuous
alphabet definitions into a common definition: A discrete time random
process {Y,,} is said to be a Markov process if the conditional cdf’s satisfy
the relation

Pr(Yn < yn‘ynfi = Yn—i; 1= 17 27 .- ) = Pr(Yn < yn|Yn71 = ynfl)
(3.157)

for all yp—1,Yn—2,.... More specifically, {Y,,} is frequently called a first-
order Markov process because it depends on only the most recent past
value. An extended definition to nth order Markov processes can be made
in the obvious fashion.

3.16.5 Hidden Markov Models

A popular random process model that has proved extremely important
in the development of modern speech recognition is formed by adding an
iid process to a Markov process, so that the underlying Markov process
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is “hidden.” Suppose for example that {X,} is a Markov process with
either discrete or continuous alphabet and that {W,} is an iid process,
for example an iid Gaussian process. Then the resulting process Y, =
X, + W, is an example of a hidden Markov model or, in the language
of early information theory, a Markov source. A wide literature exists
for estimating the parameters of the underlying Markov source when only
the sum process Y,, is actually observed. A hidden Markov model can
be equivalently considered as viewing a Markov process through a noisy
channel with iid Gaussian noise.

3.17 xNonelementary Conditional Probabil-
ity

Perhaps the most important form for conditional probabilities is the basic
form of Pr(Y € F|X = z), a probability measure on a random variable Y’
given the event that another random variable X takes on a specific value .
We consider a general event Y € F' and not simply Y = y since the latter
is usually useless in the continuous case. In general, either or both Y or X
might be random vectors.

In the elementary discrete case, such conditional probabilities are easily
constructed in terms of conditional pmf’s using (3.47): conditional prob-
ability is found by summing conditional probability mass over the event,
just as is done in the unconditional case. We have proposed an analogous
approach to continuous probability, but this does not lead to a useful gen-
eral theory. For example, it assumes that the various pdf’s all exist and are
well behaved. As a first step towards a better general definition (which will
reduce in practice to the constructive pdf definition when it makes sense),
we derive a variation of (3.47). Multiply both sides of (3.47) by px (x) and
sum over an X-event G to obtain

Z P(Y € FIX =2)px(z) = Z ZPY\X(?JW)Z’X@?)

zeG z€G yeF

= Z ZPX.,Y(Z, y)

reGyeF
= P(XeGYEeF)
= Pxy(GxF); all events G(3.158)

This formula in a sense discribes the essence of the conditional probability
by saying what it does: For any X event G, summing the product of the
conditional probability that Y € F’ and the marginal probability that X = =
over all x € GG yields the joint probability that X € G and Y € F. If our
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tentative definition of nonelementary conditional probability is to be useful,
in must play a similar role in the continuous case, that is, we should be able
to average over conditional probabilities to find ordinary joint probabilities,
where now averages are integrals instead of sums. This indeed works since

/xec dzP(Y € F|X = z)fx(z) / d:v/ dyfyx (ylz) fx (x)

/ da:/yeF dyfx.y(z,y)

= P(XeGYeF)
= Pxy(GxF); all events G(3.159)

Thus the tentative definition of nonelementary conditional probability of
(3.53) behaves in the manner that one would like. Using the Stieltjes no-
tation we can combine (3.158) and (3.159) into a single requirement:

/P(YGF\X::U)dFX(x) - P(XeG,Y€eF)
G

Px y (G x F); all events G(3.160)

which is valid in both the discrete case and in the continuous case when
one has a conditional pdf. In advanced probability, (3.160) is taken as the
definition for the general (nonelementary) conditional probability P(Y €
F|X = x); that is, the conditional probability is defined as any function
of = that satisfies (3.160). This is a descriptive definition which defines an
object by its behavior when integrated, much like the rigorous definition of
a Dirac delta function is by its behavior inside an integral. This reduces to
the given constructive definitions of (3.47) in the discrete case and (3.53)
in the continuous case with a well behaved pdf. It also leads to a useful
general theory even when the conditional pdf is not well defined.

Lastly, we observe that elementary and nonelementary conditional prob-
abilities are related in the natural way. Suppose that G is an event with
nonzero probability so that the elementary conditional probability P(Y €
F|X € G) is well defined. Then

vay(G X F)

PYeFXe@) = Px(G)

1
= G /P(Y € F|X = z) dFx(z). (3.161)
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3.18 Problems

1.

Given the probability space (R, B(R)), m), where m is the probability
measure induced by the uniform pdf f on [0, 1] (that is, f(r) =1 for
r € [0,1] and is 0 otherwise), find the pdf’s for the following random
variables defined on this space:

(a) X(r)=rl*,
(b) Y(r) =712,
(r) =Inr|,

d
(e

—~

)

)
(c) 2

) V(r) =ar+b, where a and b are fixed constants.

) Find the pmf for the random variable W(r) = 3 if » > 2 and
W (r) = 1 otherwise.

Do problem 3.1 for an exponential pdf on the original sample space.
Do problem 3.1(a)-(d) for a Gaussian pdf on the original sample space.

A random variable X has a uniform pdf on [0,1]. What is the prob-
ability density function for the volume of a cube with sides of length
X7

A random variable X has a cumulative distribution function Fx(a).
What is the cdf of the random variable Y = aX + b, where a and b
are constants?

Use the properties of probability measures to prove the following facts
about cdf’s: If F' is the cdf of a random variable, then

(a) F(—o0) =0 and F(o0) = 1.
(b) F(r) is a monotonically nondecreasing function, that is, if ¢ > y,
then F(z) > F(y).

(¢) F is continuous from the right, that is, if €,, n = 1,2,... is a
sequence of positive numbers decreasing to zero, then

lim F(r+e,)=F(r) .

Note that continuity from the right is a result of the fact that we
defined a cdf as the probability of an event of the form (—oo,r].
If instead we had defined it as the probability of an event of the
form (—oo,r) (as is often done in Eastern Europe), then cdf’s
would be continuous from the left instead of from the right.
When is a cdf continuous from the left? When is it discontinu-
ous?
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7. Say we are given an arbitrary cdf F' for a random variable and we
would like to simulate an experiment by generating one of these ran-
dom variables as input to the experiment. As is typical of computer
simulations, all we have available is a uniformly distributed random
variable U; that is, U has the pdf of 3.1. This problem explores a
means of generating the desired random variable from U (this method
is occasionally used in computer simulations). Given the cdf F, de-
fine the inverse cdf F~1(r) as the smallest value of x € R for which
F(x) > r. We specify “smallest” to ensure a unique definition since
F may have the same value for an interval of x. Find the cdf of the
random variable Y defined by Y = F~1(U).

This problem shows how to generate a random variable with an arbi-
trary distribution from a uniformly distributed random variable using
an inverse cdf. Suppose next that X is a random variable with cdf
Fx(a). What is the distribution of the random variable Y = Fx (X)?
This mapping is used on individual picture elements (pixels) in an
image enhancement technique known as “histogram equalization” to
enhance contrast.

8. You are given a random variable U described by a pdf that is 1 on
[0,1]. Describe and make a labeled sketch of a function g such that
the random variable Y = g(U) has a pdf e ™**; x > 0.

9. A probability space (2, F, P) models the outcome of rolling two fair
four-sided dice on a glass table and reading their down faces. Hence
we can take 2 = {1,2,3,4}2, the usual event space (the power set
or, equivalently, the Borel field), and a pmf placing equal probability
on all 16 points in the space. On this space we define the following
random variables: W(w) = the down face on die #1; that is, if w =
(w1, w2), where w; denotes the down face on die # i, then W(w =
wi. (We could use the sampling function notation here: W = [];.)
Similarly, define V(w) = ws, the down face on the second die. Define
also X (w) = w1 + we, the sum of the down faces, and Y (w) = wows,
the product of the down faces. Find the pmf and cdf for the random
variables X, Y, W, and V. Find the pmf’s for the random vectors
(X,Y) and (W, V). Write a formula for the distribution of the random
vector (W, V) in terms of its pmf.

Suppose that a greedy scientist has rigged the dice using magnets to
ensure that the two dice always yield the same value; that is, we now
have a new pmf on ) that assigns equal values to all points where
the faces are the same and zero to the remaining points. Repeat the
calculations for this case.
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10. Consider the two-dimensional probability space (%2, B(R)?, P), where

P is the probability measure induced by the pdf g, which is equal to
a constant ¢ in the square {(z,y) : z € [-1/2,1/2], y € [-1/2,1/2]}
and zero elsewhere.

(a) Find the constant c.

(b) Find P({z,y : < y}).

(c) Define the random variable U : ®2 — R by U(z,y) = = + v.

Find an expression for the cdf Fyy(u) = Pr(U < u).

(d) Define the random variable V : #2 — R by V(z,y) = xy. Find
the cdf Fy (v).

(e) Define the random variable W : ®2 — R by W (z, y) = max(z, y),
that is, the larger of the two coordinate values. Thus max(z,y) =
z if z > y. Find the cdf Fyy (w).

11. Suppose that X and Y are two random variables described by a pdf
Fxy(@,y) = Ce™™ v+,

(a) Find C.

(b) Find the marginal pdf’s fx and fy. Are X and Y independent?
Are they identically distributed?

(c¢) Define the random variable Z = X — 2Y. Find the joint pdf
fx .z

12. Let (X,Y’) be a random vector with distribution Px y induced by the
pdf fxv(z,y) = fx(x)fy(y), where

fx(@)=fy(z) =X 5 220,

that is, (X,Y") is described by a product pdf with exponential com-
ponents.

(a) Find the pdf for the random variable U = X + Y.

(b) Let the “max” function be defined as in problem 3.10 and de-
fine the “min” function as the smaller of two values; that is,
min(z,y) = z if ¢ < y. Define the random vector (W, V) by
W = min(X,Y) and V = max(X,Y). Find the pdf for the
random vector (W, V).

13. Let (X,Y) be a random vector with distribution Px y induced by
a product pdf fxy(z,y) = fx(2)fy(y) with fx(z) = fy(y) equal
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14.

15.

to the Gaussian pdf with m = 0. Consider the random vector as
representing the real and imaginary parts of a complex-valued mea-
surement. It is often useful to consider instead a magnitude-phase
representation vector (R, ), where R is the magnitude (X2 + Y2)!/2
and § = tan~!(Y/X) (use the principal value of the inverse tangent).
Find the joint pdf of the random vector (R,f. Find the marginal
pdf’s of the random variables R and 6. The pdf of R is called the
Rayleigh pdf. Are R and 6 independent?

A probability space (2, F, P) is defined as follows: ) consists of all
8-dimensional binary vectors, e.g., every member of (2 has the form
w = (wo,... ,wk—1), where w; is 0 or 1. F is the power set, P is
described by a pmf which assigns a probability of 1/28 to each of the
28 elements in Q (a uniform pmf).

Find the pmfs describing the following random variables:

a) g(w) = Z’:l w;, i.e., the number of 1’s in the binary vector.
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(¢) Y(w) = wj, i.e., the value of the jth coordinate of w.
(d) Z(w) = max;(w;).
(e) V(w) = g(w)X (w), where g and X are as above.

Suppose that (X, X1,...,Xn) is a random vector with a product
probability density function with marginal pdf’s

fxn(a)z{l 0<a<l

0 otherwise.

(The components are iid.) Define the following random variables:

o U= Xg
o V =max(X1, X2, X3, X4)
o

1 if X; >2X
W= 1A = 2
0 otherwise

e A random vector Y = (Y1,...,Yn) is defined by
Y.=X,+X,-1;n=1,... N.

(a) Find the pdf or pmf as appropriate for U, V', and W.
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(b) Find the cumulative distribution function (cdf) for Y.

. Let f be the uniform pdf f on [0,1], asin 3.1. Let (X,Y) be a random
vector described by a joint pdf

Ixy(xy) = fy)f(x—y) al z,y.

(a) Find the marginal densities fx and fy independent?
(b) Find P(X > 1/2|Y <1/2).
. In example [3.24] of the binary random process formed by taking the
binary expansion of a uniformly distributed number on [0, 1], find the
pmf for the random variable X,, for a fixed n. Find the pmf for the

random vector (X, X}) for fixed n and k. Consider both the cases
where n = k and where n # k. Find the probability Pr(X5 = X32).

. Let X and Y be two random variables with joint pmf

k
kj)y=C—— j=1,---,N; k=1,2,---, 4.
pXY( ,.7) ]+17,7 ) B} ) ) 4y 5]

(a) Find C.

(b) Find py (4).

(c) Find px|y (k[j). Are X and Y independent?
In example [3.27] of the random phase process, find Pr(X(¢) > 1/2).

Evaluate the pmf py 4 (y) for the quantized process of example [3.28]
for each possible case. (Choose b = 0 if the process is nonnegative
and b = —a otherwise.)

Let ([0, 1], B([0,1]), P) be a probability space with pdf f(w) =1; w €
[0,1]. Find a random vector { Xy; ¢ € {1,2,... ,n}} such that Pr(X; =
1) =Pr(Xy =0) =1/2 and Pr(X; =1 and X;_; = 1) = 1/8, for
relevant t.

Give an example of two equivalent random variables (that is, two
random variables having the same distribution) that

(a) are defined on the same space but are not equal for any w € Q,

(b) are defined on different spaces and have different functional forms.

Let (R, B(R), m) be the probability space of example 3.1.
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(a) Define the random process {X (t); t € [0,00)} by

1 f0<t<w
0 otherwise .

x(t) = {

Find Pr(X(t) = 1) as a function of ¢.
(b) Define the random process {X (¢); t € [0,00)} by

_Jtjw HO0<t<w
X(t,w) = { 0 otherwise .

Find Pr(X(t) > z) as a function of ¢ for z € (0,1).

24. Two continuous random variables X and Y are described by the pdf

c if |z|+ |yl <7
0 otherwise .

fxy(@,y) = {

where r is a fixed real constant and c is a constant. In other words,
the pdf is uniform on a square whose side has length v/2r.

(a) Evaluate ¢ in terms of r.
(b) Find fx(x).

(¢) Are X and Y independent random variables? (Prove your an-
swer.)

(d) Define the random variable Z = (| X|+Y]). Find the pdf fz(z2).

25. Find the pdf of X (¢) in example [3.23] as a function of time. Find
the joint cdf of the vector (X(1), X(2)).

26. Richard IIT wishes to trade his kingdom for a horse. He knows that
the probability that there are k horses within r feet of him is

— k:0a1a2a"' )
where H > 0 is a fixed parameter.

(a) Let R denote a random variable giving the distance from Richard
to the nearest horse. What is the probability density function
fr(a) for R? (C should be evaluated as part of this question.)

(b) Rumors of the imminent arrival of Henry Tudor have led Richard
to lower his standards and consider alternative means of trans-
portation. Suppose that the probability density function fg(03)
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for the distance S to the nearest mule is the same as fr except
that the parameter H is replaced by a parameter M. Assume
that R and S are independent random variables. Find an ex-
pression for the cumulative distribution function (cdf) for W,
the distance to the nearest quadruped (i.e., horse or mule).

Hint: If you did not complete or do not trust your answer to
part (b), then find the answer in terms of the cdf’s for R and S.

Suppose that a random vector X = (Xp, ... , Xx—1) is iid with marginal
pmf
P ifil=1
(1) = l)=
px, (1) = px(l) {1p $1=0

for all 7.

(a) Find the pmf of the random variable Y = Hf:_ol X;.
(b) Find the pmf of the random variable W = Xy + Xj_1.
(c¢) Find the pmf of the random vector (Y, W).

Find the joint cdf of the complex components of X, (w) in example
[3.25] as a function of time. —1/2 <x <1/2, —1/2 <y <1/2}

Find the pdf of X (¢) in example [3.27].

A certain communication system outputs a discrete time series {X,,}
where X, has pmf px(1) = px(—1) = 1/2. Transmission noise in
the form of a random process {Y,,} is added to X, to form a random
process {Z, = X, + Y, }. Y, has a Gaussian distribution with m =0
and o = 1.

(a) Find the pdf of Z,.

(b) A receiver forms a random process {R,, = sgn(Z,} where sgn is
the sign function sgn(z) = 1, if z > 0, sgn(z) = —1, if z < 0.
R,, is output from the receiver as the receiver’s estimate of what
was transmitted. Find the pmf of R, and the probability of
detection (i.e., Pr(R, = X,)).

(c) Is this detector optimal?

If X is a Gaussian random variable, find the marginal pdf fy ;) and
for the random process Y (t) defined by

Y (t) = X cos(2mfot) ; t€R,

where fy is a known constant frequency.
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32.

33.

34.

35.

Let X and Z be the random variables of problems 3.1 through 3.3. For
each assumption on the original density find the cdf for the random
vector (X, Z), Fx,z(z,z). Does the appropriate derivative exist? Is
it a valid pdf?

Let N be a random variable giving the number of molecules of hy-
drogen in a spherical region of radium r and volumne V = 47r3/3.
Assume that N is described by a Poisson pmf

eV (V)"

, ., n=0,1,2,...
nt

pn(n) =
where p can be viewed as a limiting density of molecules in space.
Say we choose an arbitrary point in deep space as the center of our
coordinate system. Define a random variable X as the distance from

the origin of our coordinate center to the nearest molecule. Find the
pdf of the random variable X, fx(x).

Let V be a random variable with a uniform pdf on [0,a]. Let W be
a random variable, independent of V', with an exponential pdf with
parameter A, that is,

fw(w) =Xxe ™™ 5 w e [0,00) .

Let p(t) be the pulse with value 1 when 0 < ¢ < 1 and 0 otherwise.
Define the random process {X (t); t € [0,00)} by

X(@t)=Vp(t-w),

(This is a model of a square pulse that occurs randomly in time with
a random amplitude.) Find for a fixed time ¢ > 1 the cdf Fix)(a) =
Pr(X(t) < «). You must specify the values of the cdf for all possible
real values a. Show that there exists a pmf p with a corresponding cdf
F1, a pdf f with a corresponding cdf Fy, a pdf f with a corresponding
cdf Fy, and a number §; € (0,1) such that

Fx (o) = piFi(a) + (1 = ) Fa(a) .
Given expressions for p, f, and B;.

Prove the following facts about characteristic functions:

(a)
|Mx (ju)| < 1
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(b)
Mx(0) =1

(c)
|Mx (ju)| < Mx(0) =1

(d) If a random variable X has a characteristic function Mx (ju), if
c is a fixed constant, and if a random variable Y is defined by
Y = X + ¢, then

My (ju) = e Mx (ju) .
36. Suppose that X is a random variable described by an exponential pdf
fx(a)=Xe 2 a >0.

(A > 0.) Define a function ¢ which maps nonnegative real numbers
into integers by g(x) = the largest integer less than or equal to z. In
other words

(@) =kifk<z<k+1,k=0,1,---.

(This function is often denoted by g(x) = |z].) The function q is a
form of quantizer, it rounds its input downward to the nearest integer
below the input. Define the following two random variables: the

quantizer output
Y =q(X)

and the quantizer error
e=X —q(X).
Note: By construction e can only take on values in [0, 1).

(a) Find the pmf py (k) for Y.

(b) Derive the probability density function for e. (You may find
the “divide and conquer” formula useful here, e.g., P(G) =
>, P(GNF;), where {F;} are a partition.)

37. Suppose that (X1, ..., Xy) is arandom vector described by a product
pdf with uniform marginal pdf’s

fx.(a) = {1 o < %

0 otherwise.

Define the following random variables:
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o U=X?
e V =min(Xy, X5)
e W = n if n is the smallest integer for which X,, > 1/4} and
W = 0 if there is no such n.
(a) Find pdf’s or pmf’s for U, V, and W.
(b) What is the joint pdf fx, x, x,(a, 3,7)?

38. The joint probability density function of X and Y is
fxy(a,8)=C, |a|<1,0<pB< 1
Define a new random variable

V=%
(U is taken to be 0 if X =0.)
(a) Find the constant C' and the marginal probability density func-
tions fx(a) and fy(53).
(b) Find the probability density function fy(v) for U.
(c) Suppose that U is quantized into ¢(U) by defining

qU) =iford; 1 <U < d;; i=1,2,3,

where the interval [dg, ds) equals the range of possible values of
U. Find the quantization levels d;, i = 0,1,2,3 such that ¢(U)
has a uniform probability mass function.

39. Let (X,Y) be arandom vector described by a product pdf fxvy (z,y) =
fx(@)fy(y). Let Fx and Fy denote the corresponding marginal cdf’s.

(a) Prove

P> Y) = [ Fe@ix@) e =1- [ j@)Fx() s

(b) Assume, in addition, that X and Y are identically distributed,
i.e., have the same pdf. Based on the result of (a) calculate the
probability P(X > Y'). (Hint: You should be able to derive or
check your answer based on symmetry.)
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40. You have 2 coins and a spinning pointer U. The coins are fair and
unbiased, and the pointer U has a uniform distribution over [0, 1).
You flip the both coins and spin the pointer. A random variable X is
defined as follows:

If the first coin is “heads”, then:

1 if the 2nd coin is “heads”
X = .
0 otherwise

If the first coin is “tails”, then X = U + 2.

Define another random variable:

v — 2U if the 1st coin is “heads”
"1 2U + 1 otherwise

) Find Fx(x).

b) Find Pr(3 < X <21).
) Sketch the pdf of Y and label important values.
)

Design an optimal detection rule to estimate U if you are given
only Y. What is the probability of error?

(e) State how to, or explain why it is not possible to:

i. Generate a binary random variable Z, pz(1) = p, given U?

ii. Generate a continuous, uniformly distributed random vari-
able given Z7

41. The random vector W = (Wy, Wy, Ws) is described by the pdf fi (x,y, 2) =
Clz|, for 22 +y? < 1,|2| < 1.
(a) Find C.
(b) Determine whether the following variables are independent and
justify your position:
i. Wy and Wy
ii. Wy and Wo
iii. Wiy and Wa
iv. Wy and W7 and Ws
(¢) Find Pr(Ws > 1).
(d) Find Fw, w,(0,0).
(e) Find the cdf of the vector W.
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(f) Let V = I12_,W;. Find Pr(V > 0).
(g) Find the pdf of M, where M = min(W} + W3, W2).

Suppose that X and Y are random variables and that the joint pmf
is

pX,Y(kvj) :C2ik2(jik); k= 051727"' ; .7 = kak+ 1a .

(a) Find c.

(b) Find the pmf’s px(j) and py (j).

(c) Find the conditional pmf’s px |y (k[j) and py | x (j|k).
(d) Find the probability that Y > 2X.

Suppose that X = (Xg, X1,...,Xk—1) is a random vector (k is some
large number) with joint pdf

1 if0<a2;<1;i=0,...,k—1
fx(x) =
0 else

Define the random variables V = Xy + X190 and W = max(Xg, X19).

Define the random vector Y:
Y,=2"X,; n=0,... ,k—1,

(a) Find the joint pdf fyw (v, w).

(b) Find the probabilities Pr(W < 1/2), Pr(V < 1/2), and Pr(W <
1/2 and V < 1/2).

(c) Are W and V independent?

(d) Find the (joint) pdf for Y.

The random process described in example [3.26] is an example of
a class of processes that is currently somewhat of a fad in scientific
circles, it is a chaotic. (See, e.g., Chaos by James Gleick (1987).) Sup-
pose as in Example [3.26] Xy(w) = w is chosen at random according
to a uniform distribution on [0, 1), that is, the pdf is

Fre (@) = {1 if o € [0,1)

0 else.

As in the example, the remainder of the process is defined recursively
by
Xp(w)=2X,1(w)mod 1, n=1,2,---.
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Note that if the initial value X is known, the remainder of the process
is also known.

Find a nonrecursive expression for X, (w), that is, write X, (w) di-
rectly as a function of w, e.g., X,,(w) = g(w) mod 1.

Find the pdf fx, («) and fx, (a).

Hint: after you have found fx,, try induction.

Another random process which resembles that of the previous process
but which is not chaotic is to define Xy in the same way, but define
Xn by

Xn(w) = (Xp-1(w) + Xo(w)) mod 1.

Here X, is equivalent to that of the previous problem, but the sub-
sequent X, are different. As in the previous problem, find a direct
formula for X, in terms of w (e.g., X, (w) = h(w) mod 1) and find

the pdf fx, («).

The Mongol general Subudai is expecting reinforcements from Cheng-
gis Kahn before attacking King Bela of Hungary. The probability
mass function describing the number N of tumens (units of 10,000
men) that he will receive is

pN(k):cpk; k=0,1,---.

If he receives N = k tumens, then his probability of losing the battle
will be 27%. This can be described by defining the random variable
W which will be 1 if the battle is won, 0 if the battle is lost, and
defining the conditional probability mass function

2~k m =

pW\N(m|k) =Pr(W=m|N =k) = {1 _9-k =1

(a) Find c.

(b) Find the (unconditional) pmf py (m), that is, what is the prob-
ability that Subudai will win or lose?

(¢) Suppose that Subudai is informed that definitely N < 10. What

is the new (conditional) pmf for N? (That is, find Pr(N =
kIN < 10).)

47. Suppose that {X,; n=10,1,2,---} is a binary Bernoulli process, that

is, an iid process with marginal pmf’s

P ifk=1

k:
px, (k) {l—p k=0
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for all n. Suppose that {W,,; n =0,1,---} is another binary Bernoulli
process with parameter e, that is,

€ ifk=1

k) = .
pwa (k) {1—6 i k=0

We assume that the two random processes are completely independent
of each other (that is, any collection of samples of X, is independent
from any collection of W,,). We form a new random process {Yy,; n =
0,1,---} by defining

Yn = Xn 2 Wna

where the @ operation denotes mod 2 addition. This setup can be
thought of as taking an input digital signal X,, and sending it across
a binary channel to a receiver. The binary channel can cause an
error between the input X,, and output Y,, with probability €. Such
a communication channel is called an additive noise channel because
the output is the input plus an independent noise process (where
“plus” here means mod 2).

a) Find the output marginal pmf py. (k).
b) Is {Y,,} Bernoulli? That is, is it an iid process?
(c) Find the conditional pmf py, |x, (j[k)-

(
(
(

)
)

d) Find the conditional pmf px |y, (k[J).

(e) Find an expression for the probability of error Pr(Y,, # X,,).
)

(f) Suppose that the receiver is allowed to think about what the
best guess for X, is given it receives a value Y,,. In other words,
if you are told that Y,, = j, you can form an estimate or guess
of the input X, by some function of j, say X(j). Given this
estimate your new probability of error is given by

P, =Pr(X(Y,) # X,).

What decision rule X (j) yields the smallest possible P.? What
is the resulting P.?

48. Suppose that we have a pair of random variables (X,Y) with a mixed
discrete and continuous distribution as follows. Y is a binary {0,1}
random variable described by a pmf py (1) = 0.5. Conditioned on
Y =y, X is continuous with a Gaussian distribution with mean o?
and mean y, that is,

1 ()2
Ixpy (zly)(zly) = We 27 (=) ;xed; y=0,1.
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This can be thought of as the result of communicating a binary sym-
bol (a “bit”) over a noisy channel, which adds 0 mean variance o>
Gaussian noise to the bit. In other words, X =Y 4+ W where W is a
Gaussian random variable, independent of Y. What is the optimum
(minimum error probability) decision for Y given the observation X?
Write an expression for the resulting error probability.

Find the multidimensional Gaussian characteristic function of equa-
tion (3.126) by completing the square in the exponent of the defining
multidimensional integral.
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Chapter 4

Expectation and Averages

4.1 Averages

In engineering practice we are often interested in the average behavior of
measurements on random processes. The goal of this chapter is to link the
two distinct types of averages that are used — long-term time averages
taken by calculations on an actual physical realization of a random process
and averages calculated theoretically by probabilistic averages at some given
instant of time, averages that are sometimes called expectations. As we
shall see, both computations often (but by no means always) give the same
answer. Such results are called laws of large numbers or ergodic theorems.

At first glance from a conceptual point of view, it seems unlikely that
long-term time averages and instantaneous probabilistic averages would be
the same. If we take a long-term time average of a particular realization of
the random process, say { X (t,wp); t € T }, we are averaging for a particular
w — an w which we cannot know or choose; we do not use probability in
any way and we are ignoring what happens with other values of w. Here
the averages are computed by summing the sequence or integrating the
waveform over ¢ while wy stays fixed. If, on the other hand, we take an
instantaneous probabilistic average, say at the time ty, we are taking a
probabilistic average and summing or integrating over w for the random
variable X (tg,w). Thus we have two averages, one along the time axis with
w fixed, the other along the w axis with time fixed. It seems that there
should be no reason for the answers to agree. Taking a more practical
point of view, however, it seems that the time and probabilistic averages
must be the same in many situations. For example, suppose that you
measure the percentage of time that a particular noise voltage exceeds 10
volts. If you make the measurement over a sufficiently long period of time,

187
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the result should be a reasonably good estimate of the probability that the
noise voltage exceeds 10 volts at any given instant of time — a probabilistic
average value.

To proceed further, for simplicity we concentrate on a discrete alphabet
discrete time random process. Other cases are considered by converting
appropriate sums into integrals. Let {X,} be an arbitrary discrete alpha-
bet discrete time process. Since the process is random, we cannot predict
accurately its instantaneous or short-term behavior — we can only make
probabilistic statements. Based on experience with coins, dice, and roulette
wheels, however, one expects that the long-term average behavior can be
characterized with more accuracy. For example, if one flips a fair coin, short
sequences of flips are unpredictable. However, if one flips long enough, one
would expect to have an average of about 50% of the flips result in heads.
This is a time average of an instantaneous function of a random process —
a type of counting function that we will consider extensively. It is obvious
that there are many functions that we can average, i.e., the average value,
the average power, etc. We will proceed by defining one particular average,
the sample average value of the random process, which is formulated as

n—1
Sp=n""> X;; n=1,2,3,...
=0

We will investigate the behavior of S,, for large n, i.e., for a long-term time
average. Thus, for example, if the random process { X, } is the coin-flipping
model, the binary process with alphabet {0, 1}, then S, is the number of 1’s
divided by the total number of flips — the fraction of flips that produced a
1. As noted before, S,, should be close to 50% for large n if the coin is fair.

Note that, as in example [3.7], for each n, S, is a random variable that
is defined on the same probability space as the random process {X,,}. This
is made explicit by writing the w dependence:

Si(w) = % 3 Xe(w)
k=0

In more direct analogy to example [3.7], we can consider the {X,} as co-
ordinate functions on a sequence space, say (R%,B(R?),m), where m is
the distribution of the process, in which case S,, is defined directly on the
sequence space. The form of definition is simply a matter of semantics or
convenience. Observe, however, that in any case {S,; n =1,2,...} is itself
a random process since it is an indexed family of random variables defined
on a probability space.
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For the discrete alphabet random process that we are considering, we
can rewrite the sum in another form by grouping together all equal terms:

Sn(w) =Y ar{(w) (4.1)

a€A

where A is the range space of the discrete alphabet random variable X,

and r((ln)(w) =n"!

[number of occurrences of the letter a in {X;(w), i =
0,1,2,...,n—1}]. The random variable r$ is called the nt"—order relative
frequency or of the symbol a. Note that for the binary coin flipping example
we have considered, A = {0,1}, and S, (w) = rin) (w), the average number
of heads in the first n flips. In other words, for the binary coin-flipping
example, the sample average and the relative frequency of heads are the
same quantity. More generally, the reader should note that 7"7(1") can always
be written as the sample average of the indicator function for a, 1,(z):

n—1
r(m = pt Z 1.(X5) ,
=0

where

0 otherwise.

1a($)={1 fx=a

Note that 1;4y is a more precise, but more clumsy, notation for the indicator
function of the singleton set {a}. We shall use the shorter form here.

Let us now assume that all of the marginal pmf’s of the given process are
the same, say px(x), * € A. Based on intuition and gambling experience,
one might suspect that as n goes to infinity, the relative frequency of a
symbol a should go to its probability of occurrence, px (a). To continue the
example of binary coin flipping, the relative frequency of heads in n tosses
of a fair coin should tend to 1/2 as n — oo. If these statements are true,
that is, if in some sense,

r™ = px(a), (4.2)

n—oo
then it follows that in a similar sense

S T Z apx(a) , (4.3)

acA

the same expression as (4.1) with the relative frequency replaced by the
pmf. The formula on the right is an example of an ezpectation of a random
variable, a weighted average with respect to a probability measure. The
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formula should be recognized as a special case of the definition of expecta-
tion of (2.34), where the pmfis px and g(x) = z, the identity function. The
previous plausibility argument motivates studying such weighted averages
because they will characterize the limiting behavior of time averages in the
same way that probabilities characterize the limiting behavior of relative
frequencies.

Limiting statements of the form of (4.2) and (4.3) are called laws of
large numbers or ergodic theorems. They relate long-run sample averages
or time average behavior to probabilistic calculations made at any given
instant of time. It is obvious that such laws or theorems do not always
hold. If the coin we are flipping wears in a known fashion with time so that
the probability of a head changes, then one could hardly expect that the
relative frequency of heads would equal the probability of heads at time
Zero.

In order to make precise statements and to develop conditions under
which the laws of theorems do hold, we first need to develop the properties
of the quantity on the right-hand side of (4.2) and (4.3). In particular, we
cannot at this point make any sense out of a statement like “lim,, . S, =
Zap x(a),” since we have no definition for such a limit of random variables

acA
or functions of random variables. It is obvious, however, that the usual

definition of a limit used in calculus will not do, because S,, is a random
variable albeit a random variable whose “randomness” decreases in some
sense with increasing n. Thus the limit must be defin