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Chapter 1

Introduction

. . . foundational pretensions have been removed.

This allows us to make good use of an idea

which may have spectacular applications

in the future.

— Jean-Yves Girard, Proofs and Types [99], 1989

1.1 Introducing the Topic

Logic is about consequences. Take a body of propositions. The job of a logic is to
tell you what follows from that body of propositions. Sometimes we are inter-
ested in consequence relations on propositions “in general.” That is, we pay no
attention to the subject matter of the propositions, we pay attention only to the
logical relationships between them. This is the traditional scope of philosophi-
cal logic. But logic is pursued in other ways too. Sometimes we are interested in
particular sorts of propositions — those which have to do with particular struc-
tures. We might be reasoning about times or places or processes or some other
kind of structure. Logic can be particular. This multiplicity of interests affects
the state of logic as a discipline. Logic has a home in philosophy because it stud-
ies reasoning with propositions in their generality. But the techniques used in
philosophical logic can be fruitfully brought to bear on particular problems, for
reasoning about particular structures. This is what makes formal logic useful in
computer science (we can reason about processes, functions or actions), theo-
retical linguistics (we can reason about grammatical structures), mathematics
(we can reason about mathematical structures), and other fields.

Substructural logics arise in each of these different fields of study. They apply
in both the general and the particular applications of formal logic. As a result,
this book should appeal to philosophers, mathematicians, theoretical linguists
and theoretical computer scientists. The techniques we will use will draw from
each area. Sometimes we will consider abstract accounts of what might follow
from what. At others we will reason about (relatively) concrete structures.

Substructural logics focus on the behaviour and presence — or more sug-
gestively, the absence — of structural rules.1 These are particular rules in a logic

1 The name is due to Schröder-Heister and Došen, who write, in the introduction of their edited

1
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2 SUBSTRUCTURAL LOGICS

which govern the behaviour of collections of information. To see why this is
important, consider this example. For a wide range of formal systems we have
something like this:

X;A ⊢ B if and only if X ⊢ A→ B

which states that I can validly deduce B from X taken together with A, if
and only if I can validly deduce the conditional A → B from X alone. This
ties together three important notions. First, validity, which is encoded by the
turnstile ‘⊢.’ Second, the conditional, written as ‘→.’ Finally, there is the mode
of premise combination, encoded here by the semicolon. Structural rules dictate
the properties of premise combination. Because of the deduction theorem, as
premise combination varies, the conditional varies as well. Conversely, if I am
interested in different sorts of deduction, then correspondingly I will examine
different sorts of premise combination and different conditionals too.

This general scheme has arisen in a number of different areas in logic, mo-
tivated by different ideas. I will introduce just three here, leaving more until
later.

EXAMPLE 1.1 (RELEVANCE)
Many people have wanted to give an account of logical validity which pays some
attention to conditions of relevance. If X ⊢ A holds, then X must somehow be
relevant to A. Premise combination is restricted in the following way. We may
have X ⊢ A without also having X;Y ⊢ A. The new material Y might not be
relevant to the deduction.

In the 1950s, Moh [245], Church [46] and Ackermann [2] all gave ac-
counts of what a “relevant” logic could be. The ideas have been developed
by a stream of workers centred around Anderson and Belnap, their students
Dunn and Meyer, and many others. The canonical references for the area are
Anderson, Belnap and Dunn’s two-volume Entailment [6, 7]. Other introduc-
tions can be found in Read’s Relevant Logic [206] and Dunn’s “Relevance Logic
and Entailment” [75]. A more polemical introduction and defence of relevant
logics can be found in Routley, Plumwood, Meyer and Brady’s Relevant Log-

ics and Their Rivals [231]. (Recent historical investigation by Došen [64] has
shown that a basic relevant logic was discussed by I. E. Orlov in the 1920s.
However, Orlov’s work was not known to Anderson and Belnap, unlike each
of Moh, Church and Ackermann, whose work was explicitly taken up in the
Anderson–Belnap tradition.)

collection Substructural Logics: “Our proposal is to call logics that can be obtained in this manner,
by restricting structural rules, substructural logics.” [238, page 6]
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INTRODUCTION 3

EXAMPLE 1.2 (RESOURCE CONSCIOUSNESS)
This is not the only way to restrict premise combination. Girard [96] introduced
linear logic as a model for processes and resource use. The idea in this account
of deduction is that resources must be used (so premise combination satisfies
the relevance criterion) and they do not extend indefinitely. Premises cannot be
re-used. So, I might have X;X ⊢ A, which says that I need to use X twice to
get A. I might not have X ⊢ A, which says that I can use X once alone to get
A. A helpful introduction to linear logic is given in Troelstra’s Lectures on Linear

Logic [261].
There are other formal logics in which the contraction rule (from X;X ⊢ A

to X ⊢ A) is absent. Most famous among these are Łukasiewicz’s many-valued
logics. There has been a sustained interest in logics without this rule [54, 91,
139, 212].

EXAMPLE 1.3 (ORDER)
Independently of either of these traditions, Joachim Lambek considered math-
ematical models of language and syntax [133, 134]. The idea here is that
premise combination corresponds to composition of strings or other linguis-
tic units. Here X;X differs from X, but in addition, X;Y differs from Y ;X.
Not only does the number of premises used count but so does their order. Good
introductions to the Lambek calculus (also called categorial grammar) can be
found in books by Moortgat and Morrill [177, 179].

These are three different concerns which motivate different families of substruc-

tural logics. In Chapter 2 and in the rest of the book we will see these examples
in more detail, and introduce others. One theme of this book is the multiplicity
of potential applications of substructural logics. Insights from many different
areas will be brought to bear on the topic.

1.2 Introducing the Book

This book is an introduction to substructural logics. It is intended to serve
as both an introduction and a reference work to a growing field of logic. It
presumes no special knowledge on the part of the reader other than what might
be gained from an introductory course in logic. However, further experience in
any of mathematics, computing or philosophy will, of course, be helpful.

Each chapter contains exercises, suitable for anyone from a beginner to a
doctoral student or researcher in the field. The exercises are designed to draw
the reader deeper into the material. Practice questions reinforce concepts intro-
duced in the chapter, problem questions fill in gaps in proofs, extend ideas to
analogous contexts and apply results to areas not explicitly covered in the text,
and project questions are research projects in their own right. Some of these are
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4 SUBSTRUCTURAL LOGICS

problems for which solutions exist in the published literature. Others are, as
of the time of writing, open problems. A growing collection of solutions to the
problems is available at the Introduction to Substructural Logics website:

http://www.phil.mq.edu.au/isl/

This website also contains the errata, and up-to-date bibliographical informa-
tion, together with links to other resources on substructural logics to be found
on the Internet.

The book is divided into five parts. After the introduction, Part I covers Proof

Theory, the theory of proofs and deductions, how to put them together and pull
them apart. Part II covers Propositional Structures, which are one kind of model

for logics, and Part III covers Frames, which are another kind of model. Part IV
examines Decision Procedures, the complexity or simplicity of the consequence
relations in these logics. Part V, the Coda, considers some philosophical issues
arising from the study and interpretation of substructural logics.

Later chapters depend on earlier ones, but in general, not on all earlier
ones. So, there are more ways to use this book fruitfully than the traditional
path from start to finish. Figure 1.1 depicts dependencies between chapters. An
arrow from n to m means that Chapter m depends on Chapter n.

1 2 3 4 5

6 7

8 9

10

11

12

13 14 15

16

Figure 1.1: Chapter Dependencies

Most chapters contain Definitions, Examples, Lemmas, Theorems and Corol-
laries. These are numbered sequentially: Theorem 2.6 is the sixth Definition,
Example, Lemma or Theorem (in this case, it is a Theorem) in Chapter 2.
So, Theorem 2.6 comes after Definition 2.4 and Lemma 2.5 and before Corol-
lary 2.7. Lemmas, Theorems and Corollaries typically come with Proofs. A
proof starts with the word PROOF and ends with a box at the right, like this. �

If a statement of a Lemma, Theorem or Corollary ends with a box, that
means its proof has been omitted. This is because either the proof is given in
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INTRODUCTION 5

the discussion leading up to the claim or it is a straightforward matter, or it is
left as an exercise.

Bibliographical references are given by bracketed numerals such as this: [1].
The numeral refers to the itemised entry in the Bibliography, which starts on
page 349.

In the text, I use “I” to refer to me, the author. I use “we” to refer to you and
me together.

Of course, there is a great deal of fruitful work in substructural logics which
is absent from this book. I could not help but be selective. The first boundary
is an obvious one: The logics in view are propositional. We do not cover quan-
tification of any kind. Useful work has been done on individual quantification,
propositional quantification and full second-order quantification in substruc-
tural logics. However, the problem of giving a suitable semantic treatment for
individual quantification in substructural logics is not well understood. The
groundbreaking work of Fine [85] is formally astounding but philosophically
opaque.

Second, even restricting our attention to work in propositional logic much
had to be left out. I have had no space to discuss Girard’s work on proof

nets [96] as it is unclear how they are to be generalised to the wider setting
of other substructural logics. Urquhart’s work on the complexity of decidable
propositional logics has also, regrettably, been left out [269, 272].

Be that as it may, collecting together the work which remains has helped it
become clear (at least to me, and hopefully to you) that the study of substruc-

tural logics has a coherence, a depth and a family resemblance all of its own.
Methods, insights and proofs from disparate fields belong together in what be-
comes a pleasing whole.
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Part I

Proof Theory
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Chapter 2

Ifs, Ands and Ors

A syllogism is a form of words

in which when certain assumptions are made,

something other than what has been assumed

necessarily follows

from the fact that the assumptions are such

— Aristotle, Prior Analytics 24b18

2.1 Consequences

Given that logic is a discipline concerned with consequence, we will focus our
attention on claims of the form

X ⊢ A

where X is a body of premises, each one expressed in some language, and A is
a conclusion also expressed in that language. The claim ‘X ⊢ A’ states that A is
a consequence of X, or that given X, A follows as a matter of logic. We will call
claims like this consecutions1; they will feature heavily in the rest of this book.

Our interest is in languages which allow us to encode information about
the consequence relation in the language of propositions. Formal logic is most
interesting when the language we reason about is expressive enough to make
claims pertaining to consequence. This is typically achieved using conditionals.
If our language contains a conditional-forming operator (usually written ‘→’),
then there is scope for what is known as the deduction theorem.

X;A ⊢ B
=========
X ⊢ A→ B

This is a two-way rule, and you read it like this: from top to bottom it states that
if X taken together with A entails B (written as ‘X;A ⊢ B’), then X entails the

1 I follow Anderson and Belnap [6] in using ‘consecution’ in place of the more prevalent ‘sequent.’
Their reasons for doing so (given in Entailment) still hold, even if no-one else has taken up the
usage. Further to their reasons I will add another. ‘Sequent’ carries the idea of premises or con-
clusions being listed. In ‘consecution’ the idea is muted. In our setting premises can be bunched
together in a more structured way than simply listing them. We co-opt ‘consecution’ to do duty for
this kind of structured representation of premises and conclusions.

9
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10 PROOF THEORY

conditional A→ B (which can be read as any of ‘if A then B,’ ‘that A entails that
B,’ ‘A implies B’ or just ‘A arrow B,’ depending on the context).2 Then from
bottom to top we have the converse: If X entails A → B, then we can deduce
B from X taken together with A. This is commonly known as the ‘deduction
theorem.’ This is important, because it provides a way of talking about the
relation of entailment inside the language of the formulae themselves. The
work is done by the notion of “taking together,” here encoded by the semicolon.
Traditionally, the “taking together” has been thought to behave just like set
union. That is, it has been traditional to read the result of taking A together
with B as no different from that given by taking B together with A, that taking
A together with itself is no different from only one occurrence of A, and so on.
However, “taking together” need not have these properties. As the properties of
this “taking together” vary, so will the properties of the conditional.

Before examining the formal properties of consequence relations, we will
consider a number of different fields of application of the ideas of substructural
logics. These different areas of application will be very important throughout
the book. They are just some of the topics which can be studied using the
techniques in this book. Study them carefully and keep them in mind. The
abstract definitions of the next few sections will make more sense if you have
examples at hand with which to compare them.

EXAMPLE 2.1 (PROPOSITIONS AND CONSEQUENCE)
The first problem field of application considers propositions in their generality.
Consider bodies of information. It makes sense to think of the application of
one body of information (say X) to another (say Y ). X may give us some
conditional information, which may be expressed as propositions of the form
A → B. For example, X might be a scientific theory, which licenses inferences
from causes to effects, or from earlier physical states to later physical states. Or
X might be a theory of cooking, which licenses inferences from desired ends
(say, a particular dish) to means towards those ends (particular processes).
These bodies of information are the sort of things which can be applied. By
applying all of these pieces of information to the data in Y , you get a new body
of information, X;Y .

Now suppose that X;A warrants B. That is, when we apply X to A, we
can legitimately deduce B. Then it follows that X licenses the inference from
A to B. We can record this by saying that A → B is a consequence of X. So,

2 Purists about use and mention will realise that in some of these readings the propositions ‘A’ and
‘B’ are used, for example ‘if A then B’ or ‘that A entails that B,’ and in others they are mentioned,
for example ‘A implies B’ or ‘A arrow B.’ Quine and Scott, among others, have held that logics such
as these essentially confuse use and mention [203, 239]. This appears wrong to me, for reasons
outlined in the Grammatical Propaedeutic in Anderson and Belnap’s Entailment [6].
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X ⊢ A → B follows from X;A ⊢ B. Conversely, if X ⊢ A → B, then if we
apply X to A, then B is a consequence, for A→ B is a “conditional fact” given
by X. So, in reasoning about bodies of information in general, the deduction
theorem makes sense.

If we read the semicolon, the conditional and the turnstile in this way, what
properties does application have? Is X applied to Y the same as Y applied to
X? Is application associative? (That is, is X; (Y ;Z) the same body of infor-
mation as (X;Y );Z?) Can we infer X;Y ⊢ A from X ⊢ A? Different choices
for these questions will give you different systems of consequence, with varying
behaviour of the conditional.

The relevant logic R was motivated by allowing application to be commuta-
tive and associative, so X;Y and Y ;X are the same bodies of information, and
so are X; (Y ;Z) and (X;Y );Z. Furthermore, premise application is idempotent.
Anything you can get from X;X you can get from X alone. However, in R you

cannot infer X;Y ⊢ A from X ⊢ A. The idea in reading X;Y ⊢ A is that both

X and Y are used in the deduction of A. If you like, both X and Y are relevant

to the conclusion. So, if X gives A, it need not follow that X;Y ⊢ A (or that
Y ;X ⊢ A), as Y might not have been used to get the conclusion A.

The notion of use in consequence is very important. However, there is no
widespread consensus that conditions on use of premises yields us exactly these
conditions for premise combination. These ideas motivate a family of related
logics. We will study R and other logics like it in much more detail in the rest
of these pages.

EXAMPLE 2.2 (SYNTACTIC TYPES)
The next example comes from the world of linguistics. Suppose we have a
language, which for our purposes can simply be a collection of syntactic units
closed under concatenation. So, if runs, Mary and Joe are syntactic units, then
so are Mary runs, runs Joe, Joe Mary runs, and so on. Concatenation is as-
sociative, so the result of concatenating Mary runs with Joe is the same as if
you had concatenated Mary with runs Joe. (The result is Mary runs Joe in
either case.)

Now we can classify syntactic units and reason about them as well. Specifi-
cally, a piece of syntax x is of type A→ B just in case whenever you concatenate
it with any string y of type A, the resulting string xy is of type B. You can see
the deduction theorem again, where ‘X ⊢ A → B’ means ‘any string of type X
is also of type A→ B,’ and ‘X;A ⊢ B’ means ‘any string given by concatenating
a string of type X with one of type A is also of type B. These are equivalent, as
you can check.

In our case, Mary runs is of type S — it is a sentence. And runs is of type
IV — it is an intransitive verb. Note that according to our analysis, Mary is
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of type IV → S. For the result of concatenating Mary with any intransitive
verb (for example, runs) is a sentence. In this case, it is Mary runs. But Mary
dances, Mary solves Fermat’s Last Theorem and any other result of choos-
ing a different intransitive verb is still a sentence. Joe also has type IV → S for
the same reason.

Note that here, (X;Y );Z is the same type as X; (Y ;Z), as any string of
the former type must also be of the latter type. Concatenation of strings is
associative. However, concatenation of strings does not allow “contraction.” A
string of two intransitive verbs is not the same thing as an intransitive verb:
IV ; IV 6= IV . A string of two sentences is not itself a sentence: S;S 6= S.

EXAMPLE 2.3 (ACTIONS)
Something similar can be said about actions. (By ‘actions’ we mean action-
types, not action-tokens — we assume actions are repeatable.) We can reason
about actions in the following way: we can define an action x to be of type
A → B just when for every action y of type A, the conjoined action xy of
performing x and then y is of type B. Take x to be the action of giving away
10 dollars. Let an action be of type Fn just when after performing that action,
I have n dollars. Now not many actions will be of type Fn for any n at all, but
there are some. In particular, x is not of type Fn for any n. However, x is of type
Fn → Fn−10, for whenever I compose x with an action of type Fn the result will
see me having 10 fewer dollars than when I started.

Action application is associative — performing an action of type A;B and
then one of type C is the same as performing an action of type A and then one of
type B;C. Application of actions is not commutative. Having an argument and
then making up is not the same sort of action as making up and then having
an argument. So far, this makes reasoning about action much like syntactic
strings. However, the similarity is not complete. Syntactic strings can always be
concatenated. If you have a string of type A and one of type B, there must be
a string of type A;B. The same need not be true for actions. There is no action
given by combining giving all of my money away and then (immediately) giving
you 10 dollars. I cannot perform the next action, because it has been ruled out
by the first one. Some actions are so drastic (e. g. suicide) that they rule out
any subsequent actions. We will see later how this difference in the behaviour
of structures makes a difference in the underlying logics of these systems.

EXAMPLE 2.4 (NUMBERS AND FUNCTIONS)
The next area of application is the world of functions. I will give a concrete
example of a particular class of functions, and this will generalise simply to
other cases. Take a set S of functions from the set ω = {0, 1, 2, . . .} of natural
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numbers to themselves. So any f ∈ S is a function which, when given a number
x, returns a number f(x). The function f : x 7→ 3x + 1, when given 5, returns
16, for example.

We will assume that the set S is countable. That means that every function
f in S has a unique natural number nf associated with it. So we can talk about
functions applying not only to numbers but also to other functions. We define
f(g) to be f(ng).

Now functions and numbers have various types. We can classify them in
many different ways. In particular, even numbers have type Even, odd numbers
have type Odd, and so on. The functions in our set have various types too. (Not
only by virtue of their “coding” in terms of numbers.) The function f : x 7→
3x + 1 has the type Odd → Even, by which we mean that whenever it is given
an odd number, the function returns an even number. This function f is also of
type Even→ Odd, as you can check.

This interpretation of the arrow in terms of functions also supports the de-
duction theorem. We can define X ⊢ A→ B to mean that any function of type
X is also of type A → B. That means, whenever we have a function of type
X, and we apply it to an argument of type A, the result has type B. Now if
we symbolise ‘a function of type X applied to an argument of type A’ as ‘X;A,’
then the conclusion is ‘X;A ⊢ B.’ For this can be read as saying that anything of
type X;A is of type B. That is, anything which is something of type X applied
to something of type A is also of type B.

The deduction theorem follows as a matter of course. Whenever X;A ⊢ B
we have X ⊢ A → B, and vice versa. It is straightforwardly true, as that is the
way we defined things.

Things get more complex when you notice that we can apply functions to
themselves. This is why in our example we “coded” the function f with its
number nf . Then f(g) is defined as f(ng). Then in this domain of functions
we do not necessarily have X;X = X (as f(nf ) need not equal nf ). Neither
will we have X;Y = Y ;X (as f(ng) need not equal g(nf )), or X; (Y ;Z) =
(X;Y );Z, and so on.

This class of functions is a simple example. There are other, more interesting
examples of where functions can operate on other functions, in terms of models
of the λ-calculus. We will see these models in Chapter 8. There is an extensive
literature on the λ-calculus, including a number of comprehensive introductions
to the area [10, 106, 116].

EXAMPLE 2.5 (POSSIBILITIES AND TIMES)
Traditional work in modal and temporal logic also fits this framework. In the
case of temporal logics we are classifying moments, which are ordered in time.
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We can say a moment m is of type A → B (or more naturally, we say ‘at m,
A→ B is true’) if at every moment m′ later than m, if A is true at m′ then B is
also true at m′. So A→ B is ‘from now, if A then B.’ Now take X ⊢ C to mean
that any moment of type X is also of type C. As a result, if X ⊢ A→ B is true,
then any moment making X true also makes A→ B true. Now define the X;A
by taking a moment m′ to make X;A true just when m′ makes A true, and at
some moment m prior to m′, X is true. Then if X ⊢ A → B we can show that
X;A ⊢ B too. For if m′ makes X;A true, it follows that A is true at m′, and X
is true at some earlier time m. But X ⊢ A → B tells us that A → B must be
true at m too, and since m′ is after m, and A is true there, B must be true there
too. We can deduce X ⊢ A→ B from X;A ⊢ B too, as you can check.

That should be enough possible applications to prime your imagination. Keep
them in mind as we work through the formal techniques used to study struc-
tures like these. It is also a good idea to try to find other ways in which the
ideas of substructural logics can be applied.

2.2 Languages and Structures, Consecutions and Proofs

To study phenomena like these, we need a language (for the claims like A, B
and A → B), a concept of structure (the structured collections of premises X),
a definition of a consecution (the claims of the form X ⊢ A) and the notion
of a proof (for demonstrations that consecutions are valid). In this section we
will work through these definitions. To start, we need to establish just a few
properties of strings, as our languages will be made up of strings of symbols.3

DEFINITION 2.6 (THE STRING ALGEBRA ON A SET)
The string algebra generated by a set X is a set String(X) together with a bi-
nary operation ⌢ (concatenation) on String(X) satisfying the following condi-
tions:

⋄ X ⊆ String(X).

⋄ Concatenation is associative. That is, a⌢(b⌢c) = (a⌢b)⌢c for each a, b, c ∈
String(X).

⋄ The elements of X are atomic. That is, for each a ∈ X, there are no
b, c ∈ String(X) where a = b⌢c.

⋄ Elements are finitely generated. That is, for each a ∈ String(X), there are
b1, . . . , bn ∈ X where b1

⌢b2
⌢ · · ·⌢bn = a.

⋄ Strings uniquely decompose. That is, if a = x⌢b and a = y⌢c where
x, y ∈ X, then x = y and b = c.

3 This section is rather detailed and somewhat pedantic. If you are familiar with the notion of
a formal language, and if you are comfortable with proofs by mathematical induction, feel free to
skip to Definition 2.13 on page 19.
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We have defined string algebras to be any sort of thing which satisfies these
criteria. However, merely listing a set of criteria does not ensure that there is

something which satisfies them. After all, our requirements could be inconsis-
tent. In this case they are not. There are many ways to construct string algebras.
Here is just one — for any set X, we can define a string of length n to be a func-
tion from {1, . . . , n} to X. The concatenation of a and b, where a is of length m
and b is of length n, is the string a⌢b of length m + n, defined by setting

a⌢b(l) =

{

a(l) if l 6 m
b(m− l) if l > m

This construction of strings and concatenation of strings satisfies the conditions
for a string algebra. We will not stop to go through the details. They are left for
Exercise 2.8.

Our languages are made up of atomic formulae on the one hand, and con-

nectives on the other, which are used to put them together.

DEFINITION 2.7 (CONNECTIVES)
A connective c is an object together with a number a(c) ∈ ω, its arity.

The arity of a connective is the number of input propositions it expects. Nega-
tion has arity 1, the conditional has arity 2. Note that connectives can have
arity zero. These connectives take no formulae as arguments. They are, in ef-
fect, special formulae. The connectives you will see regularly in this book are
found in Table 2.1.4

Together with each connective and its arity is an explanation of (roughly)
how it will behave. This gives you some idea of how to interpret formulae
containing that connective.

Given atomic formulae and connectives, the language is simple to define.

DEFINITION 2.8 (A LANGUAGE)
Given a well-ordered5 set AForm of atomic formulae, and a finite set Conn of
connectives, disjoint from AForm, the language Lang(AForm;Conn) is the smallest
subset of String(AForm ∪ Conn) satisfying the following conditions:

4 Note that we use ‘⌢’ as a negation connective and the slightly smaller and slightly raised ‘⌢’
to symbolise the function of concatenation. The context will suffice to determine which notion is at
use at any point in the text.
5 X is well-ordered by the relation < if and only if every subset Y of X has a least member
according to <. For example, written words of English have a well-ordered by the dictionary
ordering. Well-ordering of a set X is an issue only when the set X cannot be placed in one-to-one
correspondence with some set of ordinal numbers. Languages are almost invariably assumed to be
well-ordered. In this book we use it explicitly only in the Pair Extension Theorem, on page 94, and
its corollaries. Chief among them are the admissibility of disjunctive syllogism (Theorem 5.33) and
the completeness theorem for the frame semantics of Chapter 11.
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Connective Arity Behaviour

→,←, ⊃ 2 Conditional; if . . . then . . .

∧, ◦ 2 Conjunction; . . . and . . .

∨, + 2 Disjunction; . . . or . . .

∼, ¬, ⌢, ⌣ 1 Negation; not . . .

�, −�, ! 1 Necessity

♦, ♦−, ? 1 Possibility
∗ 1 Iteration

t, ⊤ 0 Truth

f , ⊥ 0 Falsehood

Table 2.1: Common Connectives and their Readings

⋄ AForm ⊆ Lang(AForm;Conn). This means that every atomic formula is a
part of the language Lang(AForm;Conn).

⋄ If c ∈ Conn and a(c) = n, then for every A1, . . . , An ∈ Lang(AForm;Conn)
the string c⌢A1

⌢ · · ·⌢An is also in Lang(AForm;Conn).

In other words, any atomic formula is a formula, and the other formulae are
things you can build up from “already existing” formulae using the connectives.
This means that the language satisfies the unique decomposition condition.

LEMMA 2.9 (UNIQUE DECOMPOSITION)
If A ∈ Lang(AForm;Conn) and A = c⌢A1 · · ·⌢An = d⌢B1 · · ·⌢Bm, then c = d,

m = n and for each i = 1, . . . , n, Ai = Bi.

PROOF The condition follows from the properties of strings. We will not give a
detailed proof. That is left for the exercises. �

Our definition treats connectives in Polish notation. We will actually write bi-
nary connectives in infix notation instead. That is,→ applied to A and B will be
written A → B, instead of →AB. We will drop parentheses whenever the for-
mula is defined unambiguously. For example, we need to write (A → B) → C
or A→ (B → C) instead of A→ B → C, so you know which arrow is the main
connective.

Our original notation uses no parentheses at all. If you write the conditional
as→AB then you can live “parenthesis free.” But then, there are precious few
who can read →→A→BC→→AB→AC and understand it without translating
it back into infix notation, so Polish is not a viable option for use throughout
the rest of this text, despite its attractive formal properties.
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When we are talking about a language Lang(AForm;Conn) and we do not
particularly care about AForm or Conn, we will simply refer to it as ‘Lang.’ We
use ‘A,’ ‘B’ and other capitals from the beginning of the alphabet to refer to
formulae in a language.

DEFINITION 2.10 (SUBFORMULAE)
We define the subformulae of a formula as the smallest set of formulae satisfying
these conditions:

⋄ Any formula A is a subformula of itself.

⋄ If A is c⌢A1
⌢ · · ·⌢Aa(c), then every subformula of any of the formulae Ai

is also a subformula of A.

The following result is an important fact about languages

THEOREM 2.11 (INDUCTION OVER A LANGUAGE)
Take any language Lang(AForm;Conn). Suppose the property Φ holds of every

element of AForm, and suppose that for each connective c ∈ Conn, whenever Φ
holds of each A1, . . . , Aa(c) then Φ holds of c⌢A1

⌢ . . . ⌢Aa(c) too. Then it follows

that Φ holds of each formula in Lang(AForm;Conn).

PROOF Consider the class P of all the strings satisfying Φ. P satisfies the
two conditions in the definition of Lang(AForm;Conn). As Lang(AForm;Conn)
is the smallest such collection, we must have Lang(AForm;Conn) ⊆ P , so every
formula in Lang(AForm;Conn) satisfies Φ, as desired. �

This means that to show that something holds of every formula in a language,
you need only show that it holds of the atomic formulae, and if it holds of a
collection of formulae, then it also holds of the formulae you can make out of
those formulae using the connectives. This is a powerful method of proof, and
you will see it repeatedly.

To give you a feeling for how these proofs go, we will establish a trivial fact
about languages, using induction.

THEOREM 2.12 (COUNTING ATOMIC FORMULAE)
For any formula A ∈ Lang(AForm;Conn), if A contains nm connectives of arity m,

for each m ∈ ω, then A contains exactly

1 +
∑

m∈ω

(m− 1)nm

atomic formulae.

This theorem uses “sigma” notation for sums. Read ‘
∑

m∈ω(m − 1)nm’ as ‘the
sum over each m in ω of each (m− 1)nm.’ In other words,

∑

m∈ω(m− 1)nm is
the sum

(0− 1)n0 + 0n1 + n2 + 2n3 + 3n4 + · · ·
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18 PROOF THEORY

This sum is not infinite, because each formula has a finite length (strings as we
have defined them have finite lengths), so for some m, nm, nm+1, nm+2, . . . are

all zero. Similarly, ‘
∑l

i=1 bi’ is shorthand for the finite sum ‘b1 + b2 + · · · + bn.’
With that notation in hand, we can prove the theorem by induction.

PROOF The induction hypothesis Φ is the statement that the formula A con-
tains exactly 1 +

∑

m∈ω(m − 1)nm atomic formulae, given that it contains nm

connectives of arity m. Does Φ hold of the atomic formulae? Well, these have
no connectives of each arity, and they contain exactly one atomic formula. In
this case the sum gets the number right, as 1 +

∑

m∈ω(m − 1)nm = 1 when
nm = 0 for each m. That completes the first step of the inductive argument.

Now suppose A = c⌢A1
⌢ · · ·⌢Al, where l = a(c), and that furthermore,

each Ai contains 1 +
∑

m∈ω(m − 1)ni
m atomic formulae, given that it contains

ni
m connectives of arity i. Then A must contain

l
∑

i=1

(

1 +
∑

m∈ω

(m− 1)ni
m

)

atomic propositions, adding them all up. But we can shuffle this sum around as
follows:6

l
∑

i=1

(

1 +
∑

m∈ω

(m− 1)ni
m

)

= l +
l
∑

i=1

∑

m∈ω

(m− 1)ni
m

= l +
∑

m∈ω

l
∑

i=1

(m− 1)ni
m

= l +
∑

m∈ω

(m− 1)
l
∑

i=1

ni
m

How many connectives of arity m does A have? Given that each Ai contains

ni
m, A as a whole must have

∑l
i=1 ni

m connectives of arity i, except for the case

m = l. Then A contains one extra connective, its main operator. So,

nm =

{

∑l
i=1 ni

m if m 6= l

1 +
∑l

i=1 ni
m if m = l

This means that our sum collapses to

1 +
∑

m∈ω

(m− 1)nm

6 If you are not familiar with Σ notation, it is very instructive to verify each step in this “shuffle.”
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as we “eat up” l − 1 of the l in the front of the sum to beef up the l-numbered
value of the sum in the interior to nm. This means that the hypothesis Φ holds
of A too, given that it holds of the subformulae of A. By induction, then, Φ
holds of every formula in Lang(AForm;Conn). �

The proofs by induction we will see later all have this form. We prove the hy-
pothesis for the base case, then we use an inductive step to extend the hypothesis
to the whole language. Proving new things by induction is a balancing act —
you must choose the inductive hypothesis Φ to be weak enough to be provable
at each stage but strong enough to support the inductive hypothesis.

To define consecutions we need a way of collecting formulae together to
form a structured collection. Structures are defined analogously to languages.
They combine propositions not with connectives but with punctuation marks

DEFINITION 2.13 (PUNCTUATION MARKS)
A punctuation mark p is an object together with a number a(p) ∈ ω, its arity.

Punctuation marks stand to structures in the same way that connectives stand
to formulae.

DEFINITION 2.14 (STRUCTURES)
A collection Struct of structures is made up of a language Lang, and a set Punct of
punctuation marks, disjoint from Lang. The set Struct(Lang;Punct) of structures
on Lang and Punct is the smallest subset of String(Lang∪Punct) satisfying these
conditions:

⋄ Lang ⊆ Struct(Lang;Punct). That is, every formula in Lang is a structure.

⋄ If p ∈ Punct, and a(p) = n, then for any X1, . . . , Xn ∈ Struct(Lang;Punct),
the string p⌢A1

⌢ · · ·⌢An ∈ Struct(Lang;Punct).

Structural induction holds for structures, just as we can use structural induction
on formulae. Exercise 2.11 asks you to state and prove such a theorem.

We will use letters like ‘X,’ ‘Y ’ and ‘Z ’ to stand for structures. The punc-
tuation we will see will mainly be the semicolon, the comma (both binary and
written infix, in the usual way), a zero-place punctuation mark 0, and a one-
place punctuation mark •. We may see others as well, and I will warn you of
them before the time comes.

Structures may have substructures in the same way that formulae have sub-
formulae.

DEFINITION 2.15 (SUBSTRUCTURES)
We define the substructures of a structure as the smallest set of structures satis-
fying these conditions:

⋄ Any structure X is a substructure of itself.
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20 PROOF THEORY

⋄ If X is p(X1, . . . , Xa(p)), then every substructure of any of the structures Xi

is also a substructure of X.

Note that the substructures of a structure go down only to the formulae out
of which the structure is made — not to the subformulae of those formulae.
The formulae are indivisible atoms as far as structure goes. For example, the
substructures of (A→ B;A);C are the structures

A→ B A C (A→ B;A) (A→ B;A);C

The formula B is not a substructure of (A→ B;A);C, but it is a subformula of
a substructure of (A→ B;A);C.

We will write ‘X(Y )’ to indicate a structure with Y as a substructure. The
structure X(Z) is given by replacing that occurrence of Y in X(Y ) by Z. For
example, X(Y ) might be A; (B, •Y ) and then X(Z) would be A; (B, •Z).

Once we have structures and formulae, consecutions are easy to define.

DEFINITION 2.16 (CONSECUTIONS, ANTECEDENTS AND CONSEQUENTS)
Given a set Struct of structures over a language Lang, a consecution on Struct is
of the form X ⊢ A, where X ∈ Struct is the antecedent of the consecution and
A ∈ Lang is the consequent of the consecution.

A proof of a consecution is a demonstration that the consecution is valid. There
are many different ways to define proofs. In this section we will see just one.
Before we launch into the definition of a proof we need some background ideas.

To demonstrate that a consecution is valid, we can start from consecutions
we know to be valid (by some means or other) and apply to them rules which
preserve validity until we get to the consecution we are trying to prove. Looking
at this backwards, we have the consecution we are trying to prove, and this is
either an axiom (something we know to be valid independently) or it follows
from other consecutions by a rule. These too are either valid or they follow from
other consecutions by a rule. These sorts of structures are so “tree-like” that we
call them trees. Trees are made up of nodes, connected by arcs. The bottom node
in a tree is called its root, and for any nodes, the nodes immediately above are
its parents. (Think of a family tree, except that in our trees a node can have any
number of parents.) A node without any parents at all is said to be a leaf. A
maximal path upwards from the root in a tree is called a branch. (Note that in a
tree a branch need not end in a leaf, since the branch may be infinite. However,
if a branch contains a leaf, it has only one leaf. This makes these branches
rather different from branches in everyday trees.) In a tree, we will call the pair
consisting of a node and its parents an inference, for we have inferred that node
from its parents. We will make these claims more formal.
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DEFINITION 2.17 (INFERENCES AND RULES)
An inference is a pair consisting of a set of consecutions (the premises of the
inference) and a single consecution (the conclusion of the inference). The
premises may be an empty set, and in that case we call the inference an ax-

iom. A rule is a set of inferences. A member of a rule is said to be an instance of
that rule.

Recall that we are interested in many different logics, as we are interested in
applying these methods in different ways. As a result, we will need many differ-
ent notions of proof to deal with different domains, and that is why our notions
of languages and structures have been completely general. We will therefore
define a general notion of a proof, and only after that will we look at some
specific examples. First, to a definition of a system in which we might construct
proofs. To construct proofs we need a language (we have that) and consecu-
tions built on a language (we have that), and a conception of which inferences
are good ones to make (we do not yet have that). That is our next definition.

DEFINITION 2.18 (PROOF SYSTEMS)
A proof system is a language Lang with a set Struct of structures made up from
that language, and a family of rules, made up from consecutions over those
structures.

Once we have a proof system we can determine which are the proofs in that
system.

DEFINITION 2.19 (PROOFS)
A proof of a consecution X ⊢ A in some proof system is a tree, with root X ⊢ A,
and in which every node is a consecution in the language of the proof system,
and for which every inference in the tree is an instance of some rule of the proof
system. In addition, every branch of the tree is finite. (Note that, according to
this definition, a proof may still be infinite, provided that some inference has
infinitely many premises. It is possible to consider proofs of this form, but we
will not see any examples in this book.)

Sometimes we are interested in proofs from assumptions. That is, we grant
that the consecutions in some set Σ are valid, and we wish to proceed to form
proofs on that basis. We define a proof of X ⊢ A from assumptions Σ in some
proof system to be a tree with root X ⊢ A, and in which every node is a conse-
cution in the language of the proof system, and for which every inference in the
tree is an instance of some rule in the proof system, or it is an element of the as-
sumption set Σ, and in that case, the node is a leaf in the tree. (Or equivalently,
it is a proof in the expanded system in which the elements of Σ are added as
new axioms.)
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That has been quite a long list of definitions. Now that we have the definitions,
we can examine different proof systems which contain different rules.

The basic rule in any of our proof systems is the identity rule:

A ⊢ A (Id)

This rule is an axiom. It has no premises. And the conclusion is any consecution
in which the antecedent is the consequent formula. We say that any instance

of the scheme written above is an instance of the rule. That is, A is perfectly
general. The rule of identity is the family of all inferences from no premises to
a conclusion of the form A ⊢ A.

2.3 Ifs and Ands

In natural deduction proof systems it is traditional to have two rules for each
connective. One rule tells you how you can get the connective. For the condi-
tional, for example, it is a rule which tells you how you can prove A→ B (from
assumptions). It is called the introduction rule for the conditional. And we have
already seen how you can prove A → B from X. You prove B from X;A. So
this will be our arrow introduction rule. We label the rule (→I).

X;A ⊢ B
(→I)

X ⊢ A→ B

This rule has one premise, as you can see. The other rule to do with a connective
is to get rid of it. This is the corresponding elimination rule.

X ⊢ A→ B Y ⊢ A
(→E)

X;Y ⊢ B

Note that this rule is slightly different from the formulation in the deduction
theorem. We have two premises. This is important, for we want our proofs to
have a particular property. That is, we would like every formula which occurs in
the antecedent of some consecution of a proof to also appear in the antecedent
of one of the premises of that consecution (if it actually has any premises). This
makes proof construction easier, for you know that if you have to prove X ⊢ A,
then you need to assume the content of X in the axioms.

So, instead of inferring X;A ⊢ B from X ⊢ A → B, we used X ⊢ A → B
and Y ⊢ A to deduce X;Y ⊢ B. The antecedent assumption of Y will be
preserved upwards in a proof of X;Y ⊢ B. This rule clearly makes sense,
however you interpret the logic, as its validity follows from that of the deduction
theorem. If Y ⊢ A, then anything of type Y is of type A, and so anything of
type X;Y is also of type X;A, and hence, it must be of type B as we wanted.
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Note that these rules assume that we are in a language with a conditional,
and a system of structures with at least the semicolon. These rules make sense
in any language with at least these resources. We have a formal definition of a
connective:

DEFINITION 2.20 (RULES FOR THE LEFT-TO-RIGHT CONDITIONAL)
The connective→ is a left-to-right conditional for the punctuation mark ‘;’ if and
only if it satisfies the two rules (→I) and (→E).

This definition picks out a unique connective, as the next lemma shows us.

DEFINITION 2.21 (EQUIVALENCE IN A PROOF SYSTEM)
The formulae A and B are equivalent in a proof system if and only if the system
proves both A ⊢ B and B ⊢ A. We write this as ‘A ⊣⊢ B.’

LEMMA 2.22 (UNIQUENESS OF CONDITIONALS)
If →1 and →2 are both left-to-right conditionals for the one punctuation mark,

then A→1 B and A→2 B are equivalent for all A and B.

PROOF We prove A→1 B ⊢ A→2 B.

A→1 B ⊢ A→1 B A ⊢ A
(→1 E)

A→1 B;A ⊢ B
(→2 I)

A→1 B ⊢ A→2 B

Interchanging ‘1’ and ‘2’ proves A →2 B ⊢ A →1 B and hence the equivalence
holds. �

In a system with these few rules, very few things are provable. However, we
can do some interesting proofs from assumptions. For example, we can prove
B → C ⊢ A→ C from the assumption A ⊢ B. Here is the proof.

A ⊢ B B → C ⊢ B → C
(→E)

(B → C);A ⊢ C
(→I)

B → C ⊢ A→ C

We have written this proof as a simple tree. We write it as a string of infer-
ences pasted together, end to end. It has only two branches. One leaf is our
assumption — that A ⊢ B holds. The other is the axiom B → C ⊢ B → C.

Proofs presented in this way are easy to read, as you can see at a glance
what depends on what. However, proofs are not so easy to construct in tree
form — often it is easier to construct proofs writing the consecutions in a list.
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As an example, here is how I first wrote out the proof I have shown above. I
listed on two lines (lines 1 and 2 below) the assumption A ⊢ B, and the axiom
B → C ⊢ B → C. I knew to do that because I knew that B → C is the
antecedent in what I am trying to prove. (Note that I labelled both of these
lines indicating where they came from.) Then I could apply (→E) to these two
lines to get line 3 (see the label), and then I could apply (→I) to line 3 to get
line 4.

1. A ⊢ B Assumption
2. B → C ⊢ B → C (Id)
3. (B → C);A ⊢ C 1, 2 (→E)
4. B → C ⊢ A→ C 3 (→I)

From now on, I will write proofs in tree form, unless they are too large to fit
across the page. In that case, they will appear in linear form to make them fit.

To apply our methods to different areas, we need different ways to rearrange
structures. For example, when reasoning about syntactic strings, and when the
semicolon is interpreted as concatenation of strings, the semicolon ought to be
associative. That is, if we have X; (Y ;Z) ⊢ A, then we ought to be able to infer
(X;Y );Z ⊢ A, and vice versa. There is no way of doing this using the rules we
have so far, there is no way to rearrange assumptions. Order and bracketing of
assumptions all count in the system at present. To make moves like that from
X; (Y ;Z) ⊢ A to (X;Y );Z ⊢ A we need a rule which licenses such a move. A
rule like this is said to be a structural rule. Structural rules take the form

X ⊢ A

X ′ ⊢ A

where X ′ is obtained from X by rearranging structures. This is an imprecise
notion. We will tighten it by introducing a formal definition.

DEFINITION 2.23 (STRUCTURAL RULES)
A rule

X ⊢ A

X ′ ⊢ A

is a structural rule if it is closed under substitution for formulae. That is, given
any instance of the rule, and any formula B appearing in either X or X ′ (or
both), and given any structure Y you like, then the result of replacing every
instance of B in X and X ′ by Y is still an inference of the rule. Similarly, the A
in the consequent can be replaced by any formula you like, resulting in another
instance of the rule.
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For example, the collection of all inferences of the from

X; (Y ;Z) ⊢ A

(X; (Y ;W ));Z ⊢ A

is a structural rule. For the A in the consequent position is arbitrary, and so
are the formulae which appear in the antecedent. On the other hand, the rule
made up of all inferences of the form

X; (A;Z) ⊢ B → C

Z; (A;X) ⊢ B → C

is not a structural rule, for two reasons. First, you cannot replace the B → C
with any formula you like — the formula must have an arrow as the main
connective. Second, the formula A in the antecedent cannot be replaced by an
arbitrary structure. It can only be replaced by another formula. (For instance,
X; ((Y1;Y2);Z) does not have the required form to be an antecedent in the
rule.)

We will write structural rules of this form as X ←֓ X ′. This means that from
X ⊢ A we can deduce X ′ ⊢ A — the X gets replaced by the X ′. This notation
is meant to convey that the X ′ is “plugged in” where the X used to be, and the
arrow indicates that X ′ in some sense entails X.

This form of displaying structural rules is a start, but it is not the best way
of describing them. Consider a rule of the form X; (Y ;Z) ←֓ (X;Y );Z. Sup-
pose we have W (X; (Y ;Z)) ⊢ A. The structural rule as given does not license
the conclusion W ((X;Y );Z) ⊢ A, as the rule guarantees only that entire an-
tecedent structures may be reassociated, not that they may be reassociated in-

side other structures. However, in many applications of our logics, if you can do
something to the entire antecedent, you can do it to any substructure of the an-
tecedent. For example, if action composition is associative, then composition of
sub-actions of an action must also be associative, as these are just more actions.
The same goes for syntactic strings, pieces of information, times or possibilities
or other things. This motivates the notation X ⇐ X ′ to stand for the structural
rule of the form

Y (X) ⊢ A

Y (X ′) ⊢ A

where Y is an arbitrary context in which structures may appear. Given this no-
tation, Table 2.2 lists standard structural rules. Clearly the list is not exhaustive,
but it is a good indication of the kind of structural rules you will see quite often.
The list groups together the rule, together with the labels we will use for them,7

and their names, which describe their behaviour.
7 You may wonder what the labels have to do with the structural rules. The labels for all except
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Name Label Rule

Associativity B X; (Y ;Z) ⇐ (X;Y );Z

Twisted Associativity B′ X; (Y ;Z) ⇐ (Y ;X);Z

Converse Associativity Bc (X;Y );Z ⇐ X; (Y ;Z)

Strong Commutativity C (X;Y );Z ⇐ (X;Z);Y

Weak Commutativity CI X;Y ⇐ Y ;X

Strong Contraction W (X;Y );Y ⇐ X;Y

Weak Contraction WI X;X ⇐ X

Mingle M X ⇐ X;X

Weakening K X ⇐ X;Y

Commuted Weakening K′ X ⇐ Y ;X

Table 2.2: Structural Rules

The structural rules influence what we can prove. The more structural rules
you have, the more you will be able to prove. For example, if we allow ourselves
K, the weakening rule, then the following proof is valid.

A ⊢ A
[K]

A;B ⊢ A
(→I)

A ⊢ B → A

Using K we can “weaken in” irrelevant premises (hence the name — we get
a “weaker claim,” that X;Y ⊢ A from the stronger claim that X ⊢ A). The
absence of K and its sister rule K′ is a characteristic feature of relevant logics.
For relevant logics the conditional A → B encodes the fact that we used A in
a deduction of B. If we allow ourselves weakening, then we lose all sight of
what was actually used in a deduction. Note that in the proof above there is a
label indicating the step at which K is invoked. We will continue this practice
whenever we wish to call attention to the application of a rule.

the mingle rule M originate with combinatory logic [56, 167]. There is scope for confusion here,
as some authors use ‘C’ for contraction and ‘W’ for weakening. I have decided to follow the more
established tradition here, at variance with English spelling, in order to emphasise the historical
connection with combinatory logic.
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Here is another proof, using C.

A→ (B → C) ⊢ A→ (B → C) A ⊢ A
(→E)

A→ (B → C);A ⊢ B → C B ⊢ B
(→E)

(

A→ (B → C);A
)

;B ⊢ C
[C]

(

A→ (B → C);B
)

;A ⊢ C
(→I)

A→ (B → C);B ⊢ A→ C
(→I)

A→ (B → C) ⊢ B → (A→ C)

The structural rule C gives us strong commutativity, it allows us to swap two
places. Note that the consecution it lets us prove also involves commutativity —
the consequent B → (A → C) is a commuted form of the antecedent A →
(B → C). The two antecedents in A → (B → C) are swapped to give B →
(A→ C).

A weaker form of commutativity is provided by CI.

A ⊢ A A→ B ⊢ A→ B
(→E)

A→ B;A ⊢ B
[CI]

A;A→ B ⊢ B
(→I)

A ⊢ (A→ B)→ B

Not only do some structural rules allow us to commute structures — other rules
allow us to reassociate them. Here is a proof using B.

A→ B ⊢ A→ B

C → A ⊢ C → A C ⊢ C
(→E)

C → A;C ⊢ A
(→E)

A→ B; (C → A;C) ⊢ B
[B]

(A→ B;C → A);C ⊢ B
(→I)

A→ B;C → A ⊢ C → B
(→I)

A→ B ⊢ (C → A)→ (C → B)

Another kind of structural rule allows the contraction of proof resources. This
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is W, the rule of contraction.

A→ (A→ B) ⊢ A→ (A→ B) A ⊢ A
(→E)

A→ (A→ B);A ⊢ A→ B A ⊢ A
(→E)

(

A→ (A→ B);A
)

;A ⊢ B
[W]

A→ (A→ B);A ⊢ B
(→I)

A→ (A→ B) ⊢ A→ B

Note that the consecution proved also allows the contraction of two uses of A
to give B in the antecedent into one use of A to get B in the consequent.

So far our language uses only arrows. We can extend things further by allowing
another binary connective ‘◦,’ called fusion in the literature on relevant logic
and multiplicative conjunction in linear logic. We follow the earlier usage and
call it fusion. Fusion mirrors in the language of formulae the behaviour of the
semicolon on structures. It has these introduction and elimination rules.

X ⊢ A Y ⊢ B
(◦I)

X;Y ⊢ A ◦B

X ⊢ A ◦B Y (A;B) ⊢ C
(◦E)

Y (X) ⊢ C

These rules follow from the interpretation of fusion. If X is of type A and Y is
of type B, then the concatenation of X and Y is of type A ◦ B. If X is enough
for A ◦B, and given that Y (A;B) gives me C, then I can replace that reference
to A;B in Y by a claim to X (which, after all, is sufficient for A ◦B). So, A ◦B
is the formula equivalent to the structure A;B.

DEFINITION 2.24 (RULES FOR FUSION)
The connective ◦ is a fusion for the punctuation mark ‘;’ if and only if it satisfies
the two rules (◦I) and (◦E).

The next lemma follows immediately from the definition. Its proof is deferred
to Exercise 2.13.

LEMMA 2.25 (UNIQUENESS OF FUSION)
If ◦1 and ◦2 are both fusion connectives for the one punctuation mark, then A◦1 B
is equivalent to A ◦2 B.

Note that the rules for fusion make sense however you interpret the logic. In
the world of function typing, an object is of type A ◦ B just when it can be
obtained by applying something of type A to something of type B. A string is
of type A ◦ B just when it is made up of a string of type A concatenated with
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a string of type B. I leave it to you to consider how you should read fusion in
other applications.

Whatever the interpretation of fusion, we have a number of important be-
haviours. For example, we can prove A ⊢ B → A ◦B as follows.

A ⊢ A B ⊢ B
(◦I)

A;B ⊢ A ◦B
(→I)

A ⊢ B → A ◦B

Properties of fusion are inherited from properties of the semicolon straight-
forwardly. If the semicolon is associative, so is fusion.

A ◦ (B ◦ C) ⊢ A ◦ (B ◦ C)

B ◦ C ⊢ B ◦ C

A ⊢ A B ⊢ B
(◦I)

A;B ⊢ A ◦B C ⊢ C
(◦I)

(A;B);C ⊢ (A ◦B) ◦ C
[Bc]

A; (B;C) ⊢ (A ◦B) ◦ C
(◦E)

A; (B ◦ C) ⊢ (A ◦B) ◦ C
(◦E)

A ◦ (B ◦ C) ⊢ (A ◦B) ◦ C

Another possible connective is the right-to-left conditional ‘←.’ It interacts
with the semicolon in the converse way to the left-to-right conditional. Its rules
are as follows.

A;X ⊢ B
(←I)

X ⊢ B ← A

X ⊢ B ← A Y ⊢ A
(←E)

Y ;X ⊢ B

DEFINITION 2.26 (RULES FOR THE RIGHT-TO-LEFT CONDITIONAL)
The connective← is a right-to-left conditional for the punctuation mark ‘;’ if and
only if it satisfies the two rules (←I) and (←E).

As with our other connectives, the rules uniquely characterise the connective
←, in the sense that any two connectives satisfying the rules are equivalent.

This connective is especially useful in the contexts of reasoning about actions
or strings. Take strings. Recall that a string x is of type A → B whenever for
any string y of type A, the concatenation xy is of type B. The backward arrow
lets us look at concatenation on the left instead of on the right. That is, a string
x is of type B ← A if and only if for every string y of type A, the string yx
is of type B. Note that if we have CI as a structural rule, then ← and → are
equivalent (see Exercise 2.2).
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We need one final piece of convention when describing this set of connec-
tives. We have seen that ◦, → and ← belong together. They are all defined
in terms of the semicolon, and their logical behaviour is inherited from the
structural rules satisfied by the semicolon. Furthermore, the fusion connective
mirrors the behaviour of the semicolon directly. As a result, fusion has a special
place in this group of connectives.

DEFINITION 2.27 (THE FUSION/IMPLICATION FAMILY)
The connectives ◦,→ and← form a family, with ◦ as the parent. Furthermore,
we will say that→ is left residuates ◦, and← right residuates ◦. The connectives
→ and← are said to be residuals of fusion.

The way that fusion differs from the implication connectives (as their “parent”)
will become clearer in later chapters. For now, however, we go on to consider
other connectives.

2.4 Truth

So far we have focused on consecutions. We examined how to prove claims of
the form X ⊢ A in a wide variety of systems. This is an appropriate empha-
sis, since logic is fundamentally the study of consequence. As a result of this
emphasis, we have said nothing about what counts as a theorem — that is, we
have not defined what it is for a particular formula to be proved by a particular
logic. Given that we want to record theoremhood, we need some way of record-
ing provability in the object language. The traditional way to do this is to take
theorems to be those formulae which follow from nothing at all. In other words,
theorems are the formulae A where we have ⊢ A. But this is not possible for
us, for X ⊢ A makes sense only when X is a structure, and “nothing” is not
a structure. The way around this is to introduce a new zero-place punctuation
mark ‘0,’ which will “label” theorems. We use ‘0 ⊢ A’ to indicate that A is a
theorem.

DEFINITION 2.28 (IDENTITIES)
A zero-place punctuation mark is a left identity (with respect to the binary punc-
tuation mark ‘;’) if it satisfies the following two structural rules:

X ⇐ 0;X Left Push

0;X ⇐ X Left Pop

The Left Push rule allows us to “push” a 0 on the left structure of premises. And
the Left Pop rule allows us to “pop” the 0 off that structure.8 Similarly, 0 is a

8 I owe the terms ‘Push’ and ‘Pop’ to J. Michael Dunn [77].
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right identity (with respect to the binary punctuation mark ‘;’) if it satisfies the
following two structural rules:

X ⇐ X; 0 Right Push

X; 0 ⇐ X Right Pop

If 0 is a left identity, then applying 0 to X (on the left) yields no more and no
less than X itself. The 0 object has different readings in different applications.
For functions, 0 is the type of the identity function, for strings it is the type of
the empty string, for ‘information’ it is the logical body of information — that
is, it is the body of information which licenses all of the inferences of the form
A → A, for actions, it is the type of the empty action, and for times, it is the
proposition which is true at all times.

Once we have 0, we have a way of recording consequences inside the lan-
guage of implication.

THEOREM 2.29 (REGISTERING CONSEQUENCE)
In any system containing the → rules, and in which 0 is a left identity for the

semicolon, there is a proof of 0 ⊢ A→ B if and only if A ⊢ B is provable.

PROOF Add the following reasoning to any proof of A ⊢ B.

...

A ⊢ B
[Left Push]

0;A ⊢ B
(→I)

0 ⊢ A→ B

The result is the proof we want. Conversely, given a proof of 0 ⊢ A → B, we
can find a proof of A→ B, by adding the following reasoning:

A ⊢ A

...

0 ⊢ A→ B
(→E)

0;A ⊢ B
[Left Pop]

A ⊢ B

�

If a system contains a left identity 0, we can mirror its behaviour in the language
by considering a zero-place connective t, which satisfies the following two rules

0 ⊢ t (tI)
X ⊢ t Y (0) ⊢ A

(tE)
Y (X) ⊢ A
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DEFINITION 2.30 (A TRUTH CONSTANT t)
The zero-place connective t is a truth constant for the punctuation mark 0 if
and only if it satisfies the rules (tI) and (tE)

It is left as an exercise to show that if t1 and t2 are both truth constants for the
one punctuation mark, then they are equivalent.

Once we have Right Pop we can prove t→ A ⊢ A.

t→ A ⊢ t→ A 0 ⊢ t
(tE)

t→ A; 0 ⊢ A
[Right Pop]

t→ A ⊢ A

This rule is plausible when reading consequence as applying to information in
general. Given that t is the information warranted by logic, then t → A (that t
implies A) seems to entail A, since t is true.9

This rule also makes sense in terms of actions or strings. If a string (or
action) is of type t→ A, it means that whenever it is concatenated with a string
(or action . . .) of type t, then the result is of type A. But the empty string is of
type t, so concatenating it with the original string leaves you with the original
string — so that string must be of type A as well.

The readings in terms of strings and actions also motivate the Right Push rule
since concatenating a string with the empty string results in the same string.
Concatenating an action with the empty action gives you the same action. It is
trivial to show that this structural rule enables us to prove A ⊢ t→ A.

It is important not to confuse t with another propositional constant, which
we will write as ‘⊤.’

DEFINITION 2.31 (THE TRIVIAL TRUTH ⊤)
The propositional constant ⊤ is said to be a trivial truth if and only if it satisfies
the rule

X ⊢ ⊤ (⊤I)

The introduction rule is simple. We can infer X ⊢ ⊤ whenever we like. The
connective has no elimination rule, as you can gain no new information from
X ⊢ ⊤.

In some applications (such as the temporal one) we might have t and ⊤
having the same interpretation (they are both the proposition which is true at
all times). In fact, in systems with K′, we can prove t and ⊤ to be equivalent.

LEMMA 2.32 (t AND ⊤ EQUIVALENCE)
In any system including K, t and ⊤ are equivalent.

9 This postulate is one of the rules in the logic E of entailment, developed by Anderson and Belnap
[6], which is designed to model entailment between propositions.
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PROOF In any system with ⊤ we have t ⊢ ⊤ as an axiom, and with K we have

0 ⊢ t
[K]

0;⊤ ⊢ t
[Left Pop]

⊤ ⊢ t

�

But in some applications of substructural logics, K fails, and t and ⊤ are not
equivalent in general. Dual with ⊤ there is ⊥.

DEFINITION 2.33 (THE TRIVIAL FALSEHOOD ⊥)
The formula ⊥ is the trivial falsehood if and only if it satisfies

X ⊢ ⊥
(⊥E)

Y (X) ⊢ A

Clearly any two trivial truths are equivalent, as are any two trivial falsehoods.
No string, no action, no function and no piece of information (in any context)
has type ⊥. Dually to ⊤, ⊥ has no introduction rule. There is nothing you could
do to get X ⊢ ⊥ apart from using the identity rule.

2.5 Ands and Ors

Logic is more than merely the behaviour of the connectives ◦, → and ← with
t, ⊤ and ⊥. It has been traditional for logic to deal with connectives like con-
junction and disjunction (written ‘∧’ and ‘∨,’ read ‘and’ and ‘or’). In each of
our applications, ∧ and ∨ have a straightforward meaning. For example, an
action is of type A ∧ B just when it is of type A and of type B, and it is of type
A ∨ B just when it is of type A or of type B. Conjunction and disjunction are
binary connectives (as you would expect), and we read them as binding more

tightly than the implication connectives. That is, we read A ∨ B → C ∧ D as
(A ∨B)→ (C ∧D). We have the following rules for conjunction:

X ⊢ A X ⊢ B
(∧I)

X ⊢ A ∧B

X ⊢ A ∧B
(∧E1)

X ⊢ A

X ⊢ A ∧B
(∧E2)

X ⊢ B

In any system with these rules and the rules (→I) and (→E) we have the
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following proof (written in linear form to save space):

1. (A→ B) ∧ (A→ C) ⊢ (A→ B) ∧ (A→ C) (Id)
2. (A→ B) ∧ (A→ C) ⊢ A→ B 1 (∧E1)
3. (A→ B) ∧ (A→ C) ⊢ A→ C 1 (∧E2)
4. A ⊢ A (Id)
5. (A→ B) ∧ (A→ C);A ⊢ B 2, 4 (→E)
6. (A→ B) ∧ (A→ C);A ⊢ C 3, 4 (→E)
7. (A→ B) ∧ (A→ C);A ⊢ B ∧ C 5, 6 (∧I)
8. (A→ B) ∧ (A→ C) ⊢ A→ B ∧ C 7 (→I)

So conjunction behaves quite normally. The disjunction introduction rules are
also simple.

X ⊢ A
(∨I1)

X ⊢ A ∨B

X ⊢ B
(∨I2)

X ⊢ A ∨B

The elimination rule is not quite as straightforward as the other rules. It
reflects the fact that to prove C from a disjunction, it is sufficient to prove it
from both disjuncts.

Y (A) ⊢ C Y (B) ⊢ C X ⊢ A ∨B
(∨E)

Y (X) ⊢ C

Once we have disjunction and the other rules, we can perform proofs such as
the one in Figure 2.1.

1. (A→ C) ∧ (B → C) ⊢ (A→ C) ∧ (B → C) (Id)
2. (A→ C) ∧ (B → C) ⊢ A→ C 1 (∧E1)
3. A ⊢ A (Id)
4. (A→ C) ∧ (B → C);A ⊢ C 2, 3 (→E)
5. (A→ C) ∧ (B → C) ⊢ B → C 1 (∧E2)
6. B ⊢ B (Id)
7. (A→ C) ∧ (B → C);B ⊢ C 5, 6 (→E)
8. A ∨B ⊢ A ∨B (Id)
9. (A→ C) ∧ (B → C);A ∨B ⊢ C 4, 7, 8 (∨I)

10. (A→ C) ∧ (B → C) ⊢ A ∨B → C 9 (→I)

Figure 2.1: Proof of (A→ C) ∧ (B → C) ⊢ A ∨B → C
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DEFINITION 2.34 (EXTENSIONAL CONJUNCTION AND DISJUNCTION)
The connectives ∧, extensional conjunction and ∨, extensional disjunction are
defined by the rules (∧I), (∧E1), (∧E2) and (∨I1), (∨I2), (∨E), respectively.

This way of adding conjunction and disjunction is proof-theoretically very sim-
ple. These connectives are the additive conjunction and disjunction of linear
logic. Algebraists will recognise that in ∧ and ∨ we have the standard lattice

operators. The conjunction ∧ is a greatest lower bound, in that A∧B entails both
A and B, and any C entailing both A and B also entails A∧B. The disjunction
∨ is a least upper bound: either of A and B entail A ∨B, and if A entails C and
B also entails C then A ∨B also entails C.

Lattice operators like ∧ and ∨ need not be distributive. That is, in our context
we need not have a proof of the following consecution.

A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C)

Any proof of this consecution (and Figure 2.2 is an example of such a proof)
must appeal to the structural rules WI, K′ and K. There is no way to prove
distribution without appealing to these structural rules. What are we to make
of this? It is obvious that in many of our applications of our logics, none of WI,
K′ and K are valid. Yet it is just as clear that in some of these interpretations,
distribution is valid. Consider function typing. A function f is of type A ∧ B if
and only if it is of type A and of type B, and it is of type A ∨ B if and only if
it is either of type A or of type B. Clearly, A ∧ (B ∨ C) ⊢ (A ∧ B) ∨ (A ∧ C)
ought to be valid, as anything is of type A∧ (B∨C) only if it is of type A and of
type B ∨ C, but this is only if it is of type B or of type C, so it must be of type
(A ∧B) ∨ (A ∧ C) as desired. The same reasoning goes through with syntax or
in actions. But in none of these interpretations do any of WI, K′ or K come out
as valid.

The way ahead for logics which validate distribution was found indepen-
dently by J. Michael Dunn [72] and Grigori Mints [172] when they were work-
ing on the proof theory of the relevant logic R. They showed that it is possible
to prove distribution of ∧ over ∨ without altering the logic of →, ◦ and t (that
is, without changing the behaviour of the semicolon). They did this by adding a
new punctuation mark. In our work we will use the comma for this new notion.
The idea is that X,Y is a new type of structure, and that the comma mirrors the
behaviour of conjunction (just as the semicolon mirrors the behaviour of fusion).
How do we interpret the comma in our systems? Recall that in the functional
interpretation an object is of type X;Y if and only if it is an object of type X
applied to an object of type Y . Well, the comma is simpler. An object is of type
X,Y if and only if it is an object of type X as well as an object of type Y . A
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1. A ∧ (B ∨ C) ⊢ A ∧ (B ∨ C) (Id)
2. A ∧ (B ∨ C) ⊢ A 1 (∧E1)
3. B;A ∧ (B ∨ C) ⊢ A 2 [K′]
4. B ⊢ B (Id)
5. B;A ∧ (B ∨ C) ⊢ B 4 [K]
6. B;A ∧ (B ∨ C) ⊢ A ∧B 3, 5 (∧I)
7. B;A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C) 6 (∨I1)
8. C;A ∧ (B ∨ C) ⊢ A 2 [K′]
9. C ⊢ C (Id)
10. C;A ∧ (B ∨ C) ⊢ C 9 [K]
11. C;A ∧ (B ∨ C) ⊢ A ∧ C 8, 10 (∧I)
12. C;A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C) 11 (∨I2)
13. A ∧ (B ∨ C) ⊢ B ∨ C 1 (∧E2)
14. A ∧ (B ∨ C);A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C) 7, 12, 13 (∨E)
15. A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C) 14 [WI]

Figure 2.2: Proof of Distribution of ∧ over ∨

similar story goes through for other readings of our logics, which I leave for you
to check. The comma will satisfy the structural rules in Table 2.3.

Name Label Rule

Associativity eB X, (Y,Z)⇐ (X,Y ), Z

Commutativity eCI X,Y ⇐ Y,X

Contraction eWI X,X ⇐ X

Weakening eK X ⇐ X,Y

Table 2.3: Extensional Structural Rules

These structural rules are labelled with ‘e’ because they are the extensional

versions of their intensional cousins. Given these structural rules, we can run
through the proof in Figure 2.2 with the semicolon replaced by the comma.
There is one small wrinkle. You must use eCI and eK to simulate the K′ rule as
follows: A ∧ (B ∨ C) ⊢ A with eK gives A ∧ (B ∨ C), C ⊢ A, which using eCI

gives C,A ∧ (B ∨ C) ⊢ A.
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It will be shown in Chapters 9 and 1110 that adding the comma with these
structural rules does not alter the properties of any connectives other than ∧
and ∨. This is not obvious, because there just might be a consecution involv-
ing just the intensional fragment (say, the semicolon, fusion and implication),
which can be proved by taking a detour through the extensional language (us-
ing comma, ∧ and ∨) but which cannot be proved without taking such a detour.

Such things happen in other logical systems. For example, the consecution
(p ⊃ q) ⊃ q ⊢ p is not provable in the standard natural deduction system for
classical logic when you remove negation from the system. Any proof of this
consecution (called ‘Peirce’s Law’ after the American logician and philosopher
Charles Sanders Peirce, working in the late 19th Century) in the natural de-
duction system requires a detour through negation, even though negation does
not appear in the consecution itself. That shows that either the original sys-
tem without negation was incomplete or that adding classical negation to it is
a mistaken addition. We will show that this sort of thing does not happen with
the addition of extensional structure. At no stage does this addition disrupt
any logics given by our natural deduction systems. This indicates that natural
deduction systems are “robust” in some sense. There is a healthy separation be-
tween the extensional structure, which is tied closely to the entailment relation,
and the intensional structure, which sits more loosely.

2.6 Cutting and Pasting Proofs

The Cut rule is important in proof theories.

X ⊢ A Y (A) ⊢ B
(Cut)

Y (X) ⊢ B

In an inference of this form we “cut out” the middle term A. In our systems the
inference is admissible, meaning that whenever we have a proof of the premises,
there is also a proof of the conclusion. So there is no need to add it as a new
rule, for adding it will not increase the stock of provable consecutions. To show
that our systems have this property, we need to give a few more definitions.

DEFINITION 2.35 (PARAMETERS AND FAMILIES OF PARAMETERS)
In an inference Inf falling under some rule, a collection of instances of a struc-
ture X is said to be a family of parameters if and only if for all structures Y , the
inference Inf(Y ), given by replacing all of those instances of X in Inf by Y , is
also an instance of that rule. A structure X occurring in a family of parameters
in an inference is said to be a parameter.

10 We give a different proof in each chapter, one using propositional structures and the other using
frames.
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For example, any inference of the form

X ⊢ A Y ⊢ B

X;Y ⊢ A ◦B

both occurrences of X and its substructures are parameters, as are both occur-
rences of Y and its substructures, but X;Y is not a parameter, and neither is A,
B or A ◦B.

DEFINITION 2.36 (CONGRUENCE OF PARAMETERS)
Two structures in an inference are said to be congruent if they are both members
of the same family of parameters in that inference.

So, in that rule instance above, both instances of X are congruent, as are both
instances of Y . If X = (•Y ;Z), then the instances of Y in those instances
of X are congruent with each other (and with themselves) but they are not
congruent with the other instances of Y in that inference.

DEFINITION 2.37 (ANTECEDENT REGULARITY)
A system is antecedent regular if for every inference in the system other than
(Id) each formula in the antecedent of the conclusion of that inference is a
parameter.

Note that every system made from any of our rules is antecedent regular. For
example, in the inference

X ⊢ A ∨B Y (A) ⊢ C Y (B) ⊢ C
(∨E)

Y (X) ⊢ C

each formula appearing in Y (X) is a parameter. Its parametric family consists of
the formula instance itself, and the corresponding instances occurring in either
X in the first premise or in both Y (A) and Y (B) in the second premise.

THEOREM 2.38 (CUT ADMISSIBILITY FOR NATURAL DEDUCTION)
Cut is admissible in every antecedent regular system.

PROOF Take a proof of Y (A) ⊢ B. We transform it into a proof of Y (X) ⊢ B,
given that we also have a proof of X ⊢ A at hand. An instance of the formula
A is said to match the A in Y (A) ⊢ B if either it is in the parametric family of
A or it is in the parametric family of some other instance of A which already
matches A. Consider the tree given by replacing every matching A in the proof
of Y (A) ⊢ B by X. This is almost a proof of Y (A) ⊢ B. Every arc in the tree
is an instance of a rule, as rules are closed under substitution of parametric
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families. The only place where we do not have this substitution is instances of
the axioms. The only leaves which might have changed from the old proof to
the new one are those of the form A ⊢ A. But these change to X ⊢ A, and
we have a proof of this consecution, so we can simply “paste” this proof on to
conclude X ⊢ A, giving us the desired proof. �

This construction is an important one. We will see more of it in Chapter 7, when
we analyse the structure of proofs in more detail.

2.7 Putting Things Together

We have actually seen a whole host of formal systems here, so we need a nota-
tion for naming different points on the landscape we have sketched out. There
is no standard notation as yet, so I will propose one.

The idea is this. We name a logic by listing its structural rules. So, a logic
which uses B, C and W, I will call BCW. For Right Push and Right Pop we will
use rPu and rPo as abbreviations, and similarly lPu and lPo for Left Push and
Left Pop. rP abbreviates rPu + rPo, lP abbreviates lPu + lPo, and P abbreviates
rP + lP.

If in addition we use the comma, we prefix a ‘D’ to indicate the presence of
distribution of conjunction over disjunction. So, DBCW is the logic BCW with
the addition of the comma as a punctuation mark to the semicolon.

This leaves out one basic logic: the logic without any structural rules at all.
We will call this ‘BSub’ for ‘basic substructural logic’, and its distributive sibling
is ‘DBSub.’

So much for structural rules. We also have a choice of connectives. If the
logic has the full complement of connectives we have discussed (→,←, ◦, t, ⊤,
⊥, ∧, ∨) we will leave the name as it is. If it uses fewer connectives, we will list
them in brackets after the name. So, BCW[→, ◦] is the logic with rules for only
→ and ◦. Table 2.4 lists some popular logics.

The logics L and LI in this table are associated with reasoning about syn-
tactic strings. In these logics we consider fusion and the semicolon to be string
concatenation. This is clearly associative, so B and Bc are sensible rules. In the
case of LI, we admit an identity for both the left and the right of concatenation,
which is the type of the empty string.

The logics TW+, T+, E+ and R+ are all motivated by considerations of the
need for relevance in everyday logical consequence. In the logic R+, for ex-
ample, premise combination by the semicolon reflects the condition that both
premises collected together were used in the conclusion deduced. However, the
order of the premises used or the number of times they are re-used are irrel-
evant, so C and W are admitted as structural rules. For E+, the condition on
use is tighter, as the arrow is intended to encode entailment and not merely the
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Our Label Common Label Name

BBc[→,←, ◦] L Lambek Associative Calculus

BBcP[→,←, ◦, t] LI Lambek Associative Calculus
with Identity

DBBlP′[→, ◦,∧,∨, t] TW+ Positive Ticket Entailment
without Contraction

DBBlP′W[→, ◦,∧,∨, t] T+ Positive Ticket Entailment

DBB′lPrPuW[→, ◦,∧,∨, t] E+ Positive Entailment

DBCW R+ Positive Relevant Logic

DBCWM RM+ Positive Relevant Logic
with Mingle

BC MALL+ Positive Multiplicative
Additive Linear Logic

BCK BCK Positive Affine Logic

BCWK J Intuitionistic Logic

BCWK[∧,∨,→] Minimal Logic

Table 2.4: Some Popular Logics

conditionality of R+. C and its cousins make no sense on this interpretation, as
they make consecutions such as

A ⊢ (A→ B)→ B

valid. This is not valid if ‘→’ is read as entailment, for which a certain amount
of necessity is required for an entailment to be true. A → B means not just
that if A happens to be true so does B, but rather that however things might

turn out, if A is true, B is true too. Given this reading, it is possible to construct
counterexamples to our suspect consecution: let A and B be merely contingent,
but such that A really entails B. For example, A is ‘Greg is a philosophy lecturer’
and B is ‘Greg is an academic’), B ought not be entailed by A→ B, as there are
plenty of possibilities in which A→ B is true, but in which B fails.

In E+ premises cannot be reordered arbitrarily, but a degree of reassociation
is allowed. The reassociation in B and B′ is enough to give us the rules of
prefixing and suffixing,

A→ B ⊢ (C → A)→ (C → B)

A→ B ⊢ (B → C)→ (A→ C)
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which clearly make sense when reading ‘→’ as entailment. The logic of E+ has
the right push rule rPu, which ensures that t satisfies t → A ⊢ A but not that
A ⊢ t → A. If we read t as ‘logic,’ then this too makes sense. If A is entailed
by logic then it follows that A must be true. However, if A is true, it need not
follow that it be entailed by logic. It may be merely contingent.

You can go weaker still than E+ by disregarding any thought of t and by
restricting yourself to B, B′ and W. This is the logic T+ of “ticket” entailment.
The idea behind this logic is to distinguish between true conditionals, which
are inference tickets from premises to conclusions, and other formulae. The
condition restricting premise combination is that implications cannot be used as
information in ways other than as tickets for inference. This brings t→ A ⊢ A,
and its cousin (A → A) → A ⊢ A into question, as in these, the formula t, or
A → A, is not used as a ticket for inference but rather as an antecedent for
further inference. Volume 1 of Entailment contains a lengthy discussion of this
distinction [6, pages 41–44].

Linear logic was motivated by considerations of resource use. The idea here
was that antecedents must be used once and once only in the proof of a con-
sequent. This means that contraction is not allowed, in that this suppresses
duplicate uses of the one resource. Similarly, weakening is not allowed as this
introduces resources which are not used in generating the conclusion. The
stronger logic BCK allows weakening but still bars contraction. Linear logic and
BCK have traditionally been studied with extensional conjunction and disjunc-
tion, but in the absence of distribution. This has largely been because these
logics have been studied in the context of proof theory, in which distribution is
hard to deal with. In what follows we will be studying all of our systems in the
presence of distribution and in its absence.

If you add contraction to BCK you allow all of the structural rules, and you
end up with a well-known logic — intuitionistic logic. Intuitionistic negation
is recovered by setting ∼A to be A → ⊥. In the absence of ⊥, you have no
negation, and you have Johansson’s minimal logic.

2.8 History

Work on proof theory has a long and noble history. Gerhard Gentzen first for-
mulated systems of natural deduction for intuitionistic and classical logic in the
1930s [93]. See Prawitz’s monograph [196] for a good account of the history
of the development of natural deduction.

While Gentzen did define natural deduction with consecutions, most of the
early work on natural deduction stems from Gentzen’s other formulation of
natural deduction proofs. He also defined proofs as trees of formulae. The
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introduction rules for conjunction and disjunction have these forms

A B

A ∧B

A

A ∨B

B

A ∨B

The elimination rules for conjunction and the conditional are straightforward

A ∧B

A

A ∧B

B

A A→ B

B

But for the other rules, you must do more work to keep track of assumptions.
The idea is that some of the leaves above any node in the proof tree are the
open assumptions at that node. Some of the inferences close assumptions. For
example, the implication introduction rule is of this form:

[A]
...
B

A→ B

which indicates that at the node for B there is a collection of open assumptions
A, and we can derive A → B, closing those assumptions. Different systems
can be given by varying the behaviour of the rules which close assumptions.
For example, you may only allow one assumption to be closed at a time — or
you may allow assumptions to be closed only in a particular order. It is clear
that this is similar to the behaviour of structural rules in the systems we have
studied. However, it is not as powerful — you do not have the same control
over assumptions as you do in our systems, in which you keep the assumptions
explicit at every step. That is enough of the story of natural deduction proof
theories.

The particular systems we have considered arose in many different contexts.
Concern for the way premises are used perhaps first surfaced in the work of rel-
evant logicians. Došen has shown us that this dates back to 1928 with Orlov’s
axiomatisation of the implication–negation fragment of the relevant logic R
[64]. However, the obvious historical antecedents for work on relevant logic
are Moh and Church, who formulated R[◦,→] in the mid-1950s [46, 245] and
Ackermann, who formulated E in the late 1950s [2]. Work on relevant logic
was established by Anderson and Belnap, along with many others, including
their students Dunn and Meyer. See their Entailment [6, 7] for much of the
work, and for many detailed references. As we have already noted, the proof
theory of relevant logics in the style we are using was first given independently
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by Mints and Dunn, though their work was on Gentzen-style consecution sys-
tems (with introduction rules for connectives in the antecedent and consequent,
instead of introduction and elimination rules in the consequent).

Lambek worked on his calculus (our BBc[→,←]) in order to model the be-
haviour of syntactic types. He used proof-theoretical means like these — as
well as techniques from category theory, which we will see later [133, 134].
The systems Lambek studied were in the language →,←, ◦ (he wrote these as
‘/, \, •’). It is clear, however, that other connectives can work well in this in-
terpretation. A string is of type X;Y if and only if it is the concatenation of a
string of type X with one of type Y . This motivates the structural rules B and
Bc for the semicolon. However, extensional structure is also possible. A string
is of type X,Y just when it is both of type X and of type Y . This motivates all
of the extensional structural rules and gives us a standard logic of conjunction
and disjunction when reasoning about syntactic types [213]. We will consider
more about the behaviour of this sort of logic in later chapters.

Logics without the contraction rule W and related rules are important in the
analysis of the paradoxes of self-reference [54, 91, 170, 246, 209]. Consider
the claim

If 〈p〉 is true then q

where 〈p〉 is a name for the displayed proposition. If ‘〈p〉 is true’ is true if and
only if 〈p〉 is (which seems reasonable enough) then we have the following valid
consecutions.

p ⊢ p→ q p→ q ⊢ p

However, given just a little reasoning we can deduce q.

p ⊢ p→ q p ⊢ p
(→E)

p; p ⊢ q
[WI]

p ⊢ q
[Left Push],(→I)

0 ⊢ p→ q p→ q ⊢ p
[Cut]

0 ⊢ p

p ⊢ p→ q p ⊢ p
(→E)

p; p ⊢ q
[WI]

p ⊢ q
[Cut]

0 ⊢ q

But q was completely arbitrary, so we ought not be able to prove it by means of
logic alone! In the absence of WI this proof breaks down, and this has motivated
many to seek an understanding of logics without the contraction rule and rules
like it.

Some historical research by Hazen has revealed that in Russell’s 1906 paper
“The Theory of Implication” his propositional logic (without negation) is free of
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the rule W [112, 232]. It is only when negation is introduced that contraction
can be proved.

Meyer and Routley [167] did a great deal of work showing how a whole
host of logics fit together, all with the theme of residuation or the connection of
fusion with implication. The presentation most accessible and most similar to
our own is given by Slaney [250], in which he presents this natural deduction
system as a general framework for many different systems.

Finally, Girard, in 1987, introduced linear logic, which is a particular system
that allows commuting and reassociating of premises, but no contraction or
weakening [96]. Perhaps his major innovation is to add particular modalities

that allow the recovery of these structural rules in a limited, controlled fashion.
We will consider how to treat one-place operators like modalities and negations
in the next chapter. Girard’s notation for the connectives differs from the one
we have chosen here. We will end this section with a little translation manual,
in Figure 2.3.11

Connective Here Girard

Implication A→ B A ◦− B
Negation ∼A A⊥

Fusion A ◦B A⊗B
t t 1

Conjunction A ∧B A&B
Disjunction A ∨B A⊕B

Top ⊤ ⊤
Bottom ⊥ 0

Figure 2.3: Translation between our notation and that of Linear Logic

2.9 Exercises

Each set of exercises is divided into three sections. Practice questions reinforce
the ideas and concepts of the chapter. Problem questions extend the techniques
to other areas and fill in proofs absent from the main text. Project questions are
research projects in their own right.

11 We have left out two connectives from the multiplicative and additive fragment linear logic
which we have not yet seen. The upside-down ampersand is intensional disjunction. We write this
as ‘+’ and call it ‘fission’, dual to fusion. Similarly, the intensional false constant we will write ‘f ’,
and confusingly for us, Girard writes this ‘⊥’.
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Practice

{2.1} In the table below, match each consecution with the structural rule needed to

prove it.

A ⊢ A→ A K′

B ← A ⊢ (B ← C)← (A← C) M

A ∧ (A→ B) ⊢ B Bc

A ⊢ B → B WI

A→ B ⊢ (B → C)→ (A→ C) B′

{2.2} Show that in any system containing CI as a structural rule, A → B and B ← A
are equivalent.

{2.3} Prove that if 0 ⊢ A and 0 ⊢ A→ B, then 0 ⊢ B too. Then show that 0 ⊢ A if and

only if 0 ⊢ t→ A. Finally, show that 0 ⊢ A ◦B → C if and only if 0 ⊢ A→ (B → C), if

and only if 0 ⊢ B → (C ← A). (BONUS: Try doing this without using Cut.)

{2.4} Prove the following consecutions in all systems with the appropriate connective

rules.

A→ B ⊢ A ∧ C → B A→ B ⊢ A→ B ∨ C 0 ⊢ A ∧B → A
0 ⊢ A ∧B → B 0 ⊢ A→ A ∨B 0 ⊢ B → A ∨B

{2.5} Prove the family connections between ← and →: A ⊢ B ← (A → B) and A ⊢
(B ← A)→ B.

{2.6} Verify these important fusion facts: A ◦ (B ∨C) ⊣⊢ (A ◦B)∨ (A ◦C), ⊥ ⊢ ⊥ ◦A
and ⊥ ⊢ A ◦ ⊥.

{2.7} Verify these important implication facts: ⊤ ⊢ A → ⊤, and ⊥ → A ⊢ ⊥. Prove

corresponding facts for← as well.

Problems

{2.8} Show that the construction of string algebras given on page 15 satisfies the string

algebra conditions of Definition 2.6.

{2.9} Find an alternative construction of string algebras.

{2.10} Prove the UNIQUE DECOMPOSITION THEOREM for formulae in languages.

{2.11} State and prove a structural induction theorem for structures.

{2.12} Recall that in our definition of ‘proof,’ a proof cannot have infinite branches.

What would happen if we allowed proofs to have infinite branches? Find one undesirable

consequence of modifying the definition in this way.

{2.13} Show that each of fusion, right implication and t is uniquely determined by their

rules. That is, if ◦1 and ◦2 both satisfy the fusion introduction and implication rules, then

A ◦1 B and A ◦2 B are equivalent, and similarly for← and t.

{2.14} Try proving each of the following consecutions, noting what structural rules you

need to employ to prove them. A→ B ⊢ A∧C → B∧C, (A→ B)∧t ⊢ A∧C → B∧C,
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A → (B → C) ⊢ (A → B) → (A → C), A → (B → C) ⊢ B → (A ∧ B → C), (A →
B)→ A ⊢ A, 0 ⊢ (A→ B) ∨ (B → A), A→ (B ∨ (C → D)) ⊢ A→ (C → (B ∨D)).

{2.15} Explore the relationships between conjunction and fusion in substructural logics

of varying strength. In which logics do we have A ◦ B ⊢ A ∧ B? In which logics do we

have A ∧B ⊢ A ◦B? In which logics do neither hold? In which logics do both hold?

{2.16} In which logics is A← ⊤ equivalent to ⊤?

{2.17} In which logics is A← t equivalent to t?

{2.18} In which logics is ⊤ ← A equivalent to ⊤? Is it possible for ⊤ ← A to be

equivalent to A? To ⊥?

{2.19} Give a rigorous proof that anything provable using B′ and Bc can be proved

using B and C.

{2.20} Show that if A and B are equivalent in a system, then so are C(A) and C(B),
where C(B) is found by replacing the indicated occurrence of A in C(A) by B. (HINT:

Try structural induction on the construction of C(A) out of A.)

{2.21} Consider the list of structural rules appearing in Table 2.2. Which rules hold

in which application of substructural logics? For those that do not hold in a particular

application, find concrete counterexamples. (In some applications this is a relatively

straightforward matter. However, in the field of information and entailment answers to

this question are a matter of some philosophical debate. The idea is for you to consider

the options and give reasons for your answers.)

{2.22} Consider commutativity (the structural rule C). Can you find any applications of

substructural logics in which C holds? Similarly for W and K.

{2.23} There is (as yet) no negation connective in any of our systems. However, we can

do something negation-like with what we have. Take any proposition you like, and call

it f , for ‘false.’ Consider the connective ∼ given by defining ∼A to be A → f . Explore

the behaviour of ∼. How many negation-like properties can be proved of ∼?

Try proving each of the following consecutions, noting what structural rules you

need to employ. A → ∼A ⊢ ∼A, A ⊢ ∼∼A, A ∧ ∼A ⊢ f , ∼A ∧ ∼B ⊢ ∼(A ∨ B),
A→ ∼B ⊢ B → ∼A, A→ B ⊢ ∼B → ∼A,∼A∨∼B ⊢ ∼(A∧B),∼(A∧B) ⊢ ∼A∨∼B,

0 ⊢ A ∨ ∼A, ∼∼A ⊢ A, ∼(A ∨B) ⊢ ∼A ∧ ∼B.

Projects

{2.24} Consider extensional conjunction and disjunction. Can you find any uses of

conjunction and disjunction for which it is obvious that distributivity must fail? Examine

the literature on linear logic (especially the literature which considers applications of

linear logic) to find whether their examples motivate the failure of distributivity. (For

more on the failure of distribution, see Belnap’s “Life in the Undistributed Middle” [25].)

{2.25} Note that if we have more than one semicolon-like punctuation mark, then it

may well be appropriate to have more than one “identity object” 0. Explore this. In

particular, find a problem domain in which there are multiple notions of application in

which different identities are important.
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Modalities

A Modal Proposition

may be stated as a pure one,

by attaching the mode

to one of the Terms.

— Richard Whateley, Elements of Logic, 1826

In the previous chapter we examined the proof theory of conditionals, conjunc-
tions and disjunction, along with a few constants. None of these are unary

(one-place) connectives. Unary connectives have an important role to play in
logic. These unary connectives are modalities of various sorts. They modify
the content of the formula upon which they operate. For example, �A might
assert that A is not only true but necessarily true. Or ♦A might assert that A is
possibly true. These are “positive” modalities. They typically either weaken or
strengthen the content of the claim they modify. We can formalise this definition
in the following way:

DEFINITION 3.1 (POSITIVE MODALITIES)
A one-place connective m is a positive modality if and only if the rule

A ⊢ B

mA ⊢ mB

is valid for all formulae A and B.

Clearly, necessity and possibility are both positive modalities. If A entails B,
then the possibility of A entails the possibility of B, and the necessity of A
entails the necessity of B. However, other interpretations of modalities other
than possibility or necessity also give rise to positive modalities. In the logic of
time, ‘tomorrow’ is a positive modality. If A ⊢ B, then at any time when A is
true so is B. But then at any time at which ‘tomorrow A’ is true is also one at
which ‘tomorrow B’ is true too.

3.1 Positive Modalities

The simplest example of a positive modality comes from relevant logics of en-
tailment such as E. In these logics t is ‘logic,’ the conjunction of all theorems,

47
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and → is entailment. In these logics, t → A is a good candidate for ‘A holds
as a matter of necessity,’ since it states that A is entailed by logic alone. Any
connective defined in this way is a positive modality.

LEMMA 3.2 (POSITIVE MODALITIES FROM IMPLICATION)
In any logic of implication, and for any formula C

A ⊢ B

C → A ⊢ C → B

is valid for all A and B. �

In E, this �, defined by setting �A = t → A, is very much like a necessity
operator. First of all, the properties of implication give us �A∧�B ⊢ �(A∧B)
(from (t → A) ∧ (t → B) ⊢ t → (A ∧ B)) and ⊤ ⊢ �⊤ (from ⊤ ⊢ t → ⊤), so
� satisfies two of the conditions of a normal modal operator. The 0 rules give
us t → A ⊢ A and t → A ⊢ t → (t → A). Or more directly, �A ⊢ A (the
characteristic rule T) and �A ⊢ ��A (the distinctive behaviour of the logic S4,
so we call this the 4 rule).

The parallels with necessity extend to other systems. In the Lambek calculus
with identity, t → A is equivalent to A, but ⊤ → A behaves like a necessity. A
string x is of type ⊤ → A if and only if for every string y you choose, xy is of
type A. It is of type A ← ⊤ if and only if for every string y, yx is of type A.
These are positive operators with many of the features of necessity.

A function is of type ⊤ → A if its output is of type A, no matter its input.
For example, the function x 7→ 2x (of natural numbers) is of type ⊤ → Even.

Implication defines not only a positive modality — in each case the modality
defined by implication is very much like a necessity operator, as the next result
shows.

LEMMA 3.3 (IMPLICATION GIVES RISE TO NECESSITIES)
In any logic of implication and conjunction, and for any formula C, (C → A) ∧
(C → B) ⊢ C → (A ∧B) holds for all A and B, and ⊤ ⊢ C → ⊤. �

These conditions (that�A∧�B ⊢ �(A∧B) and that⊤ ⊢ �⊤) are characteristic
of modalities like necessity. If A and B are necessary (holds in all related states)
then their conjunction is necessary (holds in all related states) too. ⊤ must be
necessary as it holds everywhere. This intuitive justification will be made formal
in Chapter 11.

There are also “possibility”-type positive modalities inside our systems.

LEMMA 3.4 (FUSION AND POSSIBILITY)
If we set ♦A to be A ◦ B for some particular B, then ♦ is a positive modality,

♦(A ∨B) ⊢ ♦A ∨ ♦B and ♦⊥ ⊢ ⊥. �
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These conditions are characteristic of possibility-style operators. If A ∨ B is
possible (true in some related state) then one of A and B must be possible too.
Similarly, there is no way that ⊥ can be possible, as it is true nowhere. As with
necessities, this reasoning will be developed in Chapter 11.

In the rest of this section we will abstract away from the detail of neces-
sity and possibility, as defined by implication and fusion, to study operators like
these in their generality. In this case, our rules involve another kind of punctua-
tion mark. Consider the introduction and elimination rules for the conditional:

X ⊢ C → A Y ⊢ C

X;Y ⊢ A

X;C ⊢ A

X ⊢ C → A

In both cases we modify the structure X by attaching the information in the
antecedent of the conditional (either C itself, or Y , where Y gives us C). We
can abstract away the details of this and introduce rules for a necessity operator
� which instead modifies the structure X with a one-place punctuation mark •.

DEFINITION 3.5 (RULES FOR NECESSITY)
The introduction and elimination rules for a necessity operator are as follows:

X ⊢ �A
(�E)

•X ⊢ A

•X ⊢ A
(�I)

X ⊢ �A

Note that these rules are antecedent regular.

LEMMA 3.6 (� IS A NECESSITY)
In any antecedent regular proof system, a necessity � is a positive modality, and

in addition, we have �A∧�B ⊢ �(A∧B) when ∧ is present, and ⊤ ⊢ �⊤ when

⊤ is present.

PROOF The rules for conjunction and ⊤ are quite simple to demonstrate.

�A ⊢ �A

�A ∧�B ⊢ �A

•(�A ∧�B) ⊢ A

�B ⊢ �B

�A ∧�B ⊢ �B

•(�A ∧�B) ⊢ B

•(�A ∧�B) ⊢ A ∧B

�A ∧�B ⊢ �(A ∧B)

•⊤ ⊢ ⊤

⊤ ⊢ �⊤

For preservation of order a little more work is needed. There seems to be no
simple way to use A ⊢ B in a proof of �A ⊢ �B. The rules for � seem to
say that �A ⊢ �B ought to come from •�A ⊢ B. But where can this come
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from? There is, in general, no proof of •�A ⊢ B from A ⊢ B. However, we
need not construct our proof in that way. Rather, we can use the Cut Theorem
(Theorem 2.38, page 38). As the system is antecedent regular, we can use the
proof

�A ⊢ �A

•�A ⊢ A

and cut this with our proof of A ⊢ B (whatever this proof might be, in our
system) to get a proof of •�A ⊢ B, from which we can derive �A ⊢ �B. So the
proof of �A ⊢ �B may not use A ⊢ B as a hypothesis. Rather, it will be found
by transforming the proof of A ⊢ B. �

Positive modalities might not just be necessitive. We have already seen that
fusion gives rise to modalities which are like possibility operators.

DEFINITION 3.7 (RULES FOR POSSIBILITY)
The introduction and elimination rules for a possibility operator are as follows:

X ⊢ A
(�−I)

•X ⊢ ♦−A

X ⊢ ♦−A Y (•A) ⊢ B
(�−E)

Y (X) ⊢ B

These are related to fusion in the same way as the necessity rules are related
to implication. We use ‘♦−’ instead of ‘♦’ in this definition because the modality
so defined is not related to � by a definition as ∼�∼, as possibility is often
defined, but rather, they are tied together by the following rule:

LEMMA 3.8 (� AND ♦−)
If � and ♦− are defined in the one antecedent regular proof system, then ♦−A ⊢ B
is provable if and only if A ⊢ �B is provable.

PROOF For right to left, we have the proof

♦−A ⊢ ♦−A

A ⊢ �B
(�E)

•A ⊢ B
(�−E)

♦−A ⊢ B

For left to right, we cut on •A ⊢ ♦−A (which is provable) and ♦−A ⊢ B (our
assumption) to get •A ⊢ B and hence A ⊢ �B. �

With or without the presence of �, ♦− is a possibility-type modality.

LEMMA 3.9 (♦− IS A POSSIBILITY)
For any ♦− defined using the possibility rules, ♦− is a positive modality, ♦−(A∨B) ⊢
♦−A ∨ ♦−B and ♦−⊥ ⊢ ⊥, in logics with ∨ and ⊥.
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PROOF The positive modality and ⊥ properties are simple to prove:

♦−A ⊢ ♦−A

A ⊢ B
(�−I)

•A ⊢ ♦−B
(�−E)

♦−A ⊢ ♦−B

♦−⊥ ⊢ ♦−⊥

⊥ ⊢ ⊥
(⊥E)

•⊥ ⊢ ⊥
(�−E)

♦−⊥ ⊢ ⊥

For the disjunction property, we have

A ∨B ⊢ A ∨B

A ⊢ A
(�−I)

•A ⊢ ♦−A
(∨I)

•A ⊢ ♦−A ∨ ♦−B

B ⊢ B
(�−I)

•B ⊢ ♦−B
(∨I)

•B ⊢ ♦−A ∨ ♦−B
(∨E)

•(A ∨B) ⊢ ♦−A ∨ ♦−B
(�−E)

♦−(A ∨B) ⊢ ♦−A ∨ ♦−B

�

As with the intensional family, � and ♦− belong together, and as with that family,
one connective especially mirrors the structure. In this case ♦− has the logical
properties of •.

DEFINITION 3.10 (THE MODAL FAMILY)
� and ♦− constitute the modal family, and ♦− is the parent of the family.

Label Rule

T •X ⇐ X

4 •X ⇐ ••X

Kr 0 ⇐ •0

Krc •0 ⇐ 0

mMP •X; •Y ⇐ •(X;Y )

mWI •X; •X ⇐ •X

mK X ⇐ X; •Y

m2t •X ⇐ X; 0

t2m X; 0 ⇐ •X

m2⊤ •X ⇐ X;Y

⊤2m X;⊤ ⇐ •X

Table 3.1: Modal Structural Rules
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Once we have modal operators, defined by the structural operator •, structural
rules dictating the behaviour of • are inherited by the logics of � and ♦−. Ta-
ble 3.1 lists some possible structural rules involving •. The first two rules are
adopted from classical modal logic. The rule T is enough to prove �A ⊢ A.

�A ⊢ �A
(�E)

•�A ⊢ A
[T]

�A ⊢ A

The rule 4 enables a proof of �A ⊢ ��A as follows.

�A ⊢ �A
(�E)

•�A ⊢ A
[4]

••�A ⊢ A
(�I)

•�A ⊢ �A
(�I)

�A ⊢ ��A

The other rules in our table give us connections between the modal part of the
language and the intensional part. Kr gives you both t ⊢ �t and ♦−t ⊢ t, while
Krc is sufficient for the converses, �t ⊢ t and t ⊢ ♦−t (confirming these is left
to the exercises). The rule mMP (modal modus ponens) gives us �(A → B) ⊢
�A→ �B as follows

�(A→ B) ⊢ �(A→ B)
(�E)

•�(A→ B) ⊢ A→ B

�A ⊢ �A
(�E)

•�A ⊢ A
(→E)

•�(A→ B); •�A ⊢ B
[mMP]

•(�(A→ B);�A) ⊢ B
(�I)

�(A→ B);�A ⊢ �B
(→I)

�(A→ B) ⊢ �A→ �B

mWI and mK allow us to contract and weaken (respectively) in modalised
premises. With mWI you can prove �A ⊢ �(A ◦A), for example

�A ⊢ �A
(�E)

•�A ⊢ A

�A ⊢ �A
(�E)

•�A ⊢ A
(◦I)

•�A; •�A ⊢ A ◦A
[mWI]

•�A ⊢ A ◦A
(�I)

�A ⊢ �(A ◦A)
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With mK, you can prove A ◦ ♦−B ⊢ A

A ◦ ♦−B ⊢ A ◦ ♦−B

♦−B ⊢ ♦−B

A ⊢ A
[mK]

A; •B ⊢ A
(�−E)

A; ♦−B ⊢ A
(◦E)

A ◦ ♦−B ⊢ A

The rules m2t and t2m provide �A ⊢ t → A and t → A ⊢ �A respectively. For
example, we have

t→ A ⊢ t→ A 0 ⊢ t
(→E)

(t→ A); 0 ⊢ A
[t2m]

•(t→ A) ⊢ A
(�I)

t→ A ⊢ �A

The rule m2⊤ provides �A ⊢ ⊤ → A in a similar way. We have

�A ⊢ �A
(�E)

•�A ⊢ A
[m2t]

�A;⊤ ⊢ A
(→I)

�A ⊢ ⊤ → A

You might think that the converse of the m2⊤ rule, X;Y ⇐ •X, would be
appropriate to prove converse consecution, ⊤ → A ⊢ �A. However, that would
be wrong, as the structural rule X;Y ⇐ •X is too strong. With it, you get

♦−A ⊢ ♦−A

A;⊥ ⊢ ⊥
(??)

•A ⊢ ⊥
(�−E)

♦−A ⊢ ⊥

which is not a particularly savoury result. In particular, it does not follow from
the consecution ⊤ → A ⊢ �A, so we need a different rule to model this conse-
cution. A suitable rule is

X;⊤ ⊢ A
[⊤2m]

•X ⊢ A

However, this is not, strictly speaking, a structural rule — the formula ⊤ is not
a parameter in the antecedent of the premise.

So these rules go some way towards connecting the modality � with im-
plication, as our original examples of necessity defined it. However, with this
new machinery, we can allow some connection between necessity (or possibil-
ity) and implication without defining necessity in terms of implication. One
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example might be in the logic E. In E, t is best read as ‘logic.’ We may hold that
if A is entailed by logic, then A is indeed necessary, so t → A ⊢ �A. How-
ever, you might think that is not the only way a proposition may be necessarily
true. Perhaps there are necessary truths not entailed by logic alone. The truths
of mathematics, for the non-logicist, might be an example. In that case, you
would allow t2m but reject m2t. Other combinations might be motivated in
other interpretations of these formal systems.

This approach is one way to define positive modalities in substructural log-
ics. In later chapters we will study the behaviour of such modalities. Before
going on to study negative modalities (negations), we need to consider some
modal operators outside this class.

3.2 Non-Normal Modalities

Each modal operator discussed so far has certain “distribution” properties. Con-
nectives with these properties are called normal modal operators, for reasons
we will come to when we discuss frame semantics in Chapter 11. There are
other modalities which arise in substructural logics which do not have these
distribution properties. We will look at just two modalities of this form.

Consider the Lambek calculus, used for interpreting syntactic types. If some
string has type A, we might be interested in strings which are made up of
iterating strings of type A. For example, if we have the category of noun, we
might be interested in the category list of noun. Something is a list of noun if
and only if it is either a noun, or a noun concatenated with another noun, or a
string of three nouns, or four nouns, and so on. Writing A◦A as A2, A◦ (A◦A)
as A3, and in general, A ◦ An as An+1, we have a natural type A∗ defined by
setting

A∗ = A ∨ A2 ∨ A3 ∨ · · ·

This modality ∗ is called the Kleene star operation for iteration. The Kleene
star is like neither a possibility nor a necessity. It is easy to see that it is not a
possibility, because

(A ∨B)∗ ⊢ A∗ ∨B∗

ought to fail, since something might be a string of objects which are each either
As or Bs, without being either a string of As or a string of Bs. For example, let
A be the type of the string a, and let B be the type of the string b. Then the
string abab is a string of A ∨Bs, but it is not a string of As or a string of Bs.

It is a bit harder to show that ∗ is not a necessity by showing that

A∗ ∧B∗ ⊢ (A ∧B)∗

ought to fail, but it does. Consider the same string abab as before, but now let
A be the type of two-letter strings and let B be the type of palindromes (strings
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which are the same backwards as forwards). The string abab is a concatenation
of two two-letter strings, ab and ab, so it has type A∗. It is also a concatenation
of two palindromes, aba and b, so it has type B∗. Is the string also of type
(A ∧ B)∗? Unfortunately not. A string is of type A ∧ B if and only if it is a
two-letter palindrome — something of the form aa or bb. The string abab is
not the concatenation of a list of two-letter palindromes, as you can see. So the
Kleene star is not a necessity operator.

This means that there is no hope of modelling the ∗ operator with the rules
of the previous section. However, this does not mean that the operator cannot
be modelled. First, note that it ought to satisfy at least these two rules:

X ⊢ A
(∗I)

X ⊢ A∗

X ⊢ A∗ Y ⊢ A∗

(∗M)
X;Y ⊢ A∗

The first tells us that anything of type A is also of type A∗. The second tells
us that anything which is a concatenation of two objects of type A∗ is also of
type A∗. This goes some way to fixing the interpretation of A∗, but it is not far
enough. The rules tell us that A ⊢ A∗ and that A∗;A∗ ⊢ A∗. They do not tell
us that A∗ is the least type with those properties. So far A∗ could be equivalent
to ⊤ and that would not conflict with anything in the rules. This is bad, as we
would like to demonstrate that ⊥∗ ⊢ ⊥ holds, at least. After all, nothing is a
concatenation of objects of type ⊥, as there are no objects of type ⊥.

The rule needed to fill out the proof theory for ∗ was discovered by Ng and
Tarski [183, 184]and adapted to the setting of dynamic algebras by Vaughan
Pratt [194, 195]. It is a formalisation of the induction rule. In our notation it is
as follows:

B;B ⊢ B A ⊢ B X ⊢ A∗

(∗E)
X ⊢ B

The motivation for this rule is simple. If B is a type closed under concatenation
(that is, if B;B ⊢ B) and if A ⊢ B, then A∗ must entail B. Take any object of
type A∗. It is a concatenation of n objects of type A, for some n > 1. This means
it is a concatenation of n objects of type B. We can show that it is therefore of
type B too, as B;B ⊢ B gives (B;B);B ⊢ B, ((B;B);B);B ⊢ B, and so on.
So, the rule makes sense under this interpretation. This gives us our rules for
the Kleene ∗ operator.

DEFINITION 3.11 (KLEENE ∗ RULES)
The rules for a Kleene ∗ operator are (∗I), (∗M) and (∗E).

LEMMA 3.12 (STAR IS A POSITIVE MODALITY)
A Kleene star operator is a positive modality.
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PROOF Suppose we have A ⊢ B. We can prove A∗ ⊢ B∗ as follows.

B∗ ⊢ B∗ B∗ ⊢ B∗

(∗M)
B∗;B∗ ⊢ B∗

A ⊢ B
(∗I)

A ⊢ B∗ A∗ ⊢ A∗

(∗E)
A∗ ⊢ B∗

�

Similarly, we can show that ⊥∗ ⊢ ⊥

⊥ ⊢ ⊥
(⊥E)

⊥;⊥ ⊢ ⊥ ⊥ ⊢ ⊥ ⊥ ⊢ ⊥∗
(∗E)

⊥∗ ⊢ ⊥

It is instructive to note that these rules characterise the Kleene ∗ insofar as any
two operators satisfying these rules must be equivalent. If ⋆ also satisfies the
rules, we can show that A⋆ and A∗ are equivalent:

A∗ ⊢ A∗ A∗ ⊢ A∗

(∗M)
A∗;A∗ ⊢ A∗

A ⊢ A
(∗I)

A ⊢ A∗ A⋆ ⊢ A⋆

(⋆E)
A⋆ ⊢ A∗

Exercises numbered from 3.9 to 3.13 examine more of the behaviour of the
Kleene star. Linear logic uses a modality, written ‘!’, and read ‘of course’, which
also fails to be a normal modality. In the interpretation of linear logic as a logic
of resource use, !A is as many copies of A as you need for the task at hand.
(Recall that linear logic has the structural rules B and C, so fusion is associative
and commutative.) It is suggested by the equivalence

!A ⊣⊢ t ∧ A ∧A2 ∧ A3 ∧ · · ·

Under this interpretation, you have !A ⊢ An for each n. !A gives you n copies
of n for any n you choose. You can duplicate !A or contract it at will. The
modality (read as ‘of course’ and called an exponential to parallel the additive
and multiplicative connectives of LL we have already seen) is used in linear
logic to provide a modelling of inferences in which resources can be duplicated
or ignored at will. In other words, it provides the wherewithal in linear logic to
model intuitionistic logic, which is free of constraints on structural rules.

To give a simple natural deduction system for LL, we will expand our def-
inition of structures just a little. For LL, a structure is either a formula or a
bracketed formula (that is, [A], for some formula A) or a structure of the form
X;Y , where X and Y are already structures. You can view the bracketing as
a limited form of punctuation, which applies only to formulae, and not to any
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greater depth. For any structure X, we will write ‘[X]’ for the structure given
by bracketing all the unbracketed formulae in X. Once we have this form of
structure, we can define the new rules for ‘!’.

DEFINITION 3.13 (! NATURAL DEDUCTION RULES)
The rules for bracketing are as follows

[A] ⊢ A [Bracket-Id] X ⇐ X; [A] [Bracket-K]

[X]; [X]⇐ [X] [Bracket-WI]

The exponential rules are then straightforward:

[X] ⊢ A
(!I)

[X] ⊢ !A

X ⊢ !A Y ([A]) ⊢ B
(!E)

Y (X) ⊢ B

“Of course” has some interesting properties. First, it is almost immediate that
!A ⊢ A.

!A ⊢ !A [A] ⊢ A
(!E)

!A ⊢ A

A more interesting result is the way that ! distributes over extensional conjunc-
tion.

LEMMA 3.14 (OF COURSE AND CONJUNCTION)
!A ◦ !B is equivalent to !(A ∧B).

PROOF First, for left-to-right

!A ◦ !B ⊢ !A ⊢ !B

!A ⊢ !A

!B ⊢ !B

[A] ⊢ A

[A]; [B] ⊢ A

[B] ⊢ B

[B]; [A] ⊢ B

[A]; [B] ⊢ B
(∧I)

[A]; [B] ⊢ A ∧B
(!I)

[A]; [B] ⊢ !(A ∧B)
(!E)

[A]; !B ⊢ !(A ∧B)
(!E)

!A; !B ⊢ !(A ∧B)
(◦E)

!A ◦ !B ⊢ !(A ∧B)

And conversely
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!(A ∧B) ⊢ !(A ∧B)

[A ∧B] ⊢ A ∧B

[A ∧B] ⊢ A

[A ∧B] ⊢ !A

[A ∧B] ⊢ A ∧B

[A ∧B] ⊢ B

[A ∧B] ⊢ !B

[A ∧B]; [A ∧B] ⊢ !A ◦ !B
[Bracket-WI]

[A ∧B] ⊢ !A ◦ !B
(!E)

!(A ∧B) ⊢ !A ◦ !B

�

Again, ! is not a normal modality, as it does not have the right distribution
properties. We cannot prove !A ∧ !B ⊢ !(A ∧B). (Try it!)

The exponential allows linear logic, which does not contain the structural
rules of contraction and weakening, to recover them in exponential contexts.
A translation τ , defined by Girard as follows, provides the recovery of these
structural rules:

pτ = p
⊤τ = ⊤
⊥τ = ⊥

(¬A)τ = !Aτ → ⊥
(A→ B)τ = !Aτ → Bτ

(A ∧B)τ = Aτ ∧Bτ

(A ∨B)τ = !(Aτ ∨Bτ )
(X,Y )τ = Xτ ;Y τ

Girard proves the following theorem:

THEOREM 3.15 (INTUITIONISTIC TRANSLATION)
X ⊢ A is provable in intuitionistic logic if and only if [Xτ ] ⊢ Aτ is provable in LL.

PROOF First, we note that if [Xτ ] ⊢ Aτ is provable in LL, then any proof, when
you erase all instances of !, and of the bracketing, is a proof of X ⊢ A in in-
tuitionistic logic. The only difficulties are involved in the exponential rules.
The structural rules become their intuitionistic analogues when the brackets
are deleted. In this transformation, [Bracket-Id] becomes standard identity,
[Bracket-K] becomes K and [Bracket-WI] becomes WI. So, the result is an in-
tuitionistic proof, as the rules K and WI are available for intuitionistic premise
combination.

Conversely, we show that if X ⊢ A is provable in intuitionistic logic, then
[Xτ ] ⊢ Aτ is provable in LL. We do this by taking the intuitionistic proof and
replacing every consecution Y ⊢ B by its translation [Y τ ] ⊢ Bτ . We then need
to show that this resulting structure can be transformed into a proof. We do
this by inspecting each intuitionistic rule, to check that we can pass from the
translation of the premises to the translation of the conclusion by valid moves
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of linear logic. We will just work through two representative cases and leave
the rest to the exercises. For conjunction introduction, the intuitionistic rule

X ⊢ A X ⊢ B

X ⊢ A ∧B

is straightforwardly mapped to the same rule in LL

[Xτ ] ⊢ Aτ [Xτ ] ⊢ Bτ

[Xτ ] ⊢ Aτ ∧Bτ

For implication elimination, the intuitionistic rule

X ⊢ A ⊃ B Y ⊢ A

X,Y ⊢ B

is mapped to the following proof fragment

[Xτ ] ⊢ !Aτ → Bτ

[Y τ ] ⊢ Aτ

[Y τ ] ⊢ !Aτ

[Xτ ;Y τ ] ⊢ Bτ

For disjunction introduction, the intuitionistic proof

X ⊢ A

X ⊢ A ∨B

becomes
[Xτ ] ⊢ Aτ

[Xτ ] ⊢ Aτ ∨Bτ

[Xτ ] ⊢ !(Aτ ∨Bτ )

The rest of the proof is just as straightforward. �

In Chapter 10, we will see how Girard discovered the exponential. For now,
however, we will move on to negative modalities.

3.3 Negative Modalities

Modalities can also be negative.

DEFINITION 3.16 (NEGATIVE MODALITIES)
A one-place connective m is a negative modality if and only if the rule

A ⊢ B

mB ⊢ mA

is valid for all formulae A and B.
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Characteristic examples of negative modalities are the connectives we use when
we deny something, or when we express the fact that we wish to reject some-
thing, or when we contradict someone. If A entails B, then excluding B involves
excluding A. Ruling out B entails ruling out A. The possibility of B failing brings
with it the possibility of A failing.

One way to deny a claim is to say that from it you can infer a falsehood.
So, if we let f be a falsehood, then A → f is a good candidate for ∼A — the
negation of A. For if A is false, then it is plausible that it implies f (a falsehood)
and if A→ f is true, then since f is false, A must be false too. Indeed, in any of
our logics of→, this negation is indeed a negative modality, as you can check.

LEMMA 3.17 (IMPLYING f IS NEGATIVE)
In any logic with implication, we have the rule

A ⊢ B

∼B ⊢ ∼A
PROOF The proof

A ⊢ B B → f ⊢ B → f

B → f ;A ⊢ f

B → f ⊢ A→ f

relies on no special behaviour of implication or the semicolon, so it is valid in
all of our proof systems containing implication. �

Indeed, the proof relies on no properties of the so-called “false proposition” f .
It need not even be false for ∼ to be a negative modality.

Furthermore, in many of our logics there are two candidates for the condi-
tional to use in defining negation. We may also take ¬A, defined as f ← A, to
be our candidate negation. There is little to choose between these two alterna-
tives if both implication connectives → and ← are available. Both say that A
leads to a falsehood. They simply describe the “following from” in a different
way.

Given these definitions of negation, if A ⊢ ∼B then we have A;B ⊢ f , and
so, B ⊢ ¬A, and vice versa. This holds no matter what the behaviour of→, ←
or f turns out to be.

In some applications, both ¬ and ∼ are worthwhile connectives and they
have different interpretations. To make this more concrete, consider actions
as an example, and let f pick out some class of actions. Then ∼A, defined as
A → f , and ¬A, defined as f ← A, are two different sorts of action. The first,
∼A, describes any action such that if composed with any action of type A it
results in an action of type f . The second, ¬A, describes any action such that
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any action of type A, composed with it, results in an action of type f . The order
of actions is important.

So, if f = ⊥ (so there are no actions of type f), an action is of type ∼A if
it cannot be followed by an action of type A. If G is the type of any action of
Giving all your money away, and if B is the type of any action involving Buying

a Ferrari, then clearly G ⊢ ∼B. Any action of type G is also an action of type
∼B, for it is impossible to give all your money away and then to buy a Ferrari
(without any intervening actions, like receiving a gift of a large sum of money).
However, it is possible to buy a Ferrari, and then give all your money away. So,
we do not have G ⊢ ¬B.

These negations make sense for choices of f other than ⊥. If f is some other
class — say the class of actions you wish to avoid — then an action is of type
∼A if following it with an action of type A is a bad thing. Conversely, a type
is of type ¬A if whenever it follows an action of type A you get as a result an
action of type f .

The same sort of thing can be given in other domains as well. In the world
of functions, an object is of type A→ ⊥ if it does not take inputs of type A. An
object is of type ⊥ ← A if it is not an acceptable input of a function of type A.

It turns out, then, that we can say quite a lot about negative operators in the
context of our language of implication. However, this might not be the whole
story of negative modalities.

For one thing, it is not immediately obvious that negation of a proposition
must be equivalent to its implying some particular false proposition.1 For exam-
ple, we might consider a logic in which there are no implication connectives, or
in which the implication connective necessary to define our negation is absent.
At any rate, in this section we will abstract away from the particular behaviour
of negative operators defined in terms of implication to find a general phe-
nomenon which may be repeated in the absence of implication as well as in its
presence.

We will take the following two rules as basic for our treatment of negation.
We will at first abstract away from the interaction with the semicolon to leave
the two negations interacting with the rules equating A ⊢ ∼B with B ⊢ ¬A.
The rules we choose modify the simple equivalence just enough to make the

1 Though there are some good arguments to the effect that this must be the case. Consider the
disjunction of all false propositions. This is a good candidate for f . If A is false, then A → f , as
A is one of the disjuncts of f . If, on the other hand, A → f , then A must be false, as it implies
a false proposition, f . (The proposition f must be false as a disjunction is true only if one of its
disjuncts are true, and all of the disjuncts of f are false.) So, A → f is true if and only if A is false.
In other words, A → f is true if and only if the negation of A is true. This idea has been discussed
by Curry [54] and has been taken up in the relevant logic literature by Meyer and Martin among
others [163].
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rules antecedent regular. We will call our two negation connectives a ‘split
negation’ following Hartonas [80, 111].

DEFINITION 3.18 (SPLIT NEGATION RULES)
The pair 〈∼,¬〉 is a split negation if and only if it satisfies

A ⊢ ∼B X ⊢ B
(¬I/∼E)

X ⊢ ¬A

A ⊢ ¬B X ⊢ B
(∼I/¬E)

X ⊢ ∼A

Note that these rules involve no punctuation marks, and no connectives other
than ∼ and ¬. They define only the interaction between the two negations ∼
and ¬ and logical consequence.

Split negations are the first connectives we have introduced which are not
uniquely characterised by the rules in which they feature. There is no way to
prove that if 〈∼1,¬1〉 and 〈∼2,¬2〉 are both split negations then they are, in any
way, equivalent.

From these rules we can show that ∼ and ¬ are, in fact, negative modalities.

LEMMA 3.19 (∼ AND ¬ ARE NEGATIVE)
From A ⊢ B it follows that both ∼B ⊢ ∼A and ¬B ⊢ ¬A for any split negation

〈∼,¬〉.

PROOF We prove a more general result

∼B ⊢ ∼B A ⊢ B

A ⊢ ¬∼B X ⊢ ∼B

X ⊢ ∼A

Now substituting ∼B for X gives us the desired result for ∼. Swapping ∼ and
¬ in this proof gives us the same result for ¬. �

Another simple result is a basic form of double negation introduction.

LEMMA 3.20 (DOUBLE NEGATION INTRODUCTION)
In any logic including a split negation, we have

X ⊢ A

X ⊢ ¬∼A

X ⊢ A

X ⊢ ∼¬A
PROOF

∼A ⊢ ∼A X ⊢ A

X ⊢ ¬∼A

¬A ⊢ ¬A X ⊢ A

X ⊢ ∼¬A
�
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We can also relate our negation operators to conjunction and disjunction.

LEMMA 3.21 (ONE DE MORGAN LAW)
For any split negation we have ∼A∧∼B ⊢ ∼(A∨B) in any logic in which ∧ and

∨ are present (and similarly for ¬ in place of ∼).

PROOF Consider the following proof:

∼A ∧ ∼B ⊢ ∼A ∧ ∼B

∼A ∧ ∼B ⊢ ∼A

A ⊢ ¬(∼A ∧ ∼B)

∼A ∧ ∼B ⊢ ∼A ∧ ∼B

∼A ∧ ∼B ⊢ ∼B

B ⊢ ¬(∼A ∧ ∼B) A ∨B ⊢ A ∨B

A ∨B ⊢ ¬(∼A ∧ ∼B)

∼A ∧ ∼B ⊢ ∼(A ∨B)

There are two important things to notice in this proof. First, we use the infer-
ence from A ∨ B ⊢ ¬(∼A ∧ ∼B) to ∼A ∧ ∼B ⊢ ∼(A ∨ B), leaving the other
premise ∼A ∧ ∼B ⊢ ∼A ∧ ∼B sotto voce. This is a simple abbreviation of the
two-premise negation rules and it helps to cut down the length of proofs. Sec-
ond, note that we can rewrite the proof swapping ¬ and ∼— and the result is
still a proof. �

From now, we will state theorems using only one negation operator, and we
leave it to the reader to note that it applies to the other negation.

That last result showed that one of the de Morgan laws (distributing nega-
tion over an extensional connective, in this case, disjunction) holds for our
negation operators. Two more of the de Morgan laws hold for our negation. In
fact, these are the simple de Morgan laws which hold for any negative operator
at all.

LEMMA 3.22 (DE MORGAN LAWS FOR NEGATIVE OPERATORS)
If − is any negative operator, the two de Morgan laws

−(A ∨B) ⊢ −A ∧ −B

−A ∨ −B ⊢ −(A ∧B)

hold in any logic containing conjunction and disjunction.

PROOF

A ⊢ A

A ⊢ A ∨B

−(A ∨B) ⊢ −A

B ⊢ B

B ⊢ A ∨B

−(A ∨B) ⊢ −B

−(A ∨B) ⊢ −A ∧ −B

A ∧B ⊢ A ∧B

A ∧B ⊢ A

−A ⊢ −(A ∧B)

A ∧B ⊢ A ∧B

A ∧B ⊢ B

−B ⊢ −(A ∧B)

−A ∨ −B ⊢ −(A ∧B)
�
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This result relied on no particular property of the negative operator other than
its being a negative operator.

We have another property of our negations, tied this time to ⊤ and ⊥

LEMMA 3.23 (TOP AND BOTTOM IN SPLIT NEGATIONS)
For any split negation ∼, ⊤ ⊢ ∼⊥ in any logics in which ⊤ and ⊥ are present.

PROOF
⊥ ⊢ ¬⊤ ⊤ ⊢ ⊤

⊤ ⊢ ∼⊥
�

That will do for properties of our split negation connectives. We can strengthen
the logic by considering different possible extensions by way of more rules.
One kind of extension looks at strengthening the negation itself, by adding
more negation rules. The other kind ties the negation to other operations in the
logic.

One way of adding conditions on negation itself is to collapse ∼ and ¬ into
one connective.

DEFINITION 3.24 (SIMPLE NEGATION)
A connective ∼ is a simple negation if it obeys the single rule

A ⊢ ∼B X ⊢ B
(∼I/∼E)

X ⊢ ∼A

or equivalently, if 〈∼,∼〉 is a split negation.

LEMMA 3.25 (SIMPLE DOUBLE NEGATION INTRODUCTION)
If ∼ is a simple negation, it satisfies

X ⊢ A
(∼∼I)

X ⊢ ∼∼A

This is obvious, as split negations satisfy the inference from X ⊢ A to X ⊢ ∼¬A,
and a simple negation identifies ∼ with ¬.

Other possible rules strengthening a split negation are the elimination rules
(∼¬E), and (¬∼E).

DEFINITION 3.26 (DOUBLE NEGATION ELIMINATION RULES)
The double negation elimination rules are

X ⊢ ∼¬A
(∼¬E)

X ⊢ A

X ⊢ ¬∼A
(¬∼E)

X ⊢ A
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If we add these rules we have a converse contraposition result.

LEMMA 3.27 (CONVERSE CONTRAPOSITION)
In any logic containing both double negation elimination rules, the two-way con-

traposition rule
∼A ⊢ B
======
¬B ⊢ A

holds also.

PROOF
¬B ⊢ ¬B ∼A ⊢ B

¬B ⊢ ¬∼A

¬B ⊢ A

∼A ⊢ ∼A ¬B ⊢ A

∼A ⊢ ∼¬B

∼A ⊢ B

�

Converse contraposition brings with it the remaining de Morgan law.

LEMMA 3.28 (FINAL DE MORGAN NEGATION LAW)
In any split negation with double negation elimination rules, the de Morgan law

∼(A ∧B) ⊢ ∼A ∨ ∼B holds.

PROOF
∼A ⊢ ∼A

∼A ⊢ ∼A ∨ ∼B

¬(∼A ∨ ∼B) ⊢ A

∼B ⊢ ∼B

∼B ⊢ ∼A ∨ ∼B

¬(∼A ∨ ∼B) ⊢ B

¬(∼A ∨ ∼B) ⊢ A ∧B

∼(A ∧B) ⊢ ∼A ∨ ∼B

�

These definitions combine to give us a connective well known in the literature
on relevant logic.

DEFINITION 3.29 (DE MORGAN NEGATION)
A de Morgan negation is a simple negation satisfying double negation elimina-
tion.

It follows that a de Morgan negation satisfies all four de Morgan laws, and
double negation introduction and elimination. This is a lot of what negation
is taken to satisfy. The negation of the relevant logics R and E is a de Morgan
negation, as is the negation in linear logic.

However, there is still more you could want of a negation connective. For
example, you could tie negation to ⊥ in new ways.
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DEFINITION 3.30 (EX CONTRADICTIONE QUODLIBET)
The ex contradictione quodlibet rule (ECQ) is

X ⊢ A X ⊢ ∼A

X ⊢ ⊥

This rule brings with it A ∧ ∼A ⊢ ⊥, and consequently, A ∧ ∼A ⊢ B for any B
you choose. This is rejected in relevant logics and their cousins on grounds of
relevance. (What has A ∧ ∼A to do with B?)

DEFINITION 3.31 (ORTHO-NEGATION)
An ortho-negation is a de Morgan negation with ECQ.

This is almost all there is to add. In fact, given the distribution of conjunction
over disjunction, an ortho-negation is very well known indeed.

DEFINITION 3.32 (BOOLEAN NEGATION)
A Boolean negation is an ortho-negation in a logic with conjunction distributing
over disjunction.

In Chapter 8, we will see that Boolean negation is uniquely defined. That is, if∼
and ¬ are two Boolean negations in some logic, then∼A and ¬A are equivalent.
This does not hold with any weaker negations we have seen. It is possible to
have two distinct ortho-negations in a logic.

Ortho-negations are also tied to ⊤ in addition to ⊥.

LEMMA 3.33 (EXCLUDED MIDDLE FOR ORTHO-NEGATION)
If ∼ is an ortho-negation, then ⊤ ⊢ A ∨ ∼A.

PROOF From ECQ we have ∼A ∧ ∼∼A ⊢ ∼⊤, and hence ∼(A ∨ ∼A) ⊢ ∼⊤
by a de Morgan law. Then the order-inverting properties of ∼ gives ∼∼⊤ ⊢
∼∼(A∨∼A), and clearing away double negations gives ⊤ ⊢ A∨∼A as desired.

�

This version of excluded middle follows from the ortho-negation laws, but it
can stand on its own as an axiom.

DEFINITION 3.34 (STRONG EXCLUDED MIDDLE)
The strong excluded middle axiom is X ⊢ A ∨ ∼A.

This is called the strong excluded middle, as it holds that instances of excluded
middle are as true as can be (they are entailed by anything at all). There are
weaker versions of excluded middle that we will see which hold merely that
excluded middle is true in some other sense. Strong excluded middle is dual to
ECQ, which holds that all instances of contradictions are as false as can be (they
entail anything at all).

We have considered axioms which strengthen negation on its own. There
are also axioms which relate ∼ and ¬ to the intensional structure.
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DEFINITION 3.35 (SEMICOLON NEGATION RULES)
The standard rules tying together a split negation with intensional structure are
these:

X;A ⊢ ¬B Y ⊢ B
(∼I;¬E)

X;Y ⊢ ∼A

X;A ⊢ ∼B Y ⊢ B
(¬I;∼E)

X;Y ⊢ ¬A

Note that in these rules, if you substitute 0 for X, you get the original rules
back.

LEMMA 3.36 (NEGATION AND IMPLICATION)
In the presence of (∼I;¬E), we can prove A → ¬B ⊢ B → ∼A, and dually, for

(¬I;∼E).

PROOF
A→ ¬B ⊢ A→ ¬B A ⊢ A

A→ ¬B;A ⊢ ¬B B ⊢ B

A→ ¬B;B ⊢ ∼A

A→ ¬B ⊢ B → ∼A

�

Other additions can be contemplated. For example, the rule

X;A ⊢ ¬B Y ⊢ B

Y ;X ⊢ ∼A

allows the proof of (A → ¬B) → (∼A ← B). We need not consider these
extensions in detail here. We now have the wherewithal to define standard
logics like R and LL. The negation of these logics deserves a name.

DEFINITION 3.37 (STRICT DE MORGAN NEGATION)
A de Morgan negation satisfying (∼I;∼E) and (¬I;∼E) is said to be a strict de

Morgan negation.

These rules are enough to capture the negations of R and linear logic. R is R+

together with a strict de Morgan negation. Similarly, LL adds a strict de Morgan
negation to MALL+, together with !.

The first step to understanding this is to show when semicolon negations
become negations defined with implication.

LEMMA 3.38 (WHEN NEGATION IS IMPLYING ∼t)
In any logic with CI, 0 and a semicolon simple negation (not necessarily de Mor-

gan), ∼A is equivalent to A→ ∼t.
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PROOF

0 ⊢ t

∼A ⊢ ∼A

0;∼A ⊢ ∼A

t;∼A ⊢ ∼A
[CI]

∼A; t ⊢ ∼A A ⊢ A

∼A;A ⊢ ∼t

∼A ⊢ A→ ∼t

A→ ∼t ⊢ A→ ∼t A ⊢ A

(A→ ∼t);A ⊢ ∼t 0 ⊢ t

(A→ ∼t); 0 ⊢ ∼A
[CI]

0; (A→ ∼t) ⊢ ∼A

A→ ∼t ⊢ ∼A

�

THEOREM 3.39 (WEAK EXCLUDED MIDDLE)
In any logic with CI, and WI, 0 and a strict de Morgan negation, 0 ⊢ A ∨ ∼A.

PROOF First, note that ∼(A∨∼A) ⊢ A∨∼A, since we have ∼(A∨∼A) ⊢ ∼A.
But this gives us ∼(A ∨ ∼A) ⊢ ∼∼(A ∨ ∼A) by double negation introduction.
But for any B where B ⊢ ∼B, we have (by the previous lemma) B ⊢ B → ∼t,
and hence B;B ⊢ ∼t, giving B ⊢ ∼t by WI and hence 0 ⊢ B → ∼t, and again
by our lemma, 0 ⊢ ∼B.

In our case of B = ∼(A∨∼A), we have 0 ⊢ ∼∼(A∨∼A), and by de Morgan
negation properties we get the desired 0 ⊢ A ∨ ∼A. �

So, in logics with de Morgan negations tied the intensional structure, with 0
and with CI and WI, we have a version of excluded middle which admits that
every formula of the form A∨∼A is true, but which does not go so far as to say
that such formulae are entailed by everything.

In these logics you can read t as the conjunction of all truths, as we have
A ⊣⊢ t → A: A holds if and only if it follows from t. The false constant ∼t is
then the disjunction of all falsehoods. For something to be false it must imply
∼t. It will follow (by WI) that A ∧ ∼A ⊢ ∼t, so every contradiction entails a
falsehood, and in particfular, every contradiction entails the false constant ∼t.
It does not follow that all contradictions entail anything whatsoever.

THEOREM 3.40 (FUSION, IMPLICATION AND NEGATION)
In any logic with C, B, 0 and a strict de Morgan negation, A ◦ B is equivalent to

∼(A→ ∼B).
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PROOF In these proofs we use Lemma 3.38 and double negation elimination
liberally, sliding between ∼A and A→ ∼t, and between B and ∼∼B at will.

A→ ∼B ⊢ A→ ∼B

(A→ ∼B);A ⊢ B → ∼t

((A→ ∼B);A);B ⊢ ∼t
[B, C]

(A;B); (A→ ∼B) ⊢ ∼t

A;B ⊢ (A→ ∼B)→ ∼t

A ◦B ⊢ ∼(A→ ∼B)

Note that in this proof we did not use double negation elimination. For the
other direction, we must use it at the last step.

A ◦B ⊢ A ◦B

A ◦B → ∼t ⊢ A ◦B → ∼t A ◦B ⊢ A ◦B

(A ◦B → ∼t); (A ◦B) ⊢ ∼t

(A ◦B → ∼t); (A;B) ⊢ ∼t

((A ◦B → ∼t);A);B ⊢ ∼t

A ◦B → ∼t ⊢ A→ (B → ∼t)

∼(A→ ∼B) ⊢ ∼∼(A ◦B)

∼(A→ ∼B) ⊢ A ◦B

�

At this point we have gone full circle, back to our original account of negation
in terms of implication and falsehood. We will learn more about negations and
other negative operators in later chapters when we introduce models for our
logics.

3.4 History

Work in one-place modalities in substructural logics is much less developed than
the two-place connectives, fusion and implication. The treatment of positive
modalities here owes much to Wansing [281], who used a one-place punctua-
tion mark for modal operators in the context of display logic.2 Dunn’s “Positive
Modal Logic” [79] is the first extensive treatment of modal logic of � and ♦
in the absence of negation. We will examine some of its results in Chapter 11.
Pratt [194, 195] has studied the behaviour of the Kleene star in the context of
substructural logics. Our rules for the star are due to him.

2 For more on display logic, see Chapter 6.
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Girard’s linear logic is introduced in the paper “Linear Logic” [96]. It was
not particularly obvious how to give linear logic a natural deduction system
with nice properties (such as antecedent regularity). Our treatment follows
Wadler’s clear presentation of the issue [278, 279]. This system, with separate
treatment of intuitionistic formulae — to which all structural rules apply — and
others, is due originally to Girard, who uses it in his Logic of Unity [98]. We will
see a smoother presentation of linear logic in Chapter 6, where we see a proof
system which needs no recourse to bracketing to give the desired behaviours to
the exponentials.

The proof theoretical treatment for negations presented here is, to the best
of my knowledge, original to this chapter. Split negations are due to Dunn [78,
80], but named by Hartonas [111].

3.5 Exercises

Practice

{3.1} Prove A ⊢ �−A directly, using T.

{3.2} Show that t ⊢ �t and �−t ⊢ t hold in the presence of Kr, and that their converses

hold in the presence of Krc.

{3.3} Show that A ⊢ ��−A and �−�A ⊢ A hold in any logics with � and �−.

{3.4} What negation rules or structural rules are necessary to prove the following con-

secutions? A ⊢ B ⊢ ∼B ⊢ ∼A; ∼B ⊢ ∼A ⊢ A → B; A → ∼A ⊢ ∼A; ∼⊤ ⊢ ⊥;

∼(A→ ⊥) ⊢ ∼A→ ⊥; ∼(A→ A) ⊢ ⊥.

Problems

{3.5} Under which circumstances does ⊤ ⊢ �−⊤? When does �⊥ ⊢ ⊥?

{3.6} Devise a structural rule with which you can prove ��A ⊣⊢ A. Show that under

these conditions � is possibility-like, as well as necessity-like. (HINT: show that under

these circumstances �A ⊣⊢ �−A.)

{3.7} Define ♥A to be A ◦ A. Does ♥A act like a possibility operator? Does it satisfy

the conditions in Lemma 3.4 for a possibility-style operator? If it does not in an arbitrary

substructural logic, are there any structural rules you can impose on fusion to make it a

possibility style operator?

{3.8} Consider the connective⇒, defined by setting A⇒ B to be �(A→ B) for some

connectives � and→. What connective does it residuate? Similarly for �(B ← A).

{3.9} Show that t ⊣⊢ t∗.

{3.10} Show that A∗ ⊢ A∗ → A∗.

{3.11} Show that if A ⊢ B∗ is provable then A∗ ⊢ B∗ is provable too.

{3.12} Convince yourself that (A ◦B)∗ ⊢ (A∨B)∗ ought to be valid using the interpre-

tation of the Kleene star. Then prove it. (HINT: It might help to prove A ◦B ⊢ (A ∨B)∗

first, and then apply the result of Exercise 3.11.)
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{3.13} Is A∗ equivalent to A in R? Are they equivalent when you add the structural rule

M?

{3.14} Show that A ◦ !B ⊢ A, !A ⊢ A, t ⊢ !t and !A ⊢ !A ◦ !A in LL.

{3.15} Show that !A is equivalent to t ∧A ∧ (!A ◦ !A).

{3.16} Show that t is equivalent to !⊤. What is !⊥?

{3.17} Show that !(A ◦B) ⊢ !A ◦ !B and that !(A ∧B) ⊢ !A ∧ !B.

{3.18} Show that !(A ∧B) is equivalent to !(!A ∧ !B).

{3.19} Under what circumstances does A◦∼A→ ∼t hold? What about A∧∼A→ ∼t?

{3.20} Show that it is possible to have two split negations 〈∼1,¬1〉 and 〈∼2,¬2〉 such

that no pair of the four negation connectives are equivalent. (HINT: This will be difficult

if you wish to use techniques we have seen so far. Once you get to either Chapter 8 or

11 the problem will become much simpler.)

{3.21} Show that ∼¬ is a positive modality. Is it possibility- or necessity-like?

{3.22} Try proving ⊤ ⊢ ∼⊥, ∼(A∨B) ⊢ ∼A∧∼B. Try proving ∼A∨∼B ⊢ ∼(A∧B)
and ∼⊤ ⊢ ⊥ using (∼¬E) and (¬∼E).

{3.23} Under what circumstances is �−A equivalent to ∼�∼A?

{3.24} Suppose ∼ is a de Morgan negation, and consider a system in which C holds.

Define A + B to be ∼A → B, and define f to be ∼t. Show that every formula is

equivalent to one in which the only occurring negations are of the form ∼p, where p is

an atomic formula.

{3.25} Consider syntactic strings. When is a string of type A → ⊥? When is a string

of type ⊥ ← A? Are there any strings of type A ∧ (A → ⊥)? (If x was such a string,

what type would xx have?) So, are the logics L or LI a good match for the theory of

syntactic strings when it comes to admitting types like ⊥ and operators like ∧? What

other structural rules should you add to L or LI to make it a better fit?

Project

{3.26} An alternative way to introduce negation is to treat∼p as primitive, and to define

∼A in terms of the subformulae of A. So we can say ∼(A ∧B) is simply ∼A ∨∼B, and

∼(A∨B) is∼A∧∼B, ∼∼A is A, and so on. Defining∼(A→ B) leaves us with options.

The most often taken one is A ∧ ∼B. Clearly, ∼⊤ can be ⊥ and ∼⊥ can be ⊤ (these

are practically forced by the conjunction and disjunction rules). Defining ∼(A ◦B) and

∼t leaves you more room to move. Then one has rules for negated connectives in much

the same way as one has rules for the connectives in a standard system. For example, if

we take ∼(A→ B) to be equivalent to A∧∼B then we have the following introduction

and elimination rules for a negated conditional:

X ⊢ A X ⊢ ∼B
(∼ →I)

X ⊢ ∼(A→ B)

X ⊢ ∼(A→ B)
(∼ →E1)

X ⊢ A

X ⊢ ∼(A→ B)
(∼ →E2)

X ⊢ ∼B
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Formulate natural deduction rules for the other connectives. Show in the system that all

of the de Morgan laws hold. Show that the negation rules in this chapter need not be

satisfied by a negation of this type. Characterise the differences between this approach

to negation and the one we have taken.

This kind of theory of negation is inspired by Nelson’s theory of constructible fal-

sity [182] and has been extensively studied in the context of substructural logics by

Heinrich Wansing [280]. Related work in relevant logics is in Dunn’s semantics for

RM [73].
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Chapter 4

Hilbert Systems

What is now proved

was once only imagin’d.

— William Blake, The Marriage of Heaven and Hell

We have examined natural deduction systems for the last two chapters. These
are not the only way to present a logic — another way is what has come to be
known as a Hilbert system. A Hilbert system for a logic is a way of generating
a set of formulae, called the theorems in the logic. These are the logical truths.
They are generated from a list of axioms and a list of primitive rules. The set
of theorems is the smallest set containing all of the axioms and which is closed
under all of the rules. A Hilbert proof is a list in which every element is an axiom
or follows from earlier elements in the list by way of one of the rules. Here is an
example Hilbert system for the logic DMALL[◦,→,∧,∨,∼], the exponential-free
fragment of linear logic, with distribution added. (Or equivalently, R without
contraction.) The axiomatisation has two rules

A,B =⇒ A ∧B A,A→ B =⇒ B

These rules are read as follows. If A and B are both theorems of the logic, so is
A ∧B. If A and A→ B are theorems of the logic, so is B. The comma in these
rules is not related to the comma as a punctuation mark in structures.

The Hilbert system has many axioms. The first two deal with implication
alone

(A→ (B → C))→ (B → (A→ C)) (A→ B)→ ((C → A)→ (C → B))

Then we have axioms dealing with implication and its interaction with conjunc-
tion and disjunction

A ∧B → A A ∧B → B (A→ B) ∧ (A→ C)→ (A→ B ∧ C)

A→ A ∨B B → A ∨B (A→ C) ∧ (B → C)→ (A→ B ∨ C)

A ∧ (B ∨ C)→ (A ∧B) ∨ (A ∧ C)

73
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Axioms connect implication to fusion

(A→ (B → C))→ (A ◦B → C) (A ◦B → C)→ (A→ (B → C))

And finally, for a de Morgan negation to this system, you add the axioms

(A→ ∼B)→ (B → ∼A) ∼∼A→ A

This Hilbert system is quite elegant, because it has many axioms but few rules.
The rules dictate the minimal behaviour of conjunction and implication, and
the axioms lay over that the extra behaviour of the connectives. The axioms are
nicely separable too. The implication axioms are adequate for the implication
part of the logic, the conjunction axioms pin down the behaviour of conjunction,
and so on.

In this chapter we will see how to construct Hilbert systems, like this one,
for the logics we have constructed with natural deduction systems. The main
theorem of this chapter will be the equivalence theorem, which shows that the
Hilbert system and the natural deduction system do exactly the same work.
In the first section we will “mass produce” Hilbert systems for a large class of
natural deduction systems. Then in the second section we will see how to “hand
tune” these Hilbert systems to make them more like the elegant system we have
just seen.

4.1 Mass-produced Hilbert Systems

To relate our systems of natural deduction to a Hilbert system, we need to
understand how a Hilbert system is to be read. What are the axioms and the
theorems of a Hilbert system understood to be? The simple answer is that they
are logical truths. But in our logics, there are choices for the notion of logical
truth. Are they the formulae entailed by ⊤? Or by t? If you have more than
one t constant, which one do you pick? Our answer here will be simple. You
can pick any truth constant you like. Provided that the language of your logic is
expressive enough to allow you to build your Hilbert system. For this to occur,
a number of requirements need to be met. First, you need a truth constant.
Second, you need an implication connective related to that truth constant. If
the truth constant models an identity punctuation mark 0, which is the identity
for a binary punctuation mark, then you need a conditional modelled with that
binary punctuation mark.

Finally, you need a way to interpret all of the structures of the natural de-
duction system in your Hilbert system. So, if your proof system has a binary
punctuation mark, your language needs the corresponding fusion operator. If
your proof system has a one-place punctuation mark, your language needs the
corresponding possibility operator.
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DEFINITION 4.1 (EXPRESSIVITY OF A LANGUAGE)
A language Lang is expressive of a set of structures Struct if and only if

⋄ For every identity punctuation mark 0 in Struct, Lang has a corresponding
truth constant t.

⋄ For every one-place punctuation mark • in Struct, Lang has the correspond-
ing possibility operator ♦−.

⋄ For every two-place punctuation mark ; in Struct, Lang has the correspond-
ing fusion operator ◦.

⋄ For some two-place punctuation mark in Struct, Struct contains an identity
0 (either left or right) and Lang contains a corresponding conditional →,
such that if 0 is a left identity, → is a left-to-right conditional, and if 0 is a
right identity,→ is a right-to-left conditional.

From now, we will assume we have some natural deduction system in mind,
with an expressive language. We will use ‘0’ for the chosen identity, ‘;’ as the
chosen two-place punctuation mark and ‘→’ as the chosen conditional. We will
assume that the conditional is a left-to-right conditional. If, instead, you wish to
apply our translation to right-to-left conditionals, you will have to make some
appropriate adjustments to the translation. These will be straightforward.

Once we have a language expressive in this way, we can translate the conse-
cutions of our natural deduction system into formulae, ready to be used in the
Hilbert system.

DEFINITION 4.2 (THE TRANSLATION OF A CONSECUTION)
If X is a structure, the translation τ(X) of X is given recursively as follows.

τ(A) = A (where A is any formula)
τ(0) = t

τ([A]) = !A
τ(X;Y ) = τ(X) ◦ τ(Y )
τ(X,Y ) = τ(X) ∧ τ(Y )

τ(•X) = ♦−τ(X)

The translation of a consecution τ(X ⊢ A) is defined to be τ(X)→ A.

This chapter is devoted to proving the following theorem.

THEOREM 4.3 (HILBERT SOUNDNESS AND COMPLETENESS)
X ⊢ A is provable in a system S if and only if τ(X ⊢ A) is a theorem of the

corresponding Hilbert system HS, provided that the system S is expressive.

To prove this result we need to define the corresponding Hilbert system HS for
any system S. To do this, we will have a number of rule sets which will model
the behaviour of different parts of the system S.
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First, the core rule set, which dictates the behaviour of our chosen implica-
tion connective and its intensional structure.

DEFINITION 4.4 (CORE RULE SET)
The core rule set for a Hilbert system consists of the following axiom (the iden-
tity axiom) and rules

A → A
A ◦B → C ⇐⇒ A→ (B → C)

A→ B,C → D =⇒ (B → C)→ (A→ D)
t→ A ⇐⇒ A

A,A→ B =⇒ B

Some of these rules are two-way rules. If t → A is a theorem, so is A, and
conversely. The last rule, from A and A → B to infer B, is the modus ponens

rule.

DEFINITION 4.5 (CONJUNCTION RULE SET)
The conjunction rule set is made up of the following axioms, together with one
rule.

A ∧B → A
A ∧B → B

(A→ B) ∧ (A→ C) → (A→ B ∧ C)
A,B =⇒A ∧B

DEFINITION 4.6 (DISJUNCTION RULE SET)
The disjunction rule set is made up of the following axioms.

A→A ∨B
B→A ∨B

(A→ C) ∧ (B → C)→ (A ∨B → C)

DEFINITION 4.7 (TOP AND BOTTOM AXIOMS)
The constants ⊤ and ⊥ are governed by these axioms (respectively).

A→⊤
⊥→A

If we have extensional punctuation, you need the distribution rule set, consist-
ing of just one axiom.
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DEFINITION 4.8 (DISTRIBUTION AXIOM)
The distribution axiom is

A ∧ (B ∨ C)→ (A ∧B) ∨ (A ∧ C)

DEFINITION 4.9 (EXTRA INTENSIONAL RULES)
For any extra conditional or fusion connectives not axiomatised we add the
rules

A ◦′ B → C ⇐⇒ A→ (B →′ C)
A ◦′ B → C ⇐⇒ B → (C ←′ A)

as relevant. If ◦′ is present without left-to-right implication, you must add

A→ B =⇒ C◦′A→ C◦′B C◦′⊥ → ⊥ C◦′ (A∨B)→ (C◦′A)∨(C◦′B)

similarly, if ◦′ is present without a right-to-left implication, you must add

A→ B =⇒ A◦′C → B◦′C ⊥◦′C → ⊥ (A∨B)◦′C → (A◦′C)∨(B◦′C)

In these rules we deal with any extra structural connectives we had not already
modelled, and with the remaining conditional other than → tied to our core
punctuation mark.

Then if you have negation connectives, you need to add the corresponding
rule sets.

DEFINITION 4.10 (NEGATION RULES)
The negation rules are

A→ ∼B⇐⇒B → ¬A
A→ ∼B =⇒ B → ∼A
∼¬A → A

(A→ ∼B) → (B → ¬A)
(B → ¬A) → (A→ ∼B)

A ∧ ∼A → B
A → B ∨ ∼B

a split negation, simple negation, double negation elimination, an intensional
negation, ECQ and strong excluded middle, respectively.

DEFINITION 4.11 (POSITIVE MODAL RULES)
If a matching � and ♦− are present, then we add the rules

A→ �B ⇐⇒ ♦−A→ B

If ♦− is present alone, without a corresponding �, we have instead

A→ B =⇒ ♦−A→ ♦−B ♦−⊥ → ⊥ ♦−(A ∨B)→ ♦−A ∨ ♦−B
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DEFINITION 4.12 (KLEENE STAR RULES)
For the Kleene star, we add the rules

A → A∗

A∗ ◦A∗ → A∗

B ◦B → B, A→ B =⇒A∗ → B

DEFINITION 4.13 (OF COURSE RULES)
For the exponential !, we add the rules

!A → !!A
A ◦ !B → A

!A → !A ◦ !A
t → !t

A→ B =⇒ !A→ !B

DEFINITION 4.14 (TRANSLATIONS OF STRUCTURAL RULES)
For any structural rules of the form X ⇐ X ′, we add the axiom

τ(X ′)→ τ(X)

DEFINITION 4.15 (THE HILBERT SYSTEM CORRESPONDING TO S)
The Hilbert system HS corresponding to an expressive natural deduction sys-
tem S is the collection of rule sets corresponding to the connectives and rules
appearing in S.

Our result then is made up of two theorems. First, that anything provable by
the Hilbert system is also provable in the natural deduction system. And then
its converse. We attempt the first theorem first.

THEOREM 4.16 (SOUNDNESS FOR HS)
If there is a proof of A in HS, then in S, 0 ⊢ A can be proved.

To prove this we need a small lemma, about τ .

LEMMA 4.17 (τ IS A FITTING TRANSLATION)
In any natural deduction system S, we can prove X ⊢ τ(X). Furthermore, if

X ⊢ A is provable, so is τ(X) ⊢ A.
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PROOF The first part is a simple induction on the complexity of X. Clearly, if
X is a formula or 0, then the proof is an instance of an axiom. Otherwise, note
that Y ;Z ⊢ τ(Y ) ◦ τ(Z) follows from Y ⊢ τ(Y ) and Z ⊢ τ(Z) by (◦I), and
Y,Z ⊢ τ(Y ) ∧ τ(Z) follows from Y ⊢ τ(Y ) and Z ⊢ τ(Z) by eK and (∧I), and
finally, •Y ⊢ ♦−τ(Y ) follows from Y ⊢ τ(Y ) by (♦−I). So each induction step
goes through.

The second part is harder. We will prove it by step-by-step replacing the
punctuation marks in X by their corresponding connectives. The rule (◦E) tells
us immediately that if X(B;C) ⊢ A then X(B ◦C) ⊢ A, and (tE) tells us that if
X(0) ⊢ A then X(t) ⊢ A, and (♦−E) that if X(•B) ⊢ A then X(♦−B) ⊢ A. For the
extensional comma, if X(B,C) ⊢ A then since B ∧ C ⊢ B and B ∧ C ⊢ C, two
cuts give us a proof of X(B∧C,B∧C) ⊢ A, and by eWI, X(B∧C) ⊢ A. Continue
this process, step-by-step replacing each punctuation mark by its corresponding
connective, and you have the result. �

Now we can prove the theorem.

PROOF This proof is a tedious induction on the length of the Hilbert proof of
A. We first must show that if A is an axiom of the Hilbert system, then 0 ⊢ A
can be proven in the natural deduction system. Then the inductive step involves
going over each rule of the Hilbert system and showing that if you can prove
the premises of the rule in the natural deduction system, you can also prove the
conclusion.

There are an awful lot of rules and axioms we have seen, and going through
every last one of them would make this chapter much more tedious than it need
be. I will go through a representative sample of the axioms and rules.

Proofs of many of the axioms have been presented already. For example, on
page 34 you have a proof of (A → C) ∧ (B → C) ⊢ A ∨ B → C, and this is
easily transformed into a proof of 0 ⊢ (A → C) ∧ (B → C) → (A ∨ B → C).
The same goes for the other conjunction or disjunction axioms. For the fusion
distribution laws, we have the following:

C ⊢ C A ⊢ A
(◦I)

C;A ⊢ C ◦A
(∨I)

C;A ⊢ (C ◦A) ∨ (C ◦B)

C ⊢ C B ⊢ B
(◦I)

C;B ⊢ C ◦B
(∨I)

C;B ⊢ (C ◦A) ∨ (C ◦B)
∗(∨E)

C;A ∨B ⊢ (C ◦A) ∨ (C ◦B)
∗(◦E)

C ◦ (A ∨B) ⊢ (C ◦A) ∨ (C ◦B)
[Left Push]

0;C ◦ (A ∨B) ⊢ (C ◦A) ∨ (C ◦B)
(→I)

0 ⊢ C ◦ (A ∨B)→ (C ◦A) ∨ (C ◦B)

(We have suppressed some side formulae in the steps marked with an asterisk.)
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Another example is the exponential axiom A ◦ !B → A.

A ◦ !B ⊢ A ◦ !B

!B ⊢ !B

A ⊢ A

A; [B] ⊢ A

A; !B ⊢ A
(◦E)

A ◦ !B ⊢ A
[Left Push]

0;A ◦ !B ⊢ A
(→I)

0 ⊢ A ◦ !B → A

The remaining axioms are also straightforward to prove, except for the axiom
τ(X)→ τ(X ′), corresponding to the structural rule X ′ ⇐ X. This requires the
lemma. The lemma gives us X ′ ⊢ τ(X ′), and the structural rule then gives us
X ⊢ τ(X ′). The second part of the lemma then shows us that τ(X) ⊢ τ(X ′) is
provable, which is then transformed into 0 ⊢ τ(X)→ τ(X ′) by 0 and→ rules.

We will try a couple of the rules. From 0 ⊢ A ◦ B → C we can derive
0 ⊢ B → (A→ C) like this

A ⊢ A B ⊢ B
(◦I)

A;B ⊢ A ◦B 0 ⊢ A ◦B → C
(→E)

A;B ⊢ C
(→I)

A ⊢ B → C
[Left Push], (→I)

0 ⊢ A→ (B → C)

From 0 ⊢ A→ B, 0 ⊢ C → D you can derive 0 ⊢ (B → C)→ (A→ D) like this

B → C ⊢ B → C

0 ⊢ A→ B
(→E), [Left Pop]

A ⊢ B
(→E)

(B → C);A ⊢ C 0 ⊢ C → D
(→E), [Left Pop]

(B → C);A ⊢ D
(→I)

B → C ⊢ A→ D
[Left Push], (→I)

0 ⊢ (B → C)→ (A→ D)

From 0 ⊢ A and 0 ⊢ A → B you can derive 0 ⊢ B trivially by (→E), and from
0 ⊢ A→ ∼B you have 0 ⊢ B → ¬A using the negation rules.

Finally, for the Kleene star rule, suppose 0 ⊢ B ◦B → B and 0 ⊢ A→ B are
provable. Then we have proofs of B;B ⊢ B and A ⊢ B by simple manipulation,
and hence, (with A∗ ⊢ A∗) the rule (∗E) gives A∗ ⊢ B and hence 0 ⊢ A∗ → B
as desired.

This inspection of the rules completes our presentation of the proof. �
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COROLLARY 4.18 (PROVING CONSECUTIONS IN HS)
If τ(X ⊢ A) is provable in the Hilbert system HS, then X ⊢ A is provable in S.

PROOF If τ(X ⊢ A) is provable in the Hilbert system, then our previous theo-
rem shows that there is a proof in S of 0 ⊢ τ(X ⊢ A). That is, there is a proof
of 0 ⊢ τ(X) → A. However, we have a proof of X ⊢ τ(X), so we can paste
these two proofs together like this:

X ⊢ τ(X) 0 ⊢ τ(X)→ A

X ⊢ A

resulting in the proof of X ⊢ A we wanted. �

That shows us that the Hilbert system is sound. Anything it can prove is al-
ready provable in the natural deduction system. However, this leaves open the
possibility that the system is too weak. Maybe there are not Hilbert proofs of
everything provable in the natural deduction theorem.

The rest of this section is devoted to showing that this cannot be the case.
The Hilbert system is also complete. It covers all of the ground of the natural
deduction system. To prove the completeness theorem, it is helpful to first prove
a few more lemmas.

LEMMA 4.19 (TRANSLATION LEMMA)
If there is a Hilbert proof of A→ B then there is also a Hilbert proof of τ(X(A))→
τ(X(B)).

PROOF This is a simple induction on the complexity of X(A). The atomic case
is simple. For the induction steps we need only that t → t is provable (simple)
and that if A→ B is provable, so are

♦−A→ ♦−B
C ◦′ A→ C ◦′ B
A ◦′ C → B ◦′ C
C ∧A→ C ∧B
A ∧ C → B ∧ C

in any Hilbert system in which the rules for ♦−, ◦′ and ∧ are included. We will
choose the possibility rule, one fusion rule and one conjunction rule, and leave
the others for you.

First, possibility. If the necessity operator � is available, we can reason as
follows. We have ♦−B → ♦−B, and so one Hilbert rule gives us B → �♦−B.
The transitivity A → B,C → D =⇒ (B → C) → (A → D) gives us, when
B = C, with modus ponens, simple transitivity. In other words, if A → B, and
B → C are provable, so is A → C. Applying this to our case, where we have
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A → B and B → �♦−B, we get A → �♦−B. But the necessity and possibility
rule applies again, to give us ♦−A→ ♦−B as desired.

If � is not available to give us this trick, then we must rely on the rule
A→ B =⇒ ♦−A→ ♦−B to give us the result.

Now for C ◦′A→ C ◦′B. If the left-to-right conditional→ for ◦′ is available,
we can reason like this. We have C ◦ B → C ◦′ B as an axiom, so the fusion
rule gives us C → (B →′ C ◦′ B). But we have A→ B, so we also have (B →′

C ◦′B)→ (A→′ C ◦′B), so putting these together we have C → (A→′ C ◦′B)
and hence C ◦′ A→ C ◦′ B as desired.

If the left-to-right conditional is not available, we must rely on the rule
A→ B =⇒ C ◦′ A→ C ◦′ B, provided for the occasion.

Lastly, A ∧ C → B ∧ C. Clearly we have A ∧ C → B (since A → B) and
A∧C → C. But (A∧C → B)∧ (A∧C → C)→ (A∧C → B∧C) is an instance
of an axiom, so by the modus ponens rule, we have A ∧ C → B ∧ C.

The other two cases are similar. �

LEMMA 4.20 (DISTRIBUTION OF STRUCTURE)
τ
(

X(A ∨B))→ τ(X(A)) ∨ τ(X(B)) is provable in the Hilbert System HS.

PROOF This is also an induction on the complexity of X. The base case is
trivial. For the induction steps we need to show that if X(A) is of the form
Y (A), Z or Z, Y (A) or Y (A);Z, Z;Y (A) or •Y (A) then granted that the hy-
pothesis holds of Y (A) then it also holds of X(A). We will do three out of the
four steps.

If X(A) = Y (A), Z then we need only show that (Y (A∨B))∧Z →
(

Y (A)∧

(Z)
)

∨
(

Y (B) ∧ (Z)
)

(We suppress the each τ for convenience). But we have
Y (A ∨ B) → Y (A) ∨ Y (B) by hypothesis, and so, we have Y (A ∨ B) ∧ Z →
(

Y (A) ∨ Y (B)
)

∧ Z. But because we have a comma in the system S, we have

distribution in HS. As a result,
(

Y (A)∨Y (B)
)

∧Z →
(

Y (A)∧Z
)

∨
(

Y (B)∧Z
)

,
giving us the result.

If X(A) = Y (A);′Z, then we need to show that Y (A ∨ B) ◦′ Z →
(

Y (A) ◦′

Z
)

∨
(

Y (B) ◦′ Z
)

. If the left-to-right conditional→′ of ◦′ is available, we have

Y (A) →
(

Z →′ Y (A) ◦′ Z
)

and Y (B) →
(

Z →′ Y (B) ◦′ Z
)

, so we have

Y (A) →
(

Z →′ (Y (A) ◦′ Z) ∨ (Y (B) ◦′ Z)
)

and Y (B) →
(

Z →′ (Y (A) ◦′

Z) ∨ (Y (B) ◦′ Z)
)

, which together give us Y (A) ∨ Y (B) →
(

Z →′ (Y (A) ◦′

Z) ∨ (Y (B) ◦′ Z)
)

, but the hypothesis that Y (A ∨ B) → Y (A) ∨ Y (B) means

that Y (A ∨ B) →
(

Z → (Y (A) ◦′ Z) ∨ (Y (B) ◦′ Z)
)

is provable, and hence,

we have Y (A ∨ B) ◦′ Z →
(

Y (A) ◦′ Z
)

∨
(

Y (B) ◦′ Z
)

as we desired. If the
relevant conditional is not available for this argument, then we rely on the
axiom (A ∨B) ◦′ C → (A ◦′ C) ∨ (B ◦′ C).
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If X(A) = •Y (A) then we wish to prove ♦−(Y (A ∨B))→ ♦−Y (A) ∨ ♦−Y (B).
If � is present, then we have Y (A) → �♦−Y (A), and Y (B) → �♦−Y (B), and
hence Y (A) → �♦−Y (A) ∨�♦−Y (B), and Y (B) → �♦−Y (A) ∨�♦−Y (B), which
together give us Y (A)∨Y (B)→ �♦−Y (A)∨�♦−Y (B), and hence Y (A)∨Y (B)→
�(♦−Y (A)∨ ♦−Y (B)), and ♦−(Y (A)∨ Y (B))→ ♦−Y (A)∨ ♦−Y (B) as desired. If �
is not available for this proof, you must rely on the axiom ♦−(A∨B)→ ♦−A∨♦−B
for this result. �

Now we can prove our completeness theorem.

THEOREM 4.21 (COMPLETENESS FOR HS)
If X ⊢ A is provable in the system S, then τ(X ⊢ A) is provable in HS.

PROOF If X ⊢ A is an axiom, then τ(X ⊢ A) is provable. The only axioms are
A ⊢ A, 0 ⊢ t, or a special negation axiom. These translate into axioms in HS.

If X ⊢ A follows from a collection of consecutions by a rule, then we can
assume that the premises in that rule are all provable (under translation) in
HS. It remains to show that the translation τ(X ⊢ A) of the conclusion is also
provable. To do this you must inspect every rule to show that if the translation
of the premises are HS theorems, then so is the translation of the conclusion.
This is a tedious but simple task. We will work through the details of some
representative rules and leave the rest as an exercise.

Consider (→E), (◦E), (∨E), (∼I), (♦−E), and the structural rules.
First, if the premises of (→E) are provable, then we have a Hilbert proof of

τ(X) → (A → B) and τ(Y ) → A. We need a proof of τ(X;Y ) → B, that is
τ(X) ◦ τ(Y ) → B. From τ(X) → A → B we can derive τ(X) ◦ A → B. From
τ(Y ) → A we can derive τ(X) ◦ τ(Y ) → τ(X) ◦ A, and from these we have
τ(X) ◦ τ(Y )→ B as desired.

For (◦E), we want to derive τ(Y (X)) → C from τ(X) → A ◦ B and
τ(Y (A;B)) → C. Now τ(Y (A;B)) = τ(Y (A ◦ B)), and that if we have a
proof of A→ B then we have a proof of Y (A)→ Y (B).

For (∨E), we need a proof of τ(Y (X))→ C from τ(X)→ A∨B, τ(Y (A))→
C, and τ(Y (B))→ C. But by Lemma 4.20 τ(X)→ A ∨B gives us τ

(

Y (X)
)

→

τ
(

Y (A)
)

∨ τ
(

Y (B)
)

, and hence τ
(

Y (X)
)

→ C as desired.
For (∼I), suppose we have a proof of A→ ¬B, and of τ(X)→ B. Then we

have B → ∼A, by the ¬/∼-rule of HS, and hence τ(X)→ ∼A as desired.
For (♦−E) we need to show that if τ(X) → ♦−A, τ(Y (•A) → B are provable

then so is τ(Y (X)) → B. But τ(Y (•A)) = τ(Y (♦−A)), and so we have a proof
of τ(Y (X)) → τ(Y (•A)), which with transitivity gives us τ(Y (X)) → B as
desired.

For structural rules of the form X ′ ⇐ X, we need to show that if τ(X ′)→ A
is provable, so is τ(X)→ A. But we have τ(X)→ τ(X ′) as an axiom, so simple
transitivity suffices.
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For ECQ, if τ(X)→ A and τ(X)→ ∼A are provable, then we have τ(X)→
A ∧ ∼A, which with A ∧ ∼A→ ⊥ gives τ(X)→ ⊥ as we wished.

For (∗M), if τ(X) → A∗ and τ(Y ) → A∗ then τ(X) ◦ τ(Y ) → A∗ ◦ A∗ and
by the Hilbert axiom A∗ ◦ A∗ → A∗ we get τ(X) ◦ τ(Y ) → A∗, but this is just
τ(X;Y )→ A∗ as we desired.

For (!I), we need just a little more work. First, we note that in LL, τ([X])
can be transformed into a proposition of the form !B, since !C ◦ !D is equivalent
to !(C ∧ D). Now, we will show that if !A ⊢ B is provable, so is !A ⊢ !B. This
follows from !!A ⊢ !B, and the axiom !A→ !!A.

These examples complete our presentation of the proof. �

4.2 Hand Tuning

The Hilbert system we have seen has been adequate for our logics, though the
systems contain redundancy in many cases. It is good for a Hilbert system to
have few rules. In this section we will see what changes can be made in order
to cut down on the number of rules used.

LEMMA 4.22 (PREFIXING AND SUFFIXING)
If the system contains B and B′, the transitivity rule

A→ B,C → D =⇒ (B → C)→ (A→ D)

can be replaced by the axioms

(A→ B)→
(

(C → A)→ (C → B)
)

(A→ B)→
(

(B → C)→ (A→ C)
)

which do the same job.

PROOF The axioms are provable with B and B′, as is simple to check. Once
you have these axioms, if A → B is provable, so is (B → C) → (A → C), by
the second axiom, and modus ponens. If C → D is provable, so is (A → C) →
(A → D), by the first axiom and modus ponens. Applying the second axiom
again, with modus ponens, we get (B → C)→ (A→ D) as required. �

We can also eliminate the t rules.

LEMMA 4.23 (t AXIOM)
In the presence of Right Push and Right Pop you can replace the t rules with

A↔ (t→ A).

PROOF Straightforward. �
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LEMMA 4.24 (FUSION AXIOMS)
In the presence of B and Bc you can replace the fusion rules with (A ◦B → C)↔
(A→ (B → C)).

PROOF It is sufficient to show that these are provable in the natural deduction
system, given B and Bc, as they, with modus ponens, give the fusion rules. The
following proofs suffice:

A ◦B ⊢ A ◦B

A ◦B → C ⊢ A ◦B → C

A ◦B → C;A ◦B ⊢ C

(A ◦B → C); (A;B) ⊢ C
[B]

((A ◦B → C);A);B ⊢ C
2× (→I)

A ◦B → C ⊢ A→ (B → C)

A ◦B ⊢ A ◦B

A→ (B → C) ⊢ A→ (B → C)
2× (→E)

(A→ (B → C);A);B ⊢ C
[Bc]

A→ (B → C); (A;B) ⊢ C

A→ (B → C);A ◦B ⊢ C
(→I)

A→ (B → C) ⊢ A ◦B → C

�

LEMMA 4.25 (NEGATION RULES)
In the presence of ∼E;¬I, you can replace the negation rules with (A → ∼B) →
(B → ¬A) and (A→ ¬B)→ (B → ∼A). �

For the other structural rules, we can replace the fusion axiom with the follow-
ing axioms in Table 4.1.

For each row of the table, you can replace the fusion axiom with the corre-
sponding implication axiom, which does the same job. For example, instead of
the WI axiom A→ A ◦A, we can use the implication axiom (A→ B)∧A→ B.
The equivalence holds as follows. If we have A → A ◦ A, then we can show
that (A → B) ∧ A → B, as follows. First, it is straightforward to show that
(A→ B)◦A→ B is provable in the Hilbert system. But (A→ B)∧A→

(

(A→

B) ∧ A
)

◦
(

(A→ B) ∧ A
)

is an instance of the WI fusion axiom. Then we have
(

(A → B) ∧ A
)

◦
(

(A → B) ∧ A
)

→ (A → B) ◦ A, so transitivity of→ gives us
(A→ B) ∧A→ B as desired.

Conversely, to prove A → A ◦ A, we have proofs of A → A and A → (A →
A◦A), so we have A→ (A→ A◦A)∧A. But by our axiom, (A→ A◦A)∧A→
A ◦A, so transitivity gives A→ A ◦A as desired.

Demonstrating the other axioms directly is a good exercise in constructing
Hilbert proofs, and they are left for Exercise 4.2.
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Label Axiom

B (A→ B)→
(

(C → A)→ (C → B)
)

B′ (A→ B)→
(

(B → C)→ (A→ C)
)

Bc
(

(B ← C)← (A← C)
)

← (B ← A)

C
(

A→ (B → C)
)

→
(

B → (A→ C)
)

CI A→
(

(A→ B)→ B
)

W
(

A→ (A→ B)
)

→ (A→ B)

WI (A→ B) ∧A→ B

M A→ (A→ A)

K A→ (B → A)

K′ A→ (B → B)

Table 4.1: Structural Rules

4.3 Consequence and Deduction Theorems

In Hilbert systems, we can define a new notion of consequence, by setting Σ ⊢H

A if there is a Hilbert proof of A using additional axioms from among those in
the set Σ. In substructural logics in general, ⊢H differs from ⊢. For example,
we have {B} ⊢H A whenever A is provable, no matter how irrelevant B is to
A. Similarly, we have {B} ⊢H B ◦ B even in the absence of contraction, since
⊢ B → (B → B ◦ B) and using modus ponens twice, we have B ◦ B. In this
section, we will examine logics with no modal connectives � and ♦−, with one
set of intensional connectives from among ◦,→,←, t and with perhaps negation
connectives. We will show that ⊢H is related to implication in a similar way to
the standard deduction theorem

X;A ⊢ B
=========
X ⊢ A→ B

The Hilbert consequence relation allows contraction and irrelevance. For this,
we need a definition

DEFINITION 4.26 (CONFUSION)
A confusion of the propositions in the set Σ is defined inductively as follows.

⋄ t, ⊤ and any element of Σ are confusions of Σ.

⋄ If C1 and C2 are confusions of Σ, so are C1 ◦ C2 and C1 ∧ C2.

The name is taken from the combination of conjunction and fusion.
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Note the following result.

LEMMA 4.27 (CONFUSION CLOSURE)
In any Hilbert system defined above, Σ ⊢H B whenever B is a confusion of Σ.

PROOF By induction on the complexity of B. For the base case, Σ ⊢H t Σ ⊢H ⊤,
and Σ ⊢ C for any C ∈ Σ.

For the induction step, if Σ ⊢H C1 and Σ ⊢H C2 then Σ ⊢H C1 ∧ C2 by
the conjunction rule. And similarly, ⊢ C1 → (C2 → C1 ◦ C2) gives, by two
applications of modus ponens, Σ ⊢H C1 ◦ C2. �

THEOREM 4.28 (HILBERT DEDUCTION THEOREM)
In any Hilbert system in which the only rules are modus ponens and conjunction

introduction, Σ∪{A} ⊢H B if and only if Σ ⊢H C → B where C is some confusion

of {A}.

PROOF If Σ ⊢H C → B then Σ ∪ {A} ⊢H C (by Lemma 4.27) so Σ ∪ {A} ⊢ B
by modus ponens.

For the converse we assume that Σ ∪ {A} ⊢H B. Assume that the proof
is of length m and that the result holds for proofs of smaller length. Now B
is either in Σ ∪ {A}, or it is an axiom, or it follows from earlier propositions
in the proof by means of the rules. In the first cases, if B is in Σ ∪ {A} or is
an axiom, we are home, as Σ ⊢ t ∧ A → B. Suppose B follows from earlier
claims in the proof by way of the rules. If the rule is modus ponens we have
confusions C1 and C2, where Σ ⊢H C1 → (B′ → B) and Σ ⊢H C2 → B′, since
C1 → (B′ → B), C2 → B′ ⊢H C1 ◦ C2 → B gives us Σ ⊢H C1 ◦ C2 → B and
C1 ◦ C2 is the desired confusion.

If the rule is conjunction introduction, then we have confusions C1 and C2,
where Σ ⊢H C1 → B1 and Σ ⊢H C2 → B2, where B = B1∧B2. Clearly, C1∧C2

is the confusion, such that Σ ⊢H C1 ∧ C2 → B.

By assumption, these are the only rules and this completes the proof. �

4.4 History

Anderson and Belnap, and Ackermann and others used Hilbert systems exten-
sively in their presentations of substructural logics [2, 6]. They facilitate some
formal proofs (such as those for metavaluations, in Chapter 5) in which it is
helpful to have many axioms and few rules. However, as the exercises show,
they are not simple to use when it comes to actually constructing proofs. Meyer
and Routley have given alternative axiomatisations of relevant logics which con-
tain Boolean negation ‘−’, and the material conditional A ⊃ B =df −A ∨ B, as
the primary connective [168, 169].
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4.5 Exercises

Practice

{4.1} Construct Hilbert proofs of (A → B) ◦ A → B, (A → B) → (A → B ∨ C),
(A → B) → (A ∧ C → B) using only basic Hilbert axioms and rules (no axioms

corresponding to structural rules).

{4.2} For each of the rows of Table 4.1, verify that the implicational axiom holds in

a Hilbert system if and only if the corresponding fusion axiom can be proved in that

system.

Problems

{4.3} Work through the rest of the proof of Lemma 4.17.

{4.4} Compare and contrast the two consequence relations ⊢ and ⊢H . In what ways

are they related? In what ways do they differ?

Projects

{4.5} If you are familiar with the term assignment systems of Chapter 7, and you are

familiar with combinatory logic [55, 56, 57, 116] you may be interested to know that

you can give a ‘term assignment’ system for Hilbert Systems involving→ formulae. Each

axiom has its own combinator. For example, W is (A → (A → B)) → (A → B). If X is

the term for one axiom, and Y is the term for another, then XY is the term for the result

of the application of X to Y using modus ponens. Make this definition rigorous, and show

how combinators can be related to arbitrary Hilbert proofs using the axioms in Table 4.1

and the rule modus ponens. Then, show how the reduction rules for combinators (for

example — Kxy reduces to x) correspond to rules for shortening Hilbert proofs.

{4.6} Reformulate the axiomatisation with neither← nor→ as primary. That is, find an

axiomatisation of the ⊢ relation where you axiomatise the validities of the form A ⊢ B
where A and B are formulae.
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Chapter 5

Theories

Dear friend,

theory is all grey,

And the golden tree of life is green.

— Goethe, Faust

Logic is not merely about individual propositions and consequence relations be-
tween them. Theories are interesting too. Theories are bodies of propositions
with some degree of internal coherence or structure. Real-life theories — such
as the theory of general relativity, Frege’s theory of näıve set theory, Luther’s
theory of justification by faith or Marx’s theory of dialectical materialism — are
very complex entities, with many different kinds of coherence and structure. In
our logics we abstract away from almost everything in a real theory to concen-
trate on just one aspect of theories.

5.1 Defining Theories

DEFINITION 5.1 (THEORIES)
Given a system S, a theory in that system is a set of formulae closed under
consequence, and closed under conjunction (if conjunction is present in the
language). So, T is a theory if and only if

⋄ If A ∈ T , and A ⊢ B then B ∈ T .

⋄ If the language contains conjunction, if A,B ∈ T then A ∧B ∈ T .

In this chapter we will examine theories in logics, partly because they are inter-
esting structures in their own right, partly because we can use them to prove
useful theorems, and partly because this will become important in later chap-
ters, when we use theories to give modellings of logics.

EXAMPLE 5.2 (THE THEORY OF A STRUCTURE X)
Given a natural deduction system S, and given some structure X, the set of all
consequences of X is a theory. In other words, the set

{A : X ⊢ A}

is a theory. If X ⊢ A and A ⊢ B, then X ⊢ B by Cut, and if X ⊢ A and X ⊢ B
(and conjunction is present) then X ⊢ A ∧B by (∧I).

89
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EXAMPLE 5.3 (THE SET OF HILBERT THEOREMS IS A THEORY)
Given any Hilbert system HS, the set of formulae provable in that system is a
theory. This follows from our previous example, as the set of Hilbert-provable
claims is the set of propositions A such that 0 ⊢ A in the natural deduction
system.

EXAMPLE 5.4 (THE TRUTH IS A THEORY)
The set of true propositions (in some language, or other) is, no doubt, a theory.
If A is true, and B follows from A, then B is also true. If A and B are both true,
then A ∧ B is true. This is a special sort of theory because it has very special
properties, as we shall soon see.

EXAMPLE 5.5 (THEORIES CLASSIFYING STRINGS)
In the world of the Lambek calculus, the set of types of a particular string ought
to be a theory. If A ⊢ B and a string is of type A, then it is also of type B. If a
string is both of type A and of type B then it is also of type A ∧ B. Similarly,
the set of types of a class of strings is a theory.

Theories can be classified in various ways. One important way to classify theo-
ries is to see how close they approximate the set of truths.

DEFINITION 5.6 (CLASSIFYING THEORIES)
A theory T in a system S is

⋄ prime iff A ∨B ∈ T only if A ∈ T or B ∈ T .1

⋄ ∼-consistent iff for no A is A ∈ T and ∼A 6∈ T .

⋄ ∼-complete iff for every A either A ∈ T or ∼A ∈ T .

⋄ t-normal iff t ∈ T .

⋄ →-detached iff whenever A→ B ∈ T , then A ∈ T only if B ∈ T .

⋄ non-empty iff ⊤ ∈ T .

⋄ non-full iff ⊥ 6∈ T .

⋄ non-trivial iff it is both non-empty and non-full.

Each of these criteria makes the theory T respect the behaviour of the connec-
tives in the language, or equivalently, they make the theory T approximate the
set of truths in some language. Consider primeness first. A theory is prime if
and only if it “gets disjunction right.” Read ‘. . . ∈ T ’ as ‘. . . is true.’ Then the
primeness condition is ‘if A∨B is true then A is true or B is true.’ Similarly, the
negation conditions together are ‘∼A is true if and only if A is not true.’

1 Here, and elsewhere, we use ‘iff’ as shorthand for ‘if and only if.’
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The t condition is ‘t is true.’ The implication condition is ‘if A → B is true,
then if A is true so is B.’ The non-triviality conditions mean simply that ⊤ is
true and ⊥ is not.

In traditional, classical logics, many of these conditions stand or fall to-
gether. In substructural logics, they are distinct.

LEMMA 5.7 (PRIMENESS IS ∼-COMPLETENESS, IF ⊤ ⊢ A ∨ ∼A)
If strong excluded middle holds for∼, then any non-empty prime theory is negation

complete.

PROOF If ⊤ ⊢ A ∨ ∼A, and ⊤ ∈ T , then if T is prime, since A ∨ ∼A ∈ T then
either A ∈ T or ∼A ∈ T , so T is complete. �

If strong excluded middle fails, then you may have a prime theory which fails
to be ∼-complete. We will prove this when we get to the next section and we
have a technique for constructing prime theories.

LEMMA 5.8 (ECQ AND ∼-CONSISTENCY)
If ECQ holds then any ∼-inconsistent theory is the full theory.

PROOF If T is ∼-inconsistent, then A,∼A ∈ T for some A. It follows then that
A ∧ ∼A ∈ T , and by ECQ, ⊥ ∈ T , and T is full. �

If ECQ fails, we can construct a ∼-inconsistent theory T which is not full. This
is a simple construction. Take a proposition A such that A,∼A 6⊢ ⊥. Consider
the set {B : A ∧ ∼A ⊢ B}. This is a ∼-inconsistent theory, yet it is not full, as
A ∧ ∼A 6⊢ ⊥.

LEMMA 5.9 (t-NORMAL THEORIES WITH K′)
In the presence of K′, any non-empty theory is t-normal.

PROOF If we have K′ then we can prove ⊤ ⊢ t, and hence any non-empty
theory contains t. �

If ⊤ 6⊢ t, then the set {A : ⊤ ⊢ A} is a non-empty theory which is not t-normal.

LEMMA 5.10 (WI AND DETACHMENT)
If WI holds, then any theory is both→- and←-detached.

PROOF If A,A→ B ∈ T then A ∧ (A→ B) ∈ T , and in the presence of WI we
can prove A ∧ (A → B) ⊢ B so B ∈ T , so T is→-detached. Similarly, with WI

we can prove A ∧ (B ← A) ⊢ B, so all theories are←-detached. �
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As with our other cases, if A ∧ (A → B) ⊢ B fails, we can construct a theory
which fails our condition. Take {C : A∧ (A→ B) ⊢ C} to be our theory. It fails
to be→-detached, but it remains a theory.

Primeness is an important property of theories, at least when it comes to ap-
plications in classifying strings or actions. In each of these applications, the set
of all types of an object is a prime theory. This happens whenever you interpret
formulae as follows: x is of type A∨B if and only if x is of type A or x is of type
B. It will turn out, in Part III, that prime theories will play a very important role
in studying models of our logics. The next section is devoted to a very useful
technique for constructing prime theories.

5.2 Constructing Prime Theories

Suppose T is a theory and A 6∈ T . Is there a prime theory T ′ which extends T
and which still avoids A? This section is devoted to finding conditions under
which this is possible.

One way to extend T into a prime theory avoiding A is to keep on adding as
many formulae as possible to T , while keeping A out. This will result in a prime
theory, for if we could throw B ∨ C into the theory, we ought to be able to add
in either B or C. This construction is at the heart of the Lindenbaum Lemma of
classical logic, and such a construction works in a wide range of logical systems.
Our first definition will characterise the logics in which the construction works.

DEFINITION 5.11 (PAIR EXTENSION ACCEPTABILITY)
A consequence relation ⊢ is pair extension acceptable if and only if for each A,
B and C the following conditions hold

⋄ A ⊢ A.

⋄ A ∧B ⊢ A and A ∧B ⊢ B.

⋄ If A ⊢ B and A ⊢ C then A ⊢ B ∧ C.

⋄ A ⊢ A ∨B and B ⊢ A ∨B for each A and B.

⋄ If A ⊢ C and B ⊢ C then A ∨B ⊢ C.

⋄ A ∧ (B ∨ C) ⊢ (A ∧B) ∨ (A ∧ C).

⋄ If A ⊢ B and B ⊢ C then A ⊢ C.

These are extremely weak conditions. Note that the consequence relations ⊢
defined by any of our natural deduction systems are pair extension acceptable
if they contain the extensional punctuation mark. (This is needed in order to
prove the distribution of conjunction over disjunction.)

The condition of distributivity is necessary, for our proof will fail without it.
If A ∧ (B ∨ C) 6⊢ (A ∧ B) ∨ (A ∧ C), then we would like to construct a prime
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theory containing A ∧ (B ∨ C) but not (A ∧B) ∨ (A ∧ C). If there were such a
theory, it would contain either A ∧ B or A ∧ C. But since the theory contains
A∧(B∨C), it must contain A and B∨C, and by primeness, either B or C. This
means that the theory contains A ∧ B or A ∧ C, and hence (A ∧ B) ∨ (A ∧ C),
which we wished to avoid. So, no such theory exists.

To prove our theorem, we will need to keep track not only of formulae we
wish to add to our theory but also of formulae we wish to avoid.

DEFINITION 5.12 (⊢-PAIRS)
An ordered pair 〈x, y〉 of sets of formulae is said to be a ⊢-pair if and only if
there are no formulae A1, . . . , An ∈ x and B1, . . . , Bm ∈ y where A1∧· · ·∧An ⊢
B1 ∨ · · · ∨Bm.

A helpful shorthand will be to write ‘
∧

Ai ⊢
∨

Bj ’ for the extended conjunc-
tions.2

It will turn out that if 〈x, y〉 is a ⊢-pair, it can be “extended” to a new pair,
where the left element of the pair is a prime theory. The set y is the set of
formulae we wish to leave out of the prime theory extending x. Here is the
definition of extension:

DEFINITION 5.13 (PAIR EXTENSION)
A ⊢-pair 〈v, w〉 extends 〈x, y〉 if and only if v ⊇ x and w ⊇ x. We write this as
‘〈x, y〉 ⊆ 〈v, w〉.’

Now we show how to construct pairs.

LEMMA 5.14 (THEORIES AND ⊢-PAIRS)
If T is a theory such that A 6∈ T , then 〈T, {A}〉 is a ⊢-pair.

PROOF If A 6∈ T then there are no formulae A1, . . . , An ∈ T such that
∧

i Ai ⊢
A. It follows that 〈T, {A}〉 is a ⊢-pair. �

DEFINITION 5.15 (FULL ⊢-PAIRS)
A ⊢-pair 〈x, y〉 is a full ⊢-pair if and only if x ∪ y is the entire language.

Full ⊢-pairs are important, for the following reason.

LEMMA 5.16 (PRIME THEORIES FROM FULL ⊢-PAIRS)
If 〈x, y〉 is a full ⊢-pair, x is a prime theory.

PROOF We need to verify that x is closed under consequence and conjunction,
and that it is prime. First, consequence. Suppose A ∈ x and that A ⊢ B. If
B 6∈ x, then since 〈x, y〉 is full, B ∈ y. But then A ⊢ B contradicts the condition
that 〈x, y〉 is a ⊢-pair.

2 Note that here we assume that the association of conjunctions and disjunctions does not matter.
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Second, conjunction. If A1, A2 ∈ x, then since A1 ∧A2 ⊢ A1 ∧A2, and 〈x, y〉
is a ⊢-pair, we must have A1 ∧ A2 6∈ y, and since 〈x, y〉 is full, A1 ∧ A2 ∈ x as
desired.

Third, primeness. If A1 ∨ A2 ∈ x, then if A1 and A2 are both not in x, by
fullness, they are both in y, and since A1 ∨ A2 ⊢ A1 ∨ A2, we have another
contradiction to the claim that 〈x, y〉 is a ⊢-pair. Hence, one of A1 and A2 is in
x, as we wished. �

THEOREM 5.17 (PAIR EXTENSION THEOREM)
If ⊢ is pair extension acceptable, then any ⊢-pair 〈x, y〉 is extended by some full

⊢-pair 〈v, w〉.

To prove this theorem, we will assume that we have enumerated the language
so that every formula in the language appears somewhere in the list

C1, C2, . . . , Cn, . . .

This way, we will be able to consider each formula one by one, to check to
see whether we should throw it in with x or in with y instead. We assume, in
doing this, that our language is countable. Not all languages are countable. We
will not go into the details here, but the proof will still work in the absence
of countability, provided that the language is well ordered. (The appropriate
changes are left to the exercises.) The proof of the Pair Extension Theorem
relies on one crucial lemma: the Step Lemma.

LEMMA 5.18 (STEP LEMMA)
If ⊢ is pair extension acceptable, then if 〈x, y〉 is a ⊢-pair, then so is at least one of

〈x ∪ {C}, y〉 and 〈x, y ∪ {C}〉.

PROOF It is sufficient to show that if 〈x ∪ {C}, y〉 is not a ⊢-pair, then the
alternative, 〈x, y ∪ {C}〉, is. If this were not a ⊢-pair either, then there would
be some A ∈

∧

x (the set of all conjunctions of formulae from x) and B ∈
∨

y
(the set of all disjunctions of formulae from y) such that A ⊢ B ∨ C. Since
〈x ∪ {C}, y〉 is not a ⊢-pair, there are also A′ ∈

∧

x and B′ ∈
∨

y such that
A′ ∧ C ⊢ B′. But then we can reason as follows. First, A ∧ A′ ⊢ B ∨ C. But
this means that A ∧ A′ ⊢ (B ∨ C) ∧ A′. Now by distributive lattice properties,
we then get A ∧ A′ ⊢ B ∨ (A′ ∧ C). But A′ ∧ C ⊢ B′, so cut, and disjunction
properties give us A ∧A′ ⊢ B ∨B′, contrary to the fact that 〈x, y〉 is a ⊢-pair.�

With that out of the way, we can prove the Pair Extension Theorem.

PROOF Take an enumeration of formulae in the language as C1, C2, . . . Define
the series of ⊢-pairs 〈xn, yn〉 as follows. Let 〈x0, y0〉 = 〈x, y〉, and given 〈xn, yn〉
define 〈xn+1, yn+1〉 in this way.

〈xn+1, yn+1〉 =

{

〈xn ∪ {Cn}, yn〉 if 〈xn ∪ {Cn}, yn〉 is a ⊢-pair,
〈xn, yn ∪ {Cn}〉 otherwise.
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By the Step Lemma, each 〈xn+1, yn+1〉 is a ⊢-pair if its predecessor 〈xn, yn〉
is, for there is always a choice (left or right) for placing Cn while keeping the
result a ⊢-pair. So, by induction on n, each 〈xn, yn〉 is a ⊢-pair. It follows then
then

〈
⋃

n∈ω xn,
⋃

n∈ω yn

〉

, the limit of this process, is also a ⊢-pair, and it covers
the whole language. It must cover the whole language as we have thrown
in every formula in either the left or the right. And if

〈
⋃

n∈ω xn,
⋃

n∈ω yn

〉

is
not a ⊢-pair, then we have some Ai ∈

⋃

xn and some Bj ∈
⋃

yn such that
A1 ∧ · · · ∧Al ⊢ B1 ∨ · · · ∨Bm, but if this is the case, then there is some number
n where each Ai is in xn and each Bj is in yn. It would follow that 〈xn, yn〉 is
not a ⊢-pair. So, we have our proof. �

Now we can prove the theorem we originally wanted.

COROLLARY 5.19 (PRIME THEORIES EXCLUDING FORMULAE)
If T 6⊢ A, then there is a prime theory T ′ ⊇ T such that A 6∈ T ′.

PROOF 〈T, {A}〉 is a ⊢-pair, so there is a full ⊢-pair 〈T ′, S′〉 extending 〈T,A〉,
so T ′ is the desired prime theory. Since A ∈ S′, A 6∈ T ′. �

This result will become useful in Chapter 11, when it will be used repeatedly in
the construction of models for logics with distribution.

COROLLARY 5.20 (NORMAL PRIME THEORIES EXCLUDING FORMULAE)
If 0 6⊢ A, then there is a t-normal prime theory T such that A 6∈ T .

PROOF 〈{t}, {A}〉 is a ⊢-pair, so it is extended by a full ⊢-pair 〈T, S〉, and as
t ∈ T , T is t-normal. �

5.3 Metavaluations

The pair extension technique is a powerful method for proving the existence of
prime theories. It is not too good, however, at establishing that a given theory
is prime. In this section, we will use another technique which will show us that
some theories (in particular, the class of theorems of a wide range of logics) are
prime.

DEFINITION 5.21 (METAVALUING THEORIES)
Given set T of formulae the metavaluation M(T ) of T is a set of formulae de-
fined as follows:

⋄ If A is an atomic formula, or t, ⊤ or ⊥, A ∈M(T ) iff A ∈ T .

⋄ A ∧B ∈M(T ) iff A ∈M(T ) and B ∈M(T ).

⋄ A ∨B ∈M(T ) iff A ∈M(T ) or B ∈M(T ).

⋄ ∼A ∈M(T ) iff A 6∈M(T ) and ∼A ∈ T .

⋄ ¬A ∈M(T ) iff A 6∈M(T ) and ¬A ∈ T .
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⋄ A→ B ∈M(T ) iff if A ∈M(T ) then B ∈M(T ) and A→ B ∈ T .

⋄ B ← A ∈M(T ) iff if A ∈M(T ) then B ∈M(T ) and B ← A ∈ T .

⋄ A ◦B ∈M(T ) iff A ∈M(T ) and B ∈M(T ) and A ◦B ∈ T .

⋄ �A ∈M(T ) iff A ∈M(T ) and �A ∈ T .

⋄ ♦−A ∈M(T ) iff A ∈M(T ) and ♦−A ∈ T .

In general, T and M(T ) differ. For example, if A ∨ B ∈ T , it need not follow
that A ∨ B ∈ M(T ), as we might have neither A ∈ M(T ) nor B ∈ M(T ). If T
is a theory however, we can immediately say something about the connection
between T and M(T ).

LEMMA 5.22 (METAVALUING A THEORY)
If T is a theory, then M(T ) ⊆ T .

PROOF This is a simple induction on the construction of formulae. If A is
atomic or t,⊤,⊥, then A ∈ T if and only if A ∈ M(T ). If A is a conjunction
B∧C, then if A ∈M(T ), B,C ∈M(T ) and by hypothesis, B,C ∈ T , and hence
A = B ∧ C ∈ T . Similarly, if A is a disjunction B ∨ C, either B or C is in T ,
giving B ∨C ∈ T (since T is a theory) as desired. Finally, if A is constructed by
means of another connective, we have the result by the definition of M(T ). �

Note that all we needed for this proof was that T be closed under A,B ⇒ A∧B,
A⇒ A ∨B and B ⇒ A ∨B. No more complex constraint on T was necessary.

Furthermore, M(T ) has some useful properties. It is prime, it is closed under

adjunction, it is detached and it is ∼-consistent. It is quite well behaved in many
ways. However, it is not, in general, a theory.

To find circumstances in which M(T ) is a theory, we need a finer analysis
of the formulae A which appear in M(T ). For some formulae A, the fact that
A ∈ M(T ) follows immediately from the fact that A ∈ T by virtue of the
structure of A.

DEFINITION 5.23 (FORMULAE SURVIVING METAVALUATION)
A formula A survives metavaluation in a class T of theories if for all T ∈ T , if
A ∈ T then A ∈M(T ).

We need not only to consider formulae but also to consider rules.

DEFINITION 5.24 (RULES SURVIVING METAVALUATION)
A set X of formulae is closed under the rule A1, . . . , An ⇒ B if and only if
A1, . . . , An ∈ X only if B ∈ X. A rule survives metavaluation in a class T of
theories if for all T ∈ T , if T is closed under A1, . . . , An ⇒ B then so is M(T ).

Given this definition, we will show that many of the Hilbert axioms of the pre-
vious chapter and all of the Hilbert rules of that chapter survive metavaluation
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in the class of detached theories. In other words, if A is an axiom, then if T
is detached and A ∈ T , then A ∈ M(T ). Similarly, if T is detached, and it is
closed under A1, . . . , An ⇒ B, then M(T ) is also closed under that rule.

LEMMA 5.25 (RULES SURVIVE METAVALUATION)
All Hilbert rules for the connectives →,←, ◦, t,�, ♦−,∼,¬ defined in Chapter 4

survive metavaluation in the class of all detached theories.

PROOF We will examine a representative sample of the rules and leave the rest
to the exercises. The proof is tedious, not difficult.

Consider the rule A,B ⇒ A ∧ B. No matter what T is, M(T ) is closed
under this rule by the definition of the operator M . Similarly, M(T ) must be
closed under the rule modus ponens.

Consider A → B,C → D ⇒ (B → C) → (A → D). Suppose that
A→ B ∈M(T ) and C → D ∈M(T ). We wish to show that (B → C)→ (A→
D) ∈M(T ). To do this, we need first that (B → C)→ (A→ D) ∈ T ; but this is
simple. We have A→ B,C → D ∈ T , and so we have (B → C)→ (A→ D) ∈
T , as T is closed under the rule. We also need to show that if B → C ∈ M(T )
then A → D ∈ M(T ). Now to do this, assume that B → C ∈ M(T ). Then we
have B → C ∈ T , and so, A → D ∈ T , as (B → C) → (A → D) ∈ T and T
is detached. We also need to show that if A ∈ M(T ) then D ∈ M(T ). But if
A ∈M(T ), then A→ B ∈M(T ) gives us B ∈M(T ), and B → C ∈M(T ) gives
C ∈ M(T ), and C → D ∈ M(T ) gives D ∈ M(T ), as desired. This completes
our proof that (B → C)→ (A→ D) ∈M(T ).

Consider the rule A ◦ B → C ⇒ B → (A → C). Suppose A ◦ B →
C ∈ M(T ); we want B → (A → C) ∈ M(T ). Well, B → (A → C) ∈ T , as
A ◦ B → C ∈ T and T is closed under this rule. Now suppose B ∈ M(T ), to
try to show that A → C ∈ M(T ). Well, if B ∈ M(T ), then we have B ∈ T (as
M(T ) ⊆ T ), but B ∈ T means A → A ◦ B ∈ T , since B ⊢ A → A ◦ B, as is
simple to check. So, A→ C ∈ T , as A ◦B → C ∈ T and T is detached. But we
also have that if A ∈M(T ) then B ∈M(T ) and A ◦B ∈ T gives A ◦B ∈M(T ),
and A ◦B → C ∈M(T ) gives C ∈M(T ), as desired.

Consider the rule A→ (C ← B) ⇒ A ◦B → C. Suppose A→ (C ← B) ∈
M(T ), to show that A ◦ B → C ∈ M(T ). First, it is clear that A ◦ B → C ∈ T .
Second, suppose that A ◦ B ∈ M(T ). Then A ∈ M(T ) gives C ← B ∈ M(T ),
which with B ∈M(T ) gives C ∈M(T ) as desired.

Consider the rule A → ∼B ⇒ B → ¬A. Suppose A → ∼B ∈ M(T ). We
wish to show that B → ¬A ∈ M(T ). That B → ¬A ∈ T is clear. Now suppose
that B ∈ M(T ), in order to show that ¬A ∈ M(T ). If B ∈ M(T ), then it is not
the case that ∼B ∈M(T ). This means that A 6∈M(T ), since A→ ∼B ∈M(T ).
We also know that ¬A ∈ T , since B ∈ M(T ) gives B ∈ T , and B → ¬A ∈ T
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(and T is detached). So, ¬A ∈ M(T ) as desired. This argument works just as
well if ∼ = ¬, so the reasoning also holds for a simple negation.

Consider the rule A → �B ⇒ ♦−A → B. Suppose that A → �B ∈ M(T ),
to show that ♦−A → B ∈ M(T ). Clearly, ♦−A → B ∈ T . Now if ♦−A ∈ M(T ),
then A ∈M(T ), and hence �B ∈M(T ). But this gives B ∈M(T ), as desired.

Consider the rule A → B ⇒ ♦−A → ♦−B. Suppose A → B ∈ M(T ). Then
A → B ∈ T and hence ♦−A → ♦−B ∈ T . Therefore we want to show that if
♦−A ∈ M(T ) then ♦−B ∈ M(T ). If ♦−A ∈ M(T ), then A ∈ M(T ) and ♦−A ∈ T .
Since T is detached, we have ♦−B ∈ T , and since A → B ∈ M(T ) we have
B ∈M(T ), giving us ♦−B ∈M(T ) as desired. �

LEMMA 5.26 (MOST AXIOMS SURVIVE METAVALUATION)
All Hilbert axioms — except for double negation elimination and strong excluded

middle — defined in Chapter 4 survive metavaluation in the class of all detached

theories.

PROOF Again, a representative sample is enough to give the flavour of the
proof. Let us show that (A → B) ∧ (A → C) → (A → B ∧ C) ∈ M(T ) if it is
also in T . Suppose that (A→ B)∧ (A→ C) ∈M(T ) to show that A→ B∧C ∈
M(T ). Under these circumstances, A → B ∧ C ∈ T . Now if A ∈ M(T ) then
by A → B ∈ M(T ), we have B ∈ M(T ); and by A → C ∈ M(T ), we have
C ∈M(T ). But this means that B ∧ C ∈M(T ), as desired.

Suppose A∧ (B∨C)→ (A∧B)∨ (A∧C) ∈ T . Then to show A∧ (B∨C)→
(A ∧ B) ∨ (A ∧ C) ∈ M(T ), suppose A ∧ (B ∨ C) ∈ M(T ). It follows that
A ∈ M(T ) and either B ∈ M(T ) or C ∈ M(T ), so either A ∧ B ∈ M(T ) or
A ∧ C ∈M(T ). It follows that (A ∧B) ∨ (A ∧ C) ∈M(T ).

Suppose A → ∼∼A ∈ T , to show that it is also in M(T ). Suppose that
A ∈ M(T ) but that ∼∼A 6∈ M(T ). Then either ∼A ∈ M(T ) or ∼∼A 6∈ T . The
first case is ruled out, since A ∈ M(T ). The second case is ruled out as A ∈ T
and T is detached. Therefore ∼∼A ∈M(T ).

Suppose A ∧ ∼A → B ∈ T , to show that it is also in M(T ). For this it is
sufficient to show that A∧∼A 6∈M(T ), but this is immediate from the definition
of the negation clause in the definition of M . �

We will soon see how double negation elimination and strong excluded middle
fail to be preserved under metavaluation. Before this, however, we need to
consider how to deal with structural rules. To do this, we need to examine
the behaviour of punctuation marks (or their corresponding connectives) and
theoremhood. For this we need to recall the definition of a confusion from
Definition 4.26 and extend it slightly to deal with modal operations.
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DEFINITION 5.27 (MODAL CONFUSION)
A modal confusion of the propositions in the set Σ is defined inductively as
follows.

⋄ t, ⊤ and any element of Σ are confusions of Σ.

⋄ If C1 and C2 are confusions of Σ, so are C1 ◦ C2, C1 ∧ C2 and ♦−C1.

Lemma 4.27 tells us that if Σ is a set of theorems, then any confusion of Σ is
also a theorem. We can extend it slightly as follows.

LEMMA 5.28 (CLOSURE OF THEOREMS UNDER MODAL CONFUSION)
If Σ is a set of theorems then any modal confusion of Σ is a theorem, provided

that Kr is valid.

PROOF Induction on the construction of the confusion, with Kr giving us t ⊢ ♦−t
to ensure that if t ⊢ A then t ⊢ ♦−t ⊢ ♦−A too. �

LEMMA 5.29 (STRUCTURAL RULES SURVIVE METAVALUATION)
An axiom of the form A → A′ corresponding to the structural rule X ⇐ X ′

survives metavaluation in a detached theory T containing A→ A′ (provided that

Kr holds, if either X or X ′ contains •).

PROOF We wish to show that A → A′ ∈ M(T ), given that A → A′ ∈ T .
Therefore we need to show that if A ∈ M(T ) then A′ ∈ M(T ) too. A is
a confusion of propositions B1, . . . , Bn and A′ is also such a confusion, with
the proviso that it need not contain each of B1, . . . , Bn. Since A ∈ M(T ) we
have each Bi ∈ M(T ) by definition of M(T ), and thus each Bi ∈ T , which
gives A′ ∈ T as desired, as T is closed under the connectives constructing the
confusion. We also have A′ ∈M(T ), as is simple to check. �

The requirement that Kr hold for the closure of T under possibility is necessary
in some cases involving ♦− but not all. For example, the axiom ♦−A◦♦−B → ♦−B ⊢
♦−A is preserved by metavaluations independently of the requirement, as you
can check. The requirement is necessary in cases such as ♦−(A◦B) ⊢ ♦−A◦B. In
this case, if ♦−(A ◦B) ∈M(T ) we have ♦−(A ◦B) ∈ T and A ◦B ∈M(T ), giving
A ◦ B ∈ T and A,B ∈ M(T ). To get ♦−A ◦ B ∈ M(T ) it is necessary to have
♦−A ∈ M(T ), and for this it seems necessary to use the rule t ⊢ ♦−t, to ensure
that ♦−A ∈ T .

THEOREM 5.30 (MANY LOGICS ARE PRIME)
If T is the set of theorems of a logic axiomatised by any of the Hilbert axioms

and rules of Chapter 4, other than double negation elimination or strong excluded

middle, and in which Kr holds, if ♦− or � is present, then T is a prime theory.
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PROOF It suffices to prove that T = M(T ) for M(T ) is prime. Lemma 5.22
ensures that M(T ) ⊆ T . Lemmas 5.26 and 5.29 show us that the Hilbert axioms
of T are in M(T ). (Lemma 5.29 applies since by Lemma 5.28, T is closed under
modal confusions.) By Lemma 5.25, M(T ) is closed under the Hilbert rules of
T . It follows that T = M(T ), as desired. �

The remaining axioms are double negation elimination and strong excluded
middle. In the way metavaluations are structured, neither of these formulae
need to survive metavaluation in the class of detached theories. Consider dou-
ble negation elimination. If ∼¬A → A ∈ T and ∼¬A ∈ M(T ), then we know
that ¬A 6∈ T and ∼¬A ∈ T . It follows that A ∈ T (since T is detached), but
that is about it. Nothing seems to follow from the claim that ¬A 6∈ T . The
only hope seems to be that if T is ¬-complete, then A ∈ T , but even this does
not bring A ∈ M(T ). Whether A ∈ M(T ) or not depends on the structure of
A. A similar case holds for strong excluded middle. To show that these survive
metavaluation, even in the class of all complete detached theories, we need a
new approach.

LEMMA 5.31 (NEGATION AND M(T ))
If T is detached, ∼-complete and closed under the rules A ⇒ ∼∼A, A ∧ ∼B ⇒
∼(A → B) (if → is present) A ∧ ∼B ⇒ ∼(B ← A) (if ← is present) ∼A ⇒
∼(A ◦ B) and ∼B ⇒ ∼(A ◦ B) (if ◦ is present) ∼A ⇒ ∼�A (if � is present)

and ∼A ⇒ ∼♦−A (if ♦− is present) then A 6∈M(T ) only if ∼A ∈ T .

PROOF An induction on the complexity of A.

⋄ The atomic case holds as T is complete. If A is atomic and A 6∈M(T ) then
A 6∈ T and hence ∼A ∈ T .

⋄ If A ∧ B 6∈ M(T ) then A 6∈ M(T ) or B 6∈ M(T ), so ∼A 6∈ T (and hence
∼(A ∧B) ∈ T ) or ∼B 6∈ T (and hence ∼(A ∧B) ∈ T ).

⋄ If A ∨ B 6∈ M(T ) then A 6∈ M(T ) and B 6∈ M(T ), giving ∼A,∼B ∈ T and
so, ∼(A ∨B) ∈ T .

⋄ If A → B 6∈ M(T ) then either A → B 6∈ T — in which case ∼(A → B) ∈
T — or A ∈M(T ) and B 6∈M(T ). Then A∧∼B ∈ T , and since T is closed
under A ∧ ∼B ⇒ ∼(A→ B), ∼(A→ B) ∈ T .

⋄ The case for← is identical to that for→.

⋄ If A ◦B 6∈M(T ) then either A ◦B 6∈ T — giving ∼(A ◦B) ∈ T — or either
A 6∈ M(T ) or B 6∈ M(T ). In the first case, ∼A ∈ T , and by the closure
under ∼A ⇒ ∼(A ◦B), ∼(A ◦B) ∈ T . The same holds for B.

⋄ If ∼A 6∈M(T ) then either A ∈M(T ) — and by closure under A ⇒ ∼∼A,
∼∼A ∈ T — or ∼A 6∈ T , and by completeness, ∼∼A ∈ T .

⋄ If ¬A 6∈ M(T ) then either A ∈ M(T ) — and since A ⊢ ∼¬A, ∼¬A ∈ T —
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or ¬A 6∈ T , and by ∼-completeness, ∼¬A ∈ T .

⋄ If �A 6∈ M(T ) then either A 6∈ M(T ) — so ∼A ∈ T , giving ∼�A ∈ T by
∼A ⇒ ∼�A — or �A 6∈ T giving ∼�A ∈ T .

⋄ If ♦−A 6∈ M(T ) then either A 6∈ M(T ) — so ∼A ∈ T , giving ∼♦−A ∈ T by
∼A ⇒ ∼♦−A — or ♦−A 6∈ T giving ∼♦−A ∈ T . �

COROLLARY 5.32 (NEGATION AXIOMS SURVIVING METAVALUATIONS)
If T is a theory satisfying the conditions of Lemma 5.31 then ∼∼A → A and

A→ B ∨ ∼B survive metavaluation in T .

PROOF If ∼∼A → A ∈ T then to show that it is also in M(T ) we need to
show that if ∼∼A ∈ M(T ) then A ∈ M(T ). Since ∼∼A ∈ M(T ) we have
∼A 6∈M(T ), and hence by Lemma 5.31, A ∈M(T ).

If A→ B ∨ ∼B ∈ T , then to show that it is also in M(T ) it suffices to show
that if A ∈M(T ) then B ∨∼B ∈M(T ). But B ∨∼B ∈M(T ) always, as either
B ∈M(T ) or ∼B ∈M(T ). �

As a result, we have the following important theorem.

THEOREM 5.33 (ADMISSIBILITY OF DISJUNCTIVE SYLLOGISM)
In R and E if ⊢ A and ⊢ ∼A ∨B, then ⊢ B.

PROOF We first note that in these logics, 〈{t}, {B}〉 is a ⊢-pair, under the as-
sumption that 6⊢ B. Then we can extend this to a full ⊢-pair 〈T, S〉. Now T
contains all theorems and it is prime. Since t ⊢ A∨∼A in both R and E, T must
be ∼-complete. Since in both R and E, A ∧ (A → B) → B is a theorem, T is
detached.

Now we wish to apply Lemma 5.31. The difficulty is that T need not be
closed under the rule ∼A ⇒ ∼(A ◦ B) or ∼B ⇒ ∼(A ◦ B). However,
the implication and negation conditions are satisfied: since A ⊢ ∼∼A, and
A ∧ ∼B ⊢ ∼(A → B) in both R and E. So we deal with implication but not
fusion. (We can axiomatise the theory without appeal to fusion, by the results
of the previous chapter.)

In this case, M(T ) is a theory, M(T ) is complete and consistent. Since
B ∈ S, B 6∈ T , it follows that either 6⊢ A or 6⊢ ∼A ∨B, as desired. �

This is a very significant result, as in logics like R and E, the disjunctive syllogism
is not valid in the form A,∼A∨B 6⊢ B. Why is this not provable? If it were, we
would have A,∼A ⊢ B by a simple cut with ∼A ⊢ ∼A ∨ B. In the pursuit of
relevance, we have had to reject A,∼A ∨ B ⊢ B. However, this is not the end
of the story. Given a theory T , if disjunctive syllogism is not admissible in the
theory, then we have the following situation. A ∈ T , ∼A ∨ B ∈ T , but B 6∈ T .
In this case, either T is inconsistent or it is, in some sense, incomplete. For if T
is prime then either ∼A ∈ T or B ∈ T . If B 6∈ T then T is inconsistent.
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So it is often desirable for a theory to be closed under disjunctive syllo-
gism — at least if it is consistent — even though the rule may not be relevantly
valid. The theorem above ensures that the theorems of the logics R and E
are closed under disjunctive syllogism. The technique of this proof is readily
extended to more substantive theories, giving more substantive results. For
example, Meyer has shown that in some relevant arithmetics (theories of addi-
tion, multiplication and identity, based on relevant logics together using rele-
vant analogues of Peano’s axioms) disjunctive syllogism is not admissible, but
in other arithmetics, it is. For details, see the next section.

5.4 History

The Pair Extension Theorem was proved by Belnap in the early 1970s. Dunn
circulated a write-up of it in about 1975, and cited it in some detail in 1976
[74]. Gabbay gave an independent proof for first-order intuitionistic logic, also
in 1976 [90]. This result, and the use of explicit pairs of sets of formulae, with
equal time for “good guys” and “bad guys,” is vital in the frame semantics of
substructural logics we will see in Chapter 11.

Meyer pioneered the technique of metavaluations in relevant logic [155,
158]. The technique was also used be Kleene in his study of intuitionistic theo-
ries [124, 125], who was in turn inspired by Harrop, who used the technique in
the 1950s to prove primeness for intuitionistic logic [107]. Metavaluations pro-
vide a notion like Kleene’s realisability semantics for intuitionistic logic without
explicit realisers. More recently, Shapiro’s work on intensional arithmetic [244]
and Došen’s in modal logic [66] provide other examples of metavaluations at
work.

Proofs of the admissibility of disjunctive syllogism vary. Meyer pioneered
the technique using metavaluations, and Meyer and Dunn have used other
techniques [161, 160]. Friedman and Meyer showed that disjunctive syllo-
gism fails in a simple first-order relevant arithmetic [87], but that it holds in
that arithmetic when you add an infinitary “omega” rule. Meyer and I have
used a different style of metavaluation argument to construct a complete “true”
relevant arithmetic [166]. This metavaluation argument treats negation with
“one punch” clause: ∼A ∈ M(T ) if and only if A 6∈ M(T ). In this arithmetic,
0 = 1→ 0 = 2 is a theorem, as you can deduce 0 = 2 from 0 = 1 by arithmetic
means, while ∼(0 = 2 → 0 = 1) is a theorem, as there is no way, by using
multiplication, addition and identity, to deduce 0 = 1 from 0 = 2.

There has been a great deal of philosophical discussion on the status of
disjunctive syllogism [26, 205, 219, 226]. For more, see Chapter 16.
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5.5 Exercises

Practice

{5.1} Which of the following claims are true? The intersection of two theories is a

theory. The intersection of two prime theories is a prime theory. The intersection of two

t-normal theories is t-normal.

{5.2} Show that the union of two theories is not necessarily a theory.

Problems

{5.3} Show that the intersection
T

i
Ti of any family of theories Ti (i ∈ I) is also a

theory.

{5.4} Which of the properties from Definition 5.6 are preserved by going to intersec-

tions? That is, if each of Ti has property Φ, does
S

Ti?

{5.5} Define the sum of two theories S and T to be the theory S + T =
T
{U : S, T ⊆

U}. That is, it is the intersection of all of those theories containing both S and T , so it is

the smallest theory containing them both. Similarly, the sum
P

i Ti of a class of theories

Ti (i ∈ I) is the intersection
T
{S : Ti ⊆ S}. Which of the properties from Definition 5.6

are preserved by going to sums?

{5.6} Does S ∩ (T1 + T2) = (S ∩ T1) + (S ∩ T2) for each theory S, T1 and T2?

{5.7} Complete the Pair Extension Lemma in the case where the language is uncount-

able but still well-ordered.

{5.8} Complete the proof of the Way Down Lemma.

Project

{5.9} Slaney has extended the metavaluation technique to prove the primeness of cer-

tain with logics with a strict de Morgan negation [247]. In this technique, you work with

not only M(T ), the set of meta truths of T , but also N(T ), the set of meta non-falsehoods

of T . To start with, p ∈ N(T ) if and only if ∼p 6∈ T . For negation, ∼A ∈ M(T ) if and

only if A 6∈ N(T ), and ∼A ∈ N(T ) if and only if A 6∈ M(T ). Define the clauses for

other connectives, and show (for some logics with a strict de Morgan negation) that the

set of theorems is prime. (HINT: The proof will not apply to R, which is not prime, but

it should apply to DBCK, which is.)
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Chapter 6

Gentzen Systems

. . . with the most engaging politeness,

she eliminated poor Ferkin.

— William Thackeray, Vanity Fair, 1848

A Gentzen system for a logic is another sort of proof theory, similar to natural de-
duction, but with a number of important differences. Gentzen systems parallel
natural deduction systems by having two rules for each connective.1 However,
instead of rules for introducing and eliminating connectives in the consequent
position, we have rules only for introducing connectives. Connectives are never
eliminated by the connective rules. To make up for the loss of one half of our
rules, we add new rules to introduce connectives in the antecedent of a consecu-

tion. Each connective (barring special cases) will have two rules, one licensing
an introduction of that connective in the consequent of the consecution, and the
other licensing its introduction in the antecedent. This gives Gentzen systems
powerful properties.

6.1 An Example System

We will start with one system as an example: the Gentzen system for intuition-
istic linear logic, ILL. In this case, the consecutions are pairs of structures of
formulae in the antecedent, and formulae in the consequent, just as with the
natural deduction system for ILL. The structures here are just built up using the
semicolon. We have intensional structure but no extensional structure, since
the lattice connectives need not satisfy distribution. We make two small modifi-
cations. First, we do not need bracketed formulae to deal with the exponential.
This modality will be treated differently. Second, we allow consecutions with
empty consequents. That is, X ⊢ is a consecution for any structure X. The
empty consequent will represent a false proposition f (which will turn out to be
equivalent to ∼t).

The usual structural rules for linear logic apply, so we have C and B (and
hence, Bc and B′).

1 With just a couple of exceptions, which we will see later.
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First we see the rules for conjunction.

X(A) ⊢ C
[∧L1]

X(A ∧B) ⊢ C

X(B) ⊢ C
[∧L2]

X(A ∧B) ⊢ C

X ⊢ A X ⊢ B
[∧R]

X ⊢ A ∧B

The conjunction rules on the left rely on the entailments A ∧ B ⊢ A and
A∧B ⊢ B. They have the same effect as (∧E) in the natural deduction system,
given the cut rule. For fusion, we have similar rules.

X(A;B) ⊢ C
[◦L]

X(A ◦B) ⊢ C

X ⊢ A Y ⊢ B
[◦R]

X;Y ⊢ A ◦B

These rules express the connection between fusion and the semicolon. For
implication, the rules are:

X ⊢ A Y (B) ⊢ C
[→L]

Y (A→ B;X) ⊢ C

X;A ⊢ B
[→R]

X ⊢ A→ B

The right rule is the same as in natural deduction. The left rule is more
complicated, but it makes sense. If I can use B (in Y ) to deduce C, and X
gives A, then applying A→ B to X also gives B, which I can use (in Y ) to still
deduce C. For disjunction, we have:

X(A) ⊢ C X(B) ⊢ C
[∨L]

X(A ∨B) ⊢ C

X ⊢ A
[∨R1]

X ⊢ A ∨B

X ⊢ B
[∨R2]

X ⊢ A ∨B

which again preserve the right rules from natural deduction. The left rule for
disjunction is smoother than the elimination rule (∨E) from natural deduction,
as we have no need to add the extra premise Y ⊢ A ∨ B to give the conclusion
X(Y ) ⊢ C. Here, since we allow antecedent introduction rules (at the cost of
antecedent regularity), we can let Y = A ∨B to get a simpler rule.

The negation rules are straightforward and rely on the equivalence of A
with A→ ∼t.

X ⊢ A
[∼L]

X;∼A ⊢

X;A ⊢
[∼R]

X ⊢ ∼A

It is at this point that we use empty consequents. If we needed to use f (or
∼t) in the consequent position, we would have a connective rule [∼R] which
eliminated a formula from top to bottom. This is not desirable, so we use a
blank there.2

2 We could use a new punctuation mark to appear only in consequents of structures. On the other
hand, you could think of the blank consequent as a punctuation “mark” itself.
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At this point, we should note that since we are allowing empty consequents
in our consecutions, our rules should be understood in such a way as to allow
this. In some of the rules of the system, the consequent is a parameter — in
these cases it is written as ‘C ’ — and in these cases ‘C ’ might be a formula or an
empty consequent. (Think of ‘C ’ as ‘some consequent’.) In all other cases, the
consequent must be populated with a formula.

The rules for the propositional constants are as follows:

X(0) ⊢ C
[tL]

X(t) ⊢ C
0 ⊢ t [tR]

f ⊢ [fL]
X ⊢

[fR]
X ⊢ f

X(⊥) ⊢ C [⊥L] X ⊢ ⊤ [⊤R]

For the exponential, we have four rules, which jointly give it the desired
properties:

X ⊢ C
[K!]

X; !A ⊢ C

X(!A; !A) ⊢ C
[WI!]

X(!A) ⊢ C

X(A) ⊢ C
[L!]

X(!A) ⊢ C

!X ⊢ A
[R!]

!X ⊢ !A

The rules [K!] and [WI!] give ! formulae the desired structural rules. [K!]
ensures that !A entails A for each A, and [R!] ensures that ! has the usual S4-
like properties. In this last rule, we use !X as the structure given from X by
prefixing every formula in X by !.

Now to prove anything in the Gentzen system we need a rule to get the
system off the ground. This is our usual identity rule.

A ⊢ A [Id]

However, now we do not need [Id] in its full generality. We could do with
assuming it simply in the form p ⊢ p for atomic propositions p, for we can prove

it for more complex propositions by induction on the complexity of formulae.

THEOREM 6.1 (PROVING IDENTITIES)
In the Gentzen system for intuitionistic linear logic, A ⊢ A may be proved from the

instances of identity using atomic propositions alone.

PROOF As you might expect, this is proved by induction on the complexity of
formulae. The major base case is dealt with, but we still need to show that each
of t ⊢ t, f ⊢ f , ⊤ ⊢ ⊤ and ⊥ ⊢ ⊥ can be proved. The cases for ⊤ ⊢ ⊤ and ⊥ ⊢ ⊥
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are trivial (instances of their appropriate axioms). For t, from 0 ⊢ t we deduce
t ⊢ t. For f , from f ⊢ we deduce f ⊢ f .

Now suppose A is a complex formula, and for any subformulae B of A,
B ⊢ B may be proved. We will show that A ⊢ A can also be proved, in the
cases in which the main formula of A is an implication, an exponential and a
disjunction, to leave the rest to Exercise 6.2.

For implication and the exponential, we proceed as follows:

B ⊢ B C ⊢ C
[→L]

B → C;B ⊢ C
[→R]

B → C ⊢ B → C

B ⊢ B
[!L]

!B ⊢ B
[!R]

!B ⊢ !B

and for disjunction we have this proof:

B ⊢ B
[∨R1]

B ⊢ B ∨ C

C ⊢ C
[∨R2]

C ⊢ B ∨ C
[∨L]

B ∨ C ⊢ B ∨ C

�

This completes the proof system. What we have is equivalent to the natural
deduction system for ILL, in the sense that X ⊢ A is provable using natural
deduction if and only if Xτ ⊢ A is provable in the Gentzen system, where we
find Xτ from X by replacing the bracketed formulae [A] in X by !A. We can
prove this equivalence. However, to do so is much easier if we can appeal to the
Cut rule, which you will recall, is as follows:

X ⊢ A Y (A) ⊢ C
[Cut]

Y (X) ⊢ C

Why is it helpful to appeal to the Cut rule? Try showing that if X ⊢ A → B
and Y ⊢ A are both provable in the Gentzen system, then so is X;Y ⊢ B.
The most we can readily do without Cut is to deduce X;Y ⊢ (A → B) ◦ A.
We can also prove (A → B) ◦ A ⊢ B in the Gentzen system without too much
difficulty. Cut then gives X;Y ⊢ B. To get to X;Y ⊢ B directly, we are restricted
to subformulae of the formulae in X, Y and subformulae of B. There is no
guarantee that A → B or A are even among these! So without Cut we cannot
simply “borrow” the proofs of X ⊢ A → B and Y ⊢ A to use in our proof. We
must somehow use the fact that there are proofs of X ⊢ A → B and Y ⊢ A to
construct a proof of X;Y ⊢ B.

So, to prove that the Gentzen system and the natural deduction systems
for ILL coincide, we will use a two-step process. First, we will show that the
Gentzen system with Cut matches the natural deduction system. Then we will
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show that the addition of Cut is redundant. Anything provable with Cut may
be proved without it. This second fact is Gentzen’s significant result about his
systems [93]. He showed that in his proof systems for both intuitionistic and
classical logic, Cut is redundant. The simple pasting of proofs together from
Chapter 2 will not do, as the Gentzen system, with its left-introduction rules, is
not antecedent regular. The Cut elimination proof must proceed on a different
basis. Before going on to consider the details of the proof, we will show that the
Gentzen system (with Cut) and the natural deduction system for ILL coincide.

THEOREM 6.2 (EQUIVALENCE OF SYSTEMS)
X ⊢ A is provable in the natural deduction system for ILL if and only if Xτ ⊢ A is

provable in the Gentzen system using Cut.

PROOF The proof proceeds by way of an induction on the construction of the
proofs in question. We will consider a few cases to give the flavour of the proof,
and leave the rest to Exercise 6.3.

For left-to-right, we proceed by induction on the natural deduction proof of
X ⊢ A. For the identity axioms, we appeal to Theorem 6.1, which shows that
all identities are provable in the Gentzen system. Now suppose X ⊢ A comes
by way of some connective or structural rule, given the hypothesis that the
premises (appropriately translated by τ) of the rule are provable in the Gentzen
system. The translation of the conclusion of the rule follows immediately if the
rule was either B or C, or a connective introduction rule, for these are the same
in each system.

For the elimination rules, we consider a few cases. We have seen already
the case of deducing X;Y ⊢ B from X ⊢ A → B and Y ⊢ B. We have
Xτ ⊢ A → B and Y τ ⊢ A by hypothesis, Xτ ;Y τ ⊢ (A → B) ◦ A, and by Cut
with (A→ B) ◦A ⊢ B we have our result.

For disjunction elimination, if we have X(A) ⊢ C, X(B) ⊢ C and Y ⊢ A∨B,
to deduce X(Y ) ⊢ C, then in the Gentzen system we have X(A)τ ⊢ C and
X(B)τ ⊢ C, which gives us X(A ∨ B)τ ⊢ C, and by cut with Y τ ⊢ A ∨ B we
have X(Y )τ = X(Y τ )τ ⊢ C as desired.

For the bracketed structural rule X ⇐ X; [A], if the premise is Y (X) ⊢ C
the conclusion is Y (X; [A]) ⊢ C. Translating into the Gentzen system we have
Y (X)τ ⊢ C, which gives us Y (X); !A ⊢ C, and by repeated uses of C and B

we may “shuffle” the instance of !A inside the structure to get Y (X; [A])τ =
Y (X; !A) ⊢ C as desired.

The other rules present no more difficulty in the translation from the natural
deduction system to the Gentzen system. For the reverse, suppose we have
Xτ ⊢ A in the Gentzen system, to construct a natural deduction proof of X ⊢ A.
Again, axioms are preserved, as are structural rules and connective rules on the
right. We will consider the same connectives for the connective left rules.
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If I have a Gentzen proof of Y (A→ B;X)τ ⊢ C, from Y (B)τ ⊢ C and Xτ ⊢
A, we can construct the natural deduction proof in this way: A → B;X ⊢ B is
provable by (→E) from A→ B ⊢ A→ B and X ⊢ A. We also have Y (B) ⊢ C,
so Cut in the natural deduction system gives us Y (A→ B;X) ⊢ C.

If I have a Gentzen proof of X(A∨B)τ ⊢ C from X(A)τ ⊢ C and X(B)τ ⊢ C,
then from X(A) ⊢ C, X(B) ⊢ C and A ∨ B ⊢ A ∨ B in the natural deduction
system, (∨E) gives us X(A ∨B) ⊢ C as desired.

Finally, if I have a Gentzen proof of X; !A = (X; [A])τ ⊢ C from Xτ ⊢ C, we
appeal to X ⇐ X; [A] to give us X; [A] ⊢ C from X ⊢ C. The other rules are
similar, so we pronounce the equivalence settled. �

Now consider what must be done to prove that Cut is redundant. To do this
we need a case-by-case analysis of the proofs leading up to the Cut. The sim-
plest case is when the Cut formula (the formula which has been Cut out of the
premises and does not appear in the conclusion) is introduced in both premises
to the Cut rule. Here is an example.

X ⊢ A→ B Y ⊢ A
[◦R]

X;Y ⊢ (A→ B) ◦A

A ⊢ A B ⊢ B
[→L]

A→ B;A ⊢ B
[◦L]

(A→ B) ◦A ⊢ B
[Cut(A→B)◦A]

X,Y ⊢ B

This proof can be transformed to one containing Cuts on proper subformulae of
(A→ B) ◦A, as follows:

X ⊢ A→ B

A ⊢ A B ⊢ B
[→L]

A→ B,A ⊢ B
[CutA→B]

X,A ⊢ B Y ⊢ A
[CutA]

X,Y ⊢ B

In this way, we can “trade in” Cuts on larger formulae for cuts on subformulae.
This is one way in which Cuts are eliminated.

The next case is when the formula has not been introduced, on at least one
side of the proof. Here is an example: the Cut formula C is a parameter in the
disjunction step on the left

X(A) ⊢ C X(B) ⊢ C
[∨L]

X(A ∨B) ⊢ C Y (C) ⊢ D
[CutC]

Y (X(A ∨B)) ⊢ D
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In this case we can “push the Cut upwards” beyond the disjunction rule, as
follows

X(B) ⊢ C Y (C) ⊢ D
[CutC]

Y (X(B)) ⊢ D

X(A) ⊢ C Y (C) ⊢ D
[CutC]

Y (X(A)) ⊢ D
[∨L]

Y (X(A ∨B)) ⊢ D

In this way we have pushed the Cut upwards in the tree, closer to the point
at which the C was introduced. We keep doing this until the Cut operates on
axioms. And these are trivial. If the cut formula is introduced by an axiom, the
Cut rule has either of these forms:

p ⊢ p Y (p) ⊢ C

Y (p) ⊢ C

X ⊢ p p ⊢ p

X ⊢ p

In either case, the rule is redundant. The conclusion is itself one of the premises.
The Cut Elimination Proof involves showing that procedure works in general.
Cuts on formulae introduced on both sides of the cut are eliminable in favour
of cuts on subformulae. Cuts on parameters may be pushed upwards. Cuts on
identities are redundant.

6.2 The Core Ideas

In this section, we will show that Cut is redundant in any consecution systems
satisfying some general criteria. So we will prove the theorem, not only for
systems such as ILL but for many others. This will include systems with quite
different sorts of consecutions — in the section after this one we will see how
Gentzen systems can be constructed using consecutions with structure in the
consequent. So our proof will be quite general, abstracting away the detail to
the general behaviour of consecution systems.

DEFINITION 6.3 (CONSECUTIONS)
A consecution is made up of formulae, somehow collected together using some
kind of structure. This is intentionally general. Examples of consecutions are
sequents, which are of the form X ⊢ A or X ⊢ Y , where A is a formula and
X and Y are sequences of formulae; or in systems such as display logic, con-
secutions are pairs X ⊢ Y , where X and Y are structures made up of formulae
using structure operators.

In every consecution, each formula instance is in either antecedent or con-

sequent position, and not both. In traditional sequents X ⊢ Y , the formulae
appearing in X are in antecedent position, and those in Y are in consequent
position. But this need not hold in general. In the case of display logic, some
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formulae on the left of the turnstile may appear in consequent position, and
some on the right of the turnstile may appear in antecedent position. This is al-
lowed in our analysis — all we need is that each formula instance appear either
in antecedent position or in consequent position, but not in both.

DEFINITION 6.4 (INFERENCES, PREMISES AND CONCLUSIONS, AND RULES)
An inference is a pair of a set (possibly empty) of consecutions (the premises)
and a consecution (the conclusion). A rule is a set of inferences. (Rules, of
course, may be presented schematically.)

DEFINITION 6.5 (ANALYSES, PARAMETERS AND CONGRUENCES)
We need the rules to be analysed in a way that gives us a principled method for
deciding when formulae (or structures made up of formulae) are “preserved”
in a rule, or when formulae (or structures) are “introduced.” An analysis of the
rules of a system provides the notions of parameter and congruence. An analysis
determines, for each inference falling under each rule, which formula or struc-
ture instances are parameters and which are not. Intuitively, the parameters
are those things which are either held constant from premises to conclusion or
are introduced with no regard to their particulars. (So formulae introduced by
weakening are usually parameters.) The congruence relation on parameters is
some equivalence relation on parameters in an inference.

We will say that formulae instances which are nonparametric in the conclu-

sion of an inference are principal in that inference.

Now let us define the Cut rule. In linear logic and related systems, the rule has
this form:

X(A) ⊢ C Y ⊢ A

X(Y ) ⊢ C

How are we to generalise the Cut rule appropriately? First, we need to consider
the instances of formulae to be cut away. Consider two consecutions C and D,
and for some formula A, where A appears in consequent position in C and in
antecedent position in D. We will indicate this by writing C〈A〉 and D[A]. We
will write the cut rule as follows:

C〈A〉 D[A]

CutA(C〈A〉, D[A])

Given this form of the Cut rule, we will need a slight generalisation to allow a
cut of a number of occurrences in antecedent position, or in consequent position
(but not in both). If the A in D[A] is due to a contraction, WI, then to push the
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cut up above D[A], we should cut on all of the instances in the premises of
D[A]. So, given a set A of occurrences of A in antecedent position in D, we
need the notion of an antecedent multiple Cut:

C〈A〉 D[A]

CutA(C〈A〉, D[A])

and similarly, given a set A of occurrences of A in consequent position in C
(recall, we leave open the possibility of systems with structure in consequent
position) we need the consequent multiple Cut:

C〈A〉 D[A]

CutA(C〈A〉, D[A])

Typically, these generalised, multiple Cuts are given by repeating the Cut rule
a number of times. However, to prove the redundancy of Cut, we do not need
to know how multiple Cuts and single Cuts are related, except for a few simple
conditions.

DEFINITION 6.6 (CUT CONDITIONS)
A consecution system satisfies the Cut Conditions if and only if

⋄ CutA(C〈A〉, D[A]) = CutA(C〈A〉, D[A]), where the displayed occurrences
A in D[A] is the singleton set of the single occurrence of A displayed in
D[A].

⋄ CutA(C〈A〉, D[A]) = CutA(C〈A〉, D[A]), where the displayed occurrences
A in C〈A〉 is the singleton set of the single occurrence of A displayed in
C〈A〉.

⋄ If C〈A〉 is an identity axiom, then CutA(C〈A〉, D[A]) = D[A].

⋄ If D[A] is an identity axiom, then CutA(C〈A〉, D[A]) = C〈A〉.

Those conditions on Cut will be used in showing that Cut is redundant. These
conditions are satisfied by the Gentzen system for ILL. Once we define the an-

tecedent multiple Cut:
X ⊢ A Y (A) ⊢ C

[AMCut]
Y (X ) ⊢ C

where A is a collection of instances of A, in Y (A) and Y (X ) ⊢ C is the result
of replacing those instances of A by X. For example:

X ⊢ A (A; (B;A));A ⊢ C

(X; (B;A));X ⊢ C
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is an instance of [AMCut] in which the selected instances of A in (A; (B;A));A
are the first and the third, but not the second.

Given this definition of a multiple Cut, it is simple to verify that the Cut
conditions are satisfied in the Gentzen system for ILL.

Now we must look at the behaviour of parameters in Gentzen systems, for
we want to know how to keep track of parameters while “pushing” a Cut over
one.

DEFINITION 6.7 (PARAMETER CONDITIONS)
⋄ Shape-alikeness of parameters. Congruent parameters are occurrences of the

same structure.

⋄ Position-alikeness of parameters. Congruent parameters are either all an-
tecedent or all consequent parts of their respective consecutions.

⋄ Non-proliferation of parameters. A congruence class of parameters in an
inference contains at most one formula in the conclusion of the inference.

These may be verified by eye, checking the rules. For ILL, congruent parameters
in a rule listed in our presentation of the system are either denoted by the
same letter (for formulae in the consequent) or they occupy the same place in
a structure denoted by the same letter. For example, in the rule

X(A) ⊢ C X(B) ⊢ C

X(A ∨B) ⊢ C

the displayed instances of C presented here are congruent. Similarly, any sub-
structure of X in X(A) is congruent with its mates in X(B) and X(A ∨ B). In
this case, it is clear that parameters are shape-alike and position-alike (none
jumps over from antecedent to consequent, or vice versa) and they do not pro-
liferate (there is only one occurrence of X, and only one of C in the conclusion).
The same is readily checked for nearly all of our rules.

The only rules to beware of are the structural rules, which may well vio-
late the non-proliferation condition. Consider the mingle rule X ⇐ X;X. An
instance is

X ⊢ A

X;X ⊢ A

This fails the non-proliferation condition. The two displayed occurrences of
X in the conclusion are congruent with each other. However, this is no great
problem in this case, as M can be expressed by the equivalent rule

X ⊢ A Y ⊢ A

X;Y ⊢ A
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which satisfies the non-proliferation condition. Both X and Y are parameters
in the conclusion, but they are not congruent with one another, not even in
the case in which X = Y . Remember: Congruence entails shape-alikeness, but
shape-alikeness need not entail congruence.

From parameters, we move to the behaviour of principal formulae.

DEFINITION 6.8 (PRINCIPAL FORMULA CONDITIONS)
⋄ Single principal constituents. If there is an inference ending in C in which

some formula A is principal, then A is the only principal formula in C,
unless C is an axiom.

⋄ Eliminability of matching principal constituents. If there are inferences Inf1
and Inf2 with conclusions C〈A〉 and D[A] in which the presented occurrence
of A is principal, then CutA(C〈A〉, D[A]) is defined, and either is one of the
premises of Inf1 or Inf2, or it is possible to pass from the premises of Inf1
and Inf2 to CutA(C〈A〉, D[A]) by means of inferences falling under the rules
together with inferences falling under the cut rule in which the cut formula
is a proper subformula of A.

Both of these conditions hold in the Gentzen system for ILL. The ‘single principal
constituent’ condition may be verified by eye. The eliminability condition must
be verified case by case. We will check two and leave the rest to Exercise 6.4.
In the case where the principal formula is an implication, we have

X;A ⊢ B
[→R]

X ⊢ A→ B

Z ⊢ A Y (B) ⊢ C
[→L]

Y (A→ B;Z) ⊢ C
[CutA→B]

Y (X;Z) ⊢ C

and we can cut on A and B to get the proof

Z ⊢ A X;A ⊢ B
[CutA]

X;Z ⊢ B Y (B) ⊢ C
[CutB]

Y (X;Z) ⊢ B

which gives us the same conclusion from the same premises. For the exponen-
tial, we can reason as follows. Instead of a cut on !A in

!X ⊢ A
[!R]

!X ⊢ !A

Y (A) ⊢ B
[!L]

Y (!A) ⊢ B
[Cut!A]

Y (!X) ⊢ B
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we can cut to the chase and Cut on the A

!X ⊢ A Y (A) ⊢ B
[CutA]

Y (!X) ⊢ B

which gives the same results. None of the other cases is any more difficult.
Finally, to complete our set of conditions, we need a regularity condition,

which shows that Cuts (perhaps multiple cuts) can be “pushed over” rules in
which the cut formula is a parameter. This proves the most difficult in general,
for the following reason. Consider the following cut on !A.

X ⊢ !A

Y (!A; !A) ⊢ B
[!WI]

Y (!A) ⊢ B
[Cut!A]

Y (X) ⊢ B

To push the Cut over the inference [!WI] we would need the proof

X ⊢ !A Y (!A; !A) ⊢ B
[Cut!A]

Y (X;X) ⊢ B
[??]

Y (X) ⊢ B

But now we need to contract the two instances X;X into one. And this cannot
be done in general. We can only contract formulae prefixed with an exponen-
tial. X may not be that sort of structure. If it is not, the Cut cannot be pushed
back.

However, there is a possibility. If we know that !A is principal in X ⊢ !A,
then we know that X must be of the form !Z for some Z. (Check the [!R] rule.)
So our policy for pushing back Cuts involving !A should be as follows. Push
back the Cuts in the consequent position until !A is principal. At this stage, we
have a consecution of the form !Z ⊢ !A, and we can use this to push the Cut
back over rules in which !A appears as a parameter in the antecedent.

DEFINITION 6.9 (REGULARITY)
A formula A is consequent regular in a consecution system if and only if the
following two conditions hold. First, whenever

C1 · · · Cn

Cn+1

is an instance of a rule in the consecution system, and if A is a congruence class
of parametric occurrences of A in consequent position on the inference, such
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that Ai is the set of occurrences of A in Ci, then for any D[A], we can pass from
each consecution

CutA(C1〈A1〉, D[A]) · · · CutA(C〈An〉, D[A])

to the conclusion

CutA(C〈An+1〉, D[A])

by means of any rule in the system, other than Cut.

Second, whenever
D1 · · · Dn

Dn+1

is an instance of a rule in the consecution system, and if A is a congruence class
of parametric occurrences of A in antecedent position on the inference, such
that Ai is the set of occurrences of A in Di, then for any C〈A〉, which is the

conclusion of an inference in which the highlighted occurrence of A is principal,
then we can pass from the premises

CutA(C〈A〉, D1[A1]) · · · CutA(C〈A〉, Dn[An])

to the conclusion

CutA(C〈A〉, Dn+1[An+1])

by means of any rule in the system, other than Cut.

Dually, a formula A is antecedent regular in a consecution system if and only if
the following two conditions hold. First, whenever

D1 · · · Dn

Dn+1

is an instance of a rule in the consecution system, and if A is a congruence class
of parametric occurrences of A in antecedent position on the inference, such
that Ai is the set of occurrences of A in Di, then for any C〈A〉, we can pass
from the premises

CutA(C〈A〉, D1[A1]) · · · CutA(C〈A〉, Dn[An])

to the conclusion

CutA(C〈A〉, Dn+1[An+1])

by means of any rule in the system, other than Cut.
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Second, whenever
C1 · · · Cn

Cn+1

is an instance of a rule in the consecution system, and if A is a congruence class
of parametric occurrences of A in consequent position on the inference, such
that Ai is the set of occurrences of A in Ci, then for any D[A], which is the

conclusion of an inference in which the highlighted occurrence of A is principal,
then we can pass from each consecution

CutA(C1〈A1〉, D[A]) · · · CutA(C〈An〉, D[A])

to the conclusion
CutA(C〈An+1〉, D[A])

by means of any rule in the system, other than Cut.

Now we have our final condition.

DEFINITION 6.10 (REGULARITY CONDITION)
⋄ Regularity. Every formula is either antecedent or consequent regular.

Most connectives are both antecedent and consequent regular. Checking reg-
ularity in ILL is not too difficult. First, we need to check that in a rule if A
occurs as a parameter in the antecedent then we can cut each premise and the
conclusion of the rule with X ⊢ A. This amounts to replacing each parametric
instance of A in the rule by X. This is possible in each rule, except for [!WI].
In that case, if we replace !A by X, we get a step which may not be provable.
In this case, we show that !A is consequent regular, for it may be replaced any-
where in the consequent, but only in the antecedent by consecutions in which
!A is principal — in other words, in the antecedent !A may be replaced by !X,
but not necessarily by any more general structure. That is the effect of a Cut of
a rule with X ⊢ A. For the dual requirement, we need to consider what hap-
pens when we apply a Cut to a parametric C in consequent position. Suppose
C is a parameter in some rule, such as [∨L]. We have

X(A) ⊢ C X(B) ⊢ C

X(A ∨B) ⊢ C

Now suppose we use C as the Cut formula with another consecution, say Y (C) ⊢
D, where C is some collection of instances of C in Y (C). The result is

Y (X (A)) ⊢ C Y (X (B)) ⊢ C

Y (X (A ∨B)) ⊢ C
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where Y (X (A)) is the result of replacing each instance of C in Y (C) by X(A),
and similarly for Y (X (B)) and Y (X (A ∨ B)). Can we get to the conclusion of
this “rule” from the premises by way of the rules? Yes we can, by means of n
instances of [∨L], where n is the number of instances of C in C. The same holds
for each of the other rules in our system. Therefore, each non-exponential for-
mula is both antecedent and consequent regular, and !A is consequent regular.
So our system satisfies the regularity condition.

6.3 The Proof

This section is devoted to proving the following theorem:

THEOREM 6.11
In any consecution satisfying the parameter, principal and regularity conditions, if

C〈A〉 and D[A] are provable then CutA(C〈A〉, D[A]) is also provable.

The proof is simple in its general plan, but the detail is rather complex. We will
prove a number of lemmas.

LEMMA 6.12 (ANTECEDENT STAGE)
Suppose A is antecedent regular, then the following two conditions hold.

Part 1: For all consecutions C and D, if D[A] is derivable (A1a) and if for all D′[A]
in which the presented A is principal, CutA(C〈A〉, D′[A]) is derivable (A1b) then
CutA(C〈A〉, D[A]) is also provable.

Part 2: For all consecutions C and D, if C〈A〉 is derivable (A2a) and if for all
C ′〈A〉 in which A is principal, CutA(C ′〈A〉, D[A]) is derivable (A2b) and if in
addition, D[A] is the conclusion of some inference in which A is principal (A2c),
then CutA(C〈A〉, D[A]) is provable.

The consequent stage is dual to the antecedent stage.

LEMMA 6.13 (CONSEQUENT STAGE)
Suppose that A is consequent regular, then the following two conditions hold.

Part 1: For all consecutions C and D, if C〈A〉 is derivable (B1a) and if for all

C ′〈A〉 in which the presented A is principal, CutA(C ′〈A〉, D[A]) is derivable (B1b)
then CutA(C〈A〉, D[A]) is also provable.

Part 2: For all consecutions C and D, if D[A] is derivable (B2a) and if for
all D′[A] in which A is principal, CutA(C〈A〉, D′[A]) is derivable (B2b) and if
in addition, C〈A〉 is the conclusion of some inference in which A is principal
(B2c), then CutA(C〈A〉, D[A]) is provable.
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LEMMA 6.14 (PRINCIPAL STAGE)
If there are derivations of C〈A〉 and D[A] in which the presented instances of A are

both principal, and if for all subformulae B of A and for all consecutions C ′ and

D′ then CutB(C ′〈B〉, D′[B]) is derivable, then CutA(C〈A〉, D[A]) is derivable.

The proof of the cut elimination theorem follows from the three lemmas above.

PROOF This is performed by induction on the complexity of A. There are
two cases to perform, depending on the antecedent or consequent regularity of
A. (By the regularity condition, A is either antecedent or consequent regular.)
Suppose A is antecedent regular. Suppose that C〈A〉 and D[A] are derivable, to
show that CutA(C〈A〉, D[A]) is derivable. Suppose that D′[A] is derivable and
the presented A is principal in the conclusion of that derivation. Suppose also
that C ′〈A〉 is derivable and the presented A is principal in the conclusion of that
derivation. It follows by the principal stage that CutA(C ′〈A〉, D′[A]), using the
induction condition that Cut holds for subformulae of A. It follows then that
CutA(C〈A〉, D′[A]) is provable, by Part 2 of the Antecedent Stage, and then by
Part 1 of the antecedent stage, CutA(C〈A〉, D[A]) is derivable as desired.

The case for A being consequent regular is dual, appealing to the Conse-
quent Stage instead of the Antecedent Stage. �

Therefore to complete the proof we need to prove the Antecedent, Consequent
and Principal Stage Lemmas. The Principal Stage is simple:

PROOF Follows immediately from the eliminability of matching principal con-

stituents condition. �

The Antecedent and Consequent stages are completely dual. We will prove the
antecedent stage lemma.

PROOF We suppose that A is antecedent regular and we let π be some deriva-
tion of D[A] (A1a). If A is nonparametric in the conclusion of this derivation, it
is principal, and condition (A1b) gives us our result. So suppose A is paramet-
ric. We define a set A of instances of A in π as follows: include the presented
instance in D[A], and for all instances in A include any members of a congru-
ence class (with respect to an inference in π) which already has a member in
A. A is the set of parametric ancestors of the presented A in D[A]. By the
shape-alikeness of parameters, A is a set of instances of the formula A, by the
position-alikeness of parameters each A is in antecedent position, and by non-

proliferation of parameters the presented A in D[A] is the only instance in D[A].

For each consecution Di in π, let Ai be the elements of A in Di. Let
D′i = CutAi

(C〈A〉, Di[Ai]). We wish to show that each D′i is provable, as D′ is
CutA(C〈A〉, D[A]) (as the set of instances in A in D[A] is simply the displayed
A by non-proliferation).



CONS
1999/11/6
page 121

✐

✐

✐

✐

✐

✐

✐

✐

GENTZEN SYSTEMS 121

We show that D′i is provable, under the induction hypothesis that the primes
of its premises (if there are any) are also provable. Suppose the inference lead-
ing to Di is

E1 · · · En

Di

(call it Inf for reference) and by induction, suppose that each E′j is derivable.
Let D′′i be CutA∗(C〈A〉, Di[A

∗]), where A∗ is the set of instances of A in Di

which in addition to being in A are parametric in Inf. Antecedent regularity of
A ensures that D′′i is demonstrable. This is nearly our result for Part 1, unless
some instance A is not parametric in Di in Inf. In that case, by the single
principal constituent condition, either Di is an identity axiom, in which case
(by the Cut condition) CutA(C〈A〉, Di[A]) = C〈A〉, which is provable, or the
principal A is the single instance of A in the congruence class, and in which case
D′i = CutAi

(C〈A〉, Di[Ai]) = CutA(C〈A〉, Di[A]) which is provable by (A1b).
This completes Part 1.

For Part 2, let π be some derivation of C〈A〉 (A2a). If A is nonparametric
in the conclusion of this derivation, it is principal, and condition (A2b) gives us
our result. So suppose A is parametric. We define a set A of instances of A in
π as follows: include the presented instance in C〈A〉, and for all instances in A
include any members of a congruence class (with respect to an inference in π)
which already has a member in A. By the shape-alikeness of parameters, A is a
set of instances of the formula A, by the position-alikeness of parameters each A
is in consequent position, and by non-proliferation of parameters the presented
A in C〈A〉 is the only instance in C〈A〉.

For each consecution Ci in π, let Ai be the elements of A in Ci. Let C ′i =
CutAi

(C〈Ai〉, D[A]), where in addition we know that D[A] is a conclusion of
an inference in which A is principal (A2c). We wish to show that each C ′i is
provable, as C ′ is CutA(C〈A〉, D[A]) (as the set of instances in A in C〈A〉 is
simply the displayed A by non-proliferation).

We show that C ′i is provable, under the induction hypothesis that the primes
of its premises (if it has any) are also provable. Suppose the inference leading
to Ci is

E1 · · · En

Ci

(call it Inf for reference) and by induction, suppose that each E′j is derivable.
Let C ′′i be CutA∗(Ci〈A∗〉, D[A]), where A∗ is the set of instances of A in Ci

which in addition to being in A are parametric in Inf. Antecedent regularity of
A ensures that C ′′i is demonstrable (as D[A] is the conclusion of some inference
in which the presented A is principal). This is nearly our result for Part 2,
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unless some instance A is not parametric in Ci in Inf. In that case, by the single
principal constituent condition, either Ci is an identity axiom, in which case (by
the Cut condition again) CutA(Ci〈A〉, D[A]) = D[A], which is provable, or the
principal A is the single instance of A in the congruence class, and in which case
C ′i = CutAi

(Ci〈Ai〉, D[A]) = CutA(Ci〈A〉, D[A]), which is provable by (A2b).
This completes Part 2, and hence, the proof of the Lemma. �

6.4 Examples

We can vary our system for ILL a great deal while keeping its nice properties.
First, the structural rules can be varied to your heart’s content, provided that
we have the non-proliferation condition. We will not explicitly consider any
differences here. Instead, we will look at different connective rules. The most
obvious absence is the lack of positive modal connectives. We can add them
with the simple rules

X(A) ⊢ C
[�L]

X(•�A) ⊢ C

•X ⊢ A
[�R]

X ⊢ �A

X(•A) ⊢ C
[�−L]

X(♦−A) ⊢ C

X ⊢ A
[�−R]

•X ⊢ ♦−A

These can be shown to do the same job as the rules in the natural deduction
system (Exercise 6.5). The Identity Theorem also extends to the modal case.

A ⊢ A
[�L]

•�A ⊢ A
[�R]

�A ⊢ �A

A ⊢ A
[�−R]

•A ⊢ ♦−A
[�−L]

♦−A ⊢ ♦−A

So does the eliminability of matching principal constituents.

•X ⊢ A

X ⊢ �A

Y (A) ⊢ C

Y (•�A) ⊢ C
[Cut�A]

Y (•X) ⊢ C

becomes
•X ⊢ A Y (A) ⊢ C

[CutA]
Y (•X) ⊢ C

The other conditions (Cut, Regularity, Principal and Parameter) are preserved.
Modal structure does nothing above and beyond the intensional structure.

Gentzen systems can be structure–structure. We can make the system for ILL
symmetric, by allowing structure in the consequent just as we allow structure
in the antecedent. Now instead of allowing empty antecedent and consequent
structures, we use a punctuation constant 0 satisfying Left and Right Push and
Pop rules. This is the Gentzen system for CLL. In this system, we allow the
structural rules C and B. Here are the rules:

A ⊢ A
X ⊢ Y (A) X ′(A) ⊢ Y ′

[Cut]
X ′(X) ⊢ Y (Y ′)
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X ⊢ A;Y
[∼L]

X;∼A ⊢ Y

X;A ⊢ Y
[∼R]

X ⊢ ∼A;Y

X(A) ⊢ Y
[∧L1]

X(A ∧B) ⊢ Y

X(B) ⊢ Y
[∧L2]

X(A ∧B) ⊢ Y

X ⊢ Y (A) X ⊢ Y (B)
[∧R]

X ⊢ Y (A ∧B)

X(A,B) ⊢ Y
[◦L]

X(A ◦B) ⊢ Y

X ⊢ Y ;A X ′ ⊢ B;Y ′

[◦R]
X;X ′ ⊢ (Y ;A ◦B);Y ′

X(A) ⊢ Y X(B) ⊢ Y
[∨L]

X(A ∨B) ⊢ Y

X ⊢ Y (A)
[∨R1]

X ⊢ Y (A ∨B)

X ⊢ Y (B)
[∨R2]

X ⊢ Y (A ∨B)

X;A ⊢ Y B;X ′ ⊢ Y ′

[+L]
(X;A + B);X ′ ⊢ Y ;Y ′

X ⊢ Y (A;B)
[+R]

X ⊢ Y (A + B)

X ⊢ Y (A) X ′(B) ⊢ Y ′

[→L]
X ′(X;A→ B) ⊢ Y (Y ′)

X;A ⊢ B;Y
[→R]

X ⊢ A→ B;Y

X(0) ⊢ Y
[tL]

X(t) ⊢ Y
0 ⊢ t [tR]

f ⊢ 0 [fL]
X ⊢ Y (0)

[fR]
X ⊢ Y (f)

X(⊥) ⊢ Y X ⊢ Y (⊤)

X ⊢ Y
[K!]

X; !A ⊢ Y

X(A) ⊢ Y
[L!]

X(!A) ⊢ Y

!X ⊢ A; ?Y
[R!]

!X ⊢ !A; ?Y

X(!A; !A) ⊢ Y
[WI!]

X(!A) ⊢ Y

X ⊢ Y
[K?]

X ⊢ ?A;Y

X ⊢ Y (A)
[R?]

X ⊢ Y (?A)

!X;A ⊢ ?Y
[L?]

!X; ?A ⊢ ?Y

X ⊢ Y (?A; ?A)
[W?]

X ⊢ Y (?A)

It is not too hard to show that these systems satisfy each of the required condi-
tions for Cut elimination. We will not pause to demonstrate this. Instead, we
will note that we have a symmetric treatment of the logic. We have an explicit
treatment of fission ‘+’ in parallel with fusion. This duality is so deep that you
can do away with half of the connectives and one side of the consecution to use
a single-sided Gentzen system. See Exercise 6.6.

For negations, we need to rethink the nature of Gentzen systems even fur-
ther. Note that to introduce the negation in X ⊢ ∼A, keeping the subformula
property, we need to use X and A. The A in the premise ought to be in an-

tecedent position, as its negation appears in consequent position. If A ⊢ A′ then
∼A′ ⊢ ∼A. The “polarity” is reversed by negation. One way to place A in
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antecedent position is to combine it with the X, using two-place punctuation
marks. This is how negation is defined in the Gentzen systems for linear logic.
This is appropriate when negation is defined in terms of intensional structure —
if (∼I;¬E) and similar rules are present — but it is less appropriate where such
connections are absent.

One way to define negation in the absence of any connections with two-
place structure is to admit a different kind of one-place structure. We let ♯
and ♭ be two different one-place punctuation marks, connected together by the
following rule.

X ⊢ ♯Y
======
Y ⊢ ♭X

The position-alikeness of parameters means that in this rule, both of X and Y
are in antecedent position. However, ♯Y and ♭X are in consequent position.
This punctuation mark makes us define structure in a new way. If X is an
antecedent structure, then ♯X and ♭X are consequent structure. We can exploit
this form of structure to give the following rules for negation.

X ⊢ A
[∼L]

∼A ⊢ ♯X

X ⊢ ♯A
[∼R]

X ⊢ ∼A

X ⊢ A
[¬L]

¬A ⊢ ♭X

X ⊢ ♭A
[¬R]

X ⊢ ¬A

Once we have these rules, ∼ and ¬ are connected in the appropriate way. For
example, we have the following proofs

A ⊢ A
[∼L]

∼A ⊢ ♯A
[∧L]

∼A ∧ ∼B ⊢ ♯A

A ⊢ ♭(∼A ∧ ∼B)

B ⊢ B
[∼L]

∼B ⊢ ♯B
[∧L]

∼A ∧ ∼B ⊢ ♯B

B ⊢ ♭(∼A ∧ ∼B)
[∨L]

A ∨B ⊢ ♭(∼A ∧ ∼B)

∼A ∧ ∼B ⊢ ♯(A ∨B)
[∼R]

∼A ∧ ∼B ⊢ ∼(A ∨B)

We identify ♯ and ♭ to get the identity of ¬ and ∼. To get double negation elim-
ination, we ought to allow these negative structures to appear in antecedent
position as well as consequent position. Consecutions in this system (with just
∼ and ¬ as structure) have a useful property, called the display property. If A
appears in antecedent position in a consecution, this consecution is equivalent
to one of the form A ⊢ Z, in which A is the displayed antecedent. Similarly, if
A appears in consequent position, the consecution is equivalent to one of the
form Y ⊢ A. For this reason, the connective rules can take a simple form in
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which the formula introduced is the entire antecedent or the entire consequent.
Similarly, the Cut rule can take the simple form

X ⊢ A A ⊢ Y

X ⊢ Y

as we can require that the cut formula in each premise be displayed. Belnap
has pioneered this kind of consecution calculus in his papers on display logic.

6.5 History

In this presentation I have leaned heavily on the work of Curry’s Foundations of

Mathematical Logic [54] and Belnap’s Display Logic [23, 24].
Gentzen’s own systems for intuitionistic and classical propositional logics

(and predicate logics) are clearly explained in his own papers [93]. Gentzen
systems found their way into substructural logics from an early date. Lambek’s
work on the syntactic calculus was clearly inspired by Gentzen’s methods [133,
134]. In relevant logics, it took the work of Dunn [72] and Mints [172] to
show how Gentzen systems for positive relevant logics could be formulated.
The crucial insight here was the presence of two different kinds of premise
combination, as we have already seen. These have been extended in a number
of ways to model negation. I have used Belnap’s display logic to give proof-
theories for logics with split negation [214, 218]. Another possible direction
is Brady’s work, which adds “signs” to formulae to model a de Morgan nega-
tion [39]. Girard’s Gentzen systems for linear logic model negation neatly by
the ever-present duality in these systems [96]. The Gentzen system for classical
linear logic can be simplified to such an extent that only one side of the turnstile
is necessary. See Exercise 6.6.

Gentzen systems have been used to provide a decision procedure for the con-
sequence relation in many substructural logics, as the subformula property of
the system often allows for a proof search procedure. We will see some exam-
ples of this in Chapter 14.

6.6 Exercises

Practice

{6.1} Construct Gentzen proofs (without Cut) for the consecutions in Exercises 2.1, 2.4,

2.5 and 2.6.

{6.2} Complete the proof of the remaining cases of the Identity Theorem on page 107.

Problems

{6.3} Complete the proof (on page 109) of the remaining cases of the equivalence of

the Gentzen system for ILL (with Cut) with the natural deduction system.
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{6.4} Show that eliminability of principal constituents holds in the Gentzen system for

ILL.

{6.5} Show that the Gentzen rules for � and �− are equivalent to the natural deduction

rules, extending Theorem 6.2 to apply to modal propositions.

Projects

{6.6} You can exploit the duality present in LL to produce a consecution system with

consecutions of the form X ⊢ (or equally generally, ⊢ X). We redefine formulae in such a

way that∼ binds only atomic propositions. ∼(A◦B) = ∼A+∼B,∼(A∧B) = ∼A∨∼B,

∼∼A = A, and so on. Then we define the Gentzen system in the light of this. Instead

of p ⊢ p as the identity axiom, we have p;∼p ⊢. For each other connective we take the

appropriate left-hand rule, and we allow duality to take care of the right-hand rule. So,

the fusion and fission rules are

X(A; B) ⊢

X(A ◦B) ⊢

X; A ⊢ Y ; B ⊢

(X; A + B); Y ⊢

Then identity is provable, in the sense that A ◦ B,∼(A ◦ B) ⊢, or equivalently, A ◦
B;∼A +∼B ⊢, as follows:

A;∼A ⊢ B;∼B ⊢

(A; B);∼A +∼B ⊢

A ◦B;∼A +∼B ⊢

(suppressing a few structural rules.) Define the whole system, including an appropriate

Cut rule. Show that Cut is redundant in the system, and that it is equivalent to the

two-sided Gentzen system for LL.
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Chapter 7

Formulae as Types, Proofs as Terms

The reduction of Egypt

was immediately followed by the Persian War.

— Edward Gibbon, The History of the Decline and Fall of the Roman Empire, 1776

A closer analysis of proofs than what we have managed so far will be aided by
giving proofs names. After all, if proofs are first-class entities, we will be better-
off if we can distinguish different proofs. We will start with a homely example.
We will start with the implication and conjunction fragment of intuitionistic
logic: J[→,∧]. The language for describing proofs is given by the λ-calculus
with pairing. A term of this calculus is built up from variables x, y, . . . using the
constructors 〈−,−〉, fst (−), snd (−), λx.M and application (which we write as
juxtaposition). A judgement is a pair M :A of a term M and a formula A. Then
in proofs in this system we keep tabs on what is going on by building terms up
to represent the ongoing proof. We start with the identity rule x:A ⊢ x:A. Then
for conjunction, we reason as follows:

Γ ⊢M :A Γ ⊢ N :B

Γ ⊢ 〈M,N〉:A ∧B

Γ ⊢M :A ∧B

Γ ⊢ fst (M):A

Γ ⊢M :A ∧B

Γ ⊢ snd (M):B

If M is the proof of A from Γ, and N is the proof of B from Γ, then the pair
〈M,N〉 is the proof of A∧B from Γ. Similarly, if M is a proof of A∧B (from Γ)
then fst (M) (the “first part” of M) is the proof of A from Γ. Similarly, snd (M)
is the proof of B from Γ. For implication, we have these rules:

Γ ⊢M :A→ B ∆ ⊢ N :A

Γ,∆ ⊢ (MN):B

Γ, x:A ⊢M :B

Γ ⊢ λx.M :A→ B

If M is a proof of A → B, and N is a proof of A, then you get a proof of B by
applying M to N . So, this proof is (MN). Similarly, if M is a proof of B from
Γ, x:A, then a proof of A→ B is a function from proofs of A to the proof of B.

127
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It is of type λx.M . We put these together to get names for more complex proofs

x:A→ B ⊢ x:A→ B y:A ⊢ y:A

x:A→ B, y:A ⊢ (xy):B

y:A ⊢ λx.(xy):(A→ B)→ B

0 ⊢ λy.λx.(xy):A→ ((A→ B)→ B)

The term λy.λx.(xy) encodes the shape of the proof. The first step was an
application of one assumption on another (the term (xy)). The second was the
abstraction of the first assumption (λx), and the last step was the abstraction of
the second assumption (λy). The term encodes the proof. There are a number
of important features of these terms.

⋄ Terms encoding proofs with no premises are closed. They have no free
variables.

⋄ More generally, if Γ ⊢ M :A is provable and x is free in M then x appears
free in Γ too.

⋄ Proofs encode connective steps, not structural rules. For example, the rule
CI or C was used in the proof of A → ((A → B) → B. It is not encoded
in the term explicitly. Its presence can be seen implicitly by noting that the
variables x and y are bound in the opposite order to their appearance.

⋄ For the application of structural rules, we require that no variables be
merged. For example, if we have X;X ⇐ X in our original proof the-
ory, the rule Γ; Γ ⇐ Γ is the corresponding term version. In this case, we
want the variables in corresponding positions in each instance of Γ to be
identical.

Now, once we have a term system, we have contracting rules, which give us the
behaviour of proof reduction.

fst 〈M,N〉  M
snd 〈M,N〉  N
(λx.M)N  M [x := N ]

These correspond to cutting the detours out of proofs. For example, consider
the reduction

Γ ⊢M :A Γ ⊢ N :B

Γ ⊢ 〈M,N〉:A ∧B

Γ ⊢ fst 〈M,N〉:A

 Γ ⊢M :A
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Or a slightly more complex case:

Γ, x:A ⊢M :B

Γ ⊢ λx.M :A→ B ∆ ⊢ N :A

Γ,∆ ⊢ (λx.M)N :B

 Γ,∆ ⊢M [x := N ]:B

The term M [x := N ] indicates that the assumption(s) marked x in M are re-
placed by N . This matches the assumption(s) A marked x in Γ, x:A which are
replaced by the ∆ in the transformation.

7.1 Defining Terms and Decorating Proofs

We will adapt this simple scheme to our case — to the behaviour of intensional
connectives such as fusion and implication, and possibility and necessity.

DEFINITION 7.1 (TERMS AND TYPES)
Every proposition is a type. Given a class of types, we define the class of terms
(and the free variables in a term) recursively as follows:

⋄ For every type A there are variables xA, yA, . . . of type A. The variable xA

is free in xA, and no other variable is free in xA. A free variable corresponds
to the identity proof.

x:A ⊢ x:A

⋄ If M has type A and N has type B then 〈M,N〉 is a term of type A∧B. The
variables free in 〈M,N〉 are those free in M together with those free in N .
Pairing corresponds to conjunction introduction.

Γ ⊢M :A Γ ⊢ N :B
(pairing)

Γ ⊢ 〈M,N〉:A ∧B

⋄ If M has type A ∧ B, then fst (M) is a term of type A and snd (M) is a
term of type B. The variables free in M remain free in both fst (M) and
snd (M). The projection operators fst and snd correspond to conjunction
elimination.

Γ ⊢M :A ∧B

Γ ⊢ fst (M):A

Γ ⊢M :A ∧B
(projection)

Γ ⊢ snd (M):B

⋄ If M is a term of type A then inl B(M) is a term of type A∨B and inr B(M) is
a term of type B ∨A. The variables free in M remain free in both inl B(M)
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and inr B(M). The injection constructors correspond to disjunction intro-
duction.

Γ ⊢M :A

Γ ⊢ inl (M):A ∨B

Γ ⊢M :A
(injection)

Γ ⊢ inr (M):B ∨ A

⋄ If L is a term of type A ∨ B and M and N are both terms of type C, then
the term let L be xA in M or yB in N is also of type C. The free variables
in let L be xA in M or yB in N are those in L, M and N , except for the
free instances of xA in M and of yB in N , which are now bound. This is
more difficult to understand than the other constructors. In this term L is
“standing for” whatever it is that gives us A ∨ B. What is that? Well, if we
have A, it is x in M , and if we have B, it is y in N . Hence, we let L stand
for x in M or y in N .

Γ ⊢ L:A ∨B ∆(x:A) ⊢M :C ∆(y:B) ⊢ N :C
(cases)

∆(Γ) ⊢ let L be x in M or y in N :C

There is an important proviso in this deduction. In ∆(x:A) the indicated
instance x:A must be the only instance of x in the structure. If there are
more, they must be contracted into one instance, or they must be re-lettered
so that there is no clash of variables.

⋄ ⋆ is a term of type ⊤.
Γ ⊢ ⋆:⊤

The star is a simple term that is the proof introducing ⊤ in the consequent.

⋄ If M is a term of type ⊥ then let M be † is a term of type C. No variables
are bound by this construction.

Γ ⊢M :⊥

∆(Γ) ⊢ let M be †:C

This is also not easy to understand. The bottom type ⊥ is perhaps best
understood as a zero-place disjunction, and hence the constructor is analo-
gous.

⋄ For application and abstraction, it will be simplest to use different construc-
tors for left and for right implication. If M is a term of type A→ B and N
is a term of type A, then M 〉N is a term of type B. The free variables in
M 〉N are those free in M and in N .

Γ ⊢M :A→ B ∆ ⊢ N :A
(→ app)

Γ;∆ ⊢M 〉N :B
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⋄ If M is a term of type B then λ〉xAM is a term of type A → B. The free
variables of λ〉xAM are those in M , except for xA, which is now bound.

Γ;x:A ⊢M :B
(→ abst)

Γ ⊢ λ〉xM :A→ B

In this rule we require that x not be free in Γ. Again, any other instances
of x in Γ must have been contracted with the displayed x:A by the time we
get to this inference.

⋄ If M is a term of type A and N is a term of type B ← A, then M 〈N is a
term of type B. The free variables in M 〈N are those free in M and in N .

Γ ⊢M :A ∆ ⊢ N :B ← A
(← app)

Γ;∆ ⊢M 〈N :B

⋄ If M is a term of type B then λ〈xAM is a term of type B ← A. The free
variables of λ〈xAM are those in M , except for xA, which is now bound.

x:A; Γ ⊢M :B
(← abst)

Γ ⊢ λ〈xM :B ← A

The same goes for the displayed x:A here — it must be the only x in the
antecedent of the premise.

⋄ ∗ is a term of type t. If N is a term of type t, and M is a term of type C, then
let N be ∗ in M is a term of type C. The free variables in let N be ∗ in M
are those free in N or in M .

0 ⊢ ∗:t
∆ ⊢ N :t Γ(0) ⊢M :C

Γ(∆) ⊢ let N be ∗ in M :C

Here the let constructor is similar to the let constructor of disjunction. We
use N to take the place of ∗ in the term M .

⋄ If M has type A and N has type B then M ◦N is a term of type A ◦B. The
free variables of M ◦N are those of M and those of N .

Γ ⊢M :A ∆ ⊢ N :B

Γ;∆ ⊢M ◦N :A ◦B

⋄ If M is has type A ◦ B and N has type C then let M be xA ◦ yA in N is a
term of type C. The free variables of let M be xA ◦ yA in N are those of
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M and of N , except for the instances of xA and yA in N , which are now
bound.

Γ ⊢M :A ◦B ∆(x:A; y:B) ⊢ N :C

∆(Γ) ⊢ let M be x ◦ y in N :C

Here the let constructor is similar to the other let constructors we have seen.
Note that these constructors are used in the rules which use a fixed formula
in the consequent. All of the work occurs in the antecedent structure.

⋄ If M is a term of type A then upM is a term of type �A, and if M is a term
of type �A, then downM is a term of type A.

•Γ ⊢M :A

Γ ⊢ upM :�A

Γ ⊢M :�A

•Γ ⊢ downM :A

up and down bind no variables. The behaviour of these terms parallels the
behaviour of λ and application in which there is a fixed antecedent formula.

⋄ If M is a term of type A, then •M is a term of type ♦−A.

Γ ⊢M :A

•Γ ⊢ •M :♦−A

⋄ If M has type ♦−A and N has type C then let M be •x in N is a term of type
C. The free variables in let M be •xA in N are those in M and N , except
for occurrences of xA in N , which are bound.

Γ ⊢M :♦−A ∆(•x:A) ⊢ N :C

∆(Γ) ⊢ let M be •x in N :C

Possibility here acts like a one-place version of fusion.

Given a term M of type A, and a term N of type B, then M [xB := N ] is given
by replacing the free instances of xB in M by N . A term is closed if and only if
it has no free variables.

DEFINITION 7.2 (PROOF DECORATION)
A decorated proof in a natural deduction system is a chain of proof steps in the
term proof theory given above, combined with structural rules. A structural rule
in a term proof theory is given by replacing formulae by judgements in standard
structural rules.

THEOREM 7.3 (PROOFS CAN BE DECORATED)
X ⊢ A is provable in S if and only if there is a decorated proof Γ ⊢ M :A in

the corresponding term system, where Γ is found by assigning variables to the

propositions in X.
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PROOF For the proof from right to left, if we have a term proof of Γ ⊢ M :A,
erase the terms to get a proof of X ⊢ A.

For left to right we proceed by an induction on the complexity of the proof
of X ⊢ A. Clearly the identity axiom and any zero-premise connective rules are
provable in the term system. We have x:A ⊢ x:A, Γ ⊢ ⋆:⊤ and 0 ⊢ ∗:t.

Our assumption for the induction step is that the premises of X ⊢ A can
be proved in the term system, and that furthermore, it can be proved in such
a way that no variables in the antecedent of the consecution occur more than
once. We call this a liberal distribution of variables.

Now suppose X ⊢ A comes from another consecution X ′ ⊢ A by way of a
structural rule. By hypothesis, there is a proof Γ′ ⊢ M :A in the term system.
We wish to show that there is a proof of Γ ⊢ M :A too, where Γ corresponds to
X. The hypothesis tells us that no variable occurs twice in Γ′. Now consider
the structural rule. If any merging of propositions is involved (in the case of
W, WI and related rules), we must relabel the variables in Γ′ to identify the
variables attached to merged propositions, and also relabel the corresponding
variables in M . This transformation preserves the property of being a proof, as
nothing is assumed about the identity of free variables in any of our rules. If
the conclusion of the structural rule introduces new formulae (in the case of K

and similar rules) we add new variables. The result is a term proof of Γ ⊢M :A,
which still has a liberal distribution of variables in Γ.

Now suppose X ⊢ A comes from the consecutions Y ⊢ B and Z ⊢ C. (The
case for one premise is simpler, and left to the reader.) By the induction hy-
pothesis, we can assume that there are term proofs Σ ⊢ M :B and ∆ ⊢ N :C.
Furthermore, we can assume, for the moment, that no variables appear free in
both consecutions. If the proof step binds no variables (in the case of pairing,
projection, injection, application and so on) then we move to the appropriate
conclusion of type M@N , where @ is the connective involved. The only diffi-
culty is when the rule requires that the antecedents of two different premises
be identical — as in the case of pairing. In this case, we rename the variables in
one premise to match the other. This process involves transforming the proof of
that premise (∆ ⊢ N :C) to be the proof of ∆′ ⊢ N ′:C, so that the free variables
used in ∆′ match those in Σ.

If the term constructor binds a variable, we must just check the provision
that the displayed variable in the proof is the only one bound. But this is given
by the condition that the premises involve a liberal distribution of variables.
This completes the proof. �
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Here are some examples of decorated proofs. First, here is a proof of x:(A →
B) ∧ (A→ C); y:A ⊢ (fst x)〉y:B.

y:A ⊢ y:A

x:(A→ B) ∧ (A→ C) ⊢ x:(A→ B) ∧ (A→ C)

x:(A→ B) ∧ (A→ C) ⊢ fst x:A→ B

x:(A→ B) ∧ (A→ C); y:A ⊢ (fst x)〉y:B

We will call this proof Π1. A similar proof (Π2) can be found of x:(A → B) ∧
(A → C); y:A ⊢ (snd x)〉y:C. Then we can use these proofs to construct the
following proof of 0 ⊢ λ〉xλ〉y〈(fst x)〉y, (snd x)〉y〉:(A→ B) ∧ (A→ C)→ (A→
B ∧ C).

Π1 Π2

x:(A→ B) ∧ (A→ C); y:A ⊢ 〈(fst x)〉y, (snd x)〉y〉:B ∧ C

x:(A→ B) ∧ (A→ C) ⊢ λ〉y〈(fst x)〉y, (snd x)〉y〉:A→ B ∧ C

0 ⊢ λ〉xλ〉y〈(fst x)〉y, (snd x)〉y〉:(A→ B) ∧ (A→ C)→ (A→ B ∧ C)

Note that this proof used no structural rules at all. We did not have to merge
variables or introduce new ones. The next proof uses a structural rule, WI.

x:(A→ B) ∧A ⊢ x:(A→ B) ∧A

x:(A→ B) ∧A ⊢ fst x:A→ B

x:(A→ B) ∧A ⊢ x:(A→ B) ∧ A

x:(A→ B) ∧A ⊢ snd x:A

x:(A→ B) ∧A;x:(A→ B) ∧A ⊢ (fst x)〉(snd x):B
[WI]

x:(A→ B) ∧A ⊢ (fst x)〉(snd x):B

0 ⊢ λ〉x((fst x)〉(snd x)):(A→ B) ∧A→ B

In this proof, the WI move applies as we use the same variable (here x) to apply
to both instances of (A→ B)∧A. Had the branches of the proof used different
variables, say x and y, then after the y step we would have had two free vari-
ables in the term decorating B — perhaps we would have had (fst x)〉(snd y) —
with only one variable in the antecedent. This will not do, as we need an
assumption for every free variable in the term. Free variables represent undis-
charged assumptions. So, WI and similar moves require shared variables.

The next theorem shows how Cut behaves in term systems. The proof is a
simple induction on the complexity of N .

THEOREM 7.4 (SUBSTITUTION THEOREM)
If ∆ ⊢ M :A and Γ(x:A) ⊢ N :B are provable in some system, and ∆ and Γ(x:A)
have no variables in common, then Γ(∆) ⊢ N [x := M ]:B is also provable in that

system. �
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So Cut, for proofs, corresponds exactly to substitution of proofs.

The next nice result of term systems is the Decomposition Theorem. It is a
ready consequence of the nature of terms. Given a term M , we can “read off”
the last step of the proof, and then get the terms of the proofs which conclude
with the premises of that last step. Then continue.

THEOREM 7.5 (TERM DECOMPOSITION)
If M decorates two proofs, then these proofs share the same order of application of

connective rules. �

As an example, we can tell that the term λ〉x((fst x)〉(snd x)) is a proof of a
proposition of the form (A→ B)∧A→ B. The similar term λ〉x((snd x)〉(fst x))
is a proof of A∧ (A→ B)→ B, for here we have applied the second part of our
assumption to the first part, instead of the other way around.

In this system, the one term can represent a proof in more than one logic.
For example, λ〉x((fst x)〉(snd x)) is a proof of (A → B) ∧ A → B in any logic
with the rule WI. The proofs do not, however, give any explicit information
about which structural rules have been used. You can see in this term that im-
plication introduction and elimination have both been used, as has conjunction
elimination. It requires more work to see that WI has been used.

However, in some cases we can see from a term what structural rules have
been used in its proof. It is simplest to see for terms with simple structure. We
will restrict our attention to proofs involving implication alone — so the only
constructors are λ〉 and 〉. Consider the logic R[→]. In any proof in R[→] we
allow reordering and contraction of premises, but we do not allow irrelevant
premises to be added to the proof. For example, we do not allow this simple
proof.

x:A ⊢ x:A
[K]

x:A; y:B ⊢ x:A

x:A ⊢ λ〉y x:B → A

0 ⊢ λ〉xλ〉y x:A→ (B → A)

In this proof an irrelevant premise has been added — here, B. This addition is
witnessed by the fact that the variable y is bound by a λ〉, despite the fact that
it does not appear in the term bound! In R[→], this is not allowed. We have
the following theorem, which characterises proofs not only in R[→] but also in
BCK[→] and LL[→].

THEOREM 7.6 (CHARACTERISATION OF IMPLICATION TERMS)
Suppose M is a term, and we have a proof Γ ⊢ M :A. Then M is a proof in R[→]
if and only if each λ〉 binds at least one variable, and every variable in Γ is free in
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M . It is a proof in BCK[→] if and only if each λ〉 binds at most one variable, and

every variable in Γ is free at most once in M . It is a proof in LL[→] if and only if

each λ〉 binds exactly one variable, and every variable in Γ is free exactly once in

M .

PROOF The proof from right to left is by induction on the construction of M .
If M is a variable, we are done, as there are no abstractions, and the variable
appears exactly once in the antecedent. If the result holds for Σ ⊢ M :A → B
and ∆N :A, then the desired binding behaviour is still exhibited by M 〉N :B,
provided that Σ and Γ share no variables. Now consider structural rules. B
and C disturb no variables, so these rules preserve the hypotheses. In BCK we
allow K, which introduces new variables, but does nothing else, so we still have
variables in Γ appearing no more than once in N . In R we allow W, which
requires relabelling of variables to allow merges. However, W introduces no
new variables, so no variables appear in Γ which are not in N .

Now suppose that we have a proof of Γ;x:A ⊢ M :B. In BCK and LL, we
know that x appears no more than once in M :B, so in λ〉xM at most one x is
bound. In R and LL, we know that x appears at least once in M :B, so in λ〉xM
at least one x is bound, and this completes the proof from right to left.

From left to right, we extract a proof from the term. This is a straightforward
re-reading of the definition of a term. If the LL condition is satisfied then B and
C will suffice for the proof. If the BCK condition is satisfied, then B, C and K

will suffice (you need K to introduce irrelevant premises) and if the R condition
is satisfied, then B, C and W will do (you need W to allow the duplication of
premises). �

This condition gives a intuitive justification for the connection between R and
relevance. The λ-terms with no vacuous abstraction seem to pin down the class
of abstract functions which somehow depend on their arguments. Similarly,
the linear λ-terms — those in which no premise is bound twice, or vacuously
bound — seem to be the terms in which resource use is best respected. In
these terms nothing is used twice, and nothing is not used. It remains to be
seen, however, if this intuitive justification can be extended to a genuine theory
of the behaviour of functions and resource use on the one hand, and whether
this intuitive account extends to other connectives and constructions. It seems
difficult. For example, in any of our substructural logics you can prove (A →
B) ∧ (A → C) → (A → B ∧ C) with the proof we have seen a few pages ago.
Its term — λ〉xλ〉y〈(fst x)〉y, (snd x)〉y〉 — involves the double binding of x and
of y. However, we did not use any structural rule in its proof. Can a story be
told to explain this?
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7.2 Introducing Normalisation

The process of normalisation is a technique for transforming proofs by eliminat-
ing useless “detours.” Consider what happens when you introduce a connective
and then eliminate it in the next step.

Γ;x:A ⊢M :B

Γ ⊢ λ〉xM :A→ B ∆ ⊢ N :A

Γ;∆ ⊢ (λxM)〉N :B

This detour can be cut out, resulting in a shorter proof from the same premises.

Γ;∆ ⊢M [x := N ]:B

This works for other connectives too. For example, if we have a fusion intro-
duction and then elimination

Γ ⊢M :A ∆ ⊢ N :B

Γ;∆ ⊢M ◦N :A ◦B Σ(x:A; y:B) ⊢ L:C

Σ(Γ;∆) ⊢ let M ◦N be x ◦ y in L:C

we may as well “cut out the middleman.”

Σ(Γ;∆) ⊢ L[x := M,y := N ]

In this, we simultaneously substitute M for the free xs and N for the free ys in
L.

This behaviour happens with every pair of introduction and elimination rules.
It motivates a definition:

DEFINITION 7.7 (INTRODUCTION/ELIMINATION CONTRACTION)
The introduction/elimination contraction rules for each connective are as fol-
lows:

fst 〈M,N〉  M

snd 〈M,N〉  N

(λ〉xM)〉N  M [x := N ]

M(λ〈xN)〈  N [x := M ]

down upN  N

let •N be •x in M  M [x := N ]

let ∗ be ∗ in M  M
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let M ◦N be x ◦ y in L  L[x := M,y := N ]

let inl (M) be x in N or y in L  L[x := M ]

let inr (M) be x in N or y in L  L[y := M ]

It is a simple matter of checking to verify that for each M and M ′ where M  

M ′, M and M ′ have the same type.

However, these contractions are not the only redundancies which can be
eliminated from proofs. ‘let . . . ’ terms require special treatment, for the type of
the conclusion in these terms is the type of one of the premises.1 In this case,
we can, say, introduce a connective into C, use this as an “innocent bystander”
in a let step, and then discard that connective. Here is an example, where we
use a conjunction as a bystander in a fusion move, only to eliminate it.

∆ ⊢M :A ◦B Σ(x:A; y:B) ⊢ N :C ∧D

Σ(∆) ⊢ let M be x ◦ y in N :C ∧D

Σ(∆) ⊢ fst (let M be x ◦ y in N):C

This can be modified by eliminating the conjunction before the fusion step. In
this way, the conjunction elimination is brought earlier, and hopefully, closer to
any corresponding conjunction introduction, with which it might contract. So,
we swap the order of the rules to get

Σ(x:A; y:B) ⊢ N :C ∧D

∆ ⊢M :A ◦B Σ(x:A; y:B) ⊢ fst (N):C ∧D

Σ(∆) ⊢ let M be x ◦ y in fst (N):C

This does not shorten the proof, but it does help us to find more contractions to
the proof, as it helps to bring together more introduction/elimination pairs.

This behaviour is available in general, but we must be careful. We might be
tempted to say that any let step can be commuted with any elimination step.
However, this is not quite right, as let steps themselves are elimination steps. If
we allow let steps to commute over each other, then, for example, the proof

Γ ⊢M :A ◦B

Σ ⊢ N :t ∆(x:A; y:B)(0) ⊢ L:C

∆(x:A; y:B)(Σ) ⊢ let N be ∗ in L:C

∆(Γ)(Σ) ⊢ let M be x ◦ y in (let N be ∗ in L):C

1 Except for the term for ⊥, which is a special case, in which the appropriate premise is absent.
This is another point at which it is helpful to think of ⊥ as a zero-place disjunction, so the ⊥ rule
acts similarly to the disjunction rule.
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which eliminates t and then fusion, will “simplify” to

Σ ⊢ N :t

Γ ⊢M :A ◦B ∆(x:A; y:B)(0) ⊢ L:C

∆(Γ)(0) ⊢ let M be x ◦ y in L:C

∆(Γ)(Σ) ⊢ let N be ∗ in (let M be x ◦ y in L):C

which can then “simplify” back to the earlier proof! This is not desirable, as
we want the process of contraction and simplification to be a one-way process.
So we must be careful. We will single out some terms as those appropriate to
commute with let steps. These are the proper elimination constructors.

DEFINITION 7.8 (PROPER ELIMINATION CONSTRUCTORS)
The proper elimination constructors are the elimination constructors which are
not let constructors. In particular, they are fst, snd, 〉, 〈 and down.

Now we can define the commuting conversions for proper elimination terms and
let steps.

DEFINITION 7.9 (COMMUTING CONVERSIONS)
Any proper elimination constructor applied to a let term commutes with the let

term. So, we push proper elimination terms inside let terms, as follows:

Φ(let · · · in M) let · · · in Φ(M)

Here are some examples:

fst (let M be x in N or y in L)  let M be x in fst (N) or y in fst (L)

(let M be x ◦ y in N)〉L  let M be x ◦ y in N 〉L

M 〈(let K be †)  let K be †

This completes our suite of ways to simplify proofs. Now we can patch them
together.

DEFINITION 7.10 (CONTRACTING, CONVERTING AND REDUCING)
If M  M ′, we say that M is a redex and M ′ is the contractum of M . If L is a
term with some redex as a subterm, then L is said to convert to L′, the result of
replacing that redex with its contractum. We write this ‘L ✲ L′.’ Finally, if we
have a sequence of conversions

L1
✲ L2

✲ · · · ✲ Ln−1
✲ Ln

we say that L1 reduces to Ln, and we write this as ‘L1
✲✲ Ln.’
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An inspection of the rules for contracting redexes shows that during reduction,
the type of a term is unchanged.

THEOREM 7.11 (PRESERVATION OF PROOFS UNDER REDUCTION)
If M :A and M ✲✲ M ′ then M ′:A too. �

Not only that, but we have a stronger result.

THEOREM 7.12 (INVARIANCE OF PROOFS UNDER REDUCTION)
If L ✲✲ L′ and L is a proof of A in a system S, then L′ is also a proof of A in S.

PROOF If a redex is a proof in some system, then so is its contractum. Note
that no structural rules are needed when snipping out the irrelevant parts in
terms to be contracted. �

DEFINITION 7.13 (NORMAL TERMS AND NORMALISING TERMS)
If there is no M ′ where M ✲ M ′, we say that M is normal. A term is normal-

ising if it can be reduced to a normal term. A term is strongly normalising if all
reduction strategies end in a normal term.

Normal terms are desirable in a number of ways. Normal proofs contain no
redundancies. In fact, as we will see later, normal proofs have the subformula
property. In fact, we will see that they correspond rather tightly to cut-free
proofs in Gentzen systems.

Getting normal terms and normal proofs is not necessarily a simple mat-
ter. There is a slight modification of the λ-calculus in which not all terms are
normalising. Consider the class of untyped λ-terms. These are defined with no
regard to typing.

⋄ Any variable is an untyped λ-term.

⋄ If M and N are untyped λ-terms, so is (MN).

⋄ If M is an untyped λ-term and x is a variable, then λxM is an untyped
λ-term.

The same reduction rules apply. In particular, (λxM)N ✲✲ M [x := N ].

The term Ω = (λx(xx))(λx(xx)) is not normalising. The only reduction
which applies gives us (xx)[x := (λx(xx))] = (λx(xx))(λx(xx)), so we have
an infinite sequence. It does not stop, so there is no normal term to which it
reduces.

Some (untyped) λ-terms do normalise but do not strongly normalise. Con-
sider KIΩ, where K = λxλy x, and where I = λxx. Then we have

(KI)Ω ✲ (KI)Ω ✲ (KI)Ω ✲ · · ·
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by applying Ω Ω at each step. However, we can apply the general contraction
(KM)N  M to get

(KI)Ω ✲ I

and I is normal. So, in the class of all terms (including untyped terms) the
choice of normalisation sequence matters. We will show that in the class of
typed terms, the choice of reduction does not matter in the same way. We will
show that all terms will reduce to a normal term, and that a term does not
reduce to more than one normal term.

THEOREM 7.14 (CHURCH–ROSSER THEOREM)
If M ✲✲ N1 and M ✲✲ N2 then there is some L where N1

✲✲ L and N2
✲✲ L.

This theorem is presented in many places, and I will only sketch its proof here.
(See Barendregt’s recent survey article for an example of this proof [11].) We
proceed by proving this lemma:

LEMMA 7.15 (SLICE LEMMA)
If M ✲ N1 and M ✲✲ N2 then there is some L where N1

✲✲ L and N2
✲✲ L.

Then the Church–Rosser theorem is a simple corollary of the Slice Lemma, by
induction on the length of the reduction from M ✲✲ N1. To prove the Slice
Lemma, we keep a track of the reduction from M to N2 and we apply that
reduction to N1 to get L. To facilitate keeping records of reductions, we define
expanded set of terms, the terms with underlining, Terms.

DEFINITION 7.16 (UNDERLINED TERMS)
Any term is in the class of Terms, and additionally, if M is a redex, then M is
a Term of the same type, and with the same free variables. The class Terms is
closed under the same formation rules as the original class of terms. And the
relation of reduction ( ✲✲ ) can be defined in this expanded class of terms in
the same way as in the class of regular terms. Any underlined redexes contract
to their contractum and they lose their underlining. Any other redexes also
contract to their contractum.

Furthermore, there are two functions defined on the class of underlined
terms. Forget : Terms → Terms forgets the underlining, and Reduce : Terms →
Terms reduces all of the underlined redexes, from the inside to the outside.

Given this definition, we can prove the Slice Lemma.

PROOF SKETCH If M ✲ N1, let M ′ ∈ Terms be the term M with the relevant
redex in M underlined. So, Forget(M ′) = M and Reduce(M ′) = N1.

FACT: There is a term N ′2 ∈ Terms where M ′ ✲✲ N ′2 and Forget(N ′2) = N2. This
term is found by following the reduction path from M to N2 and keeping the
underlining as appropriate, following the same path from M ′ to find N ′2.
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FACT: Since Forget(N ′2) = N2, N2
✲✲ Retract(N ′2). (This follows from the

definition of underlined terms.) Now, call the term Retract(N ′2), N3.

FACT: N1
✲✲ N3. This holds, as Retract(M ′) = N1 and N1

✲✲ N ′2, and
Retract(N ′2) = N3. Therefore, the Slice Lemma holds.

That completes the proof of the Church–Rosser Theorem. Note that it did not
use any facts about typing of terms. It holds for untyped terms too. It merely
states that no reduction path diverges irrevocably from any other reduction
path. It does not say that any reduction path terminates. However, it does
tell us that if a reduction path terminates at a normal term N , then any other
terminating reduction path must also terminate at that term.

However, all typable terms in our system will reduce. There are a number of
ways to prove this. A powerful method, devised by Tait [255], proves that all
typable terms (in intuitionistic logic) are strongly normalising. We will not go
through this proof here (see the History section for more references). Instead,
we will explore the connection between normalisation and Cut elimination in
Gentzen systems, to prove that every term is normalising.

7.3 Normalisation and Cut Elimination

In this section we will provide two mappings. G maps a natural deduction proof
Π to a corresponding Gentzen proof G(Π). N maps Gentzen proofs to natural
deduction proofs. At the same time, we will associate terms to Gentzen proofs,
so that terms are preserved by this mapping. If M is the term of a natural
deduction proof Π, it will also be the term of the proof G(Π). Similarly, if N is
the term of the Gentzen proof Ξ, it will also be the term of the natural deduction
proof N(Ξ).

DEFINITION 7.17 (TRANSLATIONS G AND N )
We define the translation G(Π) of a natural deduction proof Π, and N(Ξ) of
a Gentzen proof Ξ, by induction on the structure of the proof Π and Ξ, in the
following way. (We present the proofs in term form.) First, each system has
identity proofs.

G(x:A ⊢ x:A) = x:A ⊢ x:A
N(x:A ⊢ x:A) = x:A ⊢ x:A

Second, each system has structural rules. These are the same in each system.
Now, the implication rules. Given a natural deduction proof Π, ending in

an implication introduction, the corresponding Gentzen proof ends in the same
step.

Π

Γ;x:A ⊢M :B

Γ ⊢ λ〉xM :A→ B

G✲
G(Π)

Γ;x:A ⊢M :B

Γ ⊢ λ〉xM :A→ B
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Similarly, given a Gentzen proof ending in an implication right step, the corre-
sponding natural deduction proof ends in the same step.

Ξ

Γ;x:A ⊢M :B

Γ ⊢ λ〉xM :A→ B

N✲
N(Ξ)

Γ;x:A ⊢M :B

Γ ⊢ λ〉xM :A→ B

A more difficult transformation happens with implication elimination. Suppose
we have the following proof in a natural deduction system.

Π1

Γ ⊢M :A→ B

Π2

∆ ⊢ N :A

Γ;∆ ⊢M 〉N :B

We transform it into the following Gentzen proof, using the Cut rule.

G(Π1)

Γ ⊢M :A→ B

G(Π2)

∆ ⊢ N :A x:B ⊢ x:B

x:A→ B;∆ ⊢ x〉N :B
[Cut]

Γ;∆ ⊢M 〉N :B

Similarly, in the other direction, given a Gentzen proof ending in an implication
left step, we provide a natural deduction proof with the same conclusion, using
Cut. The Gentzen proof is this:

Ξ1

∆(y:B) ⊢ N :C

Ξ2

Γ ⊢M :A

∆(x:A→ B; Γ) ⊢ N [y := x〉M ]:C

And it becomes this natural deduction proof:

N(Ξ1)

∆(y:B) ⊢ N :C

x:A→ B ⊢ x:A→ B

N(Ξ2)

Γ ⊢M :A

x:A→ B; Γ ⊢ x〉M :B
[Cut]

∆(x:A→ B; Γ) ⊢ N [y := x〉M ]:C

The same sort of moves hold for converse implication. For ← introduction (or
← right) the rules are the same in each system. For ← elimination, and← left,
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we have the following transformations. The natural deduction proof

Π2

∆ ⊢ N :A

Π1

Γ ⊢M :B ← A

∆;Γ ⊢ N 〈M :B

becomes this Gentzen proof:

G(Π1)

Γ ⊢M :B ← A

G(Π2)

∆ ⊢ N :A x:B ⊢ x:B

∆;x:B ← A ⊢ N 〈x:B
[Cut]

∆;Γ ⊢M 〈N :B

and this Gentzen proof:

Ξ1

∆(y:B) ⊢ N :C

Ξ2

Γ ⊢M :A

∆(Γ;x:B ← A) ⊢ N [y := M 〈x]:C

is transformed into this natural deduction proof:

N(Ξ1)

∆(y:B) ⊢ N :C

x:B ← A ⊢ x:B ← A

N(Ξ2)

Γ ⊢M :A

Γ;x:B ← A ⊢M 〈x:B
[Cut]

∆(Γ;x:B ← A) ⊢ N [y := M 〈x]:C

Now for fusion. Again the introduction rule in the natural deduction system
corresponds to the right rule in the Gentzen system. For the elimination rule in
the natural deduction system, we transform the natural deduction proof

Π1

∆(x:A; y:B) ⊢ N :C

Π1

Γ ⊢M :A ◦B

∆(Γ) ⊢ let M be x ◦ y in N :C

into the following Gentzen proof:

G(Π1)

∆(x:A; y:B) ⊢ N :C

∆(z:A ◦B) ⊢ let z be x ◦ y in N :C

G(Π2)

Γ ⊢M :A ◦B
[Cut]

∆(Γ) ⊢ let M be x ◦ y in N :C
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Conversely, the Gentzen proof

Ξ

∆(x:A; y:B) ⊢ N :C

∆(z:A ◦B) ⊢ let z be x ◦ y in N :C

is mapped onto the corresponding natural deduction proof:

N(Ξ)

∆(x:A; y:B) ⊢ N :C z:A ◦B ⊢ z:A ◦B

∆(z:A ◦B) ⊢ let z be x ◦ y in N :C

For conjunction, we map the elimination rule in the natural deduction system

Π

Γ ⊢M :A ∧B

Γ ⊢ fst M :A

to the proof in the Gentzen system using Cut.

G(Π)

Γ ⊢M :A ∧B

x:A ⊢ x:A

y:A ∧B ⊢ fst y:A
[Cut]

Γ ⊢ fst M :A

And the Gentzen proof

Ξ

Γ(x:A) ⊢M :C

Γ(y:A ∧B) ⊢M [x := fst y]:C

becomes this natural deduction step:

N(Ξ)

Γ(x:A) ⊢M :C

y:A ∧B ⊢ y:A ∧B

y:A ∧B ⊢ fst y:A
[Cut]

Γ(y:A ∧B) ⊢M [x := fst y]:C

and similarly for the rules involving snd. Now for disjunction. The natural
deduction elimination rule

Γ ⊢ L:A ∨B

Π1

∆(x:A) ⊢M :C

Π2

∆(y:B) ⊢ N :C

∆(Γ) ⊢ let L be x in M or y in N :C
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becomes the Gentzen rule

Γ ⊢ L:A ∨B

G(Π1)

∆(x:A) ⊢M :C

G(Π2)

∆(y:B) ⊢ N :C

∆(z:A ∨B) ⊢ let z be x in M or y in N :C
[Cut]

∆(Γ) ⊢ let L be x in M or y in N :C

and the Gentzen step

Ξ1

∆(x:A) ⊢M :C

Ξ2

∆(y:B) ⊢ N :C

∆(z:A ∨B) ⊢ let z be x in M or y in N :C

becomes the proof in the natural deduction system

z:A ∨B ⊢ z:A ∨B

N(Ξ1)

∆(x:A) ⊢M :C

N(Ξ2)

∆(y:B) ⊢ N :C

∆(z:A ∨B) ⊢ let z be x in M or y in N :C

No changes are necessary for ⊤, for it has no elimination or left rules. For ⊥ we
map as follows:

Π

Γ ⊢M :⊥

∆(Γ) ⊢ let M be †:C

becomes
G(Π)

Γ ⊢M :⊥ ∆(z:⊥) ⊢ let z be †:C
[Cut]

∆(Γ) ⊢ let M be †:C

and conversely,

∆(z:⊥) ⊢ let z be †:C
N✲

z:⊥ ⊢ z:⊥

∆(z:⊥) ⊢ let z be †:C

Now for t, the natural deduction proof

Π1

∆ ⊢ N :t

Π2

Γ(0) ⊢M :C

Γ(∆) ⊢ let N be ∗ in M :C
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becomes the Gentzen proof

G(Π2)

Γ(0) ⊢M :C

Γ(z:t) ⊢ let z be ∗ in M :C

G(Π1)

∆ ⊢ N :t
[Cut]

Γ(∆) ⊢ let N be ∗ in M :C

Conversely, the Gentzen proof

Ξ

Γ(0) ⊢M :C

Γ(z:t) ⊢ let z be ∗ in M :C

becomes the natural deduction proof

N(Ξ)

Γ(0) ⊢M :C z:t ⊢ z:t

Γ(z:t) ⊢ let z be ∗ in M :C

Now for �, the natural deduction proof

Π

Γ ⊢M :�A

•Γ ⊢ downM :A

becomes
G(Π)

Γ ⊢M :�A

x:A ⊢ x:A

•(y:�A) ⊢ down y:A
[Cut]

•Γ ⊢ downM :A

and in reverse,
Ξ

Γ(x:A) ⊢M :C

Γ(•(y:�A)) ⊢M [x := down y]:C

becomes
y:�A ⊢ y:�A

•(y:�A) ⊢ down y:A

N(Ξ)

Γ(x:A) ⊢M :C
[Cut]

Γ(•(y:�A)) ⊢M [x := down y]:C
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Finally, the rules for ♦−. The natural deduction step

Π1

Γ ⊢M :♦−A

Π2

∆(•(x:A)) ⊢ N :C

∆(Γ) ⊢ let M be •x in N :C

becomes in the Gentzen system

G(Π1)

Γ ⊢M :♦−A

G(Π2)

∆(•(x:A)) ⊢ N :C

∆(z:♦−A) ⊢ let z be •x in N
[Cut]

∆(Γ) ⊢ let M be •x in N :C

and the Gentzen step

Ξ

∆(•(x:A)) ⊢ N :C

∆(z:♦−A) ⊢ let z be •x in N

becomes this natural deduction step:

N(Ξ)

∆(•(x:A)) ⊢ N :C z:♦−A ⊢ z:♦−A

∆(z:♦−A) ⊢ let z be •x in N

This completes the definition of the transformation G of a natural deduction
system into a Gentzen system and the converse translation N from the Gentzen
system into the natural deduction system.

Note the behaviour of the term system for the Gentzen calculus. We have some
interesting properties. First, the antecedents are still populated only with vari-
ables. We use substitution to deal with the rules which introduce new connec-
tives on the left.

Given this definition, the following theorem can be proved by an induction
on the construction of the term M .

THEOREM 7.18 (TERMS OF CUT-FREE PROOFS ARE NORMAL)
If Ξ is a Cut-free Gentzen proof of Γ ⊢M :C, then M is normal.

PROOF If Ξ is an axiom, then the result clearly holds, as each variable is nor-
mal. For any rule modifying terms, it is sufficient to show that no redexes are
introduced into the term of the conclusion. Note that the outer constructs of all
redexes (fst , snd , λ〉x, λ〈x, down , and so on) are introduced only to apply to
variables, so no reductions can apply at any stage. This completes the proof. �
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Note that had the proof Ξ contained a cut, then this would no longer apply, as
the examples in the proof of the next theorem shows.

THEOREM 7.19 (CUT ELIMINATION IS NORMALISATION)
If Ξ, a proof of Γ ⊢M :C, is reducible by applications of cut elimination to a proof

of Γ ⊢M ′:C, then M ✲✲ M ′.

PROOF Checking this is a tedious business of inspecting the cases of cut reduc-
tion. There is nothing interesting in it, so we will examine a couple of cases.
Suppose → has been introduced in both left and right, only to be cut away, in
the following proof:

Γ;x:A ⊢M :B

Γ ⊢ λ〉xM :A→ B

∆(y:B) ⊢ N :C Σ ⊢ L:A

∆(z:A→ B; Σ) ⊢ N [y := z〉L]:C
[Cut]

∆(Γ;Σ) ⊢ N [y := zL〉][z := λ〉xM ]:C

The concluding term is N [y := z〉L][z := λ〉xM ], which (as z is not free in N)
is the term N [y := (λ〉xM)L〉], which either is N (if N contains no free y) or
contains a number or redexes (λ〉xM)〉L, which each contract to M [x := L], so
the entire term reduces to N [y := M [x := L]]. This is the conclusion of the
proof eliminating the cut on A→ B, as follows:

Γ;x:A ⊢M :B Σ ⊢ L:A
[Cut]

Γ;Σ ⊢M [x := L]:B ∆(y:B) ⊢ N :C
[Cut]

∆(Γ;Σ) ⊢ N [y := M [x := L]]:C

So this step in the cut elimination proof corresponds to a reduction we have
seen. Cuts may introduce non-normal terms, as we create a redex when we
substitute a complex term into a variable place. �

We have the following corollary:

COROLLARY 7.20 (NORMALISATION FOR PROOFS)
If Π is a proof of Γ ⊢ M :C, then there is a normal M ′ such that M ✲✲ M ′, and

Γ ⊢M ′:C.

PROOF Consider the Gentzen proof G(Π). It also has the term M . We can elim-
inate cut from G(Π), resulting in the proof Ξ with term M ′, such that M ✲✲ M ′.
It follows that the proof N(Ξ) is a normal proof of Γ ⊢M ′:C. �

COROLLARY 7.21 (NORMAL PROOFS HAVE THE SUBFORMULA PROPERTY)
If Π is a normal proof of X ⊢ A, then the formulae appearing in Π are subformulae

of those appearing in X and in A.
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7.4 History

The best explanation of the Curry–Howard isomorphism between intuitionistic
logic and the types of terms in the λ-calculus is found in Howard’s original pa-
per [117]. Church’s original calculus, the λI-calculus, was actually a model for
the implicational fragment of R and not intuitionistic logic, as Church’s calcu-
lus did not allow the binding of variables which were not free in the term in
question [44]. Prawitz’s little monograph Natural Deduction [196] introduced
the idea of normalisation. A helpful account of more recent work in types and
logic is found in Girard, Lafont and Taylor’s Proofs and Types [99], and Girard’s
monograph Proof Theory and Logical Complexity [97].

Our account of the types of modal terms (using up and down) is new in
this chapter — it is the straightforward extension of existing techniques to the
modal case.

Tennant has an idiosyncratic approach to normalisation in logics, arguing
for a “relevant logic” which differs from our substructural logics by allowing
the validity of A,∼A ∨ B ⊢ B and ∼A ⊢ ∼A ∨ B, while rejecting A,∼A ⊢ B
[258, 259]. Tennant’s system rejects the unrestricted transitivity of proofs: the
‘Cut’ which would allow A,∼A ⊢ B from the proofs of A,∼A ∨ B ⊢ B and
∼A ⊢ ∼A ∨ B is not admissible. Tennant uses normalisation to motivate this
system.

We have not looked at term systems or normalisation for Girard’s linear
logic and its exponentials. Work in this area has not yet reached stability. The
work of Benton, Bierman, Hyland and de Paiva [32, 33, 34] shows the difficulty
present in the area. Our approach is most similar to that of Wadler [277, 279],
who uses terms to represent connective rules but not structural rules. Wadler’s
rules for the exponential are simple (we use our convention for ‘let’ instead of
his ‘case’ term).

[Γ] ⊢M :A

[Γ] ⊢ !M :!A

Γ ⊢M :!A ∆([x:A]) ⊢ N :B

∆(Γ) ⊢ let M be !x in N :B

with the corresponding reduction rule

let !M be !x in N  N [x := M ]

And as with other let terms, we allow commuting conversions to pass through
this let term. The proofs in this chapter all go through for Wadler’s system.

Wadler and colleagues show that this kind of term system has connections
with functional programming and models of computation [146, 275, 276].
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7.5 Exercises

Practice

{7.1} Which of the following terms are well typed, and for those which are, what are

their types? fst xA∧B; inl AxA;


M 〉N, N 〉M

�
; let xA be †

c
; let N t be ∗ in Mc.

{7.2} Reduce the following terms to normal form:

fst


M, λ〉xM 〈N

�
down (N 〈(λ〈x up M)) fst (let down (let M be ∗ in (up L)) be †)

Problems

{7.3} Extend the Term Characterisation Theorem (Theorem 7.6) to deal with the logic

BBc[→,←]. Show that terms encoding proofs in this logic are those in which the order

is respected in some way.

{7.4} Extend the Term Characterisation Theorem to deal with more connectives, in the

logics LL, R and BCK.

Projects

{7.5} Prove strong normalisation for our systems [68, 223, 261].

{7.6} Provide term rules for negation; prove them to be normalising.
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Part II

Propositional Structures
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Chapter 8

Defining Propositional Structures

Structures are of various kinds,

as Frames, which have their parts connected by pins or mortises;

and Arches, in which the parts are connected only by contact.

— William Whewell, Mechanical Engineering, 1841

So far, we have focused on syntax in studying logical systems. We have defined
different formal languages and in each language we have defined different types
of proof in that language. In doing this, we have given meanings to connectives
by way of the rules in which they feature. The starkest example of this is given
in natural deduction systems. The introduction and elimination rules for a con-
nective can be thought to give some account of the meaning of that connective.
So these largely syntactic procedures have a semantic purpose.

However, the method of defining and analysing proofs directly is one of
many ways to analyse the meaning of connectives and the behaviour of logical
consequence. We could instead interpret a language by mapping it into another
structure. We explain the meanings of connectives by interpreting them as func-
tions on the structure in question. In mathematical and philosophical logic, this
approach is called model theory.1 In the tradition of computer science, this
approach is called a denotational semantics in contrast to an axiomatic or oper-
ational semantics.2 We will devote this second part of the book to interpreting
our logics and languages in this way. Before giving rigorous definitions we will
see some examples.

Some propositions are true and others are not true. We can interpret a lan-
guage in the structure {t, f} of truth values by setting the interpretation [[A]] of A
to be t if A is true, and f otherwise. This interpretation is helpful in the study of
logical consequence because of the way it interacts with the traditional proposi-
tional connectives. A conjunction is true if and only if both of the conjuncts are
true. A disjunction is true if and only if one of the conjuncts is true. A negation

1 For a good text on the mathematics of models of classical first-order logic, Bell and Slomson’s
Models and Ultraproducts [19] is a classic. For the philosophers’ perspective, the work of Alfred
Tarski on models and truth [257] has an enduring significance.
2 John Mitchell provides a helpful discussion of the distinction between different sorts of seman-
tics of programming languages in Section 1.3 of his Foundations for Programming Languages [175].

155
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is true if and only if the negand is not true.3 It follows that [[A ∧B]], [[A ∨B]]
are functions of [[A]] and [[B]], in the sense that once the values [[A]] and [[B]] are
fixed, the values [[A ∧B]], [[A ∨B]] are also fixed. The behaviour of the opera-
tions of conjunction, disjunction and negation on the set {t, f} of truth values
goes some way towards telling us the meanings of those connectives. More than
that, it gives us an account of the behaviour of logical consequence, as the set of
truth values has a natural order. We can order the set by saying that f < t, in the
sense that t is “more true” than f. An argument is {t, f}-valid if no matter how
you interpret the propositions in the argument, the conclusion is never any less
true than the premises. Or in this case, you never can interpret the premises as
true and the conclusion as false. This is the traditional truth-table conception
of validity.

The simple set {t, f} of truth values is not the only domain in which a lan-
guage can be interpreted. For example, we might think that not all propositions
or sentences in the language are truth-valued. We might interpret the language
in the structure {t, n, f}, where the true claims are interpreted as t, the false
ones as f, and the non-truth-valued sentences are interpreted as n. This path
leads one to many valued logics.4

However, one need not interpret the domain of values as truth values. For
one very early example of an alternative sort of domain in which sentences can
be interpreted, consider the later philosophy of language of Frege. For the Frege
of the Grundgesetze [86] declarative sentences had a reference (Bedeutung) and
also a sense (Sinn). We can interpret sentences by mapping them onto a do-
main of senses (however these are to be conceived) and by interpreting the
connectives as functions on senses. This is another denotational semantics for
declarative sentences.

For a modern interpretation of Frege’s ideas, one could consider a sense of a
claim to be the set of possible worlds in which it is true. Now for each sentence
you have its interpretation as some set of possible worlds.5 The connectives are
then interpreted as operations on these sets of worlds — and some connectives,
like conjunction, disjunction and negation, turn out to be the relatively simple
set-theoretic operations of intersection, union and complementation.

3 This last claim is disputed. Intuitionists (according to whom A∨∼A might fail) and dialetheists
(according to whom A ∧ ∼A might not fail) both think that negation is not truth-functional in the
way claimed by this condition [114, 198]. The details of this disagreement need not concern us at
this point — the important aspect of this illustration is the idea of truth-functionality, whether or
not negation is truth-functional. More discussion of this point will appear in Chapter 16, in which
we discuss a particular interpretation of different notions of consequence.
4 Dunn and Epstein’s edited collection [81] and Urquhart’s survey article [268] are good
overviews of work in the area.
5 For an account of how this approach might be philosophically enlightening, see Robert Stal-
naker’s Inquiry [252], David Lewis’ On the Plurality of Worlds [137] and a discussion in Chapter 16.
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Different applications of logics will bring different sorts of models and do-
mains of semantic values. In the Lambek calculus for syntactic types, the for-
mulae can be mapped onto sets of syntactic strings. In this interpretation, a
sentence will be modelled by the set of strings (in the analysed language) which
have the type denoted by the sentence.

These last two examples — of possible worlds and of syntactic strings —
have similar structures. Formulae are interpreted as sets of objects of one kind
or other. These are especially interesting models, which we will discuss in detail
in the third part of the book. For now, however, we will focus on the general
idea of interpreting languages and logics in structures.

With this rough sketch of the land ahead, let us move to some rigorous
definitions of the sorts of structures we will consider.

8.1 Definitions

We will start with the core of any propositional structure, the relation of entail-
ment on that structure.

DEFINITION 8.1 (ORDERS)
A partial order on a set P is a binary relation 6 on P which is

⋄ REFLEXIVE a 6 a for each a ∈ P

⋄ TRANSITIVE a 6 b and b 6 c then a 6 c

⋄ ANTI-SYMMETRIC if a 6 b and b 6 a then a = b

The converse of a partial order 6 is the relation >, defined by setting a > b if
and only if b 6 a. A strict order on a set is a relation < which is

⋄ IRREFLEXIVE a < a for no a ∈ P

⋄ TRANSITIVE a < b and b < c then a < c

⋄ ASYMMETRIC a < b and b < a for no a and b

The converse of a strict order < is the relation >, defined by setting a > b if
and only if b < a. An order R (either partial or strict) is total if for each a and
b, either aRb or bRa or a = b. (If R is a partial order, then this condition is
equivalent to aRb or bRa.)

LEMMA 8.2 (ORDER FACTS)
Orders have the following properties.

1. The converse of a partial order is also a partial order.

2. The converse of a strict order is also a strict order.

3. Given a partial order 6, the relation < given by setting a < b if and only if

a 6 b and a 6= b is a strict order. This order is simply called the strict order
corresponding to 6.
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4. Given a strict order <, the relation 6 given by setting a 6 b if and only if

a < b or a = b is a partial order. This order is simply called the partial order
corresponding to 6.

5. 6 is the partial order corresponding to < if and only if < is the strict order

corresponding to 6.

6. If 6 is total, so is the strict order corresponding to 6. If < is total, so is the

partial order corresponding to <. �

In our propositional structures, the partial order is the relation of entailment

between propositions. The requirement that this be a partial order is what
distinguishes propositional structures from the syntactic representations of a
formal (or informal) language. If a entails b and b entails a, then a and b are the

same, as far as propositional structures are concerned. There may be structural
features different in how they are represented — a might be a conjunction and
b might be a disjunction, for example — but if they have the same inferential

force they are the same. Purely syntactic differences, which have no bearing on
the semantics of the expressions, have no place in structures. There is no sense
to say that an element in a propositional structure “is a conjunction,” as every
proposition a is the same proposition as the conjunction of a with itself.

EXAMPLE 8.3 (NUMBERS)
The set ω = {0, 1, 2, . . .} of natural numbers is ordered by the obvious 6 rela-
tion, which is a total order. The corresponding strict order < is also known.

There are many less well-known orders on the natural numbers. For one
example which we will use later, let ‘n | m’ mean ‘n divides m evenly.’ Then | is a
partial order on ω. The formal definition is as follows: n divides m if and only if
for some l ∈ ω, l×n = m. So, any number divides itself (divides is reflexive); if
n divides m and m divides l then n divides l (divides is transitive). Finally, if n
divides m and m divides n then m = n (divides is anti-symmetric). So we have
a partial order. The order is not total — neither 2 | 3 nor 3 | 2, for example.

EXAMPLE 8.4 (SETS)
Any set of sets is ordered by the subset relation ⊆. This relation is a partial
order, but it is not, in general, total. For example, neither of {1, 2} and {2, 3}
is a subset of each other. The set P(X) of all subsets of the set X, called
the power set of X, is an important example of a partially ordered set. These
partially ordered sets will feature in what follows.

EXAMPLE 8.5 (HASSE DIAGRAMS)
One convenient way to represent partially ordered sets is by way of a Hasse

diagram. Such a diagram represents the objects in the order by dots, and the
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partial order on the structure by lines. The ordering relation 6 is read upwards:
a point a is below b in the order if and only if there is an upward path from a to
b in the diagram.

0

1

3

4

2

Figure 8.1: A Hasse Diagram

In this partial order, there are five elements, and we have 0 6 1 6 3 6 4 and
1 6 2. The elements 2 and 3 are incomparable, as we have 2 66 3 and 3 66 4.
Similarly, 2 and 4 are incomparable, as even though 4 appears above 2 on the
page, there is no path from 2 to 4 heading upwards. We will regularly use Hasse
diagrams to present partial orders in this chapter.

Once we have an order on a set, we can populate the set with operations to
model connectives in a language, and we have something we can use to study
logics.

DEFINITION 8.6 (OPERATIONS AND PROPOSITIONAL STRUCTURES)
An operation o on a set P is an n-placed function o : Pn → P for some n =
0, 1, 2, . . . A propositional structure is a structure 〈P,6, C〉 where P is some non-
empty set, 6 is a partial order on the set P , and C is a set of operations on the
set P .

This is an extremely general definition. Partially ordered sets with operations
are very easy to find, and it is correspondingly very hard to prove interesting
theorems about all of them. In the next few pages, we will introduce the sorts
of operation which appear in the propositional structures we will study. These
will mirror the connectives we have seen in our study of the proof theory of
substructural logics. In fact, in many cases we will use the same symbol for
the function in a propositional structure as the corresponding connective in a
formal language. This will not be a problem, as the context will make clear what
we mean in each instance. A rough and ready guide: elements of propositional
structures will generally be written with small letters a, b, c or x, y and z.
Formulae in our languages are capital letters A, B, C and so on.

Our first stop will be some operations which are tied intimately to the be-
haviour of the underlying partial order on the propositional structure.
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DEFINITION 8.7 (LATTICE OPERATIONS)
A semilattice is a partial order with greatest lower bounds. That is, for any pair
of objects a and b there is an element a ∧ b such that for all c

c 6 a and c 6 b if and only if c 6 a ∧ b

The operation ∧ on a semilattice is also called a meet operation. We will say that
a meet operation on a semilattice matches extensional conjunction in a formal
language.

A lattice is a semilattice with least upper bounds. That is, for every pair of
objects a and b there is an element a ∨ b such that for all c

a 6 c and b 6 c if and only if a ∨ b 6 c

The operation ∨ on a lattice is also called a join operation. The join on a lattice
matches extensional disjunction.

An element ⊤ is a top element of an ordering if and only if a 6 ⊤ for every
a. It is the bottom element of an ordering if and only if ⊥ 6 a for every a.

A top element matches the true constant ⊤ and a bottom element is fit for the

false constant ⊥.

In this definition, we use the symbols ‘∧,’ ‘∨,’ ‘⊤’ and ‘⊥’ both for operators in a
propositional structure and for connectives in a formal language.

EXAMPLE 8.8 (POWER SETS ARE LATTICES)
The power set P(X) of any set X is a lattice, with the meet of two sets a and
b being their intersection a ∩ b, and their join being their union a ∪ b. You can
verify that for all sets a, b and c

c ⊆ a and c ⊆ b if and only if c ⊆ a ∩ b
a ⊆ c and b ⊆ c if and only if a ∪ b ⊆ c

So a power set is a lattice since if a, b ∈ P(X), then a ∩ b, a ∪ b ∈ P(X) too.
A power set also has top and bottom elements. X is a top element and the

empty set ∅ is a bottom element.

In this example, we use the already existing notation of intersection ‘∩’ and
union ‘∪’ for the lattice operations, instead of the usual ‘∧’ and ‘∨.’ We will do
this in cases where the operation in question has a notation which reminds us
of its construction. When the operation has no “enlightening” notation of its
own, we use the standard operator names.

EXAMPLE 8.9 (TOTAL ORDERS)
A totally ordered set is always a lattice. For any elements a and b, their max-

imum max(a, b) is defined to be the greater of the two, and their minimum is
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the lesser of the two. In a totally ordered set, this definition makes sense in all
cases, for a and b are always comparable in the order. Whenever min(a, b) is
defined, min(a, b) is the meet of a and b, and similarly, whenever max(a, b) is
defined, it is the join of a and b. So totally ordered sets are lattices.

However, total orders need not have top or bottom elements. For example,
ω with the standard ordering, has a bottom element 0, but no top element. The
set Z of integers (both negative and positive numbers) ordered in the usual way,
has neither a top nor a bottom element, yet it is a totally ordered set.

EXAMPLE 8.10 (HASSE DIAGRAMS FOR LATTICES)
When you have a Hasse diagram for a partially ordered set, it is not too difficult
to see whether it is a lattice or not. For example, the partially ordered set in
Figure 8.1 is a semilattice but not a lattice. Any two elements a and b have a
greatest lower bound. If a and b are comparable, then a ∧ b is the lower of the
two. If a and b are not comparable, then one is 2 and the other is either 3 or 4,
and 2 ∧ b = 1 when b is either 3 or 4, as 1 is the greatest element under both 2
and 3 or under 2 and 4.

The element 0 is clearly a bottom element. However, there is no top element,
as there is no point in the order which is above both 2 and 3, or above both 2
and 4. For this reason too, the semilattice is not a lattice, as 2 and 3 have no
upper bound at all, let alone a least upper bound.

0

1 2

3 4

5

Figure 8.2: A Non-Lattice

0

1 2

3 4

5

Figure 8.3: A Lattice

This is one way in which a partial order can fail to be a lattice — due to the
non-existence of upper or lower bounds for suitable pairs. However, you can
have partial orders which have upper and lower bounds for all pairs of objects,
but no meets or joins. Consider the partial order in Figure 8.2. This order has
upper and lower bounds for each pair of objects, as 5 is a top element, and 0 is
a bottom element. However, there is no least upper bound for 1 and 2, as 3 and
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4 are both upper bounds, but there is no smallest upper bound. Similarly 3 and
4 have lower bounds in either of 1 or 2, but neither of these is a greatest lower
bound.

To repair this, and to make the structure a lattice you need to add at least
one new object to be 1 ∨ 2 and to be 3 ∧ 4. Once that addition is made the new
structure is a lattice, as every pair in the structure has least upper and greatest
lower bounds. The result is shown in Figure 8.3.

LEMMA 8.11 (UNIQUENESS OF LATTICE OPERATORS)
Any two meet operations on a lattice are identical functions. Similarly, any two

join operations, any two top elements or any two bottom elements are the same.

In this lemma we use the notion of identity of functions. If f and g give the
same values on each input, we say they are identical functions.

PROOF This is due to the fact that a propositional structure is partially ordered.
If ∧ and ∧′ are both meet operations, then a ∧ b 6 a ∧′ b since ∧′ is a meet
operation and we have a∧ b 6 a and a∧ b 6 b, since ∧ is a meet operation. But
the reasoning can be reversed to show that a ∧′ b 6 a ∧ b too. So a ∧ b = a ∧′ b
for all a and b, so ∧ and ∧′ are identical functions. The reasoning for ∨, ⊤ and
⊥ is similar. �

LEMMA 8.12 (LATTICE FACTS)
In any lattice 〈P,6〉 the following theses hold for every a, b, c ∈ P .

1. a ∧ a = a; a ∨ a = a

2. a ∧ b = b ∧ a; a ∨ b = b ∨ a

3. a ∧ (b ∧ c) = (a ∧ b) ∧ c; a ∨ (b ∨ c) = (a ∨ b) ∨ c

4. a ∧ (a ∨ b) = a; a ∨ (a ∧ b) = a

LEMMA 8.13 (TOP AND BOTTOM FACTS)
In any lattice 〈P,6〉 with top and bottom, the following theses hold for every a.

1. a ∧ ⊤ = a; a ∨ ⊥ = a

2. a ∧ ⊥ = ⊥; a ∨ ⊤ = ⊤

DEFINITION 8.14 (DISTRIBUTIVE LATTICES)
A lattice is distributive if it satisfies the distributive law for each a, b and c.

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
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EXAMPLE 8.15 (POWER SETS ARE DISTRIBUTIVE)
It is not too difficult to show that x ∈ a∩ (b∪c) if and only if x ∈ (a∩b)∪ (a∩c).
So a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c) for each set a, b and c, and power set lattices
are distributive.

Similarly, total orders are always distributive. Verifying this is a simple exercise
of analysing cases of the relative order of a, b and c. Checking the details is left
as an exercise at the end of this chapter.

EXAMPLE 8.16 (NON-DISTRIBUTIVE LATTICES)
Despite there being many distributive lattices, not all lattices are distributive.
The simplest examples, in Figures 8.4 and 8.5, have five elements.

⊥

1 2

⊤

3

Figure 8.4: The Lattice M5

⊥

1

2

⊤

3

Figure 8.5: The Lattice N5

M5 fails to be distributive as 3 ∧ (1 ∨ 2) = 3 ∧ ⊤ = 3 and (3 ∧ 1) ∨ (3 ∧ 2) =
⊥ ∨⊥ = ⊥. In N5, 3 ∧ (1 ∨ 2) = 3 ∧ ⊤ = 3 and (3 ∧ 1) ∨ (3 ∧ 2) = ⊤ ∨ 2 = 2.

Note that in both of these cases we have (a ∧ b) ∨ (a ∧ c) 6 a ∧ (b ∨ c). This
half of the distributive law holds in all lattices. We have a ∧ b 6 a ∧ (b ∨ c) and
a ∧ c 6 a ∧ (b ∨ c), and hence, (a ∧ b) ∨ (a ∧ c) 6 a ∧ (b ∨ c).

DEFINITION 8.17 (COMPLETE SEMILATTICES AND LATTICES)
A semilattice 〈P,6〉 is meet complete if and only if each subset X ⊆ P has a
greatest lower bound

∧

X. That is, there is an object
∧

X such that

∧

X 6 b if and only if a 6 b for each a ∈ X

A lattice 〈P,6〉 is join complete if and only if each subset X ⊆ P has a least
upper bound

∨

X. That is, there is an object
∨

X such that

a 6
∨

X if and only if a 6 b for each b ∈ X

A lattice is complete if it is both join and meet complete.
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EXAMPLE 8.18 (POWER SETS ARE COMPLETE)
The power set lattice P(X) is a complete lattice, as both the union and the
intersection of any set of subsets of X are subsets of X.

A complete lattice must have top and bottom elements, as
∧

P = ⊥ and
∨

P =
⊤. Note too that according to the definition, for a lattice to be complete,

∨

∅
and

∧

∅ must be defined, as ∅ is a subset of the set P of propositions. The
natural way to read the definitions tells us that

∧

∅ = ⊤ and
∨

∅ = ⊥.

EXAMPLE 8.19 (COMPLETING ω)
The partially ordered set ω of numbers is meet complete but not join complete.
Any set of natural numbers has a least element, which is the meet of that set.
However, there are sets of numbers without a join — any infinite set of numbers
will do. For example, the set {0, 2, 4, . . .} has no join in ω. (If it had a join, which
number would it be? You could always pick one bigger.) So ω is not complete.

However, we can add an extra element to “complete” ω. The new set ω′ has
a “top” element ∞ > n for each n ∈ ω. Now any finite subset of ω′ has a join
(its greatest element) and any infinite set has∞ as its join. This new structure
is a complete lattice.

DEFINITION 8.20 (COMPLETE DISTRIBUTIVITY)
A lattice 〈P,6〉 is completely distributive if for each X ⊆ P and each a ∈ P

a ∧
∨

X =
∨

{a ∧ x : x ∈ X}

Any completely distributive lattice is distributive (take X = {b, c} for any b
and c). However, the converse is not the case. There are complete distributive
lattices which are not completely distributive.

0

1

2
0′

1′

2′

∞

Figure 8.6: A Failure of Complete Distributivity
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EXAMPLE 8.21 (DISTRIBUTIVE BUT NOT COMPLETELY DISTRIBUTIVE)
The lattice in Figure 8.6 is an infinite lattice on the set {0, 0′, 1, 1′, 2, 2′ . . . ,∞}.
The order relation 6 is defined as the usual relation on ω = {0, 1, 2, . . .}, while
requiring that both n 6 m′ and n′ 6 m′ if and only if n 6 m, and n′ 6 m if and
only if n < m. Finally, x 6∞ for each x.

This is a complete lattice, and it is not too tedious to verify that it is distribu-
tive. However, it fails to be completely distributive, as 0′ ∧

∨

ω = 0′ ∧∞ = 0′,
while

∨

{0′ ∧ n : n ∈ ω} =
∨

{0} = 0.

Note again that we do have one direction of the equality. In any complete lattice
we have

∨

{a ∧ x : x ∈ X} 6 a ∧
∨

X

The lattice operators model the extensional connectives in our languages. To
model other sorts of connective, we will need other techniques. We will move to
operations which cannot simply be “read off” the partial order of a propositional
structure.

DEFINITION 8.22 (GROUPOID OPERATORS)
A groupoid is a collection of objects together with a binary operation on those
objects. A semigroup is a groupoid in which the operation is associative: that
is, for each a, b and c, a · (b · c) = (a · b) · c, where · is the groupoid operation.
An ordered groupoid is a groupoid with an ordering which respects the groupoid
operation. That is, if a 6 a′ and b 6 b′ then a · b 6 a′ · b′. We will say that a
groupoid operation in an ordered groupoid matches fusion.

DEFINITION 8.23 (IDENTITIES)
A left identity for a groupoid operation is an element e such that a = e · a for
each a. The element e is a right identity if and only if a · e = a for each a.
The element e is an identity if and only if it is both a left identity and a right
identity for the groupoid operation. A monoid is a semigroup with an identity.
An identity matches t.

LEMMA 8.24 (IDENTITIES OF IDENTITIES)
Any left identity is identical to any right identity.

PROOF If e1 is a left identity and e2 is a right identity, e1 = e1 · e2 = e2. �
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However, it is possible for a groupoid (even a semigroup) to have more than
one left identity, or more than one right identity.

DEFINITION 8.25 (RESIDUATION)
A right-residuated groupoid is an ordered groupoid, with an operation → such
that a · b 6 c if and only if a 6 b → c. The operation → on a right-residuated
groupoid matches a right conditional. A left-residuated groupoid is an ordered
groupoid, with an operation ← such that a · b 6 c if and only if b 6 c ← a.
The operation ← on a left-residuated groupoid matches a left conditional. A
bi-residuated groupoid is both left- and right-residuated.

DEFINITION 8.26 (POSITIVE MODAL OPERATORS)
A pair of unary operations � and ♦− is a positive pair on an ordered set if and
only if ♦−a 6 b if and only if a 6 �b. � and ♦− match a pair of a necessity and
possibility operators.

LEMMA 8.27 (POSITIVE MODAL CONDITIONS)
If � and ♦− are a positive pair, then we have

1. If a 6 b then �a 6 �b and ♦−a 6 ♦−b.

2. �a ∧�b 6 �(a ∧ b); ♦−(a ∨ b) 6 ♦−a ∨ ♦−b.

3. ⊤ 6 �⊤; ♦−⊥ 6 ⊥.

4.
∧

�X 6 �
∧

X; ♦−
∨

X 6
∨

♦−X.

PROOF The proofs are similar to those in the natural deduction systems of
Chapter 3. We will go through one from each pair.

1. Suppose a 6 b. �a 6 �a, so ♦−�a 6 a. This gives ♦−�a 6 b and hence
�a 6 �b.

2. ♦−a 6 ♦−a ∨ ♦−b, and hence a 6 �(♦−a ∨ ♦−b). Similarly, b 6 �(♦−a ∨ ♦−b),
and these give a ∨ b 6 �(♦−a ∨ ♦−b), which then gives ♦−(a ∨ b) 6 ♦−a ∨ ♦−b
as desired.

3. ♦−⊤ 6 ⊤, so ⊤ 6 �⊤.

4.
∧

�X 6 �x for each x ∈ X, so ♦−
∧

�X 6 x for each x ∈ X. Therefore
♦−
∧

�X 6
∧

X, giving
∧

�X 6 �
∧

X. �
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DEFINITION 8.28 (NEGATIVE MODAL OPERATORS)
A pair of unary operations ∼ and ¬ is an n-type negative pair on an ordered set
if and only if a 6 ∼b if and only if b 6 ¬a. A pair of unary operations ⌢ and
⌣ is a p-type negative pair on an ordered set if and only if ⌢a 6 b if and only if
⌣b 6 a.

If ∼,¬ is an n-type negative pair, then ∼ and ¬ behave just as you would expect,
knowing the proof theory of split negations. We have the following results:

LEMMA 8.29 (N-TYPE NEGATIVE PAIR FACTS)
If ∼ and ¬ are an n-type negative pair on some propositional structure, then the

following inequalities hold (in the presence of the connectives required).

1. If a 6 b then ∼b 6 ∼a, and ¬b 6 ¬a.

2. ⊤ 6 ∼⊥; ⊤ 6 ¬⊥.

3. ∼a ∧ ∼b 6 ∼(a ∨ b); ¬a ∧ ¬b 6 ¬(a ∨ b).

4.
∧

∼
∧

X 6 ∼
∨

X;
∧

¬X 6 ¬
∨

X. (where ∼X = {∼x : x ∈ X} and

similarly for ¬X).

PROOF As with the positive modalities, the proofs are a straightforward re-
working of the proof theory.

1. If a 6 b then since ∼b 6 ∼b we have b 6 ¬∼b, and so, a 6 ¬∼b, giving
∼b 6 ∼a. Similarly, ¬b 6 ¬a, swapping ∼ and ¬ in this proof.

2. Since ⊥ 6 ¬⊤, we have ⊤ 6 ∼⊥.

3. ¬a ∧ ¬b 6 ¬a, so a 6 ∼(¬a ∧ ¬b), and similarly b 6 ∼(¬a ∧ ¬b) so
a ∨ b 6 ¬(¬a ∧ ¬b), giving ¬a ∧ ¬b 6 ¬(a ∨ b) as desired. Swap ¬ and ∼
to give the other result.

4. This result is the infinitary analogue of the previous one. �

P-type negative pairs are new connectives which we have not considered in our
proof theories. With p-type negative pairs you get the exactly dual behaviour to
n-type negative pairs, in the following way:

LEMMA 8.30 (P-TYPE NEGATIVE PAIR FACTS)
If ⌢ and ⌣ are a p-type negative pair on some propositional structure, then the

following inequalities hold (in the presence of the connectives required).

1. If a 6 b then ⌢b 6 ⌢a, and ⌣b 6 ⌣a.

2. ⌢⊤ 6 ⊥; ⌣⊤ 6 ⊥.

3. ⌢(a ∧ b) 6 ⌢a ∨⌢b; ⌣(a ∧ b) 6⌣a ∨⌣b.
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4. ⌢
∧

X 6
∨

⌢X; ⌣
∧

X 6
∨

⌣X; (where ⌢X = {⌢x : x ∈ X} and

similarly for ⌣X).

PROOF These cases are not paralleled in our natural deduction system, so I will
go through the detail.

1. If a 6 b then since ⌢a 6 ⌢a we have ⌣⌢a 6 a, and thus ⌣⌢a 6 b and
hence ⌢b 6 ⌢b. Interchanging ⌢ and ⌣ gives us ⌣b 6 ⌣b.

2. Clearly ⌣⊥ 6 ⊤, and so, ⌢⊤ 6 ⊥ by the p-type condition. The same
proof, interchanging ⌢ and ⌣, gives us the second fact.

3. Lattice facts give ⌢a 6 ⌢a ∨ ⌢b, which by the p-type condition gives
⌣(⌢a∨⌢b) 6 a. Similarly, we have ⌣(⌢a∨⌢b) 6 b, so we get ⌣(⌢a∨
⌢b) 6 a∧b and the p-type fact again gives ⌢(a∧b) 6⌢a∨⌢b as desired.
The same proof, interchanging ⌢ and ⌣, gives us the second fact.

4. The infinitary conditions are the same. Lattice facts give ⌢x 6
∨

⌢X,
whenever x ∈ X. It follows that ⌣

∨

⌢x 6 x for each x ∈ X, so
⌣
∨

⌢x 6
∧

X and hence ⌢
∧

X 6
∨

⌢X as desired. The same proof,
interchanging ⌢ and ⌣, completes our result.

(Note that the fourth condition is sufficient for our second and third results, in
complete lattices, as setting X to be the empty set gives us our second result
(recall,

∧

∅ = ⊤ and
∨

∅ = ⊥) and setting X to be {a, b} gives us our third. �

DEFINITION 8.31 (P-TYPE NEGATION)
We will say that ⌢ is a p-type negation if it satisfies the conditions of the lemma
above.

P-type pairs can be constructed in much the same way as n-type pairs.

THEOREM 8.32 (P-TYPE PAIRING)
If ⌢ is a p-type negation in a complete lattice, then the operator ⌣ defined by

setting

⌣b =
∧

⌢a6b

a

makes 〈⌢, ⌣〉 a p-type pair.

PROOF If ⌢c 6 b then clearly ⌣b 6 c as ⌣b =
∧

⌢a6b a 6 c (since ⌢c 6 b,
c is in the range of the variable a). Conversely, if ⌣b =

∧

⌢a6b a 6 c then
⌢c 6⌢

∧

⌢a6b a but ⌢
∧

⌢a6b a 6
∨

⌢a6b ⌢a 6 b as desired. �
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We will not consider p-type negations much in what follows, until Chapter 11,
when we will see how they naturally arise in the frames for our logics.

Now we have enough machinery to explain how propositional structures
model logics.

DEFINITION 8.33 (STRUCTURES FIT FOR A LANGUAGE)
A propositional structure 〈P,6, C〉 fits the language L if and only if for each
connective in L there is an operator o ∈ C matching that connective.

That is one part of fitness. Another requirement is that the structure be fit
for the logic in question. If our logic includes the structural rule C, then a
propositional structure fit for the logic must mirror this by requiring that for all
x, y, z, we have (x · y) · z 6 (x · z) · y.

DEFINITION 8.34 (TRANSLATION OF STRUCTURAL RULES)
The translation of the structural rule X ⇐ Y is the universal closure of the
condition [[Y ]] 6 [[X]], where we have defined [[·]] as follows

[[A]] = xA

[[X;Y ]] = [[X]] · [[Y ]]
[[X,Y ]] = [[X]] ∧ [[Y ]]

[[•X]] = ♦−[[X]]

where for each formula A appearing in the statement of the rule, we have
associated the variable xA.

For example, the instance A; (B;C) ⇐ (A;B);C of the structural rule B be-
comes (xA ·xB) ·xC 6 xA · (xB ·xC), or relabelling variables for clarity, we have
(x · y) · z 6 x · (y · z).

The negation conditions need separate treatment, as they are not structural
rules. However, they are straightforward re-readings of the rules in algebraic
form.

DEFINITION 8.35 (TRANSLATION OF NEGATION CONDITIONS)
⋄ For a simple negation we require just that ∼ = ¬.

⋄ For DNE we have ∼¬a 6 a and ¬∼a 6 a.

⋄ For ECQ, a ∧ ¬a 6 ⊥.

⋄ For strong excluded middle, ⊤ 6 a ∨ ∼a.

⋄ For (¬E;∼I), if x · y 6 ¬z then x · z 6 ∼y.

⋄ For (∼I;¬E), if x · y 6 ∼z then x · z 6 ¬y.

Now we can state what it is for a structure to fit a logic.
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DEFINITION 8.36 (STRUCTURES FIT FOR A LOGIC)
Given the system S, the structure P is fit for S if it is fit for the language of S,
and in addition, the translations of the rules of S are satisfied in P.

Once we have propositional structures, we can interpret a language in that
structure.

DEFINITION 8.37 (INTERPRETATIONS IN STRUCTURES)
The interpretation of a language (and structures) in a propositional structure is
a map [[ ]] from the atomic propositions in the language into the structure P . It
is extended to map the whole language by following these clauses

[[⊤]] = ⊤
[[⊥]] = ⊥
[[t]] = e

[[∼A]] = ∼[[A]]
[[¬A]] = ¬[[A]]
[[�A]] = �[[A]]
[[♦−A]] = ♦−[[A]]

[[A ∧B]] = [[A]] ∧ [[B]]
[[A ∨B]] = [[A]] ∨ [[B]]
[[A ◦B]] = [[A]] · [[B]]

[[A→ B]] = [[A]]→ [[B]]
[[A← B]] = [[A]]← [[B]]

The interpretation of a structure X is defined similarly:

[[X;Y ]] = [[X]] · [[Y ]]
[[X,Y ]] = [[X]] ∧ [[Y ]]

[[•X]] = ♦−[[X]]

We then interpret the consecution X ⊢ A as the claim

[[X]] 6 [[A]]

We say that X ⊢ A is valid in P, written X ⊢P A if and only if [[X]] 6 [[A]] for all

interpretations [[ ]] into P.

We will show that X ⊢ A in S if and only if for each P fit for S, X ⊢P A.
Before this, however, we will look at some important propositional structures.

8.2 Example Structures

In this section, we will look at a large number of example propositional struc-
tures. Then after seeing the many different ways in which the structures of our
logics can be modelled, we will move on in later sections to examine what we
can prove using propositional structures.
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EXAMPLE 8.38 (TRUTH VALUES)
As we have already seen, the truth values {t, f} form a propositional structure.
We represent the structure graphically by a Hasse diagram. The other operators
in a propositional structure may be expressed by a table.

t

f

a ∼a
t f

f t

→ t f

t t f

f t t

Figure 8.7: The Lattice TV of Truth Values

The diagram encodes the ordering and extensional conjunction and disjunc-
tion. The negation and implication tables are read as follows: for negation, the
negation of t is f, and that of f is t. For implication, the table is read from row
to column. That is, t→ f is f, as f is in the t row and the f column.

Truth tables (with just these operations) are fit for quite a large language.
Not only are ∧ and ∨ lattice meet and join, but ∧ is also fit for fusion, as it is an
ordered semigroup operation. And the implication operation → is both a left
and a right residual for ∧, as a ∧ b 6 c if and only if a 6 b → c if and only if
b 6 a→ c for each a, b and c, as is tediously verified.

EXAMPLE 8.39 (BN4)
Truth tables are fit for a large language, and for very many of the logics which
interest us. However, we know that not all classical theorems are provable in
each of our logics. Other propositional structures draw distinctions left un-
drawn in truth tables. One example is the structure BN4, given by the diagram
and tables in Figure 8.8

f

b

t

n

∼
t f

b b

n n

f t

→ t b n f

t t f n f

b t b n f

n t n t n

f t t t t

· t b n f

t t t n f

b t b n f

n n n f f

f f f f f

Figure 8.8: BN4

These tables are not chosen arbitrarily. If you think of the values t, b, n, f
as the sets of truth values {T}, {T, F}, {} and {F} then the negation of a set
of values is simply the set of the negations of values in that set. Implication is
similarly defined. The value T is in the set X → Y just when if T ∈ X then
T ∈ Y and if F ∈ Y then F ∈ X. F is in X → Y if and only if T ∈ X and
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F ∈ Y . This gives the implication table. The fusion table is given by setting
X · Y to be ∼(X → ∼Y ).

Fusion is commutative and associative, with an identity b. Negation is defin-
able in terms of implication by setting ∼X to be X → b. So in this algebra, the
false constant f is modelled by b, as is the true constant t. Fusion is residuated
by →, and the lattice is distributive. It follows that this structure is fit for the
logic DMALL.

WI is not satisfied, as n 66 n · n. The K rule also fails for fusion. We do
not have t · b 6 b, and hence we do not have b 6 t → b. So BN4 is a model
invalidating A ⊢ B → A, a crucial property of relevant logics.

The connective ∼ is a de Morgan negation, ∼∼x = x and x → ∼y = y →
∼x.

This lattice is also helpful in proving a simple property of logics like DMALL
and others. Suppose A ⊢ B holds in DMALL, and that A and B are made up of
propositional atoms together with ∧, ∨ and ∼. Then we can show that A and B
must share at least one atom. If not, take an interpretation [[ ]] for which [[p]] = b

for each p appearing in A, and [[p]] = n for each p appearing in B. As A and B
do not share any atomic propositions, this is possible. Then note that [[A]] = b

and [[B]] = n, so [[A]] 66 [[B]]. It follows that A 6⊢ B in C (by the soundness
theorem, which we prove in the next section).

EXAMPLE 8.40 (ŁUKASIEWICZ MODELS)
Łukasiewicz’s three-valued logic is a well-known multiple-valued logic. The
propositional structure, given in Figure 8.9, is quite simple.

1

1

2

0

∼

1 0
1
2

1
2

0 1

→ 1 1
2 0

1 1 1
2 0

1
2 1 1 1

2

0 1 1 1

· 1 1
2 0

1 1 1
2 0

1
2

1
2 0 0

0 0 0 0

Figure 8.9: Łukasiewicz’s Three-Valued Logic Ł3

Łukasiewicz interpreted the values as follows: 1 is truth, 0 is falsity, and 1
2

is possibility. Ł3 is the t, n, f fragment of BN4. It follows from what we have
already seen that contraction and related principles fail in Ł3. The matrix Ł3

generalises to more values. The n + 1-valued logic Łn+1. is the propositional
structure on the set

{0,
1

n
,
2

n
, . . . ,

n− 1

n
, 1}
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with the standard ordering, and with the operators defined by setting

∼p = 1− p p→ q = min(1, 1− (p− q)) p · q = max(0, 1− p− q)

You can think of p → q as the proposition which is false to the extent that p is
truer than q. Fusion is commutative and associative, and satisfies K, as p · q 6 p.
However, p 66 p · p, so it does not satisfy WI. For example, 1

2 ·
1
2 = 0. The fusion

p · q is the proposition which is false to the degrees that both p and q (added)
are false. The order is total, so the lattice operators are distributive.

We can extend our attention to the models ŁQ of rational numbers between
0 and 1, or the model ŁR on all real numbers between 0 and 1. In these cases,
p→n q never collapses into p→m q for any m,n ∈ ω, where we define→1=→,
and p →n+1 q = p → (p →n q). In any Łn, p →n q = p →n+1 q. Similarly,
pn 6= pn+1, where we set p1 = p and pn+1 = p · pn.

EXAMPLE 8.41 (SUGIHARA MODELS: RMn)
Instead of leaving b out of BN4 to get Łukasiewicz’s logics, we can restrict our
attention to the t, b, f fragment of BN4. This gives us the structure known as
RM3. This is generalisable to RM2n+1 for any n as follows by setting the domain
of propositions to be the numbers

{−n,−(n− 1), . . . ,−1, 0, 1, . . . , n− 1, n}

where we set ∼a to be −a, and→ and fusion are defined as follows:

a→ b =

{

−a ∨ b if a 6 b
−a ∧ b if a > b

a · b =

{

a ∧ b if a 6 −b
a ∨ b if a > −b

Fusion is commutative (verify by eye) and associative (verify by checking case
by case), with identity 0. Note that a · a = a, so the logic satisfies both W and
M — this is a model for RM. Negation is de Morgan, but strong excluded middle
and ECQ both fail. For example, ∼1 = −1, so 1 ∧ ∼1 = −1 and 1 ∨ ∼1 = 1.

This model can also be extended by not stopping at −n or n but by including
all of Z, the positive and negative integers. This infinite model captures exactly
the logic RM in the language ∧,∨,→, ◦,∼, t. The infinite model has no members
fit for either ⊤ or ⊥, but they can be added as ∞ and −∞ without disturbing
the logic of the model.

EXAMPLE 8.42 (THE INTEGERS)
The integers feature in the RM algebra above. The choice of the interpretation
of implication in that model is only one of many different ways you could go in
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this structure. Another is to consider addition as a model of fusion. Addition
respects the order in the right way, so it is also fit for fusion in this structure.
The residual for addition is obvious: it is subtraction. X → Y is Y − X. This
structure is unlike the RM algebra in a number of ways. First, W fails, as a 66
a + a whenever a is negative. Second, M fails (and so, K and K′ do too) as
a+a 66 a whenever a is positive. However, C and B are satisfied in this structure,
so we have a structure fit for linear logic. In particular, since the structure is
totally ordered, we have the distribution of conjunction over disjunction, so we
have a model for distributive linear logic.

More interestingly, (x → y) → y = x for each x and y. This does not hold
in TV or in any other non-trivial structure with ⊤. If ⊤ were present, then
(a→ ⊤)→ ⊤ = a but ⊤ 6 b→ ⊤ for each b (including a→ ⊤) so ⊤ 6 a.

It is possible to define the negation ∼a as a → 0 = −a. However, other
choices are possible. Taking b an arbitrary proposition, we can define ∼ba as
a → b, and the condition (x → y) → y = x states, in effect, that ∼b∼ba = a.
Double negation introduction and elimination holds for any negation ∼b we
choose.

This model is a way to invalidate simple consecutions in distributive linear
logic. For example, can we prove A → (B → C) ⊢ (A → B) → (A → C)?
If this holds in our structure we must have (z − y) − x 6 (z − x) − (y − x),
but this simplifies to z 6 (z − x) + 2x = z + x (add x + y to both sides). And
when x > 0 we have z 6 z + x, but if x < 0 this fails. So we have a model
invalidating the consecution. Similar manipulations can be used to invalidate
other consecutions. However, some consecutions invalid in distributive linear
logic do hold in the integers. We have seen that (A → B) → B ⊢ A already.
Another case is t ⊢ (A→ B)∨ (B → A). So the integers do not give an exact fit
for distributive linear logic.

(Others have been aware that simple “counting” mechanisms can provide a
useful filter for issues of validity in substructural logics [31, 129, 223, 191].)

The logic of this structure is known as abelian logic. It was introduced by
Meyer and Slaney, who show that it is the logic of ordered abelian groups [153].
There are many more interesting features of this logic, but space prevents my
considering them.

EXAMPLE 8.43 (ω UNDER DIVISION)
Using number systems as structures gives us rich mathematical tradition upon
which we can build. However, the structures we have seen so far are totally
ordered. That is, for any propositions x and y either x 6 y or y 6 x. This
is not necessarily desirable — it leads to the truth of (A → B) ∨ (B → A).
Now some “natural” orderings of numbers are total orders, but others are not.
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For example, take the positive integers, ordered by divisibility. This is a partial
ordering — indeed, a lattice ordering — in which join is the lowest common
multiple and meet is the greatest common divisor. Fusion, then, has a natural
model in multiplication, which obviously respects the order.

This lattice is distributive. This is simple to see when you consider the repre-
sentation of positive integers as products of primes. Take three positive integers
a, b and c. To prove the distribution rule we need to show that

gcd(a, lcm(b, c)) | lcm(gcd(a, b), gcd(b, c))

Enumerate the primes as p1, p2,. . . , and choose n such that the largest prime
divisor of any of a, b or c is pn. Then represent a as the product

∏

i pai

i , b as
∏

i pbi

i , and c as
∏

i pci

i , where ai is the number of times pi divides a, and so on.

Once so represented, lcm(b, c) is
∏

i p
max(bi,ci)
i , gcd(a, b) is

∏

i p
min(ai,bi)
i , so

gcd(a, lcm(b, c)) =
∏

i

p
min(ai,(max(bi,ci))
i

=
∏

i

p
max(min(ai,bi),min(ai,ci))
i

= lcm(gcd(a, b), gcd(a, c))

giving us the divisibility we require. So, the lattice is distributive, and with
fusion modelled as multiplication, 1 is the identity of fusion and we have a
distributive lattice-ordered commutative monoid with a unit. Furthermore, the
monoid is square-increasing (as a | a2), so it models the structural rules of
R[∧,∨, ◦, t].

How can you model a conditional which is a residual for fusion? To do this
we require the residual condition:

xy | z if and only if x | y → z

This works well when y divides z. If y divides z, then we can set y → z to be
z/y. Then for any x you choose, xy | z if and only if x | z/y. However, if y does
not divide z, we do not have anything to choose, as 1 is the bottom of the order.

What can we do? The answer is to add another element to the ordering. It
will be the lowest element in the ordering, so we will call it 0 (for reasons which
will become more obvious later). We can by fiat determine that 0 | x for every
x in the structure, and that x | 0 only when x = 0. Conjunction and disjunction
are as before, with the addition that 0 ∧ x = 0 and 0 ∨ x = x for each x. The
rule for implication is then as follows:

x→ y =

{

y/x if x | y,
0 otherwise.
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Given 0 we need to extend the interpretation of fusion. But this is simple

0x = x0 = 0

for every x. So defined, the operation is still order-preserving, commutative,
square-increasing and with 1 as the identity. This structure is a model for
R[∧,∨, ◦, t,→]. To model the whole of R we need to model a de Morgan nega-
tion. That requires an order-inverting involution on the structure. To do this, we
need to introduce many more elements in the structure, as no order-inverting
involution can be found on what we have here before us: consider the infinite
ascending chain

0 | 1 | 2 | 4 | · · · | 2n | · · ·

To negate each element in the series you must get an infinite descending chain.
Why? Because we need an involution: x | y if and only if −y | −x, and in
particular, if −x = −y, then we must have x = y. Each element in the inverted
chain must be distinct. Alas, there are no such chains in our structure, as every
number has only finitely many divisors. So, we need to add more elements to
do the job. As our notation has suggested, we will add the negative integers
and∞. The order is as follows:

0 | x | −y | ∞

for every positive x and y, and

−x | −y if and only if y | x

So you should read ‘|’ as divides only when it holds between positive integers.
Otherwise, it is defined in these clauses. The infinite ascending chain is then
mapped onto the infinite descending chain above it as follows:

0 | 1 | 2 | 4 | · · · | 2n | · · · | −2n | · · · | −4 | −2 | −1 | ∞

The resulting order is still a distributive lattice order, and conjunction and dis-
junction are obviously definable as greatest lower bound and least upper bound,
respectively. Implication between all pairs of elements is defined as follows:

⋄ If x is negative and y is positive, x→ y = 0.

⋄ If x is positive and y is negative, then x→ y = (−x)y

⋄ If x and y are both negative, then x→ y = −y → −x

Fusion is then defined by setting xy = −(x→ −y), and it is simple to show that
this is commutative, square-increasing and with 1 as the identity.

This lattice is not complete. The ascending chain 0 | 1 | 2 | · · · | 2n | · · · has
an upper bound (any negative number will do) but no least upper bound.
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This structure was first constructed by Meyer [154]. There is more work
which could be done with this structure. Consult Exercises 8.8 to 8.10 for some
possibilities.

EXAMPLE 8.44 (BOOLEAN ALGEBRAS)
Truth tables are one of many algebras fit for classical propositional logic. A
Boolean algebra is a distributive lattice with a negation − such that a = − − a
and a ∨ −a is a maximum element. There is a finite Boolean algebra of size
2n for each n > 0. We have seen the two-valued Boolean algebra already. The
four- and eight-element Boolean algebras are simple.

⊥

a

⊤

−a

⊥

a b c

−c −b −a

⊤

Figure 8.10: Four- and Eight-Element Boolean Algebras

The implication → on a Boolean algebra is defined by setting x → y =
−x ∨ y. This connective residuates ∧.

Each finite Boolean algebra of size 2n is isomorphic to the Boolean algebra
of subsets of an n-element set.6 This Boolean algebra has operators of set union
and intersection, and complement, and the entailment relation is the subset-
hood relation.

The power set of any set is a Boolean algebra under union, intersection and
complement. However, not all Boolean algebras are isomorphic to a power
set algebra. For example, given some infinite set, the set of all finite and co-
finite subsets of that set is closed under intersection, union and complement.
(A set Y is a co-finite subset of X if and only if Y \X is finite.) The union of
two finite sets is co-finite. The union of any set with a co-finite set is co-finite.
The intersection of two co-finite sets is co-finite, and the intersection of any set
with a finite set is finite. The complement of a co-finite set is finite and the
complement of any finite set is co-finite. So, the family of finite and co-finite
sets is a Boolean algebra.

6 ‘Isomorphic’ means ‘same shape’. For a more rigorous definition of isomorphism, see Defini-
tion 9.8 on page 192.
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This algebra is not isomorphic to a power set Boolean algebra. Take the ex-
ample of the finite and co-finite algebra on a countable set. There are countably
many finite and co-finite subsets of that set.7 However, there is no countable
power set. The power sets of finite sets are finite, and the power sets of infinite
sets are uncountable.

THEOREM 8.45 (UNIQUENESS OF BOOLEAN NEGATION)
In any distributive lattice with ⊤ and ⊥, if a∨b = a∨c = ⊤ and a∧b = a∧c = ⊥,

then b = c.

PROOF Suppose a ∨ b = a ∨ c = ⊤ and a∧ b = a ∧ c = ⊥. Then since c ∧ b 6 c,
we have (a ∧ b) ∨ (c ∧ b) 6 c as a ∧ b = ⊥. By distributivity of the lattice,
(a ∨ c) ∧ b 6 c. However, a ∨ c = ⊤, so ⊤ ∧ b 6 c, i.e. b 6 c. By symmetry of
reasoning, c 6 b, and b = c. �

There has been a great deal of work on the structure of Boolean algebras, much
of which is relevant to research in substructural logics. Jónsson and Tarski’s
“Boolean Algebras with Operators” [122, 123] and Stone’s representation the-
ory [253, 254] in particular will be generalised to the non-Boolean setting of
substructural logics in Chapters 11 and 12.

EXAMPLE 8.46 (HEYTING LATTICES)
Not all distributive lattices are Boolean algebras. For example, any totally or-
dered lattice is distributive, but none other than TV (or the trivial one-element
algebra) is Boolean. However, on any completely distributive lattice you can
define an operation ⊃ which is a residual for ∧. The operation can be defined
as follows. Set x ⊃ y to be the meet of all of the elements z such that x∧ z 6 y.
Formally, x ⊃ y =

∨

{z : x ∧ z 6 y}. We have z ∧ x 6 y if and only if z 6 x ⊃ y,
since if z ∧ x 6 y then z 6

∨

{z′ : x∧ z′ 6 y} = x ⊃ y. Conversely, if z 6 x ⊃ y,
i.e. z 6

∨

{z′ : x ∧ z′ 6 y}, then x ∧ z 6 x ∧
∨

{z′ : x ∧ z′ 6 y} =
∨

{x ∧ z′ :
x ∧ z′ 6 y} 6 y. This last line of deduction requires the complete distributivity
of the lattices. A distributive lattice with a residual of conjunction and a bottom
element is called a Heyting lattice. A Heyting lattice is a model for intuitionistic
logic.

The simplest lattice in which this construction differs from the Boolean al-
gebra construction is the three-element lattice we have already seen as Ł3.

The table for ⊃ differs slightly from that for→ in Ł3. We have n ⊃ f = f but
n→ f = n. At all other points the operators are the same.

There are other ways to construct Heyting lattices. For example, given a
topological space, the set of open sets in that space forms a Heyting lattice. The
intersection of two open sets is open, the union of two open sets is open. The

7 In Exercise 8.13 you are asked to find an enumeration of this set.



CONS
1999/11/6
page 179

✐

✐

✐

✐

✐

✐

✐

✐

DEFINING PROPOSITIONAL STRUCTURES 179

t

n

f

⊃ t n f

t t n f

n t t f
f t t t

Figure 8.11: The Three-Element Heyting Lattice H3

complement of an open set is the largest open set disjoint from it — that is,
the interior of its complement. Similarly, the residual X ⊃ Y is the interior of
−X ∨Y . This is unlike the power set Boolean algebra construction in a number
of ways. First, in many topological spaces, the Heyting lattice is not complete.
Consider the standard space on the real line. The point set {0} is not open, but
it is the intersection of the set of open sets of the form (− 1

n
, 1

n
). Similarly, this

space is not atomic. Any open set will have an open proper subset.

⊥

a b c d

⊤

Figure 8.12: A Lattice with two Ortho-Negations

EXAMPLE 8.47 (ORTHO-NEGATIONS)
Ortho-negations generalise away from Boolean algebras by relaxing the dis-
tributivity condition on the lattice. The assumption of distributivity in The-
orem 8.45 is essential — you can have distinct ortho-negation operators on
the one lattice. Take the lattice in Figure 8.12. We can define ∼a = b and
∼c = d. This determines one ortho-negation (the values for ∼⊤ and ∼⊥ are
determined). Another distinct ortho-negation is given by setting −a = c and
−b = d.

There are many natural lattices with ortho-negations. One simple lattice
is the lattice of subspaces of a vector space. Given any family of subspaces,
their intersection is also a subspace. Their union is not necessarily a subspace,
but there is a subspace generated by the union of those spaces. Finally, given
a subspace, the set of points orthogonal to that subspace is itself a subspace,
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and this is a suitable ortho-negation for the space. Hence we have the name,
ortho-negation.

EXAMPLE 8.48 (ALGEBRAS OF RELATIONS)
Relation algebras are a generalisation of Boolean algebras of propositions. The
idea is simple. Consider the Boolean algebra of subsets of a set as an algebra
of properties. (It is common to identify properties with their extensions — the
set of objects with that property.) The Boolean algebra of subsets of some set
is like this. A simple generalisation, originally due to de Morgan [178] and
Peirce [190] and later developed, for example, by Schröder [237], was to con-
sider algebras of binary relations instead of merely properties. A concrete rela-

tion algebra is the set of all subsets of some set D×D of pairs of elements from
a set D under not only the Boolean operations of intersection, union and com-
plementation but also under new operations which use the relational structure
essentially.

For any two relations R and S there is their composition R · S, defined by
setting x(R · S)y if and only if (∃z ∈ D)(xRz ∧ zRy). This operation distributes
over disjunction and furthermore, ⊥ · R = R · ⊥ = ⊥, where ⊥ is the empty
relation, so it is fit for fusion. Fusion has a left and right identity, 1, the identity
relation on D. Furthermore, for any relation R we have its converse, given by
setting xR̆y if and only if yRx. Note that (R · S )̆ = S̆ · R̆.

We can define left and right residuals for composition directly by the residu-
ation conditions, or we can note that they are definable in terms of the Boolean
connectives, fusion and converse. R→ S = −(−S ·R̆) and S ← R = −(R̆ ·−S).

It is possible to modify the behaviour of these algebras by considering re-
stricted classes of relations. For example, we could look at algebras of reflexive
relations. These are odd, in that 1 6 R for each R, so the bottom element of the
algebra is also the identity for fusion. These algebras are closed under some of
the operations at issue, but not all. The Boolean complement of a reflexive rela-
tion is not reflexive, but the conjunction or disjunction of two reflexive relations
is.

Another possibility is to consider, for example, equivalence relations. When
is the composition of two equivalence relations an equivalence relation? It turns
out that R · S is also commutative when R · S = S ·R. And if this obtains, then
their composition is the least upper bound of the two relations (in the set of
equivalence relations). Therefore, a class of commuting equivalence relations
forms a lattice, in which fusion is least upper bound. And it is not too hard
to show that this lattice generally fails to be distributive, but it is modular. It
satisfies the modular law

a ∧ (b ∨ (a ∧ c)) 6 (a ∧ b) ∨ (a ∧ c)
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but not the more general distributive law. Exercise 8.20 asks you to construct a
proof theory for the logic of commuting equivalence relations.

EXAMPLE 8.49 (COMBINATOR ALGEBRAS)
Dunn and Meyer have studied combinator algebras with a view to substructural
logics [82]. A weak combinator algebra is a partially ordered set with one
two-place function of composition (which we interpret as fusion) satisfying the
standard ordering requirement. It has one or more combinators on the set, from
among s, k, i, w, c, b and so on, satisfying the following inequalities:

ix 6 x
kxy 6 x

cxyz 6 xzy
wxy 6 xyy

bxyz 6 x(yz)
sxyz 6 (xz)(yz)

We assume association to the left — kxy is (kx)y. What is kx? It is a function
which always returns x.

The relation 6 is one of reducibility. We say that ix reduces to x. So, for
example, wix reduces to ixx which in turn reduces to xx. Note the connection
between the action of the combinators and the behaviour of similarly named
structural rules.

This is almost the definition of a weak combinator algebra from [57], except
that for us, if x reduces to y and y reduces to x, then x and y are identical.
For the weak combinator algebras of Curry’s second volume [57], this is not the
case.

Suppose composition has a left residual→. Then in the absence of structural
rules, we can use combinators to code up rules. They are like ‘licenses that
must be displayed on the windshield of an inference.’ Here are some examples:
k 6 a→ (b→ a), w 6 (a→ (a→ b))→ (a→ b), skk 6 a→ a (as (ka)(ka) 6 a,
so skka 6 (ka)(ka) gives skka 6 a, giving skk 6 a→ a.

There are a number of helpful introductions to work on combinators [55,
56, 57, 116] which ought to be mined for further examples and results.

8.3 Soundness and Completeness

Soundness and completeness theorems are a major part of any semantic study
of systems of logic. Properly speaking, soundness and completeness are prop-
erties of proof systems. A proof system is sound for a semantic system if any
consecution provable in the proof system is valid in the semantics. The proof
system is sound if it makes no mistakes, from the perspective of the semantics.
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A proof system is complete if everything valid in the semantics is provable in
the proof theory. So it is complete if it covers all the ground.

THEOREM 8.50 (SOUNDNESS IN STRUCTURES)
If X ⊢ A is provable in the system S then it is valid in every propositional structure

fit for S.

PROOF Take a propositional structure P fit for S and an arbitrary interpretation
[[·]]. We will show that [[X]] 6 [[A]].

The proof proceeds by induction on the length of the proof of X ⊢ A. We
show that all axioms of S hold in P, and that if the premises of a rule of S hold
in P, so does the conclusion.

Let us consider a few cases and leave the rest to Exercise 8.15. For the
axiom A ⊢ A we are assured that [[A]] 6 [[A]], and this holds in any propositional
structure.

Consider the implication rules. The premise of (→I) is X;A ⊢ B. If
[[X;A]] 6 [[B]] then [[X]] · [[A]] 6 [[B]] giving us [[X]] 6 [[A]]→ [[B]] = [[A→ B]], so
the conclusion, X ⊢ A→ B, holds too.

The premises of (→E) are X ⊢ A → B and Y ⊢ A. If they hold, we
have [[X]] 6 [[A→ B]] and [[Y ]] 6 [[A]]. By monotonicity of fusion, we have
[[X]] · [[Y ]] 6 [[A→ B]] · [[A]]. But [[A→ B]] · [[A]] = ([[A]] → [[B]]) · [[A]] 6 [[B]]. So
[[X;Y ]] = [[X]] · [[Y ]] 6 [[B]], so the conclusion of the rule, X;Y ⊢ B, holds too.

Let us also do the disjunction rules. Since a 6 a ∨ b and b 6 a ∨ b, the
introduction rules are straightforward. The elimination rule is less straight-
forward. The premises are X ⊢ A ∨ B, Y (A) ⊢ C and Y (B) ⊢ C. So we
have [[X]] 6 [[A ∨B]], and [[Y (A)]] 6 [[C]] and [[Y (B)]] 6 [[C]]. To show that
[[Y (X)]] 6 [[C]], we need two facts.

FACT 1: If [[Y ]] 6 [[Z]] then [[X(Y )]] 6 [[X(Z)]].

FACT 2: I[[X(A ∨B)]] = [[X(A)]] ∨ [[X(B)]].

Both are proved by a simple induction on the construction of X. For Fact 1, we
use the monotonicity of fusion and of possibility. If a 6 b then c · a 6 c · b, and
♦−a 6 ♦−b. For Fact 2, we use the distribution of fusion and of possibility over
disjunction. We have c · (a ∨ b) = (c · a) ∨ (c · b), and ♦−(a ∨ b) = ♦−a ∨ ♦−b.

Having these facts at hand, we proceed to show that the conclusion of the
disjunction rule holds. [[X]] 6 [[A ∨B]], so Fact 1 gives [[Y (X)]] 6 [[Y (A ∨B)]],
and Fact 2 shows that this entails [[Y (A)]] ∨ [[Y (B)]]. Both disjuncts entail [[C]],
so we have our result.

The other connective rules use similar techniques and are left to the exer-
cises.
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For the structural rules, if we have Y ⇐ X then if Z(X) ⊢ A, we have
[[Z(X)]] 6 [[A]], and since [[Y ]] 6 [[X]], we have [[Z(Y )]] 6 [[Z(X)]][[A]], as desired.

�

The converse is only marginally more difficult to prove.

DEFINITION 8.51 (THE LINDENBAUM ALGEBRA OF S)
The Lindenbaum Algebra PS of a system S is defined as follows:

⋄ The elements are the sets [A] = {B : A ⊣⊢ B} of equivalence classes of
provably equivalent formulae.

⋄ The ordering 6 is defined by setting [A] 6 [B] if and only if A ⊢ B.

⋄ The two-place operator o is defined by setting [A] o[B] = [AoB], the one-
place operator o, by o[A] = [oA] and the constant o by o = [o].

Before proceeding we must ensure that the Lindenbaum algebra is in fact well
defined. We must ensure that our choice of representatives of equivalence
classes does not prejudice things. Consider the definition of 6. If [A] = [A′],
what if A ⊢ B but A′ 6⊢ B? Is [A] 6 [B] in this case or not? It turns out that the
choice of A or A′ as a representative for the class [A] = [A′] is immaterial, since
if [A] = [A′] then A ⊣⊢ A′, and if A ⊢ B then by Cut, A′ ⊢ B too.

Furthermore, if [A] = [A′] and [B] = [B′] then AoB ⊣⊢ A′ oB′, so the
choice of representatives makes no difference in the definition of binary op-
erators either. The same holds for one-place operators. If [A] = [A′] then
oA ⊣⊢ oA′. So, the Lindenbaum algebra is well defined. It is not only well
defined but we also have the following result:

LEMMA 8.52 (PS IS FIT FOR S)
Given a system S, the Lindenbaum algebra PS is fit for S.

PROOF We need to verify that 6 is a partial order, that the operators are fit for
their respective connectives, and that the structural (and negation) rules are
satisfied.

That 6 is a partial order follows from A ⊢ A and the cut rule.

That the operators are fit for their respective connectives follows from the
definition of the rules for each operator. For example, · is an ordered groupoid
operation, since if [A] 6 [A′] and [B] 6 [B′], then A ⊢ A′ and B ⊢ B′, and hence
A ◦B ⊢ A′ ◦B′, giving [A] · [B] 6 [A′] · [B′] as desired. The other conditions are
just as trivial to verify.

The structural rules are satisfied by the Lindenbaum algebra. If X ⇐ Y is a
structural rule, then [[Y ]] 6 [[X]] holds in the algebra straightforwardly. �
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THEOREM 8.53 (COMPLETENESS IN STRUCTURES)
If X ⊢P A for each P fit for S then X ⊢ A in S.

PROOF If X ⊢P A for each P fit for S then X ⊢PS
A. It follows that in any

interpretation [[·]] into PS, [[X]] 6 [[A]]. Consider the interpretation given by
setting [[p]] = [p]. By definition of the Lindenbaum algebra, [[A]] = [A] for each
A. It follows that [X] 6 [A] and hence that X ⊢ A, as desired. �

We finish this chapter with one simple corollary of this result, which goes some
way to exhibiting the power of algebraic methods: the relevance property for
R[∧,∨,→, ◦,∼] and its subsystems.

THEOREM 8.54 (THE RELEVANCE PROPERTY FOR R)
If A ⊢ B is provable in R[∧,∨,→, ◦,∼] (or in any subsystem) then A and B share

a propositional variable.

This result goes a little way towards justifying the claim for the account of
consequence in R as being relevant. There is no way that A can entail B (in R)
without A and B sharing some kind of content.

PROOF Consider the eight-element propositional structure with the following
order and fusion table:

⊥

∼b a ∼c

b ∼a c

⊤ · ⊥ ∼c ∼b ∼a a b c ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
∼c ⊥ ∼c ⊤ ⊤ ∼c ⊤ ∼c ⊤
∼b ⊥ ⊤ ∼b ⊤ ∼b ∼b ⊤ ⊤
∼a ⊥ ⊤ ⊤ ⊤ ∼a ⊤ ⊤ ⊤

a ⊥ ∼c ∼b ∼a a b c ⊤
b ⊥ ⊤ ∼b ⊤ b b ⊤ ⊤
c ⊥ ∼c ⊤ ⊤ c ⊤ c ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

This is an R structure. Fusion is commutative (the table is symmetric about the
diagonal), and associative (this must be checked manually, or with the aid of
a computer). We have x 6 x · x, so WI holds, and therefore so does W given
associativity of fusion. The element a is an identity for fusion.

Negation is defined by the names of the elements and the fact that ∼ is a de
Morgan negation. It is not hard to verify that ∼ is indeed a strong de Morgan
negation. As a result, x→ y = ∼(x◦∼y), so we have our values for implication.

Now, suppose we have two propositions A and B, in the language ∧, ∨, ∼,
◦ and →, such that there is no atom shared between A and B. Construct an
evaluation [[·]], such that [[p]] is either b or ∼b for any atom p in A, and it is either
c or ∼c for any atom p in B.
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By induction, we can verify that the value [[A]] is one of b and ∼b, and simi-
larly, the value [[B]] is one of c or ∼c. Therefore, [[A]] 66 [[B]], and since this is a
model of R, we have A 6⊢ B in R, and hence, A 6⊢ B in any sublogic of R. �

Note that this theorem would not hold in the presence of any of the con-
stants t, ⊤ or ⊥. The validity of t ⊢ A ∨ ∼A, p ⊢ ⊤ and ⊥ ⊢ p give the lie to
that.

Before heading off into a short discussion of the history of propositional
structures, we should mention a little of what is necessary for Lindenbaum
algebras to work as models for our logics. The major constraint for something
like a Lindenbaum algebra to work is that substitutivity of equivalents holds.
We need that if A ⊣⊢ B then C(A) ⊣⊢ C(B) for any propositional context C.
There are logical systems for which this does not hold. For example, the Cn

systems of da Costa fail this requirement [50, 51]. These systems are modelled
by a simple two-valued scheme, in which we use a function from sentences
to the truth values {t, f}. The semantics for conjunction is the usual one — a
conjunction receives value t if and only if both conjuncts have the value t — but
negation is treated non-standardly. The value of ∼A need not be a function of
the value of A, so we call such functions semi-valuations. In the system C1, we
require just that if A has value f, then ∼A has value t, and that ∼∼A receives
the same value as A. Therefore, we cannot have ∼A and A both f, but they may
be both t. This is a rather simple logic, but substitutivity of equivalents fails. On
any semi-valuation, A and A∧A receive the same value, so A ⊣⊢ A∧A in this
logic, but ∼A and ∼(A∧A) may differ. We cannot extract the behaviour of this
logic from its Lindenbaum algebra in the usual way. Different techniques must
be used.

Substructural logics are, however, amenable to the treatment of algebras,
and they are a fruitful tool in the study of these logics, as the next chapter will
show.

8.4 History

The algebraic study of logics has attained great heights in the work of Polish
logicians. Helena Rasiowa’s An Algebraic Approach to Non-classical Logics [204]
is a compendium of interesting results in the field. The use of algebra in relevant
logics found form in Dunn’s doctoral dissertation [70] and in the work of Meyer
and Routley [167]. Study of general work in lattice theory [38, 52, 58] and
universal algebra [104] repays careful reading for the student of substructural
logics.

There has been a long tradition of using finite algebras (also called ‘ma-
trices’ for obvious reasons) to prove syntactic results about logics, such as the
relevance property for R. Section 22 of Entailment Volume 1 [6] contains a good
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discussion of results of this sort.

Tarski [256] helped bring relation algebras back to prominence in modern
logic, and there is much contemporary research in the area, particularly in Hun-
gary [8].

Slaney’s software package MaGIC, Matrix Generator for Implication Con-
nectives, available at http://arp.anu.edu.au/~jks/magic.html, has made
the generation of finite model structures much easier than it was in the pre-
computational era [251].

Quantales (a notion due to Mulvey [181] — essentially lattice-ordered semi-
groups, with arbitrary meets but only finite joins) are algebraic structures which
appear in both pure mathematics and theoretical computer science. They are
discussed a little in Vickers’ Topology via Logic [274], which is a useful source
book of other algebraic constructions and their use in modelling processes and
observation.

More recently still, Dunn has introduced the notion of a gaggle, which gen-
eralises the account of propositional structures given here by picking out prop-
erties of distribution common to the family of fusion and implication, the modal
family, and split negations [76, 77, 78]. This chapter and the next (as well as
much of the rest of this book) has been inspired by Dunn’s research.

8.5 Exercises

Practice

{8.1} Consider the propositional structure on the four-element set {−2,−1, 1, 2} or-

dered in the usual way, with the fusion table

· −2 −1 1 2

−2 −2 −2 −2 −2
−1 −2 −1 −1 2

1 −2 −1 1 2
2 −2 2 2 2

Find the values of 2 ∧ −1, 1 ∨ −2 and −1 · (2 ∧ 1) in this structure.

{8.2} What structural rules are satisfied in this structure?

{8.3} Give the table for the connective→, which residuates fusion in this structure.

Problems

{8.4} Show that total orders are distributive lattices.

{8.5} Show that in any lattice (a ∧ b) ∨ (a ∧ c) 6 a ∧ (b ∨ c) holds for all a, b and c.

{8.6} Show that any non-distributive lattice has a sublattice of either M5 or N5.

{8.7} Show that if ⊃ is a residual for ∧, then ∧ distributes over ∨.
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{8.8} Consider the divisibility structure for R, Example 8.43, introduced on page 174.

Show that this structure has is no residual for extensional conjunction, despite the fact

that the structure is distributive. Diagnose this phenomenon. How could you extend the

model so that extensional conjunction is residuated?

{8.9} The divisibility structure is infinite. Show that by restricting your attention to

the factors of a given number, you can construct finite models with a similar behaviour.

Now that the model is finite, you have a residual for extensional conjunction. Explain

the behaviour of this connective in “arithmetic” terms.

{8.10} Is it possible to define the divisibility structure in such a way as to put the nega-

tive numbers below the positive ones? It seems like a natural place for them to be. Can

you make the construction like this and keep it an R model?

{8.11} A logic is characterised by a propositional structure if and only if every consecu-

tion X ⊢ A is valid if and only if [[X]] 6 [[A]] for any interpretation into that structure.

Clearly, every logic with a Lindenbaum algebra is characterised by that algebra. Show

that Łukasiewicz’s infinite-valued logic and all of its sublogics are not characterised by

any finite structure, by showing that pn ⊢ pn+m fails in ŁR for each n and m, but that in

any finite ŁR model, some of these must be valid.

{8.12} Show that RM and all of its sublogics are not characterised by any finite structure.

{8.13} Enumerate the set of finite and co-finite subsets of ω.

{8.14} Show that if ⌢ is a p-type negation then so is ⌢�, where � is a necessity

operator.

{8.15} Complete the proof of the soundness theorem, Theorem 8.50.

{8.16} Show that the Lindenbaum algebra of any logic with infinitely many atomic

propositions, but with connectives of only finite arity, is never complete.

{8.17} An atom in an ordered set with a bottom element⊥ is a point a such that ⊥ < a,

and for any b, if b < a then b = ⊥. A lattice is atomic if every element is the join of some

set of atoms. Show that the Lindenbaum algebra of any logic with a lattice conjunction

is not atomic.

{8.18} A Gelfand quantale is a lattice with arbitrary joins, with an associative fusion

operator, left and right conditionals, and a new operator ∗ (not to be confused with the

Kleene star) such that a∗∗ = a, (a · b)∗ = b∗ · a∗, and
W

a∗i = (
W

ai)
∗ [5]. Show that

in any Gelfand quantale, b ← a = (a∗ → b∗)∗. Show that ∗ is both necessity-like and

possibility-like.

{8.19} Maksimova has shown that the technique of Theorem 8.54 proves something

stronger [145]. We know not only that if A ⊢ B in R[∧,∨,∼, ◦,→] then A and B share

a variable, but that they share a variable in the same position, where we define position

as follows: p is in positive position in itself. Atomic propositions are either in positive or

negative position in a formula. If p is in some position in A it is in the same position in

A ∧ B, A ∨ B, A ◦ B and B → A, and it is in the opposite position in ∼A and A → B.

Prove Maksimova’s theorem by a more judicious choice of [[·]] into the model used in the

proof of Theorem 8.54.
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Project

{8.20} Construct a proof theory for the logic of commuting equivalence relations in a

relation algebra, mentioned in Example 8.48. (Consider the work of Finberg, Mainetti

and Rota [83] as a possible starting point.)
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Chapter 9

Manipulating Propositional Structures

The exquisite manipulation of the master

gives to each atom of the multitude

its own character and expression.

— John Ruskin, Modern Painters, 1843

In the previous chapter, we defined propositional structures and we showed
that they are suitable models for a wide range of our logics. In this chapter, we
will examine a number of algebraic techniques for manipulating and construct-
ing propositional structures. These techniques help us to clarify the nature of
substructural logics. In particular, the main results of this chapter will be con-

servative extension results. Suppose we have a logic L over some language L,
and we are interested in extending the language L to form a new language L′

by adding some new connectives. We add new rules to L, giving us a new logic
L′ on the new language. Now we have a question to answer: is this a good
extension? One way the extension can be good is as follows:

DEFINITION 9.1 (CONSERVATIVE EXTENSION)
The logic L′ on the language L′ is a conservative extension of the logic L on the
language L if and only if

⋄ L′ extends L: if something is provable in L it is also provable in L′, and

⋄ L′ is conservative over L: if something is provable in L′ and it features none
of the new vocabulary in L′, then it was already provable in L.

If L′ conservatively extends L then we know that the rules governing the ad-
ditions to the language truly govern that addition, and do not tell us anything
new about our original vocabulary. As one example, we will show that substruc-
tural logics on the languages [→,←, ◦] are conservatively extended, in general,
by the distributive lattice connectives: [∧,∨,⊤,⊥].

Not all extensions are conservative, however. The implication/conjunction
fragment of intuitionistic logic, J[∧,⊃], is not conservatively extended with
Boolean negation. Without Boolean negation you cannot prove Peirce’s law
(p ⊃ q) ⊃ p ⊢ p, but with Boolean negation you can.

Why not? Consider the three-element Heyting lattice of Figure 8.11 on
page 179. In this algebra, (n ⊃ f) ⊃ n = f ⊃ n = t 66 n, so Peirce’s law

189
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fails in intuitionistic logic. It succeeds in Boolean algebras as p ⊃ q = ∼p ∨ q,
so (a ⊃ b) ⊃ a = ∼(∼a ∨ b) ∨ a = (a ∧ ∼b) ∨ a = a.

9.1 Algebra Facts

In this section, we will collect together basic definitions from algebra that apply
to the study of propositional structures.

DEFINITION 9.2 (HOMOMORPHISMS)
A function f : P → Q between two propositional structures of the same signa-
ture is a homomorphism if and only if it is both

⋄ Order-preserving:

For each x, y ∈ P, if x 6 y then f(x) 6 f(y), and

⋄ Operator-preserving: for each operator o ∈ Op

For each x1, . . . , xn ∈ P, f(o(x1, . . . , xn) = o(f(x1), . . . , f(xn)).

So a homomorphism between structures is a structure-preserving mapping. All
of the relevant features of the structure are preserved. We will consider a
few simple homomorphisms between BN4, RM3 and the two- and four-element
Boolean algebras.

EXAMPLE 9.3 (TV TO RM3)
Consider the two-element Boolean algebra TV on {t, f} and RM3 on {t, b, f}, and
the maps f and g from TV to RM3 defined by setting

f(t) = t f(f) = f g(t) = t g(f) = b

Both of these maps are order-preserving: If x 6 y then f(x) 6 f(y) and g(x) 6
g(y). Both preserve conjunction and disjunction: f(x ∧ y) = f(x) ∧ f(y), g(x ∧
y) = g(x)∧g(y), f(x∨y) = f(x)∨f(y) and g(x∨y) = g(x)∨g(y). Both preserve
⊤, as f(⊤) = ⊤, and g(⊤) = ⊤. However, g is not ⊥ preserving. The bottom
element ⊥ in both structures is f, and g maps f to b.

Furthermore, f preserves negation, while g does not. ∼f(x) = f(∼x) for
each x, while ∼g(f) = b 6= t = g(t) = g(∼f).

It follows that g is not a homomorphism from TV to RM3, while f is. How-
ever, g is a homomorphism from TV[∧,∨,⊤] to RM3[∧,∨,⊤]. Whether or not a
function is a homomorphism is sensitive to the choice of operators which must
be preserved.
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EXAMPLE 9.4 (BN4 AND RM3)
There are no homomorphisms from BN4 to RM3, as there are no maps which
will preserve both negation and conjunction and ⊥. If there were such a map
f , consider f(n) and f(b). However, n = ∼n, so ∼f(n) = f(∼n) = f(n); and
b = ∼b, so similarly, ∼f(b) = f(b). So, whatever f(n) and f(b) are, they
have to be propositions x such that ∼x = x. Only b does this job in RM3. So
f(n) = f(b) = b.

However, we need f(n)∧f(b) = f(n∧b) = f(f) = f(⊥) = ⊥, and this means
that the choice of f(n) = f(b) = b is not allowed, as b is not ⊥. Therefore, no
f will preserve each of negation and conjunction and ⊥, from BN4 to RM3.

All is not lost, however. It is not too hard to show that the f from BN4 to
RM3 given by setting f(x) = b preserves all structure other than ⊤ and ⊥. To
prove this it is sufficient to show that b is a fixed point for all operations o other
than ⊤ and ⊥: that is, o(b, . . . , b) = b for each o other than ⊤ and ⊥. Then f
must be order- and structure-preserving.

Maps in the other direction are easier to find. The map g : RM3 → BN4

given by setting g(x) = x preserves all structure, and the map h given by setting
h(t) = t, h(f) = f and h(b) = n preserves order and [∧,∨,⊤,⊥,∼], but not
implication or fusion.

LEMMA 9.5 (ORDER-PRESERVATION FOR FREE)
If a map f preserves either ∨ or ∧, it preserves order too.

PROOF Note that a 6 b if and only if a ∨ b = b. So, if a 6 b then a ∨ b = b so
f(a ∨ b) = f(b) and hence f(a) ∨ f(b) = f(b), giving us f(a) 6 f(b) as desired.
The equivalence of a 6 b and a ∧ b = a can be used to the same effect. �

This fact can help to cut down the amount of checking needed to verify that
a map is a homomorphism. Now we can consider some special sorts of homo-
morphism.

DEFINITION 9.6 (ONE-TO-ONE AND ONTO HOMOMORPHISMS)
A homomorphism f : P → Q is one-to-one if and only if whenever f(x) = f(y)
then x = y. f is onto if and only if whenever y ∈ Q, then there is some x ∈ P
where f(x) = y.

DEFINITION 9.7 (EMBEDDINGS)
A homomorphism f : P → Q is an order embedding if and only if f(x) 6 f(y)
only if x 6 y.

If f is an order embedding, it must be one-to-one. If f(x) = f(y) then f(x) 6
f(y) and hence x 6 y. Similarly, f(y) 6 f(x) and so, y 6 x. So x = y.
However, the converse does not hold. There are one-to-one maps which are not
order embeddings. (Finding one is left to Exercise 9.1.)
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DEFINITION 9.8 (ISOMORPHISMS)
An isomorphism f : P → Q is a homomorphism such that the inverse map f−1 :
Q → P — given by setting f−1(y) = x where f(x) = y — is a homomorphism.
Two structures are isomorphic if and only if there is an isomorphism from one
to the other.

LEMMA 9.9 (ISOMORPHISM CONDITIONS)
A homomorphism f : P → Q is an onto order embedding if and only if it is an

isomorphism.

PROOF If f is an onto order embedding we first need to show that f−1 is well
defined. Since f is onto, for every y there is at least one x ∈ P where f(x) = y.
Since f is an order embedding, it is one-to-one, so there is no more than one x
where f(x) = y. It follows that the definition of f−1 gives us a function, and
furthermore, that f(f−1(y)) = y and f−1(f(x)) = x for each y ∈ Q and x ∈ P
respectively.

Now f−1 is order-preserving since if f−1(y) 66 f−1(y′) we have f(f−1(y)) 66
f(f−1(y′)) (as f is an order embedding), giving us y 66 y′. Contraposing this,
we have y 6 y′ only if f−1(y) 6 f−1(y′) as desired.

Finally, for this part, f−1 preserves operators. For any n place operator
o, f−1(o(y1, . . . , yn)) 6= o(f−1(y1), . . . , f

−1(yn) then since f is one-to-one, we
have

f(f−1(o(y1, . . . , yn))) 6= f(o(f−1(y1), . . . , f
−1(yn))

and since f is a homomorphism, it follows that

f(f−1(o(y1, . . . , yn))) 6= o(f(f−1(y1)), . . . , f(f−1(yn)))

But we have f(f−1(y)) = y for all y, we get

o(y1, . . . , yn) 6= o(y1, . . . , yn)

which is a contradiction. Therefore, f−1 must preserve operators, so f is an
isomorphism.

Conversely, if f is an isomorphism, then we will show that it is an onto
order embedding. First, if y ∈ Q, we have f(f−1(y)) = y, and hence f is onto.
Second, if f(x) 6 f(y), then f−1(f(x)) 6 f−1(f(y)), giving us x 6 y, and
hence, that f is an order embedding. �

DEFINITION 9.10 (SUBSTRUCTURES)
Q is a substructure of P if and only if Q ⊆ P , and Q is closed under all of the
operations of P. In other words, if o is some operator, and x1, . . . , xn ∈ Q, then
o(x1, . . . , xn) ∈ Q.
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EXAMPLE 9.11 (SUBSTRUCTURES OF BN4)
It is easy to see that RM3 is a substructure of BN4, as the set {t, b, f} is closed
under all operators on BN4. The structures Ł3 and TV are substructures of BN4

provided that you ignore the constant t, which in BN4 is b.

Each homomorphism f into some structure Q defines a substructure of Q.

DEFINITION 9.12 (HOMOMORPHIC IMAGES)
For any homomorphism f : P → Q, the homomorphic image of P in Q defined

by f is the set R ⊆ Q of all y ∈ Q where for some x ∈ P , f(x) = y. The
operations defined on R are restrictions of those on Q.

LEMMA 9.13 (HOMOMORPHIC IMAGES ARE SUBSTRUCTURES)
R is a homomorphic image of some P in Q if and only if it is a substructure of Q.

PROOF If R is a homomorphic image of P in Q (by f) then clearly R ⊆ Q.
If y1, . . . yn ∈ R, then for each i, there is an xi ∈ P where yi = f(xi). Then
it follows that o(y1, . . . , yn) = o(f(x1), . . . , f(xn)) = f(o(x1, . . . , xn)) ∈ R as
desired.

Conversely, if R is a substructure of Q, then the identity map i(x) = x from
R to itself is a homomorphism, and the image of R in Q defined by i is R itself.

�

DEFINITION 9.14 (PRODUCTS)
Given any two propositional structures P and Q with the same signature, their
product P ×Q is given as follows.

⋄ Its domain is the set of all pairs 〈x, y〉, where x ∈ P , y ∈ Q.

⋄ 〈x, y〉 6 〈x′, y′〉 if and only if x 6 x′ and y 6 y′.

⋄ o(〈x1, y1〉, . . . , 〈xn, yn〉) = 〈o(x1, . . . , xn), o(y1, . . . , yn)〉

P × Q is a propositional structure with the same signature as P and Q, and
which satisfies any structural rules satisfied by both P and Q.

DEFINITION 9.15 (VARIETIES AND QUASIVARIETIES)
A class V of algebraic structures is a variety if and only if it is the class of
all algebraic structures satisfying some class of equations. The class V is a
quasivariety if and only if it is the class of all algebraic structures satisfying
some class of equations and rules.

The class of propositional structures for a logic is almost always at the least a
quasivariety.

THEOREM 9.16 (BIRKHOFF’S HSP THEOREM)
V is a variety if and only if it is closed under homomorphic images, substructures

and products [38, 104].
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It turns out, then, that the class of propositional structures fit for a logic is
(almost always) a variety.

DEFINITION 9.17 (FREE STRUCTURES)
Given a quasivariety V of propositional structures, a free propositional structure

on the set X is a propositional structure PV,X such that for any propositional
structure Q in V, and for any function f : X → Q, f can be extended to a
unique homomorphism f∗ : PV,X → Q.

The idea is that PV,X is the completely general propositional structure gener-
ated by the objects in X. There are no extra logical relationships at all between
the objects in X beyond what is dictated by the variety V, since we can map
different objects in X into any other objects in any structure we like, and still
extend this into a homomorphism. On the other hand, a map of X into Q ex-
tends to only one homomorphism, because the behaviour of every other object
in PV,X is dictated by the behaviour of X. You can think of the objects in the
free structure as generated by the objects in X.

We are justified in calling PV,X the free propositional structure on X be-
cause of the following result.

THEOREM 9.18 (ISOMORPHISM OF FREE STRUCTURES)
If X and Y are of the same cardinality, PV,X and PV,Y are isomorphic. �

A presentation of the proof would take us too far afield. Consult Chapter 4
of Grätzer’s Universal Algebra [104], among many places where the proof is
presented.

It turns out that the Lindenbaum algebra in a logic is the free propositional
structure on the set of atomic propositions in the variety of all algebras of that
logic. This shows us that for an X of any size, there is a free propositional
structure on X. At this point we are doing universal algebra. There are many in-
teresting results here, but we have no time to consider them. Consult Grätzer’s
canonical text [104] for much more on these techniques.

9.2 Filters, Ideals and Ideal Structures

For another, useful kind of construction of propositional structures, we need
a few more definitions. We will look at different sorts of sets of objects in
propositional structures. The first kind are filters, which are to propositional
structures what theories are to logics.

DEFINITION 9.19 (FILTERS)
A filter in a propositional structure is a set of objects in that structure which
is
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⋄ Closed under 6. That is, if a 6 b and a ∈ F then b ∈ F .

⋄ Closed under ∧, if ∧ is present in the structure. That is, if a, b ∈ F then
a ∧ b ∈ F .

⋄ Contains ⊤, if ⊤ is in the structure.

An ideal is a filter turned upside-down.

DEFINITION 9.20 (IDEALS)
An ideal in a propositional structure is a set of objects in that structure which
is

⋄ Closed under >. That is, if a > b and a ∈ I then b ∈ I.

⋄ Closed under ∨, if ∨ is present in the structure. That is, if a, b ∈ I then
a ∨ b ∈ I.

⋄ Contains ⊥, if ⊥ is in the structure.

Ideals are more important than filters in this chapter — filters (and theories)
will assume centre stage in Chapters 11 and 12. Ideals are important here as
the set of all ideals of a propositional structure P, which we will call Ideal(P),
inherits much of the structure of P.

DEFINITION 9.21 (IDEAL STRUCTURE)
The ideal structure Ideal(P) of a propositional structure P is the set of all ideals
of P, ordered by ⊆.

Each propositional structure has at least as many ideals as it has elements. In
particular, each element defines a unique ideal.

DEFINITION 9.22 (PRINCIPAL IDEALS)
For any x ∈ P, the ideal ↓x = {y : y 6 x} from Ideal(P) is said to be a principal

ideal.

It is simple to verify that ↓x is in fact an ideal. It is automatically closed down-
wards. If ∨ is present in P then if y1 6 x and y2 6 x then clearly y1 ∨ y2 6 x.
Finally, if ⊥ is present, then since ⊥ 6 x for every x, ⊥ ∈ ↓x too.

LEMMA 9.23 (↓ IS AN ORDER EMBEDDING)
The map ↓ : P → Ideal(P) is an order embedding.

PROOF Suppose ↓x ⊆ ↓y. Since x ∈ ↓x we have x ∈ ↓y, and hence x 6 y as
desired. �
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So, the order in P is embedded into the order in Ideal(P) by way of principal
ideals. ↓ does more than that, however, and Ideal(P) is more than a partially
ordered set.

LEMMA 9.24 (Ideal(P) IS A COMPLETE LATTICE)
For any propositional structure P, its ideal structure Ideal(P) is a complete lattice

ordered by ⊆.

PROOF Given any set X of ideals of P, the intersection
⋂

X is also an ideal of
P, the greatest lower bound of the ideals in X. Clearly,

⋂

X is closed down-
wards, as each I ∈ X is so closed. If ⊥ is present, then ⊥ ∈ I for each I ∈ X,
so ⊥ ∈

⋂

X. Finally, if ∨ is present, then if x, y ∈
⋂

X then x, y ∈ I for each
I ∈ X, then x ∨ y ∈ I for each I ∈ X, so x ∨ y ∈

⋂

X as desired.

For disjunction, given any set X of ideals of P,
⋂

{J : I ⊆ J each I ∈ X} is
the least upper bound of X. �

So the conjunction of a set of ideals is just their intersection. The disjunction
of a set of ideals is their union, if disjunction is not present in the original
structure. If disjunction is present in the original structure, then the disjunction
∨

X is defined as follows

∨

X = {z : z 6 x1 ∨ · · · ∨ xn for some xi ∈ Ii ∈ X}

This set is clearly an ideal (it is closed downwards, contains ⊥ and is closed
under disjunction) and it contains each I ∈ X. It is also included in any ideal
containing each I ∈ X, so

∨

X is indeed this set. From now on we will use
∨

and
∧

for arbitrary disjunctions and conjunctions in the ideal structure.

LEMMA 9.25 (↓ PRESERVES ALL LATTICE OPERATORS)
The map ↓ preserves all lattice operators present in P.

PROOF Consider ↓⊥. This is clearly the bottom element of Ideal(P), as ⊥ is
present in every ideal (if present in P). Consider ↓⊤. Since x 6 ⊤ for all x, it
follows that ↓⊤ = P , which is the top element of Ideal(P).

Consider ↓(x ∧ y) = {z : z 6 x ∧ y}. This is equal to {z : z 6 x} ∩ {z : z 6
y} = ↓x ∩ ↓y, which is the least upper bound of ↓x and ↓y in Ideal(P).

Finally, consider ↓(x ∨ y) = {z : z 6 x ∨ y}. This is not necessarily equal to
↓x ∪ ↓y, but this union is not necessarily an ideal. However, consider any ideal
I containing both ↓x and ↓y. It contains x and y and hence it contains x∨ y (as
disjunction is present in P). It follows that it contains every element of ↓(x∨y).
However, ↓(x ∨ y) itself is an ideal which has both ↓x and ↓y as subsets, so it
follows that ↓(x ∨ y) is least upper bound of ↓x and ↓y, as desired. �
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THEOREM 9.26 (WHEN Ideal(P) IS COMPLETELY DISTRIBUTIVE)
If P contains no counterexample to (finite) distribution, then Ideal(P) is com-

pletely distributive.

That is, if P is a distributive lattice, then Ideal(P) is completely distributive.
On the other hand, if disjunction is absent from P, then Ideal(P) is still a com-
pletely distributive lattice.

PROOF If disjunction is absent from P, then Ideal(P) is closed under intersec-
tion and union and this is clearly a completely distributive lattice.

If disjunction is present in P, consider I ∧
∧

i Ji, which is

I ∩ {z : z 6 x1 ∨ · · · ∨ xn where xj is in some Ji}

If z ∈ I∧
∧

i Ji then z ∈ I and z ∈
∧

i Ji, and hence z 6 x1∨· · ·∨xn, where each
xj is in some Ji. By finite distributivity, z∧(x1∨· · ·∨xn) = (z∧x1)∨· · ·∨(z∧xn).
We have each z∧xj ∈ I∧Ji (for some i), so (z∧x1)∨· · ·∨(z∧xn) ∈

∧

i (I ∧ Ji).
However, z ∧ xj = z for each j, z ∈

∧

i (I ∧ Ji) as desired. �

So we have an order embedding ↓ from an arbitrary ordered set P into a com-
plete lattice Ideal(P). Furthermore, the complete lattice is completely distribu-
tive unless P contains a failure to finite distribution.

In the rest of this section, we will show how the ideal structure can be
equipped with the other propositional operators from P. Then in the next sec-
tion we will use the ideal structure to prove a number of conservative extension
theorems.

We will start with fusion. We can “lift” the operation · on P up to Ideal(P)
by setting

I ·′ J = {z : ∃x ∈ I, y ∈ J(z 6 x · y)}

The set I ·′ J is an ideal if I and J are, as is easy to check. (We refrain from
writing the prime in ·′ as the context will make clear whether · is an operator
on P or Ideal(P).)

⋄ If z ∈ I · J and w 6 z then w ∈ I · J by construction.

⋄ Clearly ⊥ ∈ I · J if ⊥ is present in P, as ⊥ 6 ⊥ · ⊥, and ⊥ ∈ I, J .

⋄ If z, w ∈ I · J then z 6 x · y and w 6 x′ · y′, where x, x′ ∈ I and y, y′ ∈ J .
We wish to show that z ∨ w ∈ I · J , if disjunction is present in P. Proceed
as follows: z ∨ w 6 (x · y) ∨ (x′ · y′), but elementary fusion facts show us
that (x · y) ∨ (x′ · y′) 6 (x ∨ x′) · (y ∨ y′). But x ∨ x′ ∈ I and y ∨ y′ ∈ J , so
we have z ∨ w ∈ I · J as desired.

Not only that, but the embedding map ↓ respects fusions, as ↓x · y = ↓x · ↓y.
Finally, it is straightforward to verify that · is indeed fit for fusion on the

ideal lattice, as we have
∨

i(Ii · J) = (
∨

i Ii) · J .
We can also define the other intensional connectives in similar ways:
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DEFINITION 9.27 (LIFTED INTENSIONAL OPERATORS)
⋄ t′ = ↓t

⋄ I ·′ J = {z : ∃x ∈ I, y ∈ J(z 6 x · y)}

⋄ I →′ J = {z : ∀x ∈ I,∃y ∈ J(z 6 x→ y)}

⋄ J ←′ I = {z : ∀x ∈ I,∃y ∈ J(z 6 y ← x)}

⋄ ♦−′I = {z : ∃y ∈ I(z 6 ♦−y)}

⋄ �′I = {z : ∃y ∈ I(z 6 �y)}

⋄ ¬′I = {z : ∀y ∈ I(z 6 ¬y)}

⋄ ∼′I = {z : ∀y ∈ I(z 6 ∼y)}

DEFINITION 9.28 (IDEAL STRUCTURE)
Given any propositional structure P = 〈P,6, Op〉, its ideal structure is Ideal(P),
ordered under ⊆ and with the operators o′ corresponding to those operators o
in Op.

LEMMA 9.29 (IDEAL PRESERVATION)
The operations on an ideal structure Ideal(P) are well defined. If I1, . . . , In are

ideals, so is o′(I1, . . . , In).

PROOF This proof is a simple verification of cases. We have seen the proof in
the case where o is fusion. We will work through the case for implication and
leave the rest to Exercise 9.10.

⋄ If z ∈ I → J and w 6 z then w ∈ I → J by construction.

⋄ Clearly ⊥ ∈ I → J if ⊥ is present in P, as ⊥ 6 x → ⊥, for whatever x ∈ I
you like, and ⊥ ∈ J .

⋄ If z, w ∈ I → J then for all x ∈ I there is a y ∈ J , where z 6 x → y,
and similarly, for all x′ ∈ I there is a y′ ∈ J , where w 6 x′ → y′. We wish
to show that for all x ∈ I there is a y′′, where z ∨ w 6 x → y′′. We have
some y ∈ J , where z 6 x → y and similarly, a y′, where w 6 x → y′. So
z ∨w 6 (x→ y)∨ (x→ y′). However, (x→ y)∨ (x→ y′) 6 (x→ y∨ y′) by
simple lattice properties, so we have z∨w 6 x→ y∨y′ and since y∨y′ ∈ J ,
we have z ∨ w ∈ I → J as desired. �

LEMMA 9.30 (OPERATOR PRESERVATION)
The operations on an ideal structure Ideal(P) are almost always fit for their cor-

responding connectives. In particular:

⋄ ·, ♦−, ∼ and ¬ and ⊤ on Ideal(P) are fit for their corresponding connectives,

provided that they are fit for the connective in P.
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⋄ →, ←, �, on Ideal(P) are fit for their corresponding connectives, provided

that they are fit for the connective in P, and provided that their parent is

present in P.

This lemma uses the notion of the parent of an operator. Recall that the inten-
sional connectives ←, ·,→ form a family in which · is the parent, as it mimics
directly the structure used to model each connective. Similarly, � and ♦− are a
family in which ♦− is the parent.

PROOF There are many cases to run through here. We will do some, to show
how it is done. Suppose · and → are both present in P. Suppose I ⊆ J → K.
We wish to show that I ·J ⊆ K. Take z ∈ I ·J , so z 6 x·y, where x ∈ I ⊆ J → K
and y ∈ J . Since x ∈ J → K, it follows that for any y′ ∈ J there is a w ∈ K
where x 6 y′ → w. Choose y for y′. There is some w ∈ K, where x 6 y → w.
But this means that z 6 x · y 6 (y → w) · y 6 w ∈ K, giving z ∈ K as desired.

Conversely, suppose I · J ⊆ K. We want I ⊆ J → K. Let z ∈ I. To show
that z ∈ J → K, let x ∈ J . We want some y ∈ K, where z 6 x→ y. Well, z ∈ I
and x ∈ J gives z ·x ∈ I ·J ⊆ K. It follows that z 6 x→ z ·x, and we are done.

Suppose now that · is present by itself, without implication. For the distri-
bution laws there are two cases, concerning the presence of disjunction or its
absence. Suppose first that disjunction on the ideal structure is just union. Then
if z ∈ (

∨

i Ji) · I, for some x and y, z 6 y · x, where y ∈
∨

i Ji and x ∈ I. Thus
there is some Ji, where y ∈ Ji. Then y ·x ∈ Ji ·I and hence z 6 y ·x ∈ (

∨

i Ji · I)
as desired. And if z ∈ (

∨

i Ji · I) then z ∈ Ji · I for some Ji, giving z 6 y · x,
where y ∈ Ji and x ∈ I. Then clearly z ∈ (

∨

i Ji) · I.
If disjunction is not just union but the more complex construction given

above, the reasoning is trickier. If z ∈ (
∨

i Ji) · I we have for some x ∈ I and
y ∈

∨

i Ji, z 6 y·x. This means that for some J1 to Jn, for each i, y 6 y1∨· · ·∨yn.
Then z 6 (y1 ∨ · · · ∨ yn) · x = (y1 · x)∨ · · · ∨ (yn · x) ∈ (

∨

i Ji · I) as desired. The
converse argument is straightforward. This gives us the infinitary distribution
laws we require, and this gives fusion the desired distribution properties.

We will also consider the case for negation. Suppose that ∼ and ¬ are both
present. Suppose that I ⊆ ∼J . To show that J ⊆ ¬I, take x ∈ J to show that
x ∈ ¬I. Suppose that y ∈ I. We wish to show that x 6 ¬y. But if y ∈ I then
y ∈ ∼J , and hence y 6 ∼x (as x ∈ J). It follows that x 6 ¬y as desired.

Now suppose that ∼ is present alone, to show that
∧

i∼Ii = ∼
∨

Ii. First
suppose that z ∈

∧

i∼Ii. It follows that z ∈ ∼Ii for each i. We wish to show that
z ∈ ∼

∨

Ii. So for each y ∈
∨

Ii we want z 6 ∼y. If disjunction is merely union,
then we have y ∈ Ii for some i. But z ∈ ∼Ii shows that z 6 ∼y as desired. If
disjunction is not merely union, then y 6 y1∨· · ·∨yn for yj chosen from some Ii.
Now we have ∼(y1 ∨ · · · ∨ yn) 6 ∼y. We wish to show that z 6 ∼(y1 ∨ · · · ∨ yn).
Now z 6 ∼yi for each i, so z 6 ∼y1 ∧ · · · ∧ yn = ∼(y1 ∨ · · · ∨ yn) as desired.
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Conversely, suppose that z ∈ ∼
∨

i Ii. We wish to show that z ∈
∧

i∼Ii. If
y ∈ Ii then I ∈

∨

i Ii, so z 6 ∼y, so z ∈ ∼Ii for each i, as desired.
The cases for the other connectives are similar and are left as exercises. �

Now suppose that implication is present alone, without fusion. To see how
implication on ideals need not match implication, consider the following: to
show that

∧

i (I → Ji) = I →
∧

i Ji. First suppose that z ∈
∧

i (I → Ji) to show
that z ∈ I →

∧

i Ji. To that end, suppose that x ∈ I to find some y ∈
∧

i Ji,
where z 6 x→ y. We know that z ∈ I → Ji for each i, so for any x ∈ I there is
a yi ∈ Ji where z 6 x → yi. It does not seem possible in general to show that
for some choice of x, there is some y in all of the Ji where z 6 x→ yi.

The same phenomenon occurs when you attempt to show that
∧

i�Ii =
�
∧

i Ii. We may have x in each �Ii as x 6 �yi for some yi ∈ Ii. However,
there may be no y ∈

∧

Ii where x 6 �y. A simple counterexample can show
how this might happen. Take the propositional structure to be Z, ordered in
the usual way. Let ∧ be the only propositional connective in question, and let
�x = 5 for each x. (There is nothing special about the choice of 5 in this
example, as you will see.) We clearly have �(x ∧ y) = �x ∧�y for each x and
y, and if x 6 y then clearly �x 6 �y. So � satisfies all you need for a necessity
on a ∧-semilattice. Now, let Ii = {n : n 6 −i} for each i = 0, 1, . . . So I0 =
{. . . ,−3,−2,−1, 0}, I1 = {. . . ,−4,−3,−2,−1}, I2 = {. . . ,−5,−4,−3,−2} and
so on. �Ii is ↓5 = {5, 4, 3, 2, 1, 0,−1, . . .} for each i, so

∧

i�Ii = ↓5. However,
∧

i Ii is the empty set, and by the definition of � on ideals, so is �
∧

i Ii.
This case, together with the case of implication, shows that these connec-

tives are not always preserved when mapped into the ideal structure. Better
can be said for our structural rules.

LEMMA 9.31 (PRESERVATION OF STRUCTURAL RULES)
If a propositional structure P satisfies some structural rule, then so does its ideal

structure PI .

PROOF We have already seen that each structural rule amounts to the truth of
a general statement of the form

O1(x1, . . . , xn) 6 O2(x1, . . . , xn)

Where O1 and O2 are complex operations given by composing possibility op-
erators, fusions and conjunctions. For the ideal structure, O1(I1, . . . , In) 6
O2(I1, . . . , In) obtains just when

{z : (∃xi ∈ Ii)(z 6 O1(x1, . . . , xn))} ⊆ {z : (∃xi ∈ Ii)(z 6 O2(x1, . . . , xn))}

where ‘O1’ and ‘O2’ now refer to the corresponding operators in P. Since the
rule holds in P, if z 6 O1(x1, . . . , xn) we have z 6 O2(x1, . . . , xn) too, giving
us the structural rule in our ideal structure, as desired. �
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LEMMA 9.32 (DEFINING RESIDUALS)
In any complete structure without left or right residuals, the functions

J ← I =
∨

K·I6J

K I → J =
∨

I·K6J

K

of I and J are the right and left residuals of ·, respectively.

PROOF These are defined to satisfy the residuation conditions. For left resid-
uation, note that if K · I 6 J then K 6 J ← I by definition. Conversely, note
that (J ← I) · I = (

∨

K·I6J K) · I =
∨

K·I6J K · I 6 J . So, if K 6 J ← I then
K · I 6 J as desired. �

In the same way, we have the following result:

LEMMA 9.33 (DEFINING � FROM ♦−)
In any complete structure without �, the function �I =

∨

♦−J6I J of I is the

matching � for ♦−. �

THEOREM 9.34 (CONSERVATIVE EXTENSION)
A logic without any of disjunction, standard or converse implication is conserva-

tively extended by adding (distributing) disjunction and each implication.

PROOF Consider something not provable in the original vocabulary in the orig-
inal logic. There is some propositional structure that witnesses that fact. This
structure can be embedded in a power structure in which disjunction and the
residuals are defined. This is witness to the fact that the consecution is not
provable in the extended logic either. �

One kind of conservative extension untouched by this method is that of extend-
ing some logic containing an operator by that operator’s parent. This cannot be
done by the techniques of this chapter, but must wait for Chapter 11.

9.3 Negation

Another problem not yet dealt with is the extension of a positive logic with
negation. For some kinds of negation this is trivial — take a propositional letter
p, and define ∼pA to be A → p. The “negation” ∼p will satisfy many of the
requirements for a negation. However, most often, double negation elimination
is not among them. In most substructural logics, (A → p) → p ⊢ A fails.
(As it ought: if p = ⊤, then ⊤ ⊢ (A → ⊤) → ⊤ would give ⊤ ⊢ A, which
is repugnant, given that A is arbitrary.) So, defining negation in terms of a
pre-existing intensional structure will not easily give us a de Morgan negation.

In this section, we will use algebraic techniques to show that certain propo-
sitional structures can be embedded in larger structures on which a de Morgan
negation can be defined. We dualise Meyer’s construction in the case of R [156].
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LEMMA 9.35 (EMBEDDING WITH A STRICT DE MORGAN NEGATION)
Any MALL+ propositional structure can be embedded into a MALL propositional

structure. If the original structure is distributive, so is the new structure. Similarly,

if the original structure satisfies K, so does the new structure.

PROOF We take a MALL structure on the set P and complete it (if necessary)
to ensure that it has a top element ⊤. and take another set Q disjoint from P
and of the same cardinality as P . Let − be a bijection from P to Q and back
such that for any x ∈ P ∪ Q, − − x = x. Now we extend the other operations
on P ∪Q. Let a, b ∈ P and x, y ∈ P ∪Q.

a ∧′ b = a ∧ b a ∧′ −b = −b − a ∧′ b = −a − a ∧ −b = −(a ∨ b)

a ∨′ b = a ∨ b a ∨′ −b = a − a ∨′ b = b − a ∨ −b = −(a ∧ b)

a ·′ b = a · b a ·′ −b = −(a→ b) − a ·′ b = −(b→ a) − a ·′ −b = ⊥

x→′ y = −(x ·′ −y)

It is tedious to check that the required postulates are satisfied. If the original
structure was distributive, then so is the new structure. Similarly, if the original
structure satisfies K, so does the new structure, as the top element is still the
identity for fusion.

Fusion is clearly commutative. The fusion identity from P is still the identity
here, since t→ x = x.

It is tedious to check that fusion is associative if it was associative in the
original structure. Consider x · (y · z). If x, y, z ∈ P , then associativity follows
from that in P . Now suppose x ∈ Q. If y·z ∈ Q then x·(y·z) = ⊥. y·z ∈ Q if and
only if at least one of y and z is in Q. If y ∈ Q then x · y = ⊥ and then if z ∈ Q,
⊥·z = ⊥, and if z ∈ P then⊥·z = −(z → ⊤). However, z → ⊤ = ⊤, so⊥·z = ⊥
as desired. So if x ∈ Q and y · z ∈ Q then x · (y · z) = ⊥ = (x · y) · z. Suppose,
conversely, that x ∈ Q and y · z ∈ P . y · z ∈ P only when y, z ∈ P . In this case,
x · y = −(y → −x) and (x · y) · z = −(z → (y → x)). And similarly, x · (y · z) =
−((y ·z)→ x). In our context, z → (y → x) = (y ·z)→ x, so x ·(y ·z) = (x ·y) ·z.
So we have dealt with the case x ∈ Q. Suppose now that x ∈ P , and at least one
of y, z ∈ Q. In that case, x · (y · z) = −(x→ −(y · z)). Suppose that y, z are both
in Q. In that case, y · z = ⊥ and x · (y · z) = x · ⊥ = −(x→ ⊤) = ⊥. However,
x · y in that case is in Q, as is z, so (x · y) · z = ⊥. Suppose now that y ∈ Q but
z ∈ P . In that case, y · z = −(z → −y) and x · (y · z) = −(x → (z → −y)).
However, (x · y) · z = −(x → −y) · z = −(z → (x → −y)), but clearly this is
identical to −(x → (z → −y)) = x · (y · z). Our final case is y ∈ P and z ∈ Q
(with x ∈ P ). In that case, x · (y · z) = x · −(y → −z) = −(x→ (y → −z)). But
(x · y) · z = −(x · y → −z) = −(x→ (y → −z)) = x · (y · z), as desired.
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Similarly, a case-by-case analysis shows that x · y 6 z if and only if x 6
y → z. First, consider the case where x, y ∈ Q. Then x · y = ⊥ and x · y 6 z.
Then y → z = ⊤ when z ∈ P and we have x 6 y → z. When z ∈ Q then
y → z = −(y · −z) = − − (−z → −y) = −z → −y ∈ P , so we also have
x 6 y → z.

Suppose now that z ∈ P . Then if x, y ∈ P too, x · y 6 z if and only if
x 6 y → z by residuation on P . If one of x, y ∈ Q then x · y ∈ Q and x · y 6 z
follows immediately. Now consider y → z. If y ∈ P then y → z ∈ P and
x 6 y → z as desired. If x ∈ P , then y ∈ Q gives y → z = −(y · −z) = ⊤ as
y,−z ∈ Q. Therefore, x 6 y → z as desired.

That deals with the case of z ∈ P . Now consider z ∈ Q. In this case x · y 66 z
when x · y ∈ P . We have x · y ∈ P if and only if x, y ∈ P , and in that case
y → z 6∈ P , so x 66 y → z.

Suppose now that one of x, y ∈ Q. Deal first with x ∈ Q. Then x·y = −(y →
−x), and x · y 6 z iff −(y → −x) 6 z iff −z 6 y → −x. Now x 6 y → z iff
x 6 −(y ·−z) iff y ·−z 6 −x, which holds iff −z 6 y → −x, which is equivalent
to x · y 6 z as desired. Suppose finally that y ∈ Q and x ∈ P . Then x · y 6 z
iff −(x → −y) 6 z iff −z 6 x → −y. Now x 6 y → z iff x 6 −(y · −z) iff
y · −z 6 −x, which holds iff −z 6 y → −x = x→ −y as desired. �

THEOREM 9.36 (CONSERVATIVE EXTENSION BY NEGATION)
Positive intuitionistic linear logic, C, BCK and CK are conservatively extended by a

strict de Morgan negation.

It is also possible to show that positive R, E and other logics in their vicinity are
similarly conservatively extended. The main difference is that the new proposi-
tions are placed above the old structure instead of below it, in order to validate
A ∨ ∼A. However, the proofs in these cases are more difficult, as more work
must be done to ensure that ⊤ and ⊥ work as needed. Consult Meyer’s original
proof [156] for details.

There is one substructural logic for which a conservative extension by nega-
tion fails: RM. Recall that RM is given by extending R with the mingle rule
X ⇐ X;X, or equivalently, A ◦ A → A (or A → (A → A), if you want to
eliminate fusion). We will show that the positive logic RM0, defined by adding
mingle to positive R, is not conservatively extended by a de Morgan negation.

FACT: In RM0, t ⊢ (A → B) ∨ (B → A) fails. This is is a corollary of the
fact that ⊤ ⊢ (A → B) ∨ (B → A) fails in intuitionistic logic, which is a logic
containing all of the RM0 theorems. In particular, the propositional structure
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on {⊥, a, b, c,⊤}, with implication table and order

→ ⊥ a b c ⊤
⊥ ⊤ ⊤ ⊤ ⊤ ⊤
a b ⊤ b ⊤ ⊤
b a a ⊤ ⊤ ⊤
c ⊥ a b ⊤ ⊤
⊤ ⊥ a b ⊤ ⊤

⊥

a

c

b

⊤

In this structure, ⊤ 6⊢ (a→ b) ∨ (b→ a) = b ∨ a = c. So this consecution fails in
J and hence in RM0. However, it is provable in RM0 with a strong de Morgan
negation — i.e. in RM.

To do this, we first show that if we set A + B to be ∼A → B, then A ⊣⊢
A + A in RM, since A ⊣⊢ A ◦ A. (For this, we use the equivalence A ◦ A ⊣⊢
∼(A → ∼A), so ∼A ⊣⊢ ∼(∼A → A), and hence ∼A ⊣⊢ ∼A + ∼A. But every
proposition is equivalent to a negation — its double negation — so A ⊣⊢ A+A.)
Furthermore, A + B ⊢ A ∨B, since A→ B ⊢ ∼A ∨B in R.

Now, second, A→ B is equivalent to A+∼B, and furthermore, (A+B)+C
is equivalent to A+(B +C). Neither of these rely on special RM facts. Now we
proceed as follows. t ⊢ (A→ A)∧(B → B). So t ⊢ (A+∼A)∧(B+∼B), and by
the idempotence of fission, t ⊢

(

(A+∼A)∧(B+∼B)
)

+
(

(A+∼A)∧(B+∼B)
)

.
Therefore (since + is monotonic) t ⊢ (A +∼A) + (B +∼B), and reassociating,
we have t ⊢ (A + ∼B) + (B + ∼A), giving t ⊢ (A + ∼B) ∨ (B + ∼A), which
finally yields t ⊢ (A→ B) ∨ (B → A).

This shows that RM0 is not conservatively extended by a strong de Morgan
negation.

9.4 Normal Modalities

We will round off this chapter with two sections on positive modalities. This
section will present one more conservative extension given by complete propo-
sitional structures. The results in this section are presented in greater detail in
my paper “Modalities in Substructural Logics” [210]. We will consider how to
add �-style operators to our logics, which satisfy not only traditional modal ax-
ioms and rules but also rules that connect the modal part of the language with
the behaviour of fusion and implication.

DEFINITION 9.37 (S4 NECESSITIES AND NECESSITIVES)
A � in a propositional structure is an S4 necessity if and only if it satisfies the
structural rules 4, T, mMP and Kr. It is an S5 necessity if and only if it also
satisfies A ⊢ �∼�∼A.
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A necessitive in a propositional structure is an element x where x = �y for
some y.

S4 necessities satisfy the obvious rules. We will state them algebraically:

�x 6 ��x [4] �x 6 x [T] �(x→ y) 6 �x→ �y [mMP] t 6 �t [Kr]

We already have the following conditions, from the usual properties of modal
operators:

�x ∧�y = �(x ∧ y) �⊤ = ⊤

LEMMA 9.38 (CLOSURE PROPERTIES OF NECESSITIVES)
If � is an S4 necessity, then the necessitives of� include ⊥, ⊤ and t, and are closed

under fusion, conjunction and disjunction.

PROOF The necessitives of an S4 necessity are closed under ∧ as �x ∧ �y =
�(x ∧ y). The necessitives include t, as �t = t (by Kr and T), ⊤ as �⊤ = ⊤
and ⊥ as �⊥ = ⊥ (by T). For disjunction we can argue as follows. If x = �a
and y = �b, then a simple verification will show that x ∨ y = �(x ∨ y). First,
�(x ∨ y) 6 x ∨ y by T. Second, x = �a 6 ��a = �x by 4 and x 6 x ∨ y gives
�x 6 �(x ∨ y) so x 6 �(x ∨ y). Similarly, y 6 �(x ∨ y) so x ∨ y 6 �(x ∨ y),
giving us x ∨ y = �(x ∨ y) as desired.

For fusion we reason similarly. We wish to show that x · y = �(x · y). First,
�(x · y) 6 x · y. But x 6 y → x · y gives us �x 6 �(y → x · y), so by mMP you
get �x 6 �y → �(x · y) so �x · �y 6 �(x · y). However, �x = x and �y = y,
so we have x · y 6 �(x · y) and our result. �

So, given an S4 necessity, the necessitives are nicely structured. The necessitives
form a lattice, including ⊤ and ⊥ and closed under ·. Such a set deserves a
name.

DEFINITION 9.39 (OPEN ELEMENTS)
A set O of elements in P is a set of open elements (a ‘set of opens’ for short) if
and only if O is a sub-semilattice of P, including ⊤ and ⊥ and closed under ·.

Such a set is called the set of “opens” because it is very much like a set of open
sets in a topological space [120]. This set of opens is all you need to construct
the necessity operator. Given a set of opens in a complete propositional struc-
ture, we can define an S4 necessity as follows:

LEMMA 9.40 (� RECOVERY)
If O is a set of opens in a completely distributive propositional structure, then the

operator �, given by setting

�Ox =
∨

{y : y 6 x and y ∈ O}

is an S4 necessity.
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PROOF This is a straightforward verification of the conditions for an S4 neces-
sity. We will consider a few and leave the rest to the reader. (We will write ‘�’
for ‘�O.’)
�x ∧�y =

∨

{z : z 6 x and z ∈ O} ∧
∨

{z : z 6 y and z ∈ O}. By complete
distributivity, this is equal to

∨

{z : z 6 x, z 6 y and z ∈ O}, which in turn (by
lattice properties) is

∨

{z : z 6 x ∧ y and z ∈ O} = �(x ∧ y) as desired.
As ⊥ ∈ O, �⊥ =

∨

{z : z 6 ⊥ and z ∈ O} = ⊥ as desired. As ⊤ ∈ O,
�⊤ =

∨

{z : z 6 ⊤ and z ∈ O} = ⊤.
As O is closed under disjunction, �x ∈ O for each x, so ��x = �x by

definition. The other verifications are similar and are left to the reader. �

So we can construct a modal operator �, given a set of opens in a propositional
structure. Choosing O wisely can mean that extra structural rules for �O are
satisfied, in particular the structural rules such as mW, mK and others, which
constrain necessitives in ways that the whole propositional structure may not
be. The conditions in Table 9.1 show rules which might govern necessitives.

Label Condition

mWI x 6 x · x for x ∈ O

mK x · y 6 x for x, y ∈ O

mM x · x 6 x for x ∈ O

Table 9.1: Conditions on Opens

LEMMA 9.41 (THE SET {⊥, t,⊤})
The set O = {⊥, t,⊤} satisfies the rules in Table 9.1.

PROOF It is sufficient to produce a fusion table for O.

· ⊥ t ⊤
⊥ ⊥ ⊥ ⊥
t ⊥ t ⊤
⊤ ⊥ ? ⊤

Only the value of ⊤ · t is not determined by the rules for fusion and t. It is
straightforward to check that the rules mWI, mK and mM hold on O. �

The conservative extension result follows immediately from this lemma.

THEOREM 9.42 (CONSERVATIVE EXTENSION BY S4 NECESSITY)
Any logic with a propositional structure semantics including ⊤, ⊥ and t is conser-

vatively extended by an S4 necessity satisfying the rules mWI, mK and mM.
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9.5 The Kleene Star in Structures

The intended interpretation of the Kleene star in a logic is infinitary iteration. In
a propositional structure, we would like a∗ to be the proposition t∨a∨a2∨a3∨· · ·
or more succinctly,

∨

n an. This, however, is not always the case. There are
propositional structures in which there is an operator satisfying the rules of the
star but which is not equivalent to

∨

n an. We present one simple example.
Consider the structure on the set

{⊥, 0, 1, 2, . . . , ω,⊤}

This set is ordered by the standard numerical order, with ⊥ and ⊤ as least and
greatest elements, respectively. This is a totally ordered set, so we can define ∧
and ∨, which satisfy distributive lattice postulates. What is more, the lattice is
complete. Every set has a least upper and a greatest lower bound. For fusion
we use addition. ⊤ takes any “overflow” values, and ⊥ · x = ⊥ = x · ⊥ for all
x. In other words, we have the following table (in which n,m are arbitrarily
chosen numbers from {1, 2, . . . , })

· ⊥ 0 m ω ⊤
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 m ω ⊤
n ⊥ n n + m ⊤ ⊤
ω ⊥ ω ⊤ ⊤ ⊤
⊤ ⊥ ⊤ ⊤ ⊤ ⊤

Fusion is associative and commutative. Furthermore, contraction is valid, as
a 6 a2 holds for all a. The identity for fusion is 0. Fusion respects the order in
the required way: if a 6 a′ and b 6 b′ then a · b 6 a′ · b′. So we have a model
for distributive lattice logic with fusion, which satisfies B, C and W.

Does this structure have a model for the Kleene star? Clearly ⊥∗ = ⊥ and
0∗ = 0 will do. What about 1∗. The obvious choice might be to take ω, as
1 ·1 = 2, 1 ·1 ·1 = 3 and so on. The infinite disjunction of these is the disjunction
of {1, 2, 3, . . .}, which is ω. However, this will not do, for the following reason:
consider the rule (∗M). In our lattice this is interpreted as follows. If x 6 1∗

and y 6 1∗, then x · y 6 1∗. Therefore, if ω 6 1∗ we must have ω · ω 6 1∗. In
other words, ⊤ 6 a∗. We must have 1∗ = ⊤. The choice of ω will not do, as
it is not a fixed point for fusion. Any choice of x∗, for whatever x you choose,
must satisfy the identity x∗ · x∗ = x∗. The rule (∗M) ensures that x∗ · x∗ 6 x∗,
and t 6 x∗ ensures that x∗ 6 t · x∗ 6 x∗ · x∗. So any x∗ must be a fixed point
for fusion. The only fixed points for fusion in our model are ⊥, 0 and ⊤. This
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ensures that our table for the Kleene star looks as follows:

x ⊥ 0 m ω ⊤
x∗ ⊥ 0 ⊤ ⊤ ⊤

And it is not too difficult to show that the set defined in this way satisfies all of
the rules for the Kleene star. We may describe this as follows. The logic of the
Kleene star has non-normal models.

DEFINITION 9.43 (NORMAL STRUCTURES FOR THE KLEENE STAR)
A propositional structure with a ∗ is normal if and only if for each a, a∗ =

∨

an.

However, the story does not end there. This propositional structure has other
failings, which become clear when we examine the relationship between fusion
and the order. This structure is complete, but fusion does not distribute over
infinite joins. Consider

∨

(1 · 1n) =
∨

1n+1 = ω

However,

1 ·
∨

1n = 1 · ω = ⊤

Therefore, while we have a complete propositional structure, with fusion, the
fusion operation does not completely distribute. This means that implication
cannot be defined on this structure. There is a simple example explaining why.
Were implication to be defined, we would have a value for 1→ ω. What would
it be? We ought to have x 6 1 → ω if and only if x · 1 6 ω. Therefore,
n 6 1 → ω for each number n < ω, and hence, ω 6 1 → ω, since ω =
∧

{1, 2, 3, . . .}. However, if ω 6 1 → ω we would have ⊤ = ω · 1 6 ω, which
is impossible. Therefore, implication cannot be defined on this structure. We
end this section with a theorem which we name after Vaughan Pratt, who first
noticed the connection between implication and normality of models for the
Kleene star:

THEOREM 9.44 (PRATT NORMALITY THEOREM)
Any complete propositional structures for the Kleene star containing a residual for

fusion is normal.

PROOF If→ residuates ·, then · distributes over infinite joins where they exist.
In any complete propositional structure, infinite joins do exist. It remains to
show that a∗ =

∧

an under these conditions. Since an 6 a∗ for each n, we need
to prove just that a∗ 6

∧

an. For this, we reason as follows: by distribution of
fusion over disjunction, (

∧

an) · (
∧

an) =
∧

n,m an · an =
∧

n,m an+m =
∧

n an

(by renumbering the sum appropriately). However, a 6
∧

an and a∗ 6 a∗. So
by (∗E) we have a∗ 6

∧

an as desired. �
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9.6 History

Ideals come from the study of rings, from algebra. Ideals in rings are used to
construct objects out of ring objects, satisfying some extra conditions. For an
introduction to ring theory and other elements of modern algebra, Mac Lane
and Birkhoff’s Algebra is a classic [142].

Normality and the existence of non-normal models of the Kleene star comes
from Conway’s little book Regular Algebra and Finite Machines [47].

Došen has a paper examining the behaviour of modal operators in substruc-
tural logics and the way in which they facilitate translations from one logic into
another [65].

Dunn’s thesis pioneered the algebraic study of relevant logics [70]. Meyer
and Routley used these techniques to give algebraic analyses of a large sweep
of substructural logics [167], and Meyer, especially, used algebraic methods to
great effect in proving significant results about relevant logics [154, 156, 157].

9.7 Exercises

Practice

{9.1} Show that a one-to-one and onto homomorphism from one partial order to an-

other need not be an order embedding. (HINT: construct a one-to-one and onto homo-

morphism from the partial order of BN4 to the four-element linear order.)

{9.2} Prove that there is no isomorphism between BN4 and the four-element linear

order.)

{9.3} Show that Peirce’s law ((p ⊃ q) ⊃ p ⊢ p) holds in every Boolean algebra. (HINT:

Show that in a Boolean algebra, p ⊃ q is equivalent to ∼p ∨ q. Show that Peirce’s law

fails in the three-element Heyting lattice H3, given in Figure 8.11 on page 179.)

{9.4} Consider the propositional structure defined on page 204. Find all split negations

on that structure. Verify that none of them are strong de Morgan negations with respect

to the implication defined on the structure. Do any negations satisfy the consecution

A→ ∼B ⊢ B → ∼A?

{9.5} Find all necessity and possibility operators defined on the same structure.

Problems

{9.6} Show that if f is an isomorphism, so is f−1.

{9.7} Verify that any structural rule satisfied by P and by Q is also satisfied by P × Q,

by any homomorphic image of P and by any substructure of P.

{9.8} Verify that for any subset X of P , the domain of a propositional structure P, that

there is a smallest substructure P[X] of P containing X.

{9.9} Verify that the class of all substructures of P form a complete lattice under inclu-

sion.
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{9.10} Complete the proof of the Ideal Preservation Lemma, given on page 198.

{9.11} Use the map ↓ to show that if P is a non-distributive lattice, so is Ideal(P).

{9.12} The lattice of ideals of a distributive but not completely distributive lattice is

completely distributive. The lattice in Figure 8.6 on page 164 is distributive but not

completely distributive. Examine the structure of its lattice of ideals and show that it is

indeed completely distributive. Explain how the definition of ideals could be changed to

ensure that the ideals of a distributive but not completely distributive lattice themselves

form a distributive but not completely distributive lattice.

{9.13} Complete the proof of Lemma 9.30 on page 198.

{9.14} Show that abelian logic, defined on page 174, cannot be given a natural de-

duction proof theory extending our basic logic with structural rules. (HINT: Consider

the characteristic propositional structure Z for Abelian Logic. Show that it verifies

(A→ B)→ B ⊢ A. Show that this means that any Abelian logic propositional structure

cannot contain ⊤ and ⊥. Now consider the ideal structure of Z and apply Lemma 9.31.)

{9.15} Show that any logic is conservatively extended by what is called a single alterna-

tive necessity, that is, a necessity operator � satisfying the extra conditions �(A ∨ B) ⊢
�A ∨�B and �⊥ ⊢ ⊥.

{9.16} Having completed the previous exercise, find which substructural logics can be

conservatively extended by a single alternative necessity satisfying the extra rule A ∧
�A ⊢ ⊥.

{9.17} This result is taken from Niefield and Rosenthal’s “Constructing Locales from

Quantales” [185]. A closure operator C is a one-place operator on a propositional struc-

ture, satisfying a 6 Ca, CCa 6 Ca and Ca · Ca 6 C(a · b). The closed elements of a

propositional structure with a closure operator C are the elements b = Ca for some a.

Given a propositional structure with a closure operator C, define ·C on the set of closed

elements by setting a ·C b = C(a · b). Show that this is a genuine fusion operator in the

new structure of closed elements. What features does this new structure inherit from its

parent? If a and b are closed, are a→ b and b← a?

This process goes in reverse. Given a propositional structure P with arbitrary joins,

and an onto map f : P → Q, show that f determines a closure operator Cf given by

setting Cfa =
V
{b : fb = fa}.

Projects

{9.18} Modify the embedding of a positive structure into one with a strong de Morgan

negation (in Lemma 9.35) in such a way that the ⊤ and ⊥ from the original positive

structure remain the ⊤ and ⊥ in the new structure.

{9.19} Extend the negation conservative extension result (Theorem 9.35) to include

logics with other positive modal operators.
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Chapter 10

Categories

The slogan is

“Adjoint functors arise everywhere.”

— Saunders Mac Lane, Categories for the Working Mathematician [140], 1971

In propositional structures, we abstract away from the particulars of the lan-
guages in which our propositions are expressed to focus on the propositions
themselves, ordered under entailment and operated on by conjunction, disjunc-
tion, implications, fusion, negations and so on. So in propositional structures,
propositions are first-class citizens, and proofs between propositions fade into
the background. They are merely registered by the presence or absence of the
entailment relation. If there is a proof from A to B, then [[A]] 6 [[B]]. The differ-
ences between proofs from A to B are not registered in the algebraic semantics.
Proofs are not first-class citizens.

Models do not have to be like this. We may enrich our algebraic modelling
to consider not only propositions as objects but also proofs as “arrows” between
objects. If we have one proof from A to B, we might indicate this as ‘f :
A ✲ B,’ where f is the proof. We might have another proof g : B ✲ C, and
then we could compose them to construct another proof gf : A ✲ C, which
runs though f first and then g second.1

Logicians did not have to go to the trouble of inventing structures like this. It
turns out that mathematical objects with just these properties have been widely
studied for many decades. In this chapter we will run through some of the basic
elements of category theory to give just a hint of how it is useful in the study of
substructural logics. I cannot help but keep the exposition short and swift —
but there will be many signposts on the way to more leisurely expositions that
can treat the topic in more depth.

10.1 Categories in a Nutshell

Categories are deeply important mathematical structures. Category theory is a
helpful language for describing constructions which appear in disparate parts

1 Can you see why we write this as ‘gf ’ and not ‘fg’? The parallel is with function application.
If we think of f and g as functions, then gf(x) = g(f(x)) is an appropriate way to write the
application of g to the result of f .

211
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of mathematics. This means that category theory is, by its nature, very abstract.
This also means that category theory is rich in examples. Category theory pro-
gresses in a dialectic between abstraction and concreteness, and this chapter is
no different.

Before we continue, let me mention a couple of texts, as we cannot help
but skirt lightly over this broad topic. Mac Lane’s Categories for the Working

Mathematician is a very good introduction to the area [140], very readable,
even by those who are not working mathematicians. Barr and Wells’ Category

Theory for Computing Science is also clear, from a perspective of the theory of
computation [14].

DEFINITION 10.1 (CATEGORIES AND FUNCTORS)
A category C consists of three things:

⋄ A class of objects. (We name these using capital letters.)

⋄ A class of arrows. (We name these with lower case letters.) Each arrow
f has a domain dom(f) and a codomain cod(f), which are objects of the
category. We write ‘f : A ✲ B’ to indicate that f is an arrow with domain
A and codomain B.

⋄ A notion of composition of arrows, such that for any arrows f and g where
dom(f) = cod(g), the arrow fg has domain dom(g) and codomain cod(f).
Composition is associative, in that f(gh) = (fg)h, where the composi-
tions are defined. Finally, for each object A there is an identity arrow

idA : A ✲ A such that idAf = f and gidA = g whenever these com-
posites are defined.

For any categories C and D , a functor F : C ✲ D is a structure preserving
mapping from C to D . That is, there are two functions F from objects of C

to objects of D , and from arrows of C to arrows of D , satisfying the following
conditions:

⋄ If f : A ✲ B is an arrow of C then F (f) : F (A) ✲ F (B) is an arrow of
D .

⋄ F (fg) = F (f)F (g) whenever fg is defined.

⋄ F (idA) = idF (A) for every A in A.

A category is small if the class of its objects is a set. It is said to be large other-
wise.

Here are some categories.

EXAMPLE 10.2 (POSET CATEGORIES)
Any partially ordered set 〈P,6〉 is also a category, where you have exactly one
arrow 〈a, b〉 between a and b just when a 6 b. So 〈a, a〉 is a’s identity arrow,
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and the composition of 〈a, b〉 and 〈b, c〉 is 〈a, c〉. A functor between two partially
ordered sets (considered as categories) is an order-preserving mapping. So �,
on a propositional structure, is a functor from that structure to itself (when
considered as a category), for if a 6 b then �a 6 �b. So is λx.(x ∧ a), the
functor which sends an object b to b ∧ a. Similarly, λx.(a ∨ x), λx.(a ◦ x) and
λx.(a→ x) are functors as they are all order-preserving.

We will call partially ordered sets, when seen as categories, poset categories.

Large categories are populated with many more objects. Here are some exam-
ples.

EXAMPLE 10.3 (CONCRETE CATEGORIES)
Given any kind of mathematical structure, such as lattices, groups, topological
spaces and almost anything else, you have a category of those objects. The
category of lattices contains all lattices as objects, and the arrows are lattice
homomorphisms — preserving the lattice connectives. The composition of two
lattice homomorphisms is itself a lattice homomorphism, and the identity map
from a lattice to itself is also a lattice homomorphism. We will call this category
Lat . The category of all distributive lattices is DLat . PStruct [◦,→,∧] is the
category of all propositional structures with fusion, implication and conjunc-
tion, with arrows all functions preserving these operations. Similarly, Grp is
the category of all groups with group homomorphisms, Top is the category of
all topological spaces and continuous functions, and Set is the category of all
sets and arbitrary functions between sets. We will call categories of this form
concrete categories.

For any concrete category, the forgetful functor F : C ✲ Set maps any al-
gebraic structure-to its underlying set, and maps any structure preserving map-
ping to its underlying set function. So, if L is a lattice, F (L) is its underlying
set. If f : L ✲ M , then F (f) maps the underlying set of L to the underlying
set of M . It is simple to verify that F is indeed a functor.

DEFINITION 10.4 (OPPOSITE CATEGORIES)
Given a category C , its opposite C op is the category with the same objects as
C , but with arrows “inverted”. That is, for each f : A ✲ B in C , there is a
fop : B ✲ A in C op. Composition is defined by setting (fg)op = gopfop, and
idop

A = idA. (Exercise 10.1: Show that function composition in the opposite
category is associative.)

A functor F : C ✲ Dop is sometimes called a contravariant functor F :
C ✲ D . If f : A ✲ B in C , then F (f) : F (B) ✲ F (A) in D . The functor
reverses arrows.



CONS
1999/11/6
page 214

✐

✐

✐

✐

✐

✐

✐

✐

214 PROPOSITIONAL STRUCTURES

EXAMPLE 10.5 (OPPOSITES OF POSET CATEGORIES)
The opposite of a poset category is the poset inverted. A contravariant functor
from one poset to another is an order-inverting map. In particular, if ∼ is a
negative operator on a propositional structure P, it is a contravariant functor
on P.

DEFINITION 10.6 (ISOMORPHISM OF OBJECTS)
Two objects A and B in a category are isomorphic if and only if there are arrows
f : A ✲ B and g : B ✲ A, where gf = idA and fg = idB .

Objects in categories are isomorphic just when anything you can do with one
you can do just as well with the other. Any arrow h : A ✲ C can be replaced by
the arrow hg : B ✲ C without any loss of information. Any arrow h′ : C ✲ A
can be replaced by an arrow fh′ : C ✲ B, and so on.

Clearly, in a category which is simply a partial order, an object is isomorphic
only to itself. In richer categories, more isomorphisms are possible.

DEFINITION 10.7 (Hom SETS AND Hom CLASSES)
Given two objects A and B in a category C , HomC (A,B) is the class of all
arrows f : A ✲ B. A category in which HomC (A,B) is a set for each A,B is
said to be locally small.

All the categories we will consider in this chapter will be locally small. For
example, in any concrete category, since the objects A and B are sets, the class
of functions from A to B is bounded above (in size) by |B||A|.2

We have already seen functors, which are the arrows in the category of
categories. We need to consider one more level of complexity by introducing
mappings between functors.3

DEFINITION 10.8 (NATURAL TRANSFORMATIONS)
A natural transformation α : F ✲ G between two functors F,G : C ✲ D is
a function from objects of C to arrows of D such that

⋄ αA ∈ HomD(F (A), G(A)) for all A in C .

⋄ For all f : A ✲ B in C , αBF (f) = G(f)αA : F (A) ✲ G(B).

The definition of a natural transformation is not particularly perspicuous as it
stands. It becomes clearer when expressed in a diagram. In the diagram in

2 Provided that functions in these categories are extensional. That is, if f, g : A ✲ B then when
f(x) = g(x) for each x ∈ A, we have f = g. In this case, there are |B|-many choices of output for
each of |A|-many objects.
3 Category theory began when Mac Lane and Eilenberg defined the notion of a natural transfor-
mation. For that, they needed to define functors, and for functors, they needed to define categories.
See Categories for the Working Mathematician for more on this subject [140].
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B F (B)
αB✲ G(B)

A

f

✻

F (A)

F (f)

✻

αA

✲ G(A)

G(f)

✻

Figure 10.1: A Natural Transformation

Figure 10.1, the leftmost arrow, f : A ✲ B is in C . The arrows on the right
are all in D . We say that the diagram commutes, as the result of composing
arrows to get from F (A) to G(B) by either route is the same. In other words,
αBF (f) = G(f)αA, as our definition says. It is clear that the arrows αA and αB

are mapping the functor F to the functor G, as we had hoped.

EXAMPLE 10.9 (NATURAL TRANSFORMATIONS IN POSETS)
If C and D are poset categories, then F,G : C ✲ D are order-preserving
mappings. Consider a natural transformation α : F ✲ G. In this case, αA ∈
HomD(F (A), G(A)) simply means that F (A) 6 G(A), as there is only one arrow
from F (A) to G(A), if at all. Since αA must be chosen from this Hom set, we
must have F (A) 6 G(A). It follows then that there is a natural transformation
α : F ✲ G only when F 6 G when you compare them pointwise. That is,
F (A) 6 G(A) for each A ∈ C .

EXAMPLE 10.10 (NATURAL TRANSFORMATIONS IN CONCRETE CATEGORIES)
Any lattice L defines a functor − × L : Lat ✲ Lat , which takes a lattice to
its product with L and maps lattice homomorphisms f : M ✲ N to 〈f, idL〉 :
M × L ✲ N × L. Any lattice homomorphism g : L1

✲ L2 induces a natural
transformation α(g) : − × L1

✲ − ×L2 by setting α(g)M to be 〈idM , g〉 :
M × L1

✲ M × L2.

That is enough from category theory for us to begin examining how categories
can model logics.

10.2 Extensional Connectives

We will use categories to model logics. Objects in categories will be interpreted
as propositions, and arrows will be interpreted as proofs. Because arrows have
one source and one target, we will be modelling consecutions of the form ‘A ⊢
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B’, instead of the more general ‘X ⊢ B’. This is no loss of generality, as we may
convert the structure X into a single formula.4 We have already seen that for
any object A in a category, idA is an arrow from A to itself, so this can do to
model the proof from A to itself by the identity axiom. Similarly, if f : A ✲ B
and g : B ✲ C, then gf : A ✲ C gives us the transitivity of proof. That deals
with the connective-free properties of proofs in our logics — what we need now
are the properties which deal with logical connectives.

Conjunction is simplest to start with. We know that A ⊢ B and A ⊢ C
if and only if A ⊢ B ∧ C. So we want a construction ∗ in a category such
that if f : A ✲ B and g : A ✲ C then there is some arrow h (preferably
constructed out of f and g in some way) such that h : A ✲ B ∗ C. Similarly,
if h : A ✲ B ∗ C we would like to be able to construct arrows A ✲ C and
A ✲ B. This sort of construction is known in category theory.

DEFINITION 10.11 (PRODUCTS IN CATEGORIES)
An object A×B, together with arrows πl : A×B ✲ A and πr : A×B ✲ B,
is said to be a product of A and B if and only if whenever f : C ✲ A and
g : C ✲ B there is a unique arrow 〈f, g〉 : C ✲ A×B such that the diagram
below commutes.

C

A ✛
πl

✛

f

A×B

〈f, g〉

❄

πr

✲ B

g

✲

The maps πl and πr are the projection maps of the product A×B. This construc-
tion models conjunction nicely. For example, πl : A × B ✲ A is the obvious
proof which detaches the left conjunct from a conjunction. This then gives us
our rules for conjunction.

f : A ✲ B g : A ✲ C

〈f, g〉 : A ✲ B × C

f : A ✲ B × C

πlf : A ✲ B

f : A ✲ B × C

πrf : A ✲ C

EXAMPLE 10.12 (PRODUCTS IN POSET CATEGORIES)
Clearly the product of A and B in a partial order is the greatest lower bound of
A and B. The projections πl and πr ensure that A × B 6 A and A × B 6 B.
The other condition ensures that if C 6 A and C 6 B then C 6 A×B as well.

4 You do not have to do this. We could define multicategories in the way that Lambek and others
have [135]. However, it is unclear whether any conceptual gain is given thereby, and the cost of
moving away from standard category theory is significant.
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EXAMPLE 10.13 (PRODUCTS IN CONCRETE CATEGORIES)
The product object A×B is typically constructed as a set of ordered pairs from
A and B, which inherits its structure from that of A and B. For example, in
the category Lat we can set A × B = {〈a, b〉 : a ∈ A and b ∈ B} and define
the lattice connectives “pointwise” by setting 〈a, b〉 ∧ 〈a′, b′〉 = 〈a ∧ a′, b ∧ b′〉
and 〈a, b〉 ∨ 〈a′, b′〉 = 〈a ∨ a′, b ∨ b′〉. The projection functions work as expected:
πl〈a, b〉 = a and πr〈a, b〉 = b.

Our final example of a category with products is an important one. It stands
to term assignment in the way that the Lindenbaum algebra stands to proof
theory.

EXAMPLE 10.14 (TERM CATEGORIES)
Given a proof system with terms, the term category is defined as follows. The
objects are the types of the proof system. The arrows are equivalence classes of
pairs, the first component of which is a variable and the second a term with at
most that variable free. So, if M has type B and then 〈xA,M〉 is a representative
of an arrow in the term category, the equivalence relation ≡ identifies pairs
with the same logical content. In particular, we demand that if M ✲✲ M ′, then
(xA,M) ≡ (xA,M ′). Furthermore, if (yA,M ′) results from a change of free or
bound variables in (xA,M) (simultaneously in both xA and M), then this too
is equivalent to (xA,M). However, equivalent pairs will always have the same
type characteristics. If (x,M) is equivalent to (y,M ′) then x and y have the
same type, as do M and M ′. In the rest of this chapter, we will write ‘((x,M))’
for the equivalence class of all terms equivalent to (x,M).

If x has type A and M has type B, then ((x,M)) is an arrow in the term cat-
egory, from A to B. We compose these arrows in the natural way. If ((x,M)) :
A ✲ B and ((y,N)) : B ✲ C, then ((x,N [y := M ])) : A ✲ C. It is not
hard to check that this composition is associative (provided that equivalence
and substitution interact appropriately). Furthermore, ((xA, xA)) : A ✲ A is
the identity arrow at A, as you can check.

Now, if the system of terms is equipped with constructors such as pairing
〈—, —〉 and fst and snd , then our term category is well on its way to having
products. The natural choice is for A∧B to be the product of A and B, and for
πl : A ∧B ✲ B to be defined as ((xA∧B , fst xA∧B)), and for πr similarly to be
((xA∧B , snd xA∧B)). This does the projections nicely. If ((y,M)) : C ✲ A and
((y,N)) : C ✲ B, then the natural choice for the product map C ✲ A∧B is
to pair the terms. ((y, 〈M,N〉)) : C ✲ A ∧B is our desired arrow.

This ensures that the diagram commutes. To see this, consider the com-
position of ((yC , 〈M,N〉)) (where 〈M,N〉 has type A ∧ B) with the projec-
tion ((xA∧B , fst x)). This is the equivalence class ((yC , fst 〈M,N〉)), and since
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fst 〈M,N〉 ✲✲ M this class is equal to ((yC ,M)), as we desired. The compo-
sition of pairing of arrows with left projection gives the left component of the
pair. Similarly, the composition with right projection gives the right component.

However, this is only one part of the definition of products. We need not
only that the diagram commutes but also that the pair ((yC , 〈M,N〉)) is the
only arrow making the diagram commute. In other words, we have to show
that if the arrow ((yC , L)) also makes the diagram commute, then (yC , L) ≡
(yC , 〈M,N〉). (We can choose the same variable yC in the representatives of
the two classes, by simple relettering. This preserves equivalence.) For the
diagram to commute, we need (yC , fst L) ≡ (yC ,M) and (yC , snd L) ≡ (yC , N).
For the identity, we need (yC , L) ≡ (yC , 〈M,N〉). Substituting equivalents into
M and N , we need (yC , L) ≡ (yC , 〈fst L, snd L〉).

Why would this be? If ≡ is generated by renaming variables and by reduc-
tion, then there is no need for L to be equivalent to 〈fst L, snd L〉. The reduction
rules show us that fst 〈M,N〉 reduces to M , and that snd 〈M,N〉 reduces to N .
In other words, components of pairs are what you would expect. Reduction de-
fined for proofs does not tell us anything about pairing components. To provide
a model of products in a category, we need to add this as an equivalence of
terms. We need that to specify the following new equivalence on terms:

(yC , L) ≡ (yC , 〈fst L, snd L〉)

for each L of type A ∧ B. This corresponds to a reduction, which cuts out a
detour consisting of a conjunction elimination and then a conjunction introduc-
tion. In this way, categories identify more proofs (more terms) than reduction
in natural deduction systems.

Note that the definition of products says that an object is a product of A and
B, not the product. Categories may have very many products of the one pair
of objects. If we wished to be perverse, we could well define the product of A
and B in the term category to be B ∧A (this is a different formula than A ∧B,
recall), with left projection snd and right projection fst . This would still satisfy
the definition of a product. Many other definitions of products are also possible.
However, we have the following theorem.

THEOREM 10.15 (ISOMORPHISM OF PRODUCTS)
Any two products of A and B are isomorphic.

PROOF Suppose A × B, with πl and πr as projections and 〈—, —〉 as the pair-
constructor, and A ∗ B with pl and pr as projections and (—, —) as the pair-
constructor, are both products of A and B. Since A × B is a product of A and
B, and since we have pl : A ∗ B ✲ A and pr : A ∗ B ✲ B, it follows that
〈pl, pr〉 is the unique map from A ∗B to A×B. In just the same way, (πl, πr) is
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the unique map from A × B to A ∗ B. It is enough to show that (πl, πr)〈pl, pr〉
and 〈pl, pr〉(πl, πr) are identity arrows. �

If a category has products, then it is also possible to construct product arrows
in the following way.

LEMMA 10.16 (PRODUCT ARROWS)
If a category has products, and if f : A ✲ B and g : C ✲ D, then there is an

arrow f × g : A× C ✲ B ×D such that

A ✛ πl
A× C

πr ✲ C

B

f

❄
✛

πl

B ×G

f × g

❄

πr

✲ D

g

❄

commutes.

PROOF Let f × g = 〈fπl, gπr〉. This has the required properties. (See Exer-
cise 10.2.) �

It is not too difficult to construct maps from A×A to A and back, showing that
the two propositions A×A and A are equivalent in the sense that they co-entail
one another. However, they are not necessarily isomorphic.

πl : A×A ✲ A 〈idA, idA〉 : A ✲ A×A

By definition, πl〈idA, idA〉 = idA. However, 〈idA, idA〉πl : A × A ✲ A × A
need not be the identity arrow idA×A. Indeed, in concrete categories, such as
the category of sets, 〈idA, idA〉πl 6= idA×A nearly always.

For disjunction, there is a dual construction which is given by reversing all
the arrows in the definition of a product.

DEFINITION 10.17 (SUMS IN CATEGORIES)
An object A + B, together with arrows ιl : A ✲ A + B and ιr : B ✲ A + B
is said to be a sum of A and B if and only if whenever f : A ✲ C and
g : B ✲ C there is a unique arrow [f, g] : A + B ✲ C such that the diagram
below commutes.

C

A
ιl
✲

f

✲

A + B

[f, g]

✻

✛
ιr

B

✛

g
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The maps ιl and ιr are the injection arrows of the sum A+B. (Note that a sum of
A and B in C is a product of A and B in C op. Sums give us our interpretation
for disjunction.

f : B ✲ A g : C ✲ A

[f, g] : B + C ✲ A

f : A ✲ B

ιlf : A ✲ B + C

f : A ✲ C

ιrf : A ✲ B + C

To complete the lattice connectives we have special objects in certain categories.
Sums in partial order categories are least upper bounds, as you would expect.
More interesting is the behaviour of sums in concrete categories.

EXAMPLE 10.18 (SUMS IN CONCRETE CATEGORIES)
Sums in these standard categories are more varied than products. In Set and
in Poset the sum of two objects is their disjoint union. Any maps from A to
C and from B to C can be filtered through their disjoint union in a standard
way. We inject A and B into A + B, and then map the two components of the
disjoint union in the one map. A standard union would not do. Consider the
map +2 : {0, 1} ✲ {2, 3, 4} and the map +1 : {1, 2} ✲ {2, 3, 4}. I cannot
filter these maps through the union {0, 1, 2}, as the object 1 gets mapped in two
different ways. If I use the disjoint union {0a, 1a, 1b, 2b}, I can filter the maps
through this set. I send the a-objects with +2, and the b-objects with +1.

EXAMPLE 10.19 (SUMS IN TERM CATEGORIES)
As you may expect, in the term category, we may define the sum of A and B as
A ∨B. The injection arrows are

((xA, inl BxA)) : A ✲ A ∨B ((xB , inr AxB)) : B ✲ A ∨B

and given arrows ((yA,M)) : A ✲ C and ((zB , N)) : B ✲ C, the arrow
[((yA,M)), ((zB , N))] : A ∨B ✲ C can be defined as

((xA∨B , let x be y in M or z in N)) : A ∨B ✲ C

The diagram commutes, by the reduction rules we have defined for let terms,
inl and inr. We have

((xA, let (inl L) be y in M or z in N)) ≡ ((xA, N [y := L]))

For the uniqueness of the arrow we need a new equivalence among terms. We
need

((xA∨B , L)) ≡ ((xA∨B , let x be y in L[x := inl y] or z in L[x := inr z]))

which is not demonstrable in our reduction system but again corresponds to
the cutting out of an elimination and then an introduction. Once we allow this
identification of proofs, we have a term model for sums.
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Just as with products, any two sums of an object are isomorphic. (The proof of
this fact is left to Exercise 10.3.)

DEFINITION 10.20 (CARTESIAN CATEGORIES)
A category is cartesian if every pair of objects has both sums and products.

In any cartesian category, for any objects A, B and C, there is an arrow

dA,B,C : (A + B)× (A + C) ✲ A× (B + C)

(find the arrow: Exercise 10.4). A category is said to be distributive if this arrow
is an isomorphism. This is the generalisation of the case of distributive lattices,
over and above lattices.

DEFINITION 10.21 (INITIAL AND TERMINAL OBJECTS)
An object 0 in a category is an initial object if and only if for every object A,
there is exactly one arrow

〈〉 : 0 ✲ A

An object 1 in a category is a terminal object if and only if for every object A,
there is exactly one arrow

[] : A ✲ 1

Clearly, any two initial objects are isomorphic, and any two terminal objects are
isomorphic.

We use the notations ‘〈〉’ and ‘[]’ as initial objects can be thought of as empty
products and terminal objects as empty sums.

EXAMPLE 10.22 (INITIAL AND TERMINAL OBJECTS IN CATEGORIES)
In poset categories, 0 is ⊥ and 1 is ⊤. The situation becomes more interesting
in concrete categories. In the category of lattices, 1 is a one-point lattice, as
there is exactly one homomorphism from each lattice to a one-point lattice. 0
is the empty lattice, as the empty map is the only map from 0 to each lattice.
In the category Lat [⊤,⊥] of bounded lattices with maps preserving ⊤ and ⊥, 1
is again the single-element lattice, in which ⊤ = ⊥, 0 is now the two-element
lattice {⊤,⊥}, as the map from {⊤,⊥} to any lattice at all is completely de-
termined. Finally, in the category Lat [⊤] of lattices with top elements (and
⊤-preserving mappings), the one-element lattice {⊤} is both initial and termi-
nal.

This last example shows that categories and propositional structures can differ
greatly. The only posets in which ⊤ = ⊥ are trivial. A category can have rich
structure, while allowing 1 = 0. In this case, there are arrows between every
pair of objects. It does not follow that all objects are isomorphic. The category
can still make many distinctions between objects and between arrows, despite
the fact that when interpreted as a logic, the category is “trivial” in the sense
that all propositions entail all others.
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EXAMPLE 10.23 (INITIAL AND TERMINAL OBJECTS IN TERM CATEGORIES)
In term categories, we have ⊤ as a terminal object and ⊥ as an initial object.
((xA, ⋆)) : A ✲ ⊤, and ((x⊥, let x be †A)) : ⊥ ✲ A are the required arrows
for each A. However, yet again, uniqueness is not satisfied. We need to pos-
tulate extra equivalences to ensure that these are genuine initial and terminal
objects in the term category:

((xA,M)) ≡ ((xA, ⋆)) if M has type ⊤
((x⊥,M)) ≡ ((x⊥, let x be †A)) if M has type A

These equivalences are rather heavy-handed. However, they are necessary to
make sure that the term category has genuine initial and terminal objects in the
category-theoretic sense.

Lastly, we have intuitionistic implication to consider. We wish to go from f : A×
B ✲ C to some arrow from A to [B ⇒ C], and in reverse. These constructions
are also known in category theory.

DEFINITION 10.24 (FUNCTION OBJECTS IN CATEGORIES)
An object [A ⇒ B], together with an arrow ev : [A ⇒ B] × A ✲ B, is said to
be a function object from A to B if and only if whenever f : C ×A ✲ B there
is a unique arrow λf : C ✲ [A⇒ B] such that the diagram below commutes.

C ×A
λf×idA✲ [A⇒ B]×A

B

ev

❄

f

✲

In the category theoretic literature, [A ⇒ B] is often written ‘BA’ but we write
it with the arrow (following Barr and Wells [14]) to make the connection with
implication clear.

DEFINITION 10.25 (CARTESIAN CLOSED CATEGORIES)
A category is cartesian closed if it is cartesian and, in addition, has function
objects.

EXAMPLE 10.26 (FUNCTION OBJECTS IN PARTIAL ORDER CATEGORIES)
In partial order categories, function objects are simply residuals for conjunction:
that is, intuitionistic implication.
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EXAMPLE 10.27 (FUNCTION OBJECTS IN CONCRETE CATEGORIES)
[A ⇒ B] is usually constructed as the set of all homomorphisms from A to B,
equipped with some sort of structure inherited from A and B. For example,
in Lat we can give a lattice structure to [A ⇒ B] as follows: (f ∧ g)(x) =
f(x) ∧ g(x), and (f ∨ g)(x) = f(x) ∨ g(x). The evaluation functor ev : [A ⇒
B]×A ✲ B maps pairs 〈f, x〉 to f(x). This is a lattice homomorphism.

EXAMPLE 10.28 (FUNCTION OBJECTS IN TERM CATEGORIES)
It should come as no surprise that in the term category, we define the function
object from A to B as A ⊃ B. It is intuitionistic implication, where that exists.
The evaluation arrow from (A ⊃ B) ∧ A to B is ((x(A⊃B)∧A, (fst x)(snd x) )). It
takes an object and applies its first component to its second component. Given
an arrow ((xC∧A,M)) : C ∧ A ✲ B, we define λ((xC∧A,M)) : C ✲ A ⊃ B
by setting it to be ((yC , λzAM [x := 〈yC , zA〉])). We verify that the diagram so
defined commutes:

ev(A⊃B)∧A(λ((xC∧A,M))× idA)
≡ ev((x, 〈(λzAM [x := 〈yC , zA〉])πl, idAπr〉))
≡ ev((x, 〈(λzM [x := 〈fst x, z〉]), snd x〉))
≡ ((x, fst 〈(λzM [x := 〈fstx, z〉]), snd x〉snd 〈(λzM [x := 〈fst x, z〉]), snd x〉))
≡ ((x, (λzM [x := 〈fst x, z〉])snd x))
≡ ((x,M [x := 〈fst x, snd x〉]))
≡ ((xC∧A,M))

as desired, because we have 〈fst x, snd x〉 ≡ x. For uniqueness, we need that
if ((x,N)) : C ✲ A ⊃ B, where ev( ((xC , N)) × idA) ≡ ((yC∧A,M)), then
((xC , N)) ≡ λ((yC∧A,M)). For this, the equivalence

((xC , N)) ≡ λ
(

ev( ((xC , N))× idA)
)

suffices.

We have the following modellings of the implication rules:

f : A×B ✲ C

λf : A ✲ [B ⇒ C]

g : A ✲ [B → C]

ev(g × id) : A×B ✲ C

This mapping is an isomorphism between Hom(A×B,C) to Hom(A, [B ⇒ C]).
This is an example of a very general concept: an adjunction. We will consider
this in the next section.
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10.3 Intensional Connectives

To model the other connectives of our logics in categories, we need to examine
one new category-theoretic concept: the concept of adjunction. Let us start with
an example.

EXAMPLE 10.29 (FREE AND FORGETFUL FUNCTORS)
Consider the categories Set and RStruct , of sets and of R propositional struc-
tures respectively. Let the functor F : RStruct ✲ Set be the forgetful functor,
which sends an R structure to its underlying set, and an R homomorphism to its
underlying set function. Let L : Set ✲ RStruct send the set X to the free R
structure generated by X. That is, it constructs the Lindenbaum algebra, with
atomic propositions taken from X. Any set function f : X ✲ Y extends to the
R homomorphism L(f) : L(X) ✲ L(Y ), sending atomic propositions in L(X)
to their f -values in L(Y ).

These functors are related in the following way. Whenever we have a propo-
sitional structure P and a set X, any set function g : X ✲ F (P ) extends
uniquely to a corresponding R homomorphism gR : R(X) ✲ P . Furthermore,
any function f : R(X) ✲ P can be restricted to the function f |X : X ✲ F (P ),
such that f = (f |X)R. In other words, we have a bijection

φX,P : HomSet (X,F (P )) ∼= HomRStruct (L(X), P )

and furthermore, this bijection is natural in both X and P , in the category
theoretic sense. That is

X HomSet (X,F (P ))
φX,P✲ HomRStruct (L(X), P )

X ′

f

✻

HomSet (X
′, F (P ))

f∗

❄

φX′,P

✲ HomRStruct (L(X ′), P )

(Lf)∗

❄

(where if f : X ′ ✲ X then f∗ : Hom(X,Y ) ✲ Hom(X ′, Y ) is defined in the
following way: f∗(g) = gf) and

P HomSet (X,F (P ))
φX,P✲ HomRStruct (L(X), P )

P ′

g

❄
HomSet (X,F (P ′))

(Fg)∗

❄

φX,P ′

✲ HomRStruct (L(X), P ′)

g∗

❄
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commute. The commutation of both of these diagrams follows immediately by
the definitions of F and L, and by the bijection φ between arrows.

This behaviour occurs everywhere in mathematics. Many pairs of functors
are related in a similar way. It warrants a definition.

DEFINITION 10.30 (ADJOINT PAIRS)
If F : C ✲ D and G : D ✲ D , and there is a bijection φ : HomC(X,F (Y )) ∼=
HomD(G(X), Y ), natural in both X and Y , then we say that 〈F,G, φ〉 is an
adjunction. F is the left adjoint and G is the right adjoint. We write the presence
of the adjunction as ‘F ⊣ G.’

We have already seen adjoint pairs.

EXAMPLE 10.31 (ADJUNCTION BETWEEN PRODUCT AND IMPLICATION)
We have seen that we can think of products as functors. In particular, — × B
is a functor C ✲ C . Similarly, [B ⇒ —] is a functor C ✲ C . These
functors form an adjunction. If f : A × B ✲ C, then λf : A ✲ [B ⇒ C].
Conversely, if g : A ✲ [B → C], then ev(g × idB) : A × B ✲ C. This is
a bijection Hom(A × B,C) ∼= Hom(A, [B ⇒ C]). Therefore, the connection
between products and implication can be expressed rather neatly:

—×B ⊣ [B ⇒—]

Given this connection, it is obvious how other one-place intensional connec-
tives ought to be modelled in categories. Positive operators � and ♦− are both
functors C ✲ C . These form an adjoint pair ♦− ⊣ �. There is a bijection
φ : Hom(♦−A,B) ∼= Hom(A,�B), between arrows f : ♦−A ✲ B and arrows
φf : A ✲ �B.

EXAMPLE 10.32 (MODALITIES IN THE TERM CATEGORY)
In the term category, we can define the bijection between arrows as follows.
If ((x♦−A,M)) : ♦−A ✲ B then ((yA, upM [x := •y])) : A ✲ �B. And con-
versely, if ((yA, N)) : A ✲ �B then we have ((x♦−A, down (let x be •y in N) )) :
♦−A ✲ B. For this to be an adjunction, we need the translation to be an iso-
morphism, and for this we need two reduction rules: one we already have,
down upN  N , and one which we do not, up downN  N .

Negative operators are only marginally more difficult. Negation is not a functor
C ✲ C , as it is order inverting. If f : A ✲ B, then we have ∼f : ∼B ✲ ∼A.
So, instead, negation is modelled by a contravariant functor, that is, a normal
functor to the opposite category: C ✲ C op. Here, the rules from A ⊢ ∼B to
B ⊢ ¬A motivate an adjunction: HomC (A,∼B) ∼= HomCop(¬A,B). We do not
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have a term category here, as we have not defined term systems for logics with
split negations.

Finally, for fusion and implication, fusion is a bifunctor ◦ : C × C ✲ C .
This means not only that for each pair of objects A and B there is a corre-
sponding object A ◦ B but also that when there are arrows f : A ✲ B and
g : C ✲ D then there is an arrow f ◦g : A◦C ✲ B◦D. If we have implication
connectives, their properties are given by adjointness.

φleft : HomC (A ◦B,C) ∼= HomC (B,C → A)
φright : HomC (A ◦B,C) ∼= HomC (A,B → C)

This is enough to define the basic logic of fusion and implication in substructural
logics. Correspondence with the term category is not any more difficult than
what we have seen before, so we will not pause to examine that connection.
Instead, we must say a little about structural rules.

In propositional structures, structural rules correspond to entailments be-
tween particular fusions of propositions. For example, in the presence of CI we
have a · b 6 b · a. In a category, the corresponding requirement would be for
there to be an arrow

γA,B : A ◦B ✲ B ◦A

for each A and B in the category. It turns out to be advantageous to require
that γ be natural in both A and B. That is, if f : A ✲ A′ and if g : B ✲ B′

then the following diagram commutes

A ◦B
f ◦ g✲ A′ ◦B′

B ◦A

γA,B

❄

g ◦ f
✲ B′ ◦A′

γB′,A′

❄

In many applications, it is also advantageous to assume that γA,B is an isomor-
phism: that γB,AγA,B = idA◦B . Similar properties can hold given association.
In the presence of B and Bc we have an arrow

αA,B,C : A ◦ (B ◦ C) ✲ (A ◦B) ◦ C
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which is natural in A, B and C (draw the appropriate diagram yourself) and
satisfies the following pentagonal condition.

A ◦ (B ◦ (C ◦D))
αA,B,C◦D✲ (A ◦B) ◦ (C ◦D)

αA◦B,C,D✲ ((A ◦B) ◦ C) ◦D

A ◦ ((B ◦ C) ◦D)

idA◦αB,C,D

❄

αA,B◦C,D

✲ (A ◦ (B ◦ C)) ◦D

αA,B,C◦idD

❄

and if γ is present, then the following interaction condition

A ◦ (B ◦ C)
αA,B,C✲ A ◦ (B ◦ C)

γA◦B,C✲ C ◦ (A ◦B)

A ◦ (C ◦D)

idA◦γB,C

❄

αA,C,B

✲ (A ◦ C) ◦B
γA,C◦idB

✲ (C ◦A) ◦B

αC,A,B

❄

Monoidal categories are those with a fusion operation together with association
arrows αA,B,C and an identity for fusion. A monoidal category is symmetric

when it also has commutation arrows γA,B . The coherence problem for these
categories is to determine which diagrams involving these arrows commute.
Mints and Lambek have used logical techniques to solve the coherence problem
for symmetric monoidal categories, and monoidal categories [141, 135, 174].
We will not present these proofs here. Instead, we will look at a particular
category which exhibits these structures.

10.4 Coherence Spaces

Coherence spaces provide a concrete model for the connectives of linear logic.
In particular, they provided the first model which gave Girard an insight into the
nature of the exponentials [96]. We will round this chapter off by presenting
an account of coherence spaces.

DEFINITION 10.33 (COHERENCE SPACES)
A coherence space is a set A of sets, satisfying the following two conditions.

⋄ If a ∈ A and b ⊆ a then b ∈ A, and

⋄ If for each x, y ∈ a, {x, y} ∈ A, then a ∈ A.

We say a coheres with b (in A) if {x, y} ∈ A. We write this: ‘x⌣⌢y (mod A).’
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A coherence space is determined by its coherence relation x⌣⌢y (mod A) on
the set |A| of objects x, where {x} ∈ A. If A and B have the same coherence
relation, then if x ∈ A, we can show that a ∈ B. If a ∈ A then every {x, y} ⊆ A
is in A. Then x⌣⌢y, and hence {x, y} ∈ B, for each {x, y} ⊆ a is in B, and hence
a ∈ B.

So coherence spaces can be depicted simply as undirected graphs. The co-
herence relation is reflexive and symmetric, but not, in general, transitive.

0

1

2 3

4

In this space, the coherent sets are

∅ {0} {1} {2} {3} {4} {0, 1} {0, 2} {1, 2}
{1, 3} {2, 3} {3, 4} {0, 1, 2} {1, 2, 3}

DEFINITION 10.34 (COHERENCE RELATIONS)
Given a coherence space A, we set

⋄ x⌢y (mod A) iff x⌣⌢y (mod A) and x 6= y.

⋄ x⌣y (mod A) iff {x, y} 6∈ A, i.e., if it is not the case that x⌣⌢y (mod A).

⋄ Finally, x⌢⌣y (mod A) iff it is not the case that x⌢y (mod A), i.e., x = y
or {x, y} 6∈ A.

Given a coherence space A, the coherence space ∼A is defined by setting x⌣⌢y
(mod ∼A) if and only if x⌢⌣y (mod A). Note that ∼∼A = A.

EXAMPLE 10.35 (SMALL COHERENCE SPACES)
Sgl = {∅, {∗}}, the one-point coherence space. Emp = {∅}, the empty coherence
space. Note that ∼Sgl = Sgl and ∼Emp = Emp.

We will (slowly) make the class of all coherence spaces into a category. How-
ever, it will take some time to form the available arrows in the category. How-
ever, we will start to consider products and sums in the category, nevertheless.
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DEFINITION 10.36 (PRODUCT AND SUM COHERENCE SPACES)
Given coherence spaces A and B, the coherence spaces A ∧ B and A ∨ B are
defined on the disjoint union of the points x of the graph of A and y of the
graph of B, as follows:

(0, x)⌣⌢(0, x′) (mod A∧ B) iff x⌣⌢x′ (mod A)
(1, y)⌣⌢(1, y′) (mod A∧ B) iff y⌣⌢y′ (mod B)
(0, x)⌣⌢(1, y) (mod A∧ B) always

(0, x)⌣⌢(0, x′) (mod A∨ B) iff x⌣⌢x′ (mod A)
(1, y)⌣⌢(1, y′) (mod A∨ B) iff y⌣⌢y′ (mod B)
(0, x)⌣⌢(1, y) (mod A ∨ B) never

Note that here ∼(A∧B) = ∼A∨∼B, and ∼(A∨B) = ∼A∧∼B. Furthermore,
A ∧ Emp = Emp ∧ A = A = A ∨ Emp = Emp ∨ A. We will see, later, that Emp
is both initial and terminal in the category of coherence spaces.

To do this, we need to examine the appropriate arrows in the category of
coherence spaces.

DEFINITION 10.37 (CONTINUOUS FUNCTIONS)
F : A ✲ B is continuous if and only if

⋄ If a ⊆ b then F (a) ⊆ F (b).

⋄ If S ⊆ A is directed (that is, if a, b ∈ S, then a ∪ b ∈ S too) then F (
⋃

S) =
⋃

{F (a) : a ∈ S}.

Note that if F is continuous, then F (a) is determined by the value of F at the fi-
nite subsets a′ of a. In other words, F (a) =

⋃

{F (a′) : a′ ⊆ a where a′ is finite}.

LEMMA 10.38 (MINIMAL REPRESENTATIVES)
If F : A ✲ B is continuous, and if a ∈ A and y ∈ F (a), then there is a minimal
finite a′ ∈ A where y ∈ F (a′).

PROOF If y ∈ F (a) then y ∈ F (a∗) for some finite a∗. Pick some smallest subset
a′ of a∗ with this property. (This is possible, as a∗ is finite.) �

We want to construct a coherence space representing F : A ✲ B. We start by
defining the trace of a function.

Trace(F ) = {(a, y) ∈ Afin × |B| : y ∈ F (a) and a is minimal}

Note that Trace(F ) ⊆ Afin × |B| has the following properties.

⋄ If (a, y), (a, y′) ∈ Trace(F ) then y⌣⌢y′ (mod B).

⋄ If a′ ⊆ a, (a, y), (a′, y) ∈ Trace(F ), then a = a′.
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Conversely, if F is any set with these two properties, then define FF by setting

FF (a) = {y ∈ |B| : ∃a′ ⊆ a where (a′, y) ∈ F}

So we can represent continuous functions by their traces. In fact, if F is con-
tinuous, then F = FTrace(F ). Can we define a coherence relation on traces?
Consider the special case where there are two minimal representatives, that is,
(a, y), (a′, y) ∈ Trace(F ). Under what circumstances are they coherent? Unfor-
tunately, we need more information in order to define a coherence relation —
we need a relationship between a and a′. We can show that in a particular class
of continuous functions, there is always a unique minimal a.

DEFINITION 10.39 (STABLE FUNCTIONS)
F : A ✲ B is stable if it is continuous, and in addition, whenever a, a′, a∪ a′ ∈
A, then F (a ∩ a′) = F (a) ∩ F (a′).

With stable functions, we can choose a unique minimal representative a.

LEMMA 10.40 (UNIQUE MINIMAL REPRESENTATIVES)
F : A ✲ B is stable if and only if for each a ∈ A, where y ∈ F (a), there is a

unique minimal a′ ∈ Afin such that y ∈ F (a′).

PROOF For left to right, it is straightforward to check that a′ =
⋂

{a∗ ∈ A :
a∗ ⊆ a, where y ∈ F (a∗)} is the required a′. For right to left, monotonicity tells
us that F (a ∩ a′) ⊆ F (a) and F (a ∩ a′) ⊆ F (a′), so F (a ∩ a′) ⊆ F (a) ∩ F (a′).
Conversely, if a, a′, a∪a′ ∈ A, then if y ∈ F (a) and y ∈ F (a′), then y is in F (a′′)
for a unique minimal a′′. Therefore a′′ ⊆ a and a′′ ⊆ a′, so a′′ ⊆ a ∩ a′, and
hence y ∈ F (a′′) ⊆ F (a ∩ a′), as desired. �

The next result is simple to verify.

LEMMA 10.41 (CHARACTERISING STABLE FUNCTIONS)
If F is stable, then whenever (a, y), (a′, y′) ∈ Trace(F )

⋄ If a ∪ a′ ∈ A then y⌣⌢y′ (mod B).

⋄ If a ∪ a′ ∈ A then y = y′ (mod B).

Conversely, if the set F satisfies these conditions, then FF is stable. �

Given this, we can define A ⊃ B. |A ⊃ B| = Afin×|B| as follows: (a, y)⌣⌢(a′, y′)
(mod A ⊃ B) if and only if

⋄ If a ∪ a′ ∈ A then y⌣⌢y′ (mod B).

⋄ If a ∪ a′ ∈ A then y = y′ (mod B).

That is, A ⊃ B = {Trace(F ) |F : A ✲ B is stable}.
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THEOREM 10.42 (CARTESIAN CLOSURE)
The category of coherent spaces and stable functions between them is cartesian

closed.

PROOF Straightforward hacking. The interesting case is for implication and
conjunction. We want a bijection Hom(A ∧ B, C) ∼= Hom(B,A ⊃ C). If c ∈
(A∧B)fin then c = ({0}× a)∪ ({1}× b), where a and b are finite. We then map
(c, z) to (a, (b, z)). This provides the required bijection. �

This construction is obviously a two-stage process. It begs to be decomposed.
We should define a coherence space !A on the set of finite coherent sets of Afin
as follows:

a⌣⌢a′ (mod !A) iff a ∪ a′ ∈ A

and define linear implication A → B by setting (x, y)⌣⌢(x′, y′) (mod A → B) if
and only if

⋄ If x⌣⌢x′ (mod A) then y⌣⌢y′ (mod B).

⋄ If x⌣⌢x′ (mod A) and y = y′ then x = x′.

Note that A → B is (isomorphic to) ∼B → ∼A. Furthermore, Sgl → A is
(isomorphic to) A and A → Sgl is (isomorphic to) ∼A. The operation ⊃ stands
to stable functions as→ stands to a new kind of function: the linear functions.

DEFINITION 10.43 (LINEAR MAPS)
F is a linear map if and only if whenever A ⊆ A is linked (that is, if a, b ∈ A
then a ∪ b ∈ A) then F (

⋃

A) =
⋃

{F (a) : a ∈ A}.

If F is linear then F is stable (this is straightforward) and in addition, if x ∈
F (a) then the minimal b where x ∈ F (b) is a singleton. It follows that the trace
of F can be simplified. The linear trace of a linear map F is defined as follows:

Trlin(F ) = {(x, y) : y ∈ F ({x})}

Therefore, A → B = {Trlin(F ) |F : A ✲ B is linear}.
Given→, we can see that it is connected by an adjunction to a natural fusion

operation. We can defineA◦B as follows: |A◦B| = |A|×|B|, and (x, y)⌣⌢(x′, y′)
if and only if x⌣⌢x′ (mod A) and y⌣⌢y′ (mod B).

DEFINITION 10.44 (ADJUNCTION BETWEEN FUSION AND IMPLICATION)
In the category of coherence spaces with linear maps, we have the adjunction

Hom(A ◦ B, C) ∼= Hom(A,B → C)

for all A, B and C.

PROOF If F : A◦B ✲ C, then the linear trace of F is a set of triples ((x, y), z).
We define G : A ✲ B → C as the function with the linear trace of all corre-
sponding triples (x, (y, z)), and conversely. �
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The category of coherence spaces with linear maps is cartesian (the standard
constructions of A∧B and A∨B still work) but it is no longer cartesian closed.
The map coherence space A ⊃ B is still a coherence space in the new cate-
gory, but there is now no longer an isomorphism between Hom(A ∧ B, C) ∼=
Hom(A,B ⊃ C), as this category has fewer arrows. A linear map from A ∧ B to
C does not necessarily correspond to a linear map from A to B ⊃ C.

10.5 History

A good introduction to the use of categories in logic can be found in Lambek
and Scott’s Introduction to Categories and Higher Order Logic [136]. Other con-
nections between category theory and logic are found in the literature on topos
theory [13, 18, 121, 143]. It is not yet known whether any connections can be
made between that work and substructural logics.

I have followed Davoren’s clear exposition of coherence spaces in her “A Lazy
Logician’s Guide to Linear Logic” [59]. Other accounts can be found in Girard,
Lafont and Taylor’s Proofs and Types [99], which provides a good explanation
of how coherence spaces relate to traditional domain theory, and in Troelstra’s
Lectures on Linear Logic [261].

10.6 Exercises

Practice

{10.1} Show that function composition in the opposite category is associative.

Problems

{10.2} Show that the definition of product arrows in Lemma 10.16 has the desired

properties.

{10.3} Show that any two sums of the one pair of objects are isomorphic.

{10.4} Construct the arrow dA,B,C : (A + B)× (A + C) ✲ A× (B + C), which exists

in any category with sums and products.

{10.5} Show that 0 + A and 1× A are both isomorphic to A.

Project

{10.6} Complete the analogy: As a propositional structure is to its ideal structure, a

propositional category is to its . . .
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Frames



CONS
1999/11/6
page 234

✐

✐

✐

✐

✐

✐

✐

✐



CONS
1999/11/6
page 235

✐

✐

✐

✐

✐

✐

✐

✐

Chapter 11

Frames I: Logics with Distribution

Yea, every year or so Anderson & Belnap turned out a new logic,

and they did call it E, or R, or E
I

or P−W,

and they beheld each such logic, and they were called relevant.

And these logics were looked upon with favor by many,

for they captureth the intuitions,

but by many they were scorned,

in that they hadeth no semantics.

— Richard Routley and Robert K. Meyer, The Semantics of Entailment [229], 1973

Substructural logics are rich and complex: they allow us to draw many dis-
tinctions which are collapsed in classical logic. This richness necessitates some
degree of complexity in semantics. The simple two-valued semantics of clas-
sical logic will not do. We have already seen one way to enrich two-valued
semantics — you can inflate the number of values for a sentence to take. The
algebras of Part II provide us with semantic values for sentences with enough
richness to model all sorts of behaviour manifest in substructural systems. But
this multiplicity of semantic values is not the only way to model substructural
logics. It is also possible to keep the simple two-valued scheme — sentences
are either true or they fail to be true — and to enrich the scheme instead by
providing more places at which sentences are evaluated.

This idea is not new. Its richest tradition is found in the possible worlds se-
mantics for modal logic. The idea is that propositions are evaluated not merely
once as true or false but rather they are evaluated at many different possible

worlds. The value of a complex proposition, like �A, at a world will depend on
the value of the proposition A at other worlds.

Possible worlds semantics has been a boon for modal logic. Our understand-
ing of possibility and necessity and their logical relationships have been immea-
surably improved by formal accounts involving possible worlds and accessibility
relations [29, 40, 43, 90, 118, 119, 243]. The same is true for substructural log-
ics. Similar semantic structures give us a similar understanding of substructural
systems. As we shall see, it is misleading to call these structures possible worlds

semantics. We shall call them frames, and they are the focus of our study in this
part of the book.

235
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11.1 Examples

Before launching into a formal definition of a frame for a substructural logic, we
will consider a number of examples to motivate the definitions of the next sec-
tion. The examples hark back to the motivating considerations of Section 2.1.

EXAMPLE 11.1 (LANGUAGE FRAMES)
Consider a language made up of strings of some alphabet. We can interpret the
propositions of a logic as classifying the strings into syntactic categories. We
will write x  A to mean ‘string x is of type A.’ Then we can use the by now
standard connectives and interpret them as follows.

⋄ x  A→ B iff for each y where y  A, xy  B.

⋄ x  B ← A iff for each y where y  A, yx  B.

⋄ x  A ◦B iff for some y and z where x = yz, y  A and z  B.

This gives us the intended meanings of the connectives. A ◦ B is the type of
concatenations of A-type strings with B-type strings. A → B-type strings are
those which when concatenated with A-type strings give B-type strings, and so
on. The structure of strings together with the concatenation function on them
is a frame. We evaluate propositions at points (here, at different strings) and
the value of a proposition at some string depends on its value at others. Or,
using a more appropriate language, the type a string takes might depend on the
types other strings take. In the case of implicational types, this is the case. In
the case of extensional types, like conjunction, it need not be the case. We may
evaluate conjunction in the following way

⋄ x  A ∧B iff x  A and x  B

So a string is of type A ∧B if and only if it is of type A and of type B. This is a
local condition, as it depends only on the types of the original string x.

There are many other kinds of model which evaluate propositions at points.
One important one for us is the frame semantics for intuitionistic logic.

EXAMPLE 11.2 (INFORMATION STATES AND INTUITIONISTIC LOGIC)
Consider a research project with different stages of development. At each stage,
a certain amount of information is known or verified. The project could be de-
veloped in different ways, but in each possible course of investigation, more
and more information is gathered. (We assume, for the moment, that no in-
formation is lost or forgotten, and that no information previously accepted is
later rejected.) So we might have a collection of states of inquiry, ordered by
the relation ⊑ of development. We will assume that this relation is reflexive and
transitive.
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We will use ‘’ again, this time to express the relationship holding between
a state and the propositions known at that state. A sensible criterion for  to
satisfy is the heredity condition

⋄ If x  p and x ⊑ y then y  p.

So, if x is established at stage p, then x is established at later stages. Clauses
for the evaluation of formulae involving ∧,∨,∼,⊤ at stages of development are
straightforward:

⋄ x  A ∧B if and only if x  A and x  B.

⋄ x  A ∨B if and only if x  A or x  B.

⋄ x  ⊥ never.

⋄ x  ⊤ always.

The clauses for ∧,⊤ and ⊥ are relatively uncontroversial. That for ∨ is more
difficult to justify, for it seems that we could well have established a disjunc-
tion in our investigations without yet having established which of the disjuncts
holds. However, we will bear with this difficulty for the moment. In the next
chapter, we will see a class of models in which the disjunction clause differs.

None of these clauses involves a ‘point shift,’ so there is nothing so far in the
semantics which uses the ordering of the points. This is left to the clause for
implication.

⋄ x  A ⊃ B if and only if for each y ⊒ x, if y  A then y  B.

So we have verified A ⊃ B at a stage of our inquiry if and only if at any future
stage of inquiry, if we have verified A we have also verified B. Once A ⊃ B is
verified, then any future discovery of A brings with it the discovery of B.

Given this account of the evaluations of different kinds of formulae, we have
a way to interpret any formula built up from the atomic propositions using
∧,∨,⊤,⊥ and ⊃. The values of the complex formulae depend only on the
values of the atomic formulae. Furthermore, it can be shown that not only are
atomic formulae preserved up the order but also that all propositions satisfy the
heredity condition.

⋄ For all A, if x  A and x ⊑ y then y  A.

This can be shown by an induction on the construction of A. We will prove it in
a more general setting in Lemma 11.10.

The ordering and the heredity condition is an important part of the seman-
tics of intuitionistic logic, and it will be an important part of the semantics of
substructural logics in this chapter.

Once we use the relation ⊑ of development or inclusion, we should be careful
to distinguish it from the relation 6 of entailment. In fact, they are natural “du-
als” to each other. If x ⊑ y, then x carries less information than y. The point y



CONS
1999/11/6
page 238

✐

✐

✐

✐

✐

✐

✐

✐

238 FRAMES

supports more formulae than x (or at any rate, no less). In propositional struc-
tures, if a 6 b, then a entails more propositions than b, for anything entailed
by b is also entailed by a. The inconsistent proposition ⊥, if there is one, is at
the bottom of the entailment ordering. In frames, ⊥ is not a point (points are in
a different category), but points near the top of the inclusion ordering support
more and more propositions. The relation ⊑ is similar to that of the ordering of
domain theory [1, 105, 240, 241] (see Example 11.15 below). If x ⊑ y, then x
is “less defined” than y. If a 6 b, then a is true “less often” than b.

We will consider just one more example before we get on with the definitions
of our models.

EXAMPLE 11.3 (COMPATIBILITY FRAMES)
A negation on intuitionistic frames is given by setting ∼A to be A ⊃ ⊥. But
there are more kinds of negation than intuitionistic negation. We can extend
frames with ⊑ to include a binary relation C of compatibility between points.
We say that xCy holds when there is nothing that x rejects that y accepts. Given
this interpretation, a clause for negation is plausible:

⋄ x  ∼A if and only if for each y where xCy, y 6 A.

The point x rejects A (or accepts ∼A) just when there is no point compatible
with x which accepts A. If xCy and y  A, then x cannot reject A (as x
is compatible with y). Conversely, if every point compatible with x does not
accept A, then x seems to have ruled A out.

This evaluation for negation is exactly what we need for a substructural
negation. If C is not symmetric, (that is, if we can have xCy but not yCx) then
a different negation can be defined using the converse of C.

⋄ x  ¬A if and only if for each y where yCx, y 6 A.

This makes 〈∼,¬〉 a split pair. If C is symmetric, then ∼ and ¬ collapse into the
one connective, a simple negation.

For all this to work in the presence of ⊑, we must have one proviso — that
C interacts properly with ⊑. We must have the following conditions1

⋄ If x′ ⊑ x then if xCy then x′Cy.

⋄ If y′ ⊑ y then if xCy then xCy′.

The first condition guarantees that if x′  ∼A and x′ ⊑ x then x  ∼A too. For
if this holds, then suppose that xCy. We wish to show that y 6 A, to ensure
that x  ∼A. Since x′ ⊑ x we have x′Cy, and given x′  ∼A we have y 6 A as
desired. The second condition ensures that ¬ is also preserved up the order.

These conditions are not ad hoc restrictions. They make sense given the
interpretation of C as compatibility and ⊑ as inclusion or development. If xCy

1 Or something much like them: see Definition 11.5 for a possible weakening of the conditions
on compatibility and other relations.
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b

a

c

b′

a′

c′

Figure 11.1: A Compatibility Frame

and x′ ⊑ x, then there can be no clash between x′ and y, as x′ is included
in x. The same holds if y′ ⊑ y. Figure 11.1 is a particular example of this
sort of frame. In this frame, the partial order is depicted by the solid arrows,
and the compatibility relation is presented by the dashed lines. Compatibility
in this frame is symmetric, so no arrows are necessary on these lines. The
frame splits in to two components, the left component — a, b and c — and
the right component — a′, b′ and c′. For each point in the left component, its
primed partner is the ⊑-least point with which it is compatible. The same goes
from right to left. You can check that the compatibility relation, as defined,
satisfies the conditions for a compatibility relation. The point a is compatible
with a′, and also with the points included in a′, namely b′ and c′. The point b′

is compatible with b, and also the point included in b, namely a. The same goes
for the other points in the frame.

Now consider how negation works. Suppose b  p, and no other point in
the frame supports p. Then a  ∼p, for no point compatible with a (i.e. a′)
supports p. Furthermore, b  ∼p, for nothing compatible with b supports p. So
b  p ∧ ∼p. Dually to this, b′ 6 p by hypothesis, and since b  p and b′Cb, we
have b′ 6 ∼p, so it follows that b′ 6 p ∨ ∼p.

That should be enough in the way of examples to motivate the definitions.

11.2 Definitions

Now we will introduce frames in their generality. The definitions in this section
will generalise the examples we have seen.

DEFINITION 11.4 (POINT SETS AND PROPOSITIONS)
A point set P = 〈P,⊑〉 is a set P together with a partial order ⊑ on P . The set
Prop(P) of propositions on P is the set of all subsets X of P which are closed

upwards: that is, if x ∈ X and x ⊑ x′ then x′ ∈ X. (We will often write x ∈ P,
instead of x ∈ P , where P is the set underlying P.)

We have seen that not all frames need to make use of an inclusion relation ⊑.
However, all our frames will be based on point sets as we have defined. This
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is no loss of generality, as the partial order ⊑ on a point set may well be the
identity relation. In this case, we call the point set P flat. In flat point sets, the
set Prop(P) is the power set of the underlying set P .

Now we will define the relations on point sets which will be used in the
evaluation of the intensional connectives.

DEFINITION 11.5 (ACCESSIBILITY RELATIONS)
⋄ A binary relation S is a positive two-place accessibility relation on the point

set P if and only if for any x, y ∈ P where xSy, if x′ ⊑ x then there is a
y′ ⊒ y, where x′Sy′. Similarly, if xSy and y ⊑ y′ then there is some x′ ⊑ x,
where x′Sy′.

⋄ A binary relation S is a plump positive two-place accessibility relation on the
point set P if and only if for any x, y, x′, y′ ∈ P, where xSy, x′ ⊑ x and
y ⊑ y′ it follows that x′Sy′.

⋄ A binary relation C is a negative two-place accessibility relation on the point
set P if and only if for any x, y ∈ P, where if xCy and x′ ⊑ x there is a
y′ ⊑ y, where x′Cy′, and similarly, if yCx and x′ ⊑ x then there is a y′ ⊑ y,
where y′Cx′.

⋄ A binary relation C is a plump negative two-place accessibility relation on the
point set P if and only if for any x, y, x′, y′ ∈ P where xCy, x′ ⊑ x and
y′ ⊑ y it follows that x′Cy′.

⋄ A ternary relation R is a three-place accessibility relation if and only if when-
ever Rxyz and z ⊑ z′ then there are y′ ⊒ y and x′ ⊒ x, where Rx′y′z′.
Similarly, if x′ ⊑ x then there are y′ ⊑ y and z′ ⊒ z, where Rx′y′z′, and if
y′ ⊑ y then there are x′ ⊑ x and z′ ⊒ z, where Rx′y′z′.

⋄ A ternary relation R is a plump three-place accessibility relation on the point
set P if and only if for any x, y, x′, y′, z, z′ ∈ P, where Rxyz, x′ ⊑ x, y′ ⊑ y
and z ⊑ z′ then Rx′y′z′.

In general, we say Q is an accessibility relation if and only if it is one of the
above kinds of relation.

Clearly if Q is a plump accessibility relation, it satisfies the corresponding con-
ditions for an accessibility relation. Furthermore, given an accessibility relation,
we can find a plump relative in a a simple way.

DEFINITION 11.6 (PLUMP COUSINS OF ACCESSIBILITY RELATIONS)
Given an accessibility relation Q, its plump cousin Qp is defined as follows:

⋄ If S is positive, then xSpy if and only if for some x′ ⊒ x and y′ ⊑ y, x′Sy′.

⋄ If C is negative, then xCpy if and only if for some x′ ⊒ x and y′ ⊒ y, x′Cy′.

⋄ If R is three-place, then Rpxyz if and only if for some x′ ⊒ x, y′ ⊒ y and
z′ ⊑ z, Rx′y′z′.
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It is straightforwardly shown that if Qp so defined is plump. The “plump” con-
ditions are motivated in most applications of frames (see Example 11.3). How-
ever, they are not formally required for an interpretation of substructural logics.
The more lax conditions are all that are necessary to prove hereditariness, and
in some situations they seem better suited to the task at hand. (See, for exam-
ple, Section 11.6.)

It may be helpful to have a way to “read” the accessibility relations, as this
will aid in remembering the interaction between these relations and the inclu-
sion relation ⊑. We have already seen the case with the compatibility relation
C. If x is compatible with y, then if x′ is included in x and y′ in y, then surely
x′ is compatible with y′. That much is relatively straightforward.

The cases are similar with S and R. S is the traditional relation of modal

accessibility. If xSy holds, then everything necessary in x holds in y. So if x′ ⊑ x
then everything necessary in x′ is also necessary in x, and hence, holds in y, and
also in any y′ where y is included in y′.

For R, Rxyz can be read as follows: if A → B is true in x and A is true
in y, then B must be true in z. In other words, z contains everything you
get from applying the rules in x to the information in y. So, if x′ ⊑ x and
y′ ⊑ y then applying the rules in x′ to the information in y′ will give you no
more information, so whatever results must be true in z, and hence in any z′

including z, as we would hope.

Note that if R is a three-place accessibility relation on some point set P,
then if x ∈ P, the relations S1 and S2, set by fixing yS1z if and only if Rxyz
and yS2z if and only if Ryxz, are positive two-place accessibility relations, and
the relation C, set by fixing yCz if and only if Ryzx, is a negative two-place
accessibility relation. (These connections may remind you of how necessity,
possibility and negation operators may be defined in terms of implication and
fusion.)

Note too that if the point set P is flat, then any binary relation is a two-
place accessibility relation on P (both positive and negative) and any ternary
relation is a three-place accessibility relation on P. The restrictions only take
affect when we need a containment relation ⊑.

The only other intensional machinery in our logics (apart from non-normal
modal operators, which will come later) is the truth constant t. For this we will
need a new definition.

DEFINITION 11.7 (TRUTH SETS FOR A TERNARY RELATION R)
If R is a three-place accessibility relation on a point set P then for any subset
T ∈ Prop(P),

⋄ T is a left truth set for R if and only if for each x, y ∈ P, x ⊑ y if and only if
for some z ∈ T , Rzxy.
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⋄ T is a right truth set for R if and only if for each x, y ∈ P, x ⊑ y if and only
if for some z ∈ T , Rxzy.

The motivation of this definition is simple: if t is a left identity for fusion, then
it will be true at a left truth set of R. Similarly if t is a right identity for fusion.
We will see later that this makes sense as a definition.

Now that we have a point set and some accessibility relations (and truth
sets) on that set, we have a frame.

DEFINITION 11.8 (FRAME)
A frame F is a point set P together with any number of accessibility relations
and truth sets on P.

Given a frame we will talk interchangeably of the set Prop(P) of propositions
on its point set and the set Prop(F) of propositions in the frame. Similarly, we
will sometimes write ‘x ∈ F ’ as a shorthand for ‘x ∈ P, where P is the point set
of F .’

To evaluate formulae from some language in a frame, we need a mapping
associating the intensional connectives in the language with accessibility rela-
tions in the frame. For every� or ♦−we have a corresponding positive two-place
accessibility relation S, for every ∼ or ¬ a corresponding negative two-place ac-
cessibility relation C, and for every →, ◦ or ← a corresponding three-place ac-
cessibility relation R. Furthermore, connectives from the one family are paired
with the same accessibility relation.

In what follows, I will suppose that some such mapping has been provided.
In fact, in practice, we will simply assume that there is at most one connective
of each type — keeping track of any more needlessly complicates matters. The
generalisation to more connectives makes the results in the following chapters
no harder to prove but merely harder to state.

DEFINITION 11.9 (EVALUATIONS ON FRAMES)
A relation  between points of a frame F and formulae is said to be an evalua-

tion if and only if for each the connectives in the language, the condition from
the following list holds.

⋄ {x ∈ F : x  p} ∈ Prop(F).

⋄ x  ⊤ for all x ∈ F .

⋄ x  ⊥ for no x ∈ F .

⋄ x  A ∧B iff x  A and x  B, for each x ∈ F .

⋄ x  A ∨B iff x  A or x  B, for each x ∈ F .

⋄ x  A ⊃ B iff for each y ∈ F , where x ⊑ y, if y  A then y  B.

⋄ x  t iff x ∈ T , for each x ∈ F .
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⋄ x  �A iff for each y ∈ F , where xSy, y  A.

⋄ x  ♦−A iff for some y ∈ F , where ySx, y  A.

⋄ x  ∼A iff for each y ∈ F , where xCy, y 6 A.

⋄ x  ¬A iff for each y ∈ F , where yCx, y 6 A.

⋄ x  A→ B iff for each y, z ∈ F , where Rxyz, if y  A then z  B.

⋄ x  A ◦B iff for some y, z ∈ F , where Ryzx, y  A and z  B.

⋄ x  B ← A iff for each y, z ∈ F , where Ryxz, if y  A then z  B.

The value [[A]] of a formula A is the set {x ∈ F : x  A} of points at which A is
true.

It is useful to extend the scope of an evaluation to also relate points to
structures.

⋄ x  0 if and only if x ∈ T .

⋄ x  X,Y if and only if x  X and x  Y .

⋄ x  X;Y if and only if for some y, z, where Ryzx, y  X and z  Y .

⋄ x  •X if and only if for some y, where ySx, y  X.

A model M is a frame together with an evaluation on that frame.

The evaluation conditions for a connective determine the logical properties of
that connective. These conditions also determine, to some extent, how frames
can be interpreted. For example, the conditions for ∧,∨,⊤,⊥ ensure that points
in frames are “informationally complete” and non-trivial. That is, no point can
support no information (as x  ⊤ always) or support everything (as x 6 ⊥).
They are closed under conjunction, and more restrictively, in some sense, under
disjunction. That is, all disjunctive information is witnessed. If x  A ∨B then
x  A or x  B. This rules out points being interpreted as arbitrary bodies
of information or theories, for surely a theory can admit a disjunction without
admitting either disjunct.

The intensional clauses are more wide-ranging. For an intensional connec-
tive, the value of a complex proposition at a point is determined by the value of
its components at other points. We have already seen the example of negation
discussed previously. For necessity and possibility we see relatively standard
behaviour: �A is true here if and only if A is true in all points accessible by S.
The difference comes with the behaviour of ♦−. ♦−A is true here if and only if
A is true in some world, not necessarily accessible by S, but accessible by the
converse of S. So, if �A is true here if and only if A is true at all of the points I
can see, then ♦−A is true here if and only if A is true at some world which can
see me. This gives us the required connections between � and ♦−, as we will see
soon. We will explore how to model a more standard “possibility” — one for
which ♦A is true here if and only if I can see an A point — in Section 11.6.
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For fusion and implication the justification is similar. A → B is true here
if and only if for any point at which A is true, B is true wherever the result of
applying what is true here to what is true there is true. That is a mouthful, but
it is one way of reading the ternary relation R: Rxyz if and only if the result of
applying x to y is true in z.

The following lemma ensures that all propositions in a model satisfy the hered-
ity condition.

LEMMA 11.10 (PROPOSITIONS IN FRAMES)
In any model M the value of any formula A is a proposition in the (point set of

the) frame.

PROOF A simple induction on the complexity of A, using the requirements on
accessibility relations and truth sets. Clearly [[A]] ∈ Prop(P) whenever A is
atomic. Suppose the result holds for propositions less complex than A. If A is a
conjunction, then [[A]] = [[B ∧ C]] = [[B]] ∩ [[C]], and Prop is clearly closed under
intersections. Similarly, if A is a disjunction, then [[A]] = [[B ∨ C]] = [[B]] ∪ [[C]],
and Prop is closed under unions.

Consider the intensional connectives. Suppose A = �B. If x  �B and
x ⊑ x′ then if x′Sy, then we have xSy and hence y  B. Thus x′  �B too,
and [[�B]] is a proposition. Similarly, if x  ♦−B and x ⊑ x′ then since ySx for
some y where y  B, we also have ySx′ and hence x′  ♦−B too.

Suppose A = B → C. If x  B → C and x ⊑ x′ then if Rx′yz, we
have Rxyz, so if y  B then z  C as desired. The cases for negation, the
intuitionistic conditional, right-to-left implication and fusion are similar, and
are left to Exercise 11.8. �

Given a model we have a way to evaluate propositions on points in a frame.
Models motivate the following definitions.

DEFINITION 11.11 (ENTAILMENT ON MODELS AND FRAMES)
⋄ X entails A in the model M, written ‘X ⊢M A,’ iff for every point x, if x  X

then x  A.

⋄ X entails A in the frame F , written ‘X ⊢F A,’ iff for every model M based
on F , X ⊢M A.

⋄ X entails A in the class F of frames, written ‘X ⊢F A,’ iff X ⊢F A for each
F ∈ F.

These frames are good for many substructural logics, but not all. The conjunc-
tion and disjunction clause make sure that A ∧ (B ∨ C) ⊢F (A ∧ B) ∨ (A ∧ C)
for any frame F . To model substructural logics without distribution, we need
to wait for the next chapter. We will end this section by looking at a few more
examples of frames, which knit together the definitions we have seen so far.
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EXAMPLE 11.12 (LANGUAGE FRAMES WITH IDENTITY)
A language frame has the set of strings on some alphabet as its point set. A
language frame with identity includes the empty string ǫ. The ternary relation R
is given by setting Rxyz if and only if xy = z. This is an acceptable accessibility
relation as the point set is flat.

Since ǫx = xǫ = x for each x, it follows that {ǫ} is both a left and a right
truth set. We can use this to interpret t. Note that in linguistic frames with
identity, we have A ⊢F A ◦ (B → B) as if x  A then x = xǫ, and ǫ = B → B.
A ⊢F A ◦ (B → B) does not hold in language frames without identity. Take a
language frame including the letter a. Take an interpretation such that a  A.
Since a 6= bc for any strings b and c, a 6 A ◦ (B → B).

This example shows that the structure of the frame and its accessibility relation
affects the logical properties of the evaluation. This influence is global because
of the behaviour of the rules for implication and fusion. Adding points to a
frame will alter the behaviour of the old points, as the implication and fusion
clauses (and the necessity or possibility clauses) quantify over all accessible
points.

EXAMPLE 11.13 (TWO-DIMENSIONAL FRAMES)
Given a set D, we can define a frame on the set D ×D of pairs of D elements,
by defining the ternary relation R on D × D, setting R〈a, b〉〈c, d〉〈e, f〉 if and
only if b = c, e = a and b = f . In other words, 〈a, b〉 composes with 〈b, c〉 to
result in 〈a, c〉, and no other relations hold between pairs. So, the evaluation
conditions on these two-dimensional frames reduce as follows:

⋄ 〈a, b〉  A ◦B if and only if for some c ∈ D, 〈a, c〉  A and 〈c, b〉  B.

⋄ 〈a, b〉  A→ B if and only if for each c ∈ D if 〈b, c〉  A then 〈a, c〉  B.

⋄ 〈a, b〉  B ← A if and only if for each c ∈ D if 〈c, a〉  A then 〈c, b〉  B.

In this frame, the ternary R reduces to a partial function on pairs. This function
is associative but not symmetric, where defined. The point set is flat — there is
no natural notion of inclusion to be imposed. This frame has a truth set, but in
this case it is not a singleton {ǫ} but the set {〈a, a〉 : a ∈ D}. This is both a left
and a right truth set, as you can check.

These models are studied by van Benthem, Došen and Orłowska [31, 63,
189] in the context of substructural logics, and they have blossomed into their
own industry, under the suggestive name ‘arrow logics’ [151]. In these logics,
we think of the points 〈a, b〉 as transitions, or arrows, from a to b.

These are important frames for they are closely related to language frames
in a number of respects — the relation R is functional: if Rxyz and Rxyz′ then
z = z′. However, in this case the relation is partial. For some x, y there is no z
such that Rxyz.
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EXAMPLE 11.14 (ACTION FRAMES)
There are at least two different ways to define frames to model actions. In both
cases, we will let the points in the frames be action types, such as giving away
$10, buying a book, inviting a friend over for dinner and so on. Action types can
be combined serially. If x and y are actions, there may well be the action xy,
of doing x and then y. Now, we could allow the frame to be flat and set Rxyz
if and only if xy = z. Then associativity of composition gives us if Rxyz and
Rzwv then there is a u where Ryzu and Rxuv. And conversely. However, this
is only a partial accessibility relation, for there is no reason to think that every
pair of action must be able to be combined. Why should there be an action of
giving away all my money and then buying dinner for my friends?

A possible refinement of this approach is to allow action types to be ordered
by inclusion. For example, buying a book ⊑ buying Entailment Volume 2, in the
sense that buying a book follows from buying Entailment Volume 2 in particular.
Now we can set Rxyz to hold when xy ⊑ z. Clearly, inclusion respects compo-
sition. If x ⊑ x′ and y ⊑ y′ then xy ⊑ x′y′. (If x′ is a special case of x and y′

is a special case of y then x′y′ is a special case of xy.) Then R so defined is a
plump accessibility relation.

EXAMPLE 11.15 (DOMAIN SPACES)
Take a domain theoretic model of the untyped λ-calculus [1, 105, 240, 241].
Scott’s construction involves a topological space D such that D is isomorphic
to the space [D → D] of continuous functions from D to itself. We do not
need to examine the details of the construction, but some properties of D are
important. Since every element of D is paired with a function in [D → D], we
can think of the objects equally well as functions. Therefore, there is a two-
place operation of application on the domain. Consider x(y) — the application
of (the function paired with) x to y. Scott’s model D is equipped with a notion
of approximation ⊑ such that x ⊑ y. If x ⊑ y, then x is an approximation of y,
or equivalently, y is a precisification of x. Approximation is a partial order, so
the domain together with approximation forms a point set. Approximation on
the domain interacts with function application by way of the conditions that if
x ⊑ x′ and y ⊑ y′ then x(y) ⊑ x′(y′). (If x approximates x′ and y approximates
y′ then x(y) approximates x′(y′).)

We can assign types to functions in this model by “reading” the model as a
frame for a logic. If we set Rxyz to be x(y) ⊑ z, then R is an accessibility rela-
tion on the domain, as you can check. Consider now the clauses for evaluating
an implication:

⋄ x  A→ B if and only if for each y, z, where x(y) ⊑ z, if y  A then z  B.

Given that the evaluation is hereditary, this simplifies to
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⋄ x  A→ B if and only if for each y, where y  A, x(y)  B.

In other words, x is of type A → B if and only if whenever given an input
of type x, the output is of type B. This gives us an intuitively plausible no-
tion of function typing. For example, λx.(x + 1) will have type Even→ Odd and
Odd→ Even. The function λx.λy.(2x+y) has type N→ (Odd→ Odd) (whatever
number x is, if y is odd, so is 2x+y) but it does not have type Odd→ (N→ Odd)
(if y is even, the output will be even, not odd). This is an example demonstrat-
ing the failure of the permutation-related rule: A→ (B → C) ⊢ B → (A→ B).

Furthermore, we can use other connectives to expand the type analysis of
terms. Conjunction clearly makes sense in this interpretation: x  A ∧ B if
and only if x  A and x  B. In this way, we have models not only for typing
functions with → but also with intersection. These are models for the Torino
type system λ∩ [12, 49, 115, 273].

There is also a natural left truth set in our model. The identity function
e = λx.x is such that ex = x for every x. Therefore, the set {y : e ⊑ y} is a
truth set. It naturally models the truth constant t. This is a left truth constant
and not a right truth constant.

This example is an important one for motivating very weak substructural log-
ics, for it is one of the few natural cases in which the associativity of fusion
is manifestly unwarranted. Action composition is obviously associative, as is
string composition and many other forms of composition. Function applica-
tion is definitely not associative. There is no reason, in general, to think that
f(g(x)) = (fg)x.

This connection between functions (and the λ-calculus) and substructural
logics is the second we have seen. It is important to see how they differ. For the
system of type assignment and proof decoration of Chapter 7, the guiding idea
was for λ-terms to code up proofs. In this case, we are using logical machinery
to provide a type analysis of functions, with no particular regard for the deco-
ration of proofs. The difference can be illustrated by the way that the treatment
of conjunction differs. For proof decoration, it is important that a proof of A∧B
can be decomposed into a proof of A and a proof of B. So, if M is of type A and
N is of type B, take the pair 〈M,N〉 to be of type A∧B. Considering functions
as points in a frame to be typed by terms we use a different analysis. In this
case, we say that if M is both of type A and of type B, then it is also of type
A ∧ B. Now the unique decomposition of proofs is gone. There is nothing in
the term M which witnesses to the origin of the conjunction A ∧B.

Similarly, in a proof decoration system, the logically valid formulae are those
provable with no undischarged assumptions: their proofs are coded by terms
with no free variables. Different systems have different allowable terms. In R,
we allow multiple variables to be bound by the one λ abstraction, but we do
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not allow vacuous abstraction. In LL (without exponentials) we allow neither.
In the domain spaces under consideration here, the logically valid consecutions
are not those with closed terms but are rather the types of the identity function.
For here, λx.x has type A ∧ B → B, and if λx.x  A → B then anything
of type A is also of type B, so λx.x  (C → A) → (C → B) as any C-to-A
function is automatically a C-to-B function. If union types are allowed, then
λx.x  A∧(B∨C)→ (A∧B)∨(A∧C). The logic of this style of type assignment
system is at least the positive fragment of DBSub, the basic substructural logic
with distribution.2

This is enough examination of example frames. We will now turn to the task of
pairing frames with logics. Which frames model which logics?

11.3 Soundness and Completeness

We need to know how varying our accessibility relations on a frame F varies
the consequence ⊢F of that frame.

EXAMPLE 11.16 (WHEN A ⊢F (A→ B)→ B, AND WHEN A ◦B ⊢F B ◦A)
Take an arbitrary frame F , with an evaluation . Suppose x ∈ F and x  A.
We want to see if x  (A → B) → B. Take a y, where y  A → B and Rxyz.
We want to see when z  B. For that, we would like to apply the A→ B at y to
the A at x. Rxyz is not enough to do this, but Ryxz is. So, if the frame also has
Ryxz, we are done, and z  B. So, if a frame satisfies the general condition
Rxyz → Ryzx, then we will have A ⊢F (A→ B)→ B.

The consecution A◦B ⊢F B◦A will also be satisfied under these conditions.
If x  A ◦B then there are y, z where Ryzx, y  A and z  B. By the condition
on the frame, we have then Rzyx, which then gives x  B ◦ A as well. This
consecution too is given by the condition which allows us to swap the first two
positions in R.

DEFINITION 11.17 (CONDITIONS FOR STRUCTURAL RULES)
The corresponding condition for the structural rule X ⇐ Y is defined as follows.
We assume the constituents of X and Y are from among A1, . . . , An, and that
our first-order language contains variables x, x1, . . . , xn and y and z.

2 Venneri [273] also considers the types of closed terms under intersection typing. This is a
strange logic in which the → theorems are those of intuitionistic logic, but in which conjunction
introduction is restricted. Thus, A → (B → A) and A → ((A → B) → B) are theorems, as
λx.λy.x has the first type, and λx.λy.yx has the second, but the conjunction (A → (B → A)) ∧
(A → ((A → B) → B) is not a theorem, as there is no closed term with both types. For our models,
the “logic” is the type of the identity object, not the type of all closed terms, and this is obviously
closed under conjunction.
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The variable x stands apart as the main variable, each xi is related to Ai,
and y, z . . . are used as bound variables.

SR(Ai) = xi ⊑ x

SR(⊤) = true

SR(0) = Tx

SR(X,Y ) = SR(X) ∧ SR(Y )

SR(X;Y ) = ∃y∃z(Ryzx ∧ SR(X)[x := y] ∧ SR(Y )[x := z])

SR(•X) = ∃y(ySx ∧ SR(X)[x := y])

Then for the translation of the structural rule X ⇐ Y is

∀x, x1, . . . , xn(SR(Y )→ SR(X))

EXAMPLE 11.18 (STANDARD CONDITIONS FOR STANDARD RULES)
Consider the structural rule CI, X;Y ⇐ Y ;X. Its corresponding condition,

according to our definitions, is ∀x, x1, x2

(

SR(X;Y ) → SR(Y ;X)
)

, which is
equivalent to

∀x, x1, x2

(

∃y∃z(Ryzx ∧ x1 ⊑ y ∧ x2 ⊑ z)→ ∃y∃z(Ryzx ∧ x2 ⊑ y ∧ x1 ⊑ z)
)

This is not a particularly perspicuous condition, but it simplifies under the as-
sumption that R is plump. By the interaction between R and ⊑, we have
Ryzx ∧ x1 ⊑ y ∧ x2 ⊑ z if and only if Rx1x2x. Therefore, our condition
simplifies to

∀x, x1, x2(Rx1x2x→ Rx2x1x)

which we have already seen as corresponding to A ⊢ (A→ B)→ B.
Consider another example, the structural rule B: X; (Y ;Z) ⇐ (X;Y );Z.

The condition SR(X; (Y ;Z)) is

∃y∃z(Ryzx ∧ ∃u∃v(Ruvy ∧ x1 ⊑ u ∧ x2 ⊑ v) ∧ x3 ⊑ z)

which simplifies (again, when R is plump) to ∃y(Ryx3x ∧ Rx1x2y). Similarly,
SR((X;Y );Z) simplifies to ∃z(Rx1zx∧Rx2x3z). This motivates a definition of
new terms:

R(xy)zw = ∃u(Rxyu ∧Ruzw)

Rx(yz)w = ∃u(Ryzu ∧Rxuw)
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Then SR(X; (Y ;Z))→ SR((X;Y );Z) is equivalent to the simple condition on
frames:

∀x1, x2, x3, x
(

Rx1(x2x3)x→ R(x1x2)x3x
)

which corresponds, by eye, to the original structural rule. Other structural rules
may be analysed in a similar way. Some results are in Table 11.1.

Label Rule Condition

B X; (Y ;Z)⇐ (X;Y );Z R(xy)xw → Rx(yz)w

B′ X; (Y ;Z)⇐ (Y ;X);Z R(yx)zw → Rx(yz)w

Bc (X;Y );Z ⇐ X; (Y ;Z) Rx(yz)w → R(xy)zw

C (X;Y );Z ⇐ (X;Z);Y R(xz)yw → R(xy)zw

CI X;Y ⇐ Y ;X Rxyz → Ryxz

W (X;Y );Y ⇐ X;Y Rxyz → R(xy)yz

WI X;X ⇐ X Rxxx

M X ⇐ X;X Rxxy → x ⊑ y

K X ⇐ X;Y Rxyz → x ⊑ z

K′ X ⇐ Y ;X Ryxz → x ⊑ z

T •X ⇐ X xSx

4 •X ⇐ ••X xSy ∧ ySz → xSz

Kr 0⇐ •0 Tx ∧ xSy → Ty

mMP •X; •Y ⇐ •(X;Y ) Rzw(Sx)→ R(zS)(wS)x

mWI •X; •X ⇐ •X xSy → R(xS)(xS)y

mK X ⇐ X; •Y Rx(Sy)z → x ⊑ z

m2t •X ⇐ X; 0 Rx(T )z → xSz

t2m X; 0⇐ •X xSz → Rx(T )z

m2⊤ •X ⇐ X;Y Rxyz → xSz

⊤2m X;⊤ ⇐ •X xSz → ∃y(Rxyz)

Table 11.1: Conditions for Structural Rules, given Plump Relations
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In that table, we use some other devices for writing compound relations:

R(xS)yz = ∃w(xSw ∧Rwyz) R(Sx)yz = ∃w(wSx ∧Rwyz)
Rx(yS)z = ∃w(ySw ∧Rxwz) Rx(Sy)z = ∃w(wSy ∧Rxwz)
Rxy(Sz) = ∃w(wSz ∧Rxyw) Rxy(zS) = ∃w(zSw ∧Rxyw)
R(T )yz = ∃w(Tw ∧Rwyz) Rx(T )z = ∃w(Tw ∧Rxwz)

Therefore, T is a left truth set if and only if for each x and y, R(T )xy if and only
if x ⊑ y. Similarly, it is a right truth set if and only if Rx(T )y just when x ⊑ y.

DEFINITION 11.19 (FRAMES FIT FOR A SYSTEM)
Given a system S, a frame is fit for S if and only if every condition correspond-
ing to each structural rule holds in the frame.

This section will be devoted to showing that a consecution is provable in a
system if and only if it holds in every frame fit for that system — for any natural
deduction system extended by structural rules. In the next section, we will
extend the result to cover extensions for negation.

The equivalence result splits, as always, into two parts: soundness and com-

pleteness. In this case, the soundness result is the simpler of the two.

THEOREM 11.20 (SOUNDNESS OF FRAMES)
If F is fit for S, and if X ⊢ A is provable in S, then X ⊢F A.

To prove this we need to show that, given a frame fit for S, all axioms hold
in the frame, and that if the premises of a rule hold in the frame, so does
the conclusion. The structural rules require special treatment, so we will work
through a lemma which deals with them before getting to the proof of the main
theorem.
LEMMA 11.21 (STRUCTURAL RULES AND THEIR TRANSLATION)
In any model M, and any structure X, with atomic constituents A1, . . . , An, we

have x  X if and only if there are points x1, . . . , xn such that xi  Ai for each i,
and SR(X).

PROOF This is an induction on the complexity of X. If X is a formula, then
x  Ai if and only if for some xi, where xi  Ai and xi ⊑ x, simply by choosing
xi to be x. If X is ⊤, then x  ⊤ always. If X is t, then x  t if and only if
x ∈ T . This deals with the base cases.

Suppose that the result holds for substructures of X. If X is Y ;Z, then
x  X if and only if there are y, z, where y  Y , z  Z and Ryzx. But
by hypothesis, y  Y if and only if SR(Y )[x := y] and z  Z if and only if
SR(Z)[x := z], so x  X if and only if there are y, z where Ryzx, SR(Y )[x := y]
and SR(Z)[x := z], which is exactly SR(X).

The case for the comma is simpler: If X is Y,Z then x  X if and only if
x  Y and x  Z, if and only if (by hypothesis) SR(Y ) and SR(Z) which is
exactly SR(X), as desired. This completes the proof. �
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To prove the soundness of our logics with respect to their frames, it will help to
have the following result.

LEMMA 11.22 (PRESERVATION OF STRUCTURE)
In any model M, if X ⊢M A, then if x  Y (X) then X  Y (A).

PROOF A simple induction on the structure of Y . If Y (X) does not involve
X, the result holds vacuously. If Y (X) is X then Y (A) is A, and the result
is immediate. For the first induction step, suppose x  Z1(X);Z2(X). Then
there are y, z where Ryzx and y  Z1(X) and z  Z2(X). Then by induction,
y  Z1(A) and z  Z2(A). Therefore x  Z1(A);Z2(A) as desired. The case for
the comma and for • are just as simple. �

Now we can proceed with the proof of the soundness theorem.

PROOF We will prove that if X ⊢ A holds in S, then X ⊢F A, by induction on
the length of the proof of X ⊢ A.

First of all, A ⊢F A holds in any frame since if x  A then x  A. The
structural rules are dealt with by Lemma 11.21. Suppose X ⊢F A and X ⇐ Y
is a structural rule. We wish to show that Y ⊢F A. The condition SR(Y ) →
SR(X) is satisfied by our frame, by hypothesis. Suppose x  Y . It follows that
SR(Y ) holds, and by the frame condition, SR(X) holds too. But the lemma
again gives x  X, which then gives x  A by X ⊢F A, as desired.

Now consider the connective rules. We will work through a couple, and the
rest are left for Exercise 11.11. Consider the → rules. For (→E), suppose that
X ⊢F A → B and Y ⊢F A. We wish to show that X;Y ⊢F B. To that end,
suppose x  X;Y . Then there are y, z where Ryzx, y  X and z  Y . Since
X ⊢F A → B, it follows that y  A → B, and since Y ⊢F A, it follows that
z  A. Then Ryzx gives x  B as desired.

For (→I), suppose that X;A ⊢F B. We wish to show that X ⊢F A → B.
So, suppose x  X. Then to show that X ⊢F A→ B, take x  X, and check to
see whether x  A→ B. For this, assume that Rxyz and y  A. It follows that
z  X;A and hence z  B as desired.

Consider now the fusion rules. For (◦I), suppose that X ⊢F A and Y ⊢F B.
If x  X;Y then there are y, z where Ryzx, y  X and z  Y . Therefore y  A
and z  B, giving x  A ◦B. Therefore X;Y ⊢F A ◦B, as desired.

For (◦E), suppose that X ⊢F A◦B and Y (A;B) ⊢F C. We wish to show that
Y (X) ⊢F C. Suppose, therefore, that x  Y (X). It follows, by Lemma 11.22,
that x  Y (A ◦B), but x  Y (A ◦B) if and only if x  Y (A;B) (the clauses for
A;B and A ◦B are identical) and hence x  C as desired.

The extensional rules are simple: if X ⊢F A and X ⊢F B then clearly
X ⊢F A ∧ B, and conversely. Similarly, if X ⊢F A then X ⊢F A ∨ B, and
likewise if X ⊢F B. Trivially, X ⊢F ⊤ for any X at all. And if X ⊢F ⊥, it
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follows that for no x at all in F does x  X, and an induction on the structure
of Y will show that neither will x  Y (X), so Y (X) ⊢F A.

The rules for t, ←, � and ♦− contain no innovations and are left for Exer-
cise 11.11. �

Frames and natural deduction systems have similar properties. In natural de-
duction systems, each family of connectives is defined in terms of a particular
punctuation mark, and extra structural rules involving the punctuation marks
govern the distinctive behaviour of the logical system. In frames, each family of
connectives is defined in terms of an accessibility relation, and extra properties
satisfied by that relation govern the distinctive behaviour of the logical system.
The soundness proof was tedious but straightforward. The completeness proof
is more difficult. Here, we need to show that if X 6⊢ A in some system, then
there is a model, fit for that system, in which X 6⊢MA. This is not a straightfor-
ward verification, as we need to construct the model in which the consecution
fails. Here, we need some techniques for building models. Thankfully, most of
the raw materials are ready to hand.

Consider the case of completeness for propositional structures, from Chap-
ter 8. In that case, we constructed a propositional structure — the Lindenbaum
algebra — out of the language of the logic. Propositions in the structure were
equivalence classes of provably equivalent formulae. The same sort of construc-
tion will be used here — except now we need to construct points in a frame.
For this, individual formulae will not do the trick. To see what will, consider
what is needed of points in a model: a point is closed under consequence. That
is, if x  A and A ⊢ B, then x  B too. Points are closed under conjunction
too. If x  A and x  B, then x  A ∧ B. Furthermore, points are prime. If
x  A∨B then x  A or x  B. (In addition, points are non-trivial: x  ⊤ and
x 6 ⊥.) So the set of formulae supported by a point in a model must be a prime

theory. It is these we will use to construct our frame.

DEFINITION 11.23 (THE CANONICAL POINT SET)
Given a logic its canonical point set is the set of all non-trivial prime theories in
that logic, ordered by the subset relation ⊆.

Next, we define the accessibility relations on the frame. For that, we must
consider what we need the accessibility relations to do. For example, consider
C. If x  ∼A and y  A then we ought not to have xCy. We will let C hold
between x and y unless it is explicitly ruled out by whatever is in x and y. Alas,
we can define C in terms of ∼, or we can define it in terms of ¬, if both are
present. For the moment, we will allow definitions in terms of any connective,
as follows:
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DEFINITION 11.24 (THE CANONICAL ACCESSIBILITY RELATIONS)
Given a canonical point set, the canonical accessibility relations are defined on
that set as follows:

Ttx iff t ∈ x
xS�y iff for each �A ∈ x, A ∈ y
xS♦−y iff for each A ∈ x, ♦−A ∈ y
xC∼y iff for each ∼A ∈ x, A 6∈ y
xC¬y iff for each ¬A ∈ y, A 6∈ x

R→xyz iff for each A→ B ∈ x and A ∈ y, B ∈ z
R←xyz iff for each A ∈ x and B ← A ∈ y, B ∈ z
R◦xyz iff for each A ∈ x and B ∈ y, A ◦B ∈ z

This multiplicity of accessibility relations quickly disappears, as the following
lemma tells us.

LEMMA 11.25 (EQUIVALENCE OF ACCESSIBILITY RELATIONS)
If � and ♦− are both present in L, then S� and S♦− are equivalent. If ∼ and ¬
are both present in L, then C∼ and C¬ are equivalent. If any two of →, ← and

◦ are present in L, then the corresponding relations between R→, R← and R◦ are

equivalent.

PROOF We will work through a few cases here and leave the rest to Exer-
cise 11.12. Suppose that xS�y. We wish to show that xS♦−y. Suppose that
A ∈ x. Then as A ⊢ �♦−A, �♦−A ∈ x too (as x is a theory). So since xS�y,
♦−A ∈ y as desired. Conversely, suppose that xS♦−y. We wish to show that
xS�y. Suppose that �A ∈ x. We wish to show that A ∈ y. Since xS♦−y we have
♦−�A ∈ y. However, ♦−�A ⊢ A, so since y is a theory, A ∈ y as desired.

Suppose that R→xyz. We wish to show that R←xyz. To that end, suppose
that A ∈ x and B ← A ∈ y. We can prove A ⊢ (B ← A) → B, which gives
us (B ← A) → B ∈ x (see Exercise 2.5) and R→xyz with B ← A ∈ y gives
us B ∈ x as desired. Conversely, if R←xyz, to show that R→xyz, suppose that
A→ B ∈ x and A ∈ y. From A ⊢ B ← (A→ B) we get B ← (A→ B) ∈ y and
R←xyz with A→ B ∈ x we get B ∈ z as desired.

The other cases (∼/¬, →/◦ and ←/◦) are no more difficult and are left to
Exercise 11.12. �

From now, then we suppose that on the canonical point set for L we have the ac-
cessibility relations S, C and R, as appropriate, defined by whatever intensional
connectives appear in L.

DEFINITION 11.26 (THE CANONICAL FRAME AND MODEL)
The canonical frame FL for the logic L is given by adding the canonical acces-
sibility relations for L to the canonical point set. The canonical model for L is
given by adding the relation  as follows:
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x  A iff A ∈ x

The crucial lemma involves showing that this is a sensible relation. That is,
the membership relation in the canonical model satisfies the conditions for an
evaluation.

LEMMA 11.27 (THE CANONICAL MODEL IS A MODEL)
Given a pair extension acceptable logic L, the ‘canonical model’ is indeed a model

fit for the logic L.

This involves showing that the frame conditions are satisfied by the canonical
frame, that the connective rules are satisfied, and the structural rules of the logic
in question hold. To prove this lemma we proceed step by step with simpler
results. The first shows that the accessibility relations on the canonical model
are, indeed, accessibility relations:

LEMMA 11.28 (CANONICAL ACCESSIBILITY RELATIONS)
The relations R, C and S on the canonical model are plump accessibility relations.

PROOF Suppose → is present, and R is defined in terms of →. Suppose too
that Rxyz and x′ ⊆ x, y′ ⊆ y and z ⊆ z′. Then if A→ B ∈ x′ and A ∈ y′, then
A → B ∈ x and A ∈ y, giving B ∈ z and hence B ∈ z′ as desired. Therefore
Rx′y′z′. If→ is absent, and R is defined in terms of ◦, then suppose Rxyz and
x′ ⊆ x, y′ ⊆ y and z ⊆ z′. Then if A ∈ x′ and B ∈ y′ then A ∈ x and B ∈ y,
giving A ◦B ∈ z, and hence A ◦B ∈ z′ as desired.

The other cases, for←, and for C and S, are just as straightforward and are
left to Exercise 11.13. �

Next we need to show that the accessibility relations interact in the right way
with their respective connectives.

LEMMA 11.29 (WITNESS LEMMA)
Whenever x, y, and z are prime theories in some pair extension acceptable logic,

then

⋄ If �A 6∈ x then for some y such that xSy, A 6∈ y.

⋄ If ♦−A ∈ x then for some y such that ySx, A ∈ y.

⋄ If ∼A 6∈ x then for some y such that xCy, A ∈ y.

⋄ If ¬A 6∈ x then for some y such that yCx, A ∈ y.

⋄ If A→ B 6∈ x then for some y and z such that Rxyz, A ∈ y and B 6∈ z.

⋄ If B ← A 6∈ x then for some y and z such that Ryxz, A ∈ y and B 6∈ z.

⋄ If A ◦B ∈ x then for some y and z such that Ryzx, A ∈ y and B ∈ z.
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PROOF The proof in each case is a simple application of the Pair Extension
Theorem (on page 94). We will do the cases for ♦−, ¬ and →. The rest are
similar and are left to Exercise 11.14.

Suppose that ♦−A ∈ x. We wish to find a y where ySx and A ∈ y. Consider
the pair 〈{A}, {B : ♦−B 6∈ x}〉. This is indeed a pair. If A ⊢

∨

Bi for some
Bi where ♦−Bi 6∈ x, then as x is prime,

∨

♦−Bi 6∈ x, and hence ♦−
∨

Bi 6∈ x
by the distribution of ♦− over disjunction. However, A ⊢

∨

Bi gives us ♦−A ⊢
♦−
∨

Bi and ♦−A ∈ x gives ♦−
∨

Bi, conflicting with what we have seen. Thus
〈{A}, {B : ♦−B 6∈ x}〉 is a pair and hence can be extended to a full pair 〈y, z〉.
Now A ∈ y and y is a prime theory. We know too that ySx, since if B ∈ y then
♦−B ∈ x, since we cannot have ♦−B 6∈ x, as in that case we would have B ∈ z,
and we know that z and y do not overlap. Thus ySz as desired.

Suppose that ∼A 6∈ x. We wish to find a y where xCy and A ∈ y. Consider
the pair 〈{A}, {B : ∼B ∈ x}〉. This is indeed a pair. If A ⊢

∨

Bi for some Bi

where ∼Bi ∈ x, then as x is a theory
∧

∼Bi ∈ x, and hence ∼
∨

Bi ∈ x too.
However, A ⊢

∨

Bi gives us ∼
∨

Bi ⊢ ∼A, and hence ∼A ∈ x, contradicting
what we already know. So 〈{A}, {B : ∼B ∈ x}〉 extends to a full pair 〈y, z〉,
giving us a prime theory y. We have A ∈ y by construction, and xCy as if
∼A ∈ x then A ∈ z and hence A 6∈ y.

Suppose that A → B 6∈ x. We wish to find y and z where Rxyz, A ∈ y and
B 6∈ z. Consider 〈{B′ : A→ B′ ∈ x}, {B}〉. This is a pair, since if

∧

B′i ⊢ B,
then since A → B′i ∈ x for each B′i, A →

∧

B′i ∈ x too. Therefore, if
∧

B′i ⊢ B
we would have A → B ∈ x, contrary to our assumption. Therefore we have
a pair, and it can be extended to a full pair 〈z, v〉, in which z is prime. In
particular, B 6∈ z, since B ∈ v.

Now consider 〈{A}, {C : ∃D 6∈ z, C → D ∈ x}〉. This is a pair, since if A ⊢
∨

Ci then since for each i there is a Di 6∈ z, where Ci → Di ∈ x, it follows that
∧

(Ci → Di) ∈ x, giving
∨

Ci →
∧

Di ∈ x. Therefore, if A ⊢
∨

Ci we have
A→

∧

Di ∈ x. But this means that
∧

Di ∈ z, and hence Di ∈ z for some z (as
z is prime), contrary to our assumption that every Di 6∈ z. Therefore we have a
pair, and this can be extended to a full pair 〈y, w〉. Again, y is a prime theory.

Now we can check that Rxyz. Take an arbitrary C → D ∈ x, where C ∈ y.
Then if D 6∈ z, we have C ∈ w (by the construction of the full pair 〈y, w〉)
contradicting C ∈ y. Therefore D ∈ z as desired. �

This result will be enough to show that the connective rules are satisfied, as the
next lemma shows.

LEMMA 11.30 (CONNECTIVES IN THE CANONICAL MODEL)
In the canonical model in a pair extension acceptable logic, for any non-trivial

prime theory x we have

⋄ ⊤ ∈ x.
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⋄ ⊥ 6∈ x.

⋄ A ∧B ∈ x if and only if A ∈ x and B ∈ x.

⋄ A ∨B ∈ x if and only if A ∈ x or B ∈ x.

⋄ t ∈ x if and only if x ∈ T .

⋄ �A ∈ x if and only if for each y where xSy, A ∈ y.

⋄ ♦−A ∈ x if and only if for some y where ySx, A ∈ y.

⋄ ∼A ∈ x if and only if for some y where xCy, A 6∈ y.

⋄ ¬A ∈ x if and only if for some y where yCx, A 6∈ y.

⋄ A→ B ∈ x if and only if for each y and z where Rxyz, if A ∈ y then B ∈ z.

⋄ B ← A ∈ x if and only if for each y and z where Ryxz, if A ∈ y then B ∈ z.

⋄ A ◦B ∈ x if and only if for some y and z where Ryzx, A ∈ y and B ∈ z.

PROOF The first four conditions are given, since each x is a non-trivial prime
theory. The fifth is given by the definition of T . Consider the � condition. If
�A ∈ x then by the definition of S�, if xSy then A ∈ y. Conversely, if �A ∈ x
then the witness lemma assures us that there a prime y where xRy and A 6∈ y.
The other cases are just as simple. �

To deal with the structural rules, we want some way of combining theories that
mimics the combination of structure.

DEFINITION 11.31 (COMBINING THEORIES)
Given theories y and z, we define the theories (y, z), (y; z) and •y as fol-
lows.

⋄ (y, z) = {C : ∃A ∈ y,∃B ∈ z(A,B ⊢ C)}

⋄ (y; z) = {C : ∃A ∈ y,∃B ∈ z(A;B ⊢ C)}

⋄ •y = {C : ∃A ∈ y(•A ⊢ C)}

If X is a structure with atomic constituents A1, . . . , An, and if x1, . . . , xn are
theories, define X(x1, . . . , xn), the theory corresponding to X, as follows:

Ai(x1, . . . , xn) = xi

⊤(x1, . . . , xn) = {A : ⊤ ⊢ A}

0(x1, . . . , xn) = {A : 0 ⊢ A}

(Y,Z)(x1, . . . , xn) = Y (x1, . . . , xn), Z(x1, . . . , xn)

(Y ;Z)(x1, . . . , xn) = Y (x1, . . . , xn);Z(x1, . . . , xn)

•Y (x1, . . . , xn) = •
(

Y (x1, . . . , xn)
)

In this definition, we get X(x1, . . . , xn) from X by replacing the formula Ai by
xi, 0 by {A : t ⊢ A}, ⊤ by {A : ⊤ ⊢ A}, and then by using comma, semicolon
and • as operations on theories instead of as punctuation marks in structures.
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Once we have such operations on theories, we can see how they interact with
structural rules.

LEMMA 11.32 (SQUEEZE LEMMA)
If L is a pair extension acceptable logic, and if x is a non-trivial prime L-theory,

and if y, z are L-theories, then

⋄ If (y, z) ⊆ x then there are non-trivial prime theories y′ ⊇ y and z′ ⊇ z, where

y′, z′ ⊆ x.

⋄ If (y; z) ⊆ x then there are non-trivial prime theories y′ ⊇ y and z′ ⊇ z, where

y′; z′ ⊆ x.

⋄ If •y ⊆ x then there is a non-trivial prime theory y′ ⊇ y, where •y′ ⊆ x.

PROOF Each case is a corollary of the Pair Extension Theorem.

⋄ Suppose that (y, z) ⊆ x. Then 〈z, {B : (∃A ∈ y, C 6∈ x)(A,B ⊢ C)}〉 is a
pair. If not, there is a B′ ∈ z where B′ ⊢

∧

Bi, where Ai, Bi ⊢ Ci for each
i, Ai ∈ y, Ci 6∈ x. (We need not consider

∨

B′j in the antecedent, as z is
a theory.) Then it follows that

∧

Ai,
∨

Bi ⊢
∨

Ci by simple manipulations.
Now

∨

Ci 6∈ x, as x is prime. Similarly,
∧

Ai ∈ y as y is a theory. So,
if
∨

Bi ∈ z, this contradicts (y, z) ⊆ x. Therefore we have a pair, which
can be extended to a full pair 〈z′, w′〉. Here z′ is prime, and (y, z′) ⊆ x
since if A ∈ y and A,B ⊢ C with C 6∈ x then B ∈ w′ and hence B 6∈ z′.
Now consider 〈y, {A : (∃B ∈ z′, C 6∈ x)(A,B ⊢ C)}〉. This, too, is a pair (the
reasoning is analogous to the case we have already seen), which can thus
be extended to a full pair 〈y′, v′〉, for which y′ is prime and (y′, z′) ⊆ x, as
required.

⋄ Suppose (y; z) ⊆ x. Replace the comma by the semicolon in the proof
above.

⋄ Suppose •y ⊆ x. Then 〈y, {B : (∃C 6∈ x)(•B ⊢ C)}〉 is a pair, since if it is
not, B′ ∈ z, where B′ ⊢

∧

Bi, where •Bi ⊢ Ci for each i, Ci 6∈ x. It would
follow that •

∨

Bi ⊢
∨

Ci by simple manipulations. Now
∨

Ci 6∈ x, as x is
prime. So, if

∧

Bi ∈ z, this contradicts •y ⊆ x. Therefore we have a pair,
which can be extended to a full pair 〈y′, w′〉, with y′ prime and •y′ ⊆ x as
desired. �

LEMMA 11.33 (STRUCTURAL RULE CONDITIONS)
If x1, . . . , xn and x are points in the canonical model, then SR(X) holds in the

canonical model if and only if X(x1, . . . , xn) ⊆ x.

PROOF An induction on the construction of X. The hypothesis holds if X is
any of 0,⊤ or Ai. Consider the case for the comma. SR(Y, Z) if and only if
SR(Y ) and SR(Z) if and only if Y (x1, . . . , xn) ⊆ x and Z(x1, . . . , xn) ⊆ x if
and only if (Y,Z)(x1, . . . , xn) ⊆ x as desired.
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Similarly, SR(Y ;Z) if and only if for some prime theories y, z, where Ryzx,
SR(Y )[x := y] and SR(Z)[x := z]. That is equivalent to there being prime
theories y and z, where Ryzx, Y (x1, . . . , xn) ⊆ y and Z(x1, . . . , xn) ⊆ z.

Now, if this holds, then (Y ;Z)(x1, . . . , xn) ⊆ y; z ⊆ x as desired. Conversely,
if (Y ;Z)(x1, . . . , xn) ⊆ x, by the squeeze lemma, there are prime y′ and z′,
where Y (x1, . . . , xn) ⊆ y′ and Z(x1, . . . , xn) ⊆ z′ where (y′; z′) ⊆ x. But this is
equivalent to Ry′z′x, so we have the equivalence.

The case for • is similar and is left to Exercise 11.15. �

This next lemma is a simple verification by induction on the structure of X. We
state it without proof.

LEMMA 11.34 (MEMBERS OF X(x1, . . . , xn))
A ∈ X(x1, . . . , xn) if and only if for some Bi ∈ xi, X(B1, . . . , Bn) ⊢ A, where

X(B1, . . . , Bn) is given from X by replacing each formula Ai by Bi. �

Now we can see how structural rules behave in the canonical model.

LEMMA 11.35 (RULE PRESERVATION)
If X ⇐ Y is a structural rule, then in the canonical model, X(x1, . . . , xn) ⊆
Y (x1, . . . , xn) for all theories x1, . . . , xn.

PROOF Suppose X ← Y holds. Then if A ∈ X(x1, . . . , xn) we have for
some Bi ∈ xi, X(B1, . . . , Bn) ⊢ A. Therefore, by the structural rule we get
Y (B1, . . . , Bn) ⊢ A, and hence, A ∈ Y (x1, . . . , xn) as desired. �

This corollary shows us when the conditions corresponding to a structural rule
hold in the canonical frame.

COROLLARY 11.36 (STRUCTURAL RULES IN THE CANONICAL FRAME)
The conditions corresponding to the structural rules holding in S hold in the

canonical frame for S.

PROOF Suppose X ← Y holds. Then if SR(Y ) we have Y (x1, . . . , xn) ⊆ x and
hence, by Lemma 11.35, X(x1, . . . , xn) ⊆ x, giving SR(X) as desired. �

Now we can finish the proof of the completeness theorem.

THEOREM 11.37 (COMPLETENESS OF FRAMES)
If X ⊢F A for each frame F fit for S,s then X ⊢ A is provable in S, then

PROOF We prove the converse and show that if X 6⊢ A then there is some frame
in which X holds and A does not. We choose the canonical frame. We must
show that the accessibility relations are indeed accessibility relations. That has
been given by Lemma 11.28. We need to check that the canonical relation 
satisfies the required conditions. That has been delivered by Lemma 11.30.
Finally, we need to show that the structural rules hold, but that has been com-
pleted in Corollary 11.36. �
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The soundness and completeness theorems together show us that certain classes
of frames (classes satisfying structural rule conditions) fit exactly our substruc-
tural logics. This is a powerful result, as techniques for manipulating frames
will help us to prove more things about our logics. In Section 11.7, we will
extend our conservative extension results to deal with a wide range of connec-
tives. In Section 13.3, we will show that certain substructural logics may be
conservatively extended by Boolean negation. Furthermore, for many applica-
tions of substructural logics, a particular frame forms the intended interpretation

of the logic. For example, a class of strings under composition is a frame, and
the relation  between points in the frame and propositions simply is the notion
of string typing to be modelled by the logic. So a soundness and completeness
result shows that the natural deduction system captures validity in the intended
domain. In Chapter 16, we will consider whether frame semantics can give an
intended model for when we use a substructural logic to model consequence
between propositions in general. Before we can do this, however, we need to
extend our work to deal with negation, which is not covered by our techniques
so far.

11.4 Negation

Our negation conditions are not expressed as structural rules, so we need to
deal with these on a case-by-case basis.

Rule Condition

∼ = ¬ xCy → yCx

∼⊤ ⊢ ⊥ ∀x∃y(xCy)

A ∧ ∼A ⊢ ⊥ xCx

⊤ ⊢ A ∨ ∼A xCy → y ⊑ x

∼(A ∧B) ⊢ ∼A ∨ ∼B xCy1 ∧ xCy2 → (∃z)((y1 ⊑ z) ∧ (y2 ⊑ z) ∧ xCz)

∼∼A ⊢ A ∀x∃y(xCy ∧ ∀z(yCz → z ⊑ x))

∼I;¬E ∃x(Ryzx ∧ xCw)→ ∃v(Rywv ∧ zCv)

¬I;∼E ∃v(Rywv ∧ zCv)→ ∃x(Ryzx ∧ xCw)

Table 11.2: Conditions for Negation

THEOREM 11.38 (SOUNDNESS FOR THE NEGATION CONDITIONS)
If a frame satisfies a condition in Table 11.2, then the corresponding consecution

is valid in that frame.
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The proof of this theorem is a straightforward verification.

PROOF Suppose that xCy → yCx for each x and y. Then take an arbitrary
point x in the frame. If x  ∼A then for any y where xCy, y 6 A. It follows
that for any y where yCx, that y 6 A, so y  ¬A too. The converse also holds,
so ∼A is equivalent to ¬A, as desired.

Suppose that ∀x∃y(xCy) in F . Then it follows that x 6 ∼⊤, as there is a y
where xCy, and we have y 6 ⊥. Therefore ∼⊤ ⊢F ⊥ holds, as desired.

Suppose that xCx for each x ∈ F . Then if x  A, since xCx we have
x 6 ∼A, and hence, A ∧ ∼A ⊢F ⊥ as desired.

Suppose that xCy → y ⊑ x for each x, y ∈ F . Then if x 6 A, if xCy then
y ⊑ x, so y 6 A, and hence x  ∼A. Therefore, for any x, x  A ∨ ∼A, and
thus, ⊤ ⊢F A ∨ ∼A, as desired.

Suppose that xCy1 ∧ xCy2 → (∃z)((y1 ⊑ z) ∧ (y2 ⊑ z) ∧ xCz) for each
x, y1, yn ∈ F . Take x  ∼(A ∧ B). Now we ask whether x  ∼A ∨ ∼B. To
prove this we need to show that there are no y1 and y2 where xCy1 and xCy2,
y1  A and y2  B. Are there any such? If there are, then there is a z where
xCz, y1 ⊑ z and y2 ⊑ z. This gives z  A∧B, which contradicts x  ∼(A∧B).
Therefore, there are no such y1 and y2, and we have x  ∼A ∨ ∼B as desired.

Suppose that ∀x∃y(xCy ∧ ∀z(yCz → z ⊑ x)) in F . Suppose that x  ∼∼A.
To show that x  A, we reason as follows: there is a y such that xCy, and for
any z, yCz → z ⊑ x. Now, since x  ∼∼A we have y 6 ∼A, so there is a z
where yCz, and z  A. Since z ⊑ x, we have x  A as we wished.

Suppose that (∃x)(Ryzx ∧ xCw) gives (∃v)(Rywv ∧ zCv). Suppose that
A;B ⊢F ¬C. We wish to show that A;C ⊢F ∼B. If x  A;C then there are y, z
where y  A, z  C and Ryzx. We wish to show that x  ∼B. So, we want
to know that if xCw then w 6 B. The frame condition tells us that there is a v
where Rywv and zCv. So, z  C ensures that v 6 ¬C, and so, since A;B ⊢ ¬C,
we have v 6 A;B. So since y  A and Rywv, we have w 6 B as desired.

The rule (¬I;∼E) is dual to the rule (∼I;¬E) and its verification is dual to
that given above. This completes the proof. �

The conditions, then, guarantee that the corresponding consecution holds in the
frame. For the reverse, we show that the canonical frame for a logic including
a consecution in the table also satisfies the condition corresponding to it.

THEOREM 11.39 (COMPLETENESS FOR THE NEGATION CONDITIONS)
The canonical frame for a logic including a consecution in Table 11.2 satisfies the

condition corresponding to that consecution.

PROOF Suppose that in some logic ∼ and ¬ are identified, and suppose that
xCy in the canonical frame. To show that yCx, take ∼A ∈ y. If x ∈ A then
∼∼A ∈ x (as A ⊢ ∼∼A) we have ∼A 6∈ y, contradicting what we assumed.
Therefore x 6∈ A, and yCx as desired.
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Suppose that in our logic ∼⊤ ⊢ ⊥ holds. Take a non-trivial prime theory
x. We want a prime theory y such that xCy. Consider 〈{⊤}, {A : ∼A ∈ x}〉.
This is a pair, since if ⊤ ⊢

∨

Ai for some choice of Ai where ∼Ai ∈ x, then
∼
∨

Ai ⊢ ∼⊤. But ∼
∨

Ai ⊣⊢
∧

∼Ai ∈ x, and ∼⊤ ⊢ ⊥. This would give ⊥ ∈ x,
which is not possible, as x is non-trivial. Therefore 〈{⊤}, {A : ∼A ∈ x}〉 is a
pair, which can be extended to a full pair 〈y, z〉, with y prime, and for which
xCy. (Since if ∼A ∈ x then A ∈ z and hence A 6∈ y.)

Suppose that in our logic we have A ∧ ∼A ⊢ ⊥. Take a non-trivial prime
theory x. If ∼A ∈ x then A 6∈ x since A ∧ ∼A ⊢ ⊥. Therefore xCx as desired.

Suppose that in our logic we have ⊤ ⊢ A ∨ ∼A. Then in any non-trivial
prime theory x, A∨∼A ∈ x, so either A ∈ x or ∼A ∈ x. Therefore, if xCy, and
A ∈ y, then ∼A 6∈ x, and hence A ∈ x. Since A is arbitrarily chosen, y ⊆ x as
desired.

Suppose that ∼(A ∧ B) ⊢ ∼A ∨ ∼B, and that xCy1 and xCy2. We want a
prime theory z where y1 ⊆ z, y2 ⊆ z and xCz. Consider 〈y1 ∪ y2, {A : ∼A ∈ x}〉.
This is a pair, since if B ∧ C ⊢

∨

Ai, where B ∈ y1 and C ∈ y2, and where
∼Ai ∈ x, then since ∼

∨

Ai ⊣⊢
∧

∼Ai, we have
∧

∼Ai ⊢ ∼(B ∧ C). But then
∧

∼Ai ⊢ ∼B ∨ ∼C, giving ∼B ∨ ∼C ∈ x (as
∧

∼Ai ∈ x). Since x is prime,
∼B ∈ x (contradicting xCy1) or ∼C ∈ x (contradicting xCy2). Therefore we
have a pair, which can be extended to 〈z, w〉, giving us our prime z, for which it
is easily verified that xCz.

Suppose that ∼∼A ⊢ A, and that x is a prime theory. We wish to show that
for some y, xCy and for all z where yCz we have z ⊑ x. To verify this, first
note that if ∼∼A ⊢ A then ∼(A ∧ B) ⊢ ∼A ∨ ∼B. Since ∼A ⊢ ∼A ∨ ∼B gives
∼(∼A∨∼B) ⊢ ∼∼A and hence ∼(∼A∨∼B) ⊢ A. Similarly, ∼(∼A∨∼B) ⊢ B
giving ∼(∼A∨∼B) ⊢ A∧B and hence ∼(A∧B) ⊢ ∼∼(∼A∨∼B), which gives
∼(A ∧B) ⊢ ∼A ∨ ∼B as desired.

Now to construct the desired y, consider the set x∗ = {A : ∼A 6∈ x}. We will
show that this is the desired prime theory. First, xCx∗, by definition. Second,
if x∗Cz then whenever ∼A ∈ x∗, A 6∈ z. Now suppose that B ∈ z. First, x∗Cz
gives ∼B 6∈ x∗, and thus, ∼∼B ∈ x by definition of x∗. Therefore B ∈ x as
desired.

Then we need to show that x∗ is a prime theory. It is clearly closed under
entailment — if A ⊢ B then ∼B ⊢ ∼A. For conjunction, if A,B ∈ x∗ then
∼A,∼B 6∈ x, so the primeness of x ensures that ∼A ∨ ∼B ∈ x, so we have
∼(A∧B) 6∈ x, giving A∧B ∈ x. For primeness, if A∨B ∈ x∗ then ∼(A∨B) 6∈ x,
and hence ∼A ∧ ∼B 6∈ x, so since x is a theory, at least one of ∼A and ∼B is
not in x, giving one of A and B in x∗. Similarly, for not-triviality, if ⊥ ∈ x∗ then
∼⊥ 6∈ x, which would mean that ⊤ 6∈ x, which is not the case, so ⊥ 6∈ x∗. And
since ∼⊥ ⊢ ⊤ we have ∼⊤ ⊢ ∼∼⊥ ⊢ ⊥, so ∼⊤ 6∈ x, giving ⊤ ∈ x∗, which
completes our demonstration that x∗ is a prime theory.
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Now for (∼I;¬E), we wish to show that if Ryzw and xCw then there is a
prime theory v where Rywv and zCv. To do this, we consider whether zC(y;w).
Suppose that ¬A ∈ yw. Is A 6∈ z? Well, since ¬A ∈ yw there are B ∈ y and
C ∈ w, where B;C ⊢ ¬A, and by (∼I;¬E) it follows that B;A ⊢ ∼C. So C ∈ w
and xCw ensures that ¬C 6∈ x, so B;A 6∈ x, giving A 6∈ z as desired, as Ryzx
and B ∈ y. Therefore, zC(y;w). Now use the Pair Extension Lemma to find a
prime v where (y;w) ⊆ v and zCv. (How? 〈(y;w), {B : ∼B ∈ z}〉 is a pair.) It
follows that Rywv, and we have our condition.

The condition (¬I;∼E) is dual, and proved similarly. �

That deals with our negation conditions. We know that all of the logics defined
by structural rules, or negation rules (or a mix of both) are modelled by frame
semantics.

11.5 Correspondence

Soundness and completeness together provide us with quite an understanding
of how frames work. However, another kind of relationship can hold between
consecutions and conditions on frames.

DEFINITION 11.40 (FRAME CORRESPONDENCE)
The condition C on frames corresponds to the consecution X ⊢ A just when
X ⊢F A if and only if F satisfies C.

Consider the consecution p ⊢ ∼∼p. If I have a frame on the set {a, b}, where
aCb but ∼(bCa), then I can construct an evaluation on the frame which will
make p ⊢ ∼∼p fail. Take a  p, and b 6 p. Since b is not compatible with
any point at which A is true (in particular, it is not compatible with a) we have
b  ∼A. Therefore since b is compatible with a, a 6 ∼∼A. Therefore A ⊢ ∼∼A
fails.

It is easy to spot how this counterexample to double negation elimination
works. It is made possible by the failure of the symmetry of C. In fact, in any

frame which is not symmetric, we can construct a failure of double negation
elimination in a similar way. Consider a frame F in which aCb and ∼(bCa).
Now define  by setting x  p if and only if a ⊑ x. So we have made p true at
x and true at as few other places as possible. Now consider b. Does b  ∼p?
Consider all y such that bCy. If bCy then we could not have y  p, since that
would mean that a ⊑ y, which would give bCa, which we know we do not have.
Therefore, y 6 p, for any y where bCy, and hence, b  ∼p. Therefore, since
aCb, a 6 ∼∼p. Therefore, p 6⊢F ∼∼p.

This reasoning works no matter what else is going on in the frame F . There-
fore, we have the following correspondence theorem.
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THEOREM 11.41 (DNE CORRESPONDS TO SYMMETRY)
If C is plump, then C is symmetric in F if and only if p ⊢F ∼∼p.

By the soundness theorem we have the left-to-right direction, and the reasoning
we have just given provides justification for the right-to-left direction.

This sort of “correspondence” result is well known in modal logics. For
an overview of results in correspondence theory, consult van Benthem’s survey
article [30].

We must underline that correspondence results are not the same as sound-
ness and completeness results. We may have a correspondence result without a
completeness result if the canonical model for the logic fails to satisfy the cor-
respondence condition. In this case, the model (with its privileged evaluation
relation) will validate the theses of the logic, but the canonical frame underly-
ing the model will not. In the other direction, it is possible to have conditions
for which a logic is sound and complete. For example, S4 is sound and com-
plete for finite tree models of modal logic, but the condition of being a finite tree
does not correspond to the logic S4, for there are S4 frames which are not finite
trees.

It is quite straightforward to expand our catalogue of correspondence results
to the other negation conditions.

THEOREM 11.42 (NEGATION CORRESPONDENCE RESULTS)
Each consecution in Table 11.2 corresponds to its matching frame condition (in

plump frames).

PROOF This is a simple verification of cases. We will show how it is done for
(∼I;¬E). We have already seen that if F satisfies the condition ∃x(Ryzx ∧
xCw) → ∃v(Rywv ∧ zCv) then the rule (∼I;¬E) holds in the frame. (That is
the soundness result.) For the converse, suppose the condition fails. That is, we
have points x, y, z, w where Ryzx and xCw but there is no v where Rywv and
zCv. We will construct an evaluation in which p; q ⊢ ¬r holds but p; r ⊢ ∼q fails.
We need some point x where x  p; r (so, some y and z where Ryzx, y  p and
z  r) but in which x 6 ∼q. So, we set [[p]] = {y′ : y ⊑ y′}, [[q]] = {w′ : w ⊑ w′}
and [[r]] = {z′ : z ⊑ z′}. We have x 6 ∼q, since xCw and w  q. To show that
p; q ⊢ ¬r, suppose that u  p; q then there are y′, w′ where Ry′w′u. Since R is
plump, it follows that Rywu. Now suppose that sCu. Can we have s  r? If we
do, then z ⊑ s, and hence zCu, which does not holds by our condition on the
frame (there is no point v where Rywv and zCv, so u cannot be such a point).
This ensures that u 6 ¬r, so we have p; q 6⊢F ¬r as desired. �

So much holds for our negation conditions. We will end this section by showing
that correspondence results also hold for our structural rules.
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For now, in a statement Y ⇐ X of a structural rule, we will assume that the
formulae occurring in Y and X are atomic propositions p1, . . . , pn, or ⊤. This is
no restriction, for the rules are closed under substitution for formulae.

THEOREM 11.43 (CORRESPONDENCE FOR STRUCTURAL RULES)
For any structural rule Y ⇐ X, we have X ⊢F Y (i.e. for each x, if x  X then

x  Y ) if and only if the frame F satisfies the condition SR(X)→ SR(Y ).

To prove this we need one more lemma in the style of those proved for the
completeness theorem.

LEMMA 11.44 (SR CORRESPONDENCE)
Given a structure X with constituents from among p1, . . . , pn, and a model M

with points x1, . . . xn, such that [[pi]] = {y : xi ⊑ y}, then x  X if and only if

SR(X) holds in M.

This is a simple induction on the complexity of X.

PROOF Suppose that X is pi. Then x  pi if and only if xi ⊑ x, by the definition
of [[pi]], but xi ⊑ x is the definition of SR(pi). If X is 0, then x  X if and only
if Tx, which is SR(0). If X is ⊤, then x  X always, and this is SR(⊤).

Suppose that X = Y ;Z and the hypothesis holds for Y and Z. Then x 
Y ;Z if and only if for some y and z where Ryzx, SR(Y )[x := y] and SR(Z)[x :=
z]. This is the definition of SR(Y ;Z).

Similar reasoning verifies the cases for Y,Z and •Z. This completes the
proof. �

Now we have the correspondence result.

PROOF One half of the correspondence is established by soundness, as always.
For the other half, assume that F does not satisfy SR(X) → SR(Y ). Let the
atomic propositions in X and Y come from p1, . . . , pn. Since the condition fails,
there are points x, x1, . . . , xn in F such that SR(X) holds and SR(Y ) fails.
Define [[·]] by setting [[pi]] = {y : xi ⊑ y}. By Lemma 11.44, since SR(X) holds,
x  X. By the same lemma, since SR(Y ) fails, x 6 Y . Therefore X ⊢F Y fails,
as desired. �

11.6 New Conditions and New Logics

Frames give us natural ways to do things that we cannot do simply with other
approaches to our logics. One is to define an operator ♦ which is dual with �
in the following way. We can set

x  ♦A iff for some y, where xSy, y  A.
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Note that ♦ differs from ♦− in the direction of the accessibility relation. In clas-
sical logic, we can define ♦ in terms of � simply: ♦ is ∼�∼. But in our logics,
∼�∼ is nothing like ♦: its evaluation clause will involve the compatibility rela-
tion C as well as S. This will only work to define ♦ when ∼ is Boolean negation.
Once we define ♦ with the above clause, it is straightforward to show that the
following conditions are satisfied in any model (and hence frame, or class of
frames).

�(A ∨B) ⊢ �A ∨ ♦B �A ∧ ♦B ⊢ ♦(A ∧B)

We will call these the Dunn conditions, as Dunn was the first to explain their
significance in the study of modal logics without Boolean negation.3

THEOREM 11.45 (SOUNDNESS OF THE DUNN CONDITIONS)
In any frame F in which S� = S̆♦, we have

�(A ∨B) ⊢F �A ∨ ♦B �A ∧ ♦B ⊢F ♦(A ∧B)

PROOF If x  �(A∨B) then to show that x  �A∨♦B, suppose that x 6 �A.
Then there is some y where xS�y, where y 6 A. However, x  �(A ∨B) gives
y  B. Therefore, since S� ⊆ S̆♦ there is some y where yS♦−x and y  B, giving
x  ♦B as desired.

The other condition is given by S̆♦ ⊆ S� in a similar way. �

What is less obvious is that the logic of � and ♦ tied together with those clauses
is sound and complete with respect to the class of frames in which S� = S̆♦−.

For this, we need to abandon our plump accessibility relations, as the next
lemma shows. For the statement of this lemma we need one definition.

DEFINITION 11.46 (COMPONENTS IN POINT SETS)
A ⊑-component in a point set P is a non-empty subset X ⊆ P such that, first,
if x ∈ X and x ⊑ y or y ⊑ x then y ∈ X, and second, X has no proper subset
with this property.

So, an ⊑-component is a set X such that any two points in X are connected by
some path which goes up and down the relation ⊑, and any point so accessible
from X is in X.

LEMMA 11.47 (TRIVIALITY OF PLUMP RELATIONS)
If S and S̆ are both plump positive two-place accessibility relations, then if xSy
and x′ is in the same ⊑-component as x and y′ is in the same ⊑-component as y,

then x′Sy′. As a result, in any frame so defined, ⊤ ⊢F �A ∨ (�A ⊃ ⊥), where ⊃
is intuitionistic implication.

3 Dunn called these the �–� interaction rules [79].
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PROOF Since S is plump and positive, if xSy, x′ ⊑ x and y ⊑ y′ then x′Sy′.
Similarly, since S̆ is plump and positive, if xSy and x ⊑ x′ and y′ ⊑ y, then
x′Sy′. So, if x′ is in the same ⊑-component as x, and y′ is in the same ⊑-
component as y, then there is some zig-zag ⊑-path between x and x′, another
between and y and y′. C is preserved across such a path.

Therefore, for any point x in such a frame F , if x  �A, then x′  �A for
each x′ in the same ⊑-component as x. Therefore, if x 6 �A, x′ 6 �A for each
x′ ⊒ x, and it follows that x′  �A ⊃ ⊥, as desired. �

This proves that plump relations S such that S̆ is also plump, are not enough to
model the many possible logics of � and ♦. Here is an example of such a logic.

EXAMPLE 11.48 (POSSIBILITY IN LINEAR ⊑-FRAMES)
Take the class of linear ⊑-frames, in which x  ♦A if and only if for some y ⊒ x,
y  A. (Linearity is necessary to ensure that ♦ formulae satisfy the heredity con-
dition.) This is a possibility relation. Furthermore, its corresponding necessity
is the vacuous modality, since we have

A ∨B ⊢ A ∨ ♦B A ∧ ♦B ⊢ ♦(A ∧B)

which are the Dunn conditions when � is the vacuous operator. However, in
these models we do not have ⊢ A ∨ (A ⊃ ⊥).

To model this logic, at least, we need to move away from plump frames. This
means we need to move away from our standard canonical model construction,
since S� and S♦, as defined in the canonical model, are plump. To prove com-
pleteness we need to do something else. Here, we define xSy in the canonical
model structure if and only if xS�y and yS♦x. In other words, xSy if and only
if whenever �A ∈ x, A ∈ y, and furthermore, if A ∈ y, ♦A ∈ x.

LEMMA 11.49 (S IS A POSITIVE TWO-PLACE ACCESSIBILITY RELATION)
If x′Sy′ then if x ⊆ x′ there is a y ⊆ y′ where xSy, and similarly, if y ⊆ y′ then

there is an x ⊆ x′ where xSy.

PROOF Suppose that x′Sy′, and x ⊆ x′. We want some y ⊆ y′ where xSy.
Consider

〈

�−1x, y′ ∪ ♦−1x
〉

(where x is the set of formulae not in x, �−1x =
{A : �A ∈ x}, and ♦−−1x = {A : ♦−A ∈ x}). This is a pair. Suppose that

∧

Ai ⊢
B ∨

∨

Bj , where Ai ∈ �
−1x (so each �Ai ∈ x for each i), B ∈ y′ (so B 6∈ y′)

and Bj ∈ ♦−1x (so ♦Bj 6∈ x for each x). Therefore �
∧

Ai ⊢ � (B ∨
∨

Bj). But
� (B ∨

∨

Bj) ⊢ �B ∨ ♦
∨

Bj ⊢ �B ∨
∨

♦Bj . However, �
∧

Ai ∈ x and neither
�B nor ♦Bj ∈ x for any j. So we have a pair, and it is extended by a full pair
〈y, z〉. Then y is prime, and xSy, since if �A ∈ x, A ∈ y, and if A ∈ y then
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♦A ∈ x (by the converse: if ♦A 6∈ x, then A ∈ z and hence A 6∈ y). Finally,
y ⊆ y′, as z ⊇ y′.

Similarly, if x′Sy′ and y ⊆ y′, then we construct x where xSy. Consider
〈

♦y, x′ ∪�y
〉

. This is a pair, since if Ai ∈ y and B 6∈ x and Bj 6∈ y, we cannot
have

∧

♦Ai ⊢ B ∨
∨

�Bj . Since whenever Ai ∈ y, ♦Ai ∈ x, so
∧

♦Ai ∈ x.
However, B 6∈ x (as B 6∈ x′ ⊇ x) and �Bj 6∈ x (since xSy, and Bj 6∈ y). So, we
have a pair, which is extended by the full pair 〈x,w〉, in which x is prime, x ⊆ x′

and xSy. Since if �A ∈ x, then A ∈ y (if A 6∈ y then �A ∈ w, so �A 6∈ x) and
if A ∈ x then ♦A ∈ y. �

LEMMA 11.50 (COUNTEREXAMPLES WITH S)
Whenever x is a prime theory, then if �A 6∈ x, there is some prime theory y where

xSy and A 6∈ y. Similarly, if ♦A ∈ x, then there is some prime theory y where

xSy and A ∈ y.

PROOF Suppose that ♦A ∈ x. We want some y where xSy and A ∈ y. Consider
〈

�−1x ∪ {A},♦−1x
〉

. This is a pair, since if A ∧ A1 ∧ · · · ∧ An ⊢ B1 ∨ · · · ∨ Bm

where each Ai ∈ �
−1x and Bj ∈ ♦

−1x then we have ♦A ∈ x, �Ai ∈ x
and ♦Bj 6∈ x. By properties of necessity and the fact that x is a theory, we
have ♦A ∧ �(A1 ∧ · · · ∧ An) ∈ x. By the second Dunn condition we have
♦(A∧A1 ∧ · · · ∧An) ∈ x. By monotonicity of ♦, we have ♦(B1 ∨ · · · ∨Bm) ∈ x,
giving ♦B1 ∨ · · · ∨ ♦Bm ∈ x. This contradicts the fact that each ♦Bi 6∈ x, given
the primeness of x.

So, our pair is extended by a prime pair 〈y, w〉. We have xSy, since if �A ∈
x, A ∈ y, and if A ∈ x then ♦A ∈ y too.

For the second condition, we reason similarly. If �A 6∈ x then consider
〈

�−1x,♦−1x ∪ {A}
〉

. This is a pair (for similar reasons, using the other Dunn
condition) and its full extension 〈y, w〉 gives us a prime y such that xSy and
A 6∈ y. �

There is a similar phenomenon with negation. We can define negation con-
nectives with “possibility-like” properties, giving them existentially quantified
causes.

x  ⌢A iff for some y where xCy, y 6 A
x  ⌣A iff for some y where yCx, y 6 A

In this case, it is simple to verify the following connections between our new
negations and our other negation connectives.

∼A ∧⌢B ⊢⌢(A ∨B) ∼(A ∧B) ⊢ ∼A ∨⌢B
¬A ∧⌣B ⊢⌣(A ∨B) ¬(A ∧B) ⊢ ¬A ∨⌣B

We will leave it to the exercises to prove the soundness and completeness of
these conditions.
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11.7 Conservative Extensions from Frames

Now we will show that many more conservative extensions are possible.

LEMMA 11.51 (ADDING FAMILY)
Given a model for some language Lang, we can extend the evaluation  to model

the language Lang′, which adds to Lang the whole family for every intensional or

modal connective.

PROOF Consider the case for � and ♦−. If we have �, we can define ♦− on this
model by using the � accessibility relation, and similarly, if we have ♦− we can
define � on this model by using the ♦− accessibility relation. �

So, given a frame for → we can add ◦ and ←. For ∼ we can add ¬, for � we
can add ♦−, and so on.

This will give us a much stronger conservative extension result than is pos-
sible using the ideal structure of Section 9.2. That construction would not give
us the conservative extension of→ by ◦, or of � by ♦−. Now we have that result.

THEOREM 11.52 (CONSERVATIVE EXTENSION BY FAMILY)
Any logic L which is sound and complete for a class of frames is conservatively

extended by a logic which adds the mates of any connectives in L.

PROOF Suppose that X ⊢ A fails in some model on some frame. Extend the
model to also evaluate the mates of the connectives in L, in the manner of
Lemma 11.51. Then X ⊢ A can be invalidated in this extended model. This
model is a model of the extended logic as it validates the family conditions. �

So frames give us powerful results when it comes to proving theorems about
our logics. Frames also give us very concrete models for our logics. In the next
chapter, we will see how to use frames to model logics without distribution.

11.8 History

The frame semantics for modal logics has a long and involved history. The
original papers of Kripke no doubt popularised the possible worlds seman-
tics [126, 128], but the ideas had many antecedents in many different fields.4

Early antecedents of the frame semantics for substructural logics can be found
in Jónnson and Tarski’s work on the representation of Boolean algebras with
operators [122, 123]. This work presents what amounts to a soundness and
completeness result for frames of substructural logics (with Boolean negation),
though it takes a certain amount of hindsight to see it as such. The papers are
written very much from the perspective of algebra and representation theory.

4 Copeland’s essay on “Prior’s Life and Legacy” [48] explains Arthur Prior’s involvement, among
many others in the history of possible worlds semantics.
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Urquhart [262, 263, 264, 265], in a series of papers, explored what is now
known as an operational semantics for relevant implication. In this semantics,
the accessibility relation is an operation: Rxyz if and only if z = x ⊔ y, where
⊔ has the properties of a semilattice join operator. This is good for the seman-
tics of → and ∧ in relevant logics, but it does not do well for disjunction. The
points in the semantics are theories, not necessarily prime theories. If x and y
are theories, so is x⊔y — ‘(x; y)’ in our notation. However, if x and y are prime,
there is no assurance that (x; y) is a prime theory. We might have p→ q ∨ r ∈ x
and p ∈ y, giving q ∨ r ∈ (x; y), without any guidance as to which of q or r
ought to go in (x; y). To deal with this problem, we need either a different
clause for disjunction, and to keep the operational account of implication, or a
different account of implication. Routley and Meyer [227, 228, 229] chose the
latter route, and Fine [84, 85] chose the former. For Routley and Meyer, using
a ternary relation for implication means that we can use prime theories, and
hence use the standard clause for disjunction in the semantics. For Fine, im-
plication can be modelled using the operational semantics, and a non-standard
clause for disjunction is used. An extensive study of the properties of ternary
frames is given in Routley, Meyer, Brady and Plumwood’s Relevant Logics and

their Rivals [231]. Gabbay [89] also gave a ternary relational semantics for
implication, independently of the tradition of Routley and Meyer.

According to Cresswell [119, page 50] the term ‘frame’ was first used in
print by Segerberg [242].

Frames can be viewed from an algebraic point of view — with an eye on the
definitions of Chapter 8. The class Prop(F) of propositions of the frame is a
completely distributive lattice under intersection and union, and it is equipped
with the appropriate operators, defined by the clauses in the evaluation condi-
tions. For example, the implication clause gives us

α→ β = {x : (∀y, z ∈ F)(Rxyz → (y ∈ α→ z ∈ β))}

Similarly, ∼α = {x : (∀y ∈ F)(xCy → y 6∈ α)}, and so on. We will call the
resulting propositional structure ‘Alg(F)’ the algebra of the frame F . Further-
more, any interpretation  on a frame gives you an evaluation v given by
setting v(A) to be [[A]]. The connections with algebra run even deeper. Our
canonical model is constructed out of prime theories in a language. A similar
construction can work with the prime filters of a propositional structure. Dunn’s
work on gaggles [76, 77, 78] generalises the results here to operators with
arbitrary arity. An n-ary operator is modelled with an n + 1-place relation.

Duality theory is the study of the relationship between algebras and their
representations in terms of frames. There is an important strand of recent
work in the semantics of substructural logic exploring duality theory in this
context [108, 109, 111, 236, 271].
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Dunn is also responsible for the results modelling possibility and necessity
in the absence of Boolean negation [79]. Meyer and Mares have important
work on the particular case of adding an S4-type necessity for R [149], and
they have shown that disjunctive syllogism is admissible in this case, using the
frame semantics to prove it. (Traditional proofs for the admissibility of gamma
break down in the presence of the Dunn conditions for possibility and necessity.)
Meyer and Mares have also studied the extensions of these logics with Boolean
negation [148, 162].

I have used the frame semantics for negations to show how logics such as
intuitionistic logic can be conservatively extended with other negations [217].

Study of the frame conditions corresponding to rules brings forward ques-
tions of canonicity and correspondence. When is the canonical frame for a logic
itself a model of the logic? This is not always the case in modal logics, and
also, not always the case in substructural logics. There has been some work in
attempting to pin down the class of substructural logics for which canonicity
holds [94, 129].

Not all logics have connectives which are amenable to the treatment of ac-
cessiblity relations. We will see this when we consider ! from linear logic. An-
other case is the counterfactual conditional. These are more aptly modelled by
neighbourhood frames. There has been a little work considering how neighbour-
hood frames can be used in a substructural setting [3, 88, 147].

11.9 Exercises

Practice

{11.1} Consider the partially ordered set {a, b, c, d} presented here

a

b c

d

Define the relation X on this set by fixing aXb, aXc and aXd. Is it an accessibility

relation? If so, is it positive or is it negative?

{11.2} Define an accessibility relation R on the set {1, 2, 3, . . .} of positive integers,

ordered by divisibility, by setting Rxyz if and only if xy | z. Is R a plump three-place

accessibility relation?

{11.3} In this frame, let pn be true at all m where n | m. At what points is pn ∧ pm

true? Where is pn → pm true? How about pn ◦ pm?
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{11.4} Does the frame of the previous two exercises have a truth set? What structural

rules are satisfied in this frame?

{11.5} Construct a frame in which A ∧ (A→ B) ⊢ B fails.

{11.6} Construct a frame with a non-plump R on which A ⊢ (A→ B)→ B holds, but

in which there are points x, y, z where Rxyz but not Ryxz.

{11.7} Construct a frame with two different de Morgan negations.

Problems

{11.8} Complete the proof of Lemma 11.10 by showing that [[B ← A]] and [[A ◦B]] are

always propositions on a frame.

{11.9} Consider frames defined in terms of domains. If the domain contains only strict

functions, then the totally undefined object ? (written in bold here to distinguish it

from the false constant ⊥) which approximates everything: ? ⊑ x for each x. In this

domain, x? ⊑ y for each y. So for each x, z there is a y where Rxyz. It follows that

A ⊢ B ◦ ⊤, which makes ◦ look very much unlike conjunction! Explore the logic of

domains containing strict functions. What other odd properties does it have?

{11.10} Construct a simple function of type A → B which is not also of type (C →
A)→ (C → B), proving that B fails for function application.

{11.11} Complete the proof, on page 252, of the soundness theorem by supplying the

analyses for the connective rules missed out there.

{11.12} Complete the proof of Lemma 11.25 by showing that C∼ and C¬ are equiva-

lent, and that any pair of R→, R◦ and R← are equivalent.

{11.13} Complete the proof of Lemma 11.28 by showing that no matter how you define

the canonical accessibility relations, they are, indeed, accessibility relations.

{11.14} Complete the proof of Lemma 11.29 by showing that witnesses exist for �, ∼,

← and ◦ formulae in the canonical model.

{11.15} Complete the proof of Lemma 11.33 by dealing with the inductive step for •.

{11.16} Suppose that � is a necessity and ∼ is a negation. Under what conditions is

∼�∼ a possibility operator? What is its accessibility relation? Under what conditions is

∼�∼ equivalent to �−? When is it equivalent to �? (Where � and � are related by the

Dunn conditions.)

{11.17} Something for first-order equivalents. Take a first-order language with predi-

cates Pi for each atomic formula pi. Fix a variable x, and let α[z := y] be the result

of substituting y for all free occurrences of z in α. The standard translation ST of a

substructural formula is a first-order formula defined as follows:

ST (pi) = Pix

ST (⊤) = true

ST (⊥) = false

ST (A ∧B) = ST (A) ∧ ST (B)
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ST (A ∨B) = ST (A) ∨ ST (B)

ST (t) = Tx

ST (A→ B) = ∀y∀z(Rxyz → (ST (A)[x := y]→ ST (B)[x := z]))

ST (B ← A) = ∀y∀z(Ryxz → (ST (A)[x := y]→ ST (B)[x := z]))

ST (A ◦B) = ∃y∃z(Ryzx ∧ ST (A)[x := y] ∧ ST (B)[x := z])

where y and z are fresh variables in each instance. Extend the definition to model

positive and negative modal operators, and show thatM, x  A if and only ifM |= α[x],
where |= is simple first-order satisfaction.

{11.18} Show that the logic of p-type negations is sound and complete for the frame

conditions given on page 268.

{11.19} Mitchell’s IE models, defined below, are models of linear logic with distribution

of ∧ over ∨ [176]. In these models, points are pairs 〈m, n〉 whose elements are taken

from a commutative monoid R of resources. As R is a commutative monoid, there is an

operation + on R, such that m + n = n + m, with an identity 0, such that m + 0 = m =
0 + m. We evaluate propositions at points as follows: 〈m, n〉  A ◦ B if and only if for

some n1, n2 where n = n1 + n2, 〈m + n1, n2〉  A and 〈m + n2, n1〉  B. 〈m, n〉  ∼A
if and only if 〈n, m〉 6 A. 〈m, n〉  A → B if and only if for each m1, m2 where

m = m1 + m2, if 〈n + m2, m1〉  A then 〈m2, n + m1〉  B. Conjunction, disjunction,

⊤ and ⊥ are defined in the usual way. What are the relations R and C on this frame?

How ought you to interpret t? Show that in this frame !A, defined as t ∧A, satisfies the

conditions for the ! modality. Find a consecution valid in this frame which is not valid in

LL with distribution. Find a consecution not using exponentials valid in this frame, and

that cannot be proved in LL with distribution.

Projects

{11.20} Continuing on from Exercise 11.17, characterise the first-order formulae which

are equivalent to formulae of the form ST (A) for some formula A.

{11.21} Continuing on from Exercise 11.19, find a sound and complete axiomatisation

from the logic of Mitchell’s IE models.

{11.22} Consider Meyer and Mares’ proof of the admissibility of γ for R4 [148]. Char-

acterise a larger class of logics for which it holds. Find some logics for which it does

not.
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Chapter 12

Frames II: Logics Rejecting Distribution

Closure occurs

when the concluding portion of a poem

creates in the reader

a sense of appropriate cessation.

— Barbara Herrnstein Smith, Poetic Closure, 1968

12.1 How to Reject Distribution

Substructural logics with extensional conjunction and disjunction need not sat-
isfy the distributive law. However, the distributive law follows inexorably from
three conditions in the frame semantics for our logics.

1. A ⊢M B if and only if for each x, if x  A then x  B.

2. x  A ∧B if and only if x  A and x  B.

3. x  A ∨B if and only if x  A or x  B.

Given these three conditions, it follows that A∧ (B∨C) ⊢M (A∧B)∨ (A∧C).1

To live without distribution, we need to modify one of our three conditions.
Which should it be?

In answering this question, you need to consider how the completeness re-
sult for a frame semantics is demonstrated. In the previous chapter, we proved
completeness by considering the canonical frame, made up of prime theories.
In the class of prime theories, the conditions (1), (2) and (3) are respected.
A ⊢ B if and only if in every prime theory x, if A ∈ x then B ∈ x. Similarly,
A ∧ B ∈ x iff A ∈ x and B ∈ x, and A ∨ B ∈ x iff A ∈ x or B ∈ x. If prime
theories respect all three conditions, the natural weakening is to consider the
class of theories. In this case, (1) and (2) are respected, but (3) fails. We can
have a theory including A∨B without the theory containing A or containing B.
A natural way to construct models for logics without distribution is to consider
models in which condition (3) fails. It is clear that we need it to fail in the left-
to-right direction: that is, we require points x at which x  A ∨B while x 6 A

1 Belnap’s “Life in the Undistributed Middle” [25] makes this point rather forcefully and examines
the case for living without distribution.
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and x 6 B. The right-to-left direction is assured by condition (1), as we have
A ⊢ A ∨B and B ⊢ A ∨B. Before we consider formal definitions of our frames
for non-distributive logic, we will cast about to see how the issue of semantics
for disjunction has been treated in the past.

EXAMPLE 12.1 (BETH FRAMES)
The oldest account of a frame semantics with a non-standard clause for dis-
junction seems to be Beth’s semantics for intuitionistic logic. Recall the “in-
formational interpretation” of frames for intuitionistic logic. Points are stages
of research ordered by inclusion. We have x  A just when at x, A has been
established. Beth’s interpretation for disjunction relaxes the condition to say
that it might be possible to have x  A ∨ B without having either x  A or
x  B, provided that from x, you will either demonstrate A or demonstrate B
eventually. I can know now that A ∨ B if I know now that either A or B will
be demonstrated at some time in the future. To formalise this, we need two
notions. (For Beth’s work on these frames, see his original papers [35, 36], and
also Chapter 15 of his book The Foundations of Mathematics [37].)

DEFINITION 12.2 (CHAINS AND BARS)
Given a point set P, a subset α of P is totally ordered iff for each x, y ∈ α,
either x ⊑ y or y ⊑ x. α is a chain in P just when it is a maximal totally ordered
subset of P. That is, α is totally ordered, and there is no y ∈ P such that y 6∈ α
and α∪{y} is totally ordered too. A subset B ⊆ P bars a point x iff every chain
α through x intersects B.

Beth’s rule for disjunction is simple:

⋄ x  A ∨B if and only if [[A]] ∪ [[B]] bars x

In other words, for any possible course of research through x (that is, on any
chain through x) either A or B will be verified.

Nearly all else remains the same in the semantics for the intuitionistic con-
nectives, except for one thing. We restrict the propositions to be closed under
barring. That is, if [[A]] bars x for some x, we must have x ∈ [[A]] too. After
all, if I am assured that A will be found out at some stage of my research (no
matter how my research goes) then I am assured that A now. It is sufficient to
know that [[p]] is closed under barring for atomic propositions p, as this property
is inherited by all of the complex propositions.

This is a simply understood semantics for a formal logic with a non-standard
evaluation of disjunction. However, it is not too much help with the failure of
distribution, as distribution is still valid in these models. (What should we
expect? It is meant to be a semantics for intuitionistic logic, after all.) Before
going to another example, let us see how distribution succeeds in this model.
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If x  A∧(B∨C) then x  A and x  B∨C. Therefore every chain through
x is barred by [[B]]∪ [[C]]. To show that x  (A∧B)∨(A∧C) we will show that x
is barred by [[A ∧B]] ∪ [[A ∧ C]]. Take any chain through x. There is some point
y on this chain where y  B or y  C. Now either x ⊑ y or y ⊑ x (chains are
totally ordered), so let z be the later of x and y. Since x ⊑ z, we have z  A.
Since y ⊑ z we have z  B or z  C. So, we have z  A ∧ B or z  A ∧ C,
and as a result, the chain passes through [[A ∧B]] ∪ [[A ∧ C]] as desired. So, we
must look for another way to modify the clause for disjunction in order to reject
distribution.

The first prominent example of a frame with a non-standard evaluation of dis-
junction, for which distribution fails, was given by Robert Goldblatt, who ex-
plicitly considered frames for a logic without distribution.

EXAMPLE 12.3 (GOLDBLATT FRAMES)
Consider orthologic: the logic of an ortho-negation with lattice connectives.
Here a frame will most likely appeal to a two-place compatibility relation C to
deal with negation. The compatibility relation will probably be reflexive (so
A ∧ ∼A ⊢ ⊥) and symmetric (so A ⊢ ∼∼A). The question remains as to how
to deal with disjunction. Goldblatt [100] solved that problem by considering a
simple compatibility frame 〈P,C〉, where P is a set of points (unordered by any
inclusion relation) and C is a symmetric, reflexive compatibility relation on P .
Conjunction and negation are modelled exactly as you would expect.

⋄ x  A ∧B iff x  A and x  B

⋄ x  ∼A iff for each y where xCy, y 6 A

However, as it stands, this semantics does not validate ∼∼A ⊢ A. To add an
extra condition on C to validate double negation elimination would result in C
being the identity relation (see the results in Section 11.4) and the logic would
collapse into classical propositional logic. Goldblatt’s insight was to instead
restrict the evaluation of propositions on the frame to those propositions for
which ∼∼A ⊢ A is valid.

Given a set α ⊆ P , let α∼ = {y : ∀x(x ∈ α → ∼yCx)}, or equivalently,
{y : ∀x(yCx → x 6∈ α)}. Therefore, for any evaluation, [[A]]

∼
= [[∼A]]. A set

α ⊆ P is said to be C-closed if and only if α = α∼∼. The C-closed sets will
model our propositions. If C is symmetric (as it is, here) then α ⊆ α∼∼, since
x ∈ α∼∼ if and only if for each y where xCy there is a z where yCz and z ∈ α.
If x ∈ α, then choosing x for z will do here, to show that x ∈ α∼∼.

It is enlightening to see why whenever αi is a family of C-closed sets, that
their intersection

⋂

i αi is also C-closed. αi is C-closed iff

∀y(xCy → ∃z(yCz ∧ z ∈ αi)) → x ∈ αi
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So, suppose that ∀y(xCy → ∃z(yCz ∧ z ∈
⋂

i αi)). It follows that x ∈ αi for
each i, and therefore that x ∈

⋂

i αi as desired. Therefore
⋂

i αi is C-closed, as
we had wished.

As with Beth frames, a disjunction is true not only at the points at which
either disjunct is true but also at the closure of that set of points. Here, however,
it is C-closure at work.

⋄ x  A ∨B iff x ∈ ([[A]] ∪ [[B]])∼∼

This semantics gives us the failure of distribution well enough. However, it
relies on the presence of negation. It would be good to be able to model the
failure of distribution in logics in which there is no negation — or at the very
least, logics in which ∼∼A is not equivalent to A. The double negation closure
operation is not general enough for our purposes.

EXAMPLE 12.4 (DEDEKIND–MACNEILLE FRAMES)
There is a way to define a different closure operation on frames which needs no
connection to negation. Define ‘y ⊑ α’ to mean y ⊑ x for each x ∈ α. Then the
closure Γα of a set α of points can be given as follows:

Γα = {z : ∀y(y ⊑ α→ y ⊑ z)}

So, if whenever y comes before everything in α it also comes before z, then z
is in the closure of α. To see how this works, consider the closure operation
on the class of all theories of some logic. If α is a set of theories, then suppose
y ⊑ α — that is, y ⊑ x for each x ∈ α. This is equivalent to saying that y ⊑

⋂

α:
y is no bigger than the intersection of the set of the theories in α, which is itself
a theory. So, if y ⊑ z, then we must have

⋂

α ⊑ z too. This is the idea that the
Dedekind–MacNeille closure operator models. If x ∈ Γα, then anything true
in all of α must also be true in x. So in these frames, to model disjunction we
require x  A ∨B if and only if x ∈ Γ([[A]] ∪ [[B]]).

The name for this closure operation refers to MacNeille, who generalised
Dedekind’s construction of the real numbers from rational numbers in terms
of “cuts” to construct an embedding of an arbitrary ordered set into the set of
closed subsets of that set [144]. The closure operation Γ can be seen as the
composition of two simpler operations. Define αl and αu, the lower and upper

sets of α, as follows:

αl = {x : (∀a ∈ α)(x ⊑ a)} αu = {x : (∀a ∈ α)(a ⊑ x)}

The lower set of α is the set of all of its lower bounds, and its upper set is the
set of its upper bounds. Then Γα = αlu, the upper set of the lower set of α.

It is not too difficult to show that any set generated by a single point x,
↑x = {y : x ⊑ y}, is closed under Γ. (↑x)l = {y : y ⊑ x}, and hence, (↑x)lu =
{y : x ⊑ y} = ↑x.
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12.2 Definitions

Armed with these examples, we can see a general pattern occurring. Proposi-
tions on frames are still (interpreted by) sets of points, but we restrict our at-
tention to sets of points which are closed in some particular way. The required
properties of closure operators are as follows:

DEFINITION 12.5 (CLOSURE OPERATORS)
Γ is a closure operator on the set P if it is a function from the power set of P to
itself, satisfying the following conditions:

1. Γ is INCREASING: α ⊆ Γα

2. Γ is IDEMPOTENT: ΓΓα = Γα

3. Γ is MONOTONE: If α ⊆ β then Γα ⊆ Γβ

A set α ⊆ P is said to be closed if α = Γα. A set P equipped with a closure
operator is called a closure set, and we will write x ∈ P for x ∈ P , as we did
with point sets.

It is not too difficult to show that the closure operators of our three examples
each satisfy the conditions of this definition. The verification is left to Exer-
cise 12.1.

It is perhaps a little misleading to call Γ a closure operator. Closure operators
are widely present in topological spaces. The closure of a set in a topological
space is found by adding the “boundary” to the set (this is merely a suggestive
explanation — there are formal definitions for these concepts). The same sort
of thing happens here in our cases, so to an extent, ‘closure’ fits well. However,
in topological spaces, closure operators satisfy more postulates than those in
Definition 12.5. In any topological space, the union of two closed sets is also
closed. This is manifestly out of place here. If the union of two closed sets was
itself closed, then we could not invalidate distribution. The least upper bound
of two closed sets would be their union, and distribution would be satisfied.
Furthermore, while the intersection of a family of closed sets is still closed (as
we will see in the next lemma) we do not have Γ

⋂

i αi =
⋂

i Γαi. The closure
of an intersection need not equal the intersection of the closure.

So, our closure operators are more general than topological closure opera-
tors. However, the usage ‘closure’ is established in the lattice theory literature
(it is used by Davey and Priestley [58], for example) so with the proviso that
not all closures are topological closures we continue with the usage.

LEMMA 12.6 (CLOSURE FACTS)
For any closure operator Γ, the following conditions hold:
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1. If α = Γβ for some β, then α = Γα.

2. If αi is closed for each i, so is
⋂

i αi.

3. The class of closed subsets in a closure set forms a complete lattice with

intersection as greatest lower bound and the closure of the union as least

upper bound.

4. There are closure sets in which ∅ is not a closed set.

5. There are closure sets in which Γ(α ∪ β) 6= Γα ∪ Γβ.

6. There are closure sets in which Γ(α ∩ β) 6= Γα ∩ Γβ.

PROOF We take these facts in turn.

1. If α = Γβ then α = Γβ = ΓΓβ = Γα.

2. Since
⋂

αi ⊆ αi, by monotonicity, and since each αi is closed, we have
Γ
⋂

αi ⊆ αi for each i. Therefore Γ
⋂

αi ⊆
⋂

αi. Conversely,
⋂

αi ⊆
Γ
⋂

αi as Γ is increasing.

3. The intersection of any class of closed sets is closed, by the previous item.
So the class of closed subsets in a closure set forms a complete semilattice,
ordered by ⊆ and with

⋂

as greatest lower bound. For the least upper
bounds,

∨

A is the smallest closed set containing each α ∈ A. Clearly,
Γ(
⋃

A) is that smallest closed set, so
∨

is the closure of the union as
desired.

4. Consider the Dedekind–MacNeille closure operator Γ on some ordered set
with a greatest element∞. Consider Γ∅ = {z : ∀y(y ⊑ ∅ → y ⊑ z)}. Since
y ⊑ ∞ for any y at all, we have∞ ∈ Γ∅. It follows that ∅ is not closed.

5. Take an ordered set with a least element 0 and two elements a and b above
0 but incomparable with each other. Consider the Dedekind–MacNeille
closure operator on this set. {a} and {b} are closed, but {a, b} is not
closed, as its closure is {0, a, b}.

6. Take an ordered set with a least element 0, and now with four elements
a, b, c and d above 0 but incomparable with each other, and consider again
the Dedekind–MacNeille closure operator on this set. Now Γ{a, b} =
{0, a, b, c, d} = Γ{c, d}. Therefore Γ{a, b} ∩ Γ{c, d} = {0, a, b, c, d}. How-
ever, {a, b} ∩ {c, d} = ∅, and Γ∅ = ∅. �

Given a closure set P, we can model the lattice connectives. We use the notation
‘’ and ‘[[ ]]’ as before for a relation between P and formulae, and a function
from formulae to closed subsets of P, respectively.
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DEFINITION 12.7 (MODELLING LATTICE CONNECTIVES)
A relation  between points in P and formulae respects lattice connectives if and
only if the following conditions are satisfied:

⋄ Γ[[p]] = [[p]].

⋄ x  ⊤ always.

⋄ x  ⊥ iff x ∈ Γ∅.

⋄ x  A ∧B iff x  A and x  B.

⋄ x  A ∨B iff x ∈ Γ([[A]] ∪ [[B]]).

This definition always assigns closed sets to formulae, as the following theorem
explains.

THEOREM 12.8 (CLOSURE OF LATTICE CONNECTIVES)
Given any closure set P and any model on P, [[A]] is closed for any formula A
consisting purely of lattice connectives.

PROOF We know that [[⊤]] and [[⊥]] are closed, as is [[p]] for each atomic p. By
induction on the construction of propositions, if [[A]] and [[B]] are closed, then
[[A ∧B]] = [[A]] ∩ [[B]] must be closed as intersections of closed sets are closed,
and [[A ∨B]] = Γ([[A]] ∪ [[B]]) is defined to be closed. �

You may have noticed that we are doing without the heredity condition on
points and evaluations. At least, we do not explicitly mention ⊑ in our con-
ditions on evaluations. This is not without reason. All we need for ⊑ is al-
ready given to us by Γ. We can see how this works by attending to Dedekind–
MacNeille frames:

LEMMA 12.9 (⊑ IN DEDEKIND–MACNEILLE FRAMES)
Given a Dedekind–MacNeille closure operator Γ, the inclusion x ⊑ y holds if and

only if Γ{x} ⊇ Γ{y}.

PROOF Suppose that x ⊑ y and z ∈ Γ{y} = {v : ∀w(w ⊑ y → w ⊑ v)}. Clearly,
if ∀w(w ⊑ y → w ⊑ z) then ∀w(w ⊑ x → w ⊑ z) and hence z ∈ Γ{x} as
desired. Conversely, if Γ{x} ⊇ Γ{y}, then y ∈ Γ{x} and hence ∀w(w ⊑ x →
w ⊑ y) and so x ⊑ x→ x ⊑ y, giving x ⊑ y as desired. �

This motivates a definition of inclusion on the points in an arbitrary closure set:

DEFINITION 12.10 (INCLUSION ON CLOSURE SETS)
Given a closure set P, define the relation of inclusion ⊑Γ on the points of P by
setting

x ⊑Γ y if and only if Γ{x} ⊇ Γ{y}

Once we have inclusion defined in this way, we can show that it acts roughly as
we would expect inclusion to act.
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LEMMA 12.11 (INCLUSION FACTS)
On any closure set P the inclusion relation ⊑Γ has the following properties.

1. ⊑Γ is transitive and reflexive, but not necessarily antisymmetric.

2. x ⊑Γ y if and only if in every model on P, for every formula A, if x  A
then y  A.

PROOF

1. ⊑Γ inherits its transitivity and reflexivity from that of ⊇. It is not neces-
sarily antisymmetric because Γ{x} might equal Γ{y} even though x and
y are distinct. Take the trivial closure set on some two-element set {x, y}
in which the only closed sets are ∅ and the whole set. There the closures
of both {x} and of {y} are {x, y}, so x ⊑Γ y and y ⊑Γ x, but x 6= y.

2. If x ⊑Γ y then if x  A we have x ∈ [[A]]. We must have y ∈ [[A]] too
as y ∈ Γ{y} ⊆ Γ{x} ⊆ [[A]]. Conversely, if x6⊑Γy, then Γ{x} 6⊇ Γ{y} and
hence y 6∈ Γ{x}. (If y were in Γ{x} then Γ{x} ∩ Γ{y} would be a smaller
closed set containing {y} which is impossible.) So take some evaluation
 which sets z  p if and only if z ∈ Γ{x}. We have x  p but y 6 p, as
desired. �

So our closure sets bring with themselves a notion of heredity which mimics
our familiar notion quite closely, except for the failure of antisymmetry. How-
ever, Exercise 12.6 shows how every closure set can be replaced by one which
differs in no essential respects, except for the fact that ⊑Γ in the new set is
antisymmetric.

Once we have defined a closure set which models the lattice connectives, we
need then to add some machinery to our sets in order to model the intensional
connectives. For this, we need to impose some conditions to ensure that the
interpretation of formulae using intensional connectives are also closed sets of
points. For this, we need the following conditions.

DEFINITION 12.12 (ACCESSIBILITY RELATIONS)
R, C and S are accessibility relations on a closure set when the following condi-
tions are satisfied

⋄ Γα ◦ Γβ ⊆ Γ(α ◦ β)

⋄ ♦−Γα ⊆ Γ♦−α

⋄ Γ∼α ⊆ ∼Γα

for all sets α and β of points in the closure set.

We choose these definitions because they give us the following results. First, Γ
“floats to the top” of structure combinations.
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LEMMA 12.13 (CLOSURE FLOATING)
If R and S are accessibility relations on a closure set, then for any α and β we

have

⋄ Γ(Γα ◦ Γβ) = Γ(α ◦ β)

⋄ Γ♦−Γα = Γ♦−α

for any α and β.

PROOF By assumption Γα◦Γβ ⊆ Γ(α◦β), so by monotonicity and idempotence,
Γ(Γα◦Γβ) ⊆ Γ(α◦β). Conversely, since α◦β ⊆ Γα◦Γβ (as ◦ is order-preserving)
we have Γ(α ◦ β) ⊆ Γ(Γα ◦Γβ), so we have the identity desired. The case for ♦−
is similar. �

On any closure frame, we can have operations ◦, →, ← and so on, defined on
sets of points, in terms of the accessibility relations, just as in the case with
distributive frames in the previous chapter. Here we need to make sure we
know when the results of these operations are closed, given that the inputs are.

LEMMA 12.14 (INTENSIONAL COMBINATIONS OF CLOSED SETS)
In any closure set with accessibility relations, if α and β are closed, so are �α,

α→ β, β ← α, ∼α and ¬α.

PROOF Consider the case for �. When α is closed, �α ⊆ Γ�α by the mono-
tonicity of Γ. Conversely, by the behaviour of ♦− and Γ we have ♦−Γ�α ⊆ Γ♦−�α.
However, ♦−�α ⊆ α by the definition of ♦− on sets. Therefore, ♦−Γ�α ⊆ α and
hence Γ�α ⊆ �α. Therefore, �α = Γ�α when α is closed.

Consider the case for→. Note that Γα ◦ Γ(α→ β) ⊆ Γ(α ◦ (α→ β)) ⊆ Γβ.
Therefore, α → β ⊆ Γ(α → β) ⊆ Γα → Γβ = α → β. Therefore, α → β is
closed. The case for← is similar.

For ∼, since ∼α ⊆ Γ∼α by monotonicity, we wish to show that Γ∼α ⊆ ∼α
when α is closed. This is given to us by our assumption: Γ∼α ⊆ ∼Γα = ∼α,
since α is closed.

For ¬, ¬α ⊆ Γ¬α by monotonicity. For the converse, since α ⊆ ∼¬α we
have Γα ⊆ Γ∼¬α ⊆ ∼Γ¬α (the first step by monotonicity, the second by the
interaction between ∼ and Γ). But α ⊆ ∼Γ¬α gives Γ¬α ⊆ ¬α as desired. �

This lemma means that the connectives �,→,←, ∼ and ¬ can be modelled by
their usual conditions on closure sets. These connectives have universal quan-
tifiers in their modelling conditions they distribute over conjunction. The re-
maining intensional connectives, ♦− and ◦, call on existential quantifiers in their
modelling conditions, and they distribute over disjunction. It is no surprise,
then, that the clauses for these connectives must explicitly appeal to a closure
operator, just as disjunction does. The proposition A◦B will be true not merely
at [[A]] ◦ [[B]] but also at Γ ([[A]] ◦ [[B]]). Similarly, ♦−A will be true not merely at
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♦−[[A]] but also at Γ♦−A. So we have the following evaluation clauses for our
connectives.

⋄ {x ∈ F : x  p} ∈ Prop(F).

⋄ x  ⊤ for all x ∈ F .

⋄ x  ⊥ iff x ∈ Γ∅.

⋄ x  A ∧B iff x  A and x  B.

⋄ x  A ∨B iff x ∈ Γ ([[A]] ∪ [[B]]).

⋄ x  t iff x ∈ ΓT .

⋄ x  �A iff for each y ∈ F where xSy, y  A.

⋄ x  ♦−A iff x ∈ Γ♦−[[A]].

⋄ x  ∼A iff for each y ∈ F where xCy, y 6 A.

⋄ x  ¬A iff for each y ∈ F where yCx, y 6 A.

⋄ x  A→ B iff for each y, z ∈ F where Rxyz, if y  A then z  B.

⋄ x  A ◦B iff x ∈ Γ ([[A]] ◦ [[B]]).

⋄ x  B ← A iff for each y, z ∈ F where Ryxz, if y  A then z  B.

DEFINITION 12.15 (CLOSURE FRAMES, AND FRAMES FIT FOR S)
A closure set equipped with a number of accessibility relations is said to be a
closure frame.

Given a system S, a frame is fit for S iff every condition corresponding to
each structural rule holds in the frame. Furthermore, if S contains extensional
combination, the frame must be distributive.

This definition expands the definition of the previous chapter.

EXAMPLE 12.16 (STANDARD FRAMES ARE CLOSURE FRAMES)
If F is a standard frame, then it is not too difficult to show that it is a closure
frame, in which Γα = {x : ∃y ∈ α where y ⊑ x}. Here the closed sets are the
closed upwards sets. We need just to show that the accessibility relations on F
satisfy the conditions for accessibility relations on a closure frame, and that the
evaluation conditions which appeal to Γ may as well not. For the first, we need
Γα ◦ Γβ ⊆ Γ(α ◦ β) (if R is present) and similarly for ♦− and S, and ∼ and C.
If x ∈ Γα ◦ Γβ, there are y, z where Ryzx, y ∈ Γα and z ∈ Γβ. It follows that
there are y′ ∈ α where y′ ⊑ y and z′ ∈ β where z′ ⊑ z. We then have Ry′z′x,
and hence x ∈ α ◦ β and therefore, x ∈ Γ(α ◦ β) as desired for ♦− and ∼ are
similar.

To show that the evaluation conditions for fusion, disjunction and possibility
need not appeal to the closure operator, we simply need to note that in standard
frames, whenever α and β are closed, then so are α ◦ β, α∪ β and ♦−α. But that
we have already proved.
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To show that closure frames model logics, we need to show that the intensional
connectives act in the appropriate ways. As the following lemma shows, they
do.

LEMMA 12.17 (RESIDUATION ON CLOSURE FRAMES)
For any closed sets α, β and γ in a closure frame,

1. Γ(α ◦ β) ⊆ γ iff α ⊆ β → γ iff β ⊆ γ ← α

2. Γ♦−α ⊆ β iff α ⊆ �β

3. α ⊆ ∼β iff β ⊆ ¬α.

Closure frames are concrete models of substructural logics. They generalise
away from the distributive frames of the last chapter by allowing a notion of
closure stronger than that given by heredity and the ordering ⊑. The proposi-
tions on a closure frame form a complete lattice under the subset ordering, as
before. Lattice connectives are modelled by their set theoretic analogues, albeit
with the intervention of Γ in the case of ∨ and ⊥. The intensional connectives
are also modelled by set theoretic representatives, given by accessibility rela-
tions. Again, this is just as the case with distributive frames, except for the
parents in each family of connectives, which require a closure operation. In the
next section, we will prove that these models fit substructural logics exactly.

12.3 Soundness and Completeness

In this section we will show that closure frames do model substructural logics.
First, we will deal with soundness.

THEOREM 12.18 (SOUNDNESS FOR CLOSURE FRAMES)
If X ⊢ A in S, then X ⊢F A in all frames F fit for S.

PROOF The verification is exactly as before. By Lemma 12.17 the connective
rules are satisfied, as the residuation conditions hold.

We need to deal only with the additional rules. First, with structural rules.
For a structural rule X ⇐ Y we require that the frame satisfy the condition
SR(X) → SR(Y ). Then we need to verify that if x  X then x  Y . (Where
we read ‘xi ⊑ x’ as ‘xi ⊑ Γ{xi}’, which ensures that if xi  A then x  A too.)
The verification is as before, with one modification. We need to deal with the
closure operator Γ, which interrupts in the evaluation of structure. Suppose
x  X. Then in our model, X is interpreted as a modal confusion of closed
sets, with closure operators liberally distributed throughout the confusion. Con-
sider an example. If X = A; (•B,C), then [[X]] = Γ[[A]] ◦ Γ(Γ♦−[[B]] ∩ [[C]]). By
Lemma 12.13 this is the set Γ([[A]] ◦ (♦−[[B]] ∩ [[C]])), since we can “float” the
Γ to the top of the expression. Therefore [[X]] = ΓX∗, where X∗ is a modal
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confusion which does not appeal to Γ. Now, since SR(X) → SR(Y ), we have
X∗ ⊆ Y ∗ (where Y ∗ is the modal confusion of closed sets, corresponding to
Y ) by the reasoning in the distributive case. Therefore ΓX∗ ⊆ ΓY ∗, by the
monotonicity of Γ, and since x  X, we have x  Y as desired.

Now we need to deal with negation. The only differences here are with rules
which appeal to the closure operator. Rules which do not, like ∼ = ¬ and ECQ,
go through as before.

For ∼(A ∧B) ⊢ ∼A ∨ ∼B, note that if x  ∼(A ∧B) then by the reasoning
in the distributive case, if x  ∼(A∧B) then x  ∼A or x  ∼B. It follows that
x  ∼A∨∼B. The closure condition will give us more points at which ∼A∨∼B
is true, not fewer, so there is no problem here.

Similarly, for ⊤ ⊢ A∨∼A, note that for any x we will have x  A or x  ∼A,
as before. Therefore, for any x, x  A ∨ ∼A as desired. �

That shows that closure frames are models of each of our logics. To show that
they fit snugly, we need to show that anything unprovable is invalid in a closure
frame. For this, we produce the canonical closure frame.

There are a number of ways to define a canonical closure frame. Perhaps
the most obvious one is to generalise the canonical frames for distributive logics
to consider the set of all theories of the logic instead of just the prime theories.
This is entirely acceptable, and it leads to a simple completeness proof. We will
not pursue this line of attack here. We will do with fewer points, by taking them
to be formulae.

DEFINITION 12.19 (THE CANONICAL CLOSURE FRAME)
The points in a canonical closure frame for S are the formulae. We will define
A  p to be A ⊢ p. Therefore, [[p]] is {A : A ⊢ p}. We then aim to show that
[[B]] = {A : A ⊢ B} for each formula B.

Formulae are ordered by ⊢. We will write ‘A ⊢ B’, where appropriate, as
‘B ⊑ A’ to keep to the notation of frames. The closure operation Γ is the
Dedekind–MacNeille closure operation defined by ⊑. That is, A ∈ Γα if and
only if for each B, if B ⊑ α then B ⊑ A, or equivalently, for each B where
C ⊢ B for each C ∈ α, then A ⊢ B also.

Finally, RABC if and only if C ⊢ A ◦ B, ASB if and only if B ⊢ ♦−A, and
ACB if and only if A 6⊢ ∼B.

We must show that this is, indeed, a closure frame.

THEOREM 12.20 (THE CANONICAL FRAME IS A CLOSURE FRAME)
For any system S, the canonical closure frame for S is a closure frame. Further-

more, it is a frame fit for S. In other words:

⋄ Γ is a closure operator.
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⋄ R, S and C, so defined, are accessibility relations.

⋄ The conditions corresponding to the structural rules of S hold in the frame.

⋄ For each p, [[p]] = {A : A ⊢ p} is closed.

⋄ For each A and B, A  B if and only if A ⊢ B.

Before going through the proof, it will be helpful to see how this frame works. In
the canonical frame, the closed sets are co-theories. That is, they are the natural
duals of theories. If A ∈ Γα and A′ ⊢ A then A′ ∈ Γα too. Furthermore, if
A,B ∈ Γα then A∨B ∈ Γα. This makes this Dedekind–MacNeille structure look
a lot like the ideal structure from Chapter 9. However, the closure operation
here is more miserly. Not all co-theories (or ideals) are closed. For example,
consider the smallest co-theory containing α = {p0, p2, p4, . . .}. It is not too
difficult to show that in many logics (anything included in classical logic, at
least) p1 is not in this co-theory. (Why? Look for falsity preservation. You can
make each of α = {p0, p2, p4, . . .} false and p1 true in some assignment.) Now
consider Γα. If p2n ⊢ A for each A, then we can choose some 2n such that
p2n does not appear in A. Therefore if p2n ⊢ A for each 2n, then B ⊢ A for
each B whatsoever, so p1 ∈ Γα. So, the closure of α can outstrip the co-theory
generated by α.

PROOF We deal with the cases one by one.

⋄ Γ is a closure operator, as it is a Dedekind–MacNeille operator.

⋄ Is R an accessibility relation? We want to show that Γα ◦ Γβ ⊆ Γ(α ◦ β).
Now α ◦ β = {C : ∃A ∈ α,B ∈ β(C ⊢ A ◦ B)}. Therefore, (α ◦ β)l = {D :
C ⊢ D for each C ∈ α ◦ β} = {D : A ◦ B ⊢ D for each A ∈ α and B ∈ β}.
Therefore, Γ(α ◦ β) = (α ◦ β)lu = {C : ∀D((A ◦ B ⊢ D for each A ∈
α and B ∈ β)→ C ⊢ D)}. Now suppose that A ∈ Γα and B ∈ Γβ, to show
that A ◦B ∈ Γ(α ◦β). We need to show that for each D where Aα ◦Bβ ⊢ D
for each Aα ∈ α, Bβ ∈ β, then A ◦ B ⊢ D. We reason as follows. If
Aα ◦ Bβ ⊢ B for each Aα ∈ α and Bβ ∈ β, then Aα ⊢ Bβ → D for each
Aα ∈ α, so A ⊢ Bβ → D, as A ∈ Γα. Therefore, Bβ ⊢ D ← A for each
Bβ ∈ β, so B ⊢ D ← A and hence A ◦B ⊢ D as desired.

The case for ♦−Γα ⊆ Γ♦−α is similar.

The case for negation is made as follows. We wish to show that Γ∼α ⊆
∼Γα. Let B ∈ Γ∼α. To show that B ∈ ¬Γα, we want to show that for
each C ∈ Γα, B ⊢ ∼C. Now B ∈ Γ∼α ensures that for each F where
(∀E ∈ ∼α⇒ E ⊢ F ) gives B ⊢ F . To show that B ⊢ ∼C, we want to show
that ∀E ∈ ∼α, E ⊢ ∼C whenever C ∈ Γα. That is, we know that

∀D(∀Aα ∈ α and Aα ⊢ D ⇒ C ⊢ D)
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Now E ∈ ∼α if and only if for each Aα ∈ α, E ⊢ ∼Aα. So we want
∀E((∀Aα ∈ α and E ⊢ ∼Aα) ⇒ E ⊢ ∼C), or equivalently, ∀E((∀Aα ∈
α and E ⊢ ∼Aα) ⇒ C ⊢ ¬E). But we have this, substituting ¬E for D in
the displayed condition. This completes the demonstration.

⋄ For structural rules, we have an easy induction to show that SR(X) holds of
A if and only if A ⊢ F (X), where F (X) is the formula version of the struc-
ture X. So SR(X)→ SR(Y ) holds if and only if A ⊢ F (X) ⇒ A ⊢ F (Y ),
for each A, if and only if F (X) ⊢ F (Y ), or equivalently, Y ⇐ X holds.

⋄ Since [[p]] = {A : A ⊢ p} = ↑p, the atomic propositions are closed.

⋄ We can show that A  B if and only if A ⊢ B by induction on B. We do the
two most difficult cases. First, A  B ◦C if and only if A ∈ Γ([[B]]◦ [[C]]). By
hypothesis, [[B]] = {B′ : B′ ⊢ B} and [[C]] = {C ′ : C ′ ⊢ C}, so [[B]] ◦ [[C]] =
{D : D ⊢ B◦C} and [[B]]◦[[C]] is closed, so A ∈ Γ([[B]]◦[[C]]) iff A ∈ [[B]]◦[[C]]
iff A ⊢ B ◦ C as desired.

Similarly, A ⊢ B ∨ C iff A ∈ Γ([[B]] ∪ [[C]]). Now this holds iff ∀D where
B ⊢ D or C ⊢ D, A ⊢ D too (by the induction hypothesis). That is,
equivalent to A ⊢ B ∨ C, as we desired.

This completes the proof. �

Instead of going on to consider particular negation axioms or rules, we will ex-
amine a particularly important class of closure frames — Girard’s phase spaces.

12.4 Phase Spaces

In this section, we will look at phase spaces for linear logic as an example of
a closure frame. A phase space is a quadruple 〈P, ·, 1, 0〉 in which 〈P, ·, 1〉 is
a commutative monoid, and in which 0 is a distinguished subset of P . The
elements of P are phases, and 0 is the set of orthogonal phases of P .2 In a phase
space, the binary operator · is used for the ternary relation for implication.
Here, Rxyz if and only if x · y = z. For any subset G ⊆ P , the dual G∼ of G is
defined as follows:

G∼ = {x ∈ P : for all y ∈ G(x · y ∈ 0)}

In other words, G∼ is the set of all objects which send each element of G (by
the monoid operation) to 0. For any set G of phases, G∼∼ is the closure of G. It
is not too hard to verify that this is indeed a closure operation, by showing the
following:

1. G ⊆ G∼∼.

2 In the linear logic literature, ‘⊥’ is used instead of ‘0’ for the set of orthogonal phases. We use ⊥
for the bottom element of a lattice, so we will use 0 for the set of orthogonal phases.
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2. G∼∼∼ = G∼.

3. If G ⊆ H then H∼ ⊆ G∼.

4. G = G∼∼ iff G = H∼ for some H ⊆ P .

The closed sets are called facts. The set of facts can be equipped with a natural
monoid operation, (G · H)∼∼, where G · H is defined in the obvious way as
{x · y : x ∈ G and y ∈ H}. This operation is residuated by the operation →
defined by setting G → H = {x : ∀y ∈ G(xy ∈ H)}, which can be shown to
equal (GH∼)∼.

For negation, we define xCy to hold if and only if x · y 6∈ 0. C is symmet-
ric, given the commutativity composition, and the negation of a fact G is G∼.
The negation of a fact is itself a fact. (We could have verified this using the
conditions of the previous section: Γ∼G 6 ∼ΓG as G∼∼∼ 6 G∼∼∼.)

It follows that this is a model for linear logic without exponentials. R satis-
fies the conditions for C and B, as composition is associative and commutative.
The set 1 = {1}∼∼ is the identity (both left and right) for fusion.

Phase spaces are a particular kind of closure frame. They are special in a
number of ways. Not only is the closure operation defined by negation, and not
only are the structural rules B and C satisfied, but the accessibility relation R
underlying the frame is functional. Nevertheless, phase spaces are still a faithful
model for MALL. We have the following theorem.

THEOREM 12.21 (SOUNDNESS AND COMPLETENESS IN PHASE SPACES)
X ⊢ A is provable in MALL if and only if X ⊢ A holds in all phase spaces.

PROOF If X ⊢ A is provable in MALL then it must hold in all phase spaces
because phase spaces are closure frames satisfying B and C. To prove the con-
verse, it suffices to show that the canonical MALL closure frame, defined in the
previous section, is a phase space. For that, we need to verify that R, C and
Γ on the closure frame satisfy the conditions for a phase space. Unfortunately,
as we have defined it, this is not quite the case. We need to make some small
modifications.

In the canonical closure space, the points are formulae, and the accessibility
relation R is set as RABC iff A ⊢ B ◦ C. We tinker with R ever so slightly, and
set RABC iff A = B ◦C. Then for 0, we have {A : 0 ⊢ ∼A}. The false elements
are the set of all formulae whose negations are provable, as you would expect.
This is the correct choice, as G∼ = {A : ∀B ∈ G(B ⊢ ∼A)}, and so, G∼∼ = {A :
∀B ∈ G∼(B ⊢ ∼A)} = {A : ∀B(∀C ∈ G where C ⊢ ∼B)B ⊢ ∼A}, and this,
when you replace B by ∼B you get the Dedekind–MacNeille closure, ΓG, from
the canonical closure space. The other definitions of accessiblity relations in the
canonical model structure go over from before, and we have the completeness
result. �
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The definition of a phase space gives us a nice result. It motivates an embedding
of the whole logic MALL into its fragment MALL[→,∧, t]. You choose f to be
some arbitrary proposition, a translation as follows (where we set ∼A = A →
f).

pt = ∼∼p
(A ∧B)t = ∼∼(At ∧Bt)
(A ∨B)t = ∼(∼At ∧ ∼Bt)
(A ◦B)t = ∼(At → ∼Bt)

(A→ B)t = At → Bt

tt = ∼∼t

THEOREM 12.22 (ALL OF MALL, USING JUST →, ∧ AND t)
A ⊢ B holds in MALL if and only if At ⊢ Bt in MALL[→,∧, t].

PROOF First, if At ⊢ Bt is provable in MALL[→,∧, t], then At ⊢ Bt is provable
in MALL, and in particular, it is provable when we choose ∼t for f . In this case,
At is equivalent to A in MALL, and therefore, A ⊢ B is provable in MALL.

Conversely, if At ⊢ Bt does not hold in MALL[→,∧, t], then in the canonical
model (constructed simply out of theories, not prime theories, in the absence of
disjunction) we have a counterexample to At ⊢ Bt. Construct a phase space out
of this model. The phases are the theories in the canonical model. The monoid
operation is theory fusion, and the set 0 is {x : f ∈ x}. It is straightforward
to check that any set of the form [[∼∼A]] in the original canonical model is a
fact in the phase space we are constructing. Construct an interpretation of the
language of MALL by setting [[A]] in the phase space to be [[At]] in the canonical
model. As the definition of the translation t mimics the evaluation clauses in a
phase space, this is an acceptable phase space evaluation, and it is one which
invalidates A ⊢ B, so this consecution fails in MALL. �

Note that this construction works in logics other than MALL. For example, it
will work to embed the whole of R without distribution into R[→,∧, t], for if the
original model satisfies W, so will the phase model for R without distribution.

We will end this section by sketching how to cope with non-normal modal
operators, such as ! and ? of linear logic. The difficulty with operators like these
is the way the distribution properties of normal operators fail. We do not have
!A∧ !B ⊢ !(A∧B). So, we cannot use standard accessibility relations. However,
something is possible.

DEFINITION 12.23 (TOPOLINEAR SPACES)
A topolinear space is a phase space equipped with a set F of facts satisfying the
following conditions:

⋄ If X ⊆ F then
⋂

X ∈ F.
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⋄ If F,G ∈ F then F + G ∈ F.

⋄ If F ∈ F then F + F = F .

⋄
⋂

F = 0.

G is a closed fact iff G ∈ F, and G is a open fact iff G∼ ∈ F.

Now, given any fact G, the consideration of G, ?G, is

?G =
⋂

{F : G ⊆ F and F ∈ F}

It is simply the smallest element of F containing G. Its dual, the affirmation of
G, !G is

!G = (
⋃

{H : H ⊆ G and H∼ ∈ F})∼∼

These are duals, as you can readily check.

LEMMA 12.24 (DUALITY OF ! AND ?)
For any fact G, !(G∼) = (?G)∼, and dually, ?(G∼) = (!G)∼. �

This definition gives us a semantics for the exponentials. The semantics does as
we would expect: by construction G ⊆ ?G, for any fact G, so by duality, !G ⊆ G.
Furthermore, ?G is itself a closed fact, so ?G = ??G, and dually, !G = !!G.
Similarly, all of the closed facts are fixed points for fission, ?G + ?G = ?G, and
by duality, !G ◦ !G = !G. Finally, 0 ⊆ ?G by construction, so by duality !G ⊆ t,
and by the behaviour of t, G ◦ t = t gives F ◦ !G ⊆ F .

Each of these simple verifications shows that the construction of ! and ?
satisfies the rules for the exponentials in linear logic. This gives us the first part
of the following theorem.

THEOREM 12.25 (SOUNDNESS AND COMPLETENESS IN TOPOLINEAR SPACES)
X ⊢ A is provable in LL if and only if X ⊢ A holds in all topolinear spaces.

PROOF As we have seen, the rules for the exponentials hold in topolinear
spaces. For the converse, we must verify that the canonical topolinear space
satisfies the conditions required for a topolinear space. So how should we con-
struct the canonical topolinear space?

We will use the canonical phase space we have seen to construct a set of
closed facts. Obviously, each {A : ?B ⊢ A} ought to be a closed fact for any
choice of B. This cannot be the whole thing, as the intersection of a class of
closed facts is not necessarily a set of the form {A : ?B ⊢ A}. So we add these
intersections. For any class of formulae Bi, we will let

⋂

i{A : ?Bi ⊢ A} be a
closed fact. Once we do this, it is straightforward to check that ?[[A]] =

⋂

{F :
[[A]] ⊆ F and F ∈ F} for any formula A in the canonical model structure. The
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duality of ? and !, together with the duality of their defining conditions, ensures
that the result for ! holds too.

We need to check then that the class F of closed facts so defined satisfies
the four conditions of a set of closed facts. The first condition holds because
we have defined the intersection of a class of closed facts to be closed. For
the second condition, suppose that F,G ∈ F. So F =

⋂

i{A : ?Bi ⊢ A} and
G =

⋂

j{A : ?Cj ⊢ A} for some choice of the formulae Bi and Cj . But then
F + G =

⋂

〈i,j〉{A : ?Bi + ?Cj ⊢ A}, but ?Bi + ?Cj is equivalent to ?(Bi ∨ Cj)

(this is dual to the equivalence of !A ◦ !B and !(A ∧ B)) so the set F + G is
indeed a closed fact. Similarly, F +F = F , since ?Bi +?Bi is equivalent to ?Bi.

Finally, since ?Bi ⊢ ∼t for each ∼t, if F ∈ F then 0 ⊆ F . However, 0 = {A :
∼t ⊢ A} = {A : ?∼t ⊢ A}, which is a closed fact, so 0 ∈ F, giving us 0 =

⋂

F as
desired. �

So this kind of closure operation works well to model the exponentials in phase
spaces.

12.5 History

The idea of a general notion of frames, of which Kripke and Beth frames are
special cases, has been presented by Dragalin [68]. I was drawn to the idea of
Dedekind–MacNeille closure by Hartonas [109]; and the idea is also in Troel-
stra’s account of linear logic [261]. A helpful discussion of the notion can be
found in Grätzer’s General Lattice Theory [103].

Došen’s “Rudimentary Kripke Models for Intuitionistic Propositional Calcu-
lus” is another generalisation of Kripke frames, in particular for intuitionistic
logic [67].

Sambin and others have used the notion of a “pretopology” (in our language,
a set with a closure operator) not only as a model of substructural logics but
also as a constructive generalisation of a topological space [110, 233, 234, 235].
Došen [60, 62], Ono and Komori [187], and Ono [188] have also given seman-
tics like these.

In this chapter, the approach has been to see these semantics as a gener-
alisation of the frame semantics for logics with distribution. This is a little
idiosyncratic, as in all of the accounts in the literature, the emphasis is on oper-

ational semantics. Once we have a non-traditional evaluation of disjunction, we
are free to use a two-place function instead of a three-place relation to model
implication. This obscures the connections between frames for logics with dis-
tribution and the models for those without. I have tried to make clear the
connections between the two.

We have not examined Allwein and Dunn’s modelling of linear logic, as
their model uses two different evaluations of propositions — one to keep track
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of where a proposition is true and another to keep track of where it is false [4].
This is also a model of a substructural logics, but it is out of our ken in this
chapter.

Bell gives a philosophical analysis of Goldblatt’s semantics for orthologic,
in which C is interpreted as proximity [17]. It is as yet unknown whether a
similar analysis can be given to motivate the treatment of disjunction in non-
distributive substructural logics.

12.6 Exercises

Practice

{12.1} Show that the closure operators of Dedekind–MacNeille frames, Beth frames and

compatibility frames each satisfy the conditions of Definition 12.5.

{12.2} Show that the function ul, which maps a set α to αul, is also a closure operator

on a point set.

Problems

{12.3} Given a point set P, for what subsets α of P does αlu = αul?

{12.4} Quantum logic extends orthologic with the rule A ∧ (∼A ∨ (A ∧B)) ⊢ B. In

this exercise, we will provide a frame semantics for quantum logic. To do this, we need

to modify Goldblatt’s closure operator. Given an orthoframe 〈P, C〉, and given subsets

α, β ⊆ P we will say that α is C-closed in β iff for all x ∈ β, if x 6∈ α then there is a

y ∈ β where ∀z(z ∈ α→ ∼yCz) and xCy. (So α = α∼∼ iff α is C-closed in P .) Show

that in any orthomodelM, [[A]] is C-closed in [[B]] iff B∧(∼B∨A) ⊢M A. Let a quantum

frame be a defined to be an orthoframe 〈P,C〉 together with a non-empty family C of

C-closed subsets of α such that

⋄ C is closed under intersection.

⋄ If α ∈ C then {x : ∀z(z ∈ α→ ∼xCz)} ∈ C too.

⋄ If α, β ∈ C then α ⊆ β only if α is C-closed in β.

An interpretation in a quantum frame is a map [[·]] from atomic propositions to the ele-

ments of C, extended in the usual way. Show that A ⊢ B is valid in quantum logic if

and only if in every interpretation in quantum frames, [[A]] ⊆ [[B]]. (The proof is due to

Goldblatt [101].)

{12.5} Continuing on from the last question, show that this approach is as good as

you can do. That is, show that there is no condition on C that you can add to restrict

orthoframes to model exactly quantum logic. (This is also due to Goldblatt [101].)

{12.6} Given a closure frame, define a relation ≡ between points on the frame, setting

x ≡ y if and only if Γ{x} = Γ{y}. Construct an appropriate closure operator on the

set of ≡-equivalence classes of the original frame. Show that ⊑Γ in this new frame is

antisymmetric. Then show that for any interpretation [[·]] on the original frame, there is

an interpretation on the “slimmer” frame which invalidates exactly the same formulae

as its “fatter” ancestor.
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{12.7} Consider the embedding of MALL into positive MALL[→,∧] (Theorem 12.22).

Prove it directly, without using phase spaces.

{12.8} This exercise and the next examine a different canonical model construction, due

to Okada [186]. Construct the Okada phase space as follows. Use the Cut-free single-

sided consecution calculus from Exercise 6.6. Points are structures, set X · Y = X; Y ,

0 = {X : ⊢ X}, and [[p]] = {p}∼ = {X : ⊢ X; A}. Show that [[A]] ⊆ {A}∼ by induction

on A.

{12.9} We can use the semantics of the previous exercise to prove cut elimination. Show

that ⊢ A with cut⇒A holds in all phase spaces⇒A holds in the Okada canonical model

⇒ ⊢ A is provable without cut.

Project

{12.10} Consider Bell’s proximity account of the compatibility relation C [17]. Can the

account be extended to give a justification of a ternary accessibility relation, and the

resulting logic of implication and fusion? Can a similar account be given of the phase

spaces of MALL?



CONS
1999/11/6
page 295

✐

✐

✐

✐

✐

✐

✐

✐

Chapter 13

Frame Constructions

Simulation is the seeming to be what we are not;

dissimulation, the seeming not to be what we are.

— John Wesley, Works, 1791

In this chapter, we will examine some techniques for constructing and manipu-
lating frames in order to prove results about substructural logics.

13.1 Directed Bisimulations

Hennessy and Milner have provided us with a valuable tool in the study of
frames for substructural logics [113, 171]. They provided an account of what
it is for a model M1 to simulate another model, M2. (In their case, these were
models of processes, not necessarily frames for logics.) M1 simulates M2 if
whenever a state of M1 is paired with a state of M2, whatever holds of the M1

state also holds of the M2 state. We will write the pairing relation as ‘Z ’, so
xZy if and only if x (from M1) is paired with y (from M2). If we allow Boolean
negation to modify the information carried by states, then it is simple to see
that if xZy, then the information carried by y is also carried by x. After all, if
y  A, then y 6 −A, and hence x 6 −A (as y carries everything carried by
x). Therefore, x  A too. So, in the presence of Boolean negation, simulation
becomes a two-way thing. Not only will states in M2 simulate those in M1, but
states in M1 will simulate those in M2. Simulations become bisimulations, and
these have been widely studied and applied in the semantics for classical modal
logics — in which Boolean negation is present.

For application to substructural logics, where Boolean negation is usually
absent, bisimulations are not the appropriate tool. But neither are simple sim-
ulations. For to simulate the substructural model M1 by M2, we need to know
not only what is true in each point in each model (so we need not only to see
truth in M1 preserved in model M2), but for connectives such as negation and
implication we also need to see that untruth in M1 is preserved in M2 in an
appropriate way. In other words, we need truth in M2 to be preserved in M1.
However, in the absence of Boolean negation, this need not be a one-to-one
matter. If y simulates x, then everything true in x is also true in y. We might

295
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have y simulate z, so everything true in y is true in z — or equivalently, every-
thing untrue in z is untrue in y. There is no compulsion for x and z to agree
on everything. More complex relations of simulation apply in the absence of
Boolean negation. We need what are called directed binary relations.

DEFINITION 13.1 (DIRECTED BINARY RELATIONS)
A directed binary relation Z between two sets M1 and N2 is a pair of binary
relations Z1 ⊆M1 ×M2 and Z2 ⊆M2 ×M1.

So, given M1 and M2, and a directed binary relation Z = 〈Z1, Z2〉 on this pair,
if xZ1y, then x ∈M1 and y ∈M2. The intended meaning in our applications is
that x is simulated by y. Everything true in x is also true in y. Similarly, if wZ2z,
then w ∈ M2 and y ∈ M1, and in this case too, we read this as ‘w is simulated
by y’. You can think of a directed binary relation as a system of one-way bridges
from one side of a river to the other — we can consider when such a system
does the work of simulation we require.

Here There

Figure 13.1: Bridges from Here to There and Back

In this definition, and in the rest of this section, we will use some shorthand
to cut down on the number of cases to state in any definition or proof. Instead
of saying, for example, ‘if x  p and xZ1y then y ∈ M2 and y  p too, and
similarly if x  p and xZ2y then y ∈ M1 and y  p’ we will say that whenever
{i, j} = {1, 2}, then if x  p and xZiy then y ∈ Mj and y  p. To say that
{i, j} = {1, 2} is to say that either i = 1 and j = 2, or that i = 2 and j = 1.
Think of yourself as on one side of the river, and using ‘i’ to mean ‘here’ and ‘j’
to mean ‘there’ — and you do not know which side of the river you are on.

DEFINITION 13.2 (DIRECTED BISIMULATIONS)
A directed bisimulation between two models M1 and M2 (with the same systems
of accessibility relations) is a directed binary relation on their carrier sets such
that whenever {i, j} = {1, 2}
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⋄ If xZiy and x  p then y  p.

If the models contain three-place accessibility relations R1 and R2, then

⋄ If xZiy and Rjywz then there are u, v where Rixuv, wZju and vZiz.

⋄ If xZiy and Rjwyz then there are u, v where Riuxv, wZju and vZiz.

⋄ If xZiy and Riuvx then there are w, z where Rjwzy, uZiw and vZiz.

If the models contain truth sets T1 and T2, then

⋄ If xZiy and x ∈ Ti then y ∈ Tj .

If the models contain positive two-place accessibility relations S1 and S2, then

⋄ If xZiy and ySjv then there is a u where xSiu and uZiv.

⋄ If xZiy and uSix then there is a v where vSjy and uZiv.

If the models contain negative two-place accessibility relations C1 and C2,
then

⋄ If xZiy and yCjv then there is a u where xCiu and vZju.

⋄ If xZiy and vCjy then there is a u where uCix and vZju.

We indicate that there is a directed bisimulation Z between Mi and Mj , at
which xZiy, by writing ‘Mi, x −

→Mj , y’.

The bisimulation conditions relating Z to the accessibility relations can be writ-
ten more compactly if we use the conventions for writing composed relations
from Chapter 11. The conditions can then be stated as follows. For each
{i, j} = {1, 2} we have

If Riuv(Ziy) then Rj(uZi)(vZi)y
If Rj(xZi)wz then Rix(wZj)(Ziz)
If Rjw(xZi)z then Ri(wZj)x(Ziz)

If TiZiy then Tjy
xZiSjv iff xSiZiv

xZiCjv iff xCiZ̆jy

Before examining any directed bisimulations, we will show how bisimulations
work by proving the major result concerning them. This will motivate the con-
ditions from the definition.

THEOREM 13.3 (PRESERVATION THEOREM)
If M1 and M2 are models with a directed bisimulation between them, if Mi, x −

→

Mj , y (where {i, j} = {1, 2}) and x  A then y  A too.

PROOF The proof is a direct induction on the construction of A. The clauses
are exactly what you need to give the induction steps for each connective.
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⋄ If A is an atom, then if x  p and xZiy then y  p by construction.

⋄ If A is either ⊤ or ⊥ then clearly x and y must agree about A.

⋄ If A is t, then if xZiy we have x ∈ Ti and hence y ∈ Tj as desired.

⋄ If A = �B, then if xZiy and x  �B then to show that y  �B, suppose
that ySjv. We wish to show that v  B, as then we have y  �B as desired.
By the S condition, we have some u where uZjv and xSiu. Since xSiu, we
have u  B. Since uZjv, we have v  B, by the induction hypothesis, as
we wished.

⋄ If A = ♦−B, then if xZiy and x  ♦−B, then to show that y  ♦−B, we want
some v where vSjy and v  B. We know that x  ♦−B, so there is some u
where uSix and u  B. Therefore, since uSix and xZiy, there is a v where
uZiv and vSjy. By the induction hypothesis, u  B gives v  B, as we
wished.

⋄ If xZiy and x  ∼B, we wish to show that y  ∼B. Suppose that yCjv, to
show that v 6 B. By the C condition we have a u where xCiu and vZju.
Since xCiu, u 6 B, and therefore v 6 B, giving y  ∼A as desired.

⋄ The case for ¬B is similar — you just replace Ci and Cj by their converses.

⋄ If A = B → C, then suppose that xZiy with x  B → C. To show that
y  B → C, suppose that Riywz with w  A. We wish to show that z  B.
Since xZiy and Rjywz, there are u, v where Rixuv, wZju and vZiz. Since
wZju and w  B we have u  B. Since x  B → C, we have v  C. Since
vZiz we have z  C as desired.

⋄ If A = C ← B, we reason similarly, permuting the first two places of Ri

and Rj .

⋄ If A = B◦C, then suppose that xZiy and x  B◦C. To show that y  B◦C,
we reason as follows. Since x  B ◦ C, there are u, v where Riuvx, u  B
and v  C. Since xZiy, and Riuvx, we have w, z where uZiw, vZiz and
Rjwzy. Therefore w  B, z  C, and y  B ◦ C as desired.

This completes the induction, so we have verified that if x  A, and xZiy, then
y  A for any A at all. �

To see how directed bisimulations work, let us look at some particular examples.
First, consider the diagram in Figure 13.2. The dashed arrows provide the
directed bisimulation between the two models, one on {a, b, c, d}, the other on
{a′, b′, c′, d′}.

This directed bisimulation shows us some of the distinctive features of this
relation between models. First, there are some pairs of points: b and c′, and c
and b′, which support exactly the same propositions. We have b  q, b 6 ∼p,
and c′  q, c′ 6 ∼p, for example. There are also pairs in which one point
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r

q

p

q, r

p, q

q

p

r

Model 1 Model 2

a

b

c

d

a′

b′

c′

d′

Figure 13.2: A Directed Bisimulation Between Compatibility Models

simulates the other but not vice versa. For example, d simulates a′ — a′  r
and d  r, but a 6 q while d  q.

As another example, we will use a directed bisimulation between two mod-
els to prove the following theorem.

THEOREM 13.4 (ON ∀a∃bRabb, ∃b∀aRabb AND ∃a∃bRabb)
There is no consecution valid in all and only those frames in which ∀a∃bRabb.

Similarly, there is no consecution valid on all and only those frames in which

∃b∀aRabb or in which ∃a∃bRabb.

PROOF Take the flat frame F1 on the set ω of positive integers in which R1xyz if
and only if x+y < z. It is clear that in this frame each of ∃a∃bR1abb, ∀a∃bR1abb
and ∃b∀aR1abb fails, since R1abb if and only if a + b < b, which never holds for
any a, b ∈ ω.

We will construct another frame in which ∃b∀aR2abb (and hence ∀a∃bR2abb
and ∃a∃bR2abb) holds, and in which the same consecutions are valid. The
frame F2 is given by adjoining to F1 a new object ∞, which interacts with R2

as follows

R2xy∞ for each x and y.
R2∞xy if and only if R2x∞y if and only if y =∞.

The rest of the behaviour of R2 in F2 is inherited from R1 in F1. This completely
determines the behaviour of R2 in F2. Note that R2a∞∞ for any a in F2, so
each of ∀a∃bR2abb, ∃b∀aR2abb and ∃a∃bR2abb holds in F2.

Now given any model M1 on F1, we will construct a model M2 on F2 and
a directed bisimulation between them. We define the bisimilarity as follows
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xZ1y iff x = y or y =∞
yZ2x iff x = y

The idea here is that each number in the new model behaves exactly as it does
in the original model, and that anything true at any number at all is true also
at ∞, as ∞ simulates each element of the original model. Of course, nothing
in the original frame simulates∞, as we cannot expect there to be any point in
the original model at which that many things are true.

Consistent with this, we fix ′ from M2 in terms of  from M1 as follows:

x ′ p iff x  p
∞ ′ p iff x  p for some x ∈ ω

We will demonstrate that Z so defined is a bisimulation. The clauses for the
atomic propositions are satisfied by definition, and we need not consider the
clauses for T , C or S, as our frame does not contain them. We need to verify
just the three clauses for R.

⋄ Suppose that xZ1y and R1uvx. We want w, z where R2wzy, wZ2u and
zZ2v. There are two cases here. If x = y then we can take w = u and
z = v. Similarly, if y = ∞, then we can take w = u and z = v as R2wz∞
holds.

Suppose that xZ2y and R1uvx. Then we know that x = y and hence there
are w, z where R2wzy, wZ1u and zZ1v, as again, we take w = u and z = v.

⋄ Suppose that xZ1y and R2ywz. We want there to be u, v where wZ2u, vZ1z
and R1xuv. If x = y then we can take w = u and v = z and we are done.
If y = ∞, then since R2∞wz we know that z = ∞. Therefore, if we take
u = w and v = x+u+1, then we are done, since R1xuv (as x+u < x+u+1)
and wZ2u (u = w) and vZ1z (as (x + u + 1)Z1∞).

Suppose that xZ2y and R1ywz. Then we know that x = y and hence R2xuv,
where u = w and v = z, giving wZ1u and vZ2z as desired.

⋄ Suppose that xZ1y and R2wyz. We want there to be u, v where wZ2u, vZ1z
and R1uxv. If x = y then we can take w = u and v = z and we are done.
If y = ∞, then since R2w∞z we know that z = ∞. Therefore, if we take
u = w and v = u+x+1, then we are done, since R1uxv (as u+x > u+x+1)
and wZ2u (u = w) and vZ1z (as (u + x + 1)Z1∞).

Suppose that xZ2y and R1wyz. Then we know that x = y and hence R2uxv,
where u = w and v = z, giving wZ1u and vZ2z as desired.

That completes the verification that Z is a bisimulation. Therefore, if A ⊢
B is valid in all and only those frames in which ∃a∃bRabb (or ∃b∀aRabb, or
∀a∃bRabb) then it is valid on F2. We will show that it is valid on F1 too,
contradicting the claim that it is valid on exactly those frames in which the



CONS
1999/11/6
page 301

✐

✐

✐

✐

✐

✐

✐

✐

FRAME CONSTRUCTIONS 301

condition holds (as none of the conditions holds on F1). Take any model M1

on F1, and a point x in F1 in which x  A. We will show that x  B too.
Construct the model M2 on F2 by the definitions above. Therefore we have
both M1, x −

→ M2, x M2, x −
→ M1, x, by the reasoning above. By the first, if

x  A (in M1) then x ′ A (in M2). Now A ⊢F2
B, so x ′ B. It follows that

x  B (in M2) as desired. Therefore A ⊢ B holds in F1, contradicting the claim
that A ⊢ B holds in all and only those frames satisfying the given condition. �

We can see how any directed bisimulation with Boolean negation becomes a
standard bisimulation. If we wish to preserve Boolean negation, we need to
respect the Boolean compatibility relation C such that xCiy if and only if x = y.
Then since xZiCjv if and only if xCiZ̆jy it follows that xZiy = xZ̆jy, every
bridge from M1 to M2 becomes a two-way street, and we have a standard
bisimulation.

Had we required that our models have Boolean negation, then the construc-
tion of our theorem would not work, since were we to require that∞ simulate
each x ∈ M1, we would require then that each x ∈ M1 simulate ∞, which we
could not manage.

We have seen that standard bisimulations Z are directed bisimulations of
the form 〈Z1, Z̆1〉. Another important class of directed bisimulations are the
simulations 〈Z1, ∅〉, in which only one-way traffic is allowed. For example, if
the language in question does not contain →, ←, ∼ and ¬, whenever 〈Z1, Z2〉
is a directed bisimulation, so are 〈Z1, ∅〉 and 〈∅, Z2〉. All of the conditions for
Zi in this language make no appeal to Zj . This is because each of the remain-
ing connectives — ∧,∨,⊤,⊥, t, ◦,�, ♦− — is purely positive. They introduce no
negative occurrences of formulae. (Formally speaking, if A ⊢ B and C(−) is a
context made up purely of those connectives, then C(A) ⊢ C(B), by induction
on the construction of C.) Therefore, with these formulae, there is no need to
keep track of where propositions fail to be true in order to find out where they
are true. All propositions are monotone.

The converse of the preservation theorem is a trickier matter. The major hic-
cup is the fact that we need the restriction to finite alternative models. These are
models in which for each x, there are only finitely many y where xCy, or yCx,
or xSy or ySx, and similarly, there are only finitely many 〈y, z〉 pairs, where
Rxyz, Ryzx or Ryxz. You will see in the proof below where this assumption is
required.

THEOREM 13.5 (DIRECTED BISIMULATION EXISTENCE THEOREM)
If M and N are finite alternative models with x ∈M and y ∈ N, such that for all

formulae A, if M, x  A then N, y  A, then there is a directed bisimulation Z
between M and N such that xZy.
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PROOF Set xZiy if and only if for every formula A if x  A then y  A. This is
a directed bisimulation. To show this is a tedious case-by-case verification. We
will show one case for R. We will verify that if xZiy and Rjywz then there are
u and v where Rixuv, wZju and vZiz.

Suppose that xZiy and Rjywz. Let X = {〈u, v〉 : Rxuv}. This is non-empty,
for if it were not, then x  ⊤ ⊢ ⊥, but we know that y 6 ⊤ ⊢ ⊥, and we
have xZiy. So, since X is non-empty, and since the model is finite alternative,
X = {〈u1, v1〉, . . . , 〈un, vn〉} for some finite n. Now suppose that there are no
u and v where Rixuv, wZju and vZiz. Therefore, for each m, at least one of
wZjum and vmZiz fails. So, for each m, if wZjum fails, then there is some Am

where w  Ak and um 6 Am (by the definition of Zj). In this case, let Bm = ⊥.
On the other hand, vmZiz might fail, and in this case, there is a Bm where
vm  Bm and z 6 Bm. In this case, let Am = ⊤.

So, given this definition of each Am and Bm, we have w  Am always,
and z 6 Bm always. Therefore, w 

∧

m Am and z 6
∨

m Bm. As a result,
since Rjywz, y 6

∧

m Am →
∨

m Bm. Therefore, x 6
∧

m Am →
∨

m Bm.
But what does this mean? It means that there is some l where ul 

∧

m Am

and vl 
∨

m Bm. (As the 〈um, vm〉 pairs are the only points where Rxumvm.)
However, for each l, either ul 6 Al or vl  Bl, by definition. Therefore, we
cannot have x 6

∧

m Am →
∨

m Bm, and our assumption fails. There must be
some u and v where Rixuv.

The other conditions are similar but appeal to whichever of ←, ◦, ∼, ¬, �
or ♦− are tied to the bisimulation clause. �

We will end this section by using the technique of bisimulations to prove a
number of transfer theorems. In these theorems, we will show that if a frame
has some property, then so do other frames constructed from our original frame.

DEFINITION 13.6 (GENERATED SUBFRAMES AND SUBMODELS)
Given a frame F and a point x in F then the subframe of F generated by x, writ-
ten ‘GSF(F , x)’, is based on the smallest subset X(x) containing x and closed
under all accessibility relations of the frame. That is, if yCz and either of y or
z is in X(x), then so is the other. If ySz and either of y or z is in X(x), then
so is the other. And similarly, if Ryzw and one of y, z and w are in X(x), then
so are the other two. The accessibility relations on GSF(F , x) are those from F
restricted to X(x).

THEOREM 13.7 (GENERATED SUBFRAME PRESERVATION)
If M, x  A, and M is a model on the frame F , then if we define  on GSF(F , x)
as the restriction of  to GSF(F , x), then M′, y  A if and only if M, y  A for

each A, for any y ∈ X(x).
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PROOF Define a directed bisimulation Z between M and M′ by setting yZ1z
if and only if zZ2y if and only if y = z and y ∈ X(x). So the bisimulation
maps a point in the generated subframe to its correlate in the original frame,
and vice versa, and those points not in the generated subframe are not mapped
anywhere.

This relation satisfies the bisimulation conditions. The base case is satisfied
by the definition of M′. The accessibility relation cases are dealt with by the fact
that X(x) is closed under each accessibility relation. For example, if yZ2z and
Rzuv (where Rzuv holds in the large model) then we have y = z, and we know
that u and v are in the generated subframe, so Rzuv holds in the generated
subframe, so we have Rzuv, uZu and vZv. The other conditions are verified
similarly.

Therefore, M′, y  A if and only if M, y  A for any y ∈ X(x), since yZy.�

There is a simple corollary of this result.

COROLLARY 13.8 (UNDEFINABILITY OF NON-REFLEXIVITY)
The non-reflexivity of R — ∼∀xRxxx is not definable in the language of substruc-

tural logics.

PROOF Take a non-reflexive frame with an isolated reflexive point x. The gen-
erated subframe at x is the reflexive one-point (Boolean) frame. �

A similar process is the taking of disjoint unions.

DEFINITION 13.9 (DISJOINT UNIONS)
Given a class of models Mi (i ∈ I), then their disjoint union is a model too, by
setting the relations to be the disjoint union of the original relations, and the
evaluation similarly.

THEOREM 13.10 (DISJOINT UNION PRESERVATION)
If Mi is a model of the logic Li then the disjoint union of the models Mi is a model

of
⋂

i Li.

PROOF Each Mi is a generated submodel of the disjoint union M. Therefore
X ⊢M A if and only if X ⊢Mi

A for each i. It follows that if X ⊢ A is provable
in each Li, then X ⊢ A holds in M, as desired. �

This condition gives us another result about the definability of frame conditions.

COROLLARY 13.11 (UNDEFINABILITY OF ∀x∀y∃zRxyz)
There is no substructural consecution valid in all and only those frames in which

∀x∀y∃zRxyz.
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PROOF Take two frames in which your chosen consecution is valid, and take
their disjoint union. The consecution is valid in the disjoint union, by our the-
orem. Now select x from the first frame and y from the second. There is no z
such that Rxyz in the disjoint union, as there is no communication between the
two components of the new frame. Therefore no consecution is valid in all and
only those frames in which ∀x∀y∃zRxyz. �

13.2 Reduced Frames

A frame is reduced if and only if the truth set T is generated by a single point.
That is, if and only if T = {x : 0 ⊑ x} for some 0. In this case, x ⊑ y if and
only if R0xy. Many useful frames are reduced. For example, linguistic frames
of the Lambek calculus are reduced if they have identity objects. The null string
ǫ is such that ǫx = x = xǫ for each x. Similarly, in action frames the null action
generates a truth set.

However, canonical frames for our logics are not typically reduced. In a
canonical frame, the set T is the set of all prime theories x, where t ∈ x. This
is generated by a single set if and only if the set {A : t ⊢ A} of t-theorems is
prime. This is not always the case. (For example, if we have Boolean negation,
the set of t-theorems is typically not prime, as p ∨ −p is a t-theorem, but in any
of our logics neither p nor −p is a theorem.) So, can we model our logics with
reduced frames? The answer is yes, sometimes.

DEFINITION 13.12 (REDUCTION-READY LOGICS)
A logic is reduction-ready if and only if whenever A ⊢H B is provable in the
Hilbert system of the logic, so is A ∨ C ⊢H B ∨ C.

Reduction-ready logics are useful for the following reason.

LEMMA 13.13 (REDUCTION READINESS AND PAIR EXTENSION)
If a logic is reduction-ready, and its standard consequence relation ⊢ is pair ex-

tension acceptable, then its Hilbert consequence relation ⊢H is also pair extension

acceptable.

PROOF Every condition of pair extension acceptability is satisfied by ⊢H , given
that ⊢ is pair extension acceptable, except for the disjunction rule: if A ⊢H C
and B ⊢H C then A ∨ B ⊢H C. This is given by the reduction readiness
condition. If A ⊢H B then A ∨B ⊢H B ∨ C. Similarly, if B ⊢ C then B ∨ C ⊢H

C ∨ C. So by transitivity, A ∨ B ⊢H C ∨ C. But we have C ∨ C ⊢H C, so
A ∨B ⊢H C as desired. �
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Not all substructural logics are reduction-ready. One prominent example is E.
In E, we have A ⊢H t→ A (this is the rule of necessitation); however, there are
cases where A∨C is a theorem while (t→ A)∨C is not. For example, A∨∼A is
a theorem, while (t→ A)∨∼A is not an E theorem. (Why not? Well, �A∨∼A
is not a theorem of any decent modal logic.)

Now we can show that reduction-ready logics are modelled by reduced
frames.

THEOREM 13.14 (REDUCTION READINESS AND REDUCED FRAMES)
If a logic is reduction-ready, then it is sound and complete for a class of reduced

frames.

PROOF Soundness is trivial, as we have simply cut down the class of frames.
Completeness is not so trivial. Suppose that A ⊢ B fails in our logic. We

wish to construct a reduced frame in which it fails. As before, we take the pair
〈{t}, {A→ B}〉 and expand this to a prime pair, according to the relation ⊢H .
Since ⊢H is pair extension acceptable, it is extended by a full pair. Call the left
set of the resulting full pair, Θ. The set Θ is a non-trivial prime theory, but in
addition, it is closed under ⊢H . Therefore, if C → D,C ∈ Θ then D ∈ Θ, and
C ∈ Θ if and only if t→ C ∈ Θ, and so on.

To construct the canonical frame, we consider not the set of all non-trivial
prime theories but the set of all non-trivial prime Θ-theories. A Θ-theory is
a theory with respect to the relation ⊢Θ. C ⊢Θ D if and only if C → D ∈ Θ.
This is pair extension acceptable, and it extends the consequence relation of our
logic. Furthermore, since A→ B 6∈ Θ, there is some prime Θ-theory containing
A but not B.

Now consider T in this frame: we have x ∈ T if and only if t ∈ x. Suppose
that t ∈ x, and suppose that C ∈ Θ. Since t → C ∈ Θ, t ⊢Θ C, and hence,
C ∈ x. Therefore, if x ∈ T , x ⊆ Θ. But the converse holds too. Clearly if Θ ⊆ x,
since t ∈ Θ, t ∈ x too, and hence x ∈ T . Therefore, T = {x : Θ ⊆ x}, and the
canonical Θ-frame is reduced.

As Θ is a superset of the set of theorems of the logic, it is trivial to show that
the frame satisfies the structural rules of the logic in question. The proof of the
case of the canonical frame suffices. �

This theorem is all well and good, but it does not tell us to which logics the
result applies. It is not particularly clear when a logic is reduction-ready. We
have a sufficient condition in the next result.

THEOREM 13.15 (SUFFICIENT CONDITION FOR REDUCTION READINESS)
If a logic is such that every non-theorem is invalidated in some prime regular

theory, and in addition, it is axiomatisable in such a way that the only rules are

adjunction (A,B ⊢H A ∧ B) and modus ponens (A,A → B ⊢H B), then the

logic is reduction-ready.
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PROOF We show that the disjunctive forms of the rules of adjunction and modus

ponens are valid. For adjunction, the rule is A ∨ C,B ∨ C ⊢ (A ∧ B) ∨ C. That
follows from distribution. For modus ponens, the rule is A∨C, (A→ B)∨C ⊢H

B ∨C. Suppose that it is invalid. Then there is a prime regular theory in which
we have A ∨C and A→ B ∨C. So, in the theory we have C or we have A and
A→ B, so in either case we have B ∨ C as desired. �

As a result, we have the reduction readiness of R, DMALL and Lambek’s logics
L and LI. So these logics are sound and complete for reduced frames.

13.3 Doing Without Inclusion

Boolean negation on a frame F is that connective characterised by the following
condition

x  −A if and only if x 6 A.

Substructural logics are typically defined without Boolean negation. This gives
these logics some of their distinctive properties. However, it is often possible
to add Boolean negation without disturbing the behaviour of the logic. This
section is dedicated to proving the following result.

THEOREM 13.16 (BOOLEAN NEGATION THEOREM)
If a logic is modelled by a class of frames characterised by frame conditions which

do not appeal to the partial order condition ⊑, then that logic is conservatively

extended by Boolean negation.

PROOF Suppose that A 6⊢ B in the logic in question. Therefore, there is a
model M in which A 6⊢M B. We show that this can be extended to a model in
which we add evaluation conditions for Boolean negation. The necessity is that
we flatten the frame. That is, we replace ⊑ by =. This new frame is still a frame
for the logic, as any frame conditions (not appealing to ⊑) are still satisfied.
Given that the frame is flat, we can add an interpretation for Boolean negation.
Now x  −C if and only if x 6 C for each C.

This is still a counterexample for A  B as the evaluation of the non-Boolean
connectives is not disturbed. Therefore, we have a counterexample to our con-
secution in the logic with the addition of Boolean negation. �

This technique does not work with logics like J or CK, which have frame con-
ditions which make use of the inclusion relation. We will consider CK. If we
attempt to use the technique of this proof, the new frames will not satisfy the K

condition: Rxyz → y ⊑ z, or other conditions appealing to ⊑. For we will not
necessarily have Rxyz → y = z. The logic of the new frame will not include all
of CK.



CONS
1999/11/6
page 307

✐

✐

✐

✐

✐

✐

✐

✐

FRAME CONSTRUCTIONS 307

However, the technique works for many logics. In particular, for any of the
logics extending DBSub with the structural rules B, Bc, B′, C, W, T, 4, Kr, mMP,
mWI and many others.

COROLLARY 13.17 (CONSERVATIVE EXTENSION WITH BOOLEAN NEGATION)
The logics R, DMALL and the Lambek calculi L and LI are all conservatively ex-

tended with Boolean negation. �

Well, this has almost been proved. We have not quite dealt with t. If t is a
left identity for fusion, the modelling condition for T is that y ⊑ z if and only
if there is some x ∈ T where Rxyz, and this condition requires the inclusion
relation to state. How can we do away with this? The answer has already been
given. If we use reduced frames T = {x : 0 ⊑ x} for a point 0. We can perform
a little surgery on the reduced frame by modifying the behaviour of R on 0.
We rejig things so that R0xy if and only if x = y, and similarly, if CI holds in
the logic, Rx0y if and only if x = y. This does not alter the evaluation of any
formula at 0, for if in the old model 0  A → B, then 0  A → B in the new
model too — and if 0 6 A → B in the old model, then for some x, y where
x ⊑ y, x  A and y 6 B. Then x 6 B and in the new model, 0 6 A → B.
Similarly, if we have R0xy in the old model to give y  A ◦B, then since x ⊑ y
we have R0yy and y  A ◦ B still. The “rewiring” of R does not alter the
evaluation of any formulae.

Similarly, you can check that the standard structural rules, such as B, B′, Bc,
C and W, are preserved by this shift. This ensures that each of R, DMALL, L and
LI are conservatively extended by Boolean negation.

The philosophical significance of this proof is to be examined in Chapter 16.

13.4 Linguistic Frames

There is another way we might want our frames to look. If we are interested in
using the Lambek calculus to model languages, we will be interested in linguistic

frames.

DEFINITION 13.18 (LINGUISTIC FRAMES)
A linguistic frame is a frame in which there is a free semigroup operation ·, such
that Rxyz if and only if x · y = z.

We have a simple result on the adequacy of language frames for a fragment of
the Lambek calculus, proved first by Buzskowski [41].

THEOREM 13.19 (LAMBEK CALCULUS AND LANGUAGE FRAMES)
The logic L[→,←,∧,⊤] is sound and complete for the class of language frames.
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PROOF Soundess is trivial, as the ternary accessibility relation on language
frames satisfies B and Bc. Completeness is less trivial. We cannot use the canon-
ical model, as the canonical model is nothing like a language frame. However,
we define a model as follows.

Let the points in the model be sequences of formulae in the language [→,←
,∧,⊤] and we set the accessibility relation as follows:

RXY Z iff Z = X;Y

Assign truth for atomic propositions as follows:

X  p iff X ⊢ p

We will show by induction on B that X  B if and only if X ⊢ B.

Clearly, the result holds for atomic B and B = ⊤. If B = B1 ∧ B2, then
X  B1 ∧ B2 if and only if X  B1 and X  B2, if and only if X ⊢ B1

and X ⊢ B2, if and only if X ⊢ B1 ∧ B2 as desired. If B = B1 → B2, then
X  B1 → B2 if and only if X;B1  B2, if and only if X;B1 ⊢ B2, if and only
if X ⊢ B1 → B2 as desired. The result for← is dual.

So we have a linguistic model in which X  A if and only if X ⊢ A. There-
fore, if A ⊢ B is not provable in BBc[→,←,∧,⊤], in this model we consider the
point A. Clearly A  A, but A 6 B, so the entailment A ⊢ B fails in the model,
as desired. �

This technique does not work for logics containing fusion, as we will be unable
to show that A ◦B  A ◦B. The sequence A ◦B is not the concatenation of any
two sequences, so we will not have A ◦B  C ◦D for any C or D at all.

13.5 History

Hennessy and Milner’s work on bisimulations and simulations has been exceed-
ingly useful in the study of frame semantics of modal logics [31, 113, 171].
The applications to substructural logics are very much in their infancy. The
directed bisimulation results of this chapter are due to Kurtonina and de Ri-
jke [129, 130].

For reduced frames, comprehensive studies are available in the work of
Slaney [248], and the work of Priest and Sylvan [201], extended by me [211,
215].

Pentus has shown that the language completeness for the Lambek calculus
holds for BBc[◦,→,←] [191]. His proof is quite complex and beyond the scope
of this book.
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13.6 Exercises

{13.1} Show how even with ⊑ we can conservatively extend with BN by judicious use

of an S4 modality.

{13.2} Show that the logic of linguistic frames is not BBc[∧,∨, ◦,→,←,⊤,⊥] but that

we also need to have A ∧ (A → ⊥) ⊢ ⊥ and the inference from A ⊢ B → ⊥ to

B ⊢ A→ ⊥. At least.
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Decidability
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Chapter 14

Decision Procedures

In the terms of the new electronic pragmatism,

the truth may not be pure

but it had better be simple.

For “simple” read “computationally tractable.”

— John Slaney, Vagueness Revisited [249], 1988

The deducibility problem for a logic goes like this: we are presented with a
consecution X ⊢ A, and we wish to know whether it is valid or not. Is there an
algorithm to determine its validity? A logic is said to be decidable if and only if
there is an algorithm determining decidability, and it is undecidable if there is
no such algorithm.

In some logics, there is a simple algorithm. For example, in the two-valued
classical propositional logic TV, one algorithm is a truth table test. You check
to see whether there are any truth table evaluations for which the antecedent
is true and the conclusion false. If there are any, the argument is invalid, oth-
erwise, it is valid. This process can be generalised — if any logic has a finite
characteristic algebra, then we have an algorithm for testing its validity. You
check! However, many logics are not characterised by a finite algebra.1 In
these cases, we need a more subtle method for determining the validity of ar-
guments. In this chapter, we will examine a few such methods. The first section
will focus on methods involving proof theories and the second, on models.

14.1 Proof Search

One method for determining validity is to search for a proof, provided that you
have reassurance that you will not have to look too far. If there are bounds on
the length of the search, then searching for a proof can provide an algorithm
for determining validity. (If there is no such bound, then you do not have an
algorithm, as you are not assured that the search will end with an answer.)
Proof search is quite simple in the case of non-expansive logics.

1 See Exercises 8.11 and 8.12.

313
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DEFINITION 14.1 (COMPLEXITY AND EXPANSIVE RULES)
The complexity of a consecution is the number of instances of connectives or
punctuation marks in that consecution. A structural rule is expansive if and only
if it has some instance in which the complexity of the premise is greater than
the complexity of the conclusion.

Note that WI is expansive, as p; p ⊢ q is more complex than p ⊢ q. However, B,
Bc, B′, C and K are all non-expansive, as an inspection of the rules will verify.
If a logic is axiomatised with a Gentzen system with non-expansive rules, then
the logic is decidable, as the next theorem shows.

THEOREM 14.2 (NON-EXPANSIVE LOGICS ARE DECIDABLE)
A logic axiomatised with a non-expansive Gentzen calculus is decidable.

This theorem exploits one of the useful properties of Gentzen systems — the
elimination of the Cut rule. For the Cut rule is, in many instances, expansive.
In the inference from X ⊢ A and A ⊢ B, to X ⊢ B, we may move from complex
premises to a simpler conclusion, in cases where A is complex.

PROOF We will provide an algorithm for determining the validity of the conse-
cution X ⊢ A. The procedure uses induction on the complexity of X ⊢ A. At
each step, we suppose that the issue of the validity of consecutions less complex
than X ⊢ A has been decided.

There are number of important properties of our Gentzen systems.

⋄ In any proof of X ⊢ A, the formulae appearing are subformulae of those in
X and A.

⋄ In any proof of X ⊢ A, the complexity of consecutions does not increase
from root to leaves.

⋄ There are a finite number of consecutions with complexity no greater than
X ⊢ A, composed of subformulae of X and A.

These results are straightforward, given the Gentzen rules.

Now we give our algorithm. Suppose that X ⊢ A has complexity zero. Then
a simple check verifies validity. pi ⊢ pj is valid when and only when i = j.
A ⊢ ⊤ is always valid, as is ⊥ ⊢ A and 0 ⊢ t. No other consecutions of this
complexity are valid.

Now suppose that we have an algorithm for deciding the validity of consecu-
tions of complexity less than n, and suppose that X ⊢ A has complexity n. We
list all possible premises for Y ⊢ B, for each consecution Y ⊢ B of complexity
n, constructed of subformulae of X ⊢ A. There are finitely many such conse-
cutions. For those premises of complexity less than n, we have an algorithm
determining validity. For those consecutions of complexity n, we set aside as
valid those which follow from the valid consecutions of lower complexity. We
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proceed through the list, setting aside as valid those which have valid premises.
As the set of consecutions is finite, this process will eventually stop, with the
valid consecutions of complexity n set aside, and those invalid remaining. This
tells us which consecutions of complexity n are valid. �

The result gives us the decidability of logics such as LL, Lambek’s logic L,
BCK and others axiomatised with non-expansive rules. However, logics with
extensional structure are not shown to be decidable in this way, for eWI is
expansive. Similarly, the system R[→] is not shown to be decidable, as W is
expansive. However, a refinement of this technique, due to Kripke [127], gives
us an algorithm for R[→] and nearby logics.

The main strategy of this is to limit applications of the contraction rule so as
to prevent a proof search from running on for ever. We need one simple notion
before strategy can be achieved.

DEFINITION 14.3 (CONTRACTIONS OF CONSECUTIONS)
The consecution X ′ ⊢ A is a contraction of X ⊢ A when it can be derived from
X ⊢ A by repeated applications of the structural rules.

In fact, we will identify consecutions which are related by applications of B and
C. In effect, the antecedent structure will be treated as a multiset.

Kripke’s idea is to allow a contraction of the conclusion of a rule only in so
far as the same result could not be obtained by first contracting the premises.
This means no change for the rule [→R], and that we should modify [→L] as
follows:

X ⊢ A Y (B) ⊢ C

[Y (A→ B;X)] ⊢ C

where [Y (A→ B;X)] ⊢ C is any contraction of Y (A→ B;X) ⊢ C where

1. A→ B occurs only 0, 1, or 2 times fewer than in Y (A→ B;X) ⊢ C.

2. Any formula other than A→ B occurs only 0 or 1 time fewer.

We can prove this lemma by induction on the length of the proof:

LEMMA 14.4 (CURRY’S LEMMA)
If a consecution C ′ is a contraction of a consecution C and C has a derivation of

length n, then C ′ has a derivation of length ≤ n. �

This lemma shows that the modification of R[→] leaves the same consecutions
derivable (since the lemma says the effect of contraction is retained).

Curry’s Lemma also shows that every derivable consecution has an irredun-

dant derivation in the following sense: one containing no branch with a conse-
cution C ′ below a consecution C of which it is a contraction.
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We now need to verify that proof search cannot go on indefinitely, given the
restriction of our attention to irredundant proofs. For this, we need another
notion:

DEFINITION 14.5 (COGNATE CONSECUTIONS)
Two consecutions X ⊢ A and X ′ ⊢ A are cognate just when exactly the same
formulae (not counting multiplicity) occur in X as in X ′. Thus, e.g. all of the
following are cognate with each other:

X;Y ⊢ A X;X;Y ⊢ A X;Y ;Y ⊢ A X;X;Y ;Y ⊢ A

We call the class of all consecutions cognate with a given consecution a cogna-

tion class.

LEMMA 14.6 (KRIPKE’S LEMMA)
Suppose that a sequence of cognate consecutions C0, C1, . . . , is irredundant in the

sense that for no Ci, Cj with i < j, is Ci a contraction of Cj . Then the sequence is

finite.

Recall that Gentzen systems have the subformula property. This means that the
number of cognation classes occurring in any derivation (and hence in each
branch) is finite. But Kripke’s Lemma further shows that only a finite number
of members of each cognation class occur in a branch (this is because we have
constructed the complete proof search tree to be irredundant). So every branch
is finite, so the proof search tree is finite and there is a decision procedure.

Returning now to elaborating Kripke’s Lemma itself, before proving it we
will explain a helpful way to picture what is going on. Consider a family of
consecutions as points in an n-dimensional graph, where there is an axis for
each different formula appearing in the antecedent of the consecutions in the
cognation class. The A-th co-ordinate of a point is then the number of times
A appears in the consecution. This will range from 1 upwards. Now, each Cn

in the graph casts a shadow over all possible positions of consecutions which
would contract to Cn. This is depicted in Figure 14.1. No later consecution can
be placed in the shaded areas. The result of Kripke’s lemma is that eventually
there will be no room to place new consecutions. Try it yourself to see what
happens! Here is a formal proof that irredundant sequences terminate.

PROOF Suppose that S = Ci, i ∈ ω is the sequence of cognate consecutions.
We will show that if S is irredundant, it is finite. We use induction on the num-
ber n of distinct formulae occuring in S. If n = 1, then the claim is immediate.
Suppose now that the hypothesis holds for all sequences containing n formulae
and consider a sequence S containing n + 1. Pick one formula occuring in S:
call it A. Ck is critical in a sequence if and only if for each m > k the number of
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Figure 14.1: Regions and Redundant Sequences

occurrences of A in Ck is less than or equal to the number of occurrences of A
in Cm. Let C ′i be the result of deleting all occurrences of A from Ci. We define
a new sequence S′ of consecutions, Di, i ∈ ω as follows. Let Ck be the first
consecution critical in the original sequence. D0 = C ′k. Suppose that Dm has
been defined and is C ′j . If Cj+1 exists, find the first critical consecution in the
sequence Cj+1, Cj+2, . . . call it Cl and let Dm+1 = C ′l . Note that S′ terminates
only if the S terminates. Now S′ is a sequence of cognate consecutions, con-
taining only n distinct formulae. Therefore, if S′ is irredundant, S′ terminates.
However, since S is irredundant, so is S′. Therefore S′ terminates, and hence,
so does S. �

This algorithm can be immediately extended to logics with conjunction, dis-
junction, fusion, t, ⊤ and ⊥ with the rules

X ⊢ A X ⊢ B

X ⊢ A ∧B

X(A) ⊢ C

[X(A ∧B)] ⊢ C

X(B) ⊢ C

[X(A ∧B)] ⊢ C
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X(A) ⊢ C X(B) ⊢ C

[X(A ∨B)] ⊢ C

X ⊢ A

X ⊢ A ∨B

X ⊢ B

X ⊢ A ∨B

X ⊢ A Y ⊢ B

[X;Y ] ⊢ A ◦B

X(A,B) ⊢ C

[X(A ◦B)] ⊢ C

⊢ t
X ⊢ C

[X; t] ⊢ C

X ⊢ ⊤ X;⊥ ⊢ C

where in each bracketed antecedent we have allowed appropriate contractions.
In each of these cases, the proof of Curry’s Lemma holds, and Kripke’s Lemma
does not rely on the presence of any particular connectives, so the decidability
of the extended system follows.

However, in this system, we are unable to prove the distribution of disjunc-
tion over conjunction. We do not have an algorithm for the whole of R+. (And
we will not, due to the result of Urquhart’s reported in the next chapter.)

The decidability of the system reported here extends to the system with a
strong de Morgan negation. There are a number of ways to do this. One is
to extend the proof theory to include structured consequents. Another simpler
technique is to use the embedding result from Theorem 12.22. Any algorithm
for the logic, including → and ∧ and t, becomes an algorithm for the whole
logic, without distribution.

14.2 Finite Model Property

Another way to prove that there is an algorithm for determining the conse-
quence relation in a logic is to exploit the model theory of the logic in question.
A logic has the finite model property if and only if any consecution invalid in the
logic can be invalidated in a finite model. If, then, we have an algorithm for
producing all of the proofs in our logic, and we have an algorithm for producing
all of the finite models, then we can combine these to produce an algorithm for
testing the validity of consecutions. The algorithm is not particularly efficient,
but it works. It goes as follows. Construct model number 1. Test X ⊢ A in
this model. If it is invalid in this model, you stop, as you know that X ⊢ A is
not valid. If not, construct proof number 1. If this is a proof of X ⊢ A, you
are finished as you know that X ⊢ A is valid. Now construct model number
2. Test X ⊢ A in this model . . . Now construct proof number n. Now construct
model number n . . . If the logic has the finite model property, you know that
this procedure must terminate at some stage. We will construct a proof, or con-
struct a countermodel to our consecution. In this section, we will consider one
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powerful technique for showing when a logic has the finite model property, the
technique of filtrations.

DEFINITION 14.7 (EQUIVALENT POINTS)
Given a model M, and a set F of formulae, we say that two points x and y are
F -equivalent (written x ≡F y) if and only if for each A ∈ F , x  A if and only
if y  A.

It is clear that for any F , ≡F is an equivalence relation. If F is finite, then M

can contain at most finitely many ≡F -equivalence classes. Given a particular
set F of formulae, and a particular model M, we let x = {y : x ≡F y}. The
set of all equivalence classes x is finite if F is finite. The idea of filtrations is to
construct a model on the set of these equivalence classes.

We will try, as far as possible, for the evaluation on the points x to mirror
the evaluation on x, as far as formulae in F go. We set x  p if and only if
x  p, whenever p ∈ F . The value of other formulae can be whatever we like.
To model the accessiblity relations, we have the following definition.

DEFINITION 14.8 (F -FILTRATIONS)
Given a model M, another model M is an F -filtration of M if and only if the

points in M are the equivalence classes x, with x ∈ M, such that x  p if and
only if x  p, whenever p ∈ F , and such that the accessiblity relations S, R and
C on M satisfy the following conditions:

⋄ If xSy then xSy.

⋄ If xSy, �A ∈ F , and x  �A then y  A.

⋄ If xSy, ♦−A ∈ F and x  A, then y  ♦−A.

⋄ If Rxyz then Rxyz.

⋄ If Rxyz, A→ B ∈ F , x  A→ B and y  A then z  B.

⋄ If Rxyz, B ← A ∈ F , y  B ← A and x  A then z  B.

⋄ If Rxyz, A ◦B ∈ F , x  A and y  B then z  A ◦B.

⋄ If xCy then xCy.

⋄ If xCy, ∼A ∈ F and x  ∼A then y 6 A.

⋄ If xCy, ¬A ∈ F and y  ∼A then x 6 A.

The clauses in these definitions are chosen purely to prove the following lemma:

LEMMA 14.9 (FILTRATION LEMMA)
If M is a filtration of M, then for any x ∈ M, and for any A ∈ F we have

M, x  A if and only if M, x  A.
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PROOF The verification is an induction on the construction of A. It holds for
atoms by definition. The induction steps for conjunction and disjunction are
immediate. Consider � formulae. If x  �A then x  �A if and only if
whenever xSy then y  A. But since �A ∈ F we have y  A, and by induction,
y  A. Conversely, if x  �A then if xSy we have xSy and hence y  A, giving
y  A, which in turn gives x  �A as desired.

Consider implication formulae. If x  A → B and Rxyz, we wish to know
that if y  A then z  B. Well, if y  A then by induction y  A, and so by our
hypothesis on R on the filtration frame, z  B, giving z  B by the induction
hypothesis. Conversely, if x  A → B and Rxyz, if y  A then Rxyz gives
y  A and hence z  B, giving z  B and hence x  A→ B as desired.

The same holds for negation and fusion, and we pronounce the proof com-
pleted. �

Here are some example accessibility relations on a filtration frame.

EXAMPLE 14.10 (FILTRATIONS)
The smallest filtration: xSsy if and only if x′Sy′ for some x′ ≡F x and y′ ≡F y.
Rsxyz if and only if Rx′y′z′ for some x′ ≡F x, y′ ≡F y and z′ ≡F x. (And
similarly for C.)

The largest filtration: xSly if and only if for each �A ∈ F , where x  �A,
y  B too, and for each ♦−A ∈ F , if x  A then y  ♦−A. (And similarly for R
and C.)

The technqiue of filtration gives us an immediate decidability argument for the
basic distributive substructural logic DBSub.

THEOREM 14.11 (CONSEQUENCE IN DBSub IS DECIDABLE)
DBSub is decidable, as it has the finite model property.

PROOF Suppose that A 6⊢ B in DBSub. Therefore there is a model M in which
A 6⊢M B. Now let F be the set of all subformulae of A or of B, and consider the
filtration M in which we define R, S and C to be the smallest filtration relations.
This is a finite model, and it invalidates A ⊢ B, since if x  A and x 6 B, for
some x ∈ M, we have x  A and x 6 B. Furthermore, M is actually a model
for DBSub, as every substructural model is a model for DBSub. �

This technique can be extended to provide decidability of other substructural
logics too. For example, given a model in which the structural rule WI holds,
we have Rxxx for each x. It follows that Rxxx will hold in any filtration of this
model, so this is a model for DBSub plus WI. Similarly, if CI holds in M, it will
also hold in any filtration of M. So adding CI does not disturb decidability.

However, not all structural rules fare so well. In particular, B is not preserved
by filtrations. Suppose that M satisfies B. Consider a filtration M. Does B hold
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in this frame? If we have Rxyv and Rvzw, is there some u where Rxuw and
Ryzu? In the case of the smallest filtration, it does not seem that there has to
be. For if x ≡ x′, y ≡ y′, v ≡ v′ and Rx′y′v′ (to give Rxyv) and v ≡ v′′, z ≡ z′,
w ≡ w′ and Rv′′z′w′ (to give Rvzw) then there is no assurance that v′′ = v′.
It is unknown whether any other technique for defining R on a filtration can
preserve associativity axioms such as B and B′.

14.3 History

Kripke’s original work has been reported in abstract form only [127]. The tech-
nique was extended to model E with negation by Belnap and Wallace [27], and
their work is discussed in Entailment Volume 1 [6]. The algorithm has been
implemented by Thistlewaite and McRobbie and Meyer [260] in the theorem
prover KRIPKE, available from the Automated Reasoning Project at the Australian
National University at //arp.anu.edu.au/~jks/kripke.html.

Meyer has noted that Kripke’s Lemma is equivalent to a theorem of Dickson
about prime numbers: Let M be a set of natural numbers, all of which are
products of the first m primes. Then every n ∈ M is of the form pn1

1 × pn2

2 ×
· · · × pnk

k , and hence it can be regarded as a sequence of the pi’s in which each
pi is repeated ni times. Divisibility corresponds to contraction (neglecting the
case ni = 0). Dickson’s theorem says that if no member of M has a proper
divisor inM, thenM is finite.

McRobbie and Belnap [152] have reformulated the Gentzen system for non-
distributive R in an analytic tableau style, and Meyer has extended this to give
analytic tableau for linear logic and other systems in the vicinity of R [164].

Curry’s Lemma is named after an analogous lemma about classical and intu-
itionistic Gentzen systems [53]. With K available, Curry proves his lemma with
[→L] stated as:

Γ, A→ B ⊢ A Γ, A→ B,B ⊢ C

Γ, A→ B ⊢ C

This rule uses the the maximum contraction permitted in our statement of [→L]
above, but this is not a problem since items contracted away can always be
returned using K. Giambrone [95], Brady [39] and I [218] have extended the
proof search method to deal with extensional structure, thereby proving the
decidability of logics without contraction, but with extensional structure.

Meyer and Ono [165] show that R[→,∧] and BCK[→,∧] have the finite
model property, using Kripke’s Lemma. Their construction stays close to the
techniques from proof theory. Buszkowski extends the result to prove the fi-
nite model property for MALL[→,∧] [42]. Lafont has gone further to use phase
spaces to give the finite model property for MALL [132]. See Exercise 14.3.
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It would be a grave omission not to call the reader’s attention to a major
open problem: it is still unknown whether the implication fragment of T is
decidable.

14.4 Exercises

Practice

{14.1} Step through a proof search procedure for proofs of simple consecutions, such

as A→ B; B → C ⊢ A→ C in Lambek’s logic L, and A ⊢ (A→ B)→ B in MALL.

{14.2} Step through a proof search procedure to argue that A ⊢ B → A is not provable

in MALL and that A ⊢ (A→ B)→ B is not valid in Lambek’s logic L.

Problems

{14.3} For the finite model property of MALL, we use the Okada canonical model con-

struction from Exercise 12.8. Define the finitely generated phase space PS[A] to be the

Okada phase space generated by all subformulae of A and structures made out of these

formulae, and using the logic ⊢MALL[A] in which proofs are restricted to subformulae of

A. Define 0 as before, and show that [[B]] = {B}∼ if B is a subformula of A, and is

{∼B}∼∼ if ∼B occurs in A and B does not.

{14.4} A relation ≡ is a congruence on a phase space if and only if whenever x ≡ x′ and

y ≡ y′ then xy ≡ x′y′, and if x ∈ 0 and x ≡ y then y ∈ 0. Let π : M → M/ ≡ be the

quotient map which sends a phase to its ≡-equivalence class. Prove that π(x)  A if and

only if x  A for each x ∈M.

{14.5} Now define X � Y as follows: X � X; Y , B; C; X � B+C; X, B; X � B∗C; X
and C; X � B ∗ C; X whenever ∗ is one of ∧, ∨ or ◦. Show that for any B there are

finitely many X where X � B.

{14.6} Let MALL〈A〉 be MALL[A] extended with the axioms ⊢ X whenever X 6� A.

Define ≡A on PS〈A〉 by setting X ≡A Y if and only if X = Y or X 6� A and Y 6� A.

Show that ≡A is a congruence.

{14.7} Show that PS〈A〉/ ≡A is finite.

{14.8} Show that ⊢ A in MALL ⇒ ⊢ A holds in finite phase spaces⇒ A is satisfied in

PS〈A〉/ ≡A ⇒ A is satisfied in Cut-free MALL〈A〉 ⇒ ⊢ A in MALL. (Only the last part

here is difficult, and it relies on the behaviour of �.)

{14.9} Show that abelian logic is decidable, and that it has the infinite model property:

no consecution has a counterexample in a finite model.

Projects

{14.10} Show that T[→] is decidable.

{14.11} Show that T[→,∧] is decidable.
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Chapter 15

Undecidability

Things so utterly undetermined,

that they are indeed altogether undecidable.

— Bishop Joseph Hall, Episcopacie by Divine Right Asserted, 1640

In this chapter, we will examine some of the most surprising results in the study
of substructural logics. We will show that the Hilbert consequence relation ⊢H

is undecidable in most major substructural logics, and that as a consequence,
the standard entailment relation ⊢ is undecidable in many major substructural
logics. That follows in logics with WI in which ⊢H is related to ⊢ closely enough
for an algorithm for ⊢ to give an algorithm for ⊢H . This result is important, as
these logics provide the simplest examples of propositional logics known to be
undecidable.

Proving undecidability is, at least initially, more difficult than proving decid-
ability. To demonstrate decidability, you construct an algorithm. To demon-
strate undecidability you have to show that no such algorithm can be con-
structed. To do that, it is not enough to try and then fail! Thankfully, the
task for the logician is not that difficult. If there is a problem that someone
else has verified to be undecidable, we can show that our favourite problem is
undecidable by showing that if we have an algorithm for our problem, we can
use this algorithm to also solve their problem. As they have managed to show
that there is no algorithm for their problem, it follows that there cannot be an
algorithm for our problem either.

In this chapter, we will see two examples of undecidable problems, and we
will reduce them to decision procedures for substructural logics. First, we will
show how the word problem for semigroups reduces to the problem of demon-
strating validity on R, or E or similar logics. The word problem for semigroups
is known to be undecidable, therefore the consequence in R and E is also unde-
cidable. Second, we will show that an algorithm for determining consequence
in linear logic with exponentials would give us an algorithm for determining
the behaviour of certain abstract machines which are known to be undecidable.
Again, this shows that linear logic with exponentials is undecidable. To start
with, we will examine one of the first undecidability results in substructural

323
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logics — Urquhart’s demonstration that KR is undecidable. This will set the
scene for the undecidability proof of R, which follows it.

15.1 KR and Projective Spaces

The logic KR is given by making the negation of R Boolean: we add the axiom
A∧∼A→ B to R. It follows then that a KR frame is one satisfying the following
conditions.

⋄ R0ab iff a = b.

⋄ Raaa for each a.

⋄ Rabc iff Rbac iff Racb (total permutation).

⋄ R2abcd only if R2acbd.

The total permutation condition follows from the condition CI together with the
contraposition condition ∃x(Ryzx∧ xCw)→ ∃v(Rywv ∧ zCv) once we require
C to be Boolean: xCy if and only if x = y. The clauses for the connectives on
KR frames are the standard clauses for R, with the modification needed to make
negation Boolean: we have a  ∼A if and only if a 6 A.

KR frames are related to projective spaces.

DEFINITION 15.1 (PROJECTIVE SPACES)
A projective space P is a set P of points, and a collection L of subsets of P called
lines, such that

⋄ Any two distinct points are on exactly one line.

⋄ Any two distinct lines intersect in exactly one point.

Given a projective space P, its collinearity relation C is a ternary relation satis-
fying the condition:

Cabc iff a = b = c, or a, b and c are distinct and they lie on a
common line.

LEMMA 15.2 (COLLINEARITY CONDITIONS)
If P is a projective space, then its collinearity relation C satisfies the following

conditions:

⋄ Caaa for each a.

⋄ Cabc iff Cbac iff Cacb.

⋄ C2abcd only if C2acbd. �

In this lemma, the composition C2 is defined in the same way as R2 is defined
in terms of R. This last condition is the only part of the lemma which is hard to
verify, and it is best checked using a diagram.

Note that we could define a projective space to be a set with a collinearity
relation, satisfying these conditions.
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Figure 15.1: Associating Collinearity

DEFINITION 15.3 (THE FRAME OF A SPACE)
If P is a projective space, the frame F(P) generated by P is given by adjoining
a new point 0, and adding the condition C0aa, Ca0a, and Caa0.

If P is a projective space, the frame F(P) is a KR frame.

DEFINITION 15.4 (SUBSPACES IN PROJECTIVE SPACES)
A subspace of a projective space is a subset which is also a projective space under
its inherited collinearity relation. Furthermore, given any two subspaces X and
Y, the subspace X + Y is the set of all points on lines through points in X and
points in Y .

The subspaces of a projective space satisfy certain algebraic conditions.

LEMMA 15.5 (THE ALGEBRA OF SUBSPACES)
Given a projective space P, the lattice algebra 〈L,∩,+〉 of all subspaces of the

projective space, under intersection and +, is a modular lattice. That is, it is a

lattice satisfying the modularity condition a > c⇒ (∀b)
(

a∩ (b+ c) 6 (a∩ b)+ c
)

.

(Or equivalently: a ∩ (b + (a ∩ c)) 6 (a ∩ b) + (a ∩ c).)

In fact, the lattice of subspaces of a projective space satisfies a few more condi-
tions.

DEFINITION 15.6 (GEOMETRIC LATTICES)
A geometric lattice is a lattice in which every element is a join of atoms, and if
a is an atom and X is a set where a 6

∨

X then there is some finite Y ⊆ X,
where a 6

∨

Y . And it is complete.

It is then clear that the lattice of subspaces of a projective space is in fact a
modular geometric lattice. The connection is in fact quite deep. We have the
converse:
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THEOREM 15.7 (MODULAR GEOMETRIC LATTICES AND PROJECTIVE SPACES)
Any modular geometric lattice is isomorphic to the lattice of subspaces of some

projective space.

PROOF Given a modular geometric lattice, construct a projective space by tak-
ing the points to be the atoms and the lines to be the sets of atoms {x : x 6
a + b}. This is a projective space.

Let LP be the lattice of its subspaces, and send φ : LP → L by setting
φ(X ) =

∨

X . This is an isomorphism. �

Now in KR frames we have propositions which are analogous to subspaces in
projective spaces. First, we need a convention to deal with the point 0. The
convention is that 0 should be in every “subspace.” This is simply dealt with as
follows.

DEFINITION 15.8 (POSITIVE IDEMPOTENTS)
A positive idempotent in a frame is a proposition X that is positive (so 0 ∈ X)
and idempotent (so X = X ◦X).

For any sentence A and any KR model M, the extension of A, [[A]] in M is
a positive idempotent if and only if 0  A ∧ (A ↔ A ◦ A). Now to get the
undecidability of KR, we need a fact.

THEOREM 15.9 (UNDECIDABILITY FACT)
The word problem for any class of modular lattices which includes the subspace

lattice of an infinite dimensional projective space is undecidable. �

The word problem for a class of algebras is the issue of determining the validity
of rules involving equations in those algebras. An example word problem for a
class of lattices is this:

If x = y ∧ z, z = x ∨ (y ∧ w) then x ∧ y = v ∨ w

The question is: does this hold in that class of lattices? A solution to the word
problem is an algorithm which will determine a solution to any problem of this
form it is given. Problems are always of the form

If v1 = w1 · · · vn = wn then v = w

where each vi and wj is made up of connectives from the algebra and variables.
A space has dimension n if and only if there is a chain X1 ⊂ · · · ⊂ Xn+1

of subspaces, no two of which are identical, and no longer chain. A space
has infinite dimension if and only if it contains an infinite descending chain of
subspaces.

Now we can extract undecidability in KR from this result. Given an infinite
dimensional projective space P, the logic of the frame F(P) is said to be a
strong logic.
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THEOREM 15.10 (UNDECIDABILITY OF KR)
Any logic in between KR and a strong logic is undecidable.

PROOF Take any word problem you like. Say

If v1 = w1 · · · vn = wn then v = w

Then its translation is the KR sentence

(

B ∧ (v1 = w1)
t ∧ · · · ∧ (vn = wn)t

)

⊃ (v = w)t

Where (vi = wi)
t is vt

i ↔ wt
i , and the sentence B is the conjunction of all

sentences p ∧ (p ↔ p ◦ p) for each p. If the word problem is valid, then so is
the translation. If the word problem is invalid, then there is a counterexample
in terms of a projective space out of which we can construct a frame which
invalidates the corresponding formula. �

15.2 The KR Result Generalised

Unfortunately, these techniques do not work for systems weaker than KR. The
proof that positive idempotents are modular uses essentially the special proper-
ties of KR. Not every positive idempotent in R need be modular, but nonetheless,
the techniques of the proof can be extended to apply to a much wider range of
systems. Urquhart examined the structure of the modular lattice undecidabil-
ity result, and he showed that you could make do with much less. You do not
need to restrict your attention to modular lattices to construct an undecidable
word problem. But to do that, you need to examine Lipshitz and Hutchinson’s
proof more carefully. In the rest of this section, we will sketch the structure of
Urquhart’s undecidability proof. The techniques are quite involved, so we do
not have the space to go into extensive detail. For that, the reader is referred to
Urquhart [267].

Lipshitz and Hutchinson proved that the word problem for modular lattices
was undecidable by embedding into that problem the already known undecid-
able word problem for semigroups. It is enough to show that a structure can
define a “free associative binary operation”, for then you will have the tools
for representing arbitrary semigroup problems. (A semigroup is a set with an
associative binary operation. An operation is a “free associative” operation if it
satisfies those conditions satisfied by any associative operation but no more.)
We will sketch how this can be done without resorting to a modular lattice.

We require what Urquhart calls a 0-structure,1 and a modular 4-frame de-
fined within a 0-structure. A 0-structure is a set equipped with the following
structure:

1 This is best read “zero structure.”
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⋄ A semilattice with respect to ⊓.

⋄ A binary operator + that is associative and commutative.

⋄ x 6 y ⇒ x + z 6 y + z.

⋄ 0 + x = x.

⋄ y > 0 ⇒ x ⊓ (x + y) = x.

A 4-frame in a 0-structure is a set {a1, a2, a3, a4} ∪ {cij : i 6= j, i, j = 1, . . . , 4}
such that

⋄ The ai’s are independent. If G,H ⊆ {a1, . . . , a4} then (
∑

G) ⊓ (
∑

H) =
∑

(G ∩H) (where
∑

∅ = 0, and
∑

{a1, a2, a3} = a1 + a2 + a3, and so on)

⋄ If G ⊆ {a1, . . . , a4} then
∑

G is modular

⋄ ai + ai = ai

⋄ cij = cji

⋄ ai + aj = ai + cik; cij ⊓ aj = 0, if i 6= j

⋄ (ai + ak) ⊓ (cij + cjk) = cik for distinct i, j, k

Now we are nearly at the point where we can define a semigroup structure.
First, for each distinct i, j, we define the set Lij to be {x : x + aj = ai +
aj and x ⊓ aj = 0}. Then if b ∈ Lij and d ∈ Ljk, where i, j, k are distinct, then
we set b ⊗ d = (b + d) ⊓ (ai + ak), and it follows that b ⊗ d ∈ Lik. (This is
Exercise 15.2.) Then we can define a semigroup operation ‘.’ on L12 by setting

x.y = (x⊗ c23)⊗ (c31 ⊗ y)

It is quite an involved operation to show that this is in fact an associative oper-
ation, but it can be done. (This is Exercise 15.3.)

And in certain circumstances, the operation is a free associative operation.
Given a countably infinite-dimensional vector space V, its lattice of subspaces
is a 0-structure, and it is possible to define a modular 4-frame in this lattice of
subspaces, such that any countable semigroup is isomorphic to a subsemigroup
of L12 under the defined associative operation. (Urquhart gives the complete
proof of this result [267].)

The rest of the work of the undecidability proof involves showing that this
construction can be modelled in a logic. Perhaps surprisingly, it can all be done
in a weak logic like TW[∧,∨,→,⊤,⊥]. We can do without negation by picking
out a distinguished propositional atom f , and by defining ∼A to be A→ f , t to
be ∼f , and A :B to be ∼(A → ∼B). A is a regular proposition if and only if
∼∼A ↔ A is provable. The regular propositions form a 0-structure, under the
assumption of the formula Θ = {R(t, f,⊤,⊥), N(t, f,⊤,⊥),∼⊤ ↔ ⊥}, where
R(A) is ∼∼A↔ A, N(A) is (t→ A)→ A, and R(A,B, . . .) is R(A)∧R(B)∧· · ·
and similarly for N . In other words, we can show that the conditions for a 0-
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structure hold in the regular propositions, assuming Θ as an extra premise. To
interpret the 0-structure conditions we interpret ⊓ by ∧, + by : and 0 by t.

Now we need to model a 4-frame in the 0-structure. This can be done as
we get just the modularity we need from another condition which is simple to
state. Define K(A) to be R(A) ∧ (A ∧ ∼A↔ ⊥) ∧ (A ∨ ∼A↔ ⊤) ∧ (A :∼A↔
∼A) ∧ (A↔ A :A). Then we can show the following:

K(A), R(B,C), C → A ⊢H A ∧ (B :C)↔ (A ∧B) : C

(This is Exercise 15.4.) In other words, if K(A), then A is modular in the class
of regular propositions. Then the conditions for a 4-frame are simple to state.
We pick out our atomic propositions A1, . . . , A4 and C12, . . . , C34, which will
do duty for a1, . . . , a4 and c12, . . . , c34. Then, for example, one independence
axiom is

(A1 :A2 :A3) ∧ (A2 :A3 :A4)↔ (A2 :A3)

and one modularity condition is

K(A1 :A3 :A4)

We will let Π be the conjunction of the statements that express that the propo-
sitions Ai and Cij form a 4-frame in the 0-structure of regular propositions. So
Θ ∪ Π is a finite (but complex) set of propositions. In any algebra in which
Θ ∪ Π is true, the lattice of regular propositions is a 0-structure, and the de-
notations of the propositions Ai and Cij form a 4-frame. Finally, when coding
up a semigroup problem with variables x1, x2, . . . , xm, we will need formulae
in the language which do duty for these variables. Thus we need a condition
which picks out the fact that pi (standing for xi) is in L12. We define L(p) to be
(p : A2 ↔ A1 :A2)∧ (p∧A2 ↔ t). Then the semigroup operation on elements of
L12 can be defined in terms of ∧ and : and the formulae Ai and Cij . We assume
that done, and we will simply take it that there is an operation · on formulae
which picks out the algebraic operation on L12. This is enough for us to sketch
the undecidability argument.

THEOREM 15.11 (UNDECIDABILITY OF DEDUCIBILITY)
The deducibility problem for any logic between TW[∧,∨,→,⊤,⊥] and KR is unde-

cidable.

PROOF Take a semigroup problem which is known to be undecidable. It may
be presented in the following way

If v1 = w1 · · · vn = wn then v = w
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where each term vi, wi is a term in the language of semigroups, constructed out
of the variables x1, x2, . . . , xm for some m. The translation of that problem into
the language of TW[∧,∨,→,⊤,⊥] is the deducibility problem

Θ,Π, L(p1, . . . , pm), vt
1 ↔ wt

1, . . . , v
t
n ↔ wt

n ⊢H vt ↔ wt

where the translation ut of each term u is defined recursively by setting xt
i to

be pi and (u1.u2)
t to be ut

1 · u
t
2.

Now the undecidability result will be immediate once we show that for any
logic between TW and KR the word problem in semigroups is valid if and only
if its translation is valid in that logic.

For left to right, if the word problem is valid in the theory of semigroups, its
translation must be valid, for given the truth of Θ and Π and L(p1, . . . , pm), the
operator · is provably a semigroup operation on the propositions in L12 in the
algebra of the logic, and the terms vi and wi satisfy the semigroup conditions.
As a result, we must have vt and wt picking out the same propositions, hence
we have a proof of vt ↔ wt.

Conversely, if the word problem is invalid, then it has an interpretation
in the semigroup S defined on L12 in the lattice of subspaces of an infinite-
dimensional vector space. The lattice of subspaces of this vector space is the
0-structure in our countermodel. However, we need a model for the whole
logic — the 0-structure is not such a model, since it just models the regular
propositions. How can we construct this? Consider the argument for KR.
There, the subspaces were the positive idempotents in the frame. The other
propositions in the frame were arbitrary subsets of points. Something similar
can work here. On the vector space, consider the subsets of points which are
closed under multiplication (that is, if x ∈ α, so is kx, where k is taken from
the field of the vector space). This is a de Morgan algebra, defining conjunc-
tion and disjunction by means of intersection and union as is usual. Negation
is modelled by set difference. The fusion α ◦ β of two sets of points is the set
{x+y : x ∈ α and y ∈ β}. It is not too difficult to show that this is commutative
and associative, and square-increasing, when the vector space is in a field of
characteristic other than 2, since if x ∈ α then x = 1

2x + 1
2x ∈ α ◦ α. Then

α → β is simply −(α ◦ −β). Therefore, this is a propositional structure for KR,
and all weaker logics, and the regular propositions in this model are exactly
the subspaces of the vector space. It follows that our counterexample in the
0-structure is a counterexample in a model of KR to the translation of the word
problem. As a result, the translation is not provable in KR or in any weaker
logic. �

This result applies to systems between TW and KR, and it shows that the de-
ducibility problem is undecidable for any of these systems. In the presence of
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the modus ponens axiom A∧ (A→ B)→ B (which follows from WI) this imme-
diately yields the undecidability of the theoremhood problem, as the deducibility
problem can be rewritten as a single formula.

(

Θ ∧Π ∧ L(p1, . . . , pm) ∧ (vt
1 ↔ wt

1) ∧ · · · ∧ (vt
n ↔ wt

n)
)

→ (vt ↔ wt)

As a result, the theoremhood problem for logics between T and KR is undecid-
able.

THEOREM 15.12 (UNDECIDABILITY OF THEOREMHOOD)
Theoremhood in any of R, E and T is undecidable. �

The restriction to TW is necessary in the theorem. Without the prefixing and
suffixing axioms, you cannot show that the lattice of regular propositions is
closed under the ‘fusion-like’ connective ‘ : ’.

15.3 Undecidability via Machines

Another technique for proving undecidability is to code up the behaviour of
abstract machines. This is important, for there are undecidability results known
for logics without distribution. Our results so far apply only to logics with
distribution of conjunction over disjunction.

DEFINITION 15.13 (AND-BRANCHING TWO-COUNTER MACHINES)
An and-branching two-counter machine (or ACM) M has a finite collection of
basic states q1, . . ., qn, including distinguished final state qf . The state qf has no
outgoing transitions. The machine also includes two counters, a and b.

An instantaneous description (or ID) of an ACM is a finite list of triples of the
form 〈qi, x, y〉, each representing a state and the values of the counters a and
b, respectively. The instantaneous description describes the general state of the
machine at any moment of time.

The instructions for a machine have the following forms:

Instruction Effect

qi + aqj . . . , 〈qi, x, y〉, . . . 7→ . . . , 〈qj , x + 1, y〉, . . .
qi + bqj . . . , 〈qi, x, y〉, . . . 7→ . . . , 〈qj , x, y + 1〉, . . .
qi − aqj . . . , 〈qi, x + 1, y〉, . . . 7→ . . . , 〈qj , x, y〉, . . .
qi − bqj . . . , 〈qi, x, y + 1〉, . . . 7→ . . . , 〈qj , x, y〉, . . .
qifqjqk . . . , 〈qi, x, y〉, . . . 7→ . . . , 〈qj , x, y〉, 〈qk, x, y〉, . . .

The instructions have the following effects. An addition instruction qi + aqj has
the effect of taking any part of the ID in state qi into state qj and incrementing
the counter a. The same thing happens with qi + bqj , except that b is incre-
mented. The subtraction instruction qi − aqj takes a part of the ID in state qi
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into state qj and decrements a — if and only if a is non-zero. Similarly, qi − bqj

decrements b and shifts to state qj from qi. The forking instruction qifqjqk takes
a part of the ID in state qi and duplicates it, transferring one triple to state qj

and the other to qk.
A computation of an ACM is a list of IDs such that each ID in the list (except

for the first one, of course) is given by applying some instruction in the ACM to
the previous member of the list, and such that if the list has a last member, then
no instructions apply to that ID.

An ID S is accepted by M if and only if every computation starting with S
terminates with an ID consisting solely of triples of the form 〈qf , 0, 0〉.

EXAMPLE 15.14 (A SIMPLE ACM)
Consider the machine with the instructions

δ1 : q1 − aq2 δ2 : q2 − bq2

δ3 : q2 + bq4 δ4 : q3 − bqf

δ5 : q4fq3q2

Consider the ID 〈q1, 1, 1〉. Here is a computation starting with this ID:

〈q1, 1, 1〉
δ17→ 〈q2, 0, 1〉

δ27→ 〈q2, 0, 0〉
δ37→ 〈q4, 0, 1〉

δ57→

〈q3, 0, 1〉, 〈q2, 0, 1〉
δ27→ 〈q3, 0, 1〉, 〈q2, 0, 0〉

δ47→ 〈qf , 0, 0〉, 〈q2, 0, 0〉
δ37→

〈qf , 0, 0〉, 〈q4, 0, 1〉
δ57→ 〈qf , 0, 0〉, 〈q3, 0, 1〉, 〈q2, 0, 1〉 · · ·

and as you can see, it does not terminate.

Computations in this system are not deterministic. If an ID includes a part of
the form 〈q2, x, y〉 with a non-zero value for y, we have a choice as to whether
to apply δ2 or δ3.

Some processes do terminate in a final state. Any ID consisting of the triple
〈q3, 0, 1〉 will decrement 0 and go straight to the final state.

Now we state the undecidability result upon which we will rely.

THEOREM 15.15 (ACCEPTANCE OF IDS IS UNDECIDABLE)
There is no algorithm for determining whether a given ACM accepts an ID. �

We will not prove this. The result is demonstrated by Lincoln, Mitchell, Scedrov
and Shankar in their paper [138]. We will rely on this result, showing that if we
have an algorithm for determining validity in LL, we can use this to determine
acceptance of IDs in ACMs. To do this, we will associate a theory with each ACM.
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DEFINITION 15.16 (THE THEORY OF A MACHINE)
An ACM M has a theory Theory(M), given by collecting together the following
consecutions for each instruction

Instruction Consecution

qi + aqj Qi ⊢ Qj ◦A
qi + bqj Qi ⊢ Qj ◦B
qi − aqj Qi;A ⊢ Qj

qi − bqj Qi;B ⊢ Qj

qifqjqk Qi ⊢ Qj ∨Qk

where each Qi, A and B are atomic propositions.

DEFINITION 15.17 (THE THEORY OF A STATE)
Given an instantaneous description S consisting of a finite number of triples of
the form 〈qi, x, y〉, its theory θ(S) is the set of all consecutions Qi;A

x;By ⊢ Qf ,
where Ax is the list of x instances of A, and similarly, By is the list of y instances
of B.

Now we will use this theory to simulate the behaviour of the ACM. First, we
will show that an accepted ID S corresponds to the proof of each consecution
in θ(S), given that we allow the consecutions in Theory(M) as axioms.

THEOREM 15.18 (IF S IS ACCEPTED, THEN θ(S) IS PROVABLE)
Given an and-branching two-counter machine M , then if M accepts S we can

prove each element of θ(S) in Theory(M).

PROOF We show by induction on the length of the sequence of transitions
from S to the final ID. If there are no transitions, then every element of S is the
triple 〈qf , 0, 0〉, and the consecution corresponding to this is Qf ⊢ Qf , which is
provable.

Now suppose that the first transition was an addition qi + aqj , leading from
〈qi, x, y〉 to 〈qj , x + 1, y〉. By hypothesis, we have a proof of Qj ;A

x+1;By ⊢ Qf ,
as we have a shorter sequence accepting the triple 〈qj , x + 1, y〉. We use this
deduction to prove Qi;A

x;By ⊢ Qf as follows:

Qi ⊢ Qj ◦A

Qj ;A;Ax;By ⊢ Qf
[◦L]

Qj ◦A;Ax;By ⊢ Qf
[Cut]

Qi;A
x;By ⊢ Qf

which uses the axiom Qi ⊢ Qj ◦A, which is present in Theory(M). The case for
the other addition instruction is no different, given the presence of CI allowing
the commuting of Ax and By.
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If the first transition was a subtraction qi− aqj , leading from 〈qi, x + 1, y〉 to
〈qj , x, y〉, by hypothesis, we have a proof of Qj ;A

x;By ⊢ Qf . This then gives us

Qi;A ⊢ Qj Qj ◦Ax;By ⊢ Qf
[Cut]

Qi;A
x+1;By ⊢ Qf

as we wished. The same holds (using CI) for subtraction of the counter b.
Finally, for a forking instruction qifqjqk, if the first step transforms 〈qi, x, y〉

into 〈qj , x, y〉, 〈qk, x, y〉, then we have proofs of both Qj ;A
x;By ⊢ Qf and

Qk;Ax;By ⊢ Qf , and Qi ⊢ Qj ∨ Qk is a member of Theory(M). So, we have
the following proof

Qi ⊢ Qj ∨Qk

Qj ;A
x;By ⊢ Qf Qk;Ax;By ⊢ Qf

[∨L]
Qj ∨Qk;Ax;By ⊢ Qf

[Cut]
Qi;A

x;By ⊢ Qf

as we wished. These are the only instructions, so the the proof is completed. �

This gives us one half of the equivalence. Now for the other.

THEOREM 15.19 (IF θ(S) IS PROVABLE THEN S IS ACCEPTED)
Given an ACM M , if each element of θ(S) is provable from Theory(M), then M
accepts S.

PROOF Lincoln, Mitchell, Scedrov and Shankar show this by a fine analysis of
proofs of the elements of θ(S). For that style of proof, consult their paper [138].
Instead, we will prove the contrapositive, showing that if S is not accepted by
M , then there is no proof of each element of θ(S) in Theory(M). We will do
this by constructing a countermodel from the ACM.

The model will be a propositional structure, in which the elements are sets
of multisets of the atoms a, b and each qi. So {abq1, b} is an element of our
propositional structure, as is {a, abbq1q2q2, aabb}. The fusion of two such ele-
ments is defined as follows:

{di : i ∈ I} ◦ {ej : j ∈ J} = {diej : i ∈ I and j ∈ J}

So, for example, {abq1, b} ◦ {a, abbq1q2q2, aabb} is the set

{aabq1, aabbbq1q1q2q2, aaabbbq1, ab, abbbq1q2q2, aabbb}

We interpret the disjunction as the union of two sets, and the conjunction as their
intersection. This makes entailment set inclusion. And it is clear, by the very
definition of the fusion of two sets, that fusion distributes over disjunction. It is
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also clear that fusion is commutative, as multiset union is commutative. So, this
is a MALL[◦,∧,∨] structure. (In fact, it is a completely distributive MALL[◦,∧,∨]
structure, but that is not important).

Given an ID as a list of triples, its corresponding proposition is the set of triples
in the ID written as multisets. So for example, for the ID 〈q1, 1, 0〉, 〈q2, 1, 2〉 we
have the set {q1a, q2abb}.

An M -interpretation of the language Qi, A, B into this structure is one
which respects the axioms of Theory(M). That is, it is one in which we have
the following conditions on [[·]] corresponding to each instruction in M .

Instruction Condition

qi + aqj [[Qi]] ⊆ [[Qj ]] ◦ [[A]]
qi + bqj [[Qi]] ⊆ [[Qj ]] ◦ [[B]]
qi − aqj [[Qi]] ◦ [[A]] ⊆ [[Qj ]]
qi − bqj [[Qi]] ◦ [[B]] ⊆ [[Qj ]]
qifqjqk [[Qi]] ⊆ [[Qj ]] ∪ [[Qk]]

Given any M interpretation [[·]], the consecutions in Theory(M) hold. So, our
problem reduces to finding an M interpretation such that one element of θ(S)
fails. Then the result follows, as we have our countermodel. For the failure
of θ(S), we pick one triple in S such that it is not accepted. (There must be
one such.) Suppose it is 〈qi, x, y〉. Then the offending consecution in θ(S) is
Qi;A

x;By ⊢ Qf . We will find an interpretation such that [[Qi]] ◦ [[A]]
x ◦ [[B]]

y 6⊆
[[Qf ]].

What is the M interpretation? Let [[Qi]] be the set containing {qi} (the propo-
sition corresponding to the ID 〈qi, 0, 0〉) together with propositions correspond-
ing to all IDs which can be found using the instructions in M , starting from
〈qi, 0, 0〉. Let [[a]] = {a}, and let [[b]] = {b}. This interpretation satisfies each of
the conditions specified above, as you can check. This is a special case of the
result that [[Qi]] ◦ [[A]]

x ◦ [[B]]
y

will include the propositions corresponding to all
and only those IDs found in a computation starting with 〈qi, x, y〉, which follows
directly from the definition of [[·]].

Now consider θ(S), the consecution Qi;A
x;By ⊢ Qf . [[Qi]] ◦ [[A]]

x ◦ [[B]]
y

consists of the propositions corresponding to all and only those IDs found in a
computation starting with 〈qi, x, y〉, and it follows that [[Qf ]] = {qf} (as qf has
no outgoing states). However, since you cannot get to 〈qf , 0, 0〉 from 〈qi, x, y〉,
it follows that [[Qi]]◦ [[A]]

x ◦ [[B]]
y 6⊂ [[Qf ]], and so, the corresponding consecution

cannot be proven. The result follows. �

Putting these results together, we have the corollary we want.

COROLLARY 15.20 (LINEAR LOGIC IS UNDECIDABLE)
There is no algorithm for determining validity of consecutions in either intuition-

istic or classical linear logic.
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15.4 History

There is a significant and growing literature on the undecidability of substruc-
tural logics. Urquhart’s original papers repay careful reading [266, 267]. The
first explains the undecidability result for KR, and the connections between KR
and projective geometry. The second paper is the undecidability proof for R
and nearby logics. Urquhart has also adapted techniques from the undecidabil-
ity proofs of linear logic to give complexity bounds for R[→,∧] [270]. These
techniques have been taken up by the Hungarian school of algebraic logicians
to prove the undecidability of many algebraic systems [8, 131].

15.5 Exercises

Problems

{15.1} Show that KR is not a conservative extension of the negation-free fragment of R.

{15.2} Show that if b ∈ Lij and d ∈ Ljk, where i, j, k are distinct and we have defined

b⊗ d = (b + d) ⊓ (ai + ak) in some 4-frame, then it follows that b⊗ d ∈ Lik.

{15.3} Show that the dot, defined by setting x.y = (x⊗c23)⊗(c31⊗y), is an associative

operation.

{15.4} Show that K(A), R(B, C), C → A ⊢H A ∧ (B : C)↔ (A ∧B) : C.

Projects

{15.5} Prove the undecidability of R by a simpler means than Urquhart’s.

{15.6} Show that T[→,∧] is undecidable.

{15.7} Show that T[→] is undecidable
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Coda
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Chapter 16

Using Substructural Logic

There were two rooms attached to the stables.

One was occupied by a man who was “generally useful.”

— Henry Lawson, Middleton’s Peter, 1900

If we wish to examine the philosophical significance of substructural logics,
there are a number of possible paths to follow. One obvious path is to look at the
philosophical significance of the proof theory of substructural logics. There are
many important works which explore the connections between proof theories
and theories of meaning.1 However, I do not want to examine proof theory here.
Instead, I wish to examine the frame semantics for substructural logics, to see
whether they can be used for any philosophical gain. What is the significance
of the point semantics for these logics?

16.1 Internal and External Perspectives

This starting point is not arbitrarily chosen. Frame semantics is philosophically
useful in the study and application of modal logics [137, 193, 252]. In this
chapter, we will see whether the same holds for substructural logics. The discus-
sion will be structured around the status of Boolean negation in substructural
logics. This question should bring to light what distinguishes the substructural
technique from the techniques of modal logic. The question is this: can we, or
ought we, define a connective, written ‘−’ which is evaluated as follows?

x  −A if and only if x 6 A

If we can have Boolean negation, then substructural logics are simply a breed
of classical modal logic. They may well be an interesting breed of classical
modal logic, but they are a subspecies of that larger class. In particular, the
negations of substructural logics may be interesting connectives, but the is-
sue arises: which is the genuine negation? Surely one satisfying the clause for

1 A serious study of this would have to examine Prior’s important note on inference tickets [202]
and the debate it sparked, starting with Belnap’s reply [20]. The constructivists’ accounts of mean-
ing in Prawitz [196], Martin-Löf [150] and Dummett [69] deserve examination. Then Došen’s
important article on the status of logical constants as “punctuation marks” bears close examination
as it brings the discussion into contact with work on substrucutral logics [61].
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Boolean negation has an important claim to being the real negation! These
worries have been well expressed by Belnap and Dunn.

. . . what was all the fuss about “fallacies of relevance”? What were
the complaints lodged against contradictions’ implying everything
and against the disjunctive syllogism? Boolean negation trivially
satisfies these principles; so what can be the interest of de Mor-
gan negation’s failing to satisfy them? Will the real negation please
stand up? [7, page 174]

The thesis we will explore is this: Boolean negation is sometimes warranted,
and sometimes not. In particular, if you take an “external perspective,” on a
frame, Boolean negation is warranted. If you take an “internal perspective” it is
quite likely that Boolean negation cannot be defined. Before going on to look
at a particular understanding of the frames for substructural logic, for which
Boolean negation cannot be defined, let me go on to explain and explore the
difference between the internal and external perspectives on points in a frame.

The crux of the matter is the notion of “support” between a point and a
proposition. Does this relation simply codify information about points in a
model, or does it somehow give us an account of the information carried by

points in a model? The former account is an external perspective, as we are
classifying points “from the outside.” The support relation is a way of describ-
ing or classifying points. The latter account is an internal perspective, as we
are classifying points “from the inside.” Let me examine different readings of
models which are canonical examples of these different perspectives.

First, consider the Lambek calculus, used as an account of the syntactic
typing of language. We type parts of language as verbs, nouns, noun phrases
and other syntactic categories. If a string is not a noun, we can classify it, if we
like, as a “non-noun.” In fact, any string is a “non-noun” if and only if it is not
a noun. For any syntactic category X, there is also the category non-X, which
collects together all and only those things which do not have type X. This is
Boolean negation in the Lambek calculus. It seems warranted as a constructor
of new types.

Of course, there may be reason even in the Lambek calculus to prefer a
logical language without Boolean negation. For example, the language without
Boolean negation might have useful properties (such as decidability) not shared
by the language with Boolean negation. However, from the point of view of the
interpretation of the syntax in its intended domain, Boolean negation makes
sense.

Not all domains of classification like this are so amenable to extension with
Boolean negation. For a trivial example, consider the relationship between
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knowers and the propositions they know. Let us symbolise ‘x knows that A’
as ‘x  A.’ Given this definition, it is possible to declare that from now on we
will read ‘x  −A’ is equivalent to ‘x 6 A.’ However, this is an abuse of lan-
guage. If we follow this convention, we are no longer reading all sentences of
the form ‘x  B’ as ‘x knows that B’, for we are now reading some as ‘x does
not know that . . .’. There will most likely not be anything in the class of things
known by x which answers to the call of being −A, the Boolean negation of A.
Our edict that −A is defined in that way is at most a shorthand for codifying
information about our knowers. It does not actually pick out anything known
by them. If we restrict our attention to the things known by our knowers, there
is no reason to expect that there is any proposition B at all such that x  B
iff x 6 A. Why should we expect that there is? If the relation ‘’ is to tell
us something about the nature of the objects it relates, the mere postulation
of the conditions of Boolean negation does not ensure that there is anything
answering to those descriptions.

The external perspective on our model structures is one in which the sup-
porting relation  codifies information about points in the model structure.
This account sees logics of frames (whether traditional modal logics or sub-
structural logics) as a language for describing structures. The best exponents
of such a perspective on logic are what might be called the Amsterdam school
of van Benthem, de Rijke and others [31, 220]. For this approach, modal logic
is a logic for the classification of relational structures. Modal logics are useful
sublogics or refinements of first-order logic. Modal formulae are simplifications
of particular first-order claims about models. The standard translation ST of a
formula is taken very seriously indeed. Intensional formulae are codifications
of what is true about points. According to this perspective, Boolean negation
makes a great deal of sense. If x 6 A then ‘not A’ is true of the point.

If ‘x  A’ codifies information carried by the point x, then there may well be
nothing which corresponds to the definition of Boolean negation, just as there
might well be nothing such that you believe it if and only if you do not believe
Goldbach’s conjecture.2

Let us go on to consider a particular, internal, reading of the semantics
of substructural logics, for which a connective answering to the clauses for
Boolean negation will be manifestly unwarranted.

16.2 Points as States

Points are states of the world. These include actual states of the world and
merely possible states of the world. (That is, states the world might have but

2 Goldbach’s conjecture, that any even number greater than 2 is the sum of two primes, is a
famous unsolved problem in number theory.
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does not actually have.) They can also be partial — they can be states of parts
of the world. States that parts of the world actually are, or states that parts of
the world could be, but are not. Furthermore, points can be impossible states.
They can be states that part of the world, or the whole world, cannot be.

Any adequate semantics of conditionality seems to require some account of
alternative states or possibilities. Furthermore, as we have seen, it seems that a
semantics which invalidates consecutions such as A ⊢ B ∨∼B and A∧∼A ⊢ B
ought to appeal to inconsistent and incomplete states.

There is a growing trend in semantics to agree that complete and consistent
entities like possible worlds are not enough to give a semantics of entailment,
necessity and related notions. Some take it that we need incomplete entities,
in which for some propositions p, neither p nor its negation ∼p are true. For
situation theorists [15, 16, 192] these entities are situations. This does not
mean that situation theorists reject the law of excluded middle. They can agree
that for every proposition p, either p or its negation ∼p is true. They simply
reject that every situation decides between p and ∼p. The situation of my office
at work may carry a lot of information, but it certainly does not in and of
itself carry information about the current members of the Brazilian national
football team. For that, you have to look elsewhere: you might need to check a
different part of the world to determine who they are. Proponents of theories
of truthmakers [180, 216] similarly hold that some objects make certain claims
true and others false. They do not hold that all truthmakers decide all truths
equally. The set of truths made true by a particular truthmaker (or the set of
truths true in a particular situation) is incomplete.

Similarly, some (but clearly, not as many) have held that there is call not
only for incomplete entities in our semantics but also inconsistent ones. For
some, this is because they hold that the actual world is inconsistent [198, 197,
230].3 Others hold that inconsistent entities are important in our semantics, not
because the actual world is inconsistent, and not because some possible world
is inconsistent, but instead because some important theories are inconsistent.
Inconsistent bodies of information (like näıve set theory, like the infinitesimal
calculus, before Abraham Robinson [221, 222] had his way with it, and like
your beliefs or mine) have a certain degree of logical closure, without being
consistent [21, 22, 71, 163]. If this is the case, then there may be space in our
semantics for different ways that things cannot be. Different inconsistent states
of affairs, which describe different ways that things cannot happen. If this is the
case, then ontologies including inconsistent worlds may well have their place.

3 This is typically because of the paradoxes of self-reference and similar phenomena. As there
is no acceptable solution to the liar and like paradoxes, we ought to accept the argument to the
paradoxical conclusion as not only valid but sound. The liar is both true and not true.
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Before continuing, we need to make clear that when we say “inconsistent
state of affairs” we do not mean a state of affairs which has contradictory prop-
erties, any more than an inconsistent system of equations has contradictory
properties. The inconsistency of a system of equations means that it cannot be

solved. Similarly, inconsistent states of affairs may exist (in the same sense as
any other non-actualised state of affairs might be said to exist). Their inconsis-
tency means simply that they could not be actualised. An inconsistent plan (such
as one which involves me being in two sufficiently separated places at the one
time) cannot be carried out. However, it can be debated, discussed and feature
in planning in the same way as consistent plans. The same holds with incon-
sistent states of affairs. They can feature in theorising and semantics. Their
inconsistency simply means that they cannot be made actual.

So what I have in mind is an “intended semantics” for entailment, in which
the points are states of affairs, both complete and consistent (these are world),
incomplete — some of these are possible or actual states of this world, much like
the “situations” of Barwise and Perry, and others are incomplete states which
are non-actual — and inconsistent (different ways the world cannot be, as well
as ways the world can be). These states are related in a number of different
ways. First, states can be contracted or expanded, and they are related by
inclusion. Given two states x and y, we have x ⊑ y if and only if everything
true in x (or determined by x, or whatever) is also true in y. For example, the
state of my office in included in the state of the building in which my office
is situated, which is in turn included in the state encompassing the whole of
Macquarie University.

Second, there is the binary relation of compatibility. State x is compatible
with state y just when x rules out nothing in y. Granted that states need not
always be consistent, there is no reason for xCx to hold universally. Is compat-
ibility symmetric? There are obvious reasons to think so; however, perhaps a
case could be made that it is not. I need not assume it here. What we have so
far is enough to ensure that A ∧ ∼A ⊢ B fails (pick a state x where ∼(xCx),
let A and ∼A be true there, and let B fail), and the logic of this semantics is
significantly non-classical.

So much is fairly clear. The story of how to use this account as a theory
of implication or entailment is less clear. One difficulty is the general logical
opacity of the conditional ‘→’. A ternary accessibility relation seems suited for
modelling entailment, for if we read ‘A→ B’ as ‘that A entails that B’ then there
is no doubt that the rule: if A ⊢ B and C ⊢ D then B → C ⊢ A → D, by the
transitivity of entailment. However, if we read ‘→’ as a more homely conditional,
it seems that the strengthening of the antecedent — A ⊢ B therefore B → C ⊢
A → C — ought to fail. After all, if I have a cup of coffee in the morning, my
writing goes well. However, if I have a cup of coffee in the morning and I find
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out someone has deleted all of the files on my computer, my writing does not go
well. One way to proceed might be to apply to our semantics of points insights
from the neighbourhood semantics of counterfactual conditionals [3, 88, 147].

Difficulties with this non-classical position arise once we deal with negation,
for once we allow inconsistent and incomplete points, the behaviour of negation
in our semantics has changed significantly. In the next sections, I will consider
some issues which are raised by this sort of semantic system.

In a state semantics like this, there is no connective ‘−’ on propositions such
that A ∧ −A ⊢ B and A ⊢ B ∨ −B come out as valid for all choices of A and
B. For if there were, then either the relation ⊑ would collapse into identity or
propositions would fail (in general) to be persistent. Of course, we can define

the locution ‘x  −A’ to be read as saying that x 6 A. But that does not mean
that claims of that form express a relationship between a state and a new kind
of proposition. For −A is not a proposition (on pain of failing to be preserved
upwards by ⊑). Talk of −A can be said to be meaningful, but when you engage
in that kind of talk, you are no longer simply talking of what is supported by

states — you are also considering other things which are true of states.4

16.3 Disjunctive Syllogism and Worlds

The argument, disjunctive syllogism, A∨B,∼A ⊢ B has been the cause of much
ink being spilled [26, 159, 219, 226] in the relevant logic literature. This is un-
derstandable, as the argument is widely agreed to be valid. However, according
to many relevant logicians, it is not valid. There seems to be a problem here.5

The problem (if it is really a problem) besets our semantics. Take some point
x where x  A∧∼A but x 6 B. Then x  A∨B and x  ∼A. However, x 6 B,
so inconsistent points give us a counterexample to disjunctive syllogism. It is
invalid on our semantics.

However, disjunctive syllogism seems valid. If the premises of the argument
are true, then the conclusion has to be true. We use disjunctive syllogism regu-
larly in inferring, and it is not clear that we are doing something wrong when
doing so. This tension has caused some to give up on the project of substruc-
tural logics. I think this is mistaken, and I think that clarifying the mistake helps
us to understand the nature of substructural logics.

4 And you may ask how the proposition x 6 A is to be cashed out on our terms. Well, a plausible
choice is that w  ∼(x  A), where w is the actual world.
5 Belnap and Dunn write: “. . . the reaction does not surprise us; the [disjunctive syllogism] was
one of the Stoic’s “Five Indemonstrables.” Still, on the other hand we do take some small solace
in the fact that it was the fifth of them — recalling the tradition of notoriety, starting with Euclid’s
Elements, regarding fifth postulates. Also, we suppose that it is better to deny an Indemonstrable
than a Demonstrable” [7, page 488].
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The problem cannot be fixed by adding disjunctive syllogism as an extra rule
to our formal systems, for once you do that, all sorts of irrelevancies come along
for the ride. Disjunctive syllogism can be done away with only by rejecting all
inconsistent worlds (or allowing only inconsistent worlds at which everything is
true) and once that is done, A∧∼A ⊢ B is valid, and significant relevant distinc-
tives are gone. No, disjunctive syllogism cannot be added to frame semantics in
a relevant framework.

Some have tried to remedy the situation by recovering disjunctive syllogism
in a weaker sense. Perhaps A ∨ B,∼A ⊢ B is not valid as it stands, but it is
valid with some extra premises. Let C stand for ‘things are consistent.’ Perhaps
A ∨ B,∼A,C ⊢ B is valid. After all, if A ∨ B is true, and if ∼A is true, and if
the world is consistent, then surely B follows.

The strategy of adding premises does not work. Under the plausible as-
sumption that an inconsistent state of affairs is formed by adjoining something
which has not obtained to this world, then since C is true here, it is true too
in this larger inconsistent state of affairs. (We have been adding information,
not taking anything else away.) It follows that we can get no guarantee that C
is true only in consistent worlds. If w is consistent, then if w ⊑ x, then x  C
too, despite the fact that x need not be consistent. And an inconsistent x is just
the sort of point at which disjunctive syllogism finds counterexamples. Adding
extra premises does not lead us to the validity of disjunctive syllogism.

However, this strategy contains an important insight. Although on our se-
mantics disjunctive syllogism fails, it is true that in every world w, if A ∨ B is
true at w and if ∼A is true at w, then either A or B is true at w (as worlds are
prime), and A is not true at w (as worlds are consistent) so B is true at w. So
disjunctive syllogism will not find counterexamples at worlds in our models.

Let us define another sort of entailment. We already have ‘A ⊢ B’ to encode
truth preservation across all states: For each x, if x  A then x  B. Let us read
‘A ⊢W B’ to mean: for all worlds w, if w  A then w  B. What is a world? It
is a consistent and complete point. What is a world in our frames for negation?
It is a point w where wCw (so w is consistent) and further, if wCx then x ⊑ w
(so w is complete).

The argument of the earlier paragraph shows us that we ought not expect
A ⊢W B to be of the form A,C ⊢ B for any particular C. However, this does not
mean that ⊢W does not make sense. Why should ⊢W be expressible in terms of
prior notions in the object language and ⊢?

Once we admit ⊢W , we will see that it is a classical notion of consequence.
It interacts in the expected ways with the classical lattice connectives and nega-
tion. In one sense, then, substructural logics are an extension of classical logic
into new areas. However, this is misleading. The substructural logic R is not
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an extension of classical logic with some new connectives in the way that, say,
a classical modal logic is such an extension. In classical logic and in its exten-
sions, we have the substitutivity of classical equivalents. A and A ∧ (B ∨ ∼B)
are classically equivalent, so they are inter-substitutable in all classical contexts.
This is true in classical propositional logics and in modal extensions of classical
logic. A is true in exactly the same worlds as A∧ (B ∨∼B). This is not the case
in R. In R the substitutivity of classical equivalents does not hold. In R, we have
A ∧ (B ∨ ∼B) ⊢ B ∨ ∼B. However we do not have A ⊢ B ∨ ∼B.

This is simply explained in terms of worlds and other points in a model
for R. A and A ∧ (B ∨ ∼B) are true in exactly the same worlds, but they are
true in different points. There may be points at which A is true but B ∨ ∼B
fails, as a logical truth need not be true at all points. The classical connectives,
when evaluated at a world, appeal only to that world, so they will not be able to
distinguish between classical equivalents, such as A and A∧(B∨∼B). Similarly,
a modal connective, which at a world evaluates a formula by looking only at
other worlds, will not distinguish between classical equivalents. The conditional
of R is evaluated by looking at other points, and these need not be worlds. And
once this happens, the semantic values of A and A ∧ (B ∨∼B) may split apart.

So substructural logics, like R, require us to draw more distinctions between
propositions than classical logic considers on its own. It follows that according
to R, disjunctive syllogism is invalid. There are states of affairs in which A ∨ B
and ∼A hold, but in which B fails to hold. These are inconsistent states of
affairs, it is true. They are states of affairs in which A and ∼A both hold, so
they are impossible. However, these impossible states of affairs might be im-
portant to consider when we are interested in distinguishing between different
claims with different subject matters — a distinction that substructural logics
are designed to draw.

Substructural logics invite us to draw these distinctions. However, they do
not demand that we do so all the time. If we like, we can squint our eyes,
shut out most of the surroundings and consider only possible worlds. Once we
do that, we have a wider range of logical consequences as we have a smaller
range of counterexamples available in the semantics. When we do this, we
recover classical validity. In this way, different forms of evaluating arguments
may coexist. Furthermore, they coexist within, and are justified by, the one
formal semantics. The one and the same frame can be used to model relevant
and classical validity. The way is open to a logical pluralism.

16.4 Pluralism about Consequence

This leads us towards a pluralist view about logical consequence. In one sense,
disjunctive syllogism is valid, as it is impossible for the premises to be true and
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the conclusion false: in every world in which the premises are true, so is the
conclusion. However, in another sense, disjunctive syllogism is invalid: in some
states of affairs the premises are true and the conclusion fails. The premises do
not automatically bring with them the conclusion. Were A and ∼A to both be
true, then A ∨B would be true too, but it would not follow that B.

Is this an unhealthy pluralism? If we use logic as a tool for analysing argu-
ments and as a norm to which arguments ought to comply, then is not having
a fixed answer on each issue desirable? Given a particular reasoning situation
should a logic not tell us what we ought to deduce? Ought one to reason with
all of classical logic, or ought one to eschew disjunctive syllogism and other
classical moves?

The problem gets progressively more stark once you realise that we have
absolutely no reason to stop at just two forms of logical consequence. Why
consider just the set of worlds and the set of all points? Why not the set of
consistent points? Why not the set of complete points? Why not the set of
physically possible worlds? Why not the set of worlds closed under modus
ponens for an intensional conditional? There are a whole host of different
accounts of logical consequence.

So we need an answer to our question: in a reasoning situation, what ought

one deduce from premises? What rules can be used? A thoroughly pluralist
answer to this will go as follows. What one ought to do depends on what one
is trying to achieve. Obligations in inference follow from norms of evaluation.
Different logics give you different norms. For classical logic, the norm is the
impossibility of inferring falsehood from truth. For relevant logics the norm is
tighter. Not only is necessary truth preservation required, but furthermore, the
relevance of the premises to the conclusion is required. Other forms of con-
sequence will bring along other norms. Obviously, the classical norm is one
important criterion for evaluating arguments. It seems that norms involving
relevance are also important. Perhaps other criteria of a broadly logical nature
may be developed and studied. If this is the case, then there will be a broad
range of different systems of logic which each have their use in evaluating ar-
guments, and which each deserve the name ‘consequence’ for they pick out a
notion of ‘following from.’ There is no need to expect that we will zero in on
one set of norms which must all be satisfied for an argument to be a “good” one
and which will pick out a single formal system which would be our One True

Logic.

16.5 History

There is a great deal of work on paraconsistency which is important to con-
sider [9] The major philosophical proponents have been Australasians: Graham
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Priest [198, 199, 200] and Richard Sylvan (formerly ‘Routley’) [224, 225, 230,
226, 231] have carved out distinctive philosophical positions. Other traditions
of reasoning from inconsistency exist. One early one is due to Rescher and
Manor [208]. The position argued here bears some family resemblance to the
position of Stephen Read, presented in his text Relevant Logic [206] and his
more introductory Thinking about Logic [207]. However, the position argued
here is more thoroughly pluralist than any position explicitly argued elsewhere
by relevant logicians.
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♯ (one-place negative punctuation),

124

⌢ (concatenation), 14, 16

∩ (intersection), 160

∪ (union), 160

−
→ (directed bisimulation), 297

↓ (ideal generator), 195, 196

←֓ (structural entailment), 25

⇒ (function construction in a

category), 222

[[·]] (interpretation function), 155, 169,

170, 244

⊑Γ (informational inclusion on a

closure set), 281

⊑ (informational inclusion), 236, 281,

306, 343

⌣⌢ (coherence), 228
⌢ (strict coherence), 228

⌢⌣ (incoherence), 228

((, )) (equivalence classes of terms),

217

∗ (term of type t), 131

 (contraction of proof terms), 138
✲ (conversion of proof terms), 139

:= (substitution), 129

: (judgement formation), 127

〈−,−〉 (pairing), 127, 129
✲✲ (reduction of proof terms), 139

⋆ (term of type ⊤), 130

6 (ordering), 157

| (divisibility), 175

⇐ (structural entailment in a context),

25
✲✲ (reduction of proof terms), 217

(!E) (“of course” elimination), 57

(!I) (“of course” introduction), 57

(∗E) (iteration elimination), 55

(∗I) (iteration introduction), 55

365
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(∗M) (iteration mingle), 55

(tE) (truth elimination), 31

(tI) (truth introduction), 31

(�−E) (possibility elimination), 50

(�−I) (possibility introduction), 50

(�E) (necessity elimination), 49

(�I) (necessity introduction), 49

(⊥E) (falsum elimination), 33

(◦E) (fusion elimination), 28

(◦I) (fusion introduction), 28

(→E) (implication elimination), 22

(→I) (implication introduction), 22

(∧E) (conjunction elimination), 33

(∧I) (conjunction introduction), 33

(∨E) (disjunction elimination), 34

(∨I) (disjunction introduction), 34

(¬∼E) (double negation elimination),

64

(∼¬E) (double negation elimination),

64

(∼∼I) (simple negation introduction),

64

(¬I/∼E) (negation introduction and

elimination), 62

(¬I;∼E) (strict de Morgan negation

rule), 67, 169

(∼I/¬E) (negation introduction and

elimination), 62

(∼I/∼E) (simple negation rule), 64

(∼I;¬E) (strict de Morgan negation

rule), 67, 169

(←E) (converse implication

elimination), 29

(←I) (converse implication

introduction), 29

(⊤I) (verum introduction), 32

[fL] (f left Gentzen rule), 107

[fR] (f right Gentzen rule), 107

[tL] (t left Gentzen rule), 107

[tR] (t right Gentzen rule), 107

[�−L] (possibility left Gentzen rule),

122

[�−R] (possibility right Gentzen rule),

122

[�L] (necessity left Gentzen rule), 122

[�R] (necessity right Gentzen rule),

122

[⊥L] (⊥ left Gentzen rule), 107

[◦L] (fusion left Gentzen rule), 106

[◦R] (fusion right Gentzen rule), 106

[→L] (implication left Gentzen rule),

106, 315

[→R] (implication right Gentzen rule),

106, 315

[∧L] (conjunction left Gentzen rule),

106

[∧R] (conjunction right Gentzen rule),

106

[∨L] (disjunction left Gentzen rule),

106

[∨R] (disjunction right Gentzen rule),

106

[¬L] (negation left Gentzen rule), 124

[¬R] (negation right Gentzen rule),

124

[∼L] (negation left Gentzen rule), 106,

124

[∼R] (negation right Gentzen rule),

106, 124

[⊤R] (⊤ right Gentzen rule), 107

[Id] (identity Gentzen rule), 107

[K!] (! weakening Gentzen rule), 107

[L!] (! left Gentzen rule), 107

[R!] (! right Gentzen rule), 107

[WI!] (! contraction Gentzen rule), 107

⊆ (subsethood), 158P
(summation), 17

 (evaluation on a frame), 236, 242,

284, 341

τ (translation)

of a consecution into a formula,

75, 78

of bracketed structures into

unbracketed ones, 108

of intuitionistic logic into linear

logic, 58

× (product in a category), 216

⊤2m, the structural rule, 51, 53, 250



CONS

1999/11/6

page 367

✐

✐

✐

✐

✐

✐

✐

✐

INDEX 367

⊢ (consequence), 2, 9, 20, 345

⊢-pair, 93

extension, 93, 94

full, 93

step lemma, 94

⊢H (Hilbert system consequence), 86

⊢W (consequence at worlds), 345

⊢F (consequence on a frame), 244

⊢M (consequence on a model), 244

(, ) (parentheses), 16

+ (sum in a category), 219

0 (identity), 30, 31, 74, 107

0-structure, 327

< (ordering), 15

[, ] (equivalence classes of formulae),

183
∗ (the Routley star), 262
l (lower set), 278
u (upper set), 278

4, the structural rule, 48, 51, 52, 204,

205, 250, 307

a (arity), 15, 16, 19

accessibility relation

canonical, 253

negative two-place, 240

on a closure set, 282

plump cousin, 240

plump negative two-place, 240

plump positive two-place, 240,

266

plump three-place, 240

positive two-place, 240

three-place, 240

Ackermann, Wilhelm, 2, 42, 87

ACM (and-branching two-counter

machine), 331

actions, 12, 61

tokens, 12, 246

types, 12, 246

additive conjunction, 35

additive disjunction, 35

adjoint pair, see adjunction

adjunction, 211, 224, 225

between free and forgetful

functors, 224

between positive modal

operators, 225

between product and implication,

225

admissibility, 37

AForm, 15, 17

Allwein, Gerard, 292

Amsterdam, 341

analysis, 112

Anderson, Alan Ross, 2, 9, 10, 32, 42,

87, 235

antecedent, 20, 25, 111, 123

regularity, 117

stage of cut admissibility proof,

119

antecedent regularity, 38

application, 11, 127

function, 13

approximation, 246

arc, 20

Aristotle, xiii, 9

arithmetic

relevant, 102

arity, 17

of connectives, 15

of punctuation marks, 19

arrow, see conditional

in a category, 211, 212

arrow logics, 245

assumptions, 42

atom, 14, 325

axiom, 21, 73

identity, 76

b (the truth value both), 171

B, the structural rule, 26, 27, 29,

39–41, 43, 46, 56, 68, 69,

84–86, 105, 109, 122, 136,

169, 174, 207, 226, 249,

250, 272, 289, 307, 308,

314, 315, 320, 321
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b, the combinator, 181

B′, the structural rule, 26, 40, 41, 45,

46, 84, 86, 105, 250, 307,

314, 321

Bc, the structural rule, 26, 39, 43, 45,

46, 85, 86, 105, 226, 250,

307, 308, 314

bar, 276

Barendregt, Henk, 141

Barr, Michael, 212

Barwise, John, 343

BBc, the logic, 40, 43, 151, 308, 309

BBcP, the logic, 40

BC, the logic, 40

BCK, the logic, 40, 41, 135, 136, 151,

203, 315, 321

BCW, the logic, 39

BCWK, the logic, 40

Bell, J. L., 155, 293

Belnap, Nuel, xiii, 2, 9, 10, 32, 46, 87,

102, 125, 235, 275, 321,

339, 340, 344

Benthem, Johan van, 245, 341

Beth frame, 276

bibliography, 4

Birkhoff, Garrett, 193, 209

bisimulation, 295

directed, 296

Blake, William, 73

BN, the logic, 171–173, 190, 191, 193,

209

Bonnette, Nicolette, xiii

Boolean algebra, 177

Boolean negation, 66, 306

conservative extension, 307

Bracket-Id, the structural rule, 57, 58

Bracket-K, the structural rule, 57, 58

Bracket-WI, the structural rule, 57, 58

bracketed formula, 56

Brady, Ross T., xiii, 125, 321

branch, 20

BSub, the logic, 39

Buzskowski, Wojciech, 307, 321

C, the structural rule, 26, 27, 39, 40,

46, 56, 68, 69, 71, 86, 105,

109, 122, 128, 136, 169,

174, 207, 250, 289, 307,

314, 315

c, the combinator, 181

C, the logic, 172, 185, 203

calculus

infinitesimal, 342

canonical closure frame, 286

canonical frame, 254

cartesian category, 221

cartesian closed category, 222, 231

categorial grammar, 3

category, 211, 212

cartesian, 221

cartesian closed, 222, 231

concrete, 213

monoidal, 227

opposite, 213

poset, 212

term, 217

chain, 276

Church, Alonzo, 2, 42, 150

Church–Rosser Theorem, 141

CI, the structural rule, 26, 27, 29, 45,

67, 68, 86, 128, 226, 249,

250, 307, 320, 324, 333, 334

CK, the logic, 203, 306

CLL, the logic, 122

closed set, 279

closure, 278

closure floating, 283

closure frame, 284

canonical, 286

closure operator, 279

closure set, 279

coffee, xiv

cognate consecutions, 316

cognation class, 316

coherence relation, 228

coherence space, 227, 228

collinearity, 324

combination, 9
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associativity, 11, 12, 24, 27, 40

commutativity, 3, 11, 27

contraction, 3, 11, 12, 43, 58, 315

idempotence, see combination,

contraction

non-associativity, 13

relevant, 2, 11

totality, 12

weakening, 58

combinator, 181

combinator algebra, 181

combinatory logic, 26, 88

comma (extensional punctuation), 35

commuting conversion, 139

commuting diagram, 215

compatibility, 238

properties of, 343

completeness

of Gentzen systems, 109

of Hilbert systems, 83

of linear logic in topolinear

spaces, 291

of MALL in phase spaces, 289

of natural deduction in closure

frames, 286

of natural deduction in frames,

259

of natural deduction in

propositional structures, 184

of negation conditions in frames,

261

complexity, 5

composition, 3

of proofs, 211

computation, 1

concatenation, 11, 14

conclusion, 9, 21, 112

conditional, 2, 9–11, 15, 16

counterfactual, 344

conditionality, 39

confusion, 86

modal, 98

congruence, 112

congruence of parameters, 38

conjunction, 16

extensional, 35

Conn, 15, 17

connective, 15

readings, 16

consecution, 9, 20, 21, 122

in a Gentzen system, 105, 111

consequence, 1, 9, 86, 89, 93

pair extension acceptability, 92

pluralism about, 346

consequent, 20, 25, 111, 123

empty, 106

regularity, 116

stage of cut admissibility proof,

119

conservative extension, 189, 201, 203

using frames, 269

constructor

elimination, 139

contingency, 40

continuous function

in a coherence space, 229

on a topological space, 246

contraction, see combination,

contraction, and W, the

structural rule

contractum, 139

contraposition, 65

conversion, 139

Conway, J. H., 209

Copeland, B. Jack, 269

counter machine, 331

counterfactual conditional, 344

Cresswell, M. J., xiii, 270

Curry’s Lemma, 315

Curry’s paradox, 43

Curry, Haskell B., 61, 125, 181

Curry–Howard isomorphism, 150

Cut rule, 37

admissibility in Gentzen systems,

108, 110, 111, 119

admissibility in natural deduction,

38, 50

conditions for admissibility, 113
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general case, 112

interaction with terms, 134

relationship to normalisation, 142

da Costa, Newton, 185

dancing, 12

Davoren, Jennifer, 232

DBB′lPrPuW, the logic, 40

DBBlP′, the logic, 40

DBBlP′W, the logic, 40

DBCK, the logic, 103

DBCW, the logic, 39, 40

DBCWM, the logic, 40

DBSub, the logic, 39, 248, 307, 320

de Morgan laws, 63, 65

de Morgan negation, 65, 106, 125

de Morgan, A., 180

de Rijke, Maarten, 308, 341

decidability, 313, 314

filtration, 319

proof search, 313

Dedekind cut, 278

deducibility problem, 313

deduction, 10

deduction theorem, 2, 9, 10, 13, 86, 87

diagram

commuting, 215

dialetheism, 156

directed bisimulation, 296

directed binary relation, 296

disjunction, 16, 276

extensional, 35

disjunctive syllogism, 340, 344

admissibility, 15, 101

display logic, 69, 125

distribution

of conjunction over disjunction,

35, 36, 46, 66, 92, 162, 163,

175, 186, 275

of conjunction over disunction, 77

divisibility, 175

DMALL, the logic, 73, 172, 306, 307

domain space, 246

domain theory, 238

down , 132

Došen, Kosta, 1, 2, 42, 102, 209, 245,

292, 339

Dragalin, Albert, 292

duality, 291

duality theory, 270

Dummett, Michael, 339

Dunn conditions, 266, 272

Dunn, J. Michael, xiii, 2, 30, 35, 42,

43, 69, 70, 72, 102, 125,

156, 181, 185, 186, 209,

266, 270, 292, 340, 344

e (identity in a groupoid), 165

E, the logic, 32, 42, 47, 48, 54, 65,

101, 102, 203, 235, 305,

321, 323, 331

E+, the logic, 39–41

eB, the structural rule, 36

eCI, the structural rule, 36

Egypt, 127

Eilenberg, Samuel, 214

eK, the structural rule, 36, 79

entailment, 10, 32, 39, 47, 158, 343

on frames, 244

Epstein, G., 156

equivalence, 23

equivalence class, 183

equivalent points, 319

evaluation, 243

eWI, the structural rule, 36, 79, 315

ex contradictione quodlibet, 66, 91, 169

excluded middle, 66, 342

strong, 66, 91, 169

weak, 68

exclusion, 60

exercises, 3

exponential, 56

expressivity, 75

extensional connectives, 35

extensional structure, 35

f (falsity), 16, 60, 105

f (the truth value false), 155, 171

faith
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justification by, 89

falsehood, 16

falsum, see ⊥
family

intensional, 30

modal, 51

parent, 30, 51

Faust, 89

Fermat’s Last Theorem, 12

Ferrari, 61

filter, 194

filtration, 319

largest, 320

smallest, 320

Fine, Kit, 5, 270

finite generation of strings, 14

finite model property, 318

fission, 123, 126

Forget, 141

formula, 17

atomic, 15, 17

induction, 17

infix notation, 16

Polish notation, 16

subformula, 17, 20

unique decomposition, 16

frame, 235, 239, 242

arrow, 246

Beth, 276

canonical, 254

compatibility, 238

correspondence, 263

Dedekind–MacNeille, 278

disjoint union, 303

evaluation, 243

examples, 236, 245

filtration, 319

generated subframe, 302

hereditary condition, 237

interpreting negation, 260

language, 236, 245

linguistic, 307

model, 243

neighbourhood, 271

of a projective space, 325

operational, 270

reduced, 304

structural rule conditions, 248

two-dimensional, 245

frames

completeness, 15

natural deduction systems

complete for, 259

natural deduction systems sound

in, 251

negation rules complete for, 261

negation rules sound in, 260

free structure, 194

Frege, Gottlob, 89, 156

Friedman, Harvey, 102

friends, xiii

fst , 127, 129

Fuhrmann, André, xiii

functional programming, 150

functions, 12, 48, 61

functor, 212, 214

forgetful, 213, 224

free, 224

fusion, 28, 48

G (translating natural deduction into

Gentzen systems), 142

Gabbay, Dov, 102

gcd (greatest common divisor), 175

generated subframe, 302

generosity, 12, 246

Gentzen system, 105

admissibility of Cut, 108, 110,

111, 119

completeness, 109

cut conditions, 113

examples, 105, 122

identity theorem, 107

soundness, 109

Gentzen, Gerhard, 41, 125

geometric lattice, 325

Giambrone, Steve, 321

Gibbon, Edward, 127
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Girard, Jean-Yves, 1, 3, 5, 44, 58, 59,

70, 125, 150, 227, 232, 288

Girle, Roderic, xiii

giving away 10 dollars, 12, 246

Goethe, 89

Goldbach’s conjecture, 341

Goldblatt, Robert, 277, 293

Goré, Rajeev, xiii

grammar, 10

grammatical structures, 1

greatest lower bound, 35, 160

groupoid, 165

bi-residuated, 166

left-residuated, 166

right-residuated, 166

Grätzer, George, 194, 292

H3, the Heyting lattice, 178, 189, 209

Hall, Joseph (Bishop), 323

Harrop, R., 102

Hartonas, Chrysafis, xiii, 62, 70, 292

Hasse diagram, 158, 161

Hazen, A. P., 43

heaven, 73

hell, 73

Hennessy, M., 295, 308

hereditary condition, 237

Heyting lattice, 178, 189, 209

Heyting, Arend, 156

Hilbert system, 73

⊤ and ⊥ axioms, 76

completeness, 83

conjunction rule set, 76

consequence, 86

core rule set, 76

disjunction rule set, 76

distribution axiom, 77

extra intensional rules, 77

fusion axiom, 85

hand tuning, 84

Kleene star rules, 78

negation rules, 77, 85

“of course” rules, 78

positive modal rules, 77

prefixing, 84

rules, 73

soundness, 78

structural rules, 86

suffixing, 84

t axiom, 84

Hom sets and classes, 214

homomorphic image, 193

homomorphism, 190, 213

isomorphism, 192

one-to-one, 191

onto, 191

order embedding, 191

hospitality, 246

Howard, W. A., 150

HS (Hilbert system corresponding to

S), 75, 78

Hungary, 186, 336

i, the combinator, 181

(Id) rule, 22, 38

ideal, 195, 209

principal, 195

structure, 195

Ideal(P) (the ideals in P), 195–198

idempotent

positive, 326

identity

left, 30, 165

right, 31, 165

identity rule, 22, 38

ILL, the logic, 105, 108, 109, 111,

113–115, 118, 122, 125, 126

implication

linear, 231

impossible state, 342

induction, 17–19, 55

inference, 10, 20, 21, 24, 37, 112, 344

admissibility, 37

infix notation, 16

information, 10

conditional, 10, 11

information states, 236

initial object, 221
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inl , 130

inr , 130

integers, 161, 173

Internet, 4

interpretation, 155, 170, 244

intersection, 160

intuitionism, 156

irredundant sequence, 316

isomorphism, 192

in a category, 214

iteration, 16, 54, 207, 209

IV (intransitive verb), 12

J, the logic, 40, 127, 189, 204, 306

Jain, Pragati, xiii

Joe, 11

join, see least upper bound

Jónnson, B., 178, 269

judgement, 127

K, the structural rule, 26, 32, 33, 35,

36, 46, 58, 86, 88, 133, 135,

136, 172–174, 202, 250,

306, 314, 321

k, the combinator, 181

K′, the structural rule, 26, 32, 35, 36,

45, 86, 91, 174, 250

Kleene star, 54, 69, 207, 209

Hilbert rules, 78

Kleene, S. C., 102

Komori, Y., 292

Kr, the structural rule, 51, 52, 70, 99,

204, 205, 250, 307

KR, the logic, 324–327, 329–331, 336

Krc, the structural rule, 51, 52, 70

Kremer, Philip, xiii

KRIPKE, 321

Kripke’s Lemma, 316

Kripke, Saul, 269, 321

Kurtonina, Natasha, 308

L, the logic, 39, 40, 71, 254, 255, 258,

269, 303, 306, 307, 315, 322

Ł3, the logic, 172, 178

Łn+1, the logic, 172

Łn, the logic, 173

ŁQ , the logic, 173

ŁR, the logic, 173, 187

Lafont, Yves, 232, 321

λ〈 term, 131

λ〉 term, 131

λ-calculus, 13, 127, 136, 246

terms, 127, 129

types, 127, 129

variables, 129

Lambek, Joachim, 3, 43, 125, 216, 232

Lang, 15, 17, 19–21, 75, 269

language, 3, 15, 19

expressive, 75

induction, 17

well-ordering, 15

lattice, 35, 160, 162, 213

complete, 163, 196

completely distributive, 164, 165,

197

distributive, 162, 165, 175, 181

geometric, 325

modular, 180, 326

non-distributive, 163

Lawson, Henry, 339

lcm (least common multiple), 175

leaf, 20

least upper bound, 35, 160

left identity, 30

Left Pop, the structural rule, 30, 31,

33, 39, 80

Left Push, the structural rule, 30, 31,

39, 43, 79, 80

Let, 130–132, 138, 139, 150

Lewis, David, 156

LI, the logic, 39, 40, 71, 306, 307

Lincoln, P., 332

Lindenbaum algebra, 183, 194

Lindenbaum Lemma, 92

line, 324

linear logic, see logic, linear

linear map, 231

linguistic frame, 307
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linguistics, 1, 3, 11

list, 23

LL, the logic, 56, 58, 59, 67, 71, 84,

126, 135, 136, 151, 248,

273, 291, 315, 332

logic, 1, 32

abelian, 174

affine, 40

applications, 1, 10–14

arrow, 245

classical, 177, 313, 346

combinatory, 26, 88

decidable, 314

display, 69

intuitionistic, 40, 41, 58, 102,

127, 150, 178, 189, 209, 236

Lambek, 3, 40, 48, 54, 90, 157,

245, 307, 322, 340

linear, 3, 40, 41, 56, 58, 67, 73,

105, 122, 136, 202, 203,

248, 289, 291, 307

minimal, 40, 41

modal, 13, 102, 235

of unity, 70

philosophical, 1

quantum, 293

reduction-ready, 304

relevant, 2, 11, 26, 40, 65, 67, 73,

102, 125, 136, 150, 202,

247, 307, 346

relevance property, 184

substructural, 1

temporal, 13, 47

the discipline, 1

logical consequence, see consequence

lower set, 278

lPu, the logic, 39

Łukasiewicz, Jan, 3, 172, 173, 187

Lukasiewicz’s logics, 172

Luther, Martin, 89

M, the structural rule, 26, 45, 71, 86,

114, 173, 174, 250

m2⊤, the structural rule, 51, 53, 250

m2t, the structural rule, 51, 53, 54,

250

MacNeille, H. M., 278

Mac Lane, Saunders, 214

Mac Lane, Saunders, 209, 211, 212

MaGIC, 186

MALL, the logic, 67, 202, 289, 290,

294, 321, 322, 335

MALL+, the logic, 40

Manor, R., 348

Mares, Edwin, xiii, 271, 273

Martin, E. P., 61

Martin-Löf, Per, 339

Marx, Karl, 89

Mary, 11

materialism

dialectical, 89

mathematical structures, 1

mathematics, 1

max (maximum), 160

McRobbie, Michael, 321

meaning, 155

meet, see greatest lower bound

metavaluation, 95–102

Meyer, Robert K., xiii, 2, 42, 44, 61, 87,

102, 174, 177, 181, 185,

201, 203, 209, 235, 270,

271, 273, 321

Milner, R., 295, 308

min (minimum), 160

Mints, Grigori, 35, 43, 125

Mitchell, John, 155, 332

Mitchell, William, 273

mK, the structural rule, 51–53, 206,

250

mM, the structural rule, 206

mMP, the structural rule, 51, 52, 204,

205, 250, 307

modal logic, see logic, modal

modality

negative, 59, 62, 167, 201

non-normal, 54, 207

positive, 47, 55, 166, 201, 204,

266
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Hilbert rules, 77

model, 243

canonical, 254

modular 4-frame, 327

modular law, 180

modus ponens, 76, 86, 88

Moh Shaw-Kwei, 2, 42

moments, 13

monoidal category, 227

Moortgat, Michiel, 3

Morrill, Glyn, 3

Mortensen, Chris, xiii

multicategory, 216

multiset, 315

Mulvey, C. J., 186

mW, the structural rule, 206

mWI, the structural rule, 51, 52, 206,

250, 307

N (translating Gentzen systems into

natural deduction), 142

n (the truth value neither), 171

natural deduction, 14, 41

natural transformation, 214

necessitive, 205

necessity, 16, 40, 47, 48, 54, 166, 235

S4, 204

negation, 15, 16, 59, 201

Boolean, 66, 177, 189, 306, 324,

339

de Morgan, 65, 172

Hilbert rules, 77

in frames, 260

n-type, 167

ortho, 66, 179, 277

p-type, 168

simple, 64, 68, 169, 238

split, 62, 238

strict de Morgan, 67, 103, 169,

202, 318

using compatibility, 238

negative pair, 167

n-type, 167

p-type, 167

Nelson, Edward, 72

Ng, K. C., 55

node, 20

Nolan, Daniel, xiii

normalisation, 137, 140

relationship to Cut elimination,

142

numbers, 12

even, 13, 48, 247

integers, 161, 173

natural, 12, 48, 158, 174

odd, 13, 247

ordinals, 15

prime, 175

real, 278

object

function, 222

in a category, 212

initial, 221

terminal, 221

Okada, Mitsuhiro, 322

Ω (an untyped λ term), 141

ω (natural numbers), 12, 158, 164,

174

Ono, H., 292, 321

open set, 178

operation, 159

operator

lifted, 198

order

partial, 157

total, 160

order embedding, 191, 195

ordering

dictionary, 15

well, 15

Orlov, I. E., 2, 42

Orłowska, E., 245

ortho-negation, 66, 179, 277

OzTEX, xiii

P (power set), 158, 160, 178, 279

P−W, the logic, 235

Pagliani, Piero, xiii
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pair, 93

extension, 93, 94, 304

full, 93

step lemma, 94

pair extension acceptability, 92

Pair Extension Theorem, 15, 94, 102,

256

paradoxes

Curry’s, 43

self-reference, 43, 342

parameter, 37, 38, 112

congruence, 38

non-proliferation, 114

position-alikeness, 114

shape-alikeness, 114

parametric formula, 112

parent, 20

parentheses, 16

Parker, Christine, xiv

partial order, 157

pedantry, 14

Peirce’s Law, 37, 189, 209

Peirce, Charles Sanders, 37, 180

Pentus, Mati, 308

Perry, Jon, 343

Persia, 127

perspective

external, 339

internal, 339

Petersen, Uwe, xiii

phase space, 288

philosophical logic, see logic,

philosophical

places, 1

plump accessibility relations, 240

Plumwood, Valerie, 2

pluralism, 346

poetry, 275

point, 324

as an information state, 341

point set, 239, 276, 279

canonical, 253

component in, 266

flat, 240, 241, 246

Poland, 185

Polish notation, 16

Pop, the structural rule, 30

poset, 212

positive pair, 166

possibility, 16, 47, 48, 50, 54, 166,

172, 235

possible world, 156

possible worlds, 235

possiblities, 13

Pratt, Vaughan, 55, 69, 208

Prawitz, Dag, 41, 150, 339

premise, 21, 112

combination, 9

use, 11

premise combination, 2

premises, 9

Priest, Graham, xiii, 156, 308, 348

prime theory, see theory, prime

principal formula, 112, 115

stage of cut admissibility proof,

120

Prior, Arthur, 269, 339

processes, 1

product

in a category, 216, 218

product structure, 193

projective space, 324

subspace, 325

proof, 20, 21, 211

as an arrow in a category, 211

decoration with terms, 132, 247

from assumptions, 21

Gentzen system, 105

infinite, 21

labels, 24

list form, 23

natural deduction, 22

normalisation, 137

proof nets, 5

proof system, 21

Prop(P) (propositions on the point set

P), 240

proposition
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on a frame, 239, 244

propositional structure, 158, 190

examples, 170

fit for a language, 169

free, 194

from a frame, 244

ideal structure, 198

operation, 159

product, 193

substructure, 192

propositions, 1, 10

proximity, 294

Punct, 19

punctuation mark, 19

Push, the structural rule, 30

quantale, 186

Gelfand, 187

quantification

individual, 5

propositional, 5

second-order, 5

quasivariety, 193

Quine, W. V. O., 10

R, the logic, 11, 35, 42, 65, 67, 71, 73,

101–103, 135, 136, 150,

151, 175, 176, 184, 185,

187, 201, 203, 204, 224,

235, 247, 271, 290, 306,

307, 315, 318, 321, 323,

324, 327, 331, 336, 345, 346

R+, the logic, 39, 40

R4, the logic, 273

Rasiowa, Helena, 185

Read, Stephen, xiii, 2, 348

reading guide, 4

realisability, 102

redex, 139

Reduce, 141

reduced frame, 304

reduction, 128, 140

regularity, 116, 118

relation algebra, 180

relevance, see logic, relevant

relevance property, 184

relevant logic, see logic, relevant

Rescher, Nicholas, 348

residuation, 30, 44, 50, 166, 175, 178,

186, 201, 285

resources, 3

Restall, Greg, 125, 271, 308, 321

right identity, 31

Right Pop, the structural rule, 31, 32,

39, 84

Right Push, the structural rule, 31, 32,

39, 84

ring, 209

RM, the logic, 72, 173, 174, 187, 191,

193, 203, 204

RM+, the logic, 40

RM3, the logic, 190, 191

RM0, the logic, 203, 204

Robinson, Abraham, 342

Roman Empire, 127

root, 20

Routley star, 262

Routley, Richard, see Sylvan, Richard

Routley, Valerie, see Plumwood, Valerie

rPo, the logic, 39

rPu, the structural rule, 41

rule, 21

⊥ left Gentzen, 107

→ abstraction, 131

→ application, 130

! contraction Gentzen, 107

! left Gentzen, 107

! right Gentzen, 107

! weakening Gentzen, 107

← abstraction, 131

← application, 131

⊤ right Gentzen, 107

ex contradictione quodlibet, 66,

91, 169

“of course” elimination, 57

“of course” introduction, 57

cases, 130

conjunction elimination, 33
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conjunction introduction, 33

conjunction left Gentzen, 106

conjunction right Gentzen, 106

contracting, 128, 137

converse contraposition, 65

converse implication elimination,

29

converse implication introduction,

29

de Morgan laws, 63, 65

disjunction elimination, 34

disjunction introduction, 34

disjunction left Gentzen, 106

disjunction right Gentzen, 106

double negation elimination, 64

double negation introduction, 62

expansive, 313

f left Gentzen, 107

f right Gentzen, 107

falsum elimination, 33

fusion elimination, 28

fusion introduction, 28

fusion left Gentzen, 106

fusion right Gentzen, 106

Hilbert system

see Hilbert system, 73

identity Gentzen, 107

implication elimination, 22

implication introduction, 22

implication left Gentzen, 106, 315

implication right Gentzen, 106,

315

in a Gentzen system, 112

injection, 130

instance, 21

introduction, 22

iteration elimination, 55

iteration introduction, 55

iteration mingle, 55

modus ponens, 76

necessity elimination, 49

necessity introduction, 49

necessity left Gentzen, 122

necessity right Gentzen, 122

negation introduction and

elimination, 62

negation left Gentzen, 106, 124

negation right Gentzen, 106, 124

pairing, 129

possibility elimination, 50

possibility introduction, 50

possibility left Gentzen, 122

possibility right Gentzen, 122

prefixing, 40

projection, 129

sets, 75

simple negation, 64

simple negation introduction, 64

strict de Morgan negation, 67,

169

suffixing, 40

t left Gentzen, 107

t right Gentzen, 107

truth elimination, 31

truth introduction, 31

verum introduction, 32

ruling out, 60

running, 11

Ruskin, John, 189

Russell, Bertrand, 43

S (sentence), 12

s, the combinator, 181

S4, the logic, 48, 204–206, 271, 309

S5, the logic, 204

Sambin, Giovanni, 292

Scedrov, A., 332

Schröder, E., 180

Schröder-Heister, Peter, 1

Scott, Dana, 10

Scott, Philip J., 232

Segerberg, Krister, 270

semantics, 155, 235

axiomatic, 155

denotational, 155

intended, 343

operational, 155

semi-valuation, 185
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semicolon, 2, 9, 10

semigroup, 165

free, 327

word problem, 323

semilattice, 160

sense, 156

sentence, 12

sequent, 9

set theory

näıve, 89

sets, 158

Shankar, N., 332

Shapiro, Stewart, 102

sigma, 17

simulation, 295

sinn, 156

situation, 342, 343

Slaney, John K., xiii, 44, 103, 174, 308,

313

Slice Lemma, 141

Slomson, A. B., 155

Smith, Barbara Herrnstein, 275

snd , 127, 129

soundness

of Gentzen systems, 109

of Hilbert systems, 78

of linear logic in topolinear

spaces, 291

of MALL in phase spaces, 289

of natural deduction in closure

frames, 285

of natural deduction in frames,

251

of natural deduction in

propositional structures, 182

of negation conditions in frames,

260

Squeeze Lemma, 258

stable function, 230

Stalnaker, Robert, 156

String, 14

string algebra, 14

model, 15

strings, 3, 11

Struct, 19–21, 75

structural rule

corresponding condition on a

frame, 248

recorded by combinators, 181

translated into a propositional

structure, 169

structural rules, 2, 24

examples, 25

extensional, 36

modal, 51

recovery in linear logic, 58

translation into Hilbert systems,

78, 86

structure, 19, 20

induction, 19

substructure, 19, 20

notation, 20

replacement, 20

subformula, 17

subject matter, 1

substitution, 24

substitutivity of equivalents, 185

substructure, 19, 192, 193

suicide, 12

sum

in a category, 219

Surendonk, Timothy, xiii

syllogism, 9

Sylvan, Richard, xiii, 2, 44, 87, 185,

209, 235, 270, 308, 348

syntax, 3, 11, 24, 155, 236, 245

t (truth), 16, 31, 32, 47, 54, 74

t (the truth value true), 155, 171

⊤ (verum), 16, 32, 48, 64, 66, 74, 76,

160

T, the structural rule, 48, 51, 52, 70,

204, 205, 250, 307

T, the logic, 322, 331, 336

T+, the logic, 39–41

t2m, the structural rule, 51, 53, 54,

250

Tait, W. W., 142
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taking together, see combination

Tanaka, Koji, xiii

Tarski, Alfred, 55, 155, 178, 186, 269

Taylor, Paul, xiii, 232

temporal logic, see logic, temporal

Tennant, Neil, 150

term

category, 217

closed, 128

decomposition, 135

free variables, 128

normal, 140

normalising, 140

of the λ-calculus, 127, 129

strongly normalising, 140

term assignment, 88

terminal object, 221

terms, 136

Terms, 141

Terms, 141

TEX, xiii

Thackeray, William, 105

theory, 89

t-normal, 91

→-detached, 90, 91

∼-complete, 90, 91

∼-consistent, 90, 91

culinary, 10

full, 91

non-empty, 90

non-full, 90

non-trivial, 90

prime, 90–93, 253, 270

scientific, 10

t-normal, 90, 95

Thistlewaite, Paul, 321

ticket entailment, 41

times, 1, 13

topolinear space, 290

topological space, 178, 246, 279

Torino, 247

Trace, 229

transfer theorem, 302

translation

from Gentzen systems into

natural deduction, 142

from natural deduction into

Gentzen systems, 142

of a consecution into a formula,

75, 78

of bracketed structures into

unbracketed ones, 108

of intuitionistic logic into linear

logic, 58

of structural rules into a

propositional structure, 169

tree, 20

Trevorrow, Andrew, xiii

Troelstra, Anne, 3, 232, 292

truth, 16, 90

truth set, 241

truth values, 155, 171, 235

truthmakers, 342

turnstile, 2, 9

TV, the logic, 171, 174, 178, 190, 193,

313

TW, the logic, 328–331

TW+, the logic, 39, 40

type, 236

of a term of the λ-calculus, 127,

129

types, 11, 13

of closed terms, 136

undecidability, 313, 323, 326

of deducibility, 329

of theoremhood, 331

union, 160

unique decomposition

of formulae, 16

of strings, 14

up , 132

upper set, 278

Urquhart, Alasdair, 5, 156, 270, 324,

327, 328, 336

use and mention, 10

validity, 2, 344

variable
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bound, 131–133

free, 129

variety, 193

Venneri, Betti, 248

verb

intransitive, 11

verum, see ⊤
Vickers, Steven, 186

Viganó, Luca, xiii

W, the structural rule, 26, 28, 39, 41,

43, 44, 46, 86, 88, 133, 136,

173, 174, 184, 207, 250,

290, 307, 315

w, the combinator, 181

Wadler, Philip, 70, 150

Wallace, J. R., 321

Wansing, Heinrich, xiii, 69, 72

weakening, see K, the structural rule

website, 4

well-ordering, 15

Wells, Charles, 212

Wesley, John, 295

Whateley, Richard, 47

Whewell, William, 155

WI, the structural rule, 26, 35, 36, 43,

45, 58, 68, 85, 86, 91, 112,

133–135, 172, 173, 184,

250, 314, 320, 323, 331

Witness Lemma, 255

word problem

for modular lattices, 327

for semigroups, 323

world, 345

X, the structural rule, 88

Y, the structural rule, 88

Z (integers), 161, 173

0 (identity), 30, 31, 74, 107

0-structure, 327


