AN INTRODUCTION TO THE FRACTIONAL CALCULUS AND FRACTIONAL DIFFERENTIAL EQUATIONS

KENNETH S. MILLER

Mathematical Consultant Formerly Professor of Mathematics New York University

BERTRAM ROSS

University of New Haven

A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York • Chichester • Brisbane •

Toronto • S

Singapore

CONTENTS

Preface

I. Historical Survey

	1. The Origin of the Fractional Calculus, 1	
	2. The Contributions of Abel and Liouville, 3	
	3. A Longstanding Controversy, 6	
	4. Riemann's Contribution, Errors by Noted	
	Mathematicians, 7	
	5. The Mid-Nineteenth Century, 9	
	6. The Origin of the Riemann-Liouville Definition, 9	
	7. The Last Decade of the Nineteenth Century, 13	
	8. The Twentieth Century, 15	
	9. Bibliography, 16	
II.	The Modern Approach	21
	1. Introduction, 21	
	2. The Iterated Integral Approach, 23	
	3. The Differential Equation Approach, 25	
	4. The Complex Variable Approach, 28	
	5. The Weyl Transform, 33	
	6. The Fractional Derivative, 35	

7. The Definitions of Grünwald and Marchaud, 38

xi

1

III. The Riemann-Liouville Fractional Integral

- 1. Introduction, 44
- 2. Definition of the Fractional Integral, 45
- 3. Some Examples of Fractional Integrals, 47
- 4. Dirichlet's Formula, 56
- 5. Derivatives of the Fractional Integral and the Fractional Integral of Derivatives, 59
- 6. Laplace Transform of the Fractional Integral, 67
- 7. Leibniz's Formula for Fractional Integrals, 73

IV. The Riemann–Liouville Fractional Calculus

- 1. Introduction, 80
- 2. The Fractional Derivative, 82
- 3. A Class of Functions, 87
- 4. Leibniz's Formula for Fractional Derivatives, 95
- 5. Some Further Examples, 97
- 6. The Law of Exponents, 104
- 7. Integral Representations, 111
- 8. Representations of Functions, 116
- 9. Integral Relations, 118
- 10. Laplace Transform of the Fractional Derivative, 121

V. Fractional Differential Equations

- 1. Introduction, 126
- 2. Motivation: Direct Approach, 128
- 3. Motivation: Laplace Transform, 133
- 4. Motivation: Linearly Independent Solutions, 136
- 5. Solution of the Homogeneous Equation, 139
- 6. Explicit Representation of Solution, 145
- 7. Relation to the Green's Function, 153
- 8. Solution of the Nonhomogeneous Fractional Differential Equation, 157
- 9. Convolution of Fractional Green's Functions, 165
- 10. Reduction of Fractional Differential Equations to Ordinary Differential Equations, 171
- 11. Semidifferential Equations, 174

126

80

VI. Further Results Associated with Fractional Differential Equations

- 1. Introduction, 185
- 2. Fractional Integral Equations, 186
- Fractional Differential Equations with Nonconstant Coefficients, 194
- 4. Sequential Fractional Differential Equations, 209
- 5. Vector Fractional Differential Equations, 217
- 6. Some Comparisons with Ordinary Differential Equations, 229

VII. The Weyl Fractional Calculus

- 1. Introduction, 236
- 2. Good Functions, 237
- 3. A Law of Exponents for Fractional Integrals, 239
- 4. The Weyl Fractional Derivative, 240
- 5. The Algebra of the Weyl Transform, 244
- 6. A Leibniz Formula, 245
- 7. Some Further Examples, 247
- 8. An Application to Ordinary Differential Equations, 251

VIII. Some Historical Arguments

- 1. Introduction, 255
- 2. Abel's Integral Equation and the Tautochrone Problem, 255
- 3. Heaviside Operational Calculus and the Fractional Calculus, 261
- 4. Potential Theory and Liouville's Problem, 264
- 5. Fluid Flow and the Design of a Weir Notch, 269

Appendix A. Some Algebraic Results

- 1. Introduction, 275
- 2. Some Identities Associated with Partial Fraction Expansions, 275
- 3. Zeros of Multiplicity Greater than One, 285

185

236

255

275

x CONTENTS

4. Complementary Polynomials, 290	
5. Some Reduction Formulas, 292	
6. Some Algebraic Identities, 294	
 Appendix B. Higher Transcendental Functions 1. Introduction, 297 2. The Gamma Function and Related Functions, 297 3. Bessel Functions, 301 4. Hypergeometric Functions, 303 5. Legendre and Laguerre Functions, 307 	297
Appendix C. The Incomplete Gamma Function and Related Functions	
 Introduction, 308 The Incomplete Gamma Function, 309 Some Functions Related to the Incomplete Gamma Function, 314 Laplace Transforms, 321 Numerical Results, 330 	
Appendix D. A Brief Table of Fractional Integrals and Derivatives	352
References	
Index of Symbols	
Index	363