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Tutorial for the

Third International Symposium on

Imprecise Probabilities and Their Applications

(ISIPTA’03)

Lugano, Switzerland

14 July 2003

1



Outline

1. Introduction

2. Dirichlet distributions

3. Objective Bayesian inference

4. Presentation of the IDM

5. Inferences from the IDM, some applications

5.1. Prediction & the rule of succession

5.2. Imprecise Beta model

5.3. Contingency tables

5.4. Non-parametric inference on a mean

5.5. Large n and the IDM

5.6. Other applications

6. Choice of hyper-parameter s

7. Computational aspects

8. Conclusions

References

2



1. INTRODUCTION
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The IDM in brief

� Model for statistical inference
Proposed by Walley (1996), generalizes the IBM
(Walley, 1991).
Inference from data x = (x1, . . . , xK), catego-
rized in K categories C, with unknown chances
θ = (θ1, . . . , θK).

� Prior ignorance about θ, K and C

� Imprecise probability model, prior uncertainty
about θ expressed by a set of Dirichlet’s.

� Posterior uncertainty about θ|x then described
by a set of (updated) Dirichlet’s.

� Imprecise U&L probabilities, interpreted as
reasonable betting rates for or against an event.

� Generalizes Bayesian inference, prior/post.
uncertainty described by a single Dirichlet.

� Satisfies desirable principles for inferences
from prior ignorance, contrarily to alternative fre-
quentist and objective Bayesian approaches.
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Aims of this tutorial

� Review objective Bayesian inference

based on Dirichlet distributions

� Presentation of the IDM

� Review inferences produced by the IDM

First simple cases.

Then more complex/recent applications.

� Comparison of inferences from the IDM,

objective Bayesian models, and frequentist ap-

proach.

Review desirable principles for objective inference.

� Arguments supporting specific values for s,

the single hyper-parameter of the IDM.

� Mention some yet unsolved problems

� Scope/Interest of the IDM
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The “Bag of marbles” example

� “Bag of marbles” problems (Walley, 1996)

• “I have . . . a closed bag of coloured marbles.

I intend to shake the bag, to reach into it

and to draw out one marble. What is the

probability that I will draw a red marble?”

• “Suppose that we draw a sequence of marbles

whose colours are (in order):

blue, green, blue, blue, green, red.

What conclusions can you reach about the

probability of drawing a red marble on a future

trial?”

� Caracteristics of this problem

• Prediction problem: future observations?

• Prior ignorance about the chances θ of the

various colours (objective inference goal)

• Set C and number K of colours is partly arbi-

trary and may vary as data items are observed.

There is prior ignorance about both C and K.
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Desirable principles

� Symmetry principle (SP)
Prior uncertainty should be invariant w.r.t. per-
mutations of categories.

� Embedding principle (EP)
Prior uncertainty should not depend on refine-
ments or coarsenings of categories.

� Representation invariance principle (RIP)
Inferences should not depend on refinements or
coarsenings of categories.

� Stopping rule principle (SRP)
Inferences should not depend on data that might
have occurred, i.e. on why the data gathering
stopped.

� Likelihood principle (LP)
Inferences should depend on the data through the
likelihood function only.

� Coherence requirements, avoiding sure loss,
when considering several inferences.
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Inference from multinomial data

� Multinomial data

• Infinite population, elements categorized in K

categories from set C = {c1, . . . , cK}.
• Unknown chances θ = (θ1, . . . , θK),

∑
k θk = 1.

• Data are a random sample from the popula-

tion, of size n, yielding counts x = (x1, . . . , xK),

with
∑

k xk = n.

� Multinomial likelihood

P(x|θ) ∝ θ
x1
1 . . . θ

xK
K (1)

� General problem: Make inferences about

• the unknown chances θ

• some derived parameter of interest λ = g(θ)

• n′ future observations
8



Usual approaches

� Two objective approaches

• Frequentist: significance tests, confidence lim-

its and intervals (Fisher, Neyman & Pearson)

• objective Bayesian (“non-informative”, etc.,

priors) (e.g. Jeffreys, 1961)

� Difficulties of frequentist methods

• Do not obey LP

• Ad-hoc and/or asymptotic solutions to the

problem of nuisance parameters

� Difficulties of Bayesian methods

Several priors proposed for prior ignorance, but

none satisfies all desirable principles.

• Inferences often depend on C and/or K

• Some solutions violate LP (Jeffreys, 1946)

• Inferences about various derived parameters

can be incoherent (Berger, Bernardo, 1992)
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2. DIRICHLET DISTRIBUTIONS

10



Dirichlet distribution

� Dirichlet density
Vector θ = (θ1, . . . , θK) ∼ Diri(st), θ ∈ S with
s > 0 and t = (t1, . . . , tK) ∈ S�,

h(θ) ∝ θ
st1
1 . . . θ

stK−1
K (2)

(S and S� are the closed/open simplices.)

� Parameterization (usual one) in terms of the
strengths α = st = (α1, . . . , αK)

� Generalization of Beta distribution (K = 2)

(θ1, θ2) ∼ Diri(α1, α2) = Beta(α1, α2)

� Basic properties

• Expectations given by the relative strengths:

E(θk) = tk (3)

• Hyper-parameter s determines the dispersion
of the distribution.
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Examples of Dirichlet’s

� Example 1

Diri(1,1, . . . ,1) is uniform on S

� Example 2

(θ1, θ2, θ3) ∼ Diri(10,8,6)

� Highest density contours [100%,90%, . . . ,10%]

1,0,0

0,1,0

0,0,1

12



Properties of the Dirichlet

General properties given on an example.

Assume (θ1, . . . , θ5) ∼ Diri(α1, . . . , α5). Then,

� Pooling property

(θ1, θ234, θ5) ∼ Diri(α1, α234, α5),

where pooling categories amounts to add corre-

sponding chances and strengths.

� Tree T underlying C

Consider any tree T underlying the set of cate-

gories C. Then, the pooling property implies that

θT ∼ Diri(αT )

� Restriction property

(θ234
2 , θ234

3 , θ234
4 ) ∼ Diri(α2, α3, α4),

where θ234
2 = θ2/θ234, etc., are conditional chances.
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Tree representation of categories

c2 c3 c4

c234c1

c1234 c5

c12345
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“Node-cutting” a Dirichlet

� Cutting a tree T at node c amounts to spliting

T into two sub-trees

• T , where c is a terminal-leaf

• T , where c is the root

� Corresponding chances and strengths

• Chances θk are normalized

• Strengths αk remain unchanged

� Theorem (Bernard, 1997)

Consider any tree T , cut at any node c, giving

two sub-trees T and T , then

θT ∼ Diri(αT )

θT ∼ Diri(αT )

θT ⊥⊥ θT

See also Connor, Mosimann, 1969; Darroch,

Ratcliff, 1971; Fang, Kotz, Ng, 1990.

� Key to computations of the Dirichlet.
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“Node-cutting” a Dirichlet (contd)

� Set C and underlying tree T

c2 c3 c4

c234c1

c1234 c5

c12345

� Cut at node c234

θT

θ234
2 θ234

3 θ234
4

1

θT

θ234θ1

θ1234 θ5

1

αT

α2 α3 α4

α234

αT

α234α1

α1234 α5

α12345
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3. THE BAYESIAN APPROACH

17



Conjugate Bayesian inference

� Dirichlet prior
Prior uncertainty about θ is expressed by

θ ∼ Diri(st)

with hyper-parameters, s, the total prior strength,
and t = (t1, . . . , tK), with tk > 0,

∑
k tk = 1 (t be-

longs to the K-dimensional unit simplex S�(1, K)).
We call αk = stk the prior strength of ck.

Prior expectations

E(θk) = tk,

� Dirichlet posterior
Posterior uncertainty about θ|x is expressed by

θ|x ∼ Diri(x + st)

Posterior expectations

E(θk|x) =
xk + sk

n + s
=

nfk + stk
n + s
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The objective Bayesian approach

� Priors proposed for objective inference

Idea: α expressing prior ignorance about θ

(Kass & Wasserman, 1996)

Almost all proposed solutions for fixed n are sym-

metric Dirichlet priors, i.e. tk = 1/K:

• Haldane (1948): αk = 0 (s = 0)

• Perks (1947): αk = 1
K (s = 1)

• Jeffreys (1946, 1961): αk = 1
2 (s = K/2)

• Bayes-Laplace: αk = 1 (s = K)

• Berger-Bernardo reference priors

� Difficulties of objective Bayesian approach

None of these solutions simultaneously satisfies

all desirable principles for prior ignorance:

• no SP: all except Haldane

• no RIP & EP: all except Haldane

• no LP & SRP: Jeffreys, Berger-Bernardo
19



4. IMPRECISE DIRICHLET
MODEL
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Prior and posterior IDM

� Prior IDM

The prior IDM(s) is defined as the set M0 of all
Dirichlet distributions on θ with a fixed total prior
strength s > 0:

M0 = {Diri(st) : t ∈ S�} (4)

� Updating

Each Dirichlet distribution on θ in the set M0
is updated into another Dirichlet on θ|x, using
Bayes’ theorem.

This procedure guarantees the coherence of in-
ferences (Walley, 1991, Thm 7.8.1).

� Posterior IDM

Posterior uncertainty about θ is expressed by the
set

Mn = {Diri(x + st) : t ∈ S�}. (5)
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Upper and lower probabilities

� Prior U&L probabilities

Consider event B relative to θ, and Pst(B) the
prior probability obtained from the distribution
Diri(st) in M0.

Prior uncertainty about B is expressed by

P(B) and P(B),

obtained by min-/maximization of Pst(B) w.r.t.
t ∈ S�(1, K).

� Posterior U&L probabilities

Denote Pst(B|x) the posterior probability of B

obtained from the prior Diri(st) in M0, i.e. the
posterior Diri(x + st) in Mn.

Posterior uncertainty about B is expressed by

P(B|x) and P(B|x),

obtained by min-/maximization of Pst(B|x) w.r.t.
t ∈ S�(1, K).
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Posterior inferences about λ = g(θ)

� Derived parameter of interest

λ = g(θ) =




θk∑
k ykθk

θi/θj
etc.

Posterior inferences about λ can be summarized
by

� U&L expectations

E(λ|x) and E(λ|x),

obtained by min-/maximization of E st(λ|x) w.r.t.
t ∈ S�(1, K),

� U&L cumulative distribution fonctions (cdf)

F(u|x) = P(λ ≤ u|x) and F(u|x) = P(λ ≤ u|x).

� Conjecture: The two min-/maximization prob-
lems above have the same solution, in general, or
for some class of functions g(.) to be found?
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Examples of U&L df’s and cdf’s

� U&L cdf’s, λ =
∑

k ykθk

-0.1 0.0 0.1 0.2 0.3 0.4

0
0
.2

0
.4

0
.6

0
.8

1

� U&L df’s, λ = θk
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Inferences about θk from the IDM

� Prior U&L expectations and cdf’s
Expectations

E(θk) = 0 and E(θk) = 1

Cdf’s

P(θk ≤ u) = P(Beta(s,0) ≤ u)

P(θk ≤ u) = P(Beta(0, s) ≤ u)

� Posterior U&L expectations and cdf’s
Expectations

E(θk|x) =
xk

n + s
and E(θk|x) =

xk + s

n + s

Cdf’s

P(θk ≤ u|x) = P(Beta(xk + s, n − xk) ≤ u)

P(θk ≤ u|x) = P(Beta(xk, n − xk + s) ≤ u)

� Optimization attained for tk → 0 or tk → 1.
Equivalent to:

Haldane + s extreme observations.
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Hyper-parameter s

� Interpretations of s

• Determines the degree of imprecision in pos-

terior inferences; the larger s, the more cau-

tious inferences are

• s as a number of additional unknown obser-

vations

� Criteria for choosing s

• Encompass objective Bayesian inferences:

Haldane: s > 0

Perks: s ≥ 1

Other solutions? Problem: s ≥ K/2 or ≥ K

• Encompass frequentist inferences

• If too high, inferences are too weak

� Suggested values: s = 1 or s = 2 (Walley,

1996)
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Why does the IDM satisfy the RIP?

[0, s] [0, s] [0, s]

[0, s][0, s]

[0, s] [0, s]

s

• Dirichlet distributions compatible with any tree.

But, under a Dirichlet model, total prior strength

s scatters when moving down the tree.

• In the IDM, all allocations of s to the nodes

are possible (due to imprecision).

• Each sub-tree inheritates the same IDM(s)

caracteristic.
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5. EXAMPLES OF INFERENCES

FROM THE IDM
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5.1. PREDICTIVE INFERENCE &
THE RULE OF SUCCESSION
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Predictive inference, the IDMM

� Predictive inference

Imprecise Dirichlet-multinomial model (IDMM) pro-
posed by Walley & Bernard (1999).

Model for statistical inference about future obser-
vations x′ = (x′1, . . . , x′K) of size n′ = ∑

k x′k, sam-
pled without replacement (multi-hypergeometric).

Prior uncertainty about x∗ = x + x′ is described
by a set of Dirichlet-multinomial (DiMn) distri-
butions.

P(x∗) ∝ ∏

k

(x∗k + stk − 1

x∗k

)
(6)

� Prior prediction about x∗

M0 = {DiMn(st, n∗) : t ∈ S�} (7)

� Posterior prediction about x′|x
Mn = {DiMn(x + st, n′) : t ∈ S�} (8)
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Links between IDM and IDMM

� Relationship with inferences about θ

In general, in both Bayesian inference and in the

IDM,

• θ leads to x′ (side-product of Bayes’ theorem)

• x′ gives θ as n′ → ∞
The IDM and the IDMM are equivalent, if we

assume that n′ can tend to infinity.

� Predictive model more fundamental

(see, Geisser, 1993)

• Finite population & data

• Models observables only, not hypothetical pa-

rameters

• Relies on exchangeability assumptions only.

• Gives the IDM as a limiting case as n′ → ∞
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Rule of succession under the IDM

� Prediction about the next observation

Let Bj be the event that the next observation is of

type cj, where cj is a subset of C with 1 ≤ J ≤ K

elements and xj =
∑

k∈j xk.

� Prior rule of succession

The U&L prior probabilities of Bj are vacuous:

P(Bj) = 0 and P(Bj|x) = 1,

obtained as tj → 0 and tj → 1 resp..

� Posterior rule of succession

After data x have been observed, the posterior

U&L probabilities of event Bj are

P(Bj|x) =
xj

n + s
and P(Bj|x) =

xj + s

n + s
,

obtained as tj → 0 and tj → 1 resp..

The interval contains fj = xj/n.

� Rule independent from C, K and J
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Rule of succession and imprecision

� Degree of imprecision about Bj

• Prior state: imprecision is maximal

∆(Bj) = P(Bj) − P(Bj) = 1

• Posterior state:

∆(Bj|x) = P(Bj|x) − P(Bj|x) =
s

n + s

� Prior ignorance

Caracterized by a maximal imprecision, i.e. vacu-

ous probabilities.

� Interpretation of s

Hyper-parameter s controls how fast imprecision

diminishes with n: s is the number of observations

necessary to halve imprecision about Bj.
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Bayesian rule of succession

� Bayesian rule of succession

The rule of succession obtained from a single
symmetric Dirichlet distribution, Diri(α) with αk =
s/K, is

P(Bj) =
xj + αj

n + s
=

nfj + sJ/K

n + s
(9)

� Objective Bayesian rules

Bayes P(Bj) = (xj + J)/(n + K)

Jeffreys P(Bj) = (xj + J/2)/(n + K/2)

Perks P(Bj) = (xj + J/K)/(n + 1)

Haldane P(Bj) = xj/n

� Dependence on K and J except Haldane

� Particular case J = 1, K = 2
If x1 = n/2, i.e. f = 1/2, each Bayesian rule leads
to P(B) = 1/2, whether n = 0, or n = 10, 100 or
1000.

34



Categorization arbitrariness

� Arbitrariness of C, i.e. J and K

Red Others

J = K − 1 1

Red Others

J = 1 K − 1

Most extremes cases obtained as K → ∞

� Bayesian rules lead to intervals when arbitrari-

ness is introduced

Bayes-Laplace [0; 1], IDM(s = ∞)

Jeffreys [0; 1], IDM(s = ∞)

Perks [ xk
n+1;

xk+1
n+1 ], IDM(s = 1)

Haldane [xk/n;xk/n], IDM(s → 0)
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Frequentist prediction

� “Bayesian and confidence limits for predic-

tion” (Thatcher, 1964)

• Considers binomial or hypergeometric data

(K = 2), x = (x1, n − x1).

• Studies the prediction about n′ future obser-

vations x′ = (x′1, n′ − x′1).

• Derives lower and upper confidence (frequen-

tist) limits for x′
1.

• Compares these confidence limits to credibil-

ity (Bayesian) limits from a Beta prior.

� Main result

• Upper confidence and credibility limits for x′
1

coincide iff the prior is Beta(α1 = 1, α2 = 0).

• Lower confidence and credibility limits for x′
1

coincide iff the prior is Beta(α1 = 0, α2 = 1).
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Frequentist rule of succession

� Frequentist “rule of succession”

For n′ = 1, the lower and upper confidence limits

resp. correspond to the following Bayesian rules:

P(Bj|x) =
xj

n + 1
and P(Bj|x) =

xj + 1

n + 1

i.e. to the IDM interval for s = 1.

� A “difficulty”

“. . . is there a prior distribution such that both the

upper and lower Bayesian limits always coincide

with confidence limits? . . . In fact there are not

such distributions.” (Thatcher, 1964, p. 184)

� Reconciling frequentist and Bayesian

“. . . we shall consider whether these difficulties

can be overcome by a more general approach to

the prediction problem: in fact, by ceasing to re-

strict ourselves to a single set of confidence limits

or a single prior distribution.” (Thatcher, 1964,

p. 187)

37



5.2. IMPRECISE BETA MODEL
(IBM)
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Bernoulli process, frequentist vs.
Bayesian (Bernard, 1996)

� Data from a Bernoulli process

Sequential binary data (success/failure), e.g. se-

quence

S, F, S, S, S, S, S, F, S, S,

so that a = xS = 8, b = xF = 2, n = 10.

� Problem of testing a one-sided hypothesis

H0 : θS ≤ θ0 vs. H1 : θS > θ0

� Example: fS = 8/10, θS > θ0 = 1/2 ?

� Comparison of frequentist solutions and ob-

jective Bayesian solutions to this problem.
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Frequentist approach

� Principle

Consider all possible data sets, that are more ex-

treme than the observed data under H0, i.e. such

that FS greater than fS = 8
10, and add up their

probabilities under H0 (yielding “the” p-value).

� “Possible”: depends on stopping rule; either

stop after

• n observations: n-rule

• a successes: a-rule (neg. sampling)

• b failures: b-rule (neg. sampling)

� “More extreme”: three conventions for com-

puting the p-value

• Inclusive: pinc = P(FS ≥ fS|H0)

• Exclusive: pexc = P(FS > fS|H0)

• Mid-P convention: pmid = (pexc + pinc)/2
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Objective Bayesian approach

� Principle

Consider an objective Beta(α, β) prior on θS, de-

rive an (updated) posterior on θS|x, then compute

PBα,β = Pα,β(H0|x).

� Objective Beta priors

α = 0, β = 0: Haldane

α = 1
2, β = 1

2: Jeffreys-(n), Perks

α = 1, β = 1: Bayes-Laplace

α = 0, β = 1
2: Jeffreys-(a)

α = 1
2, β = 0: Jeffreys-(b)

α = 0, β = 1: Hartigan-(b) ALI prior

α = 1, β = 0: Hartigan-(a) ALI prior
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Main results

� Comparison frequentist vs. Bayesian
(Bernard, 1996)

PB1,0 = Pn,I = Pa,I = 11/1024

PB0,1 = Pn,E = Pb,E = 56/1024

PB1,0 ≤ all P ’s and PB’s ≤ PB0,1

� Ignorance zone

The bounds of this ignorance zone correspond to
the Imprecise Beta Model (IBM) with s = 1.

� Reconcile frequentist principles & LP
(Walley, 2002)

The IBM with s = 1 produces statements about
one-sided or equi-tailed two-sided hypotheses rel-
ative to θS, which satisfies weak frequentist princi-
ples (validity under any monotone stopping-rule),
LP and coherence.
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Frequentist and Bayesian levels maps

� Frequentist significance levels

a, E
b, I

n, E
b, E

n, I
a, I

a a + 1

b

b + 1

� Bayesian significance levels

Hal-(n) Jef-(b) Har-(a)

Jef-(a) Jef-(n)

Har-(b) BL-(n)

a a + 1
2 a + 1

b

b + 1
2

b + 1
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5.3. TWO BY TWO
CONTINGENCY TABLES
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Independence in a
2 × 2 contingency table

� Data

b1 b2

a1 x11 x12

a2 x21 x22

b1 b2

a1 8 4

a2 2 5

� Problem
Positive association between A and B?

Derived parameter: contingency coefficient

ρ =
θ11

θ1.θ.1
robs = 0.467

Hypothesis to be tested:

H0 : ρ ≤ 0 vs. H1 : ρ > 0

� Comparison of frequentist, Bayesian & IDM
inferences (Altham, 1969; Walley, 1996; Walley
et al., 1996; Bernard, 2003)
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Frequentist inference

� Fisher’s exact test for a 2 × 2 table

Amounts to considering all 2×2 tables x with the
same margins than those observed.

Frequentist probability of any x under H0 is

P(x|H0) =
x1.!x2.!x.1!x.2!

n!x11!x12!x21!x22!

The p-value of the test is defined as,

pobs = P(more extreme data|H0)

where “more extreme data” means all x with R

larger than robs.

� Frequentist solutions

• pobs = pinc, more or as extreme

• pobs = pexc, strictly more extreme

Inclusive convention is the usual one; but roles of
“inclusive” and “exclusive” are permuted when
considering the test of HO : φ ≥ 0 vs. H1 : φ < 0.
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Bayesian & Imprecise models

� Objective Bayesian models, for fixed n:

Haldane, Perks, Jeffreys, Bayes-Laplace

� IBM

Suggested by Walley (1996) and Walley et al.
(1996) for the ECMO data: A are groups of pa-
tients and B outcomes of treatment.

Suggest using two independent IBM’s with s = 1
each for each group.

� IDM, with s = 1 or s = 2

� Relationships between models

P[IDM2] ≤ P[IBM] = pexc ≤ P[IDM1]

≤ PB[Hal], PB[Per], PB[Jef], PB[BL] ≤
P[IDM1] ≤ P[IBM] = pinc ≤ P[IDM2]
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Comparison with objective models

Haldane

+
8 2
4 5

Freq. Bayesian Imprecise

0 0
0 2

.015 P IDM(s = 2)

1 0
0 1

.017 pexc P IBM(2 × s = 1)

0 0
0 1

.025 P IDM(s = 1)

0 0
0 0

.043 Haldane

1
4

1
4

1
4

1
4

.047 Perks

1
2

1
2

1
2

1
2

.053 Jeffreys

1 1
1 1

.063 Bay.-Lap.

0 0
1 0

.088 P IDM(s = 1)

0 1
1 0

.130 pinc P IBM(2 × s = 1)

0 0
2 0

.144 P IDM(s = 2)
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5.4. LARGE n AND POSTERIOR
IMPRECISION
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Large n, Bayesian models and IDM

� Claim by Bayesians or IP papers

When n is large, all objective Bayesian priors lead

to similar inferences.

This claim is also (implicitly) present in many IP

writings.

� This claim is FALSE!

� Counter-examples

• Inference about a chance θ in binary data

• Inference about association in 2 × 2 table

• Inference about a universal law (Walley,

Bernard, 1999)

• Inference about quasi-implications in multi-

variate binary data (Bernard, 2001)
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Inference about a single chance θ

� Problem

• Observed counts x = (x1, x2), n = x1 + x2

• Test H0 : θ ≤ θ0 vs. H1 : θ > θ0

� U&L probs. of H0 under the IDM(s = 1)

P(θ ≤ θ0|x) = P(X1 > x1|H0, n)

P(θ ≤ θ0|x) = P(X1 ≥ x1|H0, n)

∆(θ ≤ θ0|x) = Pn(X1 = x1|H0, n)

=
( n

x1

)
θ
x1
0 (1 − θ0)

x2

� Example: x1 = 0, x2 = 100, θ0 = 0.001

P(θ ≤ θ0|x) = 0

P(θ ≤ θ0|x) = 0.905

∆(θ ≤ θ0|x) = 0.905

� Why? P(observed data|H0) is high
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Association in 2 × 2 tables

� Example n = 115

b1 b2

a1 0 4

a2 4 107

� Fisher’s test: H0 : Φ ≥ 0 vs. H1 : Φ < 0

Exclusive: pexc = 0
Inclusive: pinc = 0.866

� Bayesian answers (taking K = 4)

Haldane: P(H1) = 0
Perks: P(H1) = 0.350
Jeffreys: P(H1) = 0.571
Bayes: P(H1) = 0.802

� IDM answers

s = 1: P(H1) = 0, P(H1) = 0.866
s = 2: P(H1) = 0, P(H1) = 0.986

� Why? Indepence is compatible with data (de-
spite x11 = 0), because fa and fb are small.
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Comments

� What happens? There are situations in which

• n is large

• objective Bayesian inferences do not agree

• inferences from the IDM are highly imprecise

� Tentative explanation

From the frequentist viewpoint, in the two ex-

amples, the two hypotheses H0 and H1 are both

extremely compatible with the data.

This occurs because, in both cases, the frequen-

tist probability P(x|H0) is high.

� Consequences for the IDM

Within a unique dataset, imprecision in the infer-

ences from the IDM can vary considerably (Bernard,

2001, 2003)
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5.5. NON-PARAMETRIC
ESTIMATION OF A MEAN
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Non-parametric estimation of a
mean

� Problem

Numerical data, bounded with finite precision.

Possible values amongst the set {y1, y2, . . . , yK}
such that y1 < y2 < · · · < yK.

A sample yields the counts x = (x1, . . . , xK).

More realistic than assumption of normality, etc..

� Parameter of interest, the unknown mean

µ =
∑

k

ykθk

� Bayesian inference, from a Diri(α) prior,

µ ∼ L-Diri(y, α)

µ|x ∼ L-Diri(y, x + α)
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Inferences from the IDM

� Prior expectations

E(µ) = y1 and E(µ) = yK

� Posterior expectations

E(µ|x) =
nMean(y, x) + sy1

n + s

E(µ|x) =
nMean(y, x) + syK

n + s

obtained as t1 → 1 or tK → 1 resp..

� U&L cdf’s

The same limits lead to the U&L prior and pos-
terior cdf’s of µ.

All inferences from the IDM can be carried out
using the two extreme distributions

L-Diri(y, x + α = (x1 + n, x2, . . . , xK))

L-Diri(y, x + α = (x1, . . . , xK−1, . . . , xK + n))
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Implications for the choice of s

� Theorem (Bernard, 2001)

L-Diri(y, α) → Uni(y1, yK)

for α1 = αK = 1 and αk → 0, k 	= 1, K

� Objective Bayesian inference & IDM

Three reasonable priors encompassed by the IDM

Haldane if s > 0

Perks if s ≥ 1

Uniform if s ≥ 2 (from theorem above)

Jeffreys’ and Bayes-Laplace’s priors on set Y lead

to highly informative priors about µ.

� Conclusion: Case with large K, where s = 2

encompasses all reasonable Bayesian alternatives.
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5.6 SOME APPLICATIONS OF
THE IDM
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Some applications of the IDM

• Reliability analysis: Analysis of failure data in-

cluding right-censored observations (Coolen,

1997; Yan, 2002).

• Predictive inferences from multinomial data

(Walley, Bernard, 1999; Coolen, Augustin, in

prep.).

• Non-parametric inference about a mean

(Bernard, 2001).

• Classification, networks, tree-dependencies

structures, estimation of entropy or mutual

information (Cozman, Chrisman, 1997;

Zaffalon, 2001a, 2001b; Hutter, 2003).

• Treatment of missing data (Zaffalon, 2002).

• Implicative analysis for multivariate binary data

(large K = 2q) (Bernard, 2002).

• Analysis of local associations in contingency

tables (Bernard, 2003).

• Game-theoretic learning (Quaeghebeur, de

Cooman, 2003)
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6. CHOICE OF s
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Interpretations of s

� Caution parameter

• Prior uncertainty: In many cases, any s > 0
produces vacuous prior probabilities.

• Posterior uncertainty: s determines the de-
gree of imprecision in posterior inferences; the
larger s, the more cautious inferences are.

� IDM’s nested according to s

The probability intervals produced by two IDM’s
such that s1 < s2 are nested:

Int[s2] ⊂ Int[s2]

� Number of additional observations
In several examples, using the IDM amounts to
making Bayesian inferences

• from Haldane’s prior

• taking the observed data x into account

• adding s observations to the more extreme
categories

Note: cf. some ad-hoc frequentist methods
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Choice of hyper-parameter s

� Two contradictory aims

• Large enough to encompass alternative ob-

jective models

• Not too large, because inferences are too weak

� Encompassing alternative models

• Haldane: s > 0

• Perks: s ≥ 1

• Jeffreys or Bayes-Laplace: would require s ≥
K/2 or ≥ K, but produce unreasonable infer-

ences when K large (cf. categ. arbitrariness,

infer. on a mean).

• Berger-Bernardo: open question.

• Encompass frequentist inferences: some ar-

guments for s = 1 for K = 2 or K = 4.

� Additional new principle? (Walley, 1996)
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Which value for s

� Suggested value(s) for s?

• First results suggested 1 ≤ s ≤ 2, but mostly

based on cases with K = 2 or small K (Walley,

1996).

• Some new arguments, in the case of large K,

for s = 2 (Bernard, 2001, 2003).

� Problem not settled yet

• Need to study more situations with K large.

• Need to compare the IDM with alternative

objective models in such cases.
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7. COMPUTATIONAL ASPECTS
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Computational aspects

� General problem

Min-/maximization of Est(λ) and Pst(λ ≤ u) for
general λ = g(θ).

• Simple (and identical) solution to both prob-
lems when g(.) is linear: tk → 1 for extreme
k’s (w.r.t. to g(.)) (Walley, Bernard, 1999;
Bernard, 2001).

• Some exact & approximate solutions for spe-
cific cases (Bernard, 2003; Hutter, 2003).

� Remaining issues

• Find class of functions g(.) for which tk → 1
for some k provides the solution.

• Is saying tk → 1 enough to specify the min-
/maximization solution? NO: in some case,
necessity to say how the other tk’s tend to 0.

• Find exact or conservative approximate solu-
tions for general g(.).

• Find non-conservative approximate solutions
(useful in practical applications).

• Can the predictive approach help?
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8. CONCLUSIONS
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Why using a set of Dirichlet’s
Walley (1996, p. 7)

(a) Dirichlet prior distributions are mathemati-

cally tractable because . . . they generate Dirich-

let posterior distributions;

(b) when categories are combined, Dirichlet dis-

tributions transform to other Dirichlet distri-

butions (this is the crucial property which en-

sures that the RIP is satisfied);

(c) sets of Dirichlet distributions are very rich,

because they produce the same inferences as

their convex hull and any prior distribution can

be approximated by a finite mixture of Dirich-

let distributions;

(d) the most common Bayesian models for prior

ignorance about θ are Dirichlet distributions.
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Fundamental properties of the IDM

� Principles
Satisfies several desirable principles for prior igno-
rance: SP, EP, RIP, LP, SRP, coherence.

� IDM vs. Bayesian and frequentist

• Answers several difficulties of alternative ap-
proaches

• Provides means to reconcile frequentist and
objective Bayesian approaches (Walley, 2002)

� Generality
More general than for multinomial data. Valid
under a general hypothesis of exchangeability be-
tween observed and future data. (Walley, Bernard,
1999).

� Degree of imprecision and n

Degree of imprecision in posterior inferences en-
ables one to distinguish between: (a) prior un-
certainty still dominates, (b) there is substantial
information in the data.
The two cases can occur within the same data
set.
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Future research, open questions

• Find a new principle suggesting an upper bound

for s.

• Major argument for Jeffreys’ prior is that it is

reparameterization invariant. Does this con-

cept have a meaning within the IDM?

• Compare the IDM with Berger-Bernardo ref-

erence priors.

• Study the properties of the IDM in situations

with possibly large K, compare it with alter-

native models.

• Further applications of the IDM for non-param-

etric inference from numerical data.

• Applications to classification, networks, tree-

dependencies structures.

• Elaborate theory & algorithms for computing

inferences from the IDM in general cases.
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