An Introduction to the Imprecise Dirichlet Model for Multinomial Data

Jean-Marc Bernard CNRS ESA 8069 & Université Paris 5

Tutorial for the Third International Symposium on Imprecise Probabilities and Their Applications (ISIPTA'03)

> Lugano, Switzerland 14 July 2003

Outline

- 1. Introduction
- 2. Dirichlet distributions
- 3. Objective Bayesian inference
- 4. Presentation of the IDM
- 5. Inferences from the IDM, some applications
 - 5.1. Prediction & the rule of succession
 - 5.2. Imprecise Beta model
 - 5.3. Contingency tables
 - 5.4. Non-parametric inference on a mean
 - 5.5. Large n and the IDM
 - 5.6. Other applications
- 6. Choice of hyper-parameter s
- 7. Computational aspects
- 8. Conclusions

References

1. INTRODUCTION

The IDM in brief

□ Model for statistical inference

Proposed by Walley (1996), generalizes the IBM (Walley, 1991).

Inference from data $x = (x_1, \ldots, x_K)$, categorized in K categories C, with unknown chances $\theta = (\theta_1, \ldots, \theta_K)$.

 \Box **Prior ignorance** about θ , K and C

□ Imprecise probability model, prior uncertainty about θ expressed by a set of Dirichlet's.

 \Box **Posterior uncertainty** about $\theta | x$ then described by a set of (updated) Dirichlet's.

□ **Imprecise U&L probabilities**, interpreted as reasonable betting rates *for* or *against* an event.

□ **Generalizes Bayesian inference**, prior/post. uncertainty described by a *single* Dirichlet.

□ **Satisfies desirable principles** for inferences from prior ignorance, contrarily to alternative frequentist and objective Bayesian approaches.

Aims of this tutorial

Review objective Bayesian inference based on Dirichlet distributions

 \Box **Presentation of the IDM**

Review inferences produced by the IDM
 First simple cases.
 Then more complex/recent applications.

Comparison of inferences from the IDM, objective Bayesian models, and frequentist approach.

Review desirable principles for objective inference.

 \Box Arguments supporting specific values for s, the single hyper-parameter of the IDM.

□ Mention some yet unsolved problems

□ Scope/Interest of the IDM

The "Bag of marbles" example

□ **"Bag of marbles" problems** (Walley, 1996)

- "I have ... a closed bag of coloured marbles. I intend to shake the bag, to reach into it and to draw out one marble. What is the probability that I will draw a red marble?"
- "Suppose that we draw a sequence of marbles whose colours are (in order):

blue, green, blue, blue, green, red. What conclusions can you reach about the probability of drawing a red marble on a future trial?"

□ Caracteristics of this problem

- Prediction problem: future observations?
- Prior ignorance about the chances θ of the various colours (objective inference goal)
- Set C and number K of colours is partly arbitrary and may vary as data items are observed.
 There is prior ignorance about both C and K.

Desirable principles

□ Symmetry principle (SP)

Prior uncertainty should be invariant *w.r.t.* permutations of categories.

□ Embedding principle (EP)

Prior uncertainty should not depend on refinements or coarsenings of categories.

□ Representation invariance principle (RIP)

Inferences should not depend on refinements or coarsenings of categories.

□ Stopping rule principle (SRP)

Inferences should not depend on data that might have occurred, *i.e.* on why the data gathering stopped.

□ Likelihood principle (LP)

Inferences should depend on the data through the likelihood function only.

□ **Coherence** requirements, avoiding sure loss, when considering several inferences.

Inference from multinomial data

□ Multinomial data

- Infinite population, elements categorized in K categories from set $C = \{c_1, \ldots, c_K\}$.
- Unknown chances $\theta = (\theta_1, \dots, \theta_K)$, $\sum_k \theta_k = 1$.
- Data are a random sample from the population, of size n, yielding counts $x = (x_1, \ldots, x_K)$, with $\sum_k x_k = n$.
- Multinomial likelihood

$$P(\boldsymbol{x}|\boldsymbol{\theta}) \propto \theta_1^{x_1} \dots \theta_K^{x_K}$$
 (1)

□ General problem: Make inferences about

- the unknown chances heta
- some derived parameter of interest $\lambda = g(\theta)$
- n' future observations

Usual approaches

□ **Two objective approaches**

- Frequentist: significance tests, confidence limits and intervals (Fisher, Neyman & Pearson)
- objective Bayesian ("non-informative", *etc.*, priors) (*e.g.* Jeffreys, 1961)

□ Difficulties of frequentist methods

- Do not obey LP
- Ad-hoc and/or asymptotic solutions to the problem of nuisance parameters

□ Difficulties of Bayesian methods

Several priors proposed for prior ignorance, but none satisfies all desirable principles.

- \bullet Inferences often depend on C and/or K
- Some solutions violate LP (Jeffreys, 1946)
- Inferences about various derived parameters can be incoherent (Berger, Bernardo, 1992)

2. DIRICHLET DISTRIBUTIONS

Dirichlet distribution

Dirichlet density Vector $\theta = (\theta_1, \dots, \theta_K) \sim Diri(st), \ \theta \in S$ with s > 0 and $t = (t_1, \dots, t_K) \in S^*$,

$$h(\theta) \propto \theta_1^{st_1} \dots \theta_K^{st_K-1}$$
 (2)

(S and S^* are the closed/open simplices.)

Parameterization (usual one) in terms of the *strengths* $\alpha = st = (\alpha_1, \dots, \alpha_K)$

□ Generalization of Beta distribution (K = 2) (θ_1, θ_2) ~ Diri(α_1, α_2) = Beta(α_1, α_2)

□ Basic properties

• Expectations given by the *relative strengths*:

$$E(\theta_k) = t_k \tag{3}$$

• Hyper-parameter *s* determines the dispersion of the distribution.

Examples of Dirichlet's

□ Example 1

Diri(1, 1, ..., 1) is uniform on S

Example 2

 $(\theta_1, \theta_2, \theta_3) \sim Diri(10, 8, 6)$

□ **Highest density contours** [100%,90%,...,10%]

Properties of the Dirichlet

General properties given on an example. Assume $(\theta_1, \ldots, \theta_5) \sim Diri(\alpha_1, \ldots, \alpha_5)$. Then,

□ **Pooling property**

 $(\theta_1, \theta_{234}, \theta_5) \sim Diri(\alpha_1, \alpha_{234}, \alpha_5),$

where pooling categories amounts to add corresponding chances and strengths.

\Box Tree T underlying C

Consider any tree T underlying the set of categories C. Then, the pooling property implies that

 $\theta_T \sim Diri(\alpha_T)$

□ **Restriction property**

 $(\theta_2^{234}, \theta_3^{234}, \theta_4^{234}) \sim Diri(\alpha_2, \alpha_3, \alpha_4),$ where $\theta_2^{234} = \theta_2/\theta_{234}$, etc., are conditional chances.

Tree representation of categories

"Node-cutting" a Dirichlet

 \Box **Cutting a tree** *T* at node *c* amounts to spliting *T* into two sub-trees

- \overline{T} , where c is a terminal-leaf
- \underline{T} , where c is the root
- □ Corresponding chances and strengths
 - Chances θ_k are normalized
 - Strengths α_k remain unchanged

Theorem (Bernard, 1997) Consider any tree T, cut at any node c, giving two sub-trees \overline{T} and \underline{T} , then

$$egin{array}{rcl} eta_{\overline{T}} &\sim & {\it Diri}(lpha_{\overline{T}}) \ eta_{\underline{T}} &\sim & {\it Diri}(lpha_{\underline{T}}) \ eta_{\overline{T}} & \perp & eta_{\underline{T}} \end{array}$$

See also Connor, Mosimann, 1969; Darroch, Ratcliff, 1971; Fang, Kotz, Ng, 1990.

□ **Key** to computations of the Dirichlet.

"Node-cutting" a Dirichlet (contd)

 \Box Set *C* and underlying tree *T*

\Box Cut at node c_{234}

 $\sigma \theta_2^{234} \stackrel{\downarrow}{\circ} \theta_3^{234} \stackrel{\circ}{\circ} \theta_4^{234}$

3. THE BAYESIAN APPROACH

Conjugate Bayesian inference

□ Dirichlet prior

Prior uncertainty about heta is expressed by

 $\theta \sim Diri(st)$

with hyper-parameters, s, the total prior strength, and $t = (t_1, \ldots, t_K)$, with $t_k > 0$, $\sum_k t_k = 1$ (t belongs to the K-dimensional unit simplex $S^*(1, K)$). We call $\alpha_k = st_k$ the prior strength of c_k .

Prior expectations

$$E(\theta_k) = t_k,$$

□ **Dirichlet posterior**

Posterior uncertainty about heta|x is expressed by

 $|\theta|x| \sim Diri(x+st)$

Posterior expectations

$$E(\theta_k|\mathbf{x}) = \frac{x_k + s_k}{n+s} = \frac{nf_k + st_k}{n+s}$$

The objective Bayesian approach

□ Priors proposed for objective inference Idea: α expressing prior ignorance about θ (Kass & Wasserman, 1996)

Almost all proposed solutions for fixed *n* are symmetric Dirichlet priors, *i.e.* $t_k = 1/K$:

- Haldane (1948): $\alpha_k = 0 \ (s = 0)$
- Perks (1947): $\alpha_k = \frac{1}{K} (s = 1)$
- Jeffreys (1946, 1961): $\alpha_k = \frac{1}{2} (s = K/2)$
- Bayes-Laplace: $\alpha_k = 1 \ (s = K)$
- Berger-Bernardo reference priors

Difficulties of objective Bayesian approach None of these solutions simultaneously satisfies all desirable principles for prior ignorance:

- no SP: all except Haldane
- no RIP & EP: all except Haldane
- no LP & SRP: Jeffreys, Berger-Bernardo

4. IMPRECISE DIRICHLET MODEL

Prior and posterior IDM

□ Prior IDM

The prior IDM(s) is defined as the set \mathcal{M}_0 of all Dirichlet distributions on θ with a fixed total prior strength s > 0:

$$\mathcal{M}_0 = \{ Diri(st) : t \in \mathcal{S}^* \}$$
(4)

□ Updating

Each Dirichlet distribution on θ in the set \mathcal{M}_0 is updated into another Dirichlet on $\theta|x$, using Bayes' theorem.

This procedure guarantees the *coherence* of inferences (Walley, 1991, Thm 7.8.1).

Posterior IDM

Posterior uncertainty about $\boldsymbol{\theta}$ is expressed by the set

$$\mathcal{M}_n = \{ Diri(x + st) : t \in \mathcal{S}^{\star} \}.$$
(5)

Upper and lower probabilities

□ Prior U&L probabilities

Consider event B relative to θ , and $P_{st}(B)$ the prior probability obtained from the distribution Diri(st) in \mathcal{M}_0 .

Prior uncertainty about B is expressed by

$\underline{P}(B)$ and $\overline{P}(B)$,

obtained by min-/maximization of $P_{st}(B)$ w.r.t. $t \in S^*(1, K)$.

□ Posterior U&L probabilities

Denote $P_{st}(B|x)$ the posterior probability of B obtained from the prior Diri(st) in \mathcal{M}_0 , *i.e.* the posterior Diri(x + st) in \mathcal{M}_n .

Posterior uncertainty about B is expressed by

$\underline{P}(B|x)$ and $\overline{P}(B|x)$,

obtained by min-/maximization of $P_{st}(B|x)$ w.r.t. $t \in S^*(1, K)$. Posterior inferences about $\lambda = g(\theta)$

□ Derived parameter of interest

$$\lambda = g(\boldsymbol{\theta}) = \begin{cases} \theta_k \\ \sum_k y_k \theta_k \\ \theta_i / \theta_j \\ etc. \end{cases}$$

Posterior inferences about λ can be summarized by

□ U&L expectations

 $\underline{E}(\lambda|x)$ and $\overline{E}(\lambda|x)$,

obtained by min-/maximization of $E_{st}(\lambda|x)$ w.r.t. $t \in \mathcal{S}^{\star}(1,K)$,

□ U&L cumulative distribution fonctions (cdf)

 $\underline{F}(u|x) = \underline{P}(\lambda \leq u|x)$ and $\overline{F}(u|x) = \overline{P}(\lambda \leq u|x).$

Conjecture: The two min-/maximization problems above have the same solution, in general, or for some class of functions g(.) to be found?

Examples of U&L df's and cdf's

 \Box U&L cdf's, $\lambda = \sum_k y_k \theta_k$

 \Box U&L df's, $\lambda = \theta_k$

Inferences about θ_k from the IDM

Prior U&L expectations and cdf's Expectations

 $\underline{E}(\theta_k) = 0$ and $\overline{E}(\theta_k) = 1$

Cdf's

 $\underline{P}(\theta_k \le u) = P(Beta(s, 0) \le u)$ $\overline{P}(\theta_k \le u) = P(Beta(0, s) \le u)$

Posterior U&L expectations and cdf's Expectations

 $\underline{E}(\theta_k | \boldsymbol{x}) = \frac{x_k}{n+s} \text{ and } \overline{E}(\theta_k | \boldsymbol{x}) = \frac{x_k+s}{n+s}$ Cdf's $\underline{P}(\theta_k \le u | \boldsymbol{x}) = P(Beta(x_k+s, n-x_k) \le u)$ $\overline{P}(\theta_k \le u | \boldsymbol{x}) = P(Beta(x_k, n-x_k+s) \le u)$

Optimization attained for $t_k \rightarrow 0$ or $t_k \rightarrow 1$. Equivalent to:

Haldane + s extreme observations.

Hyper-parameter s

\Box Interpretations of s

- Determines the degree of imprecision in *posterior* inferences; the larger *s*, the more cautious inferences are
- s as a number of additional unknown observations

\Box Criteria for choosing s

- Encompass objective Bayesian inferences: Haldane: s > 0 Perks: s ≥ 1 Other solutions? Problem: s ≥ K/2 or ≥ K
- Encompass frequentist inferences
- If too high, inferences are too weak

□ Suggested values: s = 1 or s = 2 (Walley, 1996)

Why does the IDM satisfy the RIP?

- Dirichlet distributions compatible with any tree.
 But, under a Dirichlet model, total prior strength s scatters when moving down the tree.
- In the IDM, all allocations of s to the nodes are possible (due to imprecision).
- Each sub-tree inheritates the same IDM(s) caracteristic.

5. EXAMPLES OF INFERENCES FROM THE IDM

5.1. PREDICTIVE INFERENCE & THE RULE OF SUCCESSION

Predictive inference, the IDMM

□ **Predictive** inference

Imprecise Dirichlet-multinomial model (IDMM) proposed by Walley & Bernard (1999).

Model for statistical inference about future observations $x' = (x'_1, \ldots, x'_K)$ of size $n' = \sum_k x'_k$, sampled without replacement (multi-hypergeometric).

Prior uncertainty about $x^* = x + x'$ is described by a set of *Dirichlet-multinomial* (*DiMn*) distributions.

$$P(\boldsymbol{x^*}) \propto \prod_k {\binom{x_k^* + st_k - 1}{x_k^*}}$$
(6)

 \Box **Prior prediction** about x^*

$$\mathcal{M}_0 = \{ DiMn(st, n^*) : t \in \mathcal{S}^* \}$$
(7)

\Box **Posterior prediction** about x'|x

$$\mathcal{M}_n = \{ \mathsf{DiMn}(\boldsymbol{x} + s\boldsymbol{t}, n') : \boldsymbol{t} \in \mathcal{S}^{\star} \}$$
(8)

Links between IDM and IDMM

\Box Relationship with inferences about θ

In general, in both Bayesian inference and in the IDM,

- θ leads to x' (side-product of Bayes' theorem)
- x' gives heta as $n' o \infty$

The IDM and the IDMM are equivalent, if we assume that n' can tend to infinity.

□ **Predictive model more fundamental** (see, Geisser, 1993)

- Finite population & data
- Models observables only, not hypothetical parameters
- Relies on exchangeability assumptions only.
- Gives the IDM as a limiting case as $n' \to \infty$

Rule of succession under the IDM

Prediction about the next observation

Let B_j be the event that the next observation is of type c_j , where c_j is a subset of C with $1 \le J \le K$ elements and $x_j = \sum_{k \in j} x_k$.

Prior rule of succession

The U&L prior probabilities of B_i are vacuous:

 $\underline{P}(B_j) = 0$ and $\overline{P}(B_j|x) = 1$,

obtained as $t_j \rightarrow 0$ and $t_j \rightarrow 1$ resp..

Posterior rule of succession

After data x have been observed, the posterior U&L probabilities of event B_i are

 $\underline{P}(B_j|x) = \frac{x_j}{n+s}$ and $\overline{P}(B_j|x) = \frac{x_j+s}{n+s}$,

obtained as $t_j \rightarrow 0$ and $t_j \rightarrow 1$ resp..

The interval contains $f_j = x_j/n$.

 \Box Rule independent from C, K and J

Rule of succession and imprecision

 \Box Degree of imprecision about B_j

• Prior state: imprecision is maximal

 $\Delta(B_j) = \overline{P}(B_j) - \underline{P}(B_j) = 1$

• Posterior state:

$$\Delta(B_j|\mathbf{x}) = \overline{P}(B_j|\mathbf{x}) - \underline{P}(B_j|\mathbf{x}) = \frac{s}{n+s}$$

□ **Prior ignorance**

Caracterized by a maximal imprecision, *i.e.* vacuous probabilities.

\Box Interpretation of s

Hyper-parameter s controls how fast imprecision diminishes with n: s is the number of observations necessary to halve imprecision about B_i .

Bayesian rule of succession

□ Bayesian rule of succession

The rule of succession obtained from a single symmetric Dirichlet distribution, $Diri(\alpha)$ with $\alpha_k = s/K$, is

$$P(B_j) = \frac{x_j + \alpha_j}{n+s} = \frac{nf_j + sJ/K}{n+s}$$
(9)

Objective Bayesian rules

Bayes	$P(B_j) = (x_j + J)/(n + K)$
Jeffreys	$P(B_j) = (x_j + J/2)/(n + K/2)$
Perks	$P(B_j) = (x_j + J/K)/(n+1)$
Haldane	$P(B_j) = x_j/n$

 \Box **Dependence on** K and J except Haldane

\Box Particular case J = 1, K = 2

If $x_1 = n/2$, *i.e.* f = 1/2, each Bayesian rule leads to P(B) = 1/2, whether n = 0, or n = 10, 100 or 1000.

Categorization arbitrariness

Most extremes cases obtained as $K \to \infty$

□ **Bayesian rules** lead to intervals when arbitrariness is introduced

Bayes-Laplace [0; 1], $IDM(s = \infty)$ Jeffreys[0; 1], $IDM(s = \infty)$ Perks $[\frac{x_k}{n+1}; \frac{x_k+1}{n+1}],$ IDM(s = 1)Haldane $[x_k/n; x_k/n],$ $IDM(s \to 0)$

Frequentist prediction

□ **"Bayesian and confidence limits for prediction"** (Thatcher, 1964)

- Considers binomial or hypergeometric data $(K = 2), x = (x_1, n x_1).$
- Studies the prediction about n' future observations $x' = (x'_1, n' x'_1)$.
- Derives lower and upper *confidence* (frequentist) limits for x'_1 .
- Compares these confidence limits to *credibil-ity* (Bayesian) limits from a Beta prior.

□ Main result

- Upper confidence and credibility limits for x'_1 coincide *iff* the prior is $Beta(\alpha_1 = 1, \alpha_2 = 0)$.
- Lower confidence and credibility limits for x'_1 coincide *iff* the prior is $Beta(\alpha_1 = 0, \alpha_2 = 1)$.

Frequentist rule of succession

□ Frequentist "rule of succession"

For n' = 1, the lower and upper confidence limits resp. correspond to the following Bayesian rules:

 $P(B_j|x) = \frac{x_j}{n+1}$ and $P(B_j|x) = \frac{x_j+1}{n+1}$

i.e. to the IDM interval for s = 1.

□ A "difficulty"

"... is there a prior distribution such that both the upper and lower Bayesian limits always coincide with confidence limits? ... In fact there are not such distributions." (Thatcher, 1964, p. 184)

□ Reconciling frequentist and Bayesian

"... we shall consider whether these difficulties can be overcome by a more general approach to the prediction problem: in fact, by ceasing to restrict ourselves to a single set of confidence limits or a single prior distribution." (Thatcher, 1964, p. 187)

5.2. IMPRECISE BETA MODEL (IBM)

Bernoulli process, frequentist *vs.* Bayesian (Bernard, 1996)

□ Data from a Bernoulli process

Sequential binary data (success/failure), *e.g.* sequence

S, F, S, S, S, S, S, S, F, S, S, so that $a = x_S = 8$, $b = x_F = 2$, n = 10.

□ Problem of testing a one-sided hypothesis

$$H_0: \theta_S \leq \theta_0$$
 vs. $H_1: \theta_S > \theta_0$

Example:
$$f_S = 8/10$$
, $\theta_S > \theta_0 = 1/2$?

Comparison of frequentist solutions and objective Bayesian solutions to this problem.

Frequentist approach

□ **Principle**

Consider all *possible* data sets, that are *more extreme* than the observed data under H_0 , *i.e.* such that F_S greater than $f_S = \frac{8}{10}$, and add up their probabilities under H_0 (yielding "the" *p*-value).

"Possible": depends on stopping rule; either stop after

- *n* observations: *n*-rule
- *a* successes: *a*-rule (neg. sampling)
- *b* failures: *b*-rule (neg. sampling)

 \Box "More extreme": three conventions for computing the *p*-value

- Inclusive: $p_{inc} = P(F_S \ge f_S | H_0)$
- Exclusive: $p_{exc} = P(F_S > f_S | H_0)$
- Mid-P convention: $p_{mid} = (p_{exc} + p_{inc})/2$

Objective Bayesian approach

□ Principle

Consider an *objective* $Beta(\alpha, \beta)$ prior on θ_S , derive an (updated) posterior on $\theta_S | x$, then compute

 $PB_{\alpha,\beta} = P_{\alpha,\beta}(H_0|x).$

□ Objective Beta priors

$$\alpha = 0, \ \beta = 0$$
: Haldane
 $\alpha = \frac{1}{2}, \ \beta = \frac{1}{2}$: Jeffreys-(n), Perks
 $\alpha = 1, \ \beta = 1$: Bayes-Laplace
 $\alpha = 0, \ \beta = \frac{1}{2}$: Jeffreys-(a)
 $\alpha = \frac{1}{2}, \ \beta = 0$: Jeffreys-(b)
 $\alpha = 0, \ \beta = 1$: Hartigan-(b) ALI prior
 $\alpha = 1, \ \beta = 0$: Hartigan-(a) ALI prior

Main results

□ **Comparison frequentist** *vs.* **Bayesian** (Bernard, 1996)

 $PB_{1,0} = P_{n,I} = P_{a,I} = 11/1024$ $PB_{0,1} = P_{n,E} = P_{b,E} = 56/1024$

 $PB_{1,0} \leq \text{all } P$'s and PB's $\leq PB_{0,1}$

□ Ignorance zone

The bounds of this ignorance zone correspond to the *Imprecise Beta Model* (IBM) with s = 1.

□ Reconcile frequentist principles & LP (Walley, 2002)

The IBM with s = 1 produces statements about one-sided or equi-tailed two-sided hypotheses relative to θ_S , which satisfies weak frequentist principles (validity under any monotone stopping-rule), LP and coherence.

Frequentist and Bayesian levels maps

□ Frequentist significance levels

□ Bayesian significance levels

$$b+1$$

$$b+\frac{1}{2}$$

$$b+\frac{1}{2}$$

$$b+\frac{1}{2}$$

$$b$$

$$Hal-(n)$$

$$b$$

$$a + \frac{1}{2}$$

$$b+\frac{1}{2}$$

$$Hal-(n)$$

$$Har-(a)$$

5.3. TWO BY TWO CONTINGENCY TABLES

Independence in a 2×2 contingency table

🗆 Data

	b1	<i>b</i> 2		b1	<i>b</i> 2
a1	x_{11}	<i>x</i> ₁₂	a1	8	4
a2	<i>x</i> ₂₁	<i>x</i> ₂₂	a2	2	5

□ **Problem**

Positive association between A and B?

Derived parameter: contingency coefficient

 $\rho = \frac{\theta_{11}}{\theta_{1.}\theta_{.1}} \qquad r_{obs} = 0.467$

Hypothesis to be tested:

$$H_0: \rho \leq 0$$
 vs. $H_1: \rho > 0$

□ **Comparison** of frequentist, Bayesian & IDM inferences (Altham, 1969; Walley, 1996; Walley et al., 1996; Bernard, 2003)

Frequentist inference

\Box Fisher's exact test for a 2 \times 2 table

Amounts to considering all 2×2 tables x with the same margins than those observed.

Frequentist probability of any x under H_0 is

$$P(\boldsymbol{x}|H_0) = \frac{x_{1.}!x_{2.}!x_{.1}!x_{.2}!}{n!x_{11}!x_{12}!x_{21}!x_{22}!}$$

The p-value of the test is defined as,

 $p_{obs} = P(more \ extreme \ data|H_0)$

where "more extreme data" means all x with R larger than r_{obs} .

□ Frequentist solutions

- $p_{obs} = p_{inc}$, more or as extreme
- $p_{obs} = p_{exc}$, strictly more extreme

Inclusive convention is the usual one; but roles of "inclusive" and "exclusive" are permuted when considering the test of H_O : $\phi \ge 0$ vs. H_1 : $\phi < 0$.

Bayesian & Imprecise models

 \Box **Objective Bayesian models**, for fixed *n*:

Haldane, Perks, Jeffreys, Bayes-Laplace

Suggested by Walley (1996) and Walley et al. (1996) for the ECMO data: A are groups of patients and B outcomes of treatment.

Suggest using two independent IBM's with s = 1 each for each group.

 \Box **IDM**, with s = 1 or s = 2

□ **Relationships** between models

 $\begin{array}{ll} \underline{P}[\mathrm{IDM}_{2}] &\leq & \underline{P}[\mathrm{IBM}] = p_{exc} &\leq & \underline{P}[\mathrm{IDM}_{1}] \\ \\ \leq & & PB[\mathrm{Hal}], \ PB[\mathrm{Per}], \ PB[\mathrm{Jef}], \ PB[\mathrm{BL}] &\leq \\ \\ \overline{P}[\mathrm{IDM}_{1}] &\leq & \overline{P}[\mathrm{IBM}] = p_{inc} &\leq & \overline{P}[\mathrm{IDM}_{2}] \end{array}$

Comparison with objective models

Haldane

+	8 2 4 5	Freq.	Bayesian	Imprecise
0 0 0 2	.015			\underline{P} IDM($s = 2$)
1 0 0 1	.017	p_{exc}		\underline{P} IBM(2 × s = 1)
0 0 0 1	.025			\underline{P} IDM($s = 1$)
0 0 0 0	.043		Haldane	
$\begin{array}{c c} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} \\ \hline \frac{1}{4} & \frac{1}{4} \end{array}$.047		Perks	
$ \frac{\frac{1}{2}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}{2}} $.053		Jeffreys	
$\begin{array}{c c}1&1\\1&1\end{array}$.063		BayLap.	
0 0 1 0	.088			\overline{P} IDM(s = 1)
0 1 1 0	.130	p_{inc}		\overline{P} IBM(2 × s = 1)
0 0 2 0	.144			\overline{P} IDM(s = 2)

5.4. LARGE *n* AND POSTERIOR IMPRECISION

Large n, Bayesian models and IDM

□ Claim by Bayesians or IP papers

When n is large, all objective Bayesian priors lead to similar inferences.

This claim is also (implicitly) present in many IP writings.

□ This claim is FALSE!

□ Counter-examples

- \bullet Inference about a chance θ in binary data
- Inference about association in 2×2 table
- Inference about a universal law (Walley, Bernard, 1999)
- Inference about quasi-implications in multivariate binary data (Bernard, 2001)

Inference about a single chance θ

□ **Problem**

- Observed counts $x = (x_1, x_2)$, $n = x_1 + x_2$
- Test H_0 : $\theta \leq \theta_0$ vs. H_1 : $\theta > \theta_0$

 \Box U&L probs. of H_0 under the IDM(s = 1)

 $\frac{P(\theta \le \theta_0 | \boldsymbol{x})}{\overline{P}(\theta \le \theta_0 | \boldsymbol{x})} = P(X_1 > x_1 | H_0, n)$ $= P(X_1 \ge x_1 | H_0, n)$

$$\Delta(\theta \le \theta_0 | \boldsymbol{x}) = P_n(X_1 = x_1 | H_0, n)$$
$$= {n \choose x_1} \theta_0^{x_1} (1 - \theta_0)^{x_2}$$

Example: $x_1 = 0$, $x_2 = 100$, $\theta_0 = 0.001$

 $egin{array}{rll} \displaystyle \underline{P}(heta \leq heta_0 | m{x}) &= 0 \ \displaystyle \overline{P}(heta \leq heta_0 | m{x}) &= 0.905 \ \displaystyle \Delta(heta \leq heta_0 | m{x}) &= 0.905 \end{array}$

 \Box Why? $P(observed \ data|H_0)$ is high

 \Box **Example** n = 115

	b1	<i>b</i> 2		
a1	0	4		
a2	4	107		

Fisher's test: H_0 : $\Phi \ge 0$ vs. H_1 : $\Phi < 0$

Exclusive: $p_{exc} = 0$ Inclusive: $p_{inc} = 0.866$

Bayesian answers (taking K = 4)

Haldane: $P(H_1) = 0$ Perks: $P(H_1) = 0.350$ Jeffreys: $P(H_1) = 0.571$ Bayes: $P(H_1) = 0.802$

□ IDM answers

s = 1: $\underline{P}(H_1) = 0$, $\overline{P}(H_1) = 0.866$ s = 2: $\underline{P}(H_1) = 0$, $\overline{P}(H_1) = 0.986$

□ Why? Indepence is compatible with data (despite $x_{11} = 0$), because f_a and f_b are small.

Comments

□ What happens? There are situations in which

- n is large
- objective Bayesian inferences do not agree
- inferences from the IDM are highly imprecise

□ **Tentative explanation**

From the frequentist viewpoint, in the two examples, the two hypotheses H_0 and H_1 are both extremely compatible with the data.

This occurs because, in both cases, the frequentist probability $P(x|H_0)$ is high.

□ Consequences for the IDM

Within a unique dataset, imprecision in the inferences from the IDM can vary considerably (Bernard, 2001, 2003)

5.5. NON-PARAMETRIC ESTIMATION OF A MEAN

Non-parametric estimation of a mean

□ **Problem**

Numerical data, bounded with finite precision. Possible values amongst the set $\{y_1, y_2, \ldots, y_K\}$ such that $y_1 < y_2 < \cdots < y_K$.

A sample yields the counts $x = (x_1, \ldots, x_K)$.

More realistic than assumption of normality, etc..

□ **Parameter of interest**, the unknown mean

$$\mu = \sum_{k} y_k \theta_k$$

□ **Bayesian inference**, from a $Diri(\alpha)$ prior, $\mu \sim L-Diri(y, \alpha)$

 $\mu | x \sim L\text{-Diri}(y, x + lpha)$

Inferences from the IDM

U&L cdf's

The same limits lead to the U&L prior and posterior cdf's of μ .

All inferences from the IDM can be carried out using the two extreme distributions

$$L-Diri(y, x + \alpha = (x_1 + n, x_2, ..., x_K))$$
$$L-Diri(y, x + \alpha = (x_1, ..., x_{K-1}, ..., x_K + n))$$

Implications for the choice of s

□ Theorem (Bernard, 2001) L- $Diri(y, \alpha) \rightarrow Uni(y_1, y_K)$ for $\alpha_1 = \alpha_K = 1$ and $\alpha_k \rightarrow 0$, $k \neq 1, K$

□ Objective Bayesian inference & IDM

Three reasonable priors encompassed by the IDM

Haldane if s > 0Perks if $s \ge 1$ Uniform if $s \ge 2$ (from theorem above)

Jeffreys' and Bayes-Laplace's priors on set Y lead to highly informative priors about μ .

Conclusion: Case with large K, where s = 2 encompasses all reasonable Bayesian alternatives.

5.6 SOME APPLICATIONS OF THE IDM

Some applications of the IDM

- Reliability analysis: Analysis of failure data including right-censored observations (Coolen, 1997; Yan, 2002).
- Predictive inferences from multinomial data (Walley, Bernard, 1999; Coolen, Augustin, in prep.).
- Non-parametric inference about a mean (Bernard, 2001).
- Classification, networks, tree-dependencies structures, estimation of entropy or mutual information (Cozman, Chrisman, 1997; Zaffalon, 2001a, 2001b; Hutter, 2003).
- Treatment of missing data (Zaffalon, 2002).
- Implicative analysis for multivariate binary data (large $K = 2^q$) (Bernard, 2002).
- Analysis of local associations in contingency tables (Bernard, 2003).
- Game-theoretic learning (Quaeghebeur, de Cooman, 2003)

6. CHOICE OF s

Interpretations of s

□ Caution parameter

- Prior uncertainty: In many cases, any s > 0 produces vacuous prior probabilities.
- Posterior uncertainty: *s* determines the degree of imprecision in *posterior* inferences; the larger *s*, the more cautious inferences are.

\Box IDM's nested according to s

The probability intervals produced by two IDM's such that $s_1 < s_2$ are nested:

$Int[s_2] \subset Int[s_2]$

□ Number of additional observations

In several examples, using the IDM amounts to making Bayesian inferences

- from Haldane's prior
- ullet taking the observed data x into account
- adding s observations to the more extreme categories

Note: cf. some ad-hoc frequentist methods

Choice of hyper-parameter s

□ Two contradictory aims

- Large enough to encompass alternative objective models
- Not too large, because inferences are too weak

□ Encompassing alternative models

- Haldane: s > 0
- Perks: $s \ge 1$
- Jeffreys or Bayes-Laplace: would require $s \ge K/2$ or $\ge K$, but produce unreasonable inferences when K large (cf. categ. arbitrariness, infer. on a mean).
- Berger-Bernardo: open question.
- Encompass frequentist inferences: some arguments for s = 1 for K = 2 or K = 4.
- □ Additional new principle? (Walley, 1996)

Which value for s

\Box Suggested value(s) for s?

- First results suggested $1 \le s \le 2$, but mostly based on cases with K = 2 or small K (Walley, 1996).
- Some new arguments, in the case of large K, for s = 2 (Bernard, 2001, 2003).

□ Problem not settled yet

- Need to study more situations with K large.
- Need to compare the IDM with alternative objective models in such cases.

7. COMPUTATIONAL ASPECTS

Computational aspects

□ General problem

Min-/maximization of $E_{st}(\lambda)$ and $P_{st}(\lambda \leq u)$ for general $\lambda = g(\theta)$.

- Simple (and identical) solution to both problems when g(.) is linear: $t_k \rightarrow 1$ for extreme k's (w.r.t. to g(.)) (Walley, Bernard, 1999; Bernard, 2001).
- Some exact & approximate solutions for specific cases (Bernard, 2003; Hutter, 2003).

□ Remaining issues

- Find class of functions g(.) for which $t_k \rightarrow 1$ for some k provides the solution.
- Is saying $t_k \rightarrow 1$ enough to specify the min-/maximization solution? NO: in some case, necessity to say how the other t_k 's tend to 0.
- Find exact or conservative approximate solutions for general g(.).
- Find non-conservative approximate solutions (useful in practical applications).
- Can the predictive approach help?

8. CONCLUSIONS

Why using a set of Dirichlet's Walley (1996, p. 7)

- (a) Dirichlet prior distributions are mathematically tractable because ... they generate Dirichlet posterior distributions;
- (b) when categories are combined, Dirichlet distributions transform to other Dirichlet distributions (this is the crucial property which ensures that the RIP is satisfied);
- (c) sets of Dirichlet distributions are very rich, because they produce the same inferences as their convex hull and any prior distribution can be approximated by a finite mixture of Dirichlet distributions;
- (d) the most common Bayesian models for prior ignorance about θ are Dirichlet distributions.

Fundamental properties of the IDM

Principles

Satisfies several desirable principles for prior ignorance: SP, EP, RIP, LP, SRP, coherence.

□ IDM *vs.* Bayesian and frequentist

- Answers several difficulties of alternative approaches
- Provides means to reconcile frequentist and objective Bayesian approaches (Walley, 2002)

□ Generality

More general than for multinomial data. Valid under a general hypothesis of exchangeability between observed and future data. (Walley, Bernard, 1999).

\Box Degree of imprecision and n

Degree of imprecision in posterior inferences enables one to distinguish between: (a) prior uncertainty still dominates, (b) there is substantial information in the data.

The two cases can occur within the same data set.

Future research, open questions

- Find a new principle suggesting an upper bound for *s*.
- Major argument for Jeffreys' prior is that it is reparameterization invariant. Does this concept have a meaning within the IDM?
- Compare the IDM with Berger-Bernardo reference priors.
- Study the properties of the IDM in situations with possibly large K, compare it with alternative models.
- Further applications of the IDM for non-parametric inference from numerical data.
- Applications to classification, networks, treedependencies structures.
- Elaborate theory & algorithms for computing inferences from the IDM in general cases.