# An Introduction to the Imprecise Dirichlet Model for Multinomial Data 

Jean-Marc Bernard<br>CNRS ESA 8069 \& Université Paris 5

Tutorial for the<br>Third International Symposium on Imprecise Probabilities and Their Applications (ISIPTA'03)

Lugano, Switzerland
14 July 2003

## Outline

1. Introduction
2. Dirichlet distributions
3. Objective Bayesian inference
4. Presentation of the IDM
5. Inferences from the IDM, some applications
5.1. Prediction \& the rule of succession 5.2. Imprecise Beta model
5.3. Contingency tables
5.4. Non-parametric inference on a mean
5.5. Large $n$ and the IDM
5.6. Other applications
6. Choice of hyper-parameter $s$
7. Computational aspects
8. Conclusions

References

## 1. INTRODUCTION

## The IDM in brief

$\square$ Model for statistical inference
Proposed by Walley (1996), generalizes the IBM (Walley, 1991).
Inference from data $\boldsymbol{x}=\left(x_{1}, \ldots, x_{K}\right)$, categorized in $K$ categories $C$, with unknown chances $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right)$.
$\square$ Prior ignorance about $\theta, K$ and $C$
$\square$ Imprecise probability model, prior uncertainty about $\boldsymbol{\theta}$ expressed by a set of Dirichlet's.
$\square$ Posterior uncertainty about $\boldsymbol{\theta} \mid \boldsymbol{x}$ then described by a set of (updated) Dirichlet's.
$\square$ Imprecise U\&L probabilities, interpreted as reasonable betting rates for or against an event.
$\square$ Generalizes Bayesian inference, prior/post. uncertainty described by a single Dirichlet.
$\square$ Satisfies desirable principles for inferences from prior ignorance, contrarily to alternative frequentist and objective Bayesian approaches.

## Aims of this tutorial

$\square$ Review objective Bayesian inference based on Dirichlet distributions
$\square$ Presentation of the IDM
$\square$ Review inferences produced by the IDM First simple cases.
Then more complex/recent applications.
$\square$ Comparison of inferences from the IDM, objective Bayesian models, and frequentist approach.
Review desirable principles for objective inference.
$\square$ Arguments supporting specific values for $s$, the single hyper-parameter of the IDM.
$\square$ Mention some yet unsolved problems
$\square$ Scope/Interest of the IDM

## The "Bag of marbles" example

$\square$ "Bag of marbles" problems (Walley, 1996)

- "I have ... a closed bag of coloured marbles. I intend to shake the bag, to reach into it and to draw out one marble. What is the probability that I will draw a red marble?"
- "Suppose that we draw a sequence of marbles whose colours are (in order):
blue, green, blue, blue, green, red.
What conclusions can you reach about the probability of drawing a red marble on a future trial?"


## $\square$ Caracteristics of this problem

- Prediction problem: future observations?
- Prior ignorance about the chances $\boldsymbol{\theta}$ of the various colours (objective inference goal)
- Set $C$ and number $K$ of colours is partly arbitrary and may vary as data items are observed. There is prior ignorance about both $C$ and $K$.


## Desirable principles

## $\square$ Symmetry principle (SP)

Prior uncertainty should be invariant w.r.t. permutations of categories.
$\square$ Embedding principle (EP)
Prior uncertainty should not depend on refinements or coarsenings of categories.
$\square$ Representation invariance principle (RIP) Inferences should not depend on refinements or coarsenings of categories.
$\square$ Stopping rule principle (SRP)
Inferences should not depend on data that might have occurred, i.e. on why the data gathering stopped.

## $\square$ Likelihood principle (LP)

Inferences should depend on the data through the likelihood function only.
$\square$ Coherence requirements, avoiding sure loss, when considering several inferences.

## Inference from multinomial data

## $\square$ Multinomial data

- Infinite population, elements categorized in $K$ categories from set $C=\left\{c_{1}, \ldots, c_{K}\right\}$.
- Unknown chances $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right), \sum_{k} \theta_{k}=1$.
- Data are a random sample from the population, of size $n$, yielding counts $\boldsymbol{x}=\left(x_{1}, \ldots, x_{K}\right)$, with $\sum_{k} x_{k}=n$.


## $\square$ Multinomial likelihood

$$
\begin{equation*}
P(x \mid \theta) \propto \theta_{1}^{x_{1}} \ldots \theta_{K}^{x_{K}} \tag{1}
\end{equation*}
$$

$\square$ General problem: Make inferences about

- the unknown chances $\theta$
- some derived parameter of interest $\lambda=g(\boldsymbol{\theta})$
- $n^{\prime}$ future observations


## Usual approaches

## $\square$ Two objective approaches

- Frequentist: significance tests, confidence limits and intervals (Fisher, Neyman \& Pearson)
- objective Bayesian ("non-informative", etc., priors) (e.g. Jeffreys, 1961)


## $\square$ Difficulties of frequentist methods

- Do not obey LP
- Ad-hoc and/or asymptotic solutions to the problem of nuisance parameters
$\square$ Difficulties of Bayesian methods
Several priors proposed for prior ignorance, but none satisfies all desirable principles.
- Inferences often depend on $C$ and/or $K$
- Some solutions violate LP (Jeffreys, 1946)
- Inferences about various derived parameters can be incoherent (Berger, Bernardo, 1992)


## 2. DIRICHLET DISTRIBUTIONS

## Dirichlet distribution

$\square$ Dirichlet density
Vector $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{K}\right) \sim \operatorname{Diri}(s \boldsymbol{t}), \boldsymbol{\theta} \in \mathcal{S}$ with $s>0$ and $\boldsymbol{t}=\left(t_{1}, \ldots, t_{K}\right) \in \mathcal{S}^{\star}$,

$$
\begin{equation*}
h(\boldsymbol{\theta}) \propto \theta_{1}^{s t_{1}} \ldots \theta_{K}^{s t_{K}-1} \tag{2}
\end{equation*}
$$

( $\mathcal{S}$ and $\mathcal{S}^{\star}$ are the closed/open simplices.)
$\square$ Parameterization (usual one) in terms of the strengths $\alpha=$ st $=\left(\alpha_{1}, \ldots, \alpha_{K}\right)$
$\square$ Generalization of Beta distribution ( $K=2$ )

$$
\left(\theta_{1}, \theta_{2}\right) \sim \operatorname{Diri}\left(\alpha_{1}, \alpha_{2}\right)=\operatorname{Beta}\left(\alpha_{1}, \alpha_{2}\right)
$$

$\square$ Basic properties

- Expectations given by the relative strengths:

$$
\begin{equation*}
E\left(\theta_{k}\right)=t_{k} \tag{3}
\end{equation*}
$$

- Hyper-parameter $s$ determines the dispersion of the distribution.


## Examples of Dirichlet's

## $\square$ Example 1

$\operatorname{Diri}(1,1, \ldots, 1)$ is uniform on $\mathcal{S}$
$\square$ Example 2

$$
\left(\theta_{1}, \theta_{2}, \theta_{3}\right) \sim \operatorname{Diri}(10,8,6)
$$

$\square$ Highest density contours [100\%, $90 \%, \ldots, 10 \%$ ]


## Properties of the Dirichlet

General properties given on an example. Assume $\left(\theta_{1}, \ldots, \theta_{5}\right) \sim \operatorname{Diri}\left(\alpha_{1}, \ldots, \alpha_{5}\right)$. Then,
$\square$ Pooling property

$$
\left(\theta_{1}, \theta_{234}, \theta_{5}\right) \sim \operatorname{Diri}\left(\alpha_{1}, \alpha_{234}, \alpha_{5}\right)
$$

where pooling categories amounts to add corresponding chances and strengths.
$\square$ Tree $T$ underlying $C$
Consider any tree $T$ underlying the set of categories $C$. Then, the pooling property implies that

$$
\boldsymbol{\theta}_{T} \sim \operatorname{Diri}\left(\boldsymbol{\alpha}_{T}\right)
$$

$\square$ Restriction property

$$
\left(\theta_{2}^{234}, \theta_{3}^{234}, \theta_{4}^{234}\right) \sim \operatorname{Diri}\left(\alpha_{2}, \alpha_{3}, \alpha_{4}\right)
$$

where $\theta_{2}^{234}=\theta_{2} / \theta_{234}$, etc., are conditional chances.

## Tree representation of categories



## "Node-cutting" a Dirichlet

$\square$ Cutting a tree $T$ at node $c$ amounts to spliting $T$ into two sub-trees

- $\bar{T}$, where $c$ is a terminal-leaf
- $\underline{T}$, where $c$ is the root


## $\square$ Corresponding chances and strengths

- Chances $\theta_{k}$ are normalized
- Strengths $\alpha_{k}$ remain unchanged
$\square$ Theorem (Bernard, 1997)
Consider any tree $T$, cut at any node $c$, giving two sub-trees $\bar{T}$ and $\underline{T}$, then

$$
\begin{aligned}
\boldsymbol{\theta}_{\bar{T}} & \sim \operatorname{Diri}\left(\boldsymbol{\alpha}_{\bar{T}}\right) \\
\boldsymbol{\theta}_{\underline{T}} & \sim \operatorname{Diri}\left(\boldsymbol{\alpha}_{\underline{T}}\right) \\
\boldsymbol{\theta}_{\bar{T}} & \Perp \boldsymbol{\theta}_{\underline{T}}
\end{aligned}
$$

See also Connor, Mosimann, 1969; Darroch, Ratcliff, 1971; Fang, Kotz, Ng, 1990.
$\square$ Key to computations of the Dirichlet.

## "Node-cutting" a Dirichlet (contd)

$\square$ Set $C$ and underlying tree $T$

$\square$ Cut at node $c_{234}$

3. THE BAYESIAN APPROACH

## Conjugate Bayesian inference

$\square$ Dirichlet prior
Prior uncertainty about $\boldsymbol{\theta}$ is expressed by

$$
\theta \sim \operatorname{Diri}(s t)
$$

with hyper-parameters, $s$, the total prior strength, and $t=\left(t_{1}, \ldots, t_{K}\right)$, with $t_{k}>0, \sum_{k} t_{k}=1(t$ belongs to the $K$-dimensional unit simplex $\mathcal{S}^{\star}(1, K)$ ). We call $\alpha_{k}=s t_{k}$ the prior strength of $c_{k}$.

Prior expectations

$$
E\left(\theta_{k}\right)=t_{k},
$$

## $\square$ Dirichlet posterior

Posterior uncertainty about $\boldsymbol{\theta} \mid \boldsymbol{x}$ is expressed by

$$
\theta \mid x \sim \operatorname{Diri}(x+s t)
$$

Posterior expectations

$$
E\left(\theta_{k} \mid \boldsymbol{x}\right)=\frac{x_{k}+s_{k}}{n+s}=\frac{n f_{k}+s t_{k}}{n+s}
$$

## The objective Bayesian approach

$\square$ Priors proposed for objective inference Idea: $\boldsymbol{\alpha}$ expressing prior ignorance about $\boldsymbol{\theta}$ (Kass \& Wasserman, 1996)

Almost all proposed solutions for fixed $n$ are symmetric Dirichlet priors, i.e. $t_{k}=1 / K$ :

- Haldane (1948): $\alpha_{k}=0(s=0)$
- Perks (1947): $\alpha_{k}=\frac{1}{K}(s=1)$
- Jeffreys (1946, 1961): $\alpha_{k}=\frac{1}{2}(s=K / 2)$
- Bayes-Laplace: $\alpha_{k}=1(s=K)$
- Berger-Bernardo reference priors
$\square$ Difficulties of objective Bayesian approach None of these solutions simultaneously satisfies all desirable principles for prior ignorance:
- no SP: all except Haldane
- no RIP \& EP: all except Haldane
- no LP \& SRP: Jeffreys, Berger-Bernardo


## 4. IMPRECISE DIRICHLET MODEL

## Prior and posterior IDM

## $\square$ Prior IDM

The prior $\operatorname{IDM}(s)$ is defined as the set $\mathcal{M}_{0}$ of all Dirichlet distributions on $\boldsymbol{\theta}$ with a fixed total prior strength $s>0$ :

$$
\begin{equation*}
\mathcal{M}_{0}=\left\{\operatorname{Diri}(s t): t \in \mathcal{S}^{\star}\right\} \tag{4}
\end{equation*}
$$

## $\square$ Updating

Each Dirichlet distribution on $\boldsymbol{\theta}$ in the set $\mathcal{M}_{0}$ is updated into another Dirichlet on $\boldsymbol{\theta} \mid \boldsymbol{x}$, using Bayes' theorem.

This procedure guarantees the coherence of inferences (Walley, 1991, Thm 7.8.1).

## $\square$ Posterior IDM

Posterior uncertainty about $\boldsymbol{\theta}$ is expressed by the set

$$
\begin{equation*}
\mathcal{M}_{n}=\left\{\operatorname{Diri}(\boldsymbol{x}+\mathrm{st}): t \in \mathcal{S}^{\star}\right\} . \tag{5}
\end{equation*}
$$

## Upper and lower probabilities

## $\square$ Prior U\&L probabilities

Consider event $B$ relative to $\theta$, and $P_{s t}(B)$ the prior probability obtained from the distribution Diri(st) in $\mathcal{M}_{0}$.

Prior uncertainty about $B$ is expressed by

$$
\underline{P}(B) \text { and } \bar{P}(B),
$$

obtained by min-/maximization of $P_{s t}(B)$ w.r.t. $\boldsymbol{t} \in \mathcal{S}^{\star}(1, K)$.

## $\square$ Posterior U\&L probabilities

Denote $P_{s t}(B \mid x)$ the posterior probability of $B$ obtained from the prior $\operatorname{Diri}(s t)$ in $\mathcal{M}_{0}$, i.e. the posterior $\operatorname{Diri}(\boldsymbol{x}+s t)$ in $\mathcal{M}_{n}$.

Posterior uncertainty about $B$ is expressed by

$$
\underline{P}(B \mid x) \text { and } \bar{P}(B \mid x),
$$

obtained by min-/maximization of $P_{s t}(B \mid x)$ w.r.t. $\boldsymbol{t} \in \mathcal{S}^{\star}(1, K)$.

## Posterior inferences about $\lambda=g(\boldsymbol{\theta})$

$\square$ Derived parameter of interest

$$
\lambda=g(\boldsymbol{\theta})=\left\{\begin{array}{l}
\theta_{k} \\
\sum_{k} y_{k} \theta_{k} \\
\theta_{i} / \theta_{j} \\
\text { etc. }
\end{array}\right.
$$

Posterior inferences about $\lambda$ can be summarized by

## $\square$ U\&L expectations

$$
\underline{E}(\lambda \mid x) \quad \text { and } \quad \bar{E}(\lambda \mid x),
$$

obtained by min-/maximization of $E_{s t}(\lambda \mid x)$ w.r.t. $\boldsymbol{t} \in \mathcal{S}^{\star}(1, K)$,

## $\square$ U\&L cumulative distribution fonctions (cdf)

$$
\underline{F}(u \mid x)=\underline{P}(\lambda \leq u \mid x) \quad \text { and } \quad \bar{F}(u \mid x)=\bar{P}(\lambda \leq u \mid \boldsymbol{x}) .
$$

$\square$ Conjecture: The two min-/maximization problems above have the same solution, in general, or for some class of functions $g($.$) to be found?$

## Examples of U\&L df's and cdf's

$\square \mathbf{U \& L} \mathbf{c d f}$ 's, $\lambda=\sum_{k} y_{k} \theta_{k}$

$\square \mathbf{U \&} \mathbf{L} \mathbf{d f}$ 's, $\lambda=\theta_{k}$


## Inferences about $\theta_{k}$ from the IDM

$\square$ Prior U\&L expectations and cdf's

## Expectations

$$
\underline{E}\left(\theta_{k}\right)=0 \quad \text { and } \quad \bar{E}\left(\theta_{k}\right)=1
$$

Cdf's

$$
\begin{aligned}
& \underline{P}\left(\theta_{k} \leq u\right)=P(\operatorname{Beta}(s, 0) \leq u) \\
& \bar{P}\left(\theta_{k} \leq u\right)=P(\operatorname{Beta}(0, s) \leq u)
\end{aligned}
$$

$\square$ Posterior U\&L expectations and cdf's
Expectations

$$
\underline{E}\left(\theta_{k} \mid \boldsymbol{x}\right)=\frac{x_{k}}{n+s} \quad \text { and } \quad \bar{E}\left(\theta_{k} \mid \boldsymbol{x}\right)=\frac{x_{k}+s}{n+s}
$$

Cdf's

$$
\begin{aligned}
& \underline{P}\left(\theta_{k} \leq u \mid x\right)=P\left(\operatorname{Beta}\left(x_{k}+s, n-x_{k}\right) \leq u\right) \\
& \bar{P}\left(\theta_{k} \leq u \mid x\right)=P\left(\operatorname{Beta}\left(x_{k}, n-x_{k}+s\right) \leq u\right)
\end{aligned}
$$

$\square$ Optimization attained for $t_{k} \rightarrow 0$ or $t_{k} \rightarrow 1$. Equivalent to:

Haldane $+s$ extreme observations.

## Hyper-parameter $s$

## $\square$ Interpretations of $s$

- Determines the degree of imprecision in posterior inferences; the larger $s$, the more cautious inferences are
- $s$ as a number of additional unknown observations
$\square$ Criteria for choosing $s$
- Encompass objective Bayesian inferences: Haldane: $s>0$
Perks: $s \geq 1$
Other solutions? Problem: $s \geq K / 2$ or $\geq K$
- Encompass frequentist inferences
- If too high, inferences are too weak


## $\square$ Suggested values: $s=1$ or $s=2$ (Walley, 1996)

## Why does the IDM satisfy the RIP?



- Dirichlet distributions compatible with any tree. But, under a Dirichlet model, total prior strength $s$ scatters when moving down the tree.
- In the IDM, all allocations of $s$ to the nodes are possible (due to imprecision).
- Each sub-tree inheritates the same $\operatorname{IDM}(s)$ caracteristic.


## 5. EXAMPLES OF INFERENCES FROM THE IDM

### 5.1. PREDICTIVE INFERENCE \& THE RULE OF SUCCESSION

## Predictive inference, the IDMM

## $\square$ Predictive inference

Imprecise Dirichlet-multinomial model (IDMM) proposed by Walley \& Bernard (1999).

Model for statistical inference about future observations $\boldsymbol{x}^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{K}^{\prime}\right)$ of size $n^{\prime}=\sum_{k} x_{k}^{\prime}$, sampled without replacement (multi-hypergeometric).

Prior uncertainty about $x^{*}=x+x^{\prime}$ is described by a set of Dirichlet-multinomial (DiMn) distributions.

$$
\begin{equation*}
P\left(x^{*}\right) \propto \prod_{k}\binom{x_{k}^{*}+s t_{k}-1}{x_{k}^{*}} \tag{6}
\end{equation*}
$$

$\square$ Prior prediction about $x^{*}$

$$
\begin{equation*}
\mathcal{M}_{0}=\left\{\operatorname{DiMn}\left(s t, n^{*}\right): t \in \mathcal{S}^{\star}\right\} \tag{7}
\end{equation*}
$$

$\square$ Posterior prediction about $\boldsymbol{x}^{\prime} \mid \boldsymbol{x}$

$$
\begin{equation*}
\mathcal{M}_{n}=\left\{\operatorname{DiMn}\left(x+s t, n^{\prime}\right): t \in \mathcal{S}^{\star}\right\} \tag{8}
\end{equation*}
$$

## Links between IDM and IDMM

## $\square$ Relationship with inferences about $\theta$

In general, in both Bayesian inference and in the IDM,

- $\boldsymbol{\theta}$ leads to $\boldsymbol{x}^{\prime}$ (side-product of Bayes' theorem)
- $\boldsymbol{x}^{\prime}$ gives $\theta$ as $n^{\prime} \rightarrow \infty$

The IDM and the IDMM are equivalent, if we assume that $n^{\prime}$ can tend to infinity.
$\square$ Predictive model more fundamental (see, Geisser, 1993)

- Finite population \& data
- Models observables only, not hypothetical parameters
- Relies on exchangeability assumptions only.
- Gives the IDM as a limiting case as $n^{\prime} \rightarrow \infty$


## Rule of succession under the IDM

$\square$ Prediction about the next observation
Let $B_{j}$ be the event that the next observation is of type $c_{j}$, where $c_{j}$ is a subset of $C$ with $1 \leq J \leq K$ elements and $x_{j}=\sum_{k \in j} x_{k}$.
$\square$ Prior rule of succession
The U\&L prior probabilities of $B_{j}$ are vacuous:

$$
\underline{P}\left(B_{j}\right)=0 \quad \text { and } \quad \bar{P}\left(B_{j} \mid x\right)=1
$$

obtained as $t_{j} \rightarrow 0$ and $t_{j} \rightarrow 1$ resp..

## $\square$ Posterior rule of succession

After data $\boldsymbol{x}$ have been observed, the posterior U\&L probabilities of event $B_{j}$ are

$$
\underline{P}\left(B_{j} \mid x\right)=\frac{x_{j}}{n+s} \quad \text { and } \quad \bar{P}\left(B_{j} \mid x\right)=\frac{x_{j}+s}{n+s}
$$

obtained as $t_{j} \rightarrow 0$ and $t_{j} \rightarrow 1$ resp..

The interval contains $f_{j}=x_{j} / n$.
$\square$ Rule independent from $C, K$ and $J$

## Rule of succession and imprecision

$\square$ Degree of imprecision about $B_{j}$

- Prior state: imprecision is maximal

$$
\Delta\left(B_{j}\right)=\bar{P}\left(B_{j}\right)-\underline{P}\left(B_{j}\right)=1
$$

- Posterior state:

$$
\Delta\left(B_{j} \mid x\right)=\bar{P}\left(B_{j} \mid x\right)-\underline{P}\left(B_{j} \mid x\right)=\frac{s}{n+s}
$$

## $\square$ Prior ignorance

Caracterized by a maximal imprecision, i.e. vacuous probabilities.
$\square$ Interpretation of $s$

Hyper-parameter $s$ controls how fast imprecision diminishes with $n$ : $s$ is the number of observations necessary to halve imprecision about $B_{j}$.

## Bayesian rule of succession

## $\square$ Bayesian rule of succession

The rule of succession obtained from a single symmetric Dirichlet distribution, Diri $(\boldsymbol{\alpha})$ with $\alpha_{k}=$ $s / K$, is

$$
\begin{equation*}
P\left(B_{j}\right)=\frac{x_{j}+\alpha_{j}}{n+s}=\frac{n f_{j}+s J / K}{n+s} \tag{9}
\end{equation*}
$$

## $\square$ Objective Bayesian rules

$$
\begin{aligned}
\text { Bayes } & P\left(B_{j}\right)=\left(x_{j}+J\right) /(n+K) \\
\text { Jeffreys } & P\left(B_{j}\right)=\left(x_{j}+J / 2\right) /(n+K / 2) \\
\text { Perks } & P\left(B_{j}\right)=\left(x_{j}+J / K\right) /(n+1) \\
\text { Haldane } & P\left(B_{j}\right)=x_{j} / n
\end{aligned}
$$

$\square$ Dependence on $K$ and $J$ except Haldane
$\square$ Particular case $J=1, K=2$
If $x_{1}=n / 2$, i.e. $f=1 / 2$, each Bayesian rule leads to $P(B)=1 / 2$, whether $n=0$, or $n=10,100$ or 1000.

## Categorization arbitrariness

$\square$ Arbitrariness of $C$, i.e. $J$ and $K$

$J=K-1$
1

$J=1 \quad K-1$

Most extremes cases obtained as $K \rightarrow \infty$
$\square$ Bayesian rules lead to intervals when arbitrariness is introduced

| Bayes-Laplace $[0 ; 1]$, | $\operatorname{IDM}(s=\infty)$ |  |
| :--- | :--- | :--- |
| Jeffreys | $[0 ; 1]$, | $\operatorname{IDM}(s=\infty)$ |
| Perks | $\left[\frac{x_{k}}{n+1} ; \frac{x_{k}+1}{n+1}\right]$, | $\operatorname{IDM}(s=1)$ |
| Haldane | $\left[x_{k} / n ; x_{k} / n\right]$, | $\operatorname{IDM}(s \rightarrow 0)$ |

## Frequentist prediction

$\square$ "Bayesian and confidence limits for prediction" (Thatcher, 1964)

- Considers binomial or hypergeometric data $(K=2), \boldsymbol{x}=\left(x_{1}, n-x_{1}\right)$.
- Studies the prediction about $n^{\prime}$ future observations $\boldsymbol{x}^{\prime}=\left(x_{1}^{\prime}, n^{\prime}-x_{1}^{\prime}\right)$.
- Derives lower and upper confidence (frequentist) limits for $x_{1}^{\prime}$.
- Compares these confidence limits to credibility (Bayesian) limits from a Beta prior.


## $\square$ Main result

- Upper confidence and credibility limits for $x_{1}^{\prime}$ coincide iff the prior is $\operatorname{Beta}\left(\alpha_{1}=1, \alpha_{2}=0\right)$.
- Lower confidence and credibility limits for $x_{1}^{\prime}$ coincide iff the prior is $\operatorname{Beta}\left(\alpha_{1}=0, \alpha_{2}=1\right)$.


## Frequentist rule of succession

## $\square$ Frequentist "rule of succession"

For $n^{\prime}=1$, the lower and upper confidence limits resp. correspond to the following Bayesian rules:

$$
P\left(B_{j} \mid x\right)=\frac{x_{j}}{n+1} \quad \text { and } \quad P\left(B_{j} \mid x\right)=\frac{x_{j}+1}{n+1}
$$

i.e. to the IDM interval for $s=1$.

## $\square$ A "difficulty"

". . . is there a prior distribution such that both the upper and lower Bayesian limits always coincide with confidence limits? ...In fact there are not such distributions." (Thatcher, 1964, p. 184)
$\square$ Reconciling frequentist and Bayesian
"... we shall consider whether these difficulties can be overcome by a more general approach to the prediction problem: in fact, by ceasing to restrict ourselves to a single set of confidence limits or a single prior distribution." (Thatcher, 1964, p. 187)

### 5.2. IMPRECISE BETA MODEL (IBM)

## Bernoulli process, frequentist vs. Bayesian (Bernard, 1996)

$\square$ Data from a Bernoulli process
Sequential binary data (success/failure), e.g. sequence

$$
S, F, S, S, S, S, S, F, S, S,
$$

so that $a=x_{S}=8, b=x_{F}=2, n=10$.
$\square$ Problem of testing a one-sided hypothesis

$$
H_{0}: \theta_{S} \leq \theta_{0} \quad \text { vs. } \quad H_{1}: \theta_{S}>\theta_{0}
$$

$\square$ Example: $f_{S}=8 / 10, \theta_{S}>\theta_{0}=1 / 2$ ?
$\square$ Comparison of frequentist solutions and objective Bayesian solutions to this problem.

## Frequentist approach

## $\square$ Principle

Consider all possible data sets, that are more extreme than the observed data under $H_{0}$, i.e. such that $F_{S}$ greater than $f_{S}=\frac{8}{10}$, and add up their probabilities under $H_{0}$ (yielding "the" $p$-value).
$\square$ "Possible": depends on stopping rule; either stop after

- $n$ observations: $n$-rule
- $a$ successes: $a$-rule (neg. sampling)
- $b$ failures: $b$-rule (neg. sampling)
$\square$ "More extreme": three conventions for computing the $p$-value
- Inclusive: $p_{i n c}=P\left(F_{S} \geq f_{S} \mid H_{0}\right)$
- Exclusive: $p_{e x c}=P\left(F_{S}>f_{S} \mid H_{0}\right)$
- Mid-P convention: $p_{\text {mid }}=\left(p_{\text {exc }}+p_{\text {inc }}\right) / 2$


## Objective Bayesian approach

## $\square$ Principle

Consider an objective $\operatorname{Beta}(\alpha, \beta)$ prior on $\theta_{S}$, derive an (updated) posterior on $\theta_{S} \mid \boldsymbol{x}$, then compute

$$
P B_{\alpha, \beta}=P_{\alpha, \beta}\left(H_{0} \mid x\right) .
$$

## $\square$ Objective Beta priors

$$
\begin{aligned}
& \alpha=0, \beta=0: \text { Haldane } \\
& \alpha=\frac{1}{2}, \beta=\frac{1}{2}: \text { Jeffreys-(n), Perks } \\
& \alpha=1, \beta=1: \text { Bayes-Laplace } \\
& \alpha=0, \beta=\frac{1}{2}: \text { Jeffreys-(a) } \\
& \alpha=\frac{1}{2}, \beta=0: \text { Jeffreys-(b) } \\
& \alpha=0, \beta=1: \text { Hartigan-(b) ALI prior } \\
& \alpha=1, \beta=0: \text { Hartigan-(a) ALI prior }
\end{aligned}
$$

## Main results

$\square$ Comparison frequentist vs. Bayesian (Bernard, 1996)

$$
\begin{aligned}
& P B_{1,0}=P_{n, I}=P_{a, I}=11 / 1024 \\
& P B_{0,1}=P_{n, E}=P_{b, E}=56 / 1024 \\
& P B_{1,0} \leq \text { all } P^{\prime} s \text { and } P B^{\prime} \mathrm{s} \leq P B_{0,1}
\end{aligned}
$$

$\square$ Ignorance zone
The bounds of this ignorance zone correspond to the Imprecise Beta Model (IBM) with $s=1$.
$\square$ Reconcile frequentist principles \& LP (Walley, 2002)

The IBM with $s=1$ produces statements about one-sided or equi-tailed two-sided hypotheses relative to $\theta_{S}$, which satisfies weak frequentist principles (validity under any monotone stopping-rule), LP and coherence.

## Frequentist and Bayesian levels maps

$\square$ Frequentist significance levels

$\square$ Bayesian significance levels


### 5.3. TWO BY TWO CONTINGENCY TABLES

## Independence in a $2 \times 2$ contingency table

## $\square$ Data

|  | $b 1$ | $b 2$ |
| :---: | :---: | :---: |
| $a 1$ | $x_{11}$ | $x_{12}$ |
|  |  | $x_{21}$ |
|  |  | $x_{22}$ |
|  |  |  |


|  | $b 1$ | $b 2$ |
| :--- | :--- | :--- |
| $a 1$ | 8 | 4 |
|  | 2 | 2 |
|  |  | 5 |
|  |  |  |

## $\square$ Problem

Positive association between $A$ and $B$ ?

Derived parameter: contingency coefficient

$$
\rho=\frac{\theta_{11}}{\theta_{1 . \theta} \cdot 1} \quad r_{o b s}=0.467
$$

Hypothesis to be tested:

$$
H_{0}: \rho \leq 0 \quad \text { vs. } \quad H_{1}: \rho>0
$$

$\square$ Comparison of frequentist, Bayesian \& IDM inferences (Altham, 1969; Walley, 1996; Walley et al., 1996; Bernard, 2003)

## Frequentist inference

$\square$ Fisher's exact test for a $2 \times 2$ table

Amounts to considering all $2 \times 2$ tables $\boldsymbol{x}$ with the same margins than those observed.

Frequentist probability of any $\boldsymbol{x}$ under $H_{0}$ is

$$
P\left(x \mid H_{0}\right)=\frac{x_{1 .}!x_{2!}!x_{.1}!x_{.2}!}{n!x_{11}!x_{12}!x_{21}!x_{22}!}
$$

The p-value of the test is defined as,

$$
p_{o b s}=P\left(\text { more extreme data } \mid H_{0}\right)
$$

where "more extreme data" means all $\boldsymbol{x}$ with $R$ larger than $r_{o b s}$.

## $\square$ Frequentist solutions

- $p_{o b s}=p_{i n c}$, more or as extreme
- $p_{o b s}=p_{\text {exc }}$, strictly more extreme

Inclusive convention is the usual one; but roles of "inclusive" and "exclusive" are permuted when considering the test of $H_{O}: \phi \geq 0 \mathrm{vs} . H_{1}: \phi<0$.

## Bayesian \& Imprecise models

$\square$ Objective Bayesian models, for fixed $n$ :
Haldane, Perks, Jeffreys, Bayes-Laplace

## $\square$ IBM

Suggested by Walley (1996) and Walley et al. (1996) for the ECMO data: $A$ are groups of patients and $B$ outcomes of treatment.

Suggest using two independent IBM's with $s=1$ each for each group.
$\square$ IDM, with $s=1$ or $s=2$
$\square$ Relationships between models
$\underline{P}\left[\mathrm{IDM}_{2}\right] \leq \underline{P}[\mathrm{IBM}]=p_{\text {exc }} \quad \leq \quad \underline{P}\left[\mathrm{IDM}_{1}\right]$
$\leq P B[\mathrm{Hal}], P B[\mathrm{Per}], P B[$ Jef $], P B[\mathrm{BL}] \leq$
$\bar{P}\left[\mathrm{IDM}_{1}\right] \leq \bar{P}[\mathrm{IBM}]=p_{\text {inc }} \leq \bar{P}\left[\mathrm{IDM}_{2}\right]$

## Comparison with objective models

Haldane
Freq. Bayesian Imprecise

| 0 | 0 |
| :--- | :--- |
| 0 | 2 |

.015
$\underline{P} \operatorname{IDM}(s=2)$

| 1 | 0 |
| :--- | :--- |
| 0 | 1 |

. 025
$\underline{P} \operatorname{IDM}(s=1)$

| 0 | 0 |
| :---: | :---: |
| 0 | 0 |
| $\frac{1}{4}$ | $\frac{1}{4}$ |
| $\frac{1}{4}$ | $\frac{1}{4}$ |

.043
$\underline{P} \operatorname{IBM}(2 \times s=1)$

| 0 | 0 |
| :--- | :--- |
| 0 | 1 |$\quad .025$


| $\frac{1}{2}$ | $\frac{1}{2}$ |
| :---: | :---: |
| $\frac{1}{2}$ | $\frac{1}{2}$ |

. 053
Jeffreys

| 1 | 1 |
| :--- | :--- |
| 1 | 1 |


| 0 | 0 |
| :--- | :--- |
| 1 | 0 |


| 0 | 1 |
| :--- | :--- |
| 1 | 0 |

. 130
$p_{\text {inc }}$

| 0 | 0 |
| :--- | :--- |
| 2 | 0 |

. 144
$\bar{P} \operatorname{IDM}(s=1)$
$\overline{\mathrm{P}} \operatorname{IBM}(2 \times s=1)$
$\bar{P} \operatorname{IDM}(s=2)$

# 5.4. LARGE $n$ AND POSTERIOR IMPRECISION 

## Large $n$, Bayesian models and IDM

$\square$ Claim by Bayesians or IP papers

When $n$ is large, all objective Bayesian priors lead to similar inferences.

This claim is also (implicitly) present in many IP writings.
$\square$ This claim is FALSE!
$\square$ Counter-examples

- Inference about a chance $\theta$ in binary data
- Inference about association in $2 \times 2$ table
- Inference about a universal law (Walley, Bernard, 1999)
- Inference about quasi-implications in multivariate binary data (Bernard, 2001)


## Inference about a single chance $\theta$

## $\square$ Problem

- Observed counts $\boldsymbol{x}=\left(x_{1}, x_{2}\right), n=x_{1}+x_{2}$
- Test $H_{0}: \theta \leq \theta_{0}$ vs. $H_{1}: \theta>\theta_{0}$
$\square \mathbf{U \& L}$ probs. of $H_{0}$ under the $\operatorname{IDM}(s=1)$

$$
\begin{aligned}
\underline{P}\left(\theta \leq \theta_{0} \mid x\right) & =P\left(X_{1}>x_{1} \mid H_{0}, n\right) \\
\bar{P}\left(\theta \leq \theta_{0} \mid x\right) & =P\left(X_{1} \geq x_{1} \mid H_{0}, n\right) \\
\Delta\left(\theta \leq \theta_{0} \mid x\right) & =P_{n}\left(X_{1}=x_{1} \mid H_{0}, n\right) \\
& =\binom{n}{x_{1}} \theta_{0}^{x_{1}}\left(1-\theta_{0}\right)^{x_{2}}
\end{aligned}
$$

$\square$ Example: $x_{1}=0, x_{2}=100, \theta_{0}=0.001$

$$
\begin{aligned}
\frac{P}{P}\left(\theta \leq \theta_{0} \mid x\right) & =0 \\
\bar{P}\left(\theta \leq \theta_{0} \mid x\right) & =0.905 \\
\Delta\left(\theta \leq \theta_{0} \mid x\right) & =0.905
\end{aligned}
$$

$\square$ Why? $P$ (observed data| $H_{0}$ ) is high

## Association in $2 \times 2$ tables

$\square$ Example $n=115$

|  | $b 1$ |  |
| :---: | :---: | :---: |
| $b 2$ |  |  |
| $a 1$ | 0 | 4 |
|  | 4 | 4 |
|  |  | 107 |
|  |  |  |

$\square$ Fisher's test: $H_{0}: \Phi \geq 0$ vs. $H_{1}: \Phi<0$
Exclusive: $p_{\text {exc }}=0$
Inclusive: $p_{\text {inc }}=0.866$
$\square$ Bayesian answers (taking $K=4$ )
Haldane: $P\left(H_{1}\right)=0$
Perks: $\quad P\left(H_{1}\right)=0.350$
Jeffreys: $P\left(H_{1}\right)=0.571$
Bayes: $\quad P\left(H_{1}\right)=0.802$

## $\square$ IDM answers

$$
\begin{aligned}
& s=1: \underline{P}\left(H_{1}\right)=0, \bar{P}\left(H_{1}\right)=0.866 \\
& s=2: \underline{P}\left(H_{1}\right)=0, \bar{P}\left(H_{1}\right)=0.986
\end{aligned}
$$

$\square$ Why? Indepence is compatible with data (despite $x_{11}=0$ ), because $f_{a}$ and $f_{b}$ are small.

## Comments

$\square$ What happens? There are situations in which

- $n$ is large
- objective Bayesian inferences do not agree
- inferences from the IDM are highly imprecise
$\square$ Tentative explanation

From the frequentist viewpoint, in the two examples, the two hypotheses $H_{0}$ and $H_{1}$ are both extremely compatible with the data.

This occurs because, in both cases, the frequentist probability $P\left(x \mid H_{0}\right)$ is high.
$\square$ Consequences for the IDM

Within a unique dataset, imprecision in the inferences from the IDM can vary considerably (Bernard, 2001, 2003)

### 5.5. NON-PARAMETRIC ESTIMATION OF A MEAN

## Non-parametric estimation of a mean

## $\square$ Problem

Numerical data, bounded with finite precision. Possible values amongst the set $\left\{y_{1}, y_{2}, \ldots, y_{K}\right\}$ such that $y_{1}<y_{2}<\cdots<y_{K}$.

A sample yields the counts $\boldsymbol{x}=\left(x_{1}, \ldots, x_{K}\right)$.

More realistic than assumption of normality, etc..
$\square$ Parameter of interest, the unknown mean

$$
\mu=\sum_{k} y_{k} \theta_{k}
$$

$\square$ Bayesian inference, from a Diri( $\boldsymbol{\alpha}$ ) prior,

$$
\begin{aligned}
\mu & \sim \operatorname{L-Diri}(\boldsymbol{y}, \boldsymbol{\alpha}) \\
\mu \mid x & \sim \operatorname{L-Diri}(\boldsymbol{y}, \boldsymbol{x}+\boldsymbol{\alpha})
\end{aligned}
$$

## Inferences from the IDM

## $\square$ Prior expectations

$$
\underline{E}(\mu)=y_{1} \quad \text { and } \quad \bar{E}(\mu)=y_{K}
$$

$\square$ Posterior expectations

$$
\begin{aligned}
& \underline{E}(\mu \mid \boldsymbol{x})=\frac{n \operatorname{Mean}(\boldsymbol{y}, \boldsymbol{x})+s y_{1}}{n+s} \\
& \bar{E}(\mu \mid \boldsymbol{x})=\frac{n \operatorname{Mean}(\boldsymbol{y}, \boldsymbol{x})+s y_{K}}{n+s}
\end{aligned}
$$

obtained as $t_{1} \rightarrow 1$ or $t_{K} \rightarrow 1$ resp..

## $\square$ U\&L cdf's

The same limits lead to the U\&L prior and posterior cdf's of $\mu$.

All inferences from the IDM can be carried out using the two extreme distributions

$$
\begin{array}{r}
\operatorname{L-Diri}\left(\boldsymbol{y}, \boldsymbol{x}+\boldsymbol{\alpha}=\left(x_{1}+n, x_{2}, \ldots, x_{K}\right)\right) \\
L-\operatorname{Diri}\left(\boldsymbol{y}, \boldsymbol{x}+\boldsymbol{\alpha}=\left(x_{1}, \ldots, x_{K-1}, \ldots, x_{K}+n\right)\right)
\end{array}
$$

## Implications for the choice of $s$

$\square$ Theorem (Bernard, 2001)

$$
\begin{gathered}
\operatorname{L-Diri}(\boldsymbol{y}, \boldsymbol{\alpha}) \rightarrow \operatorname{Uni}\left(y_{1}, y_{K}\right) \\
\text { for } \alpha_{1}=\alpha_{K}=1 \text { and } \alpha_{k} \rightarrow 0, k \neq 1, K
\end{gathered}
$$

## $\square$ Objective Bayesian inference \& IDM

Three reasonable priors encompassed by the IDM

$$
\begin{aligned}
& \text { Haldane if } s>0 \\
& \text { Perks if } s \geq 1 \\
& \text { Uniform if } s \geq 2 \text { (from theorem above) }
\end{aligned}
$$

Jeffreys' and Bayes-Laplace's priors on set $Y$ lead to highly informative priors about $\mu$.
$\square$ Conclusion: Case with large $K$, where $s=2$ encompasses all reasonable Bayesian alternatives.

### 5.6 SOME APPLICATIONS OF THE IDM

## Some applications of the IDM

- Reliability analysis: Analysis of failure data including right-censored observations (Coolen, 1997; Yan, 2002).
- Predictive inferences from multinomial data (Walley, Bernard, 1999; Coolen, Augustin, in prep.).
- Non-parametric inference about a mean (Bernard, 2001).
- Classification, networks, tree-dependencies structures, estimation of entropy or mutual information (Cozman, Chrisman, 1997; Zaffalon, 2001a, 2001b; Hutter, 2003).
- Treatment of missing data (Zaffalon, 2002).
- Implicative analysis for multivariate binary data (large $K=2^{q}$ ) (Bernard, 2002).
- Analysis of local associations in contingency tables (Bernard, 2003).
- Game-theoretic learning (Quaeghebeur, de Cooman, 2003)


## 6. CHOICE OF $s$

## Interpretations of $s$

## $\square$ Caution parameter

- Prior uncertainty: In many cases, any $s>0$ produces vacuous prior probabilities.
- Posterior uncertainty: $s$ determines the degree of imprecision in posterior inferences; the larger $s$, the more cautious inferences are.
$\square$ IDM's nested according to $s$
The probability intervals produced by two IDM's such that $s_{1}<s_{2}$ are nested:

$$
\operatorname{Int}\left[s_{2}\right] \subset \operatorname{Int}\left[s_{2}\right]
$$

$\square$ Number of additional observations
In several examples, using the IDM amounts to making Bayesian inferences

- from Haldane's prior
- taking the observed data $\boldsymbol{x}$ into account
- adding $s$ observations to the more extreme categories

Note: cf. some ad-hoc frequentist methods

## Choice of hyper-parameter $s$

## $\square$ Two contradictory aims

- Large enough to encompass alternative objective models
- Not too large, because inferences are too weak
$\square$ Encompassing alternative models
- Haldane: $s>0$
- Perks: $s \geq 1$
- Jeffreys or Bayes-Laplace: would require $s \geq$ $K / 2$ or $\geq K$, but produce unreasonable inferences when $K$ large (cf. categ. arbitrariness, infer. on a mean).
- Berger-Bernardo: open question.
- Encompass frequentist inferences: some arguments for $s=1$ for $K=2$ or $K=4$.
$\square$ Additional new principle? (Walley, 1996)


## Which value for $s$

## $\square$ Suggested value(s) for $s$ ?

- First results suggested $1 \leq s \leq 2$, but mostly based on cases with $K=2$ or small $K$ (Walley, 1996).
- Some new arguments, in the case of large $K$, for $s=2$ (Bernard, 2001, 2003).
$\square$ Problem not settled yet
- Need to study more situations with $K$ large.
- Need to compare the IDM with alternative objective models in such cases.


## 7. COMPUTATIONAL ASPECTS

## Computational aspects

## $\square$ General problem

Min-/maximization of $E_{s t}(\lambda)$ and $P_{s t}(\lambda \leq u)$ for general $\lambda=g(\boldsymbol{\theta})$.

- Simple (and identical) solution to both problems when $g($.$) is linear: t_{k} \rightarrow 1$ for extreme $k$ 's (w.r.t. to $g($.$) ) (Walley, Bernard, 1999;$ Bernard, 2001).
- Some exact \& approximate solutions for specific cases (Bernard, 2003; Hutter, 2003).
$\square$ Remaining issues
- Find class of functions $g($.$) for which t_{k} \rightarrow 1$ for some $k$ provides the solution.
- Is saying $t_{k} \rightarrow 1$ enough to specify the min/maximization solution? NO: in some case, necessity to say how the other $t_{k}$ 's tend to 0 .
- Find exact or conservative approximate solutions for general $g($.$) .$
- Find non-conservative approximate solutions (useful in practical applications).
- Can the predictive approach help?


## 8. CONCLUSIONS

## Why using a set of Dirichlet's Walley (1996, p. 7)

(a) Dirichlet prior distributions are mathematically tractable because . . . they generate Dirichlet posterior distributions;
(b) when categories are combined, Dirichlet distributions transform to other Dirichlet distributions (this is the crucial property which ensures that the RIP is satisfied);
(c) sets of Dirichlet distributions are very rich, because they produce the same inferences as their convex hull and any prior distribution can be approximated by a finite mixture of Dirichlet distributions;
(d) the most common Bayesian models for prior ignorance about $\boldsymbol{\theta}$ are Dirichlet distributions.

## Fundamental properties of the IDM

## $\square$ Principles

Satisfies several desirable principles for prior ignorance: SP, EP, RIP, LP, SRP, coherence.
$\square$ IDM vs. Bayesian and frequentist

- Answers several difficulties of alternative approaches
- Provides means to reconcile frequentist and objective Bayesian approaches (Walley, 2002)


## $\square$ Generality

More general than for multinomial data. Valid under a general hypothesis of exchangeability between observed and future data. (Walley, Bernard, 1999).
$\square$ Degree of imprecision and $n$
Degree of imprecision in posterior inferences enables one to distinguish between: (a) prior uncertainty still dominates, (b) there is substantial information in the data.
The two cases can occur within the same data set.

## Future research, open questions

- Find a new principle suggesting an upper bound for $s$.
- Major argument for Jeffreys' prior is that it is reparameterization invariant. Does this concept have a meaning within the IDM?
- Compare the IDM with Berger-Bernardo reference priors.
- Study the properties of the IDM in situations with possibly large $K$, compare it with alternative models.
- Further applications of the IDM for non-parametric inference from numerical data.
- Applications to classification, networks, treedependencies structures.
- Elaborate theory \& algorithms for computing inferences from the IDM in general cases.

