
acta physica slovaca vol. 59 No. 1, 1 – 80 February 2009

AN INTRODUCTION TO THE QUANTUM THEORY OF NONLINEAR OPTICS

Mark Hillery1

Department of Physics, Hunter College of CUNY, 695 Park Avenue, New York, NY 10065 USA

Received 5 January 2009, accepted 6 January 2009

This article is provides an introduction to the quantum theory of optics in nonlinear dielectric
media. We begin with a short summary of the classical theory of nonlinear optics, that is
nonlinear optics done with classical fields. We then discuss the canonical formalism for fields
and its quantization. This is applied to quantizing the electromagnetic field in free space. The
definition of a nonclassical state of the electromagnetic field is presented, and several exam-
ples are examined. This is followed by a brief introduction to entanglement in the context of
field modes. The next task is the quantization of the electromagnetic field in an inhomoge-
neous, linear dielectric medium. Before going on to field quantization in nonlinear media, we
discuss a number of commonly employed phenomenological models for quantum nonlinear
optical processes. We then quantize the field in both nondispersive and dispersive nonlinear
media. Flaws in the most commonly used methods of accomplishing this task are pointed out
and discussed. Once the quantization has been completed, it is used to study a multimode
theory of parametric down conversion and the propagation of quantum solitons.
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1 Introduction

Nonlinear optics is the study of the response of dielectric media to strong optical fields. The fields
are sufficiently strong that the response of the medium is nonlinear. That is, the polarization,
which is the dipole moment per unit volume in the medium, is not a linear function of the applied
electric field. In the equation for the polarization there is a linear term, but, in addition, there are
terms containing higher powers of the electric field as well. This leads to significant new types of
behavior. One of the most notable is that new frequencies, such as harmonics or subharmonics,
can be generated. Linear media do not change the frequency of light incident upon them. In
fact, the first observation of a nonlinear optical effect was second-harmonic generation [1]; a
laser beam entering a nonlinear medium produced a second beam at twice the frequency of the
original. Another type of behavior that becomes possible in nonlinear media is that the index of
refraction, rather than being a constant, is a function of the intensity of the light. For a light beam
with a nonuniform intensity profile, this can lead to self focussing of the beam.

Most nonlinear optical effects can be described using classical electromagnetic fields, and,
in fact, the initial theory of nonlinear optics was done with classical fields [2]. When the fields
are quantized, however, a number of new effects emerge. Quantized fields are necessary if we
want to describe fields that originate from spontaneous emission. For example, in a process
known as spontaneous parametric down conversion, a beam of light at one frequency, the pump,
produces a beam at half the original frequency, the signal. and this second beam is a result
of spontaneous emission. The quantum properties of the down-converted beam are novel. Its
photons are produced in pairs, one pump photon disappearing to produce, simultaneously, two
signal photons. This leads to strong correlations between photons in the signal beam, and photons
produced in this way can be quantum mechanically entangled. In addition, the signal beam can
have smaller phase fluctuations than is possible with classical light. Both of these properties
have made light produced by parametric down conversion useful for applications in the field of
quantum information.

The quantization of electrodynamics in nonlinear media is not straightforward, and some
mistakes were made along the way. The most complete version of a quantum theory of nonlinear
optics is the one developed by Peter Drummond and his collaborators. This theory has been used
to make detailed comparisons with experiments, with excellent results (for recent work see [3,4]).
In many cases, especially if only a few field modes are involved, it is not necessary to use the
full theory and phenomenological models are employed. The theory developed by Drummond
comes into its own when one wants to describe the propagation of pulses in nonlinear media, and
it is essential in order to properly treat quantum solitons in nonlinear fibers.

This review is meant as a pedagogical survey of the field of nonlinear optics with quantized
fields. It is hoped that a graduate student or someone not in the field, could use it as an intro-
duction and then have enough preparation to go on and read some of the original literature. This
review does not attempt to be comprehensive, and it does have a point of view. Issues involving
field quantization are emphasized for a number of reasons. In standard quantum optics texts these
issues, to the extent they are discussed at all, are skipped over very quickly. For the most part
this is fine, but when quantizing the electromagnetic field in linear or nonlinear media, there are
subtleties that are missed by this approach. One result of this is that people working in quantum
optics are often not familiar with the canonical formalism for fields and how it is used to quantize
them. It is hoped that this review will provide a useful introduction to that subject.
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The review begins with a very brief survey of some topics in the classical theory on nonlinear
optics. For further reading on this subject, the textbook by Robert Boyd is highly recommended
[5]. We then go on to discuss the canonical formalism for fields and how to quantize it. This is
then applied to the quantization of the free electromagnetic field. Once we have quantized the
field, we go on to discuss nonclassical field states and entanglement. Next, we show how the
field can be quantized in the presence of an inhomogeneous linear medium. The next step is to
move on to nonlinear media, but before discussing the quantization of the field in such media,
we first use phenomenological models to show what kinds of effects can be expected. We then
quantize the field in a nonlinear medium, first in a nondispersive medium, then in a dispersive
one. Once we have done so, we discuss a multimode theory of spontaneous parametric down
conversion. We end by discussing quantum solitions in a nonlinear fiber.
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2 Classical nonlinear optics

When an electric field is applied to a dielectric medium, a polarization, that is, a dipole moment
per unit volume, is created in the medium. If the field is not too strong the response of the
medium is linear, which means that the polarization, P is linear in the applied field, E (we will
use S. I. units throughout this paper),

Pj = ε0

3∑

k=1

χ(1)
jk Ek. (2.1)

In this equation, χ(1) is the linear susceptibility tensor of the medium. If the field is sufficiently
strong, the linear relation breaks down and nonlinear terms must be taken into account, that is

Pj = ε0[
3∑

k=1

χ(1)
jk Ek +

3∑

k=1

3∑

l=1

χ(2)
jklEkEl

3∑

k=1

3∑

l=1

3∑

m=1

χ(3)
jklmEkElEm + . . .]. (2.2)

Here, we have kept the first three terms in the power series expansion of the polarization in terms
of the field The quantities χ(2) and χ(3) are the second and third order nonlinear susceptibilities,
respectively. We should also note that Eq. (2.2) is often written as

P = ε0[χ(1) : E + χ(2) : EE + χ(3) : EEE + . . .]. (2.3)

The χ(2) term is only present if the medium is not invariant under spatial inversion (r→ −r).
This follows from the fact that if the medium is invariant under spatial inversion, the χ(2) for the
inverted medium with be the same as that for the original medium, i.e. under spatial inversion
we will have χ(2) → χ(2). However, under spatial inversion we also have that P → −P and
E→ −E. Consequently, while P→ −P implies that we should have

χ(2) : EE→ −χ(2) : EE, (2.4)

the relations χ(2) → χ(2) and E→ −E show us that instead we have

χ(2) : EE→ χ(2) : EE. (2.5)

The only way these conditions can be consistent is if χ(2) = 0. Therefore, for many materials
we do, in fact have χ(2) = 0, and their first nonzero nonlinear susceptibility is χ(3).

If the nonlinearities in the medium are electronic in origin, then the nonlinear effects should
be important when the applied field is of the same order as the electric field in an atom. The field
in an atom is of order Eatom ∼ e/(4πε0a2

0), where a0 is the Bohr radius, which is approximately
5 × 1011 V/m. This can be used to estimate the size of the susceptibilities. For fields of this
magnitude, the terms in the expansion for the polarization will be of roughly the same size. Using
the fact that χ(1) is of order one, we then find that

χ(2) ∼ 1
Eatom

% 2× 10−12 m

V

χ(3) ∼ 1
E2

atom

% 4× 10−24 m2

V 2
. (2.6)
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These estimates, are, in fact, quite good.
We would now like to survey some of the effects to which the nonlinear terms in the series

for the polarization give rise. We begin by noting that Maxwell’s equations, with the polarization
included, give us

∇×∇×E +
1
c2

∂2E
∂t2

= −µ0
∂2P
∂t2

. (2.7)

This tells us that the polarization acts as a source for the field, and, in particular, if the polarization
has terms oscillating at a particular frequency, then those terms will give rise to components of
the field oscillating at the same frequency. In our initial survey of nonlinear optical effects, we
shall ignore all indices, and treat all quantities as scalars.

Let us first look at second-order nonlinearities. If our applied field oscillates at the frequency
ω, E(t) = E0 cos ωt, then the nonlinear part of the polarization, Pnl, will be

Pnl(t) = ε0χ
(2)E(t)2 =

1
2
ε0χ

(2)E2
0(1 + cos 2ωt). (2.8)

We can see that the polarization has a term oscillating at twice the applied frequency, and this
will give rise to a field whose frequency is also 2ω. This process is known as second-harmonic
generation, and it can be, and is, used to double the frequency of the output of a laser by sending
the beam through an appropriate material, that is, one with a nonzero value of χ(2). As was
mentioned, it was the first nonlinear optical effect that was observed [1]. Now suppose our
applied field oscillates at two frequencies

E(t) = E1 cos ω1t + E2 cos ω2t. (2.9)

The nonlinear polarization is now

Pnl(t) =
1
2
ε0χ

(2){E2
1(1 + cos 2ω1t) + E2

2(1 + cos 2ω2t)

+ 2E1E2[cos(ω1 + ω2)t + cos(ω1 − ω2)t]}. (2.10)

In this case, not only do we have terms oscillating at twice the frequencies of the components of
the applied field, we also have terms oscillating at the sum and difference of their frequencies.
These processes are called sum and difference frequency generation, respectively.

Now let us move on to a third-order nonlinearity. For an applied field oscillating at a single
frequency, E(t) = E0 cos ωt, we find that (assuming that χ(2) = 0)

Pnl(t) =
1
4
ε0χ

(3)E3
0 [cos 3ωt + 3 cos ωt]. (2.11)

The first term clearly will cause a field at 3ω, the third harmonic of the applied field, to be
generated. In order to see the effect of the second term, it is useful to combine the linear and
nonlinear parts of the polarization to get the total polarization,

P (t) = ε0

(
χ(1) +

3
4
χ(3)E2

0

)
E0 cos ωt +

1
4
ε0χ

(3)E3
0 cos 3ωt. (2.12)

When there is no nonlinear polarization, the polarization is proportional to the field, and the
constant of proportionality, χ(1), is directly related to the refractive index of the material. When
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there is a nonlinearity, we see that the component of the polarization at the same frequency as
the applied field is similar to what it is in the linear case, except that

χ(1) → χ(1) +
3
4
χ(3)E2

0 . (2.13)

This results in a refractive index that depends on the intensity of the applied field.
So far we have assumed that the response of the medium to an applied field, that is, the po-

larization at time t, depends only on the electric field at time t. This is, of course, an idealization.
The response of a medium is not instantaneous, so that the polarization at time t depends on the
field at previous times, not just the field at time t. In the case of a linear medium, this is expressed
as

P (t) = ε0

∫ ∞

0
dτ χ̃(1)(τ)E(t− τ). (2.14)

Taking the Fourier transform of both sides, and defining

P (ω) =
1√
2π

∫ ∞

−∞
dte−iωtP (t)

E(ω) =
1√
2π

∫ ∞

−∞
dte−iωtE(t), (2.15)

we find that

P (ω) = ε0χ
(1)(ω)E(ω), (2.16)

where

χ(1)(ω) =
∫ ∞

0
dτe−iωτ χ̃(1)(τ). (2.17)

Therefore, we see that a medium response that is not instantaneous causes the susceptibilities
to become frequency dependent. This phenomenon is known as dispersion. It also causes the
nonlinear susceptibilities to become frequency dependent. For the second and third order non-
linearities we have

P (2)(t) = ε0

∫ ∞

0
dτ1

∫ ∞

0
dτ2χ̃

(2)(τ1, τ2)E(t− τ1)E(t− τ2)

P (3)(t) = ε0

∫ ∞

0
dτ1

∫ ∞

0
dτ2

∫ ∞

0
dτ3χ̃

(3)(τ1, τ2, τ3)E(t− τ1)

E(t− τ2)E(t− τ3), (2.18)

where P (2)(t) and P (3)(t) are the contributions of the second and third order nonlinearities to
the polarization, respectively. If we now take the Fourier transforms of these equations, we find
that

P (2)(ω) = ε0

∫ ∞

−∞
dω1

∫ ∞

−∞
dω2χ

(2)(ω1,ω2)δ(ω − ω1 − ω2)E(ω1)E(ω2)

P (3)(ω) = ε0

∫ ∞

−∞
dω1 . . .

∫ ∞

−∞
dω3χ

(3)(ω1,ω2,ω3)δ(ω − ω1 − ω2 − ω3)

E(ω1)E(ω2)E(ω3), (2.19)
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where

χ(2)(ω1,ω2) =
1√
2π

∫ ∞

0
dτ1

∫ ∞

0
dτ2e

−i(ω1τ1+ω2τ2)χ̃(2)(τ1, τ2)

χ(3)(ω1,ω2,ω3) =
1
2π

∫ ∞

0
dτ1 . . .

∫ ∞

0
dτ3e

−i(ω1τ1+ω2τ2+ω3τ3)

χ̃(3)(τ1, τ2, τ3). (2.20)

Note that because it does not matter which frequency we call ω1, which we call ω2, and so on,
we can define the frequency-dependent susceptibilities to be invariant under permutations of their
arguments, and we shall assume that this is the case.

As an illustration, let us compute the frequency-dependent susceptibilities for a medium con-
sisting of two-level atoms. Let the upper level be |a〉, with an energy of h̄ω0, and let the lower
level be |b〉 with an energy of 0, and we shall assume that there is one optically active electron.
The Hamiltonian describing the interaction of this atom with an incident electromagnetic wave
of frequency ν is

H = h̄ω0|a〉〈a| + h̄g(E(t)e−iνt + E∗(t)eiνt)(σ(+) + σ(−)) (2.21)

where σ(+) = |a〉〈b| and σ(−) = |b〉〈a|. Here, h̄g = ê · d, where the polarization of the incident
wave is in the direction of the unit vector ê, and the phases of the atomic wave functions are
chosen so that dipole matrix element of the transition

d = −e〈a|r|b〉, (2.22)

is real. In the above equation−e is the charge of the electron, and r is the position operator of the
optically active electron. The electric field amplitude, E(t), has been taken to be time dependent,
because we are going to start the atom in its ground state at t = −∞ and adiabatically turn on the
field until it reaches a value of E(t) = E0 at t = 0, after which it remains steady. The reason for
doing this is to eliminate transient effects, because we are interested in the steady state response
of the system. Note that with this electric field we have that

E(ω) =
1√
2π

∫ ∞

−∞
dte−iωt(E0e

−iνt + E∗
0eiνt)

=
√

2π[E0δ(ω + ν) + E∗
0δ(ω − ν)]. (2.23)

We cannot solve the equations of motion resulting from this Hamiltonian in closed form, but
this situation changes if we make what is called the rotating-wave approximation. In the limit of
no interaction, we have in the Heisenberg picture that σ(+) ∼ eiω0t and σ(−) ∼ e−iω0t. That
means that if we are close to resonance, i.e. ν is close to ω0, then the terms E(t)e−iνtσ(+) and
E∗(t)eiνtσ(−) are slowly varying and the terms E(t)e−iνtσ(−) and E∗(t)eiνtσ(+) are rapidly
varying. Slowly varying terms will have a much larger effect on the dynamics than rapidly
varying ones, so we drop the rapidly varying terms to give

H = h̄ω0|a〉〈a| + h̄g(E(t)e−iνtσ(+) + E∗(t)eiνtσ(−)) (2.24)

This is the Hamiltonian in the rotating-wave approximation. This approximation is good near
resonance, but less good when the detuning between the field frequency and atomic frequency is
large. It will suffice for our purposes here.
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We now proceed to derive and solve the equations of motion for the atom in the rotating-wave
approximation. The quantum state of the atom is given by

|ψ(t)〉 = ca(t)e−iω0t|a〉+ cb(t)|b〉, (2.25)

and substituting this into the Schrödinger equation we find (with E(t) = E0)

i
d

dt

(
ca

cb

)
=

(
0 gE0ei∆t

gE∗
0e−i∆t 0

) (
ca

cb

)
, (2.26)

where ∆ = ω0 − ν. Assuming that cb = exp iµt we find that

µ2 + ∆µ− g2|E0|2 = 0, (2.27)

so that we have the following two possible values for µ

µ± =
1
2
[−∆ ± (∆2 + 4g2|E0|2)1/2]. (2.28)

The normalized solution that corresponds to µ+ is
(

ca

cb

)
=

1
N+

(
−(µ+/gE∗

0 )e−iµ−t

eiµ+t

)
, (2.29)

and the one corresponding to µ− is
(

ca

cb

)
=

1
N−

(
−(µ−/gE∗

0 )e−iµ+t

eiµ−t

)
. (2.30)

The normalization constants in the above equations are

N± =

(
1 +

∣∣∣∣
µ±
gE0

∣∣∣∣
2
)1/2

. (2.31)

Examining these solutions in the limit E0 → 0, we find that it is the solution corresponding to
µ+ that goes to |b〉, so this is the solution we need.

The polarization of the atom can be computed by taking the expectation value of the dipole-
moment operator in the direction of the applied field, −eê · r, which, for our two-level atom,
becomes h̄g(σ(+) + σ(−)) (note that because we are assuming that the atomic states have well-
defined parity, 〈a|r|a〉 = 〈b|r|b〉 = 0). If we have a medium consisting of n two-level atoms per
unit volume, the the polarization of the medium, P (t)ê, is just n times the polarization of each
atom. Therefore, we find that

P (t) = − nh̄g2µ+

|gE0|2 + µ2
+

(E∗
0eiνt + E0e

−iνt). (2.32)

In order to find the different susceptibilities we expand this result in E0. Keeping terms of
up to third order, we have

P (t) =
(
− h̄g2

∆
+

2h̄g4|E0|2

∆3

)
(E∗

0eiνt + E0e
−iνt). (2.33)
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From this we find

P (1)(ω) =
√

2π

(
− h̄g2

∆

)
[E0δ(ω + ν) + E∗

0δ(ω − ν)]

P (3)(ω) =
√

2π

(
2h̄g4|E0|2

∆3

)
[E0δ(ω + ν) + E∗

0δ(ω − ν)]. (2.34)

We now have to compare these equations to our equations for the susceptibilities. We find that

ε0χ
(1)(ν) = ε0χ

(1)(−ν, ) =
−h̄g2

∆
, (2.35)

and

ε0χ
(3)(−ν, ν, ν) = ε0χ

(3)(ν,−ν,−ν) =
h̄g4

3π∆3
. (2.36)

This last equation also holds if we permute the arguments of the third-order nonlinear suscepti-
bilities.

A more general method of calculating susceptibilities is by the use of perturbation theory.
One starts with the density matrix equations describing the interaction of the electromagnetic
field with a medium. These equations include damping effects. The equations are then solved
perturbatively, where the perturbation is the field-matter interaction. The first-order term yields
the linear susceptibility, the second-order term yields, χ(2), and so on. This type of calculation
allows us to take into account an arbitrary number of atomic or molecular energy levels, and the
effects of the terms that were dropped when we made the rotating-wave approximation. Detailed
accounts of these methods can be found in textbooks on nonlinear optics [5].
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3 Field quantization

In order to proceed, our next step will have to be the quantization of the electromagnetic field.
Before doing so, however, it is useful to present the canonical formalism for field quantization.
We shall present it for a scalar field, φ(r, t) and treat the electromagnetic field explicitly in
the following section. We start with a Lagrangian, L, which can be expressed in terms of a
Lagrangian density, L,

L =
∫

d3rL, (3.1)

and we shall assume for now that L is a function of φ, ∂tφ, and ∂jφ, where ∂t is a more compact
way of writing ∂/∂t and ∂j , j = 1, 2, 3, corresponds to partial spatial derivatives in the x, y, and
z directions. This assumption will be true for most of what we do, but there will be one case,
when we discuss fields in dispersive media, for which the Lagrangian density will also depend
on mixed space and time derivatives. We define the action to be

S =
∫ t2

t1

dtL. (3.2)

When we change the field, φ(r, t) → φ(r, t) + δφ(r, t), where we consider only variations in
the field, δφ(r, t), which vanish at t = t1, t = t2,and as |r| → ∞, then S goes to S + δS. The
equations of motion are determined by the condition that the action is stationary, that is δS = 0
for any choice of δφ obeying the boundary condtions.

The change in the Lagrangian can be expressed in terms of functional derivatives. These are
defined by the equation

δL =
∫

d3r

[
δL

δφ
δφ +

δL

δ(∂tφ)
∂t(δφ)

]
, (3.3)

where only first order terms in δφ and its derivatives have been kept. These functional derivatives
can be expressed in terms of partial derivatives of the Lagrangian density. To do so we begin by
noting

δL =
∫

d3r



∂L
∂φ

δφ +
3∑

j=1

∂L
∂(∂jφ)

∂j(δφ) +
∂L

∂(∂tφ)
∂t(δφ)



 . (3.4)

We can perform a partial integration on the term with the spatial derivatives of δφ yielding

δL =
∫

d3r







∂L
∂φ
−

3∑

j=1

∂j
∂L

∂(∂jφ)



 δφ +
∂L

∂(∂tφ)
∂t(δφ)



 . (3.5)

From this we see that

δL

δφ
=

∂L
∂φ
−

3∑

j=1

∂j
∂L

∂(∂jφ)

δL

δ(∂tφ)
=

∂L
∂(∂tφ)

. (3.6)
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We can now go on to examine the variation of the action. We have that

δS =
∫ t2

t1

dt

∫
d3r

[
δL

δφ
δφ +

δL

δ(∂tφ)
∂t(δφ)

]
. (3.7)

We can now perform a partial integration on the time integral to give

δS =
∫ t2

t1

dt

∫
d3r

[
δL

δφ
− ∂t

δL

δ(∂tφ)

]
δφ. (3.8)

If δS = 0 for any choice of δφ, the expression in brackets must vanish, yielding the equation of
motion

δL

δφ
− ∂t

δL

δ(∂tφ)
= 0, (3.9)

or, in terms of the Lagrangian density

∂L
∂φ
−

3∑

j=1

∂j
∂L

∂(∂jφ)
− ∂t

∂L
∂(∂tφ)

= 0. (3.10)

We can also express the equations of motion in terms of the Hamiltonian. The canonical
momentum is just the functional derivative of the Lagrangian with respect to ∂tφ,

π =
δL

δ(∂tφ)
. (3.11)

The Hamiltonian is then

H =
∫

d3rπ(r, t)∂tφ(r, t)− L, (3.12)

and the equation of motion is given by

δH

δφ
= −∂tπ (3.13)

The final step in the quantization of the theory is to make all of the quantities above operators,
and to impose the canonical equal-time commutation relations between the coordinate, which is
the field, and its corresponding momentum

[φ(r, t),π(r′, t)] = ih̄δ(3)(r− r′), (3.14)

as well as the equal-time commutation relations between the field and itself and between the
canonical momentum and itself

[φ(r, t),φ(r′, t)] = [π(r, t),π(r′, t)] = 0. (3.15)

These commutation relations, when used in conjunction with the Hamiltonian, can be used to
find the Heisenberg equation of motion for the field.

Let us now apply these methods to a simple example, the quantization of the motion of a
string of length l with periodic boundary conditions. The string extends in the x direction, from
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x = 0 to x = l, and we will assume that its transverse motion is only in the y direction. The
motion of the string in the y direction is then described by a field, φ(x, t), where φ(x, t) is the y
displacement of the string at position x and at time t. The equation of motion for φ(x, t) is

v2 ∂2φ

∂x2
=

∂2φ

∂t2
, (3.16)

where v is the wave velocity for the string, which depends on its tension and mass density. The
Lagrange density for this system is given by

L =
1
2

(
∂φ

∂t

)2

− 1
2
v2

(
∂φ

∂x

)2

. (3.17)

Application of Eq. (3.10) to this Lagrange density yields the equation of motion above. The
canonical momentum is found to be

π(x, t) =
∂L

∂(∂tφ)
=

∂φ

∂t
, (3.18)

and this gives us the Hamiltonian

H =
∫ l

0
dx

[
1
2

(
∂φ

∂t

)2

+
1
2
v2

(
∂φ

∂x

)2
]

. (3.19)

Now that we have the full canonical classical theory, we can quantize it by applying the
canonical commutation relation. The equal-time commutator between the field and its canonical
momentum is

[φ(x, t), ∂tφ(x′, t)] = ih̄δ(x− x′). (3.20)

We can use this to define creation and annihilation operators with the proper commutation rela-
tions. The normal modes of the string are characterized by a wave number k = 2πn/l, where n
is an integer, and a frequency ωk = |k|v. We can define an annihilation operator corresponding
the the mode with wave number k by

ak =
1√
2lh̄

∫ l

0
dxe−ikx

[
√

ωkφ(x, t) +
i

√
ωk

∂tφ(x, t)
]

. (3.21)

With this definition, it is straightforward to verify that [ak, a†k′ ] = δk,k′ . In addition, making use
of the fact that

∑

k

eik(x−x′) = lδ(x− x′), (3.22)

it is possible to invert the equations for ak and a†k in terms of φ and ∂tφ to find

φ(x, t) =
∑

k

√
h̄

2lωk
(eikxak + e−ikxa†k)

∂tφ(x, t) = i
∑

k

√
h̄ωk

2l
(e−ikxa†k − eikxak). (3.23)
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These equations can now be inserted into the expression for the Hamiltonian, with the result that

H =
1
2

∑

k

h̄ωk(a†kak + aka†k). (3.24)

Finally, dropping an (infinite) constant the Hamiltonian becomes

H =
∑

k

h̄ωka†kak. (3.25)

The ground state of the string is the vacuum state, |0〉, the state that is annihilated by all of
the annihilation operators, ak|0〉 = 0. Other states of the string, those containing excitations,
are given by applying creation operators to the vacuum state. Not much happens in this theory,
because the excitations do not interact; they simply propagate along the string. In order to create
an interaction between the excitations, we would have to add terms to the Hamiltonian consisting
of products of three or more creation and annihilation operators. These are the types of terms
that occur when describing a quantum theory of electrodynamics in nonlinear media.
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4 The quantized free electromagnetic field

So far we have treated the electromagnetic field classically, but we now need to treat it as a quan-
tum mechanical system. We shall begin with the free field, and we shall treat its quantization in
some detail, because when we move to situations involving dielectric media, the quantization be-
comes more complicated. It will be easier to quantize the field when dielectric media are present,
if we have a solid understanding of its quantization in free space. In quantum optics textboooks,
the free-space quantization is often accomplished by breaking the fields up into modes and treat-
ing each mode as a harmonic oscillator. We shall use a more quantum field theoretic approach,
as it will prove useful later. We shall also discuss some properties of the free field, such as
squeezing and entanglement, which fields emerging from nonlinear dielectric media frequently
possess.

Our ultimate goal is to find a Hamiltonian and commutation relations that lead to the free-
space Maxwell equations

∇ ·E = 0 ∇×E = −∂B
∂t

∇ ·B = 0 ∇×B = ε0µ0
∂E
∂t

. (4.1)

We begin with classical fields, and first find a Lagrangian, and then a Hamiltonian, that leads to
the above equations. A Lagrangian requires coordinates, and ours will be the components of the
vector potential A = (A0,A), defined so that

E = −∂A
∂t
−∇A0 B = ∇×A. (4.2)

Note that with this definition, we automatically satisfy two of the Maxwell equations

∇×E = −∂B
∂t

∇ ·B = 0. (4.3)

The Lagrangian, which is a function of the vector potential and its time derivative, is expressed
as the integral of a Lagrangian density

L

(
A0,

∂A0

∂t
,A,

∂A
∂t

)
=

∫
d3rL

(
A0,

∂A0

∂t
,A,

∂A
∂t

)
. (4.4)

The equations of motion that come from this Lagrangian can be expressed in terms of the La-
grangian density

∂t

(
∂L

∂(∂tAµ)

)
+

3∑

j=1

∂j

(
∂L

∂(∂jAµ)

)
− ∂L

∂Aµ
= 0, (4.5)

where µ = 0, 1, 2, 3. With the correct choice of Lagrangian density, these four equations will be
the remaining Maxwell equations. We choose

L =
1
2
ε0E2 − 1

2µ0
B2

=
1
2
ε0

(
∂A
∂t

+∇A0

)2

− 1
2µ0

(∇×A)2, (4.6)
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and now need to confirm that this choice does give us the remaining Maxwell equations. If we
now substitute this density into Eq. (4.5) with µ = 0, we obtain Gauss’ law, ∇ · E = 0, while
doing so with µ = 1, 2, 3 gives us

∇×B = ε0µ0
∂E
∂t

. (4.7)

Having found the proper Lagrangian, the next thing to do is to find the corresponding Hamil-
tonian. In order to do so we first need to find the canonical momentum. Its components are given
by

Π0 =
∂L

∂(∂tA0)
= 0, Πj =

∂L
∂(∂tAj)

= −ε0Ej . (4.8)

The vanishing of Π0, the momentum canonically conjugate to A0, means we lose A0 as an
independent field, and the Hamiltonian will be a function of A and Π only. The Hamiltonian is
expressed in terms of a Hamiltonian density,

H =
∫

d3rH(A,Π), (4.9)

which is itself given by

H =
3∑

j=1

(∂tAj)Πj − L =
1
2
ε0E

2 +
1

2µ0
B2 + ε0E ·∇A0. (4.10)

The last term can be eliminated by noting that when the Hamiltonian density is substituted into
the equation for the Hamiltonian, we can integrate it by parts, yielding−ε0

∫
d3rA0∇ ·E, which

is zero by Gauss’ law. Therefore, the last term in the Hamiltonian density makes no contribution
to the Hamiltonian, and it can be dropped. The equation of motion for Πj is given by

∂tΠj = − δH

δAj
. (4.11)

The left-hand side of this equation is the variational derivative of H with respect to Aj , and we
can find it in the same way we found the functional derivative of the Lagrangian. Let Aj(r, t)→
Aj(r, t) + δAj(r, t). We then have that

H → H +
∫

d3r
δH

δAj
δAj(r, t) + . . . (4.12)

where the dots indicate terms that are higher order in δAj(r, t). In our case we have that upon let-
ting Aj(r, t)→ Aj(r, t) + δAj(r, t), we have (keeping in mind that E = −Π is an independent
variable in the Hamiltonian formulation)

H → H +
1
µ0

∫
d3rδA ·∇×B + . . . , (4.13)

after an integration by parts. We therefore find that for the free electromagnetic field

δH

δAj
=

1
µ0

(∇×B)j , (4.14)
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and Eq. (4.11) becomes

∇×B = ε0µ0
∂E
∂t

. (4.15)

Notice that in the Hamiltonian formulation, we have lost Gauss’ law as an equation of motion.
This is because A0 is no longer an independent field in this formulation. We will impose it as
a constraint on the theory. We will impose an additional constraint by fixing the gauge. The
physical fields are invariant under the gauge transformation

A → A−∇ξ

A0 → A0 +
∂ξ

∂t
, (4.16)

where ξ(r, t) is an arbitrary function of space and time. We shall choose the radiation gauge.
This incorporates the Coulomb gauge, which requires that A be transverse, i.e. ∇ ·A = 0, and,
in addition requires that A0 = 0. We first show that we can eliminate A0 by a choice of gauge.
We start with (A′′0 ,A′′), and we assume that A′′0 += 0. If we choose

ξ(r, t) = −
∫ t

t0

dt′A′′(r, t′), (4.17)

then our new vector potential, which we shall call (A′0,A′) does obey the condtion A′0 = 0. Now
we need to impose the Coulomb gauge condition. Starting from A′, we choose a new function,
ξ(r), which is independent of time. This guarantees that the zero component of the new vector
potential, which we shall call A will remain zero. If we choose

ξ(r) = −
∫

d3r′
1

4π|r− r′|∇
′ ·A′(r, t), (4.18)

then we have ∇2ξ = ∇ · A′, which implies that ∇ · A = 0. Note that though it appears that
the right-hand side of the above equation depends on time, it does not. Gauss’ law along with
the fact that A′0 = 0 implies that ∂t∇ · A′ = 0. Finally, at the end of this sequence of gauge
transformations, we have a vector potential that satisfies A0 = 0 and ∇ ·A = 0.

In order to quantize the theory we would normally impose the equal-time commutation rela-
tions

[Aj(r, t), Al(r′, t)] = 0

[Πj(r, t),Πl(r′, t)] = [Ej(r, t), El(r′, t)] = 0

[Aj(r, t),Πl(r′, t)] = −[Aj(r, t), El(r′, t)] = ih̄δjkδ(3)(r− r′). (4.19)

However, the last of these commutation relations violates both the Coulomb gauge condition and
Gauss’ law, so we modify it to reflect the fact that both the vector potential and the electric field
are transverse fields, i.e. both have a vanishing divergence. What we need on the right-hand side
of the last commutator is a kind of delta function with a vanishing divergence, which acts the
same way a standard delta function does for transverse fields. The transverse delta function has
exactly these properties.
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In order to define the transverse delta function, let us assume that we are quantizing the fields
in a box of volume V using periodic boundary conditions. Then we can express the transverse
delta function as

δ(tr)
lm (r) =

1
V

∑

k

(δlm − k̂lk̂m)eik·r. (4.20)

Here, the wave vectors are given by

k =
(

2πnx

Lx
,
2πny

Ly
,
2πnz

Lz

)
, (4.21)

where V = LxLyLz and nx, ny , and nz are integers, and k̂ = k/|k| is a unit vector. From this
definition it is clear that

∑3
l=1 ∂lδ

(tr)
lm (r) = 0. In addition, the transverse delta function has the

property that for any transverse vector field, i.e. one that satisfies∇ ·V = 0, we have

Vl(r) =
3∑

m=1

∫
d3r′ δ(tr)

lm (r− r′)Vm(r′). (4.22)

Finally, we can now modify the commutation relation for the vector potential and the electric
field to be

[Aj(r, t), El(r′, t)] = −ih̄δ(tr)
jl (r− r′). (4.23)

The other commutators in Eq. (4) remain the same.
Our next step will be to expand the vector potential and electric field in plane-wave modes,

and to define creation and annihilation operators for these modes. The transverse plane-wave
modes have the mode functions

uk,α(r) =
1√
V

êk,αeik·r, (4.24)

where α = 1, 2. The vectors k̂, êk,1, and êk,2 form an orthonormal set of vectors, where

êk,1 × êk,2 = k̂ êk,2 × k̂ = êk,1

k̂× êk,1 = êk,2. (4.25)

We also choose ê−k,α = −(−1)αêk,α, which is consistent with the above equations. We now
define the operator

ak,α(t) =
1√
h̄

∫
d3ru∗k,α(r) ·

[√
ε0ωk

2
A(r, t)− i

√
ε0

2ωk
E(r, t)

]
, (4.26)

where ωk = |k|c. Making use of the equal-time commutation relations for the field operators,
we find that

[ak,α, ak′,α′ ] = 0 [ak,α, a†k′,α′ ] = δk,k′δα,α′ , (4.27)

so that a†k,α and ak,α can clearly be interpreted as creation and annihilation operators.
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It is also possible to invert the relation between the fields and the creation and annihilation
operators by making use of the relation

∑

k,α

uk,α(r)lu
∗
k,α(r′)m = δ(tr)

lm (r− r′). (4.28)

We find that

A(r, t) =
∑

k,α

h̄√
2ε0ωkV

êk,α(ak,αeik·r + a†k,αe−ik·r)

E(r, t) =
∑

k,α

i

√
h̄ωk

2ε0V
êk,α(ak,αeik·r − a†k,αe−ik·r). (4.29)

These expressions can then be substituted into the Hamiltonian to express it in terms of the
creation and annihilation operators. The result is

H =
1
2

∑

k,α

h̄ωk(a†k,αak,α + ak,αa†k,α). (4.30)

The normally ordered form of the Hamiltonian is

H =
∑

k,α

h̄ωka†k,αak,α, (4.31)

which is equivalent to the one above it, because the two Hamiltonians differ from each other
only by a constant. The ground state of this Hamiltonian is the vacuum state |0〉, the state that is
annihilated by all of the annihilation operators, i.e. ak,α|0〉 = 0 for all k and α = 1, 2.
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5 Nonclassical states and entanglement

We would like to explore the properties of the quantized electromagnetic field, and, in particular,
see what properties a quantized field can have that a classical one cannot. As we shall see,
nonlinear optical processes are prime sources of light that cannot be described classically. It is,
therefore, useful to start by discussing some of the novel features of quantized light, so that we
know what we are looking for when we perform complicated calculations whose goal to find the
output of nonlinear optical devices. In order to keep the discussion relatively simple, we shall
confine our attention throughout this section to a small number of field modes.

One of the things we can do with light is to count photons. We can open the shutter in front
of a photodetector between the times t and t + ∆t and see how many photons are detected.
Photodetection is a probabilistic process, so the number of photons detected will vary from run
to run, even if the input fields are identical. Let p(m; t, t+∆t) be the probability that m photons
are detected in the time interval between t and t + ∆t. The collection of these probabilities, for
a fixed time interval but for arbitrary m is called the photocount distribution of the field in that
time interval. These probabilities can be calculated by modeling the photodetector as a collection
of atoms, which then interact with the electromagnetic field. The probability p(m; t, t + ∆t) can
be found by determining the probability that m of the atoms have absorbed a photon in the
interval between t and t + ∆t, which means finding the probability that m atoms are in an
excited state at time t + ∆t. The field itself can be modeled as a classical stochastic field or
as the quantized electromagnetic field. The theory of photodetection is a well developed part of
quantum optics [6, 7].

We would like to know if there are photocount distributions that are possible for quantized
fields that are not possible for classical stochastic fields, and how these differences, if they exist,
can be observed. The answer, due to R. J. Glauber, is that there are photocount distributions that
can only be the result of a quantized field [7]. In order to show what he found, let us consider a
single-mode field. A single-mode classical field is characterized by a complex field amplitude, α,
which contains information about the intensity and phase of the field. If the field is a stochastic
one, it is characterized by a probability distribution for this field amplitude, Pcl(α). Quantum
mechanically, we have a density matrix ρ that describes the state of the field. This is the state
of a single field mode, whose creation and annihilation operators are a† and a. If we define a
single-mode coherent state, |α〉, where α is an arbitrary complex number, to be

|α〉 = e−|α|2/2
∞∑

n=0

(αa†)n

n!
|0〉, (5.1)

then a short calculation shows that a|α〉 = α|α〉, i.e. it is an eigenstate of the annihilation operator
with eigenvalue α. Any single-mode density matrix can be expressed as

ρ =
∫

d2αP (α)|α〉〈α|, (5.2)

where P (α) is called the P representation of ρ, and the integration is over the entire complex
plane, d2α = d(Re α)d(Im α). The P representation is a c-number, not an operator, and is
what is known as a quasidistribution function. While it shares some properties with a probability
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distribution, for example,
∫

d2αP (α) = 1 (5.3)

it does not share others, for example it need not be positive. In fact, not only need it not be
positive, it can be highly singular, containing arbitrarily high derivatives of the delta function.
What Glauber found is that the expression for probabilities p(m; t, t + δt) when calculated for
a quantum field, is almost the same as the the expression calculated for a classical stochastic
field, the only difference being the replacement of Pcl(α) in the classical expression by P (α)
in the quantum. What that means is that if the quantum state ρ has a P representation that has
all of the properties of a probability distribution, that is, it is positive and has singularities no
worse than a delta function, then there is a classical stochastic field that has the same photocount
distribution. However, if ρ has a P representation that does not have all of the properties of
a probability distribution, then there is no classical stochastic field with the same photocount
distribution. Such states are called nonclassical.

Let us look at some examples of nonclassical states. The number operator for a field mode,
which is the observable corresponding to the number of photons in that mode, is given by n̂a =
a†a. The average number of photons in the mode is 〈n̂a〉, and the fluctuations in the photon
number are characterized by (∆na)2 = 〈(n̂a)2〉 − 〈n̂a〉2. A single-mode state is said to have
sub-Poissonian photon statistics if (∆na)2 < 〈n̂a〉. Such a state is nonclassical. To see this, we
first express 〈n̂a〉 and 〈n̂2

a〉 in terms of the P representation of the state

〈n̂a〉 =
∫

d2αP (α)|α|2

〈n̂2
a〉 =

∫
d2αP (α)〈α|(a†a)2|α〉 =

∫
d2αP (α)(|α|4 + |α|2). (5.4)

We can now calculate (∆na)2 − 〈n̂a〉 in terms of the P representation of a state, which gives us

(∆na)2 − 〈n̂a〉 =
∫

d2αP (α)(|α|2 − 〈n̂a〉)2. (5.5)

From this we can see that if the P representation of the state behaves like a probability distri-
bution, then the right-hand side of the above equation is greater than or equal to zero, so that
the left-hand side must be as well. Therefore, for classical states, (∆na)2 ≥ 〈n̂a〉, and a state
that violates this condition is nonclassical. Photon number states are examples of states that are
sub Poissonian. The number state, |n〉, is an eigenstate of n̂a, i.e. n̂a|n〉 = n|n〉. Since for any
photon number state, (∆na)2 = 0 and 〈n̂a〉 = n, we see that for n > 0 they violate the condition
for classical states, which implies that any number state other than the vacuum is nonclassical.

A second nonclassical effect is known as squeezing. Consider the operator

X(φ) =
1
2
(eiφa† + e−iφa). (5.6)

This operator and its fluctuations can be measured by means of homodyne detection. In this
measurement, the mode to be measured is mixed with a second mode in a strong coherent state
at a beam splitter, where φ is the phase of the coherent state amplitude. The difference in the
photon numbers at the two output ports of the beam splitter will be proportional to X(φ). We
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also have that X(0) and X(π/2) correspond to the real and imaginary parts of the annihilation
operator, a,

a = X(0) + iX(π/2). (5.7)

Now let us examine the fluctuations in X(φ). For a state represented in terms of its P represen-
tation we have

(∆X(φ))2 =
1
4

+
1
4

∫
d2αP (α)[eiφ(α∗ − 〈a†〉) + eiφ(α− 〈a〉)]2 (5.8)

From this equation, we see that for a classical state the second term on the right-hand side is
greater than or equal to zero, so that (∆X(φ))2 ≥ 1/4. A state with ∆X(φ) < 1/2 will be
nonclassical. As an example of a squeezed state consider

|ψ〉 = c0|0〉 − c2e
2iφ|2〉, (5.9)

where c0 and c2 are real and positive, and |c0|2 + |c2|2 = 1. we find that

(∆X(φ))2 =
1
4

+ c2

(
c2 −

c0√
2

)
. (5.10)

This state will be squeezed if c0 >
√

2c2.
We can easily generalize the notion of a nonclassical state to more than one mode, and this

leads us in a natural way to a discussion of entanglement. As we shall see, nonlinear optical
devices are often good sources of entangled light. Let us consider a two-mode state, ρab. It can
be represented in terms of a two-mode P representation as

ρab =
∫

d2α

∫
d2βP (α, β)|α〉a〈α|⊗| β〉b〈β|, (5.11)

and if P (α, β) has the properties of a probability distribution, which in general it does not, the
state is classical. In order to define entanglement between the two modes, we first have discuss
the concept of a separable state. If the two-mode state can be expressed as

ρab =
∑

j

pjρ
(j)
a ⊗ ρ(j)

b , (5.12)

where pj are probabilities whose sum is 1, and ρ(j)
a and ρ(j)

b are density matrices for modes
a and b, respectively, then ρab is said to be separable. A separable state is one in which the
correlations between the subsystems, in this case the modes a and b, are classical. A separable
state can be constructed by two parties, each in possession of one of the subsystems, each acting
locally on their subsystem and communicating classically with the other party. A state that is not
separable is said to be entangled, and an entangled state possesses quantum correlations between
the subsystems. There is clearly a connection between classical states and separable states. In
particular, all classical states are separable. Therefore, we can conclude that in order for a two-
mode state to be entangled, it must be nonclassical.

Deciding whether a state is entangled or not is, in general, not a simple problem. There are,
however, some sufficient conditions. Perhaps the most commonly used one for field modes is
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the one proved by Simon and by Duan, et al. [8, 9]. Consider a two-mode system in which the
annihilation operators for the modes are a and b. If a state satisfies the condition

[∆(xa + xb)]2 + [∆(pa − pb)]2 < 2, (5.13)

where xa = (a† + a)/
√

2, pa = i(a† − a)/
√

2 and similarly for xb and pb, then it is entangled.
A related criterion states that a state is entangled if [10]

[∆(xa + xb)]2[∆(pa − pb)]2 < 1. (5.14)

It should be noted that all of the quantities in these inequalities can be measured by using ho-
modyne detection, which means that these conditions can be used to determine whether fields
occurring in an experiment are entangled.

Let us prove the first of these conditions. We shall assume that the state is separable, and
show that the quantity on the left-hand side must be greater than or equal to 2. Hence, if this
quantity is less than 2, the state must be entangled. We start by writing

[∆(xa + xb)]2 + [∆(pa − pb)]2 =
∑

j

pj [〈(xa + xb)2〉j + 〈(pa − pb)2〉j ]

− 〈xa + xb〉2 − 〈pa − pb〉2, (5.15)

where expectation values with a subscript j are taken with respect to the density matrix ρ(j)
a ⊗ρ(j)

b .
This can be expressed as

[∆(xa + xb)]2 + [∆(pa − pb)]2 =
∑

j

pj [(∆xa)2j + (∆xb)2j + (∆pa)2j + (∆pb)2j ]

+
∑

j

pj [(〈xa〉j + 〈xb〉j)2 + (〈pa〉j − 〈pb〉j)2]

− 〈xa + xb〉2 − 〈pa − pb〉2. (5.16)

We now note that because [xa, pa] = 1 and [xb, pb] = 1, we have that ∆xa∆pa ≥ 1/2 and
∆xb∆pb ≥ 1/2. These relations imply that

(∆xa)2 + (∆pa)2 ≥ 1
(∆xb)2 + (∆pb)2 ≥ 1. (5.17)

We also have that the Schwarz inequality implies that

(
∑

j

pj)(
∑

j

pj〈xa + xb〉2j ) ≥ (
∑

j

pj〈xa + xb〉j)2, (5.18)

with a similar result for the momenta. These results, when substituted into Eq. (5.16) yield Eq.
(5.13).

Now let’s use this condition to study the entanglement of the state

|ψ〉 = c0|0〉+ c1a
†b†|0〉, (5.19)

where |c0|2 + |c1|2 = 1. This is the type of state that is produced, to lowest order in the inter-
action, by a parametric down converter. The field is either in the vacuum, with amplitude c0,
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or a pair of photons has been emitted, with amplitude c1. Typically, |c1| .| c0|. This state is
entangled as long as neither c0 = 0 or c1 = 0. Substituting this state into the left-hand side of
the inequality appearing in Eq. (5.13), we find

[∆(xa + xb)]2 + [∆(pa − pb)]2 = 2 + 2(2|c1|2 + c∗1c0 + c∗0c1). (5.20)

The right-hand side will be less than 2 if 2|c1|2 < −(c∗1c0 + c∗0c1), and this can certainly happen
when |c1| .| c0|, for example when c0 is real and positive, and c1 is real and negative. The
smallest value the right-hand side of the above equation can attain is 4 − 2

√
2, when c0 =

cos(π/8) and c1 = − sin(π/8). Therefore, we see that this condition can be used to demonstrate
that the light emerging from a parametric down converter is entangled.
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6 Linear medium without dispersion

We have seen how to quantize the electromagnetic field in free space, so let us now look at its
quantization in a linear medium for which there is no dispersion. This was treated for the case of
a homogeneous medium in a series of papers by Jauch and Watson [11] and was extended to the
case of a single dielectric interface by Carniglia and Mandel [12]. We shall follow the treatment
due to Glauber and Lewenstein, who considered a general inhomogeneous medium [13]. The
medium is described by a spatially varying dielectric function, ε(r) = ε0(1 + χ(1)(r)), where
χ(1)(r) is the linear polarizability of the medium, which we shall assume to be a scalar, i.e. we
are assuming that the medium is isotropic. The equations of motion for the fields are now

∇ ·D = 0 ∇×E = −∂B
∂t

∇ ·B = 0 ∇×B = µ0
∂D
∂t

, (6.1)

where D = ε(r)E. As in the case of the free-space theory, the basic field in the theory will be the
vector potential, and the electric and magnetic fields will be expressed in terms of it in the same
way (see Eq. (4.2)). Our gauge choice will, however, be different. We can still choose A0 = 0,
but the Coulomb gauge condition is modified. We now choose

∇ · [ε(r)A] = 0. (6.2)

These gauge conditions and the definitions of the electric and magnetic fields in terms of the
vector potential guarantee that the first three of the above equations are satisfied. The remaining
equation implies that the vector potential satisfies

µ0ε(r)
∂2A
∂t2

+∇× (∇×A) = 0. (6.3)

Our next task is to find the Lagrangian and Hamiltonian for this theory. The Lagrangian
density is given by replacing ε0 by ε(r) in the free-field Lagrangian density

L =
1
2
ε(r)E2 − 1

2µ0
B2. (6.4)

From this we find the canonical momentum

Πj =
∂L

∂(∂tAj)
= −Dj . (6.5)

Note that the canonical momentum is not the same as in the free theory. This will have conse-
quences when we get to the quantum theory, because it is the canonical momentum that appears
in the canonical commutation relations. Consequently, the free-space theory and the dielectric
theory will not have the same commutation relations. The Hamiltonian density is now

H =
3∑

j=1

(∂tAj)Πj − L =
1

2ε(r)
Π2 +

1
2µ0

(∇×A)2

=
1
2
ε(r)E2 +

1
2µ0

B2. (6.6)
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We shall quantize this theory by decomposing the fields in terms of modes and treating each
mode as a harmonic oscillator. The kth mode is given by

A(r, t) = e−iωktfk(r), (6.7)

where ∇ · [ε(r)fk(r)] = 0. The label k here does not denote the wave number of a mode as it
did in the free-field case; here it simply serves as an index to label the mode. It may be discrete
or it may be continuous, depending on the boundary conditions imposed on the mode functions.
Here we shall assume it is discrete. The functions fk(r) satisfy the equation

µ0ε(r)ω2
kfk −∇× (∇× fk) = 0, (6.8)

which follows from Eq. (6.3). These modes obey an orthogonality relation. To see this we first
define

gk(r) =
√

ε(r)fk(r), (6.9)

and note that gk satisfies the equation

µ0ω
2
kgk −

1√
ε(r)

∇×
(
∇× gk√

ε(r)

)
= 0. (6.10)

This implies that gk is the eigenfunction of an Hermitian operator, so that these functions, when
suitably normalized, satisfy

δk,k′ =
∫

d3rg∗k(r) · gk′(r) =
∫

d3rε(r)f∗k (r) · fk′(r). (6.11)

The functions gk are complete in the space of functions satisfying∇ · [
√

ε(r)g(r)] = 0. We can
use the functions fk(r) to define a distribution

δ(ε)
mn(r, r′) =

∑

k

fkm(r)f∗kn(r′), (6.12)

which, in the absence of a dielectric medium reduces to the transverse delta function.
We can now start the quantization procedure by expanding the vector potential in terms of

the mode functions fk

A(r, t) =
∑

k

Qk(t)fk(r), (6.13)

where the Qk are operators. The fact that A is an hermitian operator implies that
∑

k

Qk(t)fk(r) =
∑

k

Q†
k(t)f∗k (r), (6.14)

which, along with the orthogonality condition for the fk, implies that

Qk =
∑

k′

Q†
k′U

∗
k′k, (6.15)
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where the matrix U∗
k′k is defined by

U∗
k′k =

∫
d3rε(r)f∗k′(r)f

∗
k (r). (6.16)

This matrix is clearly symmetric, U∗
k′k = U∗

kk′ , and also satisfies
∑

k′

Ukk′U
∗
k′′k′ = δk,k′′ . (6.17)

Finally, U∗
k′k = 0 unless k and k′ correspond to modes of the same energy, because modes

corresponding to solutions of Eq. (6.8) with different values of ωk are orthogonal. We can also
expand the canonical momentum in terms of the modes

Π(r, t) =
∑

k

Pk(t)ε(r)f∗k (r), (6.18)

where, as before, the Pk are operators. The factor of ε(r) is necessary so that Π satisfies∇ ·Π =
−∇ ·D = 0. The fact that Π is hermitian and the orthogonality relation for the fk imply that

P †
k =

∑

k′

Pk′U
∗
k′k. (6.19)

We can now insert these expressions into the Hamiltonian. We find, making use of the prop-
erties of Uk′k, that

∫
d3r

1
2ε(r)

Π2 =
1
2

∑

k

P †
kPk. (6.20)

The second term in the Hamiltonian requires more work. We have

1
2µ0

∫
d3r(∇×A)2 =

1
2µ0

∫
d3r

∑

k

∑

k′

QkQk′(∇× fk) · (∇× fk′)

=
1

2µ0

∑

k

∑

k′

QkQk′

∫
d3rfk ·∇× (∇× fk′)

=
1

2µ0

∑

k

∑

k′

µ0ω
2
k′Ukk′QkQk′ , (6.21)

where use has been made of Eq. (6.8). Finally, we can make use of the properties of Ukk′ to give

1
2µ0

∫
d3r(∇×A)2 =

1
2

∑

k

ω2
kQ†

kQk, (6.22)

so that the entire Hamiltonian is

H =
1
2

∑

k

(P †
kPk + ω2

kQ†
kQk). (6.23)

If we now impose the equal-time commutation relations

[Qk, Qk′ ] = [Q†
k, Q†

k′ ] = [Qk, Q†
k′ ] = 0 (6.24)
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[Pk, Pk′ ] = [P †
k , P †

k′ ] = [Pk, P †
k′ ] = 0 (6.25)

[Qk, Pk′ ] = ih̄δk,k′ , (6.26)

then the resulting Heisenberg equations of motion are identical to the Maxwell equations. If we
express P †

k in terms of Pk, we obtain one final commutation relation

[Qk, P †
k′ ] = ih̄U∗

kk′ . (6.27)

These commutation relations then give us the equal-time commutation relation between the vec-
tor potential and its canonical momentum

[Am(r, t),Πn(r′, t)] = −[Am(r, t), Dn(r′, t)] = ih̄δ(ε)
mn(r, r′). (6.28)

Note that these are not the free-space commutation relations.
Next, we would like to define annihilation and creation operators for the modes, fk(r), and

then express the fields in terms of them. These operators should satisfy the commutation relations

[ak, a†k′ ] = δk,k′ [ak, ak′ ] = 0. (6.29)

We begin by assuming that

ak = αkQk + βkP †
k , (6.30)

where αk and βk are constants to be determined. We will assume, however, that they only depend
on k through the frequecy, ωk, that is, if ωk = ωk′ , then αk = αk′ and βk = βk′ . By making use
of the commutation relations for Qk, Pk, and their adjoints, we then find

[ak, a†k′ ] = ih̄(αkβ∗k − α∗kβk)δk,k′ (6.31)

so that we must have

ih̄(αkβ∗k − α∗kβk) = 1. (6.32)

We also find that

[ak, ak′ ] = ih̄(αkβk′U
∗
kk′ − αk′βkU∗

kk′). (6.33)

Because Ukk′ vanishes unless ωk = ωk′ , and αk and βk only depend on k through ωk, the right-
hand side of the above equation vanishes. Our next step is to express Qk and Pk in terms of the
creation and annihilation operators. If we take the adjoint of Eq. (6.30), multiply by U∗

k′k and
sum over k′, we find

∑

k′

U∗
k′ka†k′ =

∑

k′

U∗
k′k(α∗k′Q

†
k′ + β∗k′Pk′)

= α∗kQk + β∗kP †
k , (6.34)

where we have again made use of the fact that Ukk′ vanishes unless ωk = ωk′ , and αk and βk

only depend on k through ωk. We can solve the above equation and Eq. (6.30) for Qk and P †
k ,

and then take the adjoint to find Pk. This gives us

Qk = ih̄(β∗kak − βk

∑

k′

U∗
k′ka†k′)

Pk = ih̄(αka†k − α∗k
∑

k′

Uk′kak′). (6.35)
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These expressions can now be inserted into the equations for A and D. Choosing

αk =
(ωk

2h̄

)1/2
βk = i

(
1

2h̄ωk

)1/2

, (6.36)

we find that

A(r, t) =
∑

k

(
h̄

2ωk

)1/2

[akfk(r) + a†kf
∗
k (r)]

D(r, t) = iε(r)
∑

k

(
h̄ωk

2

)1/2

[akfk(r)− a†kf
∗
k (r)]. (6.37)

Finally, the expressions for Qk and Pk in terms of the creations and annihilation operators can
be inserted into the Hamiltonian, yielding

H =
1
2

∑

k

h̄ωk(a†kak + aka†k)

=
∑

k

h̄ωka†kak + C(ε), (6.38)

where C(ε) is a formally infinite constant, which can be dropped.
This theory can be used to study how the quantum properties of a field scattered by a di-

electric medium change. We are interested in it here as an example of a situation in which the
quantization procedure is different than it is in free space. As we have noted, the canonical
momentum for the theory with a dielectric is different from that without one, and this has con-
sequences for the commutation relations of the theory. In this case, the commutation relations
depend not just upon the presence of a dielectric medium but on the spatial dependence of the
polarizability as well.
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7 Phenomenological models

Before jumping in and quantizing the electromagnetic field in a nonlinear dielectric, it is useful
to study some highly simplified models to get an idea of some of the phenomena that can result.
Our models will be described by Hamiltonians that couple several modes either to themselves or
to each other. We will not derive these Hamiltonians in this section, but merely give plausibility
arguments as to why they look as they do. These Hamiltonians underlie most of the work that
has been done on the quantum theory of nonlinear optics.

7.1 χ(2) interactions

Let us start with a two-mode interaction. One mode, whose creation and annihilation operators
are a† and a, has a frequency of ω, and the second, whose creation and annihilation operators are
b† and b,, has a frequency of 2ω. The χ(2) term in the series expansion of the polarization of the
nonlinear medium yields a polarization that is quadratic in the electric field, and this polarization
couples back to the electric field, giving an interaction that is cubic in the field. This suggests a
Hamiltonian of the form

H = h̄ωa†a + 2h̄ωb†b + h̄κ[(a†)2b + a2b†]. (7.1)

The first two terms comprise the free-field Hamiltonian of the two modes, and the term pro-
portional to κ, which is itself proportional to χ(2), describes the interaction. We have only
kept slowly-varying terms in the interaction. In the absence of an interaction, we have that
a(t) = e−iωta(0) and b(t) = e−2iωtb(0). Because the interaction is weak, we expect that it
will still be the case that, even in the presence of the interaction, a(t) will be approximately
proportional to e−iωt and b(t) will be approximately proportional to e−2iωt. If we now con-
sider terms that are cubic in the creation and annihilation operators of the two modes, the only
slowly varying ones are the terms we have kept in the interaction part of the Hamiltonian. The
slowly-varying terms should give the dominant behavior in the dynamics; the remaining terms
are rapidly oscillating and their effect will wash out.

The interaction in the Hamiltonian can do two things. It can combine two a photons into a
b photon, and it can split one b photon into two a photons. Consequently, it can describe two
processes. The first is parametric down conversion, In which a pump at frequency 2ω, produces a
subharmonic (also called the signal) at frequency ω. The second is second harmonic generation,
in which a strong field a frequency ω produces its second harmonic at frequency 2ω.

Let us look at parametric down conversion first. In doing so, we are immediately faced
with a problem, we cannot solve the Heisenberg equations of motion resulting from the above
Hamiltonian. In order to get around this problem, an additional approximation is introduced, the
parametric approximation. We assume that the pump field is in a large-amplitude coherent state,
in particular the state |β〉, and that it can be replaced by a time-dependent c-number. This gives
us the single-mode Hamiltonian

H = h̄ωa†a + h̄κ[βe−2iωt(a†)2 + β∗e2iωta2]. (7.2)

The solution of the Heisenberg equations for this Hamiltonian is straightforward. We find
that

da

dt
=

i

h̄
[H, a] = −i(ωa + 2κβe−2iωta†). (7.3)
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Setting a(t) = A(t)e−iωt, we obtain the simpler equation

dA

dt
= −2iκβA†, (7.4)

which has the solution

A(t) = A(0) cosh(2|β|κt)− ieiφA†(0) sinh(2|β|κt), (7.5)

where we have expressed β as β = |β|eiφ.
Let us now consider the case φ = π/2 and define the field quadrature components

X1(t) =
1
2
(A(t) + A†(t)) X2(t) =

i

2
(A†(t)−A(t)). (7.6)

We then find that

X1(t) = e2|β|κtX1(0) X2(t) = e−2|β|κtX2(0). (7.7)

Therefore, the parametric down converter amplifies the X1 quadrature, and it attenuates the
X2 quadrature. If the input state to the a mode is a coherent state, |α〉, then if α is real
then 〈A(t)〉 = α exp(2|β|κt), and the input is amplified. If, however, α is imaginary, then
〈A(t)〉 = α exp(−2|β|κt), and the input is attenuated. This is an example of phase-sensitive
amplification.

We can also look at the fluctuations in the output of the down converter. The uncertainties in
X1 and X2 obey the uncertainty relation

(∆X1)(∆X2) ≥
1
4
. (7.8)

A state that satisfies the the uncertainty relation as an equality is called a minimum uncertainty
state. Suppose we start the down-converter in the vacuum state. We then find that ∆X1(0) =
∆X2(0) = 1/2 and

∆X1(t) =
1
2
e2|β|κt ∆X2(t) =

1
2
e−2|β|κt. (7.9)

Therefore, the state that results from the vacuum state is a minimum uncertainty state. If the
uncertainty in one of the quadratures of a state is less than 1/2, it is called a squeezed state, and
its fluctuations in the squeezed quadrature are less than the fluctuations in either quadrature in the
vacuum state. What comes out of the output of a down converter when the input is the vacuum
state, then, is a squeezed, minimum-uncertainty state, and this state is known as a squeezed
vacuum state. This was first pointed out by David Stoler [14].

Squeezed states have a number of uses. They can be used for highly accurate measurements.
For example, we might wish to detect a signal by observing the shift in the amplitude of a
coherent state, i.e. |α〉 → |α + δα〉. This would be the case if we were trying to detect a phase
shift in an interferometer using a coherent state as an input state. For a coherent state, as for the
vacuum, we have ∆X1(0) = ∆X2(0) = 1/2, and X1(0) corresponds to the real part of α and
X2(0) to its imaginary part. Consequently, we can only determine δα to an accuracy of 1/2. If
we use a squeezed state, however, and we are only interested in determining the change in the
X2 component, then we can measure it to an accuracy of (1/2) exp(−2|β|κt). It has been shown



32 An Introduction to the Quantum Theory of Nonlinear Optics

that the use of squeezed states in an interferometer can significantly improve its ability to detect
small phase changes. Squeezed states have, more recently, found a number of applications in the
field of quantum information.

Now let us return to the Hamiltonian in Eq. (7.1). We shall have more to say about the
parametric approximation shorlty. While we cannot solve the equations of motion resulting from
this Hamiltonian, we can make some statements about the states that are produced. This is
because the Hamiltonian obeys a conservation law, in particular, it commutes with the operator

M = n̂a + 2n̂b, (7.10)

so that M is a conserved quantity. One immediate consequence of this is a simple relation
between the number of photons in the a mode and the number in the b mode

〈M(0)〉 = 2〈n̂b(t)〉+ 〈n̂a(t)〉, (7.11)

where, it should be noted, the left-hand side requires only knowledge of the initial state of the
system.

If we work harder we can find a relation between the photon number fluctuations in the two
modes [15]. Using Eq. (7.10) and its square we find

[∆M(0)]2 = 4[∆nb(t)]2 + [∆na(t)]2

+ 4[〈n̂a(t)n̂b(t)〉 − 〈n̂a(t)〉〈n̂b(t)〉]. (7.12)

The Schwarz inequality implies that

|〈(n̂a − 〈n̂a〉)(n̂b − 〈n̂b〉)〉| ≤ ∆na∆nb, (7.13)

where we have dropped the time argument for simplicity. Substituting the previous equation into
this one gives

− 4∆na∆nb ≤ (∆M)2 − 4(∆nb)2 − (∆na)2 ≤ 4∆na∆nb, (7.14)

which implies the two inequalities

∆M(0) ≤ 2∆nb(t) + ∆na(t)
∆M(0) ≥ |2∆nb(t)−∆na(t)|. (7.15)

Finally, these can be combined to give

2∆nb(t) + ∆M(0) ≥ ∆na(t) ≥ |2∆nb(t)−∆M(0)|, (7.16)

which gives us the desired relation between the number fluctuations.
This relation is easiest to interpret if both the a and b modes are initially in number states.

This implies that ∆M(0) = 0 which in turn tells us that ∆na(t) = 2∆nb(t). If ∆M(0) is small
but not zero, for example if the signal mode is initially in the vacuum and the photon statistics of
the pump are highly sub-Poissonian, then this relation will be approximately true. Under these
conditions, even without solving for the detailed dynamics, we can conclude that the number
fluctuations in the signal are roughly twice those in the pump.
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We can also use the conservation law to determine whether the signal-mode state is nonclas-
sical [16]. As was discussed earlier, any single-mode state, pure or mixed, can be represented in
the form

ρ =
∫

d2αP (α)|α〉〈α|, (7.17)

where P (α) is the Glauber-Sudarshan P representation. If P (α) has the properties of a proba-
bility distribution, i.e. it is positive and while it may contain delta functions, it does not contain
their derivatives, then we call the resulting state classical. A state that is not classical is called
nonclassical.

Now let us return to the examination of the states produced by our Hamiltonian, and first give
a short argument as to why the states it produces are nonclassical. More detail will be provided
shortly. Consider the case in which at t = 0 the pump mode is in an arbitrary state and the signal
mode is in the vacuum. Because every photon which disappears from the pump produces two
photons in the signal, only signal-mode number states with even photon numbers are populated.
Such a state cannot be classical unless it is the vacuum state. As a result, if the signal mode state
has photons in it, then it is nonclassical.

Now let us look at this argument in more detail. First we need to show that a state with
only even photon numbers is either the vacuum or nonclassical. To that end define the projection
operators

Qo =
∞∑

n=0

|2n + 1〉〈2n + 1|

Q′
e =

∞∑

n=1

|2n〉〈2n|. (7.18)

The operator Qo projects onto the space of odd photon number states and Q′
e projects onto the

space which includes all even photon number states except the vacuum. Representing the state
of the field in terms of a P representation, we find

〈Qo〉 − 〈Q′
e〉 =

∫
d2αP (α)e−|α|2(1 + sinh |α|2 − cosh |α|2). (7.19)

Now if the state is classical, i. e. P (α) ≥ 0, then the right-hand side of Eq. (7.19) is nonnegative
and

〈Qo〉 ≥ 〈Q′
e〉. (7.20)

If this condition is violated the state is nonclassical. If a state contains only even photon numbers
then 〈Qo〉 = 0 so that it is nonclassical if 〈Q′

e〉 > 0. Therefore, if a state contains only even
photon numbers it is either the vacuum (〈Q′

e〉 = 0) or it is nonclassical.
We now need to show that a signal-mode state containing only even photon numbers is pro-

duced. In order to do this we need to show that a〈na|ρa|na〉a is zero unless na is even, where
ρa is the reduced density matrix of the signal mode. We begin by noting that if

|Ψ(t)〉 = U(t)|0〉a ⊗ |ψb〉b, (7.21)
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where U(t) is the time development transformation, then, because [M,H] = 0, we have

eiπM |Ψ(t)〉 = U(t)eiπM |0〉a ⊗ |ψb〉b = U(t)|0〉a ⊗ e2πin̂b |ψb〉b. (7.22)

The operator exp(2πin̂b) is just the identity operator on the b mode as can be seen immediately
by considering its action on number states. Eq. (7.22) can now be expressed as

eiπn̂a |Ψ(t)〉 = |Ψ(t)〉, (7.23)

which implies that

eiπn̂aρa(t) = ρa(t). (7.24)

Taking the expectation of both sides of this equation in the number state |na〉a gives

(−1)na
a〈na|ρa(t)|na〉a = a〈na|ρa(t)|na〉a. (7.25)

This implies that a〈na|ρa(t)|na〉a = 0 if na is odd, that is only even photon numbers are present
in the signal-mode state. This completes our proof, and shows that if the number of photons in
the signal is greater than zero the signal is in a nonclassical state.

It is also possible to show that second harmonic generation, which is described by the same
Hamitonian, will produce nonclassical states [16]. In this case one starts from the state |α〉a|0〉b,
i. e. a coherent state in the a mode and the vacuum in the b mode. The basic idea is that it takes
two a-mode photons to produce one b-mode photon. Consequently, the number distribution of
the b mode is more concentrated near zero than that of the a mode. It is sufficiently concentrated,
in fact, to be nonlcassical. The argument which shows this in detail will not be reproduced here,
but it leads to the result that the b mode is either in the vacuum state or nonclassical.

A final property which can be deduced from the conservation law is the relation between
the rotational symmetries in phase space of the initial pump state and the signal-mode state. As
we shall see the signal-mode state has twice the rotational symmetry of the pump state. This is
perhaps best illustrated by means of an example. Suppose that the pump is initially in a coherent
state, |β〉b and the signal is in the vacuum state. The pump state can be represented as a point
in the complex plane (the b-mode phase space) located at β surrounded by a circle of radius
1/2. The circle represents the fluctuations in the real and imaginary parts of the field amplitude,
which correspond to the operators X1b = (b† + b)/2 and X2b = i(b† − b)/2, respectively. For
a coherent state the fluctuations are the same in both (and, in fact, all) directions. If this state
is rotated about the origin by an angle of 2π it is mapped back into itself (as is any state). On
the other hand, the signal-mode state, because it has twice the symmetry of the pump state, is
invariant under a rotation by π. This is consistent with our knowledge of the results from the
parametric approximation. In that case a pump mode is a strong coherent state produces a signal
mode in a squeezed vacuum state. This state is represented in our two-dimensional phase space
as an ellipse centered at the origin; a state which is invariant under a rotation by π.

In order to prove these assertions let us first define the operators

Ua(θ) = eiθn̂a Ub(θ) = eiθn̂b UM (θ) = eiθM/2 = Ua(θ/2)Ub(θ). (7.26)

The initial state of the system is assumed to be |Ψ〉 = |0〉a|ψb〉b where

Ub(2π/n)|ψb〉b = eiφ|ψb〉b, (7.27)
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that is, a rotation by 2π/n maps |ψb〉b into itself multiplied by a phase factor. This implies that

UM (2π/n)U(t)|Ψ〉 = U(t)UM (2π/n)|Ψ〉 = eiφU(t)|Ψ〉. (7.28)

From this we find

b〈nb|U(t)|Ψ〉〈Ψ|U−1(t)|nb〉b = b〈nb|UM (2π/n)U(t)|Ψ〉
〈Ψ|U−1(t)U−1

M (2π/n)|nb〉b
= Ua(π/n) b〈nb|U(t)|Ψ〉

〈Ψ|U−1(t)|nb〉bU−1
a (π/n). (7.29)

Summing both sides over nb we obtain

ρa(t) = Ua(π/n)ρa(t)U−1
a (π/n), (7.30)

i. e. the a-mode state is invariant under a rotation by π/n. Summarizing we can say that if at
t = 0 the signal mode is in the vacuum state and the pump-mode state is invariant under a rotation
by 2π/n, then at any time the signal-mode state is invariant under a rotation by π/n.

This result implies that if the pump mode is initially in a squeezed vacuum state (invariant
under a rotation by π), then the signal will be invariant under a rotation by π/2. This suggests
that in phase space the signal mode state will have a 4-pronged structure. This has been verified
by numerical calculations of the Wigner function of the signal-mode state which clearly shows 4
prongs and a 4-fold rotational symmetry [17].

There is also a three-mode version of the process we have been considering. Its Hamiltonian
is given by

H = h̄ωc†c + h̄ω1a
†a + h̄ω2b

†b + h̄κ(c†ab + ca†b†), (7.31)

where c, a, and b are the annihilation operators of the pump, signal and idler modes, respectively,
and ω = ω1 + ω2. This Hamiltonian can describe parametric amplification or sum-frequency
generation. In parametric amplification the pump mode is in a large-amplitude coherent state (the
parametric approximation is usually employed) and strong correlations are produced between
the signal and idler modes. These highly correlated two-mode states have found application in
quantum information. For sum-frequency generation, the a and b modes are initially excited, and
they give rise to photons in the c mode whose frequency is the sum of those in the a and b modes.
In this case the two operators

M1 = n̂a − n̂b M2 = 2n̂c + n̂a + n̂b, (7.32)

or any linear combination of them, commute with H . As in the degenerate case we can find
a relation between the number fluctuations in the pump and those in either of the other two
modes [18]. We find that

∆nc(t) + ∆K1(0) ≥ ∆na(t) ≥ |∆nc(t)−∆K1(0)|
∆nc(t) + ∆K2(0) ≥ ∆nb(t) ≥ |∆nc(t)−∆K2(0)|, (7.33)

where

K1 =
1
2
(M1 + M2) = n̂c + n̂a

K2 =
1
2
(M2 −M1) = n̂c + n̂b. (7.34)
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These relations are most useful when ∆K1(0) and ∆K2(0) are small. For example, this will
occur if the signal and idler modes are initially in their vacuum states and the pump is in a highly
sub-Poissonian state.

In the nondegenerate case it is also possible to find a relation between the number fluctuations
of the a and b modes. We have

∆M1(0) ≥ |∆na(t)−∆nb(t)|. (7.35)

If ∆M1(0) is small, then the number fluctuations in the signal and idler are similar. If both
modes start in the vacuum state, then ∆M1(0) = 0 and ∆na(t) = ∆nb(t). This conclusion is
independent of the initial pump state.

We can also use the fact that M1 is conserved to show that if the signal and idler modes
are initially in the vacuum state, then at later times the signal-idler state is either the vacuum or
nonclassical. This follows from the fact that a two-mode state is nonclassical if

〈(n̂a(t)− n̂b(t))2〉 − 〈n̂a(t)− n̂b(t)〉2 < 〈n̂a(t)〉+ 〈n̂b(t)〉. (7.36)

If the a and b modes are originally in the vacuum state the left-hand side of Eq. (7.36) will be
zero at t = 0, and the fact that [M1,H] = 0 implies that it will be zero for all time. Therefore,
if either 〈n̂a(t)〉 or 〈n̂b(t)〉 is greater than zero the signal-idler state will be nonclassical. The
reason for this is that the number of photons in the two modes is highly correlated. For example,
if we measure the photon number in one mode we immediately know what it is in the other.
Correlations which are this strong are not permitted classically. These correlations have been
observed experimentally in both a cw, oscillator configuration [19] and in a pulsed, amplifier
configuration [20].

7.2 χ(3) interactions

Perhaps the most common phenomenon to arise out of a χ(3) nonlinearity is that of the intensity-
dependent refractive index. In a medium of this type, the refractive index consists of two terms,
the first is constant, and is just the usual linear index of refraction, while the second is pro-
portional to the intensity of the field. In the case of a single mode, this leads to the quantum
mechanical Hamiltonian

H1 = h̄ωa†a +
h̄κ

2
(a†)2a2, (7.37)

and in the case of two modes,

H2 = h̄ω1a
†a + h̄ω2b

†b +
h̄κ

2
a†b†ab, (7.38)

where, in both cases, κ is proportional to χ(3).
In order to see what types of effects these Hamiltonians give rise to, let us first consider the

second one and see how an initial state that is a product of a coherent state in the a mode and a
number state in the b mode evolves. We have that

|ψ(t)〉 = e−itH2/h̄|α〉a|n〉b
= e−inω2te−it[ω1+(nκ/2)]a†a|α〉a|n〉b
= e−inω2t|α(t)〉a|n〉b, (7.39)
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where α(t) = exp{−it[ω1 + (nκ/2)]}α. Therefore, we see that for times greater than zero, we
still have the product of a coherent state and a number state, but the phase of the coherent state
has changed, and the amount of the change is proportional to the number of photons initially
in the b mode. If we measure the phase shift in the a mode, which could be done by means of
an interferometer, then we can determine the number of photons in the b mode. Note also that
the state of the b mode is not affected by this measurement. This represents what is known as a
quantum nondemolition measurement of photon number [21].

Let us now see what happens when we use the single-mode Hamiltonian to evolve a state that
is initially a coherent state. We have that

|ψ(t)〉 = e−itH1/h̄|α〉 = e−|α|2/2
∞∑

n=0

αn

n!
e−it(nω+n(n−1)(κ/2))|n〉. (7.40)

We can use this to calculate the expectation value of the annihilation operator, which corresponds
to the complex amplitude of the field,

〈ψ(t)|a|ψ(t)〉 = αe−iωt exp[−|α|2(1− e−iκt)]
∼= αe−it(ω+κ|α|2)e−(κt|α|)2/2. (7.41)

Note that the nonlinear interaction leads to an additional phase, which is proportional to |α|2,
and, at longer times, causes the magnitude of the complex amplitude to decay. This is a result
of the fact that the different number-state components of the coherent state pick up different
phases as the state evolves and this causes the overall phase uncertainty of the state to increase.
That means that when adding the contributions of the different number state components to form
the complex amplitude, there is some cancellation because of the different phases. Because the
number operator commutes with the Hamiltonian, the expectation of the number operator, and
of its moments, is not affected by the time evolution.

If we combine the state in Eq. (7.40) with a coherent state at a beam splitter, we can produce
another kind of nonclassical field state, one with sub-Poissonian photon statistics [22]. We recall
that the photon statistics of a single-mode field are sub-Poissonian if (∆na)2 < 〈n̂a〉, and that
such a state is nonclassical.

The next thing we need to do is describe how a beam splitter works. There are two input
modes, with annihilation operators ain and bin, and two output modes, with annihilation opera-
tors aout and bout. The operators are related by

aout =
√

Tain +
√

Rbin

bout = −
√

Rain +
√

Tbin, (7.42)

where T and R are the transmissivity and reflectivity of the beam splitter, respectively. If T = 1
the input and output modes are the same, corresponding to complete transmission, and if T = 0,
the input and output modes are interchanged, with appropriate phase shifts, corresponding to
complete reflection. In our case, the input state in the a mode will be the state in Eq. (7.40) and
the input state in the b mode will be a coherent state with amplitude βe−iωt. We shall drop the
e−iωt factors in what follows, because they cancel for the quantities we are calculating. We shall
also be interested in the case in which T is close to one and |β| is large, with

√
Rβ = ξ. Making
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these substitutions, we find that in the aout output mode

(∆na)2out − 〈n̂aout〉 = 2[ξ〈(a†)2a〉+ ξ∗〈a†a2〉 − |α|2(ξ〈a†〉+ ξ∗〈a〉)]
+ ξ2〈(a†)2〉+ (ξ∗)2〈a2〉 − ξ2〈a†〉2 − (ξ∗)2〈a〉2

+ 2|ξ|2(|α|2 − |〈a〉|2), (7.43)

where the expectation values without subscripts, i.e. the ones on the right-hand side of the equa-
tion, are expectation values of the in operators, that is the operators at the input to the beam
splitter. These are just expectation values in the state in Eq. (7.40). Setting φ = κt and, again
neglecting the e−iωt factors, we find that

〈a2〉 = α2e−iφe−2|α|2(iφ+φ2)

〈(a†)2a〉 = (α∗)2αeiφe|α|2(iφ−φ2/2). (7.44)

Now set α = |α|eiθ, ξ = reiη, and assume that φ . 1, |α| 0 1, and φ|α| is of order one.
Making these substitutions, we find that

(∆na)2out − 〈n̂aout〉 = −4rφ|α|3e−(|α|φ)2/2 sin(η − θ + |α|2φ)

2r2|α|2(1− e−(|α|φ)2){1
−e−(|α|φ)2 cos[2(η − θ + |α|2φ)]}. (7.45)

Finally, setting η − θ + |α|2φ = π/2 and minimizing with respect to r, we find

(∆na)2out − 〈n̂aout〉 = −2|α|3φe−(|α|φ)2

1− e−2(|α|φ)2
. (7.46)

We see, then, that using this scheme of mixing the output from a χ(3) medium with an appropri-
ately chosen coherent state at a beam splitter, we can create a field whose photon statistics are
significantly sub-Poissonian. We note that the right-hand side of the above equation is compara-
ble to the expectation value of the photon number in the aout mode, which is just

〈n̂aout〉 = |α|2 +
|α|φe−(|α|φ)2/2

1− e−2(|α|φ)2
. (7.47)

This is yet another illustration of the fact that nonlinear media provide good ways to generate
nonclassical states of the electromagnetic field.

7.3 Parametric Approximation

As we have seen, if one of the coupled modes we are considering is initially in a highly excited
coherent state, we can assume that, at least for a certain period of time, it will act like a classical
field. To this end, we can replace the operators for this field in the Hamiltonian by c-numbers.
This is the parametric approximation. Once this is done we can solve the problem exactly, if the
interaction is the result of a χ(2) nonlinearity, because the equations of motion for the remaining
operators are linear. Because this approximation is both important and so often employed, we
would now like to enquire into its history and justification.
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The parametric approximation was born at the same time as the quantum mechanical study
of parametric processes. In their 1961 paper Louisell, Yariv, and Siegman considered a model
of a parametric amplifier consisting of two modes of the electromagnetic field (the signal and
the idler) coupled by a medium with an oscillating dielectric constant [23]. The modulation
of the dielectric constant occurs at a frequency which is the sum of the frequencies of the two
modes, and it is assumed that this modulation can be described classically. This led them to the
Hamiltonian

H = h̄ω1a
†a + h̄ω2b

†b + h̄(ξ∗eiωtab + ξe−iωta†b†), (7.48)

where a and b are the annihilation operators of the two modes, ω = ω1 + ω2, and |ξ| is pro-
portional to the amplitude of the modulation of the dielectric constant. They used this model to
study the quantum noise properties of the parametric amplification process [23, 24].

Mollow and Glauber were the next to analyse the parametric amplifier [25, 26]. They em-
phasized that the oscillating dielectric constant of Louisell, Yariv, and Siegman is the result of an
intense light wave in a nonlinear dielectric. They used the Hamiltonian in the previous paragraph
and concentrated their attention on the one-and two-mode P representations of the signal and the
idler. They found that if one of the modes starts in a finite-temperature thermal state, then the
other mode, no matter what its initial state, will become classical after a sufficient period of time.
The situation with the two-mode P function is the opposite; two mode states which are initially
classical can remain so for only a finite period of time.

The intense interest in squeezing in the 1980’s led to a renewal of work on the parametric
amplifier. As we have seen, the degenerate parametric amplifier produces minimum uncertainty
squeezed states. In the parametric approximation the amount of squeezing which can be obtained
is arbitrarily large; one only need wait long enough. This, however, was clearly an artifact of the
parametric approximation. At long enough times the dynamical and quantum mechanical aspects
of the pump, both of which are ignored in this approximation, will play a role. It became obvious
that it would be necessary to go beyond the parametric approximation to determine how much
squeezing is possible.

The first calculation to accomplish this was done by Hillery and Zubairy using a path-integral
technique [27, 28]. This was shortly followed by another, done by Scharf and Walls, using an
aymptotic method developed by Scharf [29]. The two results coud not be immediately compared
because one treated the degenerate parametric amplifier (Hillery and Zubairy) and the other the
nondegenerate case (Scharf and Walls). The next step was taken by Crouch and Braunstein who
developed two additional techniques for calculating corrections to the parametric approximation
and used them to find the maximum amount of squeezing [30]. One method was based on an
iterative solution to the Heisenberg equations of motion in which only dominant terms are kept.
The solution is expressed as a series in powers of 1/

√
Np, where Np is the number of pho-

tons in the pump. Using numerical techniques they were able to calculate the complete result
(dominant terms and corrections to them) for the quadrature variances up to order 1/N2

p . The
dominant term method has since been extended and refined by Cohen and Braunstein [31]. In
addition, Crouch and Braunstein developed a technique, based on the work of Drummond and
Gardiner [32], which makes use of a description of quantum systems based on Ito stochastic dif-
ferential equations. They found the sets of equations for both the degenerate and nondegenerate
parametric amplifiers, found approximate solutions to them (again using an iterative approach),
and used them to calculate corrections to the parametric approximation.
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Crouch and Braunstein also compared the solutions found by different methods. The results
from all of them were the same except those found by Scharf and Walls. They concluded that this
result is not correct. Subsequent numerical calculations by Kinsler, Fernee, and Drummond [33]
and the work of Cohen and Braunstein [31] has lent further support to this conclusion.

More recently the parametric approximation has been extended to cover pumps which are
not in coherent states [31, 34, 35]. In particular, pumps which have a large coherent amplitude
but are squeezed so that their phase fluctuations are reduced have been treated. In the degener-
ate parametric amplifier, it was expected that phase squeezing of the pump would enhance the
squeezing of the signal. For a coherent state pump, it is the phase fluctuations in the pump that
are responsible for the limit on the amount of signal-mode squeezing. If these fluctuations are
reduced, the squeezing should increase. Within the parametric approximation, however, it was
found that for the pump squeezing to have any effect it had to be so large that it actually pro-
duced a degradation of signal- mode squeezing. This paradoxical result is a consequence of the
fact that the amplitude fluctuations of the pump become so large that its error ellipse overlaps the
origin [31]. This means that if most of the pump has a phase of φ, there is a part of it which has
a phase of φ + π. This latter part enhances the signal-mode fluctuations in the direction in which
the rest of the pump is squeezing them, which reduces the overall squeezing effect [31, 34]. If
corrections to the parametric approximation are included, then the situation is improved [31].
The maximum amount of signal-mode squeezing is increased by moderate phase squeezing of
the pump.

Now let us look at corrections to the parametric approximation for the degenerate parametric
amplifier in more detail. Following Crouch and Braunstein we take for the interaction Hamilto-
nian (this is equivalent to the Hamiltonian we have been using with a redefinition of the coupling
constant and pump phase)

H = i
h̄κ

2
[b(a†)2 − b†a2]. (7.49)

Note that by using the interaction part of the Hamiltonian as the full Hamiltonian, we are ne-
glecting the part of the evolution due to the free field part of the full Hamiltonian. We will be
using this Hamiltonian to find equations of motion for the creation and annihilation operators,
and neglecting the free field Hamiltonian simply means that we are solving for the slowly vary-
ing behavior of these operators, that is, in the notation of the previous subsection, we are solving
for A(t) instead of a(t). If the pump mode is in a large-amplitude coherent state with amplitude
β =

√
Np exp(iφp) we make the parametric approximation by replacing b and b† in H by β and

β∗, respectively, to give

Hp = i
h̄κ

2
√

Np[eiφp(a†)2 − e−iφpa2]. (7.50)

The equations of motion for a and a† which follow from Hp are

da

dt
= κ

√
Npe

iφpa†
da†

dt
= κ

√
Npe

−iφpa. (7.51)

and are easily solved to give

a(t) = a(0) cosh u + a†(0)eiφp sinhu, (7.52)
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where u = κ
√

Npt. This solution, and its adjoint, allow us to find the properties of the signal as
a function of time. In particular, if we define the quadrature operators

X1a =
1
2
(a† + a) X2a =

i

2
(a† − a), (7.53)

and start at t = 0 with the signal mode in the vacuum state, we find

(∆X1a)2 =
1
4
e2u cos2(φp/2) +

1
4
e−2u sin2(φp/2) (7.54)

(∆X2a)2 =
1
4
e−2u cos2(φp/2) +

1
4
e2u sin2(φp/2). (7.55)

Note that if φp = 0, then ∆X1a(u) grows exponentially with time and ∆X2a(u) decreases
exponentially with time thereby becoming squeezed.

At this level of approximation there is no limit to how much squeezing in the X2a direction
is possible. There are two effects, however, which have been neglected in the parametric approx-
imation which will enforce a limit. The first is pump depletion. In replacing the pump mode
operators by c-numbers the parametric approximation assumes that the amplitude of the pump
remains constant. This is not a bad approximation for small times, but it gets worse as time
progresses. The second effect which has been ignored is pump fluctuations. Wodkiewicz and
Zubairy showed that phase fluctuations in a classical pump can limit the amount of squeezing
which will be produced [36]. Even if classical fluctuations can be eliminated, however, there will
still be quantum fluctuations in the pump field that will affect signal-mode squeezing.

In order to estimate the the effect of pump phase fluctuations we present an argument due to
Crouch and Braunstein [30]. Let us assume that the pump is initially in a coherent state with a
large, real amplitude

√
Np. The mean phase of the pump in this state is zero and

(∆φp)2 = 〈φ2
p〉 =

1
4Np

. (7.56)

If the pump phase were exactly zero, we see from Eq. (7.54) that ∆X2a would be perfectly
squeezed. The pump phase fluctuations, however, cause the squeezing direction to fluctuate with
the consequence that some of the amplified noise is mixed into ∆X2a. In order to find out how
much we use the fact that the phase fluctuations are small to replace, in Eq. (7.54), cos2(φp) by
1 and sin2(φp) by φ2

p. We then use Eq. (7.56) to average over the phase noise in the pump to
obtain

[∆X2a(u)]2 ∼=
1
4
e−2u +

1
64Np

e2u. (7.57)

As a function of u, ∆X2a, first decreases and then increases. Its minimum value is (correspond-
ing to maximum squeezing)

(∆X2a)2 ∼=
1

8
√

Np
, (7.58)

which occurs when u ∼= (1/4) ln(16Np). This tells us that the maximum squeezing (minimum
value of (∆X2a)2) scales as the square root of the number of photons in the pump.
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The result that comes from calculating corrections to the parametric approximation is quite
similar. Keeping dominant terms up to order 1/N2

p we find [30],

[∆X2a(u)]2 ∼=
1
4
e−2u +

1
64Np

e2u − 3
1024N2

p

e4u, (7.59)

which gives a result essentially identical to that of Eq. (7.58) for the maximum squeezing.
One would like to know for how long the parametric approximation, and corrections to it,

provide accurate results. For example, as was pointed out by Kinsler, Fernee, and Drummond,
at the point of maximum squeezing the first two terms of Eq. (7.59) are of similar size, i. e. the
first order correction is comparable to the zeroth order term [33]. This leads one to question the
validity of the approximation scheme for times of this order. On the other hand, the next term
in the series, the order 1/N2

p term, is much smaller than the first two terms at the maximum
squeezing point which suggests that the approximation is, in fact, still accurate there. The latter
conclusion is supported by the numerical work of Kinsler, Fernee, and Drummond who found the
behavior of the squeezed quadrature by using stochastic simulations to solve a set of stochastic
differential equations that describe the dynamics of the degenerate parametric amplifier [33]. It
is further supported by improvements to the dominant term method, and careful checks on the
results it provides, by Cohen and Braunstein [31].

The picture that emerges from these calculations is that phase fluctuations in the pump limit
the amount of squeezing that a parametric or degenerate parametric amplifier can produce. The
parametric approximation, which does not take these fluctuations into account, does not predict a
limit on squeezing. Corrections to it, however, do contain the effects of the quantum fluctuations
of the pump and can be used to find how much squeezing is possible.

So far we have presented the results of the calculations that found corrections to the paramet-
ric approximation, and now we would like to briefly discuss two of the methods that have been
employed. The first is the path-integral approach due to Hillery and Zubairy, and the second is
the dominant term method of Crouch and Braunstein. We shall describe how each can be used
to treat the degenerate parametric amplifier.

In the path-integral approach the basic object is the coherent-state propagator which is given
by

K(αf ,βf , tf ;αi,βi, ti) = 〈αf ,βf |e−i(tf−ti)H/h̄|αi,βi〉, (7.60)

where the initial and final states are products of signal (α) and pump (β) coherent states, and the
Hamiltonian is

H = h̄ωa†a + 2h̄ωb†b + h̄κ[b(a†)2 + b†a2]. (7.61)

The propagator gives the amplitude for the system to go from the two-mode coherent state
|αi,βi〉 at time ti to another |αf ,βf 〉 at time tf . Knowledge of the propagator and the state
of the field at time ti allows one to find the properties of the field at time tf . The propagator can
be expressed as a path integral (where we have set ti = 0 and tf = t)

K(αf ,βf , t;αi,βi, 0) =
∫

D[α(τ)]
∫

D[β(τ)]eiS/h̄, (7.62)
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where the action, S, is given by

iS/h̄ =
∫ t

0
dτ [

1
2
(α̇∗α− α∗α̇) +

1
2
(β̇∗β − β∗β̇)− (i/h̄)H(α, α∗,β,β∗)]. (7.63)

The paths α(τ) and β(τ) are such that α(0) = αi, α(t) = αf , β(0) = βi, and β(t) = βf , and
H(α, α∗,β,β∗) is the Hamiltonian with a replaced by α, a† replaced by α∗, etc.

In the case of the degenerate parametric amplifier it is possible to do the β integral with the
result that

K(αf ,βf , t;αi,βi, 0) = exp[−1
2
(|βf |2 + |βi|2) + β∗fβie

−2iωt]
∫

D[α(τ)]ei(S0+S1)/h̄, (7.64)

where
(

i

h̄

)
S0 =

∫ t

0
dτ [

1
2
(α̇∗α− α∗α̇)− iω|α|2

− iκ[(β∗fe−2iωt)e2iωτα2 + βie
−2iωτ (α∗)2]] (7.65)

(
i

h̄

)
S1 = −κ2

∫ t

0
dτ2

∫ τ2

0
dτ1e

−2iω(τ2−τ1)[α∗(τ2)α(τ1)]2. (7.66)

The action S0 is similar to the action one would get from making the parametric approximation.
In particular, if we set βf = βie−2iωt in Eq, (19), then S0 is the action for the Hamiltonian

Hp = h̄ωa†a + h̄κ[β∗i e2iωta2 + βie
−2iωt(a†)2]. (7.67)

Note that the exponential factor in Eq. (17) falls off rapidly as βf deviates from βie−2iωt.
Therefore, as our lowest order of approximation, we can neglect S1 (it is second order in the
coupling constant and does not contain the strong pump field) and set βf = βie−2iωt in S0. The
result is the parametric approximation.

We can calculate corrections to this approximation by doing two things. First, we include
the effects of S1 to lowest order. This is done by replacing eiS1/h̄ inside the path integral by
1 + (i/h̄)S1 and performing the resulting integral. Second, it is necessary to go beyond setting
βf = βie−2iωt and to take the dependence of K on βf into account. The result is a propagator
which goes beyond the parametric approximation and can be used to find the squeezed field
variance.

In the path-integral approach what makes the parametric approximation possible is the fact
that the path integral over the pump can be done. What, in turn, makes this possible is the
form of the interaction; it is linear in the pump field. One might wonder whether we could
devise an approximation based on replacing the signal mode by a classical field. Something
like this might emerge if we could do the α path integral first. It is, however, not possible to
perform this integral exactly. Consequently, the path integral formulation strongly suggests that
the parametric approximation (replacing operators with c-numbers) is only applicable to fields
which appear linearly in the interaction.
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The dominant term method is based on the Heisenberg equations of motion for the pump and
signal fields [30]. We begin by defining the pump mode quarature operators (the signal mode
operators were defined in Eq. (7.53)

P1 =
1
2
(b† + b) P2 =

i

2
(b† − b), (7.68)

where β0, which we are assuming to be real, is the initial pump amplitude. The equations of
motion for the quadrature operators which follow from the Hamiltonian in Eq. (7.49), when
written in integral form, are

X1a(u) = euX1a(0) +
eu

β0

∫ u

0
dve−v[X1a(v)P1(v) + X2a(v)P2(v)]

X2a = e−uX2a(0) +
e−u

β0

∫ u

0
dvev[X1a(v)P2(v)−X2a(v)P1(v)]

P1(u) = P1(0)− 1
2β0

∫ u

0
dv[X1a(v)2 −X2a(v)2]

P2(u) = P2(0)− 1
2β0

∫ u

0
dv[X1a(v)X2a(v) + X2a(v)X1a(v)]. (7.69)

In order to find a solution these equations can be iterated. The zeroth order solution for each
operator is just the first term on the right-hand side of its corresponding equation, e. g. for X1a(u)
it is euX1a(0). The first order solution is found by inserting the zeroth order solution into the
integrals in the above equations. This procedure can be repeated any number of times and it
yields the solution as a power series in 1/β0. However, the number of terms grows rapidly at
each step; the calculation of the order 1/β4

0 correction requires about 1000 terms. Many of these
terms will be small for u >> 1, for example, they may go as e−u. If we keep only the terms
which are largest for u >> 1, the dominant terms, the solution simplifies drastically. Because
the dominant terms of order n produce the dominant terms of order n+1, all nondominant terms
can be neglected throughout the iteration procedure. Quadrature variances can then be computed
by taking expectation values of the resulting operator expressions.

7.4 Higher order processes: N-photon down conversion

The degenerate parametric amplifier is an example of a down conversion process. If the initial
intensity of the pump mode, at frequency 2ω, is large and the signal mode at frequency ω is in
the vacuum state, then at later times the intensity of the signal will have increased at the expense
of the pump. Light at frequency 2ω is thereby converted into light at frequency ω.

Higher-order nonlinearities can be employed to generalize this process, though the strength
of the interaction decreases as the order of the nonlinearity increases. In particular, we consider
the process in which a pump photon at frequency nω produces n signal photons at frequency ω.
The Hamiltonian describing this interaction is

Hn = h̄ωa†a + nh̄ωb†b + h̄κn[(a†)nb + anb†]. (7.70)

If we assume the b mode is in a large amplitude coherent state with amplitude β (we shall assume
β is real for simplicity) and then make the parametric approximation, the Hamiltonian in the
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interaction picture becomes

Hpn = h̄κnβ[(a†)n + an]. (7.71)

This last Hamiltonian has led to a controversy over whether it produces a well-defined time
development transformation for n > 2. This question was first raised by Fisher, Nieto, and
Sandberg [37], who noted that if the operator

Upn(t) = e−itHpn/h̄ (7.72)

is defined through a power series expansion of the exponential, the power series for the matrix
element 〈0|Upn(t)|0〉 does not converge for n > 2. From this they concluded that Upn(t) does
not exist for n > 2.

Their conclusion was disputed by Braunstein and McLachlan [38]. They pointed out that
the fact that the power series expansion of Upn(t) is not well-defined does not imply that the
operator does not exist; there are other ways to define the exponential of a self-adjoint operator,
for example by means of its spectral representation. By using Padé approximants Braunstein
and McLachlan were able to obtain numerically the Q functions for the states Up3(t)|0〉 and
Up4(t)|0〉 for a limited range of time. The Q function for Up3(t)|0〉 has a 3-pronged structure
and is invariant under rotations by 2π/3, while that of Up4(t)|0〉 has 4 prongs and is invariant
under rotations by π/2.

Additional problems with the operators Upn(t) for n > 2 have surfaced. If one assumes that
they do exist one finds that they have a rather unpleasant property: if one starts in the vacuum
state the photon number will become infinite in a finite time [39]. This is a consequence of the
neglect of pump depletion in the parametric approximation. In the cases n = 1 and n = 2 a
photon number divergence occurs, but only as t → ∞. The existence of a divergence at finite
time for n > 2 at the very least places strong restrictions on the time intervals for which Upn(t)
can be used.

All of these problems disappear if one returns to the two-mode Hamiltonians Hn. There are
no number divergences at all, because pump depletion is taken into account. In addition it can
be proved that the operators Un = exp(−itHn/h̄) exist and produce a well-defined dynamics
for any n. These conclusions strongly suggest that when studying n-photon down conversion for
n > 2, it is better to use the two-mode Hamiltonian Hn than the single-mode Hamiltonian Hpn.

7.5 The parametric oscillator

Nonlinear effects can be considerably enhanced if the nonlinear medium sits inside of a cavity
with reflecting, or partially reflecting, walls. The field inside the cavity is usually driven by a
strong, external field coming into the the cavity through a partially reflecting mirror. This also
means that the field can leak out of the cavity, so that the internal cavity field is damped. While
the effect of the external field can be incorporated by adding a term to the effective Hamiltonian,
the existence of damping requires us to adopt methods developed to describe open systems. Here
we shall make use of an operator master equation. We shall present an extended example, which
is important in its own right, and also serves to illustrate some of the techniques that are used to
solve problems of this type. A much more detailed presentation of methods to analyze nonlinear
optical systems in cavities can be found in the textbook by Milburn and Walls [42].
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As an example we shall consider the parametric oscillator, which was first analyzed by Drum-
mond, Mc Neil and Walls [40]. Here we shall follow a treatment due to Lugiato and Strini [41].
We begin by considering the interaction picture Hamiltonian

Hint = ih̄
κ

2
(b(a†)2 − b†a2) + ih̄E0(b† − b), (7.73)

where the first term describes the interaction with the nonlinear medium and the second term
is what describes the effect of the driving field, E0. Note that only the pump mode is driven.
The dynamics of the two-mode system is give by the master equation for the two-mode density
matrix, ρ,

dρ

dt
=
−i

h̄
[Hint, ρ] + Λa(ρ) + Λb(ρ), (7.74)

where the superoperators Λa and Λb describe the damping of the modes due to cavity losses.
Their action is given by

Λa(ρ) = γa(2aρa† − a†aρ− ρa†a), (7.75)

and similarly for Λb. The constants γa and γb are the damping rates for modes a and b, respec-
tively. The equations of motion for 〈a〉 and 〈b〉 that result from this master equation are

d

dt
〈a〉 = κ〈a†b〉 − γa〈a〉

d

dt
〈b〉 = −κ

2
〈a2〉+ E0 − γb〈b〉. (7.76)

We cannot solve the above equations, because they couple the expectation values of a and b to
expectation values of products and powers of these operators. We could find equations of motion
for these additional expectation values, but we would find that they are coupled to yet more new
expectation values. The ultimate result of this process is an infinite set of coupled equations.
What we do instead is to linearize about the classical solution. We expect that the dominant part
of the solution will be the classical part, and that the quantum fluctuations about the classical
solution will be small. This will be true as long as we are not too close to threshold (we shall see
what we mean by threshold shortly). We can then solve for the quantum fluctuations by keeping
only the leading order terms in the equations.

The first step is to find the classical solutions. To do so, we assume that the expectation
values factorize, e.g. 〈a†b〉 = 〈a†〉〈b〉. In addition, we are interested in the steady-state classical
solution, so we set the time derivatives equal to zero. Denoting the steady-state values of 〈a〉 and
〈b〉 by α0 and β0 respectively, we find that they satisfy the equations

0 = κα∗0β0 − γaα0

0 = −κ

2
α2

0 + E0 − γbβ0. (7.77)

There are two types of solutions to this equation. The first is given by

α0 = 0 β0 =
E0

γb
. (7.78)
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In this case the amplitude of the signal-mode field is zero, and this situation is known as below
threshold. The other solution is given by

α0 = ±
√

2
κ

(E0κ− γaγb)1/2 β0 =
γa

κ
. (7.79)

This is the above-threshold solution, and in this case the signal mode has a nonzero amplitude,
and it can have one of two possible phases, 0 or π. In this solution, α0 is required to be real (if it
is not, the above expression is not a solution to the equations), so it only exists if E0κ ≥ γaγb.

We now have the following situation. Below threshold, E0κ <γ aγb, we have only one
solution, but above threshold, E0κ ≥ γaγb we have two types of solution, one with α0 = 0 and
one with α0 += 0. In order to determine which solution is valid above threshold, we look at the
stability of the classical solutions. A physical solution must be stable against small perturbations,
that is, if the system is in a state given by a stable solution, when we give it a slight kick, it will
return to the state given by the stable solution. If the solution is unstable, any small perturbation
will cause the system to deviate from the state described by that solution. Because there are
always fluctuations present, the only important solutions are the stable ones; the unstable ones
will not be seen.

In order to determine when our solutions are stable, we take the differential equations for the
classical solutions

d

dt
α = κα∗β − γaα

d

dt
β = −κ

2
α2 + E0 − γbβ, (7.80)

and their complex conjugates, set α = α0 + δα and β = β0 + δβ, and neglect terms that are
quadratic or higher in δα or δβ. We find that

d

dt





δα
δα∗

δβ
δβ∗



 =





−γa κβ0 κα∗0 0
κβ∗0 −γa 0 κα0

−κα0 0 −γb 0
0 −κα∗0 0 −γb









δα
δα∗

δβ
δβ∗



 . (7.81)

Let us call the matrix on the right-hand side of the equation M , and note that it depends on the
classical solution whose stability we are studying. If the real parts of the eigenvalues of M are
negative, then initial fluctuations will decay with time, so the state of the system will return to
its steady-state value. This indicates that the steady-state solution is stable. However, if any of
the eigenvalues of M has a positive real part, then the state of the system will deviate more and
more from its steady-state value, and, consequently, the steady-state solution is unstable.

We now must determine the eigenvalues of M . The characteristic equation of M can be
expressed as

0 = [(λ + γa)(λ + γb) + κ2|α0|2 + κ|β0|(λ + γb)]
[(λ + γa)(λ + γb) + κ2|α0|2 − κ|β0|(λ + γb)], (7.82)

where λ is an eigenvalue of M . This gives us two quadratic equations that determine the eigen-
values of M . For the α0 = 0 solution, we find

λ = −γb λ = −γa ±
κE0

γb
. (7.83)
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Note that the eigenvalues will all be negative as long as γaγb > κE0. Therefore, this solution is
stable only below threshold. For both of the α0 += 0 solutions, we find

λ =
1
2
{−(2γa + γb) ± [(2γa + γb)2 − 8E0κ]1/2}

λ =
1
2
{−γb ± [γ2

b − 8(κE0 − γaγb)]1/2}. (7.84)

All of these eigenvalues have negative real parts as long as γaγb < κE0, so that both of the
α0 += 0 solutions are stable above threshold. Summarizing, we find that below threshold, we
have only the α0 = 0 solution, which is stable, and above threshold, only the α0 += 0 solutions
are stable.

We would now like to study the squeezing of the field below threshold, which means we need
to find the fluctuations of the signal mode field about its steady state value. In order to do this,
we first define fluctuation operators, ∆a = a − α0 and ∆b = b − β0. We next find differential
equations for expectation values of products of these operators and their adjoints, and, in doing
so, we neglect terms of higher than second order in the fluctuation operators. We can do this,
because we are assuming that the fluctuations are small, so that the effect of the terms we drop
should be small as well. This assumption is a reasonable one as long as we are not too close to
threshold. From the master equation for the density matrix, and keeping only quadratic terms in
the fluctuations, we find that

d

dt
〈∆a†∆a〉 = 2κ(α∗0〈∆a†δb〉+ α0〈δb†∆a〉)

+ κ(β0〈(δa†)2〉+ β∗0〈(∆a)2〉)− 2γa〈∆a†∆a〉
d

dt
〈(∆a)2〉 = 2κ(α∗0〈∆a∆b〉+ α0〈∆a†∆b〉

+ β0〈∆a†∆a〉)− 2γa〈(∆a)2〉+ κβ0. (7.85)

We are interested in the steady state situation, so the fluctuations will be time-independent. In
addition, we are considering the oscillator below threshold. We therefore, set the time derivatives
equal to zero, and substitute the below threshold values for α0 and β0. This gives us

0 =
κE0

γb
(〈(∆a†)2〉+ 〈(∆a)2〉)− 2γa〈∆a†∆a〉

0 =
2κE0

γb
〈∆a†∆a〉 − 2γa〈(∆a)2〉+ κE0

γb
. (7.86)

These equations can be solved for 〈∆a†∆a〉 and 〈(∆a)2〉 yielding

〈∆a†∆a〉 =
(κE0)2

2[(γaγb)2 − (κE0)2]

〈(∆a)2〉 =
γaγbκE0

2[(γaγb)2 − (κE0)2]
. (7.87)

Note that these fluctuations are small unless we are close to threshold.
We can now compute the squeezing. Because 〈a〉 = 0 below threshold, we have that

(∆X2)2 =
1
4
(1 + 2〈∆a†∆a〉 − 〈(∆a)2〉 − 〈(∆a†)2〉). (7.88)
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Substituting in the values we found in the previous paragraph we have that

(∆X2)2 =
1
4

γaγb

γaγb + κE0
. (7.89)

From this we can conclude that the signal mode is squeezed as long as the driving field is greater
than zero. The maximum value of squeezing that can be obtained is by a factor of two, i.e.
(∆X2)2 → 1/2 as threshold is approached. It was originally thought that this would severely
limit the squeezing that could be obtained from a degenerate parametric oscillator, but it was
realized by Yurke [43] that the squeezing outside the cavity can be much larger than the squeezing
inside the cavity. Because it is the squeezing outside the cavity that is important, the degenerate
parametric oscillator is, in fact, a very good source of highly squeezed light.
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8 Quantizing the field in a nonlinear dielectric

After our quick tour of some of the quantum effects we can expect to see in fields emerging from
nonlinear media, let us now go back and discuss the quantization of electrodynamics is such
media. To do so, we will follow the program that has been laid out earlier in the paper. We will
first choose the fundamental field of our theory. This is usually the vector and scalar potentials,
but we shall find it convenient to make another choice. We then find a Lagrangian that gives
us the equations of motion, which in this case are Maxwell’s equations. From the Lagrangian,
we first find the canonical momentum, and then find the Hamiltonian. Finally, we impose the
canonical commutation relations on the fundamental field and the canonical momentum.

Let us now carry out the steps sketched out in the previous paragraph in detail [44]. The
equations of motion for our theory are

∇ ·D = 0 ∇×E = −∂B
∂t

∇ ·B = 0 ∇×B = µ0
∂D
∂t

, (8.1)

in the absence of external charges and currents. Here D = ε0E+P is the displacement field and
the polarization P is given by

P = ε0
[
χ(1) : E + χ(2) : EE + χ(3) : EEE + . . .

]
. (8.2)

We shall assume that the medium is lossless, and nondispersive, but it may be inhomogeneous,
i.e. the susceptibilities can be functions of position. We want to find a Langrangian which has
Eqs. (8.1) as its equations of motion. Before doing so we need to choose a particular field which
is to be the basic dynamical variable in the problem. There are two possibilities. The first is the
usual vector potential A = (A0,A) where

E = −∂A
∂t
−∇A0 B = ∇×A, (8.3)

and the second is the dual potential Λ = (Λ0,Λ) where

B = µ0

[
∂Λ
∂t

+∇Λ0

]
D = ∇×Λ. (8.4)

This potential can only be used if external charges and currents are absent. When this is the case,
the fact that ∇ · D = 0 implies that D can be expressed as the curl of some vector field, and
that vector field we call the dual potential, Λ. We shall explore quantizing the field with both the
standard vector potential and with the dual potential. As we shall see, using the dual potential is
much simpler, and it is this method that will be used throughout most of the rest of this paper.

8.1 Quantization with the standard vector potential

We will now quantize the field in a homogeneous nonlinear dielectric using the standard vector
potential. As we will see shortly, if we use the dual potential we can drop the requirement of
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homogeneity. An appropriate Lagrangian density for the theory is

L(A, Ȧ) = ε0[
1
2
(E2 − c2B2) +

1
2
χ(1)

ij EiEj +
1
3
χ(2)

ijkEiEjEk

+
1
4
χ(3)

ijklEiEjEkEl + . . .], (8.5)

where we are now using the convention that repeated indices are summed over. As in the free-
field case, the Lagrange equations are

∂t

(
∂L

∂(∂tAµ)

)
+

3∑

j=1

∂j

(
∂L

∂(∂jAµ)

)
− ∂L

∂Aµ
= 0, (8.6)

but now the Lagrangian density is different. This equation with µ = 0 gives us∇·D = 0, and the
three remaining equations give us∇×B = µ0(∂D/∂t). The remaining two Maxwell equations
follow from the definition of electric and magnetic fields in terms of the vector potential.

We now want to proceed to the Hamiltonian formalism, and the first thing we need to do is
to find the canonical momentum. From the above Lagrangian density, we find that the canonical
momentum corresponding to A, which we denote by Π = (Π0,Π), is

Π0 =
∂L

∂(∂0A0)
= 0 Πi =

∂L
∂(∂0Ai)

= −Di. (8.7)

Here we note two things. The first is that as in the case of a linear dielectric, the canonical
momentum is different from that in the noninteracting theory where Πi = −Ei. This is a con-
sequence of the fact that the interaction depends on Ȧ = ∂tA. The second is that the vanishing
of Π0 implies that A0 is not an independent field. In the case of free fields, if we choose the
Coulomb gauge, it is also possible to choose A0 = 0. This follows from the fact that for the free
theory, A0 = 0 and∇ ·E = 0 imply that the time derivative of∇ ·A is zero, so that if∇ ·A = 0
initially, it will remain zero. Therefore, in this case the Coulomb and temporal (A0 = 0) gauges
are consistent. This is, however, no longer true when a nonlinear interaction is present, because
now instead of ∇ · E = 0, we have ∇ ·D = 0, so that if we choose A0 = 0, the time derivative
of∇ ·A is no longer zero. If we choose the Coulomb gauge, which is what we shall do, then A0

must be determined by solving the equation

∇2A0 = −∇ ·E, (8.8)

where E will be expressed in terms of the canonical momentum, −D. In order to facilitate this,
we define the tensors β(i) by

Ei = β(1)
ij Dj + β(2)

ijkDjDk + . . . . (8.9)

These tensors can be expressed in terms of the susceptibility tensors

β(1) = [ε0(1 + χ(1))]−1

β(2)
imn = −ε0β

(1)
ij β(1)

kmβ(1)
ln χ(2)

jkl. (8.10)

This result is obtained by solving the equation

Di = ε0[(I + χ(1))ijEj + χ(2)
ijkEjEk + . . .] (8.11)
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perturbatively. One inserts the expansion for E in terms of D into the above equation, assuming
that each term in the expansion for E is of lower order that the one that precedes it, i.e. β(1) is
order χ(1), β(2) is of order χ(2), etc. One then equates terms of the same order. This procedure
is discussed in more detail in the next subsection.

Another consequence of the fact that A0 is not an independent field in the Hamiltonian formu-
lation is that we lose Gauss’ law as an equation of motion. However, the equation∇×B = µ0Ḋ,
which is a result of the theory, implies that∇·D is time independent, and this allows us to impose
Gauss’ law as an initial condition.

For the Hamiltonian we have

H(A,Π) = ε0

∫
d3r[

1
2
(E2 + c2B2 + χ(1)

ij EiEj) +
2
3
χ(2)

ijkEiEjEk

+
3
4
χ(3)

ijklEiEjEkEl] +
∫

d3rD ·∇A0. (8.12)

Performing an integration by parts in the last term and using the initial condition∇ ·D allows us
to eliminate the last term. It is useful to express the Hamiltonian directly in terms of the canonical
momenta, Di. Making use of the tensors β(j) we find for the Hamiltonian

H(A,Π) =
∫

d3r[
1

2µ0
B2 +

1
2
β(1)

ij DiDj +
1
3
β(2)

ijkDiDjDk

+
1
4
β(3)

ijklDiDjDkDl]. (8.13)

The theory is quantized by imposing the equal-time commutation relations

[Aj(r, t),Πk(r′, t)] = ih̄δ(tr)
jk (r− r′). (8.14)

Here, as in standard QED, we use the transverse delta function in order to be consistent with
both the Coulomb gauge condition, ∇ · A = 0, and Gauss’ law, ∇ · D = 0. As in the case
of free QED it is possible to perform a mode expansion for the field and to define creation and
annihilation operators. In particular, for the mode with momentum k and polarization êα(k) we
have the annihilation operator

ak,α(t) =
1√
h̄V

∫
d3re−ik·rε̂λ(k) · [

√
ε0ωk

2
A(r, t)− i√

2ε0ωk
D(r, t)]. (8.15)

Note that because ak,α depends on D, and consequently contains matter degrees of freedom, it
is not a pure photon operator. It represents a collective matter-field mode.

8.2 Dual potential quantization

As has been mentioned, using the dual potential as the basic field of the theory makes things
much simpler, and we shall see that explicitly in this section. Recapitulating, the dual potential,
Λ = (Λ0,Λ) is defined so that

B = µ0

[
∂Λ
∂t

+∇Λ0

]
D = ∇×Λ. (8.16)
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Note that this definition of D and B in terms of Λ and Λ0 already guarantees that two of
Maxwell’s equations are satisfied, i.e.

∇ ·D = 0 ∇×B = µ0
∂D
∂t

. (8.17)

Before proceeding, we note that the expression given for the polarization in terms of the elec-
tric field, Eq. (8.2), is no longer convenient. The relation between E and (Λ0,Λ) is complicated,
while the relation between D and Λ is relatively simple. Therefore, it is better to express the
polarization as an expansion in D rather than in E,

P = η(1) : D + η(2) : DD + η(3) : DDD + . . . . (8.18)

It is possible to express the tensors η(j) in terms of the susceptibilities χ(j). Let us do this for
η(1) and η(2). Neglecting higher order terms, we have

P = ε0

[
1
ε0

χ(1) : (D−P) +
1
ε20

χ(2) : (D−P)(D−P)
]

. (8.19)

We will solve this equation for P in terms of D perturbativley, considering the term proportional
to χ(2) as the perturbation. This is justified, because the size of the nonlinear susceptibilities
decreases significantly as their order increases.We find the lowest order solution by setting the
χ(2) term equal to zero, giving us

P = (I + χ(1))−1χ(1) : D. (8.20)

This implies that to lowest order

D−P = (I + χ(1))−1 : D. (8.21)

We now take the lowest order solution for D − P, insert it into the χ(2) term in Eq. (8.19), and
solve the resulting equation for P. We shall write the result in terms of components. Setting
γ = (I + χ(1))−1, we have

Pj = γjkχ(1)
kl Dl +

1
ε0

γjkχ(2)
klmγlnγmpDnDp. (8.22)

Comparing this equation to Eq. (8.18), we see that

η(1)
jl = γjkχ(1)

kl η(2)
jnp =

1
ε0

γjkχ(2)
klmγlnγmp. (8.23)

This perturbative approach can be applied to find expressions for the higher-order η tensors. We
also note that the tensors η are related to the tensors β by η(1) = I − ε0β(1) and η(j) = −ε0β(j)

for j ≥ 2.
We now need a Lagrangian, or actually a Lagrangian density, that gives us the remaining two

Maxwell equations. If we assume that the tensors η(j) are symmetric, it is given by

L =
1
2

(
1
µ0

B2 − 1
ε0

D2

)
+

1
ε0

(
1
2
D · η(1) : D +

1
3
D · η(2) : DD + . . .

)
. (8.24)
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The equations of motion that come from this Lagrangian density are given by

∂t

(
∂L

∂(∂tΛµ)

)
+

3∑

j=1

∂j

(
∂L

∂(∂jΛµ)

)
− ∂L

∂Λµ
= 0, (8.25)

where µ = 0, . . . 3. Setting µ = 0 we obtain

∇ ·B = 0, (8.26)

while the other three equations give us

∇×E = −∂B
∂t

. (8.27)

Deriving the first of these equations is straightforward, but it is useful to fill in a few steps in
the derivation of the second one. We first note that

∂L
∂(∂tΛk)

= Bk

∂Dl

∂(∂jΛk)
= εljk, (8.28)

where k ∈ {1, 2, 3} and εljk is the completely antisymmetric tensor of rank 3. Now, for sim-
plicity, let us look at the case η(j) = 0 for j ≥ 2. Making use of the above relations we find
that

∂B
∂t

+
1
ε0
∇× (D− η(1) : D) = 0 (8.29)

For the case we are considering, this is just the last equation in the previous paragraph. Therefore,
we now have a Lagrangian formulation of the theory.

The next step is to find the Hamiltonian formulation. The canonical momentum is given by

Π0 =
∂L

∂(∂tΛ0)
= 0 Πj =

∂L
∂(∂tΛj)

= Bj . (8.30)

The Hamiltonian density is then

H =
3∑

j=1

Πj(∂tΛj)− L

=
1
2

(
1
µ0

B2 +
1
ε0

D2

)
− 1

ε0

(
1
2
D · η(1) : D +

1
3
D · η(2) : DD + . . .

)

− B ·∇Λ0. (8.31)

At this point, we notice that the Hamiltonian equations of motion,

∂tΠj = − δH

δΛk
(8.32)

give us only three, instead of four, equations. Because of the vanishing of Π0, we have lost
∇ ·B as an equation of motion, and, in fact, the vanishing of Π0 means that we are dealing with
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a constrained Hamiltonian system. Dirac developed a theory of the quantization of constrained
Hamiltonians [45], but we will be able to proceed here by improvisation. We first note that taking
the divergence of both sides of Eq. (8.27) gives us that

∂

∂t
∇ ·B = 0 (8.33)

so that if ∇ · B = 0 is true initially, it will remain true. Therefore, we can recover the equation
∇ ·B = 0 if we impose it as an initial condition.

Before quantizing the theory we will fix the gauge. The physical fields are unchanged under
the transformation

Λ→ Λ +∇Θ Λ0 → Λ0 −
∂Θ
∂t

, (8.34)

where Θ(r, t) is an arbitrary function of space and time. We can eliminate Λ0 by choosing Θ to
be a solution to

∂Θ
∂t

= Λ0, (8.35)

which determines Θ up to an arbitrary function of position, which we shall call θ(r). Since∇ ·Λ
is time independent,

∂

∂t
(∇ ·Λ) = ∇ ·B = 0, (8.36)

we can choose θ so that ∇ · Λ = 0. The result is we have a radiation gauge for Λ in which
Λ0 = 0 and ∇ · Λ = 0. Note that this gauge choice eliminates the last term of the Hamiltonian
density.

In order to quantize the theory we now impose the canonical equal-time commutation rela-
tions

[Λj(r, t), Bk(r′, t)] = ih̄δ(tr)
jk (r− r′), (8.37)

where δ(tr) is the transverse delta function. We have again used the transverse delta function,
because this choice makes the above equation consistent with the fact that both ∇ · Λ = 0 and
∇ ·B = 0.

It is often useful to express the field in terms of creation and annihilation operators for plane
-wave modes. These have the mode functions (see Eq. (4.24))

uα(k) =
1√
V

êk,αeik·r, (8.38)

where α = 1, 2. The annihilation operators are linear combinations of the fields Λ and B. The
exact linear combination will be chosen with two requirements in mind. First, we want to obtain
the usual commutation relations between the creation and annihilation operators, so the linear
combination should be chosen so that these commutation relations follow from the canonical
commutation relations between the fields. If we define

ak,α =
∫

d3ru∗α(k) ·
(

ckΛ(r, t) +
i

2h̄ck
B(r, t)

)
, (8.39)
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where the real numbers ck are, for the moment, arbitrary, then we indeed find that Eq. (8.37)
implies that

[ak,α, a†k′,α′ ] = ih̄δk,k′δα,α′ . (8.40)

We can now take Eq. (8.39) and its adjoint, and solve for the fields in terms of the creation and
annihilation operators. We find that

Λ(r, t) =
∑

k,α

1
2ck
√

V
êk,α(eik·rak,α + e−ik·ra†k,α)

B(r, t) =
∑

k,α

h̄ck

i
√

V
êk,α(eik·rak,α − e−ik·ra†k,α). (8.41)

We can now substitute these expressions into the Hamiltonian. We choose the numbers ck so that
the free Hamiltonian

Hfree =
1
2

∫
d3r

(
1
µ0

B2 +
1
ε0

D2

)
, (8.42)

has the form

Hfree =
1
2

∑

k,α

h̄ωk(a†k,αak,α + ak,αa†k,α), (8.43)

where ωk = kc. For a general choice of ck there will also be terms of the form a†k,αa†−k,α and
ak,αa−k,α present, but if we choose

ck =
(µ0ωk

2h̄

)1/2
, (8.44)

then all of these terms vanish. Summarizing, then, the fields Λ and B can be expressed in terms
of creation and annihilation operators as

Λ(r, t) =
∑

k,α

(
h̄

2µ0ωkV

)1/2

êkα(eik·rak,α + e−ik·ra†k,α)

B(r, t) =
∑

k,α

i

(
µ0h̄ωk

2V

)1/2

êkα(e−ik·ra†k,α − eik·rak,α). (8.45)

If we are describing the behavior of the electromagnetic field in a cavity or a waveguide,
it is often useful to expand the field operators in terms of the mode functions of the relevant
system. The mode functions are determined by the linear part of the polarization. For example,
a waveguide can be constructed from a spatially varying dielectric and a cavity by surrounding
a region of free space by dielectric sheets or slabs. Therefore, let us suppose that the linear
behavior of our system is described by a linear susceptibility β(1)(r). Then the mode functions
must obey the wave equation

∇× [β(1)(r)∇×Λ(r, t)] = −Λ̈(r, t), (8.46)
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and the proper boundary conditions, which we ususally take to be either periodic or vanish-
ing. The modes have well-defined frequencies, ωn, so that the mode functions are of the form
Λ(r, t) = Λn(r)e−iωnt, with the functions Λn(r) satisfying the equation

∇× [β(1)(r)∇×Λn(r)] = ω2
nΛn(r). (8.47)

Note that because the fields are transverse, we must have ∇ ·Λn = 0. We can show that modes
corresponding to different frequencies are orthogonal by taking the scalar product of both sides
of this equation with Λ∗

n′ and integrating over the quantization volume. Applying the vector
identity∇ · [A×A′] = A′ · [∇×A]−A · [∇×A′] twice, and assuming vanishing boundary
terms, gives us

(ω2
n − ω2

n′)
∫

d3rΛ∗
n′(r) ·Λn(r) = 0, (8.48)

which immediately implies that if ωn += ωn′ , then the integral must vanish. It should also
be possible to choose different modes with the same frequency to be orthogonal, and we shall
assume that this has been done. In particular, note that Λn and Λ∗

n are both solutions of Eq.
(8.47). These can always be chosen so that they are orthogonal to each other. Therefore, for the
mode functions Λn we have

∫
d3rΛ∗

n′(r) ·Λn(r) = δn,n′ , (8.49)

and we shall assume that the modes form a complete set in the space of transverse functions.
We next define annihilation operators, an, by

an(t) =
∫

d3rΛ∗
n(r) ·

[√
ωn

2
Λ(r, t)− i√

2ωn
Λ̇(r, t)

]
. (8.50)

These obey the commutation relations

[an(t), a†n′(t)] = δn,n′ . (8.51)

We can also invert Eq. (8.50) to express the fields in terms of the creation and annihilation
operators. Making use of Eq. (8.50) and its adjoint we find that

∑

n

√
2

ωn
[an(t)Λn(r) + a†n(t)Λ∗

n(r)] = 2Λ(r, t)

+
∫

d3r′
∑

n

i

ωn
[Λ∗

n(r)Λn(r′)−Λn(r)Λ∗
n(r′)] · Λ̇(r′, t). (8.52)

The second term on the right-hand side vanishes, because both Λn and Λ∗
n are mode functions.

In particular, for each n there is an n′ such that Λn′ = Λ∗
n. This implies that

Λn′(r)Λ∗
n′(r

′) = Λ∗
n(r)Λn(r′), (8.53)

so that the first term in the brackets for n is cancelled by the second term in the brackets for n′.
This finally gives us our mode expansion for the field

Λ(r, t) =
∑

n

√
1

2ωn
[an(t)Λn(r) + a†n(t)Λ∗

n(r)]. (8.54)
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The mode expansion of the D field can be obtained from this equation by taking the curl of both
sides. Similar reasoning gives

Λ̇(r, t) = i
∑

n

√
ωn

2
[an(t)Λn(r)− a†n(t)Λ∗

n(r)], (8.55)

which immediately yields the mode expansion for the B field. These expressions can be substi-
tuted into H =

∫
d3rH, wereH is given by Eq. (8.31), which will give us the Hamiltonian in

terms of the mode creation and annihilation operators.
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9 Other approaches

The method used in the previous section to quantize the electromagnetic field is not the one most
commonly used in quantum optics. In this section we will review the other methods and point
out problems with them.

Perhaps the first treatment of a quantum theory of nonlinear optics was given in [46]. There
an interaction Hamiltonian of the form

Hint = −
∫

d3rE ·P (9.1)

was used, where P was given by Eq. (2.3). The theory was quantized by substituting for the
fields their free-field expressions in terms of creation and annihilation operators

E(r, t) = i
∑

k,α

(
h̄ωk

2ε0V

)1/2

êkα(eik·rak,α − e−ik·ra†k,α)

B(r, t) = i
∑

k,α

(
h̄

2ε0ωkV

)1/2

(k× êkα)(eik·rak,α − e−ik·ra†k,α). (9.2)

This theory runs into immediate problems. While the interaction between an object with a fixed
electric dipole moment, d, and the electromagnetic field is given by−d ·E, the situation changes
if the dipole is induced as is the case for polarizable media. In fact, for a linear medium with a
constant polarizability, the expression for the energy of the electromagnetic field in this medium
is given by [47]

H =
1
2

∫
d3r

(
E ·D +

1
µ0

B2

)
, (9.3)

which is also the Hamiltonian. This implies that the interaction between the medium and the
field is (1/2)

∫
d3rE ·P and not −

∫
d3rE ·P. This is by no means the only problem, however,

Note that the form assumed for the electric field operator implies that ∇ · E = 0. Inside of a
polarizable medium, however, the proper Maxwell equation is ∇ · D = 0. Both conditions can
only be true if E and D are proportional, and this will not be the case for a nonlinear medium. In
short, the problem with this theory is that it does not give Maxwell’s equations as its equations
of motion. which a proper theory should do.

The most commonly used method for quantizing fields in nonlinear dielectrics is a modifica-
tion of the one just described. As we have seen, the electromagnetic field in a uniform nonlinear
dielectric can be quantized using the standard vector potential, and this results in the Hamiltonian

H = ε0

∫
d3r

[
1
2
(E2 + c2B2 + E · χ(1) : E) +

2
3
E · χ(2) : EE

+
3
4
E · χ(1) : EEE + . . .

]
. (9.4)

The theory is quantized by substituting into the Hamiltonian the expressions in Eq. (9.2), i.e.
the free-field expressions for the electric and magnetic fields (see, for example, [6]). This also
immediately leads to trouble. First, as before, we have ∇ · E = 0 instead of ∇ · D = 0. We
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also have incorrect commutation relations. As has been discussed, the canonical momentum
corresponding to the above Hamiltonian is −D, which means that in the quantized theory the
commutation relations should be

[Aj(r, t), Dl(r′, t)] = −ih̄δ(tr)
jl (r− r′), (9.5)

whereas in the theory that is actually employed we have instead

[Aj(r, t), ε0El(r′, t)] = −ih̄δ(tr)
jl (r− r′). (9.6)

Finally, this theory assumes that A0 = 0, which it, in fact, does not. What this means is that this
theory also does not have Maxwell’s equations as its equations of motion.

Let us conclude by showing what equations of motion do, in fact, emerge from this incorrect
theory. We begin by finding the commutation relations for the electric and magnetic fields that
result from Eq. (9.2)

[Ej(r, t), El(r′, t)] = [Bj(r, t), Bl(r′, t)] = 0 (9.7)

and

[Ej(r, t), Bl(r′, t)] =
ih̄

ε0
εlmn

∂

∂r′m
δ(tr)
jn (r′ − r), (9.8)

where εlmn is the completely antisymmetric tensor of rank three. These can be used to find the
Heisenberg equations of motion for the field operators. We have for the magnetic field

∂Bj

∂t
= − i

h̄
[Bj ,H]. (9.9)

This gives us

∂Bj

∂t
=

−1
h̄

εjmn
∂

∂rm

∫
d3r′{δ(tr)

an (r− r′)Ea(r′, t)

+ δ(tr)
an (r− r′)χ(1)

ab Eb(r′, t) + . . .}, (9.10)

where we have assumed that the susceptibility tensors are symmetric. We now want to evaluate
the integral, but we have to take into account that χ(1) : E, and the nonlinear terms as well, are
not necessarily transverse. All of the terms on the right-hand side are of the form

∇×
∫

d3r′δ(tr)
an (r− r′)Va(r′, t), (9.11)

where V is a vector field. This field can be split into transverse and longitudinal parts, V =
V(tr) + V(l), where ∇ ·V(tr) = 0 and ∇×V(l) = 0. The above integral is just equal to V(tr)

so that the whole term is just ∇ × V(tr). However, this is also equal to ∇ × V. Therefore,
in evaluating the integrals that arise in the commutator term, we can treat the transverse delta
functions as regular three-dimensional delta functions. Doing so gives us

∂B
∂t

= −∇×E−∇× (χ(1) : E + 2χ(2) : EE + . . .). (9.12)

This equation is, of course, not the correct equation for the time derivative of B.
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Pushing this a little further, we can also find the equation of motion for the electric field. We
find that

∂Ej

∂t
=
−i

h̄
[Ej ,H] = c2(∇×B)j (9.13)

This is the correct Maxwell equation for free fields, but not for a field in a dielectric. Finally, let
us consider these equations in the situation in which the nonlinear susceptibilities are zero and
the linear susceptibility is just a constant, χ(1) > 0. From the above equation, the one in the
previous paragraph and the fact that in this theory∇ ·E = 0, we obtain

(1 + χ(1))∇2E− 1
c2

∂E
∂t

= 0. (9.14)

This implies that the wave velocity in a dielectric is
√

1 + χ(1)c, which is greater than the speed
of light in the vacuum. That is, rather than predict that light slows down as it goes into a dielectric,
as is, of course, the case, this theory predicts that it speeds up. The lesson to be learned is that
despite the fact that this theory is often employed, it should not be, because the predictions it
makes are nonphysical.
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10 Multimode treatment of parametric down conversion

As an application of our formalism, let us consider parametric down conversion. With the advent
of quantum information, this is a process that is extensively employed and intensively studied.
A multimode quantum treatment due to Ou, Wang, and Mandel has been a model for many later
treatments [48], and we shall pattern our treatment after theirs. Their approach does employ
the usual Hamiltonian for the down-conversion process, which, as has been noted, does not give
Maxwell’s equations as the equations for the field operators.

Down conversion takes place when a photon is incident on a material with a χ(2) nonlinearity,
and two photons, the sum of whose energies is equal to the energy of the incident photon, are
produced. We shall assume that the medium is centered on the origin, and of extent lx, ly , and
lz in the x, y, and z directions, respectively. In addition, we shall assume the linear electric
polarizability is zero, the magnetic susceptibility is zero, and that there are no free charges. We
then find for the Hamiltionian

H = Hfree + Hint, (10.1)

where

Hfree =
∫

V
d3r

1
2
(D2 + B2)

Hint =
∫

Vm

d3r
1
3
D · η(2)DD, (10.2)

where V is the quantization volume and Vm is the volume of the medium. The field D can now
be expanded in terms of plane-wave creation and annihilation operators as

D(r) = i
∑

k,α

(
h̄

2µ0ωkV

)1/2

(k× êk,α)(ak,αeik·r − a†k,αe−ik·r), (10.3)

where α = 1, 2 and k · êk,α = 0. This expression and the corresponding one for B (see Eq.
(8.45)) can now be inserted into the Hamiltonian. For Hfree we find, as before,

Hfree =
∑

k,α

h̄ωka†k,αak,α. (10.4)

For Hint we shall make several assumptions. We shall assume that η(2) is symmetric, that the
operators are normally ordered, and, since we are interested only in down conversion, we shall
drop the two terms that do not contribute to that process. The result is

Hint = i
∑

k1,α1

∑

k2,α2

∑

k3,α3

1
V 3/2

F (k1,k2,k3;α1,α2,α3)

h(k3 − k1 − k2)(a†k3,α3
ak1,α1ak2,α2 − a†k2,α2

a†k1,α1
ak3,α3), (10.5)

where

F (k1,k2,k3;α1,α2,α3) =
3∑

j,k,l=1

1
√

ωk1ωk2ωk3

(
h̄

2µ0

)3/2

η(2)
jkl(k1 × êk1,α1)j

(k2 × êk2,α2)k(k3 × êk3,α3)l, (10.6)
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and

h(k) =
∏

j=x,y,z

2 sin(kj lj/2)
kj

. (10.7)

Note that F depends only on the direction of the wave vectors and not on their magnitudes.
We would now like to use this Hamiltonian to calculate a two-point correlation function that

is related to the probability of detecting a single photon at each point. Suppose we have single-
atom detectors at points r1 and r2. The detector at r1 is turned on between time t1 and t1 + ∆t
and the detector at r2 is turned on between t2 and t2 + ∆t, where t2 > t1 + ∆t. The initial state
of the system is a product of coherent states

|ψin〉 =
∏

k

|βk〉, (10.8)

where βk is only appreciable for k in a neighborhood of k0ẑ. This represents the initial state of
the pump, the signal and idler are assumed to be initially in the vacuum state. Let us assume that
the detector atoms have ground states |g1〉 and |g2〉 and excited states {|q1j〉} and {|q2j〉} for
some range of j, and we shall assume that these atoms are identical. Let ωjg be the frequency
difference between the levels |q1j〉 and |g1〉, and the dipole matrix element between these two
levels be djg . We shall assume that the frequencies ωjg are less than the frequency of the pump
mode, and are sufficiently far from the pump frequency that the chance of a pump photon being
absorbed by one of the detector atoms is negligible. This implies that if both atoms have absorbed
a photon, then the state of the field will just be |ψin〉. To lowest order in perturbation theory,
where both the detector atoms and Hint are treated as perturbations, the amplitude for atom 1 to
be in |q1j〉 and atom 2 to be in |q1j′〉 after time t2 + ∆t is

Bj,j′ =
(
−i

h̄

)3 ∫ t2+∆t

t2

dt′2

∫ t1+∆t

t1

dt′1

∫ t1

0
dteiωjgt′1eiωj′gt′2

〈ψin|dj′g ·D(+)(r2, t
′
2)djg ·D(+)(r1, t

′
1)Hint(t)|ψin〉. (10.9)

In this equation,

D(+)(r, t) = i
∑

k,α

(
h̄

2µ0ωkV

)1/2

(k× êk,α)ak,αei(k·r−ωkt), (10.10)

and Hint(t) is the interaction Hamiltonian in the interaction picture. The probability that each
atom will have absorbed a photon is

p(r1, t1; r2, t2) =
∑

j,j′

|Bj,j′ |2. (10.11)

If we define

gµν(r1, t
′
1; r2, t

′
2) =

(
−i

h̄

)3 ∫ t1

0
dt〈ψin|D(+)

µ (r2, t
′
2)D

(+)
ν (r1, t

′
1)Hint(t)|ψin〉, (10.12)
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and

Sµµ′(t) =
∑

j

eiωjgtdjg,µd∗jg,µ′ , (10.13)

then we have that

p(r1, t1; r2, t2) =
∫ t2+∆t

t2

dt′2

∫ t2+∆t

t2

dt′′2

∫ t1+∆t

t1

dt′1

∫ t1+∆t

t1

dt′′1

3∑

µ,µ′=1

3∑

ν,ν′=1

Sνν′(t′1 − t′′1)Sµµ′(t′2 − t′′2)gµ′ν′(r1, t
′′
1 ; r2, t

′′
2)∗

gµν(r1, t
′
1; r2, t

′
2). (10.14)

Note that the function Sµµ′(t) characterizes the frequency bandwidth of the detector.
Finally, in order to obtain an idea of how this probability behaves, we will find an expression

for gµν(r1, t′1; r2, t′2). Converting the sums over momentum into integrals, we find that

gµν(r1, t
′
1; r2, t

′
2) =

−
√

V

2(2π)9µ0h̄
2

∑

α1,α2,α3

∫
d3k1

∫
d3k2

∫
d3k3

F
√

ω1ω2
Mµν(r1, t

′
1; r2, t

′
2)h(k3 − k1 − k2)

ei(ω1+ω2−ω3)t1 − 1
ω1 + ω2 − ω3

βk3,α3 (10.15)

where we have set ωj = ωkj and êj,αj = êkj ,αj for j = 1, 2, 3. We also have that

Mµν(r1, t
′
1; r2, t

′
2) = (k2 × ê2,α2)µ(k1 × ê1,α1)νeik2·r1eik1·r2ei(ω2t′1+ω1t′2)

+ (k1 × ê1,α1)µ(k2 × ê2,α2)νeik1·r1eik2·r2ei(ω1t′1+ω2t′2). (10.16)

We can now make some rather rough approximations in order to make some sense of the above
expression. If we assume that the nonlinear crystal is large and that |r1| and |r2| are comparable
in size to lz , then h(k3−k1−k2)→ δ(3)(k3−k1−k2). We shall also assume that the interaction
time t1 satisfies ct1 0 |r1|, |r2|, and in this case we can approximate [ei(ω1+ω2−ω3)t1−1]/(ω1+
ω2 − ω3) by δ(ω1 + ω2 − ω3). We shall also assume the pump mode is specified by βk3,α3 =
β0δα3,1δ(3)(k3−k0ẑ). Finally, because the detectors are not sensitive to frequencies at the pump
frequency and above, we shall cut the k1 and k2 integrals off at k0. This gives us that

gµν(r1, t
′
1; r2, t

′
2) ∼

∫

|k1|<k0

d3k1

∫

|k2|<k0

d3k2δ(ω1 + ω2 − ω3)δ(3)(k3 − k1 − k2)

[eik2·r1eik1·r2ei(ω2t′1+ω1t′2) + eik1·r1eik2·r2ei(ω1t′1+ω2t′2)], (10.17)

where now, k3 = k0ẑ. Performing the integrals, we have, setting ∆Z = (z2 − z1)− c(t′2 − t′1)

gµν(r1, t
′
1; r2, t

′
2) ∼ eik0(z1−ct′1)

[
2i

(∆Z)3
(1− eik0∆Z)− k0

(∆Z)2
(1 + eik0∆Z)

]

+ (r1, t
′
1 ↔ r2, t

′
2). (10.18)

This expression tells us the following. Because the photons in down conversion are emitted
simultaneously, it is most likely to detect them both at points satisfying the condition ∆Z = 0,
and the likelihood decays as approximately 1/(∆Z)2 as ∆Z increases.
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11 Dispersion

A realistic description of the propagation of fields in a nonlinear medium must include the effects
of linear dispersion (the effects of nonlinear dispersion are small and can be neglected to lowest
order). Dispersion, however, is difficult to incorporate into the standard canonical formulation,
because it is an effect which is nonlocal in time. It arises from the fact that the polarization of
the medium at time t, P(t), depends not only on the electric field at time t, but also on its values
at previous times [49]

P(t) =
∫ ∞

0
dτχ(1)(τ) : E(t− τ). (11.1)

There are two known approaches to constructing a quantized theory for nonlinear media
that incorporate dispersion. The first, which was pioneered by Drummond [50], has as its basic
objects narrow-band fields for which it is possible to derive an approximate theory which is
local. In the second, the degrees of freedom of the medium are included in the theory, and the
entire theory, fields plus medium, is local. Each approach has its advantages. The second is
more fundamental, but requires a model for the medium, which for many systems of interest,
will be complicated. The first is more phenomenological, but needs only a set of functions, the
polarizabilities, to describe the medium. Both are useful and we shall consider each of them.

In the case of linear theories, a number of other methods of quantizing fields in the pres-
ence of dispersive media have been developed. One starts with the equations of motion for the
field operators and then introduces frequency dependence into the susceptibilities and noise cur-
rents [51]. A second starts from the results of a microscopic model and generalizes them to
be able to treat arbitrary frequency-dependent susceptibilities [52]. A third is able to define a
Lagrangian and Hamiltonian for fields in a medium with arbitrary frequency response by intro-
ducing auxiliary fields [53]. This theory can then be quantized in the usual way. These methods
have not yet been used to treat nonlinear media.

Let us first look at the approximate macroscopic theory due to Drummond [50]. The basic
field in this theory is the dual potential. It is simplest to start by considering a linear, dispersive
medium in which case the electric field is related to the dual potential by

Ei(r, t) =
∫ ∞

0
dτβ(1)

ij (r, τ)Dj(r, t− τ), (11.2)

where D = ∇ × Λ. As is evident from this equation, β(1) is in general a tensor, but we shall
assume, for the sake of simplicity, that the medium is isotropic which implies that β(1) is a scalar.
The relation between E and D and Maxwell’s equations imply that Λ(r, t) satisfies the equation

∇×
∫ ∞

0
dτβ(1)(r, τ)[∇×Λ(r, t− τ)] = −Λ̈(r, t). (11.3)

which is clearly nonlocal in time. Now suppose that Λν is a narrow-band field with frequency
components near ων (that is, Λν ∼ e−iωνt), and that Λ can be expressed as

Λ = Λν + Λ−ν , (11.4)
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where Λ−ν = (Λν)∗. The field Λν will also satisfy Eq. (11.3). Let us now define

β(1)(r,ω) =
∫ ∞

0
dτeiωτβ(1)(r, τ), (11.5)

where β(1)(r,ω) = 1/ε(r,ω), and ε(r,ω) is the usual frequency-dependent dielectric function
for the medium. For a nonabsorbing medium, ε(r,ω) is real and ε(r,−ω) = ε(r,ω). Because
we are interested in frequencies near ων , expand this quantity up to second order in ω − ων

β(1)(r,ω) ∼= βν(r) + ωβ′ν(r) +
1
2
ω2β′′ν (r), (11.6)

where

βν(r) ≡ β(1)(r,ων)− ων
dβ(1)

dω
(r,ων) +

1
2
ω2 d2β(1)

dω2
(r,ων),

β′ν(r) ≡ dβ(1)

dω
(r,ων)− ων

d2β(1)

dω2
(r,ων)

β′′ν (r) ≡ d2β(1)

dω2
(r,ων) (11.7)

We now consider the wave equation which Λν satisfies, Eq. (11.3), and make the following
approximation. The quantity e−iωντΛν(t − τ) is a slowly varying function of τ , so we expand
it in a Taylor series in τ up to second order. Taylor expansions are often used in this way in
classical dispersion theory to simplify wave equations, and this technique was first introduced
into macroscopic field quantization by Kennedy and Wright [54]. Doing so we find that (we
shall not explicitly indicate the r dependence of Λν and β(1))

∫ ∞

0
dτβ(1)(τ)eiωντ [e−iωντ∇×Λν(t− τ)]

∼=
∫ ∞

0
dτβ(1)(τ)eiωντ∇× {Λν(t)− τ [Λ̇ν(t)− iωνΛν(t)]

+
1
2
τ2[Λ̈ν(t) + 2iωνΛ̇ν(t)− ω2

νΛ
ν(t)]}

∼= βνΛν(t) + iβ′νΛ̇
ν(t)− 1

2
β′′ν Λ̈ν(t). (11.8)

Substituting this expansion into the wave equation, Eq. (11.3), we find

− Λ̈ = ∇× [βν∇×Λν + iβ′ν∇× Λ̇ν

− 1
2
β′′ν∇× Λ̈ν ], (11.9)

which is a local equation for Λν , which can, in turn, be derived from a local Lagrangian. The
Lagrangian density from which it follows is

L =
1
2
[2µ0(Λ̇−ν) · Λ̇ν − 2(∇×Λ−ν) · βν(∇×Λν)− i(∇×Λ−ν) · β′ν(∇× Λ̇ν)

+ i(∇×Λν) · β′ν(∇× Λ̇−ν)− (∇× Λ̇−ν) · β′′ν (∇× Λ̇ν)]. (11.10)
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The coordinates in this Lagrangian density are Λν and Λ−ν . The equation of motion for Λν ,
which follows from the condition δ

∫
dt

∫
d3rL = 0 is

0 =
∂L
∂Λν

j

−
3∑

k=1

∂k

(
∂L

∂(∂kΛν
j )

)
− ∂t

(
∂L

∂(∂tΛν
j )

)

+
3∑

k=1

∂t∂k

(
∂L

∂(∂t∂kΛν
j )

)
. (11.11)

Insertion of the above Lagrangian density into this equation gives Eq. (11.9). The canonical
momentum, Πν , is given by

Πν
j =

δL

δλ̇ν
j

=
∂L
∂Λ̇ν

j

−
3∑

k=1

∂k

(
∂L

∂(∂kΛ̇ν
j )

)
, (11.12)

which gives us that

Πν = µ0Λ̇−ν − 1
2
∇× [β′′ν (∇× Λ̇−ν) + iβ′ν(∇×Λ−ν)]. (11.13)

Finally, from the Lagrangian and the canonical momentum we can find the Hamiltonian density

H = Πν · Λ̇ν + Π−ν · Λ̇−ν − L. (11.14)

The Hamiltonian is then found by integrating the Hamiltonian density over the quantization
volume. It is possible to simplify the Hamiltonian density by integrating some of the terms by
parts and assuming that the boundary terms vanish, in particular, it is useful to make use of the
identity

∫
d3rV1 ·∇×V2 =

∫
d3rV2 ·∇×V1. (11.15)

This allows us to combine terms in the Hamiltonian density, and the resulting Hamiltonian is

H =
∫

d3r[µ0Λ̇−ν · Λ̇ν + (∇×Λ−ν) · βν(∇×Λν)

− 1
2
(∇× Λ̇−ν)β′′ν (∇× Λ̇ν)] (11.16)

where Λ̇ν is to be considered a function of Πν . As has been shown by Drummond [50], this
Hamiltonian is the energy for a classical field in a dispersive dielectric. He has also emphasized
that the Langrangian for the theory, which is not unique (it can, for example, be scaled by an
arbitrary factor and the equations of motion will be unaffected) should be chosen so that it does
give a Hamiltonian which is the classical energy.

If the dispersion in the nonlinear interaction is ignored, so that the interaction is considered
local, it can be included in the theory by adding the terms

∫
d3r[

1
3
D · β(2) : DD +

1
4
D · β(3) : DDD], (11.17)
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to the Hamiltonian in Eq. (11.16). In addition, if fields with several discrete frequencies are
present, they can be accomodated by adding additional fields, Λν , centered about these frequen-
cies to the theory. This has the effect of adding summations over ν to the Langrangian density
and Hamiltonian in Eqs. (11.10) and (11.16).

In order to quantize the theory we would like to simply impose the commutation relations

[Λν
j (r, t),Πν

j′(r
′, t)] = iδ(tr)

jj′ (r− r′). (11.18)

However, in order for this to be true the fields must have Fourier components of arbitrarily high
frequency, while Λν is limited in bandwidth. An alternative, and in this case better, approach is
to expand the field in terms of spatial modes and to use the expansion coefficients as coordinates.
One then finds the corresponding canonical momentum for each coordinate and then imposes the
usual commutation relations between coordinates and momenta.

To begin let us expand Λν(r, t) in plane wave modes

Λν(r, t) =
1√
V

∑

k,α

λν
k,αêk,αeik·r, (11.19)

where the λν
k,α will become our coordinates. The fact that Λ−ν = (Λν)∗ and that ê−k,α =

−(−1)αêk,α imply that

λν
k,α = −(−1)α(λ−ν

−k,α)∗. (11.20)

The plane-wave expansion can be inserted into the Lagrangian, yielding

L =
∑

k,α

∑

k′,α′

[λ̇−ν
k′,α′ λ̇

ν
k,αM (1)

(k′,α′),(k,α) + λ−ν
k′,α′λ

ν
k,αM (2)

(k′,α′),(k,α)

+ λ−ν
k′,α′ λ̇

ν
k,αM (3)

(k′,α′),(k,α) − λ̇ν
k′,α′λ

ν
k,αM (3)

(k′,α′),(k,α)]. (11.21)

The matrices M (j)
(k′,α′),(k,α), j = 1, 2, 3 are given by

M (1)
(k′,α′),(k,α) = −µ0(−1)αδk′,−kδα′,α

+
1

2V

∫
d3rei(k+k′)·rβ′′ν (k′ × êk′,α′) · (k× êk,α)

M (2)
(k′,α′),(k,α) = +

1
V

∫
d3rei(k+k′)·rβν(k′ × êk′,α′) · (k× êk,α)

M (3)
(k′,α′),(k,α) = +

i

2V

∫
d3rei(k+k′)·rβ′ν(k′ × êk′,α′) · (k× êk,α) (11.22)

Our next step is to find the canonical momenta. These are given by

πν
k,α =

∂L

∂λ̇ν
k,α

=
∑

k′,α′

[λ̇−ν
k′,α′M

(1)
(k′,α′),(k,α) + λ−ν

k′,α′M
(3)
(k′,α′),(k,α)] (11.23)

and

π−ν
k′,α′ =

∂L

∂λ̇−ν
k′,α′

=
∑

k,α

[λ̇ν
k,αM (1)

(k′,α′),(k,α) − λν
k,αM (3)

(k′,α′),(k,α)]. (11.24)
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We can now find the Hamiltonian

H =
∑

k,α

(πν
k,αλ̇ν

k,α + π−ν
k,αλ̇−ν

k,α)− L

=
∑

k,α

∑

k′,α′

[λ̇−ν
k′,α′ λ̇

ν
k,αM (1)

(k′,α′),(k,α) − λ−ν
k′,α′λ

ν
k,αM (2)

(k′,α′),(k,α)]. (11.25)

The Hamiltonian should be expressed in terms of the coordinates and the canonical momenta,
and in order to do so Eqs. (11.23) and (11.24) must be inverted to find expressions for λ̇ν

k,α and
λ̇−ν
k,α in terms of the canonical momenta and the coordinates.

We shall now consider a simplified version of this theory. We shall suppose that the field
consists of plane waves which are polarized in the y direction and propagate in the x direction.
In this case the field, Λν(x, t) is a scalar and a function of only one spatial coordinate. This
means that ∇×Λν becomes ∂xΛν ẑ and integrals over the quantization volume are replaced by
A

∫ l
0 dx, where the quantization volume V = l3, and A = l2. If, in addition, we assume that the

only nonlinearity present is described by β(3) and that the medium is homogeneous, we find that
the Hamiltonian is

H = A

∫
dx{µ0Λ̇νΛ̇−ν + βν(∂xΛν)(∂xΛ−ν)− 1

2
β′′ν (∂xΛ̇ν)(∂xΛ̇−ν)

+
1
4
β(3)[∂x(Λν + (Λν)∗)]4}. (11.26)

The field Λ(x, t) is now given by

Λ(x, t) =
1√
V

∑

k

(λν
keikx + λ−ν

−ke−ikx). (11.27)

Note that, because the nonlinear term does not depend on the time derivative of Λ(x, t), its
addition to the theory does not change the canonical momenta, i.e. the canonical momenta for
the theory without the nonlinear term are the same as the canonical momenta for the theory with
the nonlinear term.

What we would like to do is to express the Hamiltonian in terms of λν
k and λ−ν

k and their
corresponding momenta. Note that we have suppressed the polarization subscript, because it is
not necessary for the simplified theory we are considering (there is only one polarization present).
For plane-wave modes propagating in the x direction in a homogeneous medium, and assuming
the polarization vectors satisfy êk = ê−k, we have that

M (1)
k,k′ = (µ0 −

1
2
β′′ν k2)δk,−k′

M (2)
k,k′ = −k2βνδk,−k′

M (3)
k,k′ = − i

2
k2β′νδk,−k′ . (11.28)

From this, for the linear part of the Lagrangian, L0, we obtain

L0 =
∑

k

[λ̇−ν
−kλ̇ν

k(µ0 −
1
2
β′′ν k2)− λ−ν

−kλν
kk2βν

− i

2
k2β′ν(λ−ν

−kλ̇ν
k − λ̇−ν

−kλν
k)], (11.29)
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and the canonical momenta

πν
k = λ̇−ν

−k(µ0 −
1
2
β′′ν k2)− i

2
k2β′νλ−ν

−k

π−ν
−k = λ̇ν

k(µ0 −
1
2
β′′ν k2) +

i

2
k2β′νλν

k. (11.30)

The linear part of the Hamiltonian, H0, is now given by

H0 =
∑

k

[λ̇−ν
−kλ̇ν

k(µ0 −
1
2
β′′ν k2) + λ−ν

−kλν
kk2βν ]

=
∑

k

[
1

µ0 − (β′′ν /2)k2
(π−ν
−k −

i

2
k2β′νλν

k)(πν
k +

i

2
k2β′νλ−ν

−k)

+ λ−ν
−kλν

kk2βν

]
. (11.31)

Our next step is to quantize the theory. We promote λν
k and πν

k to operators and impose the
canonical commutation relations

[λν
k,πν

k′ ] = ih̄δk,k′ [λ−ν
k ,π−ν

k′ ] = ih̄δk,k′ . (11.32)

Note that because Λ = Λν + Λ−ν is hermitian, we must have λ−ν
−k = (λν

k)†, and because Λ̇ is
hermitian, we have that π−ν

−k = (πν
k)†. We can now define two sets of creation and annihilation

operators

ak =
1√
2h̄

[
Akλν

k +
(

i

A∗k

)
(πν

k)†
]

b†k =
1√
2h̄

[
Akλν

k −
(

i

A∗k

)
(πν

k)†
]

, (11.33)

where Ak is a c-number yet to be determined. These relations can be inverted to give

λν
k =

1
Ak

√
h̄

2
(ak + b†k)

πν
k = iAk

√
h̄

2
(a†k − bk), (11.34)

and the results can be substituted into the Hamiltonian. If Ak is chosen to be

Ak =
[
1
4
k4(β′ν)2 + (µ0 −

1
2
β′′ν k2)k2βν

]1/4

, (11.35)

then the terms proportional to akbk and a†kb†k vanish, with the result that

H = h̄
∑

k

(ω+(k)a†kak + ω−(k)b†kbk), (11.36)
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where an overall constant has been dropped. The frequencies ω±(k) are given by

ω±(k) =
1

µ0 − β′′ν k2/2

{
±1

2
k2β′nu

+
[
1
4
k4(β′ν)2 + (µ0 −

1
2
β′′ν k2)k2βν

]1/2
}

. (11.37)

The frequencies ω±(k) are solutions of the equation

ω2
± = k2(βν ± ω±β′ν +

1
2
ω2
±β′′ν ). (11.38)

Note that the expression in parentheses in the above equation is identical to the expansion of
β(1)(ω) about ων if the plus sign is used. Because β(1)(ω) = 1/ε(ω), where ε(ω) is the usual
frequency-dependent dielectric function, Eq. (11.38) for ω+ is approximately the same as

ω =
k√
ε(ω)

, (11.39)

which is the relation between ω and k we would expect for a wave travelling in a linear dielectric
medium. This leaves us with the question of how to interpret ω− and bk.

An examination of Eq. (11.33) shows us that

λk =
1

Ak

√
2
(ak + b†k), (11.40)

while Eq. (11.36) implies that bk ∼ e−iω−t. Now ω− is not too far from ων , which implies that
the b†k term in λk has a time dependence given approximately by eiωνt. This places it outside the
bandwidth for the field Λν . In order to be consistent we must assume that all of the bk modes
are in the vacuum state and, thereby, drop these operators from the theory. This implies that the
Hamiltonian for the full theory (as opposed to just the linear part) is

H =
∑

k

h̄ω+(k)a†kak +
1
4
β(3)A

∫
dx(∂x(Λν + Λν†))4, (11.41)

where

Λ =
√

h̄

2V

∑

k

1
Ak

(akeikx + a†ke−ikx). (11.42)

We can express the quantity Ak in terms of the group velocity, vk = dω+/dk. As we
saw, ω+ is a solution to the equation k2β(1)(ω+) = µ0ω2

+, where β(1) is given by Eq. (11.6).
Differentiating both sides with respect to ω+ gives

kβ(1)(ω+) =
(

µ0ω+ −
1
2
k2 dβ(1)

dω+

)
dω+

dk
. (11.43)

Now, making use of Eqs. (11.37) and (11.35), we find that

µ0ω+ −
1
2
k2 dβ(1)

dω+
= ω+(µ0 −

1
2
k2β′′ν )− 1

2
k2β′ν = A2

k. (11.44)
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This, then, gives us

Ak =

√
kβ(1)(ω+)

vk
. (11.45)

Finally, we have for the fields

Λ(x, t) =
∑

k

[
h̄ε(ω+)vk

2V k

]1/2

(akeikx + a†ke−ikx)ŷ

D(x, t) =
∑

k

i

[
h̄kε(ω+)vk

2V

]1/2

(akeikx − a†ke−ikx)ẑ. (11.46)

We now have a theory which is capable of describing the propagation of quantum fields in
nonlinear, dispersive media. Carter and Drummond have applied this theory to describe fields
propagating through a fiber with a χ(3) nonlinearity [15], and we shall briefly give the theory in
the form in which they use it. We shall assume that the field has wave number components near
k1. First, we define the field

Ψ(x, t) =
1√
L

∑

k

ei[(k−k1)x+ω1t]ak, (11.47)

where ω1 = ω(k1). This field has equal time commutation relations given by

[Ψ(x, t),Ψ†(x′, t)] = δ̃(x− x′), (11.48)

where δ̃, because it has a band-limited Fourier transform, is a smoothed version of the Dirac delta
function. We shall assume, however, that this smearing effect is not pronounced so that we can
treat δ̃(x− x′) as a delta function. Inverting the relation between Ψ(x, t) and ak, we find that

ak =
1√
L

∫
dxe−i[(k−k1)x+ω1t]Ψ(x, t). (11.49)

We can use this expression to express the Hamiltonian, Eq. (11.41), in terms of Ψ(x, t). We first
note that

∑

k

ω(k)ei(k−k1)(x−x′) =
1
L

∫
dx

∫
dx′

(
∑

k

ω(k)ei(k−k1)(x−x′)

)
Ψ(x, t)†Ψ(x′, t).

(11.50)

Expanding ω(k) around k1, we have that

ω(k) = ω1 + (k − k1)v1 +
1
2
(k − k1)2ω′′1 + . . . (11.51)

Here, v1 is the group velocity at k1 and ω′′1 is the second derivative of ω(k) evaluated at k1. This
then gives us

∑

k

ω(k)ei(k−k1)(x−x′) ∼=
∑

k

[ω1 +
i

2
v1(∂x′ − ∂x)
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+
1
2
ω′′1∂x∂x′ ]ei(k−k1)(x−x′)

∼= [ω1 +
i

2
v1(∂x′ − ∂x)

+
1
2
ω′′1∂x∂x′ ]δ(x− x′). (11.52)

This gives, for the linear part of the Hamiltonian, Hlin,

Hlin = h̄

∫
dx

[
ω1Ψ†Ψ +

i

2
v1

(
∂Ψ†

∂x
Ψ−Ψ† ∂Ψ

∂x

)

+
1
2
ω′′1

∂Ψ†

∂x

∂Ψ
∂x

]
. (11.53)

The nonlinear part of the Hamiltonian, Hnlin, is given by

1
4
β(3)A

∫
dxD4 ∼=

β(3)

4
A

[(
h̄

2V

)
k1v1ε1L

]2 ∫
dx[ei(k1x−ω1t)Ψ(x, t)

− e−i(k1x−ω1t)Ψ(x, t)†]4, (11.54)

where β(3) = −χ3/ε31. Keeping only the slowly varying terms, we obtain

Hnlin
∼=

3β(3)

8A
(h̄k1v1ε1)2

∫
dx(Ψ†)2Ψ2. (11.55)

The total Hamiltonian is, of course, just the sum of the two terms, H = Hlin + Hnlin.
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12 Quantum solitons

As we shall shortly see, the above Hamiltonian gives rise to quantum solitons. A classical soliton
in a dispersive, nonlinear medium is a pulse that propagates without changing shape. They were
first observed in water waves [55] and more recently, and of more relevance to us, they have
been observed in optical fibers [56]. Besides their fundamental interest, they could be of use in
optical communications. When these waves are quantized, new effects emerge. We want to use
the formalism we have developed to study these quantized solitons.

The theory of quantum solitons in optical fibers was developed by Carter and Drummond
[57]. Among other effects, they predicted that quantum solitons are squeezed, which was sub-
sequently confirmed experimentally [58]. This theory, and its subsequent elaborations [59] is
comprehensive. It takes into account losses, Brillouin scattering, and Raman processes and its
agreement with experiment is excellent. Here we only wish to present some of the basic features
of quantum solitons, and to do so we will make us of a simpler, and less realistic, theory due to
Lai and Haus [60]. It is based on the time-dependent Hartree approximation.

As a first step we shall go into a kind of interaction picture. Let

H0 = h̄

∫
dxω1Ψ†Ψ, (12.1)

and define operators

ΨI = e−iH0t/h̄ΨeiH0t/h̄ HI = e−iH0t/h̄HeiH0t/h̄. (12.2)

We then find that

HI =
h̄

2

∫
dx

[
iv1

(
∂Ψ†

I

∂x
ΨI −Ψ†

I

∂ΨI

∂x

)
+

1
2
ω′′1

∂Ψ†
I

∂x

∂ΨI

∂x

+ 2g3(Ψ†
I)

2Ψ2
I

]
, (12.3)

where we have set

g3 =
3β(3)

8A
h̄(k1v1ε1)2. (12.4)

This gives us the equation of motion

i

(
∂

∂t
+ v

∂

∂x

)
ΨI = −ω′′

2
∂2ΨI

∂x2
+ 2g3Ψ†

IΨ
2
I . (12.5)

From here on, we shall drop the subscript I with the understanding that all of the operators are
in our interaction picture. Next, we go into a moving frame by considering Ψ to be a function of
xv = x − vt and t rather than x and t. In terms of the new coordinates, the equation of motion
for Ψ becomes

i
∂Ψ
∂t

= −ω′′

2
∂2Ψ
∂x2

v

+ 2g3Ψ†Ψ2. (12.6)

The above equation is an operator version of a nonlinear Schrödinger equation. The classical
version of this equation gives rise to solitons. The operator version describes particles interacting
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by means of a delta-function potential, and the solutions to this problem are known. Let us make
a short detour to describe the interacting-particle system, and then use the results to examine the
properties of our solitons in a nonlinear medium.

Suppose that we have particles of mass m in one dimension interacting via a potential V (x−
x′). The second-quantized Hamiltonian for this system is

H =
∫

dx
h̄

2m

∂φ†

∂x

∂φ

∂x
+

∫
dx

∫
dx′V (x− x′)φ†(x, t)φ†(x′, t)φ(x′, t)φ(x, t), (12.7)

where φ(x, t)† creates a particle at postion x, and

[φ(x, t),φ(x′, t)†] = δ(x− x′). (12.8)

If the potential is given by V (x − x′) = h̄gδ(x − x′), then we obtain a Hamiltonian that is the
same as the one describing the propagation of the field in a nonlinear fiber. The fact that the
number operator commutes with the Hamiltonian implies that the eigenstates will be states of
well-defined particle number, and hence be of the form

|ψn〉 =
1√
n!

∫
dx1 . . . dxnfn(x1, . . . xn)φ(x1, 0)† . . .φ(xn, 0)†|0〉. (12.9)

The function fn satisfies the equation

Enfn =



− h̄2

2m

n∑

j=1

∂2

∂x2
j

+ 2h̄g
∑

1≤j<k≤n

δ(xk − xj)



 fn. (12.10)

If g < 0, then there are bound states, and for these fn is proportional to [61, 62]

fn(x1, . . . xn) ∝ exp[ip
n∑

j=1

xj + (mg/h̄)
∑

1≤j<k≤n

|xk − xj |]. (12.11)

In the case of photons in a nonlinear fiber, this solution would be a bound state of n photons, and,
therefore, be a state of definite photon number. Because the solitons that propagate in nonlinear
fibers are a result of light from a laser propagating through the fiber, and laser light, being close
to a coherent state, does not have a definite photon number, the states we are looking for are
superpositions of many of these states with different values of n. Rather than trying to find
these soliton solutions by superposing the exact solutions, we shall make use of an approximate
method.

We shall employ the time-dependent Hartree approximation. We start from the time depen-
dent equation for fn, which is just an n-particle Schrödinger equation,

ih̄
∂fn

∂t
=



− h̄2

2m

n∑

j=1

∂2

∂x2
j

+ 2h̄g
∑

1≤j<k≤n

δ(xk − xj)



 fn, (12.12)

and we assume that fn(x1, . . . xn) = Πn
j=1hn(xj , t). The effective potential felt by one of the

particles is the n-particle potential averaged over all of the other particles

Veff (x, t) = 2h̄g
n∑

j=2

∫
dxj |hn(xj , t)|2δ(x− xj) = 2h̄g(n− 1)|hn(x, t)|2. (12.13)
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We assume that hn(x, t) satisfies the one-particle Schrödinger equation with the effective poten-
tial

ih̄
∂hn

∂t
= − h̄2

2m

∂2hn

∂x2
+ 2h̄g(n− 1)|hn(x, t)|2hn(x, t). (12.14)

For g < 0 this equation has the soliton solution

hn(x, t) =
2η

|g(n− 1)|1/2

(
2m

h̄

)1/2

exp

[
−4i(ξ2 − η2)t− 2iξ

√
2m

h̄
(x− x0)

]

sech

[
2η

(√
2m

h̄
(x− x0) + 4ξt

)]
, (12.15)

where ξ, η, and x0 are arbitrary parameters. The normalization condition,
∫

dx|hn(x, t)|2 = 1, (12.16)

however, fixes the value of η

η =
|g|(n− 1)

4
. (12.17)

We now want to apply what we have learned about interacting particles to a field propagating
in a nonlinear fiber. In order to do so it is useful to look at the field propagation problem in the
Schrödinger picture. For the state |Φ〉, we have

ih̄
∂

∂t
|Φ〉 = (Hlin + Hnlin)|Φ〉. (12.18)

Because the Hamiltonian conserves photon number, we can assume that

|Φ〉 =
1√
n!

∫
dx1 . . . dxnfn(x1, . . . xn, t)Ψ†(x1, 0) . . .Ψ†(xn, 0)|0〉, (12.19)

where
∫

dx1[. . . dxn|fn(x1, . . . xn)|2 = 1. (12.20)

Inserting |Φ〉 into the Schrödinger equation, we find that fn satisfies

i
∂fn

∂t
= nω1fn − iv1

n∑

j=1

∂fn

∂xj
− 1

2
ω′′1

n∑

j=1

∂2fn

∂x2
j

+2g3

n∑

j=1

j−1∑

k=1

δ(xj − xk)fn. (12.21)

If we now define f̃n = exp(inω1t)fn and consider f̃n to be a function of {xvj = xj − v1t|j =
1, . . . n} and t rather than of {xj |j = 1, . . . n} and t, then we have that

i
∂f̃n

∂t
= −1

2
ω′′1

n∑

j=1

∂2f̃n

∂x2
vj

+ 2g3

n∑

j=1

j−1∑

k=1

δ(xvj − xvk)fn, (12.22)
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which has the same form as the Schrödinger equation for n particles interacting via a delta
function potential. If we assume that ω′′1 > 0 and g3 < 0, we can make use of the solutions
we obtained for the delta-function-interacting system. In particular, we can use the solutions we
obtained from the Hartree approximation and set

fn(x1, . . . xn, t) =
n∏

j=1

h̃n(xj , t), (12.23)

where

h̃n(xj , t) = eiω1thn(xj − v1t, t), (12.24)

and in the explicit expresssion for hn we have made the replacements
h̄

2m
→ ω′′1

2
g → g3. (12.25)

As was mentioned, we are interested in solutions that are superpositions of states with differ-
ent photon numbers, and, in particular, solutions that resemble coherent states. Defining

Ψ†[h̃n] =
∫

dxh̃n(x, t)Ψ†(x, 0), (12.26)

we note that
[
Ψ(x, 0),Ψ†[h̃n]

]
= h̃n(x, t). Now consider the superposition of approximate

solutions

|Φ〉 = e−|α|2/2
∞∑

n=0

αn

n!
(Ψ†[h̃n])n|0〉. (12.27)

This state has the property that

〈Φ|Ψ(x, 0)|Φ〉 = αe−|α|2
∞∑

n=0

|α|2n

n!
h̃n+1(x, t)(〈h̃n|h̃n+1〉)n. (12.28)

Now let us assume that n0 = |α|2 0 1, which implies that the average photon number in the
state is large. The terms in the sum that will contribute most are those for which n0 −

√
n0 ≤

n ≤ n0 +
√

n0. In this range we have that

(〈h̃n|h̃n+1〉)n ∼= eitg2
3n(2n−1)/4 (12.29)

and that the dominant n dependence in h̃n+1(x, t) is the exponential factor exp(in2g2
3t/4).

Therefore, if g2
3tn0

√
n0 . 1, the n dependence of the terms in the sum in the important range

will be weak, and we can replace them by their values at n0, so that

〈Φ|Ψ(x, 0)|Φ〉 = αh̃n0(x, t). (12.30)

This is just a propagating soliton, so that for sufficiently short times the average value of the field
is just that of a classical soliton. For longer times, however, the n dependence of the different
terms in the sum comes into play, and these terms are no longer in phase. The phase of what
had been a coherent state starts to diffuse, and this will cause the average value of the field to
decay. This phase diffusion is a quantum effect; classically, the soliton would propagate with no
change to its shape (ignoring losses). This phase diffusion can lead to squeezing, and it has been
observed experimentally [58].
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13 Conclusion

What has been presented here is merely an introduction to the quantum theory of nonlinear optics,
and there are many aspects of it that we have not covered. For example, some of the mathematical
methods that are useful in treating these systems, such as quasiprobability distributions and the
stochastic differential equations to which they lead have either just been touched upon or have
not been discussed. We have also not treated the input-output formalism that is employed to
find the field emitted by a cavity containing a nonlinear medium, which is driven by input fields.
These topics are covered elsewhere, once source being the book Quantum Squeezing [63].

Another aspect we have not covered is a second approach to nonlinear optics with quantized
fields. We have characterized the medium by its susceptibilities. One can instead construct a
model for the medium, and then quantize the entire system, fields and matter. This approach was
pioneered for linear media by Hopfield [64]. The elementary excitations in this theory are mixed
matter-field modes known as polaritons. When the medium is nonlinear, the polaritons interact.
The Hamiltonian for this system is one that describes interacting polariton fields [65, 66]. This
is consistent with the treatment presented here, because the creation and annihilation operators
we have discussed are expressed in terms of the dual potential and the displacement field, which
contains both matter and electromagnetic fields. Therefore, the excitations created by the creation
operators are, in fact, mixed matter-field excitations.

Finally, it would be useful to have a formalism that describes fields entering a nonlinear
medium, interacting within it, and propagating out into free space. This would, in fact, be a
scattering theory approach, and it accords with what is done in the laboratory. The fields originate
outside the medium, propagate through it, and are measured in free space. This is yet to be
accomplished in the full multimode case. We expect that a quantum field theoretic scattering
treatment would be a useful way to approach this problem.
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