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Abstract. Trust Management (TM) is a novel flexible approach to access control

in distributed systems, where the access control decisions are based on the policy

statements, called credentials, made by different principals and stored in a dis-

tributed manner. In this chapter we present an introduction to TM focusing on the

role-based trust-management framework RT. In particular, we focus on RT0, the

simplest representative of the RT family, and we describe in detail its syntax and

semantics. We also present the solutions to the problem of credential discovery

in distributed environments.

1 Introduction

The problem of guaranteeing that confidential data is not disclosed to unauthorized

users is paramount in our IT-dominated world, and is usually tackled by implement-

ing access control techniques. Traditional access control schemes make authorization

decisions based on the identity, or the role of the requester. However, in decentralized

environments, the resource owner and the requester often are unknown to one another,

making access control based on identity ineffective. To give a simple example, con-

sider the situation in which a bookstore adopts the policy of giving 10% discount to

students of accredited universities. Although a certificate authority may assert that the

requester’s name is John Q. Smith, if this name is unknown to the bookstore, the name

itself does not aid in making a decision whether he is entitled to a discount or not. What

is needed is information about the rights, qualifications, and other characteristics as-

signed to John Q. Smith by one or more authorities (in our example, the university he

attends), as well as trust information about the authority itself (e.g. is it accredited?).

Trust management [10,8,29,14,16,19,24,31] is an approach to access control in de-

centralized distributed systems with access control decisions based on policy statements

made by multiple principals. In trust management systems, statements that are main-

tained in a distributed manner are often digitally signed to ensure their authenticity and

integrity; such statements are called credentials or certificates. A key aspect of trust
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management is delegation: a principal may transfer limited authority over one or more

resources to other principals.

RT [24,25,23] is a family of Role-based Trust management languages introduced by

Li, Winsborough and Mitchell. At its most abstract, the notion of role used is simply

a set of principals. The primary application of RT is intended to be authorization and

access control, and the main purpose of roles is to confer to their members access to

specific resources. Neverthless, roles can also be used in more general terms. For in-

stance, membership in the role of student at the University of Texas may entail certain

privileges, but serves to characterize the status of its members more generally. Such

characterizations greatly facilitate granting new privileges to entire classes of users.

This tutorial is meant as an introduction to the RT family of trust management lan-

guages. It contains a thorough description of RT0 which is the core language of the fam-

ily, and some examples of the more complex members: RT1, RT2, RTT, RTD [24], and

the later RT⊖, introduced by Czenko et al. [26]. Concerning RT0, this chapter describes

in detail, syntax, semantics, decentralized storage and credential chain discovery. Tech-

nically, the content of this chapter derives directly from the original papers [24,25],

with some changes which simplify the exposition while maintaining generality: in par-

ticular a restriction, we employ a restriction on queries that simplifies the definition of

credential graph (see Remark 1). We also introduce new pseudo-code versions of the

credential chain discovery algorithms.

2 RT0

The RT framework encompasses a number of languages which have the same basic

structure, while offering different features. The main members of the RT family are RT0,

RT1, RTT, and RTD. Here we focus on the core member of RT: RT0. Later, in Sect. 5,

we are going to see examples of the features of RT1, RTT, and RTD.

2.1 Syntax

The basic constructs of RT0 are entities, role names and roles. Entities are also often

called principals. They can define roles, issue credentials, and make requests. In general,

an entity may be identified by a public key, or by a user account; following Li et al. [25],

we abstract away from the mechanism used for identifying entities. We denote them by

names starting with an uppercase letter (possibly with a subscript), e.g. A, B, B1, and

Alice are all entities. Role names, on the other hand, are denoted by strings starting with

a lowercase letter (possibly with a subscript), like r, r1, and student.

Finally, roles have the form of an entity followed by a role name, separated by a dot.

For example, A.r, B.r1, and University.student are valid roles. The notion of a role is

central to RT0. A role A.r denotes the set of entities that are members of it – a set that

we refer to informally by members(A.r). A is called the owner of the role A.r, and is

the only authority that can directly determine which are the members of A.r.

Permissions in RT0 are represented by roles. For example, the permission to read

confidential document on a corporate network of a company C can be represented by

role C.readConfidential: in this case, an entity has the read permission if and only if it
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belongs to members(C.readConfidential). Other roles are used to represent other prop-

erties, sometimes called attributes, that characterize the members or their relationship to

the role owner. For example, membership in C.employee might indicate an employment

relationship with C. This example illustrates one aspect of how RT supports decentral-

ization by making the entity with which one has an employment relationship explicit.

In RT there is no notion of simply being employed without mentioning the entity whose

judgement is being asserted or whose consent makes it so.

There are four types of credentials in RT0 that an entity A can issue, each corre-

sponding to a different way of defining the membership of one of A’s roles, A.r.

– Simple Member: A.r ←− D.

With this credential A asserts that D is a member of A.r.

– Simple Inclusion: A.r ←− B.r1.

With this credential A asserts that A.r includes (all members of) B.r1. This repre-

sents a delegation from A to B, as B may cause new entities to become members

of the role A.r by issuing credentials defining (and extending) B.r1.

– Linking Inclusion: A.r ←− A.r1.r2.

A.r1.r2 is called a linked role. With this credential A asserts that A.r includes B.r2

for every B that is a member of A.r1. This represents a delegation from A to all the

members of the role A.r1.

– Intersection Inclusion: A.r ←− B1.r1 ∩ B2.r2.

B1.r1 ∩ B2.r2 is called an intersection. With this credential A asserts that A.r

includes every principal who is a member of both B1.r1 and B2.r2. This represents

partial delegations from A to B1 and to B2.

In the original paper introducing RT0 [25], the number of intersection elements in

the intersection inclusion credentials is unlimited. Also, each intersection element can

be either a role or a linked role. Here we restrict the number of intersection elements

to two and require that each intersection element be a role. This makes the description

easier to follow and simplifies some definitions. However it imposes no restriction on

the expressive power of the language. A credential of the more general form can be

replaced by several of the more restricted credentials presented above by introducing

auxiliary roles, spliting longer intersections into several intersection inclusions, and

introducing a linking inclusion for each linked role.

A policy is a finite set of credentials. We use the term role expression for any entity,

role, linked role, or intersection; thus each RT0 credential has the form A.r ←− e, where

e is a role expression. Such a credential means that members(e) ⊆ members(A.r). We

say that this credential defines the role A.r. Further, we call A the issuer, e the body and

each entity occurring syntactically in e a subject of this credential. To be precise, the set

base(e) of subjects of A.r ←− e is defined as follows: base(A) = {A}, base(A.r) =
{A}, base(A.r1.r2) = {A}, and base(B1.r1∩B2.r2) = base(B1.r1) ∪ base(B2.r2) =
{B1, B2}.

2.2 Semantics

In this section, we present declarative semantics of RT0. We follow Li et al. [24] and do

this in terms of the semantics for logic programs by providing a translation of a policy C



An Introduction to the Role Based Trust Management Framework RT 249

to a Datalog program, which we call the semantic program. The set-theoretic semantics

for RT0 can be found in [25].

Given a set C of RT0 credentials (i.e. a policy) the corresponding semantic program,

SP(C), is a Datalog program with one ternary predicate m. Intuitively, m(A, r, D) indi-

cates that D is a member of the role A.r. Given an RT statement c, the semantic program

of c, SP(c), is defined as follows (identifiers starting with “?” are logical variables):

SP(A.r ←− D) = m(A, r, D).

SP(A.r ←− B .r1 ) = m(A, r, ?X) :− m(B, r1, ?X).

SP(A.r ←− A.r1 .r2 ) = m(A, r, ?X) :− m(A, r1, ?Y ), m(?Y, r2, ?X).

SP(A.r ←− B1 .r1 ∩ B2 .r2 ) = m(A, r, ?X) :− m(B1, r1, ?X), m(B2, r2, ?X).

SP extends to a set of statements as expected: SP(C) = {SP(c) | c ∈ C}. Finally,

given a policy C, the semantics of a role A.r ∈ C is defined in terms of atoms entailed

by the semantic program.

Definition 1 (Semantics of a Role). Let C be an RT0 policy, and let SP(C) be the

corresponding semantic program. The semantics of a role is defined as follows:

[[A.r]]SP(C) = {D |SP(C) |= m(A, r, D)}.

2.3 Examples

We now present some examples presenting how RT0 can be used in different application

areas. We begin with an example from [25], showing a typical scenario from the area

of electronic commerce.

Example 1. EPub is an electronic publishing company that offers a special discount to

anyone who is both a preferred customer of the sister organization, EOrg, and an ACM

member. Alice is both. We have the following set C of credentials:

EPub.spdiscount ←− EOrg.preferred ∩ ACM.member (1)

EOrg.preferred ←− EOrg.university.student (2)

EOrg.university ←− ABU.accredited (3)

ABU.accredited ←− StateU (4)

StateU.student ←− RegistrarB.student (5)

RegistrarB.student ←− Alice (6)

ACM.member ←− Alice (7)

ACM.member ←− Bob (8)

The semantic program, SP(C), corresponding to the above policy is:

m(EPub, spdiscount, ?X) :− m(EOrg, preferred, ?X), m(ACM, member, ?X). (1)

m(EOrg, preferred, ?X) :− m(EOrg, university, ?Y ), m(?Y, student, ?X). (2)

m(EOrg, university, ?X) :− m(ABU, accredited, ?X). (3)

m(ABU, accredited, StateU). (4)
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m(StateU, student, ?X) :− m(RegistrarB, student, ?X). (5)

m(RegistrarB, student, Alice). (6)

m(ACM, member, Alice). (7)

m(ACM, member, Bob). (8)

The semantics of the roles defined by the set of credentials above is then the following:

[[EPub.spdiscount]]SP(C) = {Alice}

[[EOrg.preferred]]SP(C) = {Alice}

[[ACM.member]]SP(C) = {Alice, Bob}

[[EOrg.university]]SP(C) = {StateU}

[[ABU.accredited]]SP(C) = {StateU}

[[StateU.student]]SP(C) = {Alice}

[[RegistrarB.student]]SP(C) = {Alice}

We see then that only Alice is eligible for a discount as Bob, though being a member of

ACM, is not a student of an accredited university.

The next example presents the use of RT0 in collaborating organizations. This example

originally appeared in [15].

Example 2. Consider the situation in which two companies: CITA (in Italy) and CUS (in

the US), work on a joint project. CITA and CUS, have different management structures:

CITA.partner ←− Antonio

CITA.manager ←− Luca

CITA.programmer ←− Sandro

CITA.all ←− CITA.partner

CITA.all ←− CITA.manager

CITA.all ←− CITA.programmer

CUS.ceo ←− Bob

CUS.employee ←− John

CUS.employee ←− David

CUS.all ←− CUS.ceo

CUS.all ←− CUS.employee

In both companies there is an agreement that employees may trust all the sources that

are trusted by the partner (resp. ceo). They can – of course – trust other sources as well.

Luca.partner ←− CITA.partner

Luca.trusted ←− Luca.partner.trusted

Sandro.partner ←− CITA.partner

Sandro.trusted ←− Sandro.partner.trusted

John.ceo ←− CUS.ceo

John.trusted ←− John.ceo.trusted

David.ceo ←− CUS.ceo

David.trusted ←− David.ceo.trusted

CITA and CUS decide to join forces on projX, and they agree that most of the documents

developed in projX should be accessible only to people working on the project, and

that some particularly confidential documents should circulate only among the senior

personnel. To implement this, the two companies agree to employ the role names projX

and seniorprojX. In CITA, the partner decides who participates in projectX, and decides
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(in agreement with CUS) that the managers of CITA should be considered senior people,

while in CUS, the ceo delegates to John the definition of the projectX team as well as of

the senior people in it. Finally, CITA and CUS trust each other’s definitions of (senior)

people working on projectX. This policy is described and implemented by the following

set of credentials.

CITA.projX ←− Antonio.projX

CITA.seniorprojX ←− CITA.partner

CITA.seniorprojX ←− CITA.projX ∩ CITA.manager

Antonio.projX ←− Luca

Antonio.projX ←− Sandro

CITA.projX ←− CUS.projX

CITA.seniorprojX ←− CUS.seniorprojX

CUS.projX ←− John.projX

CUS.seniorprojX ←− CUS.ceo

CUS.seniorprojX ←− John.seniorprojX

John.seniorprojX ←− John

John.projX ←− John

John.projX ←− David

CUS.projX ←− CITA.projX

CUS.seniorprojX ←− CITA.seniorprojX

The following two examples were initially presented by Winsborough and Li in [32].

The first of them shows an example of a co-operation between banking institutions and

universities when providing financial support for students. Then, we show an exam-

ple of policies that can be used by medical suppliers and charity organizations when

handling natural disasters.

Example 3. A bank wants to know whether an entity is a full time student in order to

determine whether the entity is eligible to defer repayment on a guaranteed student loan

(GLS). (The US government insures banks against default of GLSs and requires par-

ticipating banks to allow full-time students to defer repayments.) The StateU university

may define its full-time student attribute by the following two credentials:

StateU.fullTimeStudent ←− RegistrarB.fullTimeStudent

StateU.fullTimeStudent ←− StateU.phdCandidate ∩ RegistrarB.partTimeStudent

We see that StateU says that one is a full-time student if either RegistrarB says so, or

if one is registered as a Ph.D. candidate at StateU and considered part-time student by

RegistrarB. The following credentials, together with the above ones, show that Bob is

a full-time student, i.e. Bob ∈ [[StateU.fullTimeStudent]]SP(C):

StateU.phdCandidate ←− StateU.gradOfficer.phdCandidate

StateU.gradOfficer ←− Carol
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Carol.phdCandidate ←− Bob

RegistrarB.partTimeStudent ←− Bob

Now, assume that StateU is certified by accreditation board ABU.

ABU.accredited ←− StateU

If universities define fullTimeStudent appropriately (for example, as done by StateU

above), BankWon can issue credentials like those bellow to grant loan-deferment per-

mission (denoted by BankWon.deferGLS) to students like Bob.

BankWon.deferGLS ←− BankWon.university.fullTimeStudent

BankWon.university ←− ABU.accredited

Clearly, Bob ∈ [[BankWon.deferGLS]]SP(C).

Example 4. In the aftermath of a large natural disaster, MedSup, a medical supply mer-

chant, offers to sell at a discount medical supplies to be used in the official clean up,

which is being organized by a coalition called ReliefNet. Alice works for MedixFund,

one of several charity organizations that use private contributions to obtain emergency

medical supplies for emergency teams working at the disaster site. The following four

credentials show that Alice is authorized for the discount.

MedixFund.pA ←− Alice (1)

ReliefNet.coaMember ←− MedixFund (2)

MedSup.partner ←− ReliefNet.coaMember (3)

MedSup.discount ←− MedSup.partner.pA (4)

Prior to joining the coalition, MedixFund issued credential (1), which states that

Alice is a purchasing agent for the fund. One of ReliefNet’s responsibilities is to identify

coalition-member organizations, as it does in credential (2). MedSup recognizes these

organizations as its coalition partners, as in credential (3), and offers discounted sales

to the purchasing agents of those partners, as stated in credential (4). In this example,

the judgments of MedixFund, ReliefNet, and MedSup are combined to authorize Alice’s

receiving a discount from MedSup. When MedSup enters into other coalition, it can add

an additional credential defining MedSup.partner to give the discount to the purchasing

agents of its new partners.

With the increasing popularity of the P2P networks and their excellent support for shar-

ing of private content, a high demand for flexible user-oriented policies can be observed.

Below, we show an example of how RT0 facilitates the use of personal policies in het-

erogeneous P2P environment.

Example 5. Charles wants to share his pictures using a P2P file sharing system. He

restricts the access to his gallery to his friends and friends of his friends. For his movie

collection, Charles applies a somewhat stronger policy: to access it, one has to be a
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member of Charles’s friend role, and a member of the film club Charles is also a member

of. The set of credentials, C, modelling this scenario is shown below:

Charles.accessMovies ←− Charles.friend ∩ Charles.filmClub

Charles.accessPictures ←− Charles.friend

Charles.friend ←− Charles.friend.friend

Charles.friend ←− Alice

Charles.friend ←− Bob

Charles.filmClub ←− Johan

Alice.friend ←− Jeffrey

Bob.friend ←− Johan

Johan.friend ←− Sandro

Notice that the delegation depth in RT0 is unlimited. It means that Charles’s role friend

contains not only friends of his friends, but also friends of friends of his friends and

so on (friends is a transitive closure of the set of Charles’s friends). Therefore, for the

given set of credentials, we have the following semantics:

[[Charles.accessMovies]]SP(C) = {Johan}

[[Charles.accessPictures]]SP(C) = {Alice, Bob, Jeffrey, Johan, Sandro}

3 RT0: The Credential Chain Discovery Algorithm

We have seen how RT0 can be used to define roles and how roles can represent permis-

sions or attributes. We now illustrate the mechanisms needed to answer the queries in

the RT system. To set the stage, let us first enumerate the three sorts of queries we need

to cope with. Let C be a set of credentials.

Sort 1. Given a role A.r and an entity D, determine whether D ∈ [[A.r]]SP(C).
Sort 2. Given a role A.r, determine its member set, [[A.r]]SP(C).
Sort 3. Given an entity D, determine all the roles it is a member of, i.e. generate the

set {A.r | D ∈ [[A.r]]SP(C)}.

Notice that while queries of Sort 1 simply require a yes/no answer, the other two sorts

require to generate a whole set. Also, notice that queries of Sort 2 and 3 are strictly

more expressive than queries of Sort 1: if we are able to answer a query of Sort 2 or 3

we are certainly able to answer a query of Sort 1, while the opposite is not true. At this

stage, one might wonder if Sort 3 queries are actually needed. This will become clear

in the sequel.

Remark 1. Technically, this section is based on [25] with the additional simplifying

assumption that queries may refer only to roles and principals (and not to role expres-

sions, e.g. we do not allow queries such as “given a role expression A.r1.r2, determine

its member set [[A.r1.r2]]SP(C)”). This assumption allows us to simplify the notation by

a great deal, and does not limit the expressiveness of the framework, as one can always

introduce a new role to take the meaning of a role expression.
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The algorithms we present in this section operate on a credential graph, which is a

directed graph representing a set C of credentials and is built as follows: each node [e]
represents a role expression e; every credential A.r ←− e in C contributes to the graph

an edge from [e] (the node representing e) to [A.r] (the node representing A.r), which is

denoted by [A.r]⇐[e], and is called a credential edge. A path in the graph from the node

[e1] to the node [e2] consists of zero or more edges and is denoted [e2]
∗
⇐ [e1]. Additional

edges, called derived edges, are added to handle linked roles and intersections. These

edges are called derived edges because their inclusion in the credential graph comes

from the existence of other, semantically related, paths in the graph.

Given a set C of credentials, we define the following finite structures: Entities(C) is

the set of entities in C, Names(C) is the set of role names in C, and RoleExpressions(C)
is the set of role expressions that can be constructed using Entities(C) and Names(C),
i.e.:

RoleExpressions(C) =















A,

A.r1, where A, B1, B2 ∈ Entities(C),
A.r1.r2, r1, r2 ∈ Names(C)
B1.r1 ∩ B2.r2

The following definition is a simplified version of Definition 2 in [25] (see

Remark 1). Thanks to this simplification we can restrict our attention to the basic cre-

dential graph and avoid some complexities from the original presentation.

Definition 2 (Basic Credential Graphs). Let C be a set of RT0 credentials. The ba-

sic credential graph GC relative to C is defined as follows: the set of nodes NC =
RoleExpressions(C) and the set of edges EC is the least set of edges over NC that satis-

fies the following three closure properties:

– Closure property 1: If A.r ←− e ∈ C, then [A.r] ⇐ [e] ∈ EC . [A.r] ⇐ [e] is called

a credential edge.

– Closure property 2: If there exists a path [A.r1]
∗
⇐ [B] in GC , then [A.r1.r2] ⇐

[B.r2] ∈ EC . We call [A.r1.r2] ⇐ [B.r2] a derived link edge, and call the path

[A.r1]
∗
⇐ [B] a support set for this edge.

– Closure property 3: If D, B1.r1 ∩B2.r2 ∈ NC , and there exist paths [B1.r1]
∗
⇐ [D]

and [B2.r2]
∗
⇐ [D] in GC , then [B1.r1 ∩ B2.r2] ⇐ [D] ∈ EC . This is called a

derived intersection edge, and {[B1.r1]
∗
⇐ [D], [B2.r2]

∗
⇐ [D]} is a support set for

this edge.

The set of edges EC can be constructed inductively as follows. We start with the set

E0
C = {[A.r]⇐ [e] | A.r ←− e ∈ C} and then construct Ei+1

C from Ei
C by adding one

edge according to either closure property 2 or 3. Since NC is finite, the order in which

edges are added is not important, and the sequence {Ei
C}i∈N converges to EC .

Example 6. Figure 1 shows a subset of the basic credential graph for the set of creden-

tials in Example 1. Edges labelled with numbers are credential edges, and the numbers

correspond to the ones marking credentials in Example 1. The two edges without labels

are derived edges: one added by the closure property 2 ([EOrg.university.student] ⇐
[StateU.student]), and one by the closure property 3 ([EOrg.preferred ∩ ACM.member]⇐
[Alice]).
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In [25] it is proven that the credential graphs are sound and complete w.r.t. to the set-

theoretic semantics: if there is a path [e2]
∗
⇐ [e1] in any GC , then expr[SC ](e2) ⊇

expr[SC ](e1), and if D ∈ expr[SC ](e0), then there exists path [e0]
∗
⇐ [D] in GC . Here

expr[SC ](e) is the set-theoretic semantics of a role expression e, which can be proven

in a straightforward way to be equivalent to the LP based semantics we have introduced

in Sect. 2.2.

Fig. 1. The subset of the credential graph for the set of credentials in Example 1 containing path

from EPub.spdiscount to Alice

Therefore, given a set C of credentials, we can answer each of the queries enumerated

at the beginning of this section by consulting a basic credential graph of C. Constructing

the path [A.r]
∗
⇐ [D] alone proves that D ∈ [[A.r]]SP(C), provided that each derived edge

has at least one support set. The portion of the credential graph that must be constructed

for it is what we call a credential chain.

Definition 3 (Credential Chains). Given a set C of credentials, a role A.r, and an

entity D, a credential chain from D to A.r, denoted 〈A.r և D〉, is a minimal subset of

EC containing a path [A.r]
∗
⇐ [D] and also containing a support set for each derived

edge in the subset.

The chain discovery starts at the node representing the requester, or at the node repre-

senting the role (permission) to be proven, or both, and then traversing paths in the graph

trying to build an appropriate chain. In addition to being goal-directed, this approach

allows the elaboration of the graph to be scheduled flexibly. Also, the graphical rep-

resentation of the evaluation state makes it relatively straightforward to manage cyclic

dependencies.

In the rest of this section we illustrate the three algorithms originally defined in [25]

to answer the three sorts of queries, listed at the top of this section (with the simplifying

assumption illustrated in Remark 1). The backward search algorithm (also called the

top-down algorithm) (Sect. 3.1) answers the second sort of queries, i.e. it determines all

members of a role expression. The forward search algorithm (also called the bottom-up

algorithm) in Sect. 3.2 answers the third sort of queries, i.e. it determines all roles that

an entity is a member of. The bidirectional search algorithm (Sect. 3.3) answers the first

sort of queries, i.e. it determines whether an entity is a member of a role expression.

Note that in this section we assume that credentials are stored in such a way that we can
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list them all at any time. In practice, this is not always the case. We address the problem

of distributed storage in the next section.

3.1 The Backward Search Algorithm

The backward search algorithm can determine all the members of a given role A.r. In

terms of the credential graph, it finds all the entity nodes that can reach the node A.r,

and for each such entity D, it constructs a chain 〈A.r և D〉. It is called backward

because it follows edges in the reverse direction. The algorithm works by constructing

a proof graph, which is a data structure that represents a credential graph and maintains

certain information on the nodes. Listing 1.1 shows the algorithm in pseudo-code using

a Python-like syntax. We have four classes: ProofGraph representing the proof graph,

ProofNode representing proof graph nodes, BLinkingMonitor and BIntersectionMonitor

used to handle linked and intersection roles respectively.

The ProofGraph class stores the set of nodes and the set of edges corresponding to the

set of nodes and the set of edges in the basic credential graph in its instance variables:

nodes and edges respectively. Adding nodes and edges is handled by the addNode()

and addEdge() methods. The main processing is handled by the bProcess() method of

the ProofGraph class. The nodes to be processed are stored in the backward processing

queue (bQueue).

Each node in the graph is represented by an instance of the ProofNode class. Each

ProofNode object stores the set of backward solutions in the bSolutions attribute. A so-

lution in the backward search algorithm is an entity. Thus, the solution attribute of the

ProofNode class stores all the entities which are known to be members of the corre-

sponding role expression. When a new solution D is discovered, every node e such that

there is a path [e]
∗
⇐ [D] in the proof graph must be notified about this solution. This is

realized using a well-know observer design pattern. Every instance of the ProofNode

class maintains a list of observers, called backward solution monitors in the text. When

a node is notified about one or more new solutions – by invoking node’s notify() op-

eration – it immediately notifies all the monitors (observers) of the node using node’s

notifyAll() operation. Every node which is not an entity node (entities do not have any

solutions other than themselves) can be registered as a backward monitor of a node

using node’s bAttach() operation. There are two special backward monitors that are

not instances of the ProofNode class: backward linking and intersection monitors. In

Listing 1.1 they are represented by two classes: BLinkingMonitor and BIntersection-

Monitor. Linking and intersection monitors realize the basic credential graph closure

properties 2 and 3 respectively.

When processing a linked role A.r1.r2, the algorithm first creates a new node for the

role A.r1, then it creates a backward linking monitor and attaches this monitor to [A.r1].
The backward linking monitor works as follows: when the backward linking monitor

corresponding to a linked role A.r1.r2 is notified about a new solution B, it means that

B became a member of A.r1. By the closure property 2 in Definition 2 this implies that

the basic credential graph contains the edge [A.r1.r2] ⇐ [B.r2]. The backward linking

monitor realizes this by creating new node corresponding to role B.r2 and by adding

the edge [A.r1.r2] ⇐ [B.r2] to the proof graph (lines (42–45)).
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When processing an intersection node [B1.r1 ∩ B2.r2], the algorithm first creates

two new nodes [B1.r1] and [B2.r2], then it creates a backward intersection monitor and

attaches this monitor to these two newly created nodes. When any of these two nodes

receives a new solution D, it notifies all of its backward solution monitors, including

the monitor associated to B1.r1 ∩ B2.r2. When this monitor is notified about solution

D it checks how many times it observed the addition of entity D. When the counter

reaches 2, it adds edge [B1.r1 ∩ B2.r2] ⇐ [D] to the proof graph (lines (47–51)).

In order to find all members of a role A.r the algorithm is initialized using the fol-

lowing sequence:

proofGraph = new ProofGraph()

proofGraph.addNode(A.r)

proofGraph.bProcess()

Listing 1.1. Backward Search Algorithm

1 class ProofGraph:

def bProcess():

3 while not bQueue.empty():

n = bQueue.dequeue()

5 if n is an entity D:

n. bSolutions . add(D)

7 n. notifyAll (D)

continue

9 if n is a role A.r:

foreach A.r ←− e ∈ C:

11 addNode(e)

addEdge([A.r] ⇐ [e])
13 continue

if n is a linked role A.r1.r2:

15 n1 = addNode(A.r1)

n1.bAttach(new BLinkingMonitor(A.r1.r2))

17 continue

if n is an intersection B1.r1 ∩ B2.r2:

19 n1 = addNode(B1.r1)

n2 = addNode(B2.r2)

21 m = new BIntersectionMonitor(B1.r1 ∩ B2.r2)

n1.bAttach(m)

23 n2.bAttach(m)

continue

25 def addNode(e):

if nodes.contains (e): return getNode(e)

27 n = new ProofNode(e)

nodes.add(n)

29 bQueue.enqueue(n)

return n
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31 def addEdge([e2] ⇐ [e1]):
n1 = getNode(e1)

33 n2 = getNode(e2)

if not edges. contains ( [n2] ⇐ [n1]):
35 edges. add([n2] ⇐ [n1])

if n1.hasSolutions():

37 s = n1.getSolutions()

n2.bSolutions.add(s)

39 n2.notifyAll(s)

n1.bAttach(n2)

41

class BLinkingMonitor(A.r1.r2):

43 def notify (B):

n = proofGraph.addNode(B.r2)

45 proofGraph.addEdge([A.r1.r2] ⇐ [B.r2])

47 class BIntersectionMonitor (B1.r1 ∩ B2.r2):(A.r1.r2):

def notify (D):

49 solutions . add(D)

if solutions . count(D) == 2:

51 proofGraph.addEdge([B1.r1 ∩ B2.r2] ⇐ [D])

53 class ProofNode:

def bAttach(m):

55 bMonitors.add(m)

def notify (solutions ):

57 bSolutions . add(solutions )

notifyAll ( solutions )

59 def notifyAll ( solutions ):

foreach m in bMonitors:

61 m.notify ( solutions )

Example 7. Figures 2(a)-(d) illustrate the process of constructing the proof graph by

doing backward search from EPub.discount for the following set of credentials C (a

subset of Example 1). This corresponds to the query of Sort 1: determine the set of

members of EPub.spdiscount, [[EPub.spdiscount]]SP(C).

EPub.spdiscount ←− EOrg.preferred ∩ ACM.member (1)

EOrg.preferred ←− EOrg.university.student (2)

EOrg.university ←− ABU.accredited (3)

ABU.accredited ←− StateU (4)

StateU.student ←− RegistrarB.student (5)

RegistrarB.student ←− Alice (6)

ACM.member ←− Alice (7)
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In Figs. 2(a)-(d), the first line of each node gives the node number (following the

order of creation) and the role expression represented by the node. The second line lists

the solutions associated to the node. To simplify the reading, we have labelled each

solution and each graph edge with the number of the node that was being processed

when the solution or edge was added. In each of the figures dashed edges and nodes are

the newly processed nodes while the newly added solutions are grey. Below we repeat

the process of the construction of this proof graph.

The algorithm starts the search from EPub.spdiscount. The only credential defining

role EPub.spdiscount is (1). To process it, the algorithm adds the new node

[EOrg.preferred ∩ ACM.member] to the proof graph, and it inserts it in the queue of

nodes bQueue (lines (25–30)). Then the algorithm adds a credential edge from the

newly added node to EPub.spdiscount (Fig. 2(a)). We label the edge with number

0 to indicate that this edge was added while processing node EPub.spdiscount. The

new node is an intersection. To process it, the algorithm first creates two new nodes:

[EOrg.preferred] and [ACM.member], and adds them to the processing queue in this

order. Next it creates an intersection monitor and it attaches it to both [EOrg.preferred]
and [ACM.member] (lines (18–24, and the two edges labelled with 1 in Fig. 2(a)). This

monitor guarantees that if the same solution D appears in both [EOrg.preferred] and

[ACM.member], a derived edge is added from [D] to [EOrg.preferred ∩ ACM.member]
(lines (47–51)). The next node to process is [EOrg.preferred]. The only credential defin-

ing this role is the linking inclusion EOrg.preferred ←− EOrg.university.student. The

algorithm adds node [EOrg.university.student] to the graph, and a credential edge from

this node to [EOrg.preferred] (Fig. 2(b)). Next, the node [ACM.member] is processed.

Giving the presence of the credential ACM.member ←− Alice, the algorithm adds a

new node [Alice] to the graph and to the processing queue. This node will be processed

after the node [EOrg.university.student], so we do not add any solution at this stage.

The next node to process is [EOrg.university.student]. As this is a node represent-

ing a linked role, the algorithm first adds new node [EOrg.university] to the proof

graph (and also to the processing queue) and then it attaches a linking monitor to

[EOrg.university] (lines (14–17 and Edge 4 in Fig. 2(b)). This monitor behaves as

follows: each time [EOrg.university] receives a new solution B, it creates a node for

B.student and adds the derived edge from [B.student] to [EOrg.university.student] (lines

(42–45)).

The next node to process is [Alice]. As this is an entity node, it immediately re-

ceives Alice as solution and it notifies all its backward solution monitors: in our case

[ACM.member]. The intersection monitor stored by [ACM.member] observes that Alice

is the received solution, but takes no action as it has been added only to [ACM.member],
and does not appear as a solution at EOrg.preferred yet.

In a similar manner, [EOrg.university] receives the solution StateU when process-

ing node [StateU ] (Fig. 2(c)). After this, the linking monitor stored at [EOrg.university]
creates the new node [StateU.student].

When StateU.student receives the solution Alice from [RegistrarB.student]
(Fig. 2(d)), this solution is propagated upward to [EOrg.university.student] and

[EOrg.preferred]. The intersection monitor at node [EOrg.preferred] observes that

Alice is added for the second time, this time by means of node [EOrg.preferred], and
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(a)

(b)

(c)

Fig. 2. Backward search from EPub.spdiscount
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(d)

Fig. 2. (continued)

in response it creates a derived edge from [Alice] to [EOrg.preferred ∩ ACM.member].
The solution Alice is then immediately copied from [Alice] to node [EOrg.preferred ∩
ACM.member] and then to [EPub.spdiscount] (lines (36–39)).

At this point, there are no more nodes to process and the algorithm terminates. Given

the set of credentials shown above, EPub.spdiscount has only one member: Alice.

3.2 The Forward Search Algorithm

The forward search algorithm answers queries of the third sort, i.e. it finds all roles that

contain a given entity D0 as a member. The direction of the search moves from the

subject of a credential towards its issuer.

The forward algorithm has the same overall structure as the backward algorithm. It

constructs a proof graph, maintaining a queue of nodes to be processed; both contain

initially just one node, [D0]. Nodes are processed one by one until the queue is empty.

Listing 1.2 reports the algorithm’s pseudo-code.

A solution in the forward search algorithm can be a full solution or a so called partial

solution. A full solution is a role and indicates that the initial node is a member of

this role. Partial solutions are necessary to properly handle intersections (see Closure

Property 3 in Definition 2). Given an intersection B1.r1 ∩ B2.r2 a partial solution has

the form (B1.r1 ∩ B2.r2, i) where i ∈ {1, 2}. We add the partial solution (B1.r1 ∩
B2.r2,i) to the node [e] when [Bi.ri] is reachable from [e] (lines (8–9)).

Similarly to the backward processing algorithm, when a node receives either a full, or

a partial solution, it notifies each of its forward solution monitors. The solutions travel

through the edges eventually reaching some other entity node [D]. When [D] is notified
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about new partial solution (B1.r1 ∩ B2.r2, i), it checks whether it has the two partial

solutions (B1.r1 ∩ B2.r2, 1) and (B1.r1 ∩ B2.r2, 2), and, if so, it adds a derived edge

[B1.r1 ∩ B2.r2] ⇐ [D] to the proof graph (lines (37–37).

Linking roles are handled using forward linking monitors. A linking monitor is cre-

ated when processing a role B.r2. A new node [B] is created and a forward linking mon-

itor FLinkingMonitor(B.r2) is attached to [B] (lines (12–13)). This monitor, when noti-

fied by [B] about new solution A.r1, creates new node [A.r1.r2] and adds it to the proof

graph and to the forward processing queue. Then, it adds new edge [A.r1.r2] ⇐ [B.r2]
to the proof graph (lines (27–30)).

In order to find all roles A.r an entity D0 is a member of, the algorithm should be

initialized using the following sequence:

proofGraph = new ProofGraph()

proofGraph.addNode(D)

proofGraph.fProcess ()

Listing 1.2. Forward Search Algorithm

class ProofGraph:

def fProcess ():

s = ∅
while not fQueue.empty():

n = fQueue.dequeue()

if n is a role B.r2:

s. add(B.r2)

foreach A.r ←− f1 ∩ f2 ∈ C s.t. ∃ i ∈ {1, 2}, fi = B.r2:

s. add((f1 ∩ f2, i))

n. fSolutions . add(s)

n. notifyAll ( s)

n1 = addNode(B)

n1.fAttach(new FLinkingMonitor(B.r2))

# get the role expression associated with node n

e = n. roleExpression ()

foreach A.r ←− e ∈ C:

addNode(A.r)

addEdge([A.r] ⇐ [e])
def addNode(e): # see Listing 1.1 line 25 for the definition

def addEdge([e2] ⇐ [e1]):
n1 = getNode(e1)

n2 = getNode(e2)

if not edges. contains ( [n2] ⇐ [n1]):
edges. add([n2] ⇐ [n1])

n2.fAttach(n1)

class FLinkingMonitor(B.r2):

def notify (A.r1):
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proofGraph.addNode(A.r1.r2)

proofGraph.addEdge([A.r1.r2] ⇐ [B.r2])

class ProofNode:

def fAttach (m):

fMonitors. add(m)

def notify (solutions ):

fSolutions . add(solutions )

if the node is an entity node D:

foreach f1 ∩ f2 s.t. ∀i ∈ {1, 2}∃(f1 ∩ f2, i) ∈ fSolutions:

proofGraph.addNode(f1 ∩ f2)

proofGraph.addEdge([f1 ∩ f2] ⇐ [D])
else : notifyAll ( solutions )

def notifyAll ( solutions ):

foreach m in fMonitors:

m.notify ( solutions )

Example 8. Figures 3(a)-(c) depict the process of constructing the proof graph by for-

ward search from [Alice] for the set of credentials from Example 1.

The first line of each node reports the node number in order of creation and the role

expression represented by the node. The second part of a node lists the solutions associ-

ated to the node. Each solution and each graph edge is labelled with the number of the

node that was being processed when the solution or edge was added. In each of the fig-

ures the dashed edges and nodes are the new ones and the new solutions are grayed. The

process begins from node [Alice] (Fig. 3(a)). As [Alice] is an entity node, the algorithm

searches for all credentials having Alice as the body. There are two such credentials:

ACM.member ←− Alice and RegistrarB.student ←− Alice. Thus, the algorithm creates

two nodes: [ACM.member] and [RegistrarB.student] and adds two credential edges from

[Alice] to them. The next node to be processed is [ACM.member] (recall that the num-

ber in the circle displays the order of the processing). ACM.member is a role. Therefore,

the algorithm first adds ACM.member as a solution to it. Next, it checks if there are any

intersection credentials having ACM.member in the body. The role ACM.member ap-

pears as the second component of EOrg.preferred ∩ ACM.member in credential (1).

Thus, the algorithm adds the partial solution (EOrg.preferred ∩ ACM.member,2) to the

solution space of [ACM.member] (lines (8–9)). The node [ACM.member] notifies all its

forward solution monitors about the new solutions. So, [Alice] receives ACM.member

and (EOrg.preferred ∩ ACM.member,2) as its first solutions. Now, the algorithm cre-

ates the node [ACM] and a forward linking monitor (edge with number 1 in Fig. 3(a)),

which is then added as a solution monitor to [ACM] (lines (12–13)). This monitor, on

observing that [ACM] gets a full solution A.r, creates the node [A.r.member] and adds

the edge from [ACM.member] to [A.r.member] to the proof graph (lines (27–30)). The

node [RegistrarB] is processed in a similar way. There are no credentials having ACM

or RegistrarB as the body, so they do not have any solutions. Figure 3(a) shows the

snapshot of the graph after processing of node RegistrarB.
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(a)

(b)

Fig. 3. Forward search from Alice

Figure 3(b) shows the graph after processing of node ABU.accredited. The nodes

[ABU] and [EOrg.university] are the ones added when processing [ABU.accredited] and

are next to be processed. When [StateU] receives the solution [ABU.accredited] its (for-

ward) linking monitor creates node [ABU.accredited.student].
Figure 3(c) shows the complete graph. [EOrg.preferred] has one full solution,

EOrg.preferred, and one partial solution (EOrg.preferred ∩ ACM.member,1), which
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(c)

Fig. 3. (continued)

comes from the fact that EOrg.preferred is the first component of the intersection

in the body of credential (1). [EOrg.preferred] notifies its forward solution monitors

about these two solutions, which eventually reach [Alice]. When [Alice] is notified,

since it has the two partial solutions corresponding to the intersection EOrg.preferred∩
ACM.member, it creates the intersection node [EOrg.preferred∩ACM.member] and the

edge from [Alice] to it. Finally, [Alice] receives the solution from [EPub.spdiscount].
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3.3 The Bidirectional Search Algorithm

The two algorithms presented in Sect. 3.1 and Sect. 3.2 can also be used to answer the

queries of Sort 1 presented at the top of Sect. 3 in which given a role A.r and an entity

D, one wants to determine whether D ∈ [[A.r]]SP(C). This can be done either by using

the backward search and starting from A.r or by using forward search and staring from

D. It is also possible to perform both searches at the same time. Such an algorithm is

called bidirectional search algorithm. This may not make too much sense at first – as the

bidirectional search algorithm may construct a larger graph than does either backward

or forward search – but as we show later in Sect. 4, this may be very useful when the

credential storage is distributed. We leave as an exercise for the reader to merge the two

algorithms presented in Sects. 3.1 and 3.2 in order to obtain the bidirectional search

algorithm.

4 The Storage Type System

Winsborough and Li argue that a trust management language should have some support

for the distributed credential storage [32]. In our description so far, we assumed that

the credential storage is centralized; more precisely, we have assumed that at any time

we can list the whole set of credentials. Such an assumption is not realistic in practice,

as sometimes we may want to store the credentials by their issuers and sometimes by

their subjects (see [25,32] for a discussion). Intuitively, the problem with decentralized

storage is that one may not know where to find the credentials needed to build a proof.

Let us see an example of this.

Example 9. Assume that the policy contains only two credentials:

A.r ←− B.r1 (1)

B.r1 ←− D (2)

Now, assume that one wants to know whether D ∈ [[A.r]]SP(C). Each of these two

credentials could be stored at either its issuer and/or its subject.

First, let us assume that credential (1) is stored at A and credential (2) at D. Using

backward search, we start from node [A.r] by listing all credentials defining A.r. The

only credential stored at A is A.r ←− B.r1, so, the only way to proceed from here is

to “go to” B, but since B does not store any credentials, the backward search algorithm

concludes that [[A.r]]SP(C) is empty. In the forward search algorithm we would start

from [D] by searching for all the credentials having D as the body. D stores only one

credential:B.r1 ←− D. The forward search algorithm then “goes to” B and fetches the

credentials it stores. However, since B does not store any credentials, the forward search

algorithm concludes that the only role D is a member of is B.r. Also, the forward search

does not allow us to prove that D ∈ [[A.r]]SP(C). The bidirectional search algorithm, on

the other hand, succeeds because when backward search stops at node B.r1 it knows

from the forward search that D is a member of B.r1. Therefore, it can conclude that D

must be the member of A.r as well.

Second, and perhaps more importantly, suppose that the two credentials above were

stored at entity B (i.e. that (1) was stored by the subject and (2) was stored by the
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issuer). In this case, following the same reasoning, it is easy to see that both forward

and backward search algorithms fail again, but, in addition, even the bidirectional search

fails.

When both credentials are stored by their issuers (i.e. credential (1) is stored at A

and credential (2) is stored at B) the only way to discover that D ∈ [[A.r]]SP(C) is by

using backward search starting from A.r.

Finally, when both credentials are stored by their subjects (i.e. (1) is stored at B

and (2) is stored at D) only the forward search starting from D can find out that D ∈
[[A.r]]SP(C).

This example shows that when credential storage is distributed some chain discovery

algorithms may or may not work. In particular, if credential storage is not regulated,

one may be unable to find the answers to a query.

RT0 deals with this problem by introducing a storage type system limiting the number

of possible storage location by introducing the notion of well-typed credentials. Each

role name r has two types: an issuer-side type and a subject-side type. On the issuer side,

each role name can have one of three type values: issuer-traces-none, issuer-traces-def,

and issuer-traces-all. On the subject side, each role can have one of two type values:

subject-traces-none and subject-traces-all. The intuition behind these type values is the

following: if a role name r has the (issuer-side) type issuer-traces-all then one should

be able to answer the queries of Sort 2 and to find all members of any role of the form

A.r using solely the backward search algorithm. Similarly, if a role name r has (subject-

side) type subject-traces-all then starting from any entity D one should be able to find all

roles of the form A.r such that D is a member of A.r (which corresponds to the queries

of Sort 3). The type value issuer-traces-def is a weaker version of the issuer-traces-all

type value. If a role name r has (issuer-side) type issuer-traces-def, then from any entity

A one can find all credentials defining A.r. If a role name r has type value issuer-traces-

none then for any role A.r, the backward search algorithm will not find any member

of this role. If a role name r has type value subject-traces-none, then starting from any

entity D, the forward search algorithm will not be able to find any role A.r such that D

is a member of A.r.

Summarizing, we have the following definition:

Definition 4 (Type). A type is a mapping from role names into two-element sets of the

form {i, s}, such that:

– i ∈ {issuer-traces-all, issuer-traces-def, issuer-traces-none}, and

– s ∈ {subject-traces-all, subject-traces-none}.

We call i the issuer-side type value and s the subject-side type value of r, denoted

itype(r) and stype(r) respectively, and we let type(r) = itype(r) ∪ stype(r).
The type of a role name directly indicates the storage location of the credentials.

Definition 5 (Storage). Let r be a role name and A.r ←− e be a credential.

– If itype(r) ∈ {issuer-traces-all, issuer-traces-def} then A must store this creden-

tial.

– If stype(r) = subject-traces-all then every entity B ∈ base(e) must store creden-

tial A.r ←− e.
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Table 1. Well Typed RT0 credentials

A.r ←− B.r1

r1 ITA ITD STA

ITA OK

r ITD OK OK OK

STA OK

(a)

A.r ←− A.r1.r2

r1 ITA ITD STA

r2 ITA ITD STA ITA ITD STA ITA ITD STA

ITA OK

r ITD OK OK OK OK OK

STA OK

(b)

A.r ←− B1.r1 ∩ B2.r2

r1 ITA ITD STA

r2 ITA ITD STA ITA ITD STA ITA ITD STA

ITA OK OK OK OK OK

r ITD OK OK OK OK OK OK OK OK OK

STA OK OK OK OK OK

(c)

Notice that a credential might have to be stored both by the issuer and by the subject

(this is the case e.g. when one wants to be able to answer the queries of both Sort 2 and

Sort 3). The type value issuer-traces-none (resp. subject-traces-none) indicates that A

(resp. any entity B ∈ base(e)) does not store credential A.r ←− e. Notice that if a role

name r is issuer-traces-none and subject-traces-none at the same time, nobody would

have to store the credential A.r ←− e (this is an ill-typed combination and will be ruled

out in the next definition).

Let us go back to the two clauses in Example 9. We saw that if credential (1) was

stored only by its subject and credential (2) was stored only by its issuer then any of

the presented algorithms would be able to give a correct answer to the query “is D

a member of [[A.r]]SP(C)?”. In the light of Definition 5 this means that we have to

avoid credentials of the form A.r ←− B.r1, where itype(r) = issuer-traces-none and

stype(r) = subject-traces-none. In order to know which combinations are “good”, we

have the notion of well-typed credentials:

Definition 6 (Well-typed Credentials). An RT0 credential c is well-typed if no role

name occurring in c has type {issuer-traces-none, subject-traces-none} and:

– if c = A.r ←− B.r1 then ∀t ∈ type(r), ∃ t1 ∈ type(r1) s.t. the corresponding

entry in Table 1(a) is OK;

– if c = A.r ←− A.r1.r2 then ∀t ∈ type(r), ∃ t1 ∈ type(r1) and ∃ t2 ∈ type(r2)
s.t. the corresponding entry in Table 1(b) is OK;
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– if c = A.r ←− B1.r1 ∩ B2.r2 then ∀t ∈ type(r), ∃ t1 ∈ type(r1) and ∃ t2 ∈
type(r2) s.t. the corresponding entry in Table 1(c) is OK.

For example, take the credential c : A.r ←− A.r1.r2 and assume that type(r) = type

(r1) = {issuer-traces-def, subject-traces-all} and that type(r2) = {issuer-traces-none,

subject-traces-all}. Then, we see that for both type values of r, issuer-traces-def and

subject-traces-all, one can find a combination of type values for r1 and r2 such this

combination appears as a valid type assignment in Table 1(b). For the issuer-side type

value of r, issuer-traces-def, we have itype(r1) = issuer-traces-def and stype(r2) =
subject-traces-all; for the subject-side type value of r, subject-traces-all, we have

stype(r1)=stype(r2)=subject-traces-all. On the other hand, if we had that type(r) =
type(r1) = type(r2) = {issuer-traces-def, subject-traces-none}, then c would not be

well typed as there is no valid entry for this type value assignment in Table 1(b). Note

that simple member credentials (of the form A.r ←− D) are always well-typed.

The following theorem summarizes the results given in [25] and shows that using

well-typed credentials guarantees that the algorithms presented in Sect. 3 give correct

answers to queries even in presence of distributed credentials.

Theorem 1. Let C be a set of well typed RT0 credentials, and r be a role name.

– If itype(r) = issuer-traces-all then for each entity A, the backward search algo-

rithm correctly computes [[A.r]]SP(C).

– If stype(r) = subject-traces-all then for each entity D the forward search algo-

rithm finds all the roles A.r such that D ∈ [[A.r]]SP(C).

– For any given entity D, the bidirectional search algorithm can always correctly

determine if D ∈ [[A.r]]SP(C).

Example 10. Consider again the policy of Example 9, if type(r) = {issuer-traces-all,

subject-traces-none} then, according to Table 1, for the credential (1) to be well-typed,

the type of role name r1 must also be {issuer-traces-all, subject-traces-none}. By Theo-

rem 1, one can use the backward search algorithm to compute [[A.r]]SP(C). On the other

hand, if type(r) = {issuer-traces-none, subject-traces-all} then, for the credential (1)

to be well-typed, the type of r1 must also be {issuer-traces-none, subject-traces-all}.

For this type assignment, Theorem 1 says that, starting from D, the forward search

algorithm will discover that D is a member of B.r1 and A.r.

Finally, if type(r) = {issuer-traces-def, subject-traces-none} and type(r1) =
{issuer-traces-none, subject-traces-all} then one can check that D ∈ [[A.r]]SP(C) us-

ing the bidirectional search algorithm.

5 Other Members of the RT Family

As we have already mentioned, RT0 is only one of the members of the RT family of

TM languages. In this section we intend to give a flavour of these extensions and of the

reasons why they have been introduced. We do so by presenting significative examples.

For a full explanation of their syntax and semantics, we refer to [24] and [23].
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5.1 RT1

RT1 extends RT0 with parameterized roles. In RT1 a role name consists of an RT0 role

name and zero or more parameters surrounded by parenthesis. A parameter can be a

constant or a variable of one of five types: integer, closed enumeration, open enumera-

tion, float, and date and type (see [24] for details).

Example 11. In CITA a project document can always be read and written by its au-

thor, no matter which policy applies to it. The remaining project members can read the

document only if approved by the document author (identifiers starting with “?” are

variables).

CITA.accessDoc(rw,?proj,?doc) ←− CITA.owner(?doc) ∩ CITA.member(?proj)

CITA.accessDoc(?access,?proj,?doc) ←−

CITA.approved(?access,?doc) ∩ CITA.member(?proj)

CITA.approved(?access,?doc) ←− CITA.owner(?doc).approved(?access,?doc)

For each data type one can create a so called static data set, which can be used to

constrain variables in credentials. Static in this context means that the values in the

value set cannot depend on credentials but must be known at the time the value set is

being specified.

Example 12. Charles restricts the access to his picture gallery to his friends that are

over 18.

Charles.accessPictures ←− Charles.friend(?Age:[18..100])

In the example above, the possible values of the variable ?Age are restricted to be in the

range between 18 and 100.

For the linking inclusion credentials, a parameter can also be a special keyword this,

which refers to a potential member of a linked role.

Example 13. CITA gives an annual salary increase to an employee if the employee’s

manager says that the performance of the employee is good.

CITA.salaryIncrease ←− CITA.managerOf(this).goodPerformance

5.2 RT2

RT2 extends RT1 with logical objects that can be used to dynamically restrict possible

values of the variables occurring in credentials. A logical object, or o-set, is similar to

an RT1 credential, but its member set is not restricted to that of entities. For instance, a

company can define an o-set containing a selection of company’s documents, running

projects, and also any other valid RT1 entity.

Example 14. The policy of CITA states that any document of a project in CUS is also

a document of this project in CITA.

CITA.document(?proj) ←− CUS.document(?proj)
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Now, CITA allows members of a project team to read documents of this project:

CITA.accessDoc(read,?D:CITA.documents(?proj)) ←− CITA.member(?proj)

In the example above, ?D:CITA.documents(?proj) shows the application of a dynamic

value set. A dynamic value set is a generalization of the static value set of which ex-

ample was given in Example 12. Similarly to the static value set, the dynamic value set

can be used to constrain variables occurring in credentials. However, when the values

in a static value set are fixed, the set of values a dynamic value set contains is given by

the members of an o-set used as a constrain. In the example above, the set of values the

variable ?D can take is restricted to the members of the o-set CITA.documents(?proj).

5.3 RTT

RTT has been introduced to support threshold and separation of duty policies. Consider

the following policy taken from [24]: “A says that an entity is a member of A.r if one

member of A.r1 and two different members of A.r2 all say so”. This policy cannot be

expressed in the RT dialects presented so far, and to express this in RT one needs to use

the so-called manifold roles. Manifold roles extend the notion of roles by allowing role

members to be collections of entities (rather than just principals). This is done in RT T

by defining the operators ⊙ and ⊗. A credential of the form A.r ←− B1.r1 ⊙ B2.r2

says that {s1∪s2} is a member of A.r if s1 is a member of B1.r1 and s2 is a member of

B2.r2. Notice that both s1 and s2 are (possibly singleton) sets of entities. A credential

A.r ←− B1.r1⊗B2.r2 has a similar meaning, but it additionally requires that s1∩s2 =
∅. With these two additional sorts of credentials one can express the above statement as

follows:

A.r ←− A.r4.r

A.r4 ←− A.r1 ⊙ A.r3

A.r3 ←− A.r2 ⊗ A.r2

Example 15. In CITA, a program must be verified by two different testers: one from

CITA and one form CUS.

CITA.verified ←− CITA.testTeam.approved

CITA.testTeam ←− CITA.tester ⊗ CUS.tester

5.4 RTD

The RT framework also supports the so called delegation of role activations, which are

useful when one needs to delegate authority temporarily to a process or an agent. RTD

provides a delegation credential for this reason. As delegation of role activation is a

complex matter, here we only present the basic intuition of how it works. The simplest

form of delegation credential is D
D as A.r

✲ B0, which means that D delegates to

B0 the right of acting in D’s behalf “as member of A.r”. We call “D as A.r” a role

activation. In the delegation credential above, B0 can also represent a request, rather

than an entity. Consider for instance the following example:
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Example 16. Frank is the general practitioner (GP) of Henk in the hospital of Enschede

(Ziekenhuis Enschede – ZE). A general practitioner in ZE can access all medical records

of his patients.

ZE.gp(Henk) ←− Frank

ZE.accessMedRec(?Patient) ←− ZE.gp(?Patient)

During his holiday in Poland, Henk had a serious accident and required immediate

surgery in one of the hospitals in Warsaw (WH). Weronika, the operating doctor, needs

to access Henk’s medical records at ZE.

ZE and WH are members of the European Hospital Alliance (EHA). In case of ne-

cessity, a doctor from one of the associated hospitals can access the medical records of

a patient of another hospital by activating her emergency role (this role is not active by

default, and every activation is carefully logged in both the hospital and EHA logs).

EHA.member ←− ZE

EHA.member ←− WH

ZE.accessMedRec(?Patient) ←− ZE.emergencyGroup.emergency(?Patient)

ZE.emergencyGroup ←− EHA.member

EHA.member ←− WH

WH.canActivateEmergency ←− WH.doctor

WH.doctor ←− Weronika

Weronika can activate her role WH.emergency(Henk) and request Henk’s medical

records from ZA using the following delegation credential:

Weronika
Weronika as WH.emergency(Henk)

✲ accessMedRec(ZE,Henk)

Here notice that accessMedRec(ZE,Henk) is not an entity but represent an explicit

request, which is then handled by a dummy entity in RT.

5.5 RT⊖

The members of the RT family presented so far are monotonic: adding a credential to

the system can only result in granting additional privileges. However, banishing nega-

tion from a TM language is not a realistic option. In fact, as stated by Li et al. [22]:

“many security policies are non-monotonic, or more easily specified as non-monotonic

ones”. In [26], Czenko et al. argue that many access control decisions in complex dis-

tributed systems, like Virtual Communities (VC), are hard to model in a purely mono-

tonic language. They propose RT⊖, which adds to RT a restricted form of negation

called negation in context.

RT⊖ introduces a new operator ⊖ and the so called exclusion credential A.r ←−
B1.r1 ⊖ B2.r2 indicating that all members of B.r1 which are not members of B2.r2

are members of A.r.
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Example 17. Consider the policy of Example 5. In this policy Charles’s role friends is

defined to be a transitive closure of the set of his direct friends. Now, if for some reason

Charles would like to exclude some entities from this set, he needs to use the following

exclusion credential:

Charles.accessPictures ←− Charles.friend ⊖ Charles.blackList

Now, an entity is a member of Charles’s accessPicture role if she is a member of

Charles’s role friend and she is not on the Charles’s black list. Assume that we have:

Charles.blackList ←− Sandro

Then the semantics of the role Charles.accessPictures is:

[[Charles.accessPictures]]SP(C) = {Alice, Bob, Jeffrey, Johan}.

5.6 Summary

The table below summarizes the key features of all the members of the RT framework.

The RT family member Key extensions

RT1 parameterized roles

RT2 logical objects

RTT manifold roles and role-product operators, which can

express threshold and separation of duty policies

RTD delegation of role activation, which allows for

selective use of credentials

RT⊖ restricted form of negation

RTD and RTT can be used, together or separately, in combination with either RT0, RT1,

or RT2. The resulting combinations are written RTD
i , RTT

i , and RTDT
i for i = 0, 1, 2.

6 Related Work

6.1 Trust Management Systems

PolicyMaker and KeyNote. The notion of trust management was introduced by Blaze

et al. [10], as a problem in network security for which the authors proposed an ap-

proach based on a small collection of general principals: unified mechanism, flexibility

(expressiveness), locality of control (autonomy of system participants), and separation

of policy from mechanism. PolicyMaker, also designed and developed by Blaze et al.

[9,10], was the first trust management prototype system that “facilitates the develop-

ment of security features in a wide range of network services." [10]

Unlike RT , PolicyMaker places very few restrictions on the specification of autho-

rizations and delegations. Policies and credentials are fully programmable, and can be

arbitrary executable programs, limited only by being strongly “sandboxed.” The ad-

vantage is that the PolicyMaker approach enables application developers tremendous
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flexibility to define authorizations and delegations. However, its compliance checking

(evaluation) is in general undecidable: no algorithm can, for each possible request, de-

cide whether the request is authorized. There are several variants of PolicyMaker’s proof

of compliance problem that are proven to be decidable, but NP-hard: globally bounded

proof of compliance (GBPOC), locally bounded proof of compliance (LBPOC), and

monotonic proof of compliance(MPOC). A polynomial time bound can be achieved

for compliance checking by combining the restrictions used in LBPOC with the re-

quirement that assertions be monotonic. However, the constant parameters that limit

computational effort expended by a legal proof of compliance are imposed arbitrarily

without apparently natural justification.

KeyNote [8] is a direct descendant of PolicyMaker. KeyNote’s assertions are written

in a concise and human readable assertion language. Evaluation is based on expression

evaluation, rather than on the execution of arbitrary programs, and is specified by an

informal, implementation-independent semantics that defines authorization decisions

based on requested actions. Action requests are represented by a collection of variable

bindings, and credentials can contain constraints on these variables that can be used to

restrict the actions for which credential owners are authorized.

Credentials, in both PolicyMaker and KeyNote, bind public keys (of the creden-

tial subjects) to direct authorizations of security-critical actions. Therefore, similarly to

capability-based system, KeyNote’s authorization decision procedure is quite straight-

forward, without necessarily resolving the name or identity of the requester. However,

capability-based systems are not as scalable as attribute-based systems. In capability-

based systems, managing the delegation of access rights, for instance, to all students

at a given university requires issuing a credential to each student for each resource to

which they have access (library, cafeteria, gym, etc.). In attribute-based systems, such as

RT , by utilizing credentials that characterize their owners as being students, the same

student ID credential can be used to authorize a wide range of actions.

SPKI/SDSI. SPKI/SDSI [12] merged the SDSI [29] and the SPKI [14] efforts together

to achieve an expressive and powerful trust management system. SDSI (pronounced

“sudsy"), short for “a Simple Distributed Security Infrastructure," was proposed as a

new public-key infrastructure by Lampson and Rivest. Concurrently, Carl Ellison et al.

developed SPKI (pronounced “spooky"), which was an abbreviation for “Simple Public

Key Infrastructure."

SDSI’s main contribution is its design of linked local names, which solves the prob-

lem of determining globally unique names. In SDSI, the owner of each public key can

define names local to a name space that is identified by that key. For example, “KAlice

friends" represents a SDSI name, where KAlice is a key identifying its name space and

“friends" is a name defined locally in that name space by KAlice. SDSI names that

start with different keys are different names, so there is no danger that local names in

different name spaces will interfere with one another. In this way, global uniqueness of

names is achieved without synchronizing and coordinating naming authorities. The way

in which RT ’s roles are defined locally, but can be referenced non-locally, is inherited

from SDSI’s design of local name spaces.

While SDSI is responsible for binding names to public keys, SPKI is responsible

for making authorizations. SPKI’s authorization scheme can be regarded as being
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orthogonal to SDSI’s naming scheme. Originally in SPKI, the certificate subject is rep-

resented by its public key. However, in SPKI/SDSI, the subject can be represented by

its SDSI name. SDSI names provide a method to define groups of authorized principals,

which simplifies the delegation procedure.

For example, if Bob wants to grant an authorization to Alice’s friends, Bob can sim-

ply use SDSI’s group name “KAlice friends". By contrast, using KeyNote, Bob would

have to enumerate the public keys of every friend of Alice’s in the “Licensee" field of

the assertion. The flexibility obtained by using SDSI names is useful in a decentralized

system. On one hand, Bob does not need to have a list of Alice’s friends when he is

writing the authorization policies. On the other hand, any changes on Alice’s friends

list will be immediately reflected in the semantics of Bob’s authorization policies.

SPKI/SDSI’s evaluator uses a bottom-up algorithm to compute a closure set contain-

ing all certificates that can be derived from the given set of certificates. A request can be

authorized if it can be found in the closure set. This algorithm is proven to be polyno-

mial [12]. However, the evaluation process must be repeated whenever any certificate

has been added or revoked, or has expired, so it is not suitable for use with a large and

frequently changing credential pool.

Cassandra. Cassandra [6,7] is a role-based trust management system, which was de-

signed with the goal of supporting the access control policies for a national electronic

health record (EHR) system.

Like RT C , Cassandra represents policy statements in Datalog clauses with con-

straints. Six special predicates are predefined in Cassandra. Firstly, canActivate(e, r)
expresses that entity e can activate role r and, as such, that e is a member of r. Sec-

ondly, hasActivated(e, r) indicates that entity e has activated role r. The distinction

between the predicates canActivate and hasActivated corresponds to the distinction be-

tween the role membership and the session activation in traditional RBAC [2]. Thirdly,

canDeactivate(e1, e2, r) holds if entity e1 has the power to deactivate e2’s activation

of role r. Fourthly, isDeactivated(e, r) becomes true if entity e’s role r is deactivated.

Therefore, unlike RT that can only support role membership, Cassandra can also ex-

press role activations and deactivations. If a role is activated by a principal, a new fact

(i.e., an atomic formula) representing this activation, and using predicate hasActivated,

is put into the policy; similarly, deactivation of roles causes facts with predicate has-

Activated to be removed from the policy. Fifthly, permits(e, a) says that the entity e is

permitted to perform action a. This differs from the standard notion of role-permission

assignment in two ways. On one hand, the parameter e allows constraints to refer di-

rectly to the subject of the activation. On the other hand, permits has no parameter for

a role associated with the action, thus allowing more flexible permission specifications,

e.g., a permission that is conditioned on the activation or (or perhaps merely mem-

bership in) more than one single role. Finally, canReqCred(e1, e2.p(−→e )) says that the

entity e1 is allowed to request credentials issued by the entity e2 and asserting the pred-

icate p(−→e ). Besides these six special predicates, application developers can also define

their own customized predicates.

TPL. TPL (Trust Policy Language) [17], designed at IBM Haifa Research Lab, was

proposed specifically for trust establishment between e-strangers. TPL is based on
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Fig. 4. TCP

RBAC [2] and extends it by being able to map strangers to roles. Unlike RT and Cas-

sandra, TPL’s efforts are claimed to be put only into mapping users to roles, but not

into mapping roles to privileges, which simplifies the design. Figure 4 shows the rela-

tions between TPL and RBAC that TPL works in the Trust Establishment module and

transfers the resolved role names to RBAC module.

TPL uses XML for application developers to write security rules, which will be trans-

lated in TPL to a standard logic programming language, e.g. Prolog. Unlike RT , which

is monotonic, TPL is non-monotonic, since it includes negative rules. A negative rule

indicates that learning a new piece of knowledge (e.g., a credential) will reduce the re-

quester’s privileges. For example, a negative rule represented in Prolog statement can be

“group(X, Discount) :− \+ group(X, Felon)," in which “\+" represents the negation

of failure. It means that if the credential of being a felon is failed to be derived, then the

requester is allowed to have the discount. However, the completeness and soundness of

TPL are not specified in the original work. The example below [17] shows a rule written

in XML and its Prolog translation.

XML:

<GROUP NAME="Hospitals">

<RULE>

<INCLUSION ID="reco" TYPE="Recommendation" FROM="self"/>

</RULE>

</GROUP>

Prolog:

group(?X, Hospitals) :− cert(?Y, ?X, Recommendation, _RecFields),
group(?Y, self).

PCA. PCA (Proof Carrying Authorization) [3,5,4] was mainly designed for the access

control on server’s web page resources. Figure 5 shows the components of PCA system

working in a web browsing environment. HTTP proxy is used to make the whole

process of accessing a web page transparent to the web browser. The web browser only

knows the final result: either the requested web page or a denial message is displayed.
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Fig. 5. PCA system

The proxy is designed to be portable and easily integrated into the client system without

changing anything inside the original web browser. Therefore, it facilitates the client

who is not knowledgeable in collecting relevant credentials and negotiating with the

resource owner.

PCA uses higher-order logic to specify policies and credentials, so that it can be very

expressive. However, its evaluation is thus undecidable. In their design, undecidability

is resolved in two phases. Firstly, in order to reduce the computation burden on the

server’s PCA evaluator, it is required that the requesting client constructs the proof.

The server’s evaluator only needs to check the proof, which is not only decidable, but

can be done quite efficiently. Secondly, on the client side, the proxy is responsible for

navigating and retrieving credentials, computing proofs and communicating with the

server. In order to avoid undecidable computation at the client side, the client proxy

does not use the full logic, but use an application-specific limited logic, which should

be tractable.

QCM. QCM [16], short for “Query Certificate Manager", was designed at the Univer-

sity of Pennsylvania as a part of the SwitchWare project on active networks to support

secure maintenance of distributed data sets. For example, QCM can be used to support

decentralized administration of distributed repositories housing public key certificates

that map names to public keys. For the purposes of access control, QCM provides se-

curity support for ACL’s query and retrieval.

QCM’s policy is specified in relational calculus. One of the main contributions of

QCM is its design of a policy directed certificate retrieval mechanism [16], which

enables the TM evaluator automatically to detect and identify missing but needed cer-

tificates, and to retrieve them from remote certificate repositories. It uses query decom-

position and optimization techniques, and its novel solutions are discussed in terms of

network security, such as private key protection methods. However, unlike RT creden-

tials, which can be stored with their either their subjects or their issuers, and can then
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Fig. 6. QCM Engine

be located and retrieved as needed during authorization evaluation, credentials in QCM

must be stored with their issuers. Figure 6 [16] shows the stages by which queries and

credentials are processed in the evaluator and how the evaluation process interleaves

and cooperates with the credential retrieval process.

6.2 Trust Management and Reputation Systems

Since the term Trust Management was first introduced by Blaze et al. in [10], TM be-

came an important and popular research area. However, in many cases the work having

TM in the title has often very little in common with TM as understood by its origina-

tors. Most of these cases come from the field of Reputation Systems [28,34,33,30,21] –

also referred in the literature as Reputation Based Trust Management. In this paper we

do not deal with reputation systems, however, as reputation systems are undoubtedly

related to TM, below we provide some background information and we mark the most

evident differences with TM.

Reputation systems is now a well researched area [35]. The interest in rep-

utation systems comes from e.g. expert and auction systems [28], likeAllExperts

(http://www.allexperts.com), where everyone can ask an expert volunteer a question

from the selected area. The user can then rate the expert so that other users be informed

on the quality of advice given by different experts. An example of an auction system is

eBay (http://www.ebay.com). In eBay, every user is welcome to leave a positive, nega-

tive or neutral feedback after each transaction. Sellers and buyers in eBay can rate each
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others and by this they can discourage (or encourage) prospective users to enter into

business with another eBay user.

It has been observed that reputation is an important factor which naturally supports

the process of building trust among people [18,28]. The role of a reputation system

is then to collect, distribute, and aggregate feedbacks (reputations) concerning partici-

pants’ past behavior [28]. The past behavior is usually expressed using a so called trust

metric, which describes the agent’s trust in another agent - most often within some

well defined context [1]. In defining trust and reputation, authors often refer to social

sciences [1,27] or economy and politics [28,13]. In most of the formal approaches to

reputation based trust management there is a clear distinction between a so called direct

and recommendation trust [35,20,1,34].

It is clear that the areas that both Trust Management and Reputation Systems cover

overlap. There are, however, important differences. Most reputation systems are nu-

meric [11], and do not incorporate language facilities. Reputation systems are also in

general highly dynamic and deal mostly with the trust metric definition or recommen-

dation exchange protocols. Reputation systems answer the question how to build trust

values from the local history and the information provided by other peers. Most im-

portantly, the trust gained in reputation systems is rather fuzzy in nature as it depends

on an often obscure algorithm and on sometimes highly subjective feedback. In Trust

Management, on the other hand, trust is obtained as a result of a formal evaluation of

a set of credentials with respect to the user policy. Each user is also allowed to have

different policy, which is usually not allowed in the existing reputation systems.
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